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Abstract

Human drivers navigate the roadways by balancing values such as safety, legality, and

mobility. An autonomous vehicle driving on the same roadways as humans likely needs

to navigate based on similar values. For engineers of autonomous vehicle technology,

the challenge is then to connect these human values to the algorithm design.

To address this challenge, a mapping of philosophical frameworks to mathematical

frameworks is used in order to motivate various design choices in a motion planning

algorithm. Deontological ethics parallels rule-based mathematical concepts while con-

sequentialism parallels cost-based mathematical concepts. The philosophical theory

of virtue ethics is also used to help motivate the relative weightings between the de-

sign objectives of path tracking, obstacle avoidance, and adherence to traffic laws.

Experimental results of an autonomous vehicle navigating an obstructed two-lane

roadway with a double yellow line demonstrate the implications of the various design

choices in a model predictive steering controller.

In order to determine the success of the human values captured in an algorithm,

the iterative methodology of value sensitive design (VSD) is used to formalize the con-

nection of human values to engineering specifications. A modified VSD methodology

is used to develop an autonomous vehicle speed control algorithm to safely navigate a

pedestrian crosswalk. Two VSD iterations are presented that model the problem as a

partially observable Markov decision process and use dynamic programming to com-

pute an optimal policy to control the longitudinal acceleration of the vehicle based

on the belief of a pedestrian crossing. The speed control algorithms are also tested

in real-time on an experimental vehicle on a closed-road course.
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Chapter 1

Introduction

1.1 Motivation

Driving allows humans to get from one destination to another in a timely and com-

fortable manner. People have places to be, other people to see, and things to do.

Humans who drive enjoy the convenience, efficiency, and flexibility that automotive

transportation provides in order to go about their day. This desire to travel illustrates

that humans who drive find mobility to be important in their everyday lives. Yet,

drivers are not the only humans that want mobility. A driver’s desire for mobility

can conflict with another road user’s desire for mobility. For example, a pedestrian

may want to cross the street within a crosswalk at the same time a driver is traveling

through the roadway. This demonstrates a conflict over the value of mobility. Born-

ing and Muller define the word “value” as “what a person or group of people consider

important in life” [1]. Hence, mobility can be considered to be a human value.

Another value encountered while driving is safety. Imagine someone driving down

a residential road and suddenly a toy ball rolls onto the street from behind a large

family van parked on the street. The human driver cannot see if or when a person

may run out to chase the ball. Nevertheless, human drivers realize that they just

need to stop or slow down in order to maintain the safety of the scenario because

that person may be someone’s child. Valuing safety allows drivers to protect other

humans and property from a two-ton moving vehicle.

1



CHAPTER 1. INTRODUCTION 2

A third value is legality. Traffic laws provide guidance, allowing humans to share

the roadways with other drivers and vulnerable road users. Traffic laws tend to be

written as strict rules, but human drivers often push the boundaries of these laws

or break them entirely. For example, speed limits are phrased as a rigid upper limit

on the maximum speed a vehicle should travel (California Vehicle Code §22348).

However, judge instructions to juries on the traffic code suggest it is not so strict

in practice [2]. Other apparently strict driving situations involve the adherence to

double yellow lines, which are illegal to cross on California roadways according to

California Vehicle Code §21460. This can conflict with the requirement to maintain

a 3 ft gap when passing bicyclists (California Vehicle Code §21760) or when a large

vehicle double parks on a road with a double yellow line. Human drivers value legality

and manage to operate a vehicle amidst conflicts within legality.

When human drivers navigate the roadways, they do so by balancing values such

as mobility, safety, and legality as evidenced by how they handle the above scenarios.

There are, of course, many other values implicated while driving, such as care and

respect for others, fairness and reciprocity, respect for authority, and trust and trans-

parency. Depending on the scenario, one value may take precedence over another or

the values may even conflict. Fortunately, human drivers have a way of determining

what values are a priority at any given time.

1.2 Autonomous Vehicle Motion Planning

Autonomous vehicles entering the roadways are likely to encounter similar scenarios

to human drivers, such as driving alongside other human drivers and vulnerable road

users, carrying human occupants, and encountering objects or people suddenly ap-

pearing from behind occlusions. An autonomous vehicle will also have to navigate

the roadways while balancing values such as mobility, safety, and legality. For engi-

neers of autonomous vehicle technology, the challenge is to design motion planning

algorithms in the midst of these competing human values.

According to the literature, there are many definitions of motion planning. This

thesis defines motion planning as an algorithm that plans the lateral and longitudinal
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Figure 1.1: Example of motion planning around an obstacle. The centerline (dotted)
is the reference trajectory, and the blue circles indicate the planned trajectory.

motion through a combination of steering and acceleration commands in terms of

a given reference trajectory. The reference is a nominal trajectory defining desired

positions and velocities for the autonomous vehicle, and it is not guaranteed to be

obstacle-free. If an autonomous vehicle is to navigate a two-lane roadway, for example,

and an obstruction exists or a pedestrian appears, then the autonomous vehicle needs

a motion planner to negotiate between following the reference and avoiding collisions.

For scenarios like these, particular techniques are conducive for motion planning. A

good choice for a motion planner is model predictive control (MPC), which solves

for a sequence of control inputs by optimizing a cost function according to a set of

constraints along a prediction horizon in a receding fashion (see Figure 1.1) [3]. The

designer of the MPC optimization problem must then determine the objectives for the

cost function, the constraints, and the weights such that the vehicle realizes goals like

mobility, safety, and legality. Other motion planning techniques may also be a good

choice, and the designer of those algorithms will have to make similar considerations.

1.2.1 Mobility and Safety

In designing autonomous vehicle motion planning algorithms, engineers already make

decisions that implicate values of mobility and safety. For example, Falcone, Borrelli,

Asgari, Tseng, and Hrovat [4] explore the construction of two MPC optimization prob-

lems for executing a constant speed double-lane change maneuver along a collision-free

reference trajectory at the limits of vehicle handling. Falcone et al. include heading de-

viation, lateral deviation, yaw rate deviation, and steering effort in the cost function,

while the constraints consist of the vehicle model and actuator limits. The weight

on heading deviation is relatively larger than the other states across implementa-

tions. For the nonlinear MPC formulation, the weight on steering effort is relatively
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lower than the weight on heading deviation but greater than the weight on lateral

deviation. The linear time-varying formulation includes an additional constraint on

slip angle, and the penalty on steering effort is two orders of magnitude higher than

heading deviation. Because the authors do not explicitly mention how mobility and

safety are captured in their algorithms, the formulations leads me to interpret that

mobility arises by following the desired speed, while safety is realized by the vehi-

cle models and system constraints because the reference trajectory is obstacle-free.

Similarly, Ziegler, Bender, Dang, and Stiller [5] construct a constrained optimization

problem and solve in a receding fashion. The cost function consists of maintaining

equal distances from road edges and obstacles that appear, following the speed limit,

smoothing acceleration and jerk, and attenuating high yaw rates. The constraints

include steering geometry, the friction limits of the tires, and the driving corridor.

The choice of weights for the experiments is not disclosed in the paper. Nor do the

authors explain how their algorithm explicitly comprise mobility and safety. These

formulations lead me, again, to interpret that mobility arises by following the speed

limit when possible in addition to occupant comfort, while safety comes from avoiding

obstacles and road edges.

Rather than solving a constrained optimization problem, Kuwata, Teo, Karaman,

Fiore, Frazzoli, and How [6] use rapidly-exploring random trees (RRT) and sample

from the control space to create reference trajectories given a target goal from a high-

level route planner. A generative closed-loop vehicle model with constraints is used

for randomly sampling feasible, smooth trajectories through a cluttered environment.

Essentially, Kuwata et al. use the closed-loop RRT to bypass the need for a motion

planner because the reference trajectory it generates already accounts for obstacles

and for the closed-loop speed and steering controllers. The constraints consist of

acceleration and steering limits. Although there is no cost function, the closed-loop

controllers have gains to be chosen. Upon my interpretation, Kuwata et al. prior-

itize safety over mobility considerations with several safety mechanisms to override

the planned trajectory. Bouton, Nakhaei, Fujimura, and Kochenderfer [7] explicitly

account for mobility through efficiency as well as safety in the design of a partially

observable Markov decision process (POMDP) for navigating occluded scenarios by
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penalizing collisions and rewarding the vehicle for completing maneuvers. Although

constraints are not explicitly considered when optimizing the policy for a POMDP

model, Bouton et al. use a discrete state space to limit the maximum speed for the

maneuvers and a discrete action space to limit the change in acceleration commands.

There are many more examples of engineers implicating values of safety and mobility

in the design of motion planning algorithms.

