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Autonomous Equations / Stability of Equilibrium Solutions 
 

 

First order autonomous equations, Equilibrium solutions, Stability, Long-

term behavior of solutions, direction fields, Population dynamics and 

logistic equations 

 

 

 

Autonomous Equation:  A differential equation where the independent 

variable does not explicitly appear in its expression.  It has the general form 

of 

y′ = f (y). 

 
 

Examples:     y′ = e
2y

 − y
3
 

 

    y′ = y
3
 − 4y  

 

    y′ = y
4
 − 81 + sin y  

 

 

 

Every autonomous ODE is a separable equation.  Because, assuming that  

f (y) ≠ 0, 

 

 )(yf
dt

dy
=   →  dt

yf

dy
=

)(   →  ∫∫ = dt
yf

dy

)( . 

 

 

Hence, we already know how to solve them.  What we are interested now is 

to predict the behavior of an autonomous equation’s solutions without 

solving it, by using its direction field.  But what happens if the assumption 

that f (y) ≠ 0 is false?  We shall start by answering this very question. 
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Equilibrium solutions 
 

 

Equilibrium solutions (or critical points) occur whenever y′ = f (y) = 0.  That 

is, they are the roots of f (y).  Any root c of f (y) yields a constant solution y = 

c.  (Exercise: Verify that, if c is a root of f (y), then y = c is a solution of  

y′ = f (y).)  Equilibrium solutions are constant functions that satisfy the 

equation, i.e., they are the constant solutions of the differential equation. 

 

 

Example:  Logistic Equation of Population  

 

21 y
K

r
ryy

K

y
ry −=







 −=′  

 

 

Both r and K are positive constants.  The solution y is the population 

size of some ecosystem, r is the intrinsic growth rate, and K is the 

environmental carrying capacity.  The intrinsic growth rate is the 

natural rate of growth of the population provided that the availability 

of necessary resource (food, water, oxygen, etc) is limitless.  The 

environmental carrying capacity (or simply, carrying capacity) is the 

maximum sustainable population size given the actual availability of 

resource. 

 

Without solving this equation, we will examine the behavior of its 

solution.  Its direction field is shown in the next figure. 
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Notice that the long-term behavior of a particular solution is determined 

solely from the initial condition y(t0) = y0.  The behavior can be categorized 

by the initial value y0: 

 

 If  y0 < 0, then y → − ∞ as t→ ∞.  

 

 If  y0 = 0, then y = 0, a constant/equilibrium solution. 

 

 If  0 < y0 < K, then y → K as t→ ∞. 

 

 If  y0 = K, then y = K, a constant/equilibrium solution. 

 

 If  y0 > K, then y → K as t→ ∞. 
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Comment:  In a previous section (applications: air-resistance) you learned an 

easy way to find the limiting velocity without having to solve the differential 

equation.  Now we can see that the limiting velocity is just the equilibrium 

solution of the motion equation (which is an autonomous equation).  Hence 

it could be found by setting v′ = 0 in the given differential equation and 

solve for v. 

 

 

Stability of an equilibrium solution 
 

The stability of an equilibrium solution is classified according to the 

behavior of the integral curves near it – they represent the graphs of 

particular solutions satisfying initial conditions whose initial values, y0, 

differ only slightly from the equilibrium value. 

 

If the nearby integral curves all converge towards an equilibrium 

solution as t increases, then the equilibrium solution is said to be 

stable, or asymptotically stable.  Such a solution has long-term 

behavior that is insensitive to slight (or sometimes large) variations in 

its initial condition.  

 

If the nearby integral curves all diverge away from an equilibrium 

solution as t increases, then the equilibrium solution is said to be 

unstable.  Such a solution is extremely sensitive to even the slightest 

variations in its initial condition − as we can see in the previous 

example that the smallest deviation in initial value results in totally 

different behaviors (in both long- and short-terms). 