1.2.2 Mobility, Safety, and Legality

Most autonomous vehicle motion planning algorithms suggest some consideration

of mobility and safety, but legality is rarely or only implicitly addressed. For the

2007 DARPA Urban Challenge, participant vehicles were required to adhere to the

California Vehicle Code [8], [9], but leading participants’ reports provide only minimal

details on how the algorithms in the decision structure (inclusive of mission planners,

behavioral planners and motion planners) considered the traffic code [10]–[13]. All

participants implemented some variant of a finite state machine to construct feasible

paths that stayed within lane markers and considered stopping points at traffic lights

and stop signs. The speed limit was an upper limit imposed on the motion planners.

The value conflict between mobility, safety, and legality was implicitly mitigated by

partitioning the decision problem with hierarchical decision structures, where the top

level algorithms considered only the legal rules and bounded the feasible paths for the

motion planners to consider only mobility and safety. Value conflicts with legality

would arise only during error recovery, for example, due to sensor failure. If the legal

requirements were too strict to obtain a feasible path, then the legal requirements

were pruned away until an obstacle-free feasible path was determined. Essentially, the

DARPA Urban Challenge vehicles would try to adhere to the vehicle code first unless

a fail-safe mode was engaged. This paradigm of “try to be legal first” continued after

the DARPA Urban Challenge as evidenced by the hybrid decision architecture that

Wei, Snider, Gu, Dolan, and Litkouhi [14] propose, which considers traffic rules in

the mission and reference planners, and considers safety, smoothness, and efficiency

in the lower-level behavioral planner [15].
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Rather than bisect the value conflict in the decision architecture, another approach

is to construct a controller that guarantees adherence to a rule set such as the traffic

code. Wongpiromsarn, Karaman, and Frazzoli [16] apply linear temporal logic (LTL)

to the description of the traffic code to synthesize an obedient controller. In the sim-

ulations of an obstacle on the road and a double yellow line, the autonomous vehicle

is able to navigate around the obstruction because the logic rules allow passing a dou-

ble yellow after the vehicle comes to a stop first. Reyes Castro, Chaudhari, Tumova,

Karaman, Frazzoli, and Rus [17] build upon this work by using a sampling-based

algorithm known as optimal rapidly-exploring random trees (RRT*) to construct dy-

namically feasible trajectories that adhere to the rule set. Difficultly arises in defining

a rule set that is reachable, meaning it will not overly constrain the vehicle motion.

To address this difficulty, Reyes Castro et al. allow for (and chose the) prioritization

of the rules.

On the opposite end of the spectrum are learning approaches that implicitly bal-

ance mobility, safety, and legality by learning from human drivers. Wulfmeier, Wang,

and Posner [18] employ cost function learning from expert demonstrations. The

planning problem is formulated as a Markov decision process (MDP) and learns a

“perception-to-cost” mapping without specifying any features explicitly. This ap-

proach obfuscates the decision-making process and lacks the transparency needed to

understand the implications of mobility, safety, and legality. Kuderer, Gulati, and

Burgard [19] take a similar approach to learn a “perception-to-cost” mapping but

they explicitly define its features. They use maximum entropy inverse reinforcement

learning to parameterize driving style in a cost function. Taking this idea further,

Lee and Seo [20] also define explicit features to implicitly learn how drivers navigate

an obstructed roadway with a double yellow line. With these implementations, the

autonomous vehicle embodies values of mobility, safety, and legality similar to those

of the demonstrator.

It is evident in the above literature that there are many ways to formulate a

motion planning algorithm. Some techniques focus on constraints, some on costs, and

others allow for a combination of constraints and costs. In the general formulation

of a motion planning algorithm, the choice of a cost, of a constraint, or of a weight
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may seem arbitrary. Even less clear is how these choices connect to human values.

An investigation of ethics and human values may provide assistance to engineers in

determining what should be a cost or constraint and even the weights when designing

motion planning algorithms.

1.3 Autonomous Vehicles and Ethics

When the topic of autonomous vehicles and ethics arises, the infamous trolley prob-

lem may immediately come to mind. The trolley problem posits a scenario of an

uncontrollable trolley loose on a set of railway tracks because of broken brakes. If the

trolley continues on its way, it is guaranteed to kill five people. You as a bystander

have the choice to intervene and divert the trolley to another set of tracks where

there is an unassuming person that would surely perish [21]. Replacing the trolley

with an autonomous vehicle, an algorithm may then need to determine whether to

continue on a collision course with five pedestrians or swerve and kill an unassuming

pedestrian. This would be an unfortunate scenario for an autonomous vehicle (or

anyone) to encounter on the roadway. Hence, there is a prevalence of work that seeks

to explore an understanding of and potential solutions to said problem.

Along the lines of understanding the trolley problem, some focus has been on

learning the preferences of the public concerning what an autonomous vehicle should

do in a crash scenario when it is confined to the choice of hitting one entity over

another. It is assumed in these preference surveys and experiments that an auton-

omous vehicle will be able to affirmatively target an entity. The preference surveys

and experiments largely conclude similar results, which are that a majority of the hu-

man subjects prefer the vehicle take a utilitarian approach to sacrifice the few for the

many [22]–[25]. The social dilemma arises in the follow-up question about whether

an autonomous vehicle should be programmed to adhere to utilitarian ethics. The

authors conclude that the participants do not want the autonomous vehicle to be

utilitarian or follow their own preferences, but want manufacturers and lawmakers to

decide how the vehicle should behave in these crash scenarios. Philosophers and ethics

researchers first posited the trolley problem to encourage engineers to think about
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the consequences of their design choices to avoid the unintentional development of

targeting algorithms [26]. The focus on trolley problems has brought about solutions

(and, in essence, targeting algorithms) which entail encoding an autonomous vehicle

to accept a user-defined priority or “command” list for crash scenarios as posited by

Fournier [27] and Jaiswal [28]. In particular, Jaiswal uses a priority list in conjunc-

tion with an object classification algorithm to inform the autonomous vehicle what

action to take in a crash scenario such that it reflects the occupants’ personal ethics

or use a default list provided by the manufacturer. The design implies that the out-

come of the crash scenario is deterministic assuming accurate classification. Since

the aforementioned preference surveys indicate users are less inclined to embed their

ethics (i.e. their utilitarian choices) into the vehicle, Noothigattu et al. [29] propose

the democratization of preference learning. In the case of a trolley scenario, should

vehicle failure occur and legality not apply, then the aggregated voices of the public

will decide who to target.

As an alternative to targeting solutions for trolley scenarios, some use the idea of

social welfare to more equally distribute harm. In a trolley problem variant where

the autonomous vehicle ferries a human occupant and it must suddenly swerve into

a wall or kill a pedestrian, Kinjo and Ebina [30] propose evaluating an objective

function that multiplies the utilities of the passenger and pedestrian such that non-

binary steer angle solutions arise. Meaning, an autonomous vehicle equipped with

this objective function could attempt to slightly swipe both the wall and pedestrian,

thus distributing a small amount of harm to all involved. This starts moving trolley-

like decisions from survey results to game theory approaches such as those further

explored by Leben, who formulates social justice as a maximin algorithm [31]. The

social justice approaches enforce neutrality with regards to the agents rather than

assuming a particular target.

The proposed solutions to trolley scenarios solve a very different problem than a

motion planning problem. In motion planning, the autonomous vehicle constantly

evaluates how to move laterally and longitudinally such that it follows a given refer-

ence trajectory and avoids collisions. The above trolley scenario solutions focus on

making last minute targeting decisions in crash scenarios. Wheeler demonstrates that
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there is a critical inflection point in terms of scenario risk well before an accident oc-

curs [32], which suggests an autonomous vehicle equipped with an appropriate motion

planner could avoid trolley scenarios altogether. This thesis takes a step back from

trolley problems to consider philosophical frameworks and human values more broadly

in order to help engineers design motion planning algorithms in socially acceptable

and justifiable ways.

1.4 Dissertation Contributions

The above literature review indicates there are many approaches for autonomous ve-

hicle motion planning and that the current take on autonomous vehicle ethics solves

a very different problem. This thesis addresses the gap between motion planning and

ethics through the following contributions: improving functionality by accounting for

the actuation delays in a steering controller, incorporating traffic laws pertaining to

lane dividers and crosswalks into problem formulations, mapping normative theories

to mathematical concepts found in motion planning algorithms, and applying a mod-

ified version of a generic design methodology to connect human values to engineering

specifications.

1.4.1 Delay compensation of steering actuation in model pre-

dictive control

It is well established that the models used in model predictive control (MPC) must

be accurate because MPC is an open-loop planning technique. The steering system

of an autonomous vehicle incurs some amount of time delay due to communication

latency and may also have delay dynamics associated with actuation. If the combined

delay is significant, then the path tracking performance and steer effort from MPC

may suffer. To account for time delays in MPC, the technique of state-propagation

estimates the initial state to a point in time beyond the effect of the delay but depends

on having a highly accurate models of the delay. Additionally, the techniques for

handling delays found in traditional controls cannot be applied to MPC without
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increasing the computational complexity of the problem formulation. The research

presented here starts with a baseline MPC problem formulation without any pure

time delays or actuation lags. Various efficient delay forecasting formulations are

then appended to the problem formulation in a comparative analysis of path tracking

and steering performance. With improved modeling of the steering system in the

control formulation, system performance subsequently improves.