 

 

Therefore, in the logistic equation example, the solution y = 0 is an unstable 

equilibrium solution, while y = K is an (asymptotically) stable equilibrium 

solution. 
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An alternative graphical method:  Plotting y′ = f (y) versus y.  This is a 

graph that is easier to draw, but reveals just as much information as the 

direction field.  It is rather similar to the First Derivative Test
*
 for local 

extrema in calculus.  On any interval (they are separated by equilibrium 

solutions / critical points, which are the horizontal-intercepts of the graph) 

where f (y) > 0, y will be increasing and we denote this fact by drawing a 

rightward arrow.  (Because, y in this plot happens to be the horizontal axis; 

and its coordinates increase from left to right, from − ∞ to ∞.)  Similarly, on 

any interval where f (y) < 0, y is decreasing.  We shall denote this fact by 

drawing a leftward arrow.  To summarize: f (y) > 0, y goes up, therefore, 

rightward arrow; f (y) < 0, y goes down, therefore, leftward arrow.  The result 

can then be interpreted in the following way:  Suppose y = c is an 

equilibrium solution (i.e. f (y) = 0), then   

 

(i.)  If f (y) < 0 on the left of c, and f (y) > 0 on the right of 

c, then the equilibrium solution y = c is unstable.  

(Visually, the arrows on the two sides are moving away 

from c.) 

 

(ii.)  If f (y) > 0 on the left of c, and f (y) < 0 on the right of 

c, then the equilibrium solution y = c is asymptotically 

stable.  (Visually, the arrows on the two sides are moving 

toward c.) 

 

 

 

Remember, a leftward arrow means y is decreasing as t increases.  It 

corresponds to downward-sloping arrows on the direction field.  While a 

rightward arrow means y is increasing as t increases.  It corresponds to 

upward-sloping arrows on the direction field. 

 

                                                 
*
 All the steps are really the same, only the interpretation of the result differs.  

A result that would indicate a local minimum now means that the 

equilibrium solution/critical point is unstable; while that of a local maximum 

result now means an asymptotically stable equilibrium solution. 
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As an example, let us apply this alternate method on the same logistic 

equation seen previously:  y′ = ry − (r / K) y
2
,  r = 0.75,  K = 10. 

 

 

 The y′-versus-y plot is shown below. 

  

    
 

 

 

As can be seen, the equilibrium solutions y = 0 and y = K = 10 are the 

two horizontal-intercepts (confusingly, they are the y-intercepts, since 

the y-axis is the horizontal axis).  The arrows are moving apart from  

y = 0.  It is, therefore, an unstable equilibrium solution.  On the other 

hand, the arrows from both sides converge toward y = K.  Therefore, it 

is an (asymptotically) stable equilibrium solution. 
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Example:  Logistic Equation with (Extinction) Threshold 

y
K

y

T

y
ry 







 −






 −−=′ 11  

 

Where r, T, and K are positive constants:  0 < T < K.   

 

 

 

The values r and K still have the same interpretations, T is the extinction 

threshold level below which the species is endangered and eventually 

become extinct.  As seen above, the equation has (asymptotically) stable 

equilibrium solutions y = 0 and y = K.  There is an unstable equilibrium 

solution y = T. 
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The same result can, of course, be obtained by looking at the y′-versus-y plot 

(in this example, T = 5 and K = 10): 

 

 
 

 

We see that y = 0 and y = K are (asymptotically) stable, and y = T is unstable. 

 

 

Once again, the long-term behavior can be determined just by the initial 

value y0: 

 

 If  y0 < 0, then y → 0 as t→ ∞.  

 If  y0 = 0, then y = 0, a constant/equilibrium solution. 

 If  0 < y0 < T, then y → 0 as t→ ∞. 

 If  y0 = T, then y = T, a constant/equilibrium solution. 

 If  T < y0 < K, then y → K as t→ ∞. 

 If  y0 = K, then y = K, a constant/equilibrium solution. 

 If  y0 > K, then y → K as t→ ∞. 