1.4.2 Incorporation of traffic laws: lane dividers in model

predictive steering control and crosswalks in partially

observable speed control

For model predictive steering control, a particularly relevant traffic law is California

Vehicle Code §21460, which restricts drivers from driving on the left of a double yellow

line. Lane and road dividers are implemented as slack variables on the environmental

envelope of the MPC formulation. The type of lane or road divider contributes

to the choice of weight on the slack variable. Alternatively, the type of divider is

implemented as a secondary environmental envelope using the physical dimensions of

the lanes rather than the full road width.

Traffic laws pertaining to the speed limit and unsignalized pedestrian crosswalks

are embedded in a partially observable Markov decision process (POMDP) for speed

control. The speed limit is implicitly accounted for by limiting the vehicle state space

to the speed limit. The unsignalized pedestrian crosswalk is assumed to be a marked

crosswalk or an unmarked crosswalk at an intersection as described by California

Vehicle Code §21950. The vehicle distance to the crosswalk is used to account for the

physical location of the crosswalk on the road.

The incorporation of these traffic laws demonstrates additional examples of how

legality can be explicitly captured in the design of motion planning algorithms. In

particular, §21460 is included in an MPC formulation, and §21950 is embedded in a

POMDP.
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1.4.3 Mapping of philosophical frameworks to mathematical

frameworks in autonomous vehicle motion planning

There are mathematical frameworks that parallel philosophical frameworks, and can

subsequently inform engineering design choices. In particular, the normative theory

of deontological ethics maps to set theory and conditionals or constraints, while con-

sequentialism maps to an optimization problem [33]. Commonalities amongst these

frameworks motivate the design of many motion planning algorithms. In particular,

this thesis considers the design of a model predictive steering controller. The design

choices of the steering controller include accounting for path tracking, smooth steer-

ing, physical limits of the steering system, obstacle avoidance, and adherence to traffic

laws. Path tracking and smooth steering are cast as consequential costs, while steer-

ing limits and obstacle avoidance are cast as deontological constraints. Adherence to

traffic laws depends on whether a double yellow line should be treated deontologically

or consequentially. Engineers already use rule-based and cost-based algorithms, so

understanding the implications from philosophical principles provide engineers with

further rationalization and justification for the design choices of a cost, constraint,

and weight.

1.4.4 Demonstration of a modified value sensitive design pro-

cess for autonomous vehicle motion planning

Value sensitive design (VSD) is a general design methodology that can be applied

to any design task with value conflicts to explicitly account for human values with

ethical import [34], [35]. The three phases of conceptualization, technical implemen-

tation, and empirical analysis iterate until the identified human values are captured

by the technology. In order to apply VSD to autonomous vehicle motion planning

algorithms, the conceptualization phase in the methodology is modified to focus on

listing stakeholders, value assumptions and information needed to account for the

values in subsequent phases. In line with VSD, the technology or algorithm chosen

for implementation embodies certain values; the application of VSD to autonomous

vehicle motion planning should acknowledge how the chosen algorithm upholds the
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outlined values. The empirical analysis phase investigates how well the technical

implementation meets the conceptualization using qualitative and quantitative tech-

niques. Engineers equipped with VSD can explicitly and formally account for values

being embedded in the algorithm design.

1.5 Dissertation Outline

The contributions of this thesis are dispersed throughout the chapters. The theme of

ethical considerations for autonomous vehicle motion planning is woven through each

chapter as follows:

Chapter 2: Comparative Analysis of Steering System Model-

ing in Model Predictive Control

Consideration of ethics and values applies to situations where balancing various ob-

jectives may be difficult or not obvious. Certain engineering problems in autonomous

vehicle motion planning do not suffer from value conflicts. Instead, those engineering

problems concentrate on basic functionality. Chapter 2 focuses on proper account of

the actuation level in the decision-layer in a computationally efficient manner. All

problem formulations in Chapter 2 use model predictive control (MPC) for steering

an autonomous vehicle because MPC can account for state and input constraints in

the optimization problem. Variations in the problem formulation account for differ-

ent system identification models of the actuation signal delay and dynamics found in

a modified production vehicle with an electronic power assist steering system. The

analysis comprises open-loop prediction mismatch with closed-loop performance and

steering effort for the vehicle driving around an obstruction on the reference trajec-

tory. The compensated system can be used for motion planning tasks in subsequent

chapters.
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Chapter 3: Costs, Constraints, and Weights from Philosophi-

cal Principles

In addition to safety, autonomous vehicle motion planning touches on the human

values of mobility and legality. Translating these values to engineering specifica-

tions is not straightforward or often implicitly embedded by the design choices of

the engineer. Balancing the values of mobility, safety, and legality is a human pro-

cess. Philosophers are experts on the human process, and model the world through

normative theories. The most common theories are a rule-based model known as

deontological ethics, a cost-based model known as consequentialism, and a character-

based model known as virtue ethics. In Chapter 3, these philosophical frameworks

are mapped to mathematical frameworks. Deontological ethics parallels the mathe-

matical concept of set theory or constraints and conditionals while consequentialism

parallels an optimization problem. With this knowledge, design choices of how to

formulate a motion planning algorithm for path tracking, obstacle avoidance, and

adherence to traffic laws for the case of navigating a two-lane roadway with a double

yellow line and an obstruction on the roadway manifests as a constrained optimiza-

tion problem. The approach is implemented using MPC as a constrained finite-time

optimal control problem thereby maintaining computational efficiency and tractabil-

ity. Design choices are cast as either deontological constraints or consequential costs

as a manner of design justification. The choice of weight values in the cost function of

a constrained optimization algorithm still lead to different driving behavior, so virtue

ethics in the form of role morality is used to help motivate the relative weightings

between the design objectives of path tracking, obstacle avoidance, and adherence to

traffic laws. Engineers equipped with this mapping can better reason through the

design choice of a cost, constraint, or weight.

Chapter 4: Motion Planning with Human Values

Justifying the design of autonomous vehicle motion planning algorithms through nor-

mative theories is a useful discussion tool for engineers. Unfortunately, in design
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problems, value conflicts may not be resolved through discussion of normative theo-

ries because they cannot guarantee the realization of human values in the designed

technology. Chapter 4 applies a modified version of the value sensitive design (VSD)

methodology to explicitly connect human values to engineering specifications through

iteration over conceptualization, technical implementation, and empirical analyses.

The iterative nature of VSD challenges the engineering process to continually check

back with the moral values at stake until all three phases align. Chapter 4 builds on

the previous scenario of Chapter 3 by changing the obstruction to a large, occluding

vehicle parked in front of a pedestrian crosswalk. For this scenario, the modified VSD

is applied to the development of an autonomous vehicle speed control algorithm for

safe navigation of an occluded pedestrian crosswalk. The conceptualization phase

identifies the values with ethical import and stakeholders for the scenario. The choice

of technical implementation upholds certain values, so the control algorithm takes

the form of a POMDP to account for the uncertainty of the scenario in a closed-loop

planning algorithm. The empirical analysis includes a comparison with a baseline

deterministic proportional speed control design and a policy evaluation. By applying

VSD, the implicit embedding of values by engineers becomes explicit in the design

process.

Chapter 5: Conclusion

The contributions of this thesis and the journey therein are summarized in Chapter 5.

This thesis comprises preliminary works that explicitly account for ethical considera-

tions in autonomous vehicle motion planning algorithms, but there is still more to be

done. Thus, additional attention is given to explaining what some of these next steps

may look like. Furthermore, the conclusions emphasize that ethical considerations

are not just at the decision-making layer in the autonomous vehicle stack but are at

play throughout all aspects of the vehicle and system design such as the choice of

sensors, the perception layer, or even how the vehicles are tested and deployed.



Chapter 2

Comparative Analysis of Steering

System Modeling in Model

Predictive Control

Autonomous vehicle motion planning requires ethical considerations in situations

where value conflicts arise. Some engineering problems within motion planning, how-

ever, do not deal with value conflicts because they deal with having a functioning

system. Chapter 2 focuses on accounting for the actuation level in the decision-layer

in a computationally efficient manner in order to ensure the planned trajectories can

actually be executed. The majority of this chapter appears in the Proceedings of the

International Symposium on Advanced Vehicle Control of 2018 [36].

2.1 Introduction

Model predictive control (MPC) has been shown to perform well for automated driv-

ing applications because it can account for constraints on the system while optimizing

multiple objectives. MPC also relies upon a model of the system to predict how con-

trol inputs affect future trajectories of the plant. For the motion planning problem

defined in Chapter 1, one way to formulate an MPC problem is to track the reference

trajectory by minimizing lateral deviation in the cost function and defining obstacle

15
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avoidance as a constraint. But an autonomous vehicle needs to steer properly in order

to execute the planned trajectories.