 

 

 

 

Semistable equilibrium solution 
 

A third type of equilibrium solutions exist.  It exhibits a half-and-half 

behavior.  It is demonstrated in the next example. 
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 Example:     y′ = y
3
 − 2 y

2
     

 

The equilibrium solutions are y = 0 and 2.  As can be seen below,  

y = 2 is an unstable equilibrium solution.  The interesting thing here, 

however, is the equilibrium solution y = 0 (which corresponding a 

double-root of f (y). 

 

 

 

 

Notice the behavior of the integral curves near the equilibrium solution y = 0.  

The integral curves just above it are converging to it, like it is an 

asymptotically stable equilibrium solution, but all the integral curves below 

it are moving away and diverging to −∞, a behavior associated with an 

unstable equilibrium solution.  A behavior such like this defines a semistable 

equilibrium solution. 
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An equilibrium solution is semistable if y′ has the same sign on both 

adjacent intervals.  (In our analogy with the First Derivative Test, if the 

result would indicate that a critical point is neither a local maximum nor a 

minimum, then it now means we have a semistable equilibrium solution. 

 

(iii.)  If f (y) > 0 on both sides of c, or f (y) < 0 on both 

sides of c, then the equilibrium solution y = c is 

semistable.  (Visually, the arrows on one side are moving 

toward c, while on the other side they are moving away 

from c.) 

 

 

Comment:  As we can see, it is actually not necessary to graph anything in 

order to determine stability.  The only thing we need to make the 

determination is the sign of y′ on the interval immediately to either side of an 

equilibrium solution (a.k.a. critical point), then just apply the above-

mentioned rules.  The steps are otherwise identical to the first derivative test: 

breaking the number line into intervals using critical points, evaluate y′ at an 

arbitrary point within each interval, finally make determination based on the 

signs of y′.  This is our version of the first derivative test for classifying 

stability of equilibrium solutions of an autonomous equation.  (The graphing 

methods require more work but also will provide more information – 

unnecessary for our purpose here – such as the instantaneous rate of change 

of a particular solution at any point.) 

 

 

Computationally, stability classification tells us the sensitivity (or lack 

thereof) to slight variations in initial condition of an equilibrium solution. 

An unstable equilibrium solution is very sensitive to deviations in the initial 

condition.  Even the slightest change in the initial value will result in a very 

different asymptotical behavior of the particular solution.  An asymptotically 

stable equilibrium solution, on the other hand, is quite tolerant of small 

changes in the initial value − a slight variation of the initial value will still 

result in a particular solution with the same kind of long-term behavior.  A 

semistable equilibrium solution is quite insensitive to slight variation in the 

initial value in one direction (toward the converging, or the stable, side).  

But it is extremely sensitive to a change of the initial value in the other 

direction (toward the diverging, or the unstable, side).   
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Exercises A-2.1: 

 

1 − 8  Find and classify all equilibrium solutions of each equation below. 

1.   y′ = 100 y −  y
3
    

 

2.  y′ = y
3
 − 4y    

 

3.  y′ =  y(y − 1)( y − 2)(y − 3)   

 

4.   y′ = sin y     

 

5.   y′ = cos
2
(π y / 2) 

 

6.   y′ = 1 −  e 
y
    

 

7.  y′ = (3y
2
 −2y − 1)e 

−2y
    

 

8.  y′ =  y(y − 1)
2
(3 −  y)(y − 5)

2
 

 

9.  For each of problems 1 through 8, determine the value to which y will 

approach as t increases if  (a)  y0 = −1, and  (b) y0 = π. 

 

10.  Consider the air-resistance equation from an earlier example, 

100v′ = 10000 − 4v
2
.  (i) Find and classify its equilibrium solutions.  (ii) 

Given y(t0) = 0, determine the range of y(t).  (iii) Given y(8) = −60, 

determine the range of y(t).   

 

11.  Verify the fact that every first order linear ODE with constant 

coefficients only is also an autonomous equation (and, therefore, is also a 

separable equation). 

 

12.  Give an example of an autonomous equation having no (real-valued) 

equilibrium solution. 

 

13.  Give an example of an autonomous equation having exactly n 

equilibrium solutions (n ≥ 1).   
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Answers A-2.1: 

 

1.  y = 0 (unstable), y = ±10 (asymptotically stable) 

2.  y = 0 (asymptotically stable), y = ±2 (unstable) 

3.  y = 0 and y = 2 (asymptotically stable), y = 1 and y = 3 (unstable) 

4.  y = 0, ±2π, ±4π, … (unstable), y = ±π, ±3π, ±5π, … (asymptotically stable)  

5.  y = ±1, ±3, ±5, … (all are semistable) 

6.  y = 0 (asymptotically stable) 

7.  y = −1/3 (asymptotically stable), y = 1 (unstable) 

8.  y = 0 (unstable), y = 1 and y = 5 (semistable), y = 3 (asymptotically stable) 

9.  (1) −10, 10;  (2) 0, ∞;   (3) 0, ∞;  (4) − π, π;  (5) −1, 5;  (6) 0, 0;   

     (7) −1/3, ∞;  (8) −∞, 3. 

10.  (i) y = −50 (unstable) and y = 50 (asymptotically stable); (ii) (−50, 50); 

       (iii)  (−∞,−50) 

11.  For any constants α and β, y′ + αy = β can be rewritten as y′ = β − αy, 

which is autonomous (and separable).   

12.  One example (there are infinitely many) is   y′ = e y.  

13.  One of many examples is   y′ =  (y − 1)( y − 2)(y − 3)…(y − n). 
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Exact Equations 
 

 

An exact equation is a first order differential equation that can be written in 

the form  

 

    M(x,y) + N(x,y) y′ = 0,    
 

provided that there exists a function ψ(x,y) such that  

 

  ),( yxM
x
=

∂
∂ψ

  and   ),( yxN
y
=

∂
∂ψ

. 

 

 

Note 1:  Often the equation is written in the alternate form of 

 

    M(x,y) dx + N(x,y) dy = 0. 
 

 

Theorem (Verification of exactness):  An equation of the form 

  

   M(x,y) + N(x,y) y′ = 0 
 

is an exact equation if and only if  

 

    
x

N

y

M

∂
∂

=
∂
∂

. 

 

 

 

 

Note 2:  If M(x) is a function of x only, and N(y) is a function of y only, then 

trivially 
x

N

y

M

∂
∂

==
∂
∂

0 .  Therefore, every separable equation, 

    M(x) + N(y) y′ = 0, 

 

can always be written, in its standard form, as an exact equation. 
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The solution of an exact equation 
 

 

Suppose a function ψ(x,y) exists such that  ),( yxM
x
=

∂
∂ψ

  and   

),( yxN
y
=

∂
∂ψ

.  Let y be an implicit function of x as defined by the 

differential equation  

   M(x,y) + N(x,y) y′ = 0.     (1) 

 

Then, by the Chain Rule of partial differentiation,  

 

  yyxNyxM
dx

dy

yx
xyx

dx

d
′+=

∂
∂

+
∂
∂

= ),(),())(,(
ψψ

ψ . 

 

As a result, equation (1) becomes 

 

0))(,( =xyx
dx

d
ψ . 

 

 

Therefore, we could, in theory at least, find the (implicit) general solution by 

integrating both sides, with respect to x, to obtain 

 

ψ(x,y) = C. 

 

 

The function ψ is often called the potential function of the exact equation. 

 

 

Note 3:  In practice ψ(x,y) could only be found after two partial integration 

steps:  Integrate M (= ψx) respect to x, which would recover every term of ψ 

that contains at least one x; and also integrate N (= ψy) with respect to y, 

which would recover every term of ψ that contains at least one y.  Together, 

we can then recover every non-constant term of ψ. 
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Note 4:  In the context of multi-variable calculus, the solution of an exact 

equation gives a certain level curve of the function z = ψ(x,y).  

 

 

Comment:  Students familiar with vector calculus would no doubt realize 

that the calculation needed to verify and solve an exact equation is 

essentially identical to the process used to verify a 2-dimensional 

conservative vector field and to find the underlying potential function of the 

vector field from its gradient vector.    
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Example:  Solve the equation 

   (y
4
 − 2) + 4xy

3
 y′ = 0 

 

 

 First identify that M(x,y) = y
4
 − 2, and N(x,y) = 4xy

3
. 