Automated vehicles on the road today are modified production vehicles. An elec-

tric power assisted steering (EPAS) system involving a motor mounted to the steering

column provides a straightforward external interface to the steering actuation. How-

ever, EPAS may introduce significant delay and compliance to the production steering

system. If a system has a non-trivial time delay between the actuation requests and

the fulfillment, it is important to model and embed the delay in the MPC formulation.

Otherwise, path tracking and occupant comfort can be compromised.

Actuation modeling in MPC has been considered throughout the literature, typi-

cally by state propagation or additional delay states in the model. For systems with

well known signal delays, Trimboli, Di Cairano, Bemporad, and Kolmanovsky [37]

demonstrate state propagation in simulation, and Liniger, Domahidi, and Morari [38]

address 20 ms signal delay through state propagation using a second-order Runge-

Kutta method with validation on 1:43 scale electric cars. An alternative approach to

state propagation for pure time delays entails modeling the signal delay directly in

the model by appending the system dynamics with delay states as demonstrated by

Di Cairano, Yanakiev, Bemporad, Kolmanovsky, and Hrovat [39]. These approaches

demonstrate state propagation as a useful technique for well-characterized actuation

dynamics and known signal delays in simulation and on small-scale electric cars.

Although the inclusion of actuation modeling in MPC is not new, to my knowledge

there is no comparison of various approaches with MPC on a full-sized experimental

vehicle. Nor do the actuation modeling methods address actuation dynamics in ad-

dition to pure time delays. As part of the research presented in this thesis, various

actuation modeling problem formulations are evaluated using low-fidelity models as

applied to Trudi, an automated Ford Fusion. In particular, the signal delay is cap-

tured by shifting the input vector by the delay time, thus reducing the computational

complexity. The actuation dynamics are incorporated into the system dynamics using

first- and second-order identified system models. All the models improve the system

behavior. Yet, a simple first-order lag is demonstrated to be sufficient with Trudi.

The chapter is organized as follows: the steering system of Trudi is explained in
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Section 2.2. In Section 2.3, a baseline MPC approach is benchmarked on Trudi and

includes the experimental setup used for comparison of various actuation modeling

approaches. A pure time delay approach is presented in Section 2.4, while approaches

for addressing dynamic lag are demonstrated in Section 2.5. Section 2.5 also entails

a discussion with further analysis of each approach, and a summary is provided in

Section 2.6.

2.2 Steering System

Trudi is a fully automated hybrid Ford Fusion with drive-by-wire systems shown in

Figure 2.1a. Because of the EPAS system, the hand wheel actuates via a motor

mounted on the steering column. The relationship between the hand wheel angle

(δhw) actuation and the road wheel angle (δ) can be approximated linearly as

δ = Khwδhw, (2.1)

where Khw is the ratio between hand wheel angle and front road wheel angle.

In contrast X1, depicted in Figure 2.1c, has a steer-by-wire system meaning there

is no mechanical linkage between the hand wheel and the road wheels. The corre-

sponding step response of X1’s steering system is shown in Figure 2.1d. The response

is instantaneous and demonstrates the challenge of moving an MPC problem formu-

lation designed for X1 onto a production vehicle with slower dynamics.

The dynamics of the steering system are captured through step response data at

various speeds. Figure 2.1b displays commanded and measured hand wheel angles

at speeds of 4, 6 and 8 m/s (gray dots). The Trudi step steers were performed with

commands of 45◦ hand wheel angle, and the X1 step steers commanded 3◦ of road

wheel angle. The figure also depicts the median and mean step response of the

steering data to summarize the transients in one signal. The median transient is

hereafter used to characterize the dynamics of the steering system because of the

outliers in the measurements.
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(a) Trudi, an automated Ford Fusion.
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(b) Trudi steering step response.

(c) X1, an automated electric vehicle.
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(d) X1 steering step response.

Figure 2.1: Experimental vehicles Trudi and X1, and their respective steering system
step response. Trudi’s steering system is controlled by EPAS, while X1 is a real
steer-by-wire system.
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Based on the step steer data, the response of Trudi’s steering system is not in-

stantaneous, and a pure time delay is evident. The steering system has a known

communication delay of 40 ms. The pure time delay depicted in Figure 2.1b totals

80 ms: 40 ms for the command signal and 40 ms for the measure signal. Ignoring the

measure signal communication delay, the steering system has a 40 ms pure time delay.

The dynamic lag between the command and measure is characterized in Section 2.5.

While this step response data represents the steering system on Trudi, other auto-

mated vehicles with an EPAS system will also have dynamics in the steering actuation.

By addressing the actuation dynamics, the following sections on modeling the delay

can be generalized to other automated vehicle steering systems.

2.3 Model Predictive Control

Before accounting for the delays in the steering system, an MPC problem formulation

without delay modeling as demonstrated by Funke, Brown, Erlien, and Gerdes [40] is

benchmarked with Trudi’s steering system.

2.3.1 Problem Formulation

The vehicle model used in the baseline MPC formulation is a four-state bicycle dy-

namic model with a constant acceleration assumption. The state vector (x) comprises

vehicle lateral velocity (Uy), yaw rate (r), heading deviation (∆ψ), and lateral devi-

ation (e):

x = [Uy r ∆ψ e]>. (2.2)

The control input to the vehicle model (u) is the front steering angle (δ) calculated

from an affine vehicle model:

x(k+1) = A(k)x(k) +B(k)u(k) + C(k), k = 0, . . . , n− 1 (2.3)

for each time step in the prediction horizon (k) up to a finite number of time steps

(n). The original problem formulation by Funke et al. uses front lateral tire force as
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the steering input, but here the analysis uses steering angle (δ) similarly to Falcone,

Borrelli, Asgari, Tseng, and Hrovat [4].

The relation between steering angle (δ) and front lateral tire force (Fy) is nonlinear.

The Fiala brush tire model [41] as presented by Pacejka [42] describes the relation as

Fy =


−Cα tanα + C2

α

3µFz
| tanα| tanα

− C3
α

27µ2F 2
z

tan3 α, |α| < tan−1
(

3µFz

Cα

)
−µFzsgn α, otherwise

(2.4)

where slip angle (α) is the angle from the tire heading to the velocity vector of the

tire, Cα is the cornering stiffness of the tire, µ is the coefficient of friction, and Fz

is the normal load on the tire. For the front tires, the front slip angle (αf) can be

expressed as follows assuming small angles and the vehicle model in Appendix A:

αf = tan−1

(
Uy + ar

Ux

)
− δ ≈ Uy + ar

Ux

− δ. (2.5)

In order to capture accurate behavior while maintaining convexity of the bicycle

model, Erlien, Funke, and Gerdes approximate the tire curve for rear tires with an

affine, time-varying model that uses successive linearization points [43]. A similar

method can be applied at the front tires:

Fyf =
∂Fyf

∂αf

∣∣∣∣
αf,0

(αf − αf,0) + Fyf(αf,0). (2.6)

This is simply a Taylor expansion about an operating point (αf,0), where αf,0 at each

time step in the prediction horizon is calculated from the previous optimization’s

solution. With Eq. (2.5) and using steer angle as the controller input, the system is

represented by linear differential equations. Zhang, Thornton, and Gerdes [44] details

the full derivation.

Path tracking is accomplished by associating a nonzero diagonal entry in the

weighting matrix (Q) to lateral deviation and heading deviation as these states are

defined relative to a nominal or desired path. The complete optimization problem is
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as follows:

minimize
u

n∑
k=0

v(k)>R(k)v(k) +
n∑
k=1

x(k)>Q(k)x(k) (2.7a)

subject to x(k+1) = A(k)x(k) +B(k)u(k) + C(k) (2.7b)

|u(k)| ≤ u
(k)
max (2.7c)

|v(k)| ≤ v
(k)
max (2.7d)

where v(k) = u(k) − u(k−1) is the change in front steer angle, weighting matrix (R)

penalizes changes in steer angle, and u
(k)
max and v

(k)
max are physical limits in the steering

system.

Optimization problem (2.7) is a quadratic program with a significantly sparse

structure that can be leveraged with an efficient solver for real-time implementation

[45]. For this work, CVXGEN, developed by Mattingley and Boyd [46], is used to

solve for the input vector, u = [u(0) . . . u(n)]>, but only the first solution in the vector

(u(0)) actually commands to the steering system. The optimization problem runs on

a single core of a ruggedized computer with an i7 CPU at a rate of 100 Hz.

2.3.2 Experimental Results

As a baseline, the performance of problem formulation (2.7) was benchmarked on

Trudi to determine if delay compensation would be necessary. The experiment to

validate all the problem formulations in the chapter entails Trudi driving down a

straight path on a flat paddock area at Thunderhill Raceway in Willows, California at

a speed of 8 m/s. The vehicle is at speed before encountering a disturbance protruding

into the path forcing Trudi to deviate laterally from the path by approximately 1 m.

Trudi is equipped with an Oxford Technical Solutions RT4001 GPS unit and receives

RTK differential correction information from a Novatel basestation to measure the

vehicle position states within 2 cm accuracy.