  

 Then make sure that it is indeed an exact equation: 

  
34y

y

M
=

∂
∂

  and   
34y

x

N
=

∂
∂

 

  

Finally find ψ(x,y) using partial integrations.  First, we integrate M 

with respect to x.  Then integrate N with respect to y. 

 

 ∫ ∫ +−=−== )(2)2(),(),( 1

44 yCxxydxydxyxMyxψ , 

 

 ∫ ∫ +=== )(4),(),( 2

43 xCxydyxydyyxNyxψ . 

 

Combining the result, we see that ψ(x,y) must have 2 non-constant 

terms:  xy
4
 and −2x.  That is, the (implicit) general solution is:    

xy
4
 − 2x = C.   

 

 

Now suppose there is the initial condition  y(−1) = 2.  To find the 

(implicit) particular solution, all we need to do is to substitute x = −1 

and y = 2 into the general solution.  We then get C = −14. 

 

 Therefore, the particular solution is  xy
4
 − 2x = −14. 
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Example:  Solve the initial value problem 

0)ln)cos(()2)cos(( =+++++ dyexxyxdxx
x

y
xyy y

,  y(1) = 0. 

 

First, we see that x
x

y
xyyyxM 2)cos(),( ++=   and 

yexxyxyxN ++= ln)cos(),( . 

 

 

 Verifying:   

x
xyxyxy

y

M 1
)cos()sin( ++−=

∂
∂

=
x

xyxyxy
x

N 1
)cos()sin( ++−=

∂
∂

 

 

 

 Integrate to find the general solution: 

 

 )(ln)sin(2)cos(),( 1

2 yCxxyxydxx
x

y
xyyyx +++=







 ++= ∫ψ , 

  

as well, 

 

 ( ) )(ln)sin(ln)cos(),( 2 xCexyxydyexxyxyx yy +++=++= ∫ψ . 

 

  

 Hence, sin xy + y ln x + e
 y
 + x

2
 = C. 

 

 

 Apply the initial condition:  x = 1 and y = 0: 

 

   C = sin 0 + 0 ln (1) + e 
0
 + 1 = 2   

 

 

 The particular solution is then   sin xy + y ln x + e
 y
 + x

2
 = 2. 
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Example:  Write an exact equation that has general solution   

x
3 e

 y
 + x

4
 y

4
 − 6 y= C. 

 

 

 

 We are given that the solution of the exact differential equation is  

 

   ψ(x,y) = x
3 
e

 y
 + x

4
 y

4
 − 6 y = C. 

 

 The required equation will be, then, simply 

  

   M(x,y) + N(x,y) y′ = 0,   

 

such that  ),( yxM
x
=

∂
∂ψ

  and   ),( yxN
y
=

∂
∂ψ

. 

 

 Since   

432 43 yxex
x

y +=
∂
∂ψ

,   and 

  64 343 −+=
∂
∂

yxex
y

yψ
. 

 

 Therefore, the exact equation is: 

 

  (3 x
2 e

 y
 + 4 x

3
 y

4
) + (x

3 e
 y
 + 4 x

4
 y

3
 − 6 ) y′ = 0. 
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Summary:  Exact Equations 
 

 

M(x,y) + N(x,y) y′ = 0 
 

Where there exists a function ψ(x,y) such that  

 

  ),( yxM
x
=

∂
∂ψ

  and   ),( yxN
y
=

∂
∂ψ

. 

 

1.  Verification of exactness: it is an exact equation if and only if  

 

     
x

N

y

M

∂
∂

=
∂
∂

. 

 

 

2.  The general solution is simply   

 

ψ(x,y) = C.  
 