Although a delay exists in the steering system, Trudi successfully drives around

the path perturbation as depicted in the top plot of Figure 2.2. The middle plot

in Figure 2.2 includes the command and measure of the hand wheel angle as Trudi
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Figure 2.2: Baseline trajectory overhead, diamond indicates start of maneuver (top);
command and measure hand wheel angle with open-loop prediction at one time step
(middle); and yaw rate (bottom) due to lateral perturbation from the nominal path.
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conducts the maneuver. It also portrays an open-loop prediction horizon for the

steering command (scaled by the steering ratio) at time t = 1.63 s. At this instance

in time, the optimal solution does not do well at predicting future steering behavior

at the end of the prediction horizon, indicating a model mismatch. The root mean

squared (RMS) error between the closed-loop command and the open-loop prediction

is 16.13◦ along the prediction horizon, which indicates how well the open-loop predic-

tion estimates the future behavior. The bottom of Figure 2.2 shows the vehicle yaw

rate having large oscillations, signifying that the vehicle did not rotate sufficiently

and had to adjust its rotation while completing the maneuver. This occurs because

the delay prevents the correct amount of steer angle from commanding when needed,

thus requiring more aggressive maneuvering to avoid the perturbation at a time step

later than anticipated by the predictive controller. The RMS error of the yaw rate is

0.0638 rad/s.

2.4 Modeling for Pure Delay

Based on the results in the previous sections, it is apparent that the delay in the

steering system should be accounted for. In this section, only the pure time delay is

incorporated in the MPC problem formulation.

2.4.1 Problem Formulation

Formally, the actuated steering command (uactual) is delayed from the commanded

steering command (u) by

uactual(t) = u(t− Tdelay), (2.8)

resulting in the modeled state transition relationship

x(t+ Tpred) = A(t)x(t) +B(t)u(t− Tdelay), (2.9)

where Tdelay is the pure delay time and Tpred is the discretization time into the predic-

tion horizon. Since Tdelay is known to be approximately 40 ms, problem formulation
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(2.7) is modified to account for the pure delay time. Explicitly, I assume Tdelay ≈ Tpred

for the short time steps (first 10 time steps [47]) of the prediction horizon such that

Eq. (2.9) can be equivalently represented in discretized form as

x(k+1) = A(k)x(k) +B(k)u(k−1) + C(k), k = 0, . . . , n− 1. (2.10)

The transition from x(0) to x(1) is a function of the optimal steering input solved for

Tpred seconds prior.

The optimization problem accounting for Tdelay = Tpred can then be written as

minimize
u

n∑
k=1

v(k)>R(k)v(k) + x(k)>Q(k)x(k) (2.11a)

subject to x(1) = A(0)x(0) +B(0)z−du∗(0) + C(0) (2.11b)

x(k+1) = A(k)x(k) +B(k)u(k−1) + C(k) (2.11c)

|u(k)| ≤ u
(k)
max (2.11d)

|v(k)| ≤ v
(k)
max (2.11e)

where z−du∗(0) is the zero-th entry of the optimal solution vector calculated d control

iterations prior. This solution should correspond to the solution Tdelay seconds prior.

Assuming the controller executes every Tcontrol seconds, it follows that

d = round

(
Tdelay

Tcontrol

)
. (2.12)

Note that the decision variable vector u has been reduced from size n+1 to size n due

to the delay formulation leveraging the previous control input in seeding Eq. (2.11b).

2.4.2 Experimental Results

By only accounting for the pure time delay in the steering system, the open-loop

prediction improves, as shown in the middle plot of Figure 2.3. The hand wheel angle

RMS over the prediction horizon for this implementation, also at time t = 1.63 s, is

reduced by about a factor of two to 7.87◦. The yaw rate for this maneuver, shown
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Figure 2.3: Pure time delay trajectory overhead, diamond indicates start of maneuver
(top); command and measure hand wheel angle with open-loop prediction at one time
step (middle); and yaw rate (bottom) due to lateral perturbation from the nominal
path.
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in the bottom plot of Figure 2.3, also has a reduced RMS error of 0.0574 rad/s. The

trajectory taken with the pure time delay problem formulation is comparable to the

baseline trajectory.

2.5 Modeling for Dynamic Lag

To further improve the open-loop prediction, the dynamic lag in the steering system

as introduced in Figure 2.1b is incorporated into the MPC problem formulation. The

following section compares three approaches: a first-order lag model in conjunction

with the pure time delay, a first-order lag model tuned to lump in the pure time delay,

and a second-order lag model also tuned to lump in the pure time delay.

2.5.1 First-Order Lag

To account for the first-order dynamics, the state vector is appended with a fifth state

δfol to represent the steering input to the affine vehicle model after a first-order delay.

The new state vector becomes

x = [Uy r ∆ψ e δfol]
>. (2.13)

The affine vehicle model is also appended with δfol, which can be expressed as

δ̇fol(t) = −1

τ
δfol(t) +

1

τ
u(t), (2.14)

where τ is the time constant.

The five state vector is used in both problem formulation (2.7) and (2.11), but

with different values for the time constant. The step responses of the first-order

models are shown in Figure 2.4.

2.5.2 Second-Order Lag

Since there is a pure time delay with seemingly first-order dynamics, the steering delay

can be roughly approximated as a second-order system. Similarly to the first-order
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Figure 2.4: First- and second-order models on median step response data.

model, the original four state vector has two additional states appended:

x = [Uy r ∆ψ e δsol δ̇sol]
>. (2.15)

The new states are related to the actual steering input as

δ̈sol(t) = −ω2
nδsol(t)− 2ζωnδ̇sol(t)− ω2

nu(t), (2.16)

where ωn is the undamped natural frequency and ζ is the damping ratio.

This delay model is only used with problem formulation (2.7) and thus is tuned

to have the step response shown in Figure 2.4.

2.5.3 Experimental Results

Since the actual dynamics of the steering system are unknown, three additional exper-

iments were performed to determine which of the problem formulations accounting for

dynamic lag performs best on Trudi, as shown in Figures 2.5, 2.6 and 2.7. A summary
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Table 2.1: RMS of hand wheel angle (HWA) along prediction horizon, RMS of yaw
rate, and maximum absolute yaw rate

Prediction horizon Yaw rate Maximum yaw
Experiment HWA RMS† [◦] RMS [rad/s] rate∗ [rad/s]

Baseline 16.13 0.0638 0.2259
Pure time delay 7.87 0.0574 0.2024
PTD + FOL 7.76 0.0536 0.1895
Lumped FOL 8.16 0.0555 0.1678
Lumped SOL 8.38 0.0562 0.1665

†at t = 1.63 s
∗absolute value

of the RMS error for the hand wheel angle through the prediction horizon at time

t = 1.63 s along with RMS and maximum absolute yaw rate are in Table 2.1. The

maximum absolute yaw rate is included because of its relation to lateral acceleration

in the inertial frame:

aY = U̇y + rUx. (2.17)

Lateral acceleration in the vehicle frame (U̇y) is small compared to the rUx term, and

longitudinal velocity is consistent across all the experiments. Thus, the maximum ab-

solute yaw rate provides insight into how much lateral acceleration vehicle occupants

experience during each maneuver.

The open-loop prediction horizons in the middle plots of Figures 2.5, 2.6 and 2.7

qualitatively seem very similar because the respective models closely represent the

steering actuation. Although the commanded hand wheel angles depict jitter, the

measured response is quite smooth; the jitter is likely due to location of the steer-

ing measurement in the EPAS system. The overall smoothness of the maneuver is

furthermore captured by the yaw rate response. Quantitatively, the RMS error and

maximum of the yaw rate continues to improve compared to the baseline and pure

time delay implementations.

A close look at the numbers in Table 2.1 suggests there is a trade-off in determining

the “best” delay modeling problem formulation to use with Trudi. There is little
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Figure 2.5: Pure time delay with first-order dynamics trajectory overhead, diamond
indicates start of maneuver (top); command and measure hand wheel angle with
open-loop prediction at one time step (middle); and yaw rate (bottom) due to lateral
perturbation from the nominal path.
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Figure 2.6: Lumped first-order lag trajectory overhead, diamond indicates start of
maneuver (top); command and measure hand wheel angle with open-loop prediction
at one time step (middle); and yaw rate (bottom) due to lateral perturbation from
the nominal path.
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Figure 2.7: Lumped second-order lag trajectory overhead, diamond indicates start of
maneuver (top); command and measure hand wheel angle with open-loop prediction
at one time step (middle); and yaw rate (bottom) due to lateral perturbation from
the nominal path.
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difference between the lumped first-order and second-order RMS errors and maximum

absolute yaw rate. At the computational cost of a larger state space, the lumped

second-order approach produces a marginally smoother yaw rate response. If the

pure time delay is to be modeled explicitly, then additional information needs to be

maintained in-vehicle, such as how many control time steps are needed to delay the

initial input to the optimization problem. For Trudi, I decide to proceed with the

lumped first-order approach because of the comparable performance, smaller state

space, and simpler implementation.

2.6 Summary

Four MPC delay modeling problem formulations are presented to address the pure

time delay and dynamic lag in the steering actuation of an automated production

vehicle. Each problem formulation is compared to a baseline approach. The first of

the four modeled delay methods addresses just the pure time delay, while the last

three also address the dynamic lag. In particular, the dynamic lag is modeled as a

first-order lag and as a second-order lag, where the first-order lag is tuned both with

and without the pure time delay.

The problem formulations are all validated in experiments: the vehicle travels

down a straight path until a lateral perturbation forces the vehicle to deviate from

the nominal path by approximately 1 m. Adding in the delay dynamics improves

the open-loop prediction at a time prior to the maneuver compared to the base-

line approach, although the closed-loop trajectory of the vehicle navigating around

the perturbation is comparable across all the experiments. Ultimately, the lumped

first-order approach meets the design objectives of comparable performance while

maintaining low computational complexity and simple implementation. Now that

the actuation delay is accounted for in the MPC formulation, it is safe to control the

vehicle in more complicated scenarios.



Chapter 3

Costs, Constraints, and Weights

from Philosophical Principles

The value of safety in autonomous vehicle motion planning goes beyond predictable

control of the steering actuation system. Designing control algorithms for automated

vehicles presents new challenges for engineers. Traditionally, control systems have

desired specifications and performance measures to which programmers design the

control algorithms. For fully automated vehicles, the ultimate desired performance

outcome is the ability to drive safely and smoothly through traffic. Setting speci-

fications for achieving this desired outcome is challenging because traffic situations

involving humans are not easily quantified. Driving through traffic requires that the

vehicle conform to societal expectations for roadway behavior. Expectations such as

collision avoidance and observance of traffic laws go beyond mere technical specifica-

tion to touch on moral issues that are long established and formally characterized in

philosophy. In this chapter, value conflict resolution manifests through the connec-

tion of philosophical frameworks to mathematical frameworks used in programming

autonomous vehicles. The majority of this chapter was originally published in the

IEEE Transactions on Intelligent Transportation Systems of 2016 [48].

33
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3.1 Introduction

The objective of accident avoidance is fundamentally motivated by the idea of caring

for life and avoiding harm. Haidt et al. described care (and its opposite, harm) as one

of the foundational principles for moral reasoning [49]–[52]. A vehicle’s compliance

with traffic laws involves another moral foundation—the degree of respect for au-

thority. Interactions with other road users should, furthermore, be based on fairness

and reciprocity, yet another category in the five (or sometimes six) moral foundations

found in Haidt’s work. The fact that these societal expectations of automated vehicles

map so cleanly to ethical principles in philosophy suggests that philosophy can be a

useful resource for translating such expectations to specifications. In the same realm

of ethics in engineering but with different applications, Mladenovic and McPherson

[53] draw from social justice in the design of a traffic control framework for auto-

mated vehicles. Miller, Wolf, and Grodzinsky [54] and Van den Hoven, Lokhorst, and

Van de Poel [55] all advocate for the consideration of ethics throughout the entire

engineering process. In particular, Miller et al. summarize ethics models used in op-

erations research and extend it to ethical decision-making machines. Lin also makes

the case that ethical issues are central to the design of automated vehicles [56].

But as both Lin et al. [57] and Wallach and Allen [58] point out, a single philo-

sophical framework is unlikely to be sufficient for programming autonomous systems.

As a result, researchers have proposed solutions that combine different concepts from

philosophy. Deontology, a rule-based ethical framework, and consequentialism, a cost-

based ethical framework, both contribute structured guidelines for vehicle behavior.

Goodall presents a three-tiered system for ethical decision-making in automated vehi-

cles [59]. The first tier is a rational approach in which the vehicle follows the ethical

principles of deontology and consequentialism. The second and third tiers involve

artificial intelligence and a combined rational-artificial intelligence approach. Gerdes

and Thornton present the two ethical frameworks of deontology and consequentialism

as parallel to constraints and cost, respectively, in an optimal control problem [33].

Since many semi-autonomous and autonomous vehicles are already designed based
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on this type of control formulation (Gray et al. [60], [61]; Gao et al. [62]; Erlien, Fu-

jita, and Gerdes [47], [63]; Falcone, Borrelli, Asgari, Tseng, and Hrovat [4]), such an

approach makes the links between philosophy and engineering quite direct. Thus, the

work presented here uses multiple ethical frameworks, deontology and consequential-

ism, and parallels the concepts to a constrained optimization problem as a starting

point.

The goal of this chapter is twofold. Firstly, the goal is to introduce engineers to

ethical theories that parallel engineering paradigms in order to elucidate how such

structures may implicate a particular ethical theory. Secondly, the goal is to use

these ethical principles to motivate engineering decisions that result in reasonable,

justifiable automated vehicle behavior. In particular, the approaches of normative

ethical theories, deontology and consequentialism, are used to reason driving goals as

rules or costs as appropriate. These goals can be translated into constraints and cost

functions that can be used in motion planning algorithms, such as a model predictive

control (MPC) formulation. This enables ethically motivated design decisions to be

demonstrated and compared on a test vehicle for a simple traffic scenario. Assuming

the construction of an optimization problem, there is a challenge in choosing appro-

priate weights for different objectives, so an ethical theory known as virtue ethics in

the form of role morality may assist with this choice. Virtue ethics and role morality

provide an ethical framework based on alignment with character (Hursthouse [64],

Harman [65]). As applied to vehicles, this framework guides the algorithm design to

achieve desired behavior for different types of vehicles. To the knowledge of the au-

thor, this is the first quantitative and in-vehicle experimental endeavor to incorporate

ethical reasoning in the design of autonomous vehicle control.

This chapter is structured as follows: Section 3.2 presents a motivating driving

scenario based on a lane blocked by an obstacle. Section 3.3 describes how the philo-

sophical concepts of deontology and consequentialism relate to engineering choices.

These ideas combine in Section 3.4, which suggests an ethical reasoning of how to

address driving goals associated with the simple scenario through the philosophical

concepts. The driving goals considered are path tracking, steering, obstacle avoid-

ance, and traffic laws. While many of these are straightforward, traffic laws can
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Figure 3.1: The shaded regions indicate driving regions. The safest region is the
current lane of the vehicle excluding any obstacles. Driving regions decrease in safety
as the vehicle departs the lane.

combine elements of cost and constraint. Section 3.5 formalizes an MPC problem

and Section 3.6 shows in-vehicle experimental results, highlighting the impact of dif-

ferent formulations of traffic laws. This raises a larger question of virtue ethics and

role morality as applied to automated vehicles, discussed with additional in-vehicle

experiments in Section 3.8.

3.2 Scenario

To contextualize the relationship between ethics and engineering in autonomous vehi-

cles, a simple, realistic driving scenario is constructed that involves a variety of factors,

including collision avoidance, mobility considerations, and traffic laws. Figure 3.1 de-

picts the scenario of an autonomous vehicle traveling along a two-lane roadway at

constant speed. The current lane is obstructed by an obstacle ahead of the vehicle.

This simple scenario prompts a range of possibilities for engineering decisions. Sec-

tion 3.5 details how the various parameters from this scenario (collision avoidance,

mobility, traffic laws, speed) fit into an MPC formulation.

One engineering design option is to program the vehicle to prioritize the ability to

continue moving. This would mean entering the opposing lane or the road shoulder

to move around the obstacle to continue on its way. If the vehicle chooses the option

of entering the opposing lane, it could cause the vehicle to briefly violate a traffic

law, for example if the lane divider is a double yellow line. If the vehicle travels into

the road shoulder to move around the obstruction, it obeys the double yellow line

traffic law and continues to move, but the road shoulder would need to be accessible
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and safe and is not meant to be driven on ordinarily. Clearly, competing demands of

mobility, safety, and legality must be weighed when considering these options.

With a potential sacrifice in mobility, another approach is to program the auto-

mated vehicle to adhere strictly to traffic laws. Here, the underlying assumption is

that traffic laws are implemented as hard rules. However, such strict obedience to

traffic laws has consequences: the vehicle could stop and remain stopped indefinitely

if trapped between the dual goals of avoiding the obstruction and obeying the double

yellow line. This action could negatively impact the mobility or safety of surrounding

vehicles.

The scope of engineering decisions that must be determined does not merely lie

in the type of action to take; the degree of the action needs to be assessed, too.

For example, in the case of crossing the double yellow line to maneuver around the

obstruction and encouraging smooth traffic flow, the amount of clearance between the

vehicle and the obstruction is a design consideration. A narrow space between the

vehicle and obstruction allows the vehicle to stay closer to its original designated lane

should oncoming traffic emerge, but can increase the risk of brushing against the side

of the obstruction. A wider berth ensures passage without hitting the obstruction,

but the vehicle is then positioned further into the opposing lane and would take longer

to return to its original designated lane. The degree to which a vehicle is tuned to

disobey a traffic law is therefore another engineering decision that requires careful

ethical consideration. In addition to the type and degree of action taken, another

layer of engineering design decisions involves the fact that different types of vehicles

could be given different traffic law allowances depending on their expected role in

society. This is discussed later on through the example of an ambulance and a taxi,

both of which ferry passengers but can exhibit very different behavior on roads due

to their differing purposes.

Deconstructing this simple and common driving scenario highlights the many

different vehicle behaviors that can result from making different engineering design

decisions and underscores the need to make those design decisions in a systematic,

reasoned, and justifiable manner. The decisions should be explainable not only to

engineers but also to other road users that will share the streets with the automated
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vehicle and to regulators who ensure traffic safety. An understanding of philosophical

frameworks in the context of engineering can provide engineers with a reasoning tool

to consider the ethical implications of their engineering design choices.

3.3 Philosophical Frameworks

Ethical principles have been a topic of analysis among philosophers for centuries.

This section examines those principles in the context of framing vehicle behavior.

An autonomous vehicle is programmed by an engineer whose programming adheres

to a system of decision-making and control logic. Although control logic and ethics

are clearly not equivalent, there do exist ethical frameworks that provide applicable

motivation to mathematical frameworks, which is examined in this section.

Deontology is one of the major normative ethical theories. Deontological ethics

evaluates the morality of one’s action according to some rules. So, in essence, to

be moral, one must follow a set of rules that determine the correct, ethical action,

and these rules are to be followed with no exception. Isaac Asimov’s Three Laws of

Robotics [66] are an example of deontological ethics, which state:

1. A robot may not injure a human being, or, through inaction, allow a human

being to come to harm.

2. A robot must obey the orders given it by human beings except where such

orders would conflict with the First Law.

3. A robot must protect its own existence as long as such protection does not

conflict with the First or Second Laws.

The Three Laws of Robotics state a clear architecture of behavioral rules for the

robots in Asimov’s stories to follow, effectively serving as constraints on the robots’

behavior. As long as a robot remains within the conditionals of the Three Laws, it

can operate as necessary. Of course, Asimov also highlights the limits of such an

approach as his robot stories often involve strange behavior arising from conflicting

interpretations of these laws.
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Deontology provides one type of motivating structure for the programming of

automated vehicle algorithms: rules that can be defined and followed on the road.

Such rules are analogous to conditionals and constraints used in decision-making

and in control algorithms to bound and manipulate system behavior (for example, a

conditional for actuation saturation or a constraint in an optimization problem). For

an autonomous vehicle, examples of such rules can be found in constraints designed

to prevent the vehicle from causing harm to human beings, from inducing property

damage to itself or to other objects, or from violating traffic laws. A key feature of a

deontological framework is that rules can be hierarchical, thus setting clear priorities.

From a programming perspective, the ability to weave together dependencies and

hierarchies provides the advantage of clarity in reasoning for the development of the

algorithm. However, a strict deontological construction of an algorithm could define

overly restrictive driving goals.

Another central normative ethical theory is consequentialism, which evaluates the

moral validity of actions solely based on the consequences. Consequentialism is often

posed as the exact opposite of deontological ethics in an attempt to address the

limitations of deontology. There are many flavors of consequentialism, and the focus

here is on a form of consequentialism known as act utilitarianism. Act utilitarianism

analyzes the expected utility of a scenario and evaluates the consequences of actions

based on what produces the most good [67]. Imagine Santa Claus is injured and

an ambulance driver must rush him to the hospital because Santa brings a lot of

good to the world with many gifts. The driver of the ambulance can justify breaking

traffic laws and taking other actions as necessary in order to expedite Santa’s recovery

through consequentialism. Consequentialism also suffers from limitations because it

can be difficult to define what is “good.”

Consequentialism, through its more specific form of act utilitarianism, provides a

basis for reasoning ethical behavior in an optimization problem. In control theory,

optimal control uses an optimization problem to mathematically determine an optimal

solution to be used as the control action. Specifically, the optimal control action

(i.e., the ethically correct decision) is the feasible solution that minimizes the cost

function (i.e., the desired outcome toward which one strives). An example of such
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a cost function for autonomous vehicles could be to minimize harm to the vehicle

occupants. The optimal solution in consequentialist terms would be to maneuver the

vehicle to achieve that goal of minimizing harm to the occupants, no matter what.

This approach also has some limitations, such as the difficulty in actually forming

or evaluating the cost function (as is the case with definitions such as “harm” [33])

or making that cost function comprehensive (by, for instance, considering road users

other than the occupants in this case).

3.4 Design Choices

The frameworks of deontology and consequentialism are the result of extensive re-

search in philosophy. Given their seminal presence in philosophy, these frameworks

are used as reasoning tools to motivate and explain design decisions in the program-

ming of an automated vehicle. There are many ways to program an automated vehi-

cle as explored in Chapter 1. In this chapter, an MPC formulation of the problem is

adopted since the explicit consideration of constraints and costs in MPC maps well to

the concepts of deontology and consequentialism. With this philosophical reasoning,

the vehicle actions are bound by deontological constraints and consequentialism is

realized through the cost function. Thus, the philosophical frameworks are used to

reason through the construction of this constrained optimization problem.

The following sections demonstrate how approaching the problem with these two

philosophical frameworks in mind leads to a systematic treatment of different goals

in the problem. Specifically, constraints are set that direct the vehicle to avoid colli-

sions, follow dynamical equations, and stay within its steering capabilities. The cost

function is designed to direct the vehicle toward the desired outcomes of tracking a

prescribed path and providing acceptable occupant comfort. In contrast with these

other objectives, it is less clear whether traffic laws represent a cost or a constraint

so different representations are explored.
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Figure 3.2: Generating a cost from the difference between a desired path (black) and
the vehicle’s actual path (blue with dots).

3.4.1 Path Tracking

A key objective of an autonomous vehicle is to follow a designated path. This objective

assumes a higher level planner provides the reference path, which is not guaranteed

to be obstacle-free. Following a path is a physical condition based on a measure of

position difference, so a constraint constructed through deontological reasoning could

be used to ensure path tracking. This could take the form of an equality constraint

for the position of the vehicle to be equal to the desired position on the path. Upon

further examination, however, following the path is not a strict requirement when it

comes to maintaining safety; if an obstacle appears in the path, then the vehicle should

have the option to deviate. Accounting for this line of reasoning, a cost function

alternatively can serve as the instrument that accomplishes the goal of tracking a

path via optimization, as depicted in Figure 3.2. Thus, in the choice of framing path

tracking in a consequentialist manner, the vehicle is allowed freedom to deviate; if path

tracking were denoted as a rule in a deontological framework, then a safety hazard

would arise in rule conflict and problem feasibility. The fundamental idea behind

deontology, which is that rules are to be followed without exception, is bypassed in

favor of the more flexible principles from consequentialism for the specific goal of path
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tracking.

The objective of path tracking is translated from a consequentialist form into a

mathematical structure. In order to follow the path, the vehicle must achieve the two

goals of minimizing lateral deviation from the path (e) and heading error (∆ψ) using

a cost function, such as

Jx =
∑
k

x(k)>Q(k)x(k), (3.1)

where x is the vehicle state vector encompassing e and ∆ψ (explained in further

detail in Section 3.5.1 and Appendix A), k is the discrete time step in the prediction

horizon, and the weight matrix (Q) only has diagonal, non-zero entries corresponding

to e and ∆ψ.

3.4.2 Steering

The vehicle steering encompasses a few different design goals. The steering must op-

erate within the actuator limits, should contribute toward path tracking and obstacle

avoidance, and should perform smoothly as an aspect of mobility. The first of those

goals, operating within the actuator limits, can be cast in the form of a constraint

on a maximum slew rate. The reasoning behind this design choice is that this cap

is a physical limit on an actuator. Physical limits must be highly prioritized in the

control scheme and therefore are enforced as constraints in the deontological sense of

strict rule obedience. A solution requiring control inputs that violate physical lim-

its is simply not feasible. Thus, categorizing the slew rate limit in a deontological

manner is most appropriate. Further, the physical limits of the vehicle are akin to

acknowledging the laws of nature, which can be considered to be governing rules to

follow. This limit can be represented mathematically:∣∣∣F (k)
yf − F

(k−1)
yf

∣∣∣ ≤ Fyf,max slew, (3.2)

where Fyf is the lateral front tire force and Fyf,max slew is the maximum slew rate of

the steering system.
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When obeying the constraint of maximum slew rate, additional design goals re-

garding the steering arise. One key goal is the smoothness of the steering, which is

affected by the change in input from time step to time step. Steering smoothness is a

reasonable consideration to include in the control algorithm because most occupants

expect a level of comfort as they ride in a vehicle. Occupant comfort is a desirable

feature, but, similarly to path tracking, if encoded as a hard and fast rule of matching

a specific rate via an equality constraint or remaining under a rate via an inequality

constraint could result in safety compromises if an emergency maneuver is required.

Specifically, if the vehicle needs to suddenly swerve to avoid an obstacle, it will be

constrained by a requirement to maintain smooth steering and may not be able to

steer and maneuver sufficiently to avoid a collision. However, when viewed from a

consequentialist standpoint, a cost associated with steering smoothness that the al-

gorithm will minimize can be included in the cost function. I choose to account for

smoothness in the cost function as long as it is subservient to more highly prioritized

rules associated with safety. Therefore, steering smoothness for occupant comfort is

cast as a cost through consequential reasoning. Occupant comfort level is incorpo-

rated into the objective function by associating a cost to the change in steering, or

effectively, the lateral front tire force:

JFyf
= R

∑
k

∥∥∥F (k)
yf − F

(k−1)
yf

∥∥∥2

2
, (3.3)

where R is the associated cost. By minimizing the differential in lateral front tire force

throughout the prediction horizon, the differential in front steer angle is also mini-

mized. Thus, this term in the cost function results in smooth steering enforcement,

which can factor into occupant comfort.

3.4.3 Obstacle Avoidance

Obstacle avoidance is a high priority in navigating roadways. As mentioned within

the context of Sections 3.4.1 and 3.4.2, the possibility of collisions and preserving the
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ability to avoid them are the basis for choosing to associate path tracking and steer-

ing smoothness with consequentialist costs rather than deontological rules. Collision

avoidance is arguably the highest priority of the automated vehicle, so I choose to

consider it through the lens of a deontology and implement collision avoidance as a

constraint.

The deontological rules that govern obstacle avoidance arise from dividing the

environment into tubes in which the vehicle can safely travel and describing the

envelope in which each tube lies. In the example scenario depicted in Figure 3.1,

the vehicle can choose from one of three tubes—pass the vehicle by entering the lane

on the left, pass the vehicle by moving onto the shoulder to the right, or stay in

the lane. The boundaries of each tube in the environment can be constructed in

reference to a nominal path which, in the scenario considered here, is simply the

centerline of the lane in which the vehicle travels. These envelopes are described by

a set of time-varying constraints on the maximum and minimum lateral offset from

the nominal path (e) necessary to remain in the tube. The vehicle’s trajectory over

the prediction horizon is constrained to remain within this envelope to ensure the

trajectory is collision-free. The environmental envelope may require the vehicle to

deviate from the nominal path due to the fact that the nominal path need not be

obstacle-free.

Figure 3.3 illustrates the methodology for the generation of the environmental

envelope, beginning with the scenario illustrated in Figure 3.3a as an example. The

environment is sampled at discrete points along the nominal path based on the main-

tained longitudinal vehicle speed (Ux), and the assumption that the distance along

the path is a function of only Ux. Figure 3.3b shows the future position of the vehicle

k steps into the prediction horizon. In order to align with the discrete sampling, the

objects are extended to match the sampling, shown in Figure 3.3c. This extension

allows for the identification of feasible gaps (defined as distances greater than vehicle

width) between the objects. A graph search algorithm links adjacent feasible gaps,

forming tubes like those shown in Figure 3.3d. One tube must contain the full pre-

diction horizon for the vehicle to avoid collisions. This tube methodology is similar
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Figure 3.3: Environmental envelope generation. The process consists of (a) starting
with a set of obstacles along the nominal path, (b) discretization along the s direction,
(c) extension of objects along that same s direction, which creates alignment with
the discretization and from which feasible gaps between objects are identified, and
(d) connecting adjacent gaps into tubes which define maximum (e

(k)
max) and minimum

(e
(k)
min) lateral deviation from the nominal path at each time step (k). Here, two tubes

are given as examples.
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to LaValle’s vertical cell decomposition in [68], tube feasibility for robotic arm mo-

tion planning, as in Suh and Bishop [69], and driving corridors presented by Ziegler,

Bender, Dang, and Stiller [5].

The set of collision-free trajectories corresponding to a single tube is a convex

set, due to the property that any linear combination of generated trajectories that

is contained within a tube will also be contained within that tube. This property

opens up the ability to use fast optimization techniques for optimal trajectories to be

identified quickly.

The following linear inequality represents the bound on lateral deviation (e) at

each time step (k) represented by each tube:

Henvx
(k) ≤ G(k)

env, (3.4)

where

Henv =

[
Henv,left

Henv,right

]
=

[
0 0 0 1

0 0 0 −1

]

Genv =

[
Genv,left

Genv,right

]
=

[
e

(k)
max − 1

2
d− dbuffer

−e(k)
min − 1

2
d− dbuffer

]
.

The environmental envelope is denoted with the subscript env, the lateral deviation

bounds for time step k are given as e
(k)
max and e

(k)
min, and the vehicle width is d. Occupant

comfort can be further specified via dbuffer, which represents a preferred minimum

distance between obstacles and the vehicle and can account for vehicle orientation

changes in determining minimum gaps from obstacles as well.

3.4.4 Traffic Laws

Traffic laws present the most ambiguous choice between rule- and cost-based design.

The scenario posed in Section 3.2 serves as a clear example of this conflict. Traffic

laws by definition enforce structure and rules, and thus naturally can be framed as

deontological. However, humans do not always treat traffic laws as deontological.
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Realistically, drivers in Section 3.2’s scenario often judge factors such as clearance

from the obstacle, traffic in the opposing lane, and speed for overtaking. The driver

then makes a decision on whether or not to cross the double yellow line. Since hu-

mans will often opt to cross the line, particularly when overtaking a bicyclist, human

compliance with traffic laws seems less deontological and more like a consequentialist

weighting of safety, mobility, and legality. Thus, in moving from human driver actions

to programming automated driving, the decision to treat traffic laws as deontological

or consequentialist is a fundamental design choice.

If defined as a rule, obedience to traffic laws can easily result in congestion, as

described in Section 3.2. If defined as a cost, the implication is that laws are a priori

programmed to be broken. Thus, given the dilemma, a “soft” constraint is employed

by incorporating a slack variable to encode traffic laws in the MPC formulation.

The slack variable creates a scalable cost on constraint violation. When that cost is

comparably lower than other objectives, the constraint is treated in a consequentialist

manner because the slack variable augments the constraint to make the constraint less

strict. In contrast, a very high weight on the slack variable causes the constraint to

dominate all other objectives in a deontological manner because of the large penalty

associated with making the slack variable value non-zero. Continuing with the two-

lane roadway example and translating the ethically motivated design decisions into the

algorithm, a cost on the slack variable is included corresponding to either crossing the

road divider (Sleft) or entering the road shoulder (Sright). Treating traffic law obedience

as deontological or consequentialist results in dramatically different vehicle behavior,

which is demonstrated in Section 3.6. These different driving outcomes underscore the

importance of matching societal expectations to programming decisions, and these

philosophical frameworks assist with reasoning and justifying what driving behavior

to deploy.

3.5 Model Predictive Control Formulation

The control algorithm attempts to determine the optimal path for the vehicle in

light of the costs and constraints placed on its motion. The vehicle divides the
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Figure 3.4: The three tubes define the generic maneuver options to avoid an obstacle.
The left and right tubes are depicted in blue while stopping is depicted in red.

world into a number of feasible tubes, with each tube representing a separate convex

optimization problem. The vehicle then calculates the optimal path in each tube as

illustrated in Figure 3.4, choosing the option with the lowest cost. The following

sections describe the mathematics behind solving for the optimal trajectory in each

tube and its associated cost.

3.5.1 Vehicle Model

The vehicle model used in the online MPC controller is a bicycle model with four

states. There are two velocity states, vehicle sideslip (β) and yaw rate (r), and two

position states, heading deviation (∆ψ) and lateral deviation (e), the details of which

can be found in Appendix A. Thus, the vehicle state vector is

x = [β r ∆ψ e]>. (3.5)

In this chapter, the actuator is considered to be front steering, and the vehicle is

assumed to be equipped with steer-by-wire technology. This enables the computer

algorithm to command the desired lateral front tire force (Fyf). For simplicity, the re-

sults here consider a constant longitudinal speed maintained by a PD cruise controller

unless the vehicle needs to brake, though this is not strictly necessary.
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3.5.2 Optimization

For each tube in the environment, the optimal path and control inputs are the solution

to the following optimization problem:

minimize
∑
k

x(k)>Q(k)x(k) (3.6a)

+R
∑
k

∣∣∣∣∣∣F (k)
yf,opt − F

(k−1)
yf,opt

∣∣∣∣∣∣2
2

(3.6b)

+
∑
l

[σenv σenv]S
(l)
env,opt (3.6c)

+
∑
l

[σtra σtra]S
(l)
tra,opt (3.6d)

subject to x(k+1) = A
(k)
d x(k) +B

(k)
d F

(k)
yf,opt + d

(k)
d (3.6e)∣∣∣Fyf,opt

(k)
∣