Where the function ψ(x,y) can be found by combining the result of the 

two integrals (write down each distinct term only once, even if it 

appears in both integrals): 

 

∫= dxyxMyx ),(),(ψ ,   and 

 

    ∫= dyyxNyx ),(),(ψ . 
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Exercises A-2.2: 

 

1 − 2  Write an exact equation that has the given solution.  Then verify that 

the equation you have found is exact. 

1.  It has the general solution   x
2 
tan y + x

3
 − y

2
 − 3x

4
 y

2
 = C. 

 

2.  It has a particular solution   2xy − ln xy + 5y = 9. 

 

3 – 11  For each equation below, verify its exactness then solve the equation. 

3.   2x + 2x cos(x
2
) + 2y y′ = 0 

 

4. (x
2
 + y) + (y

2
 + x) y′ = 0 

 

5.  0)54(2
2

4
2

2
3443 =′+++−− y

y

x
yxx

y

x
yx  

 

6.   (2x − 2y) + (2y − 2x) y′ = 0,   y(10) = −5 

 

7.   (3x
2
y + y

3
 + 4 − y e 

xy
) + (x

3
 + 3xy

2
 − x e 

xy
) y′ = 0,   y(2) = 0 

 

8.   (5 − 2y
2

 e
2x

) + (−5 − 2y e
2x

) y′ = 0,   y(0) = −4 

 

9.   0)
cos2

()
2sin

(
2

2

32
=′−++ y

y

x

y

x

y

x

y

x
,   y(0) = 1 

 

10.   0)
2

)(arctan()
1

1

2
(

3

2

24
=′−++

+
y

y

x
x

yx

xy
,   y(1) = 2 

 

11.  −sin(x)sin(2y) + ycos(x) + (2cos(x)cos(2y) + sin(x)) y′ = 0,  y(π/2) = π  

 

12.  Rewrite the equation into an exact equation, verify its exactness, and 

then solve the initial value problem.   

   y′ =
)sin(yxe

e
y

y

−
−

,    y(1) = 0. 

 

13 − 15  Find the value(s) of λ such that the equation below is an exact 

equation.  Then solve the equation. 
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13.  0)3()
1

2( 26

2

35 =′−+− yyx
x

yx λλ  

 

14.  (λ y sec
2
(2xy) − λ xy

2
) + (2x sec

2
(2xy) − λ x

2
y) y′ = 0 

 

15.  (10y
4
 − 6xy + 6x

2
sin(x

3
)) + (40xy

3
 − 3x

2
 + λ cos(x

3
)) y′ = 0 

 

16.  Show that a first order linear equation  y′ + p(t) y = g(t) is usually not 

also an exact equation.  But it becomes an exact equation after multiplied 

through by its integrating factor.  That is, the modified equation 

µ(t) y′ + µ(t)p(t) y = µ(t)g(t), where 
∫=

dttp

et
)(

)(µ , will be an exact equation. 
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Answers A-2.2: 

 

1.  (2x tan y + 3x
2
 − 12x

3
y

2
) + (x

2 
sec 

2
 y − 2y − 6x

4
y ) y′ = 0 

2.  0)5
1

2()
1

2( =′+−+− y
y

x
x

y  

3.  x
2 
+ y

2
 + sin(x

2
) = C   

4. C
y

xy
x

=++
33

33

 

5.  Cyx
y

x
yx =+−− 52

2
44

 

6.  x
2
 – 2xy + y

2
 = 225  

7.  x
3
y + xy

3
 + 4x − e 

xy
 = 7 

8.  5x − 5y − y
2

 e
2x

 = 4 

9.  1
cos 2

2
−=+

−
y

x

y

x
 

10. 
4

12
)arctan(

2

2 +
=+

π
y

x
xy  

11.  cos(x)sin(2y) + ysin(x) = π    

12.  The equation is  e 
y
 + (x e

 y
 − sin y) y′ = 0;  x e

 y
 + cos y = 2 

13.  λ = 3;  x
6
y

3
 + x 

−1
 − 3y = C   

14.  λ = 2;  tan(2xy) − x
2 
y

2
 = C 

15.  λ = 0;  10xy
4
 − 3x

2
y − 2cos(x

3
) = C    

 


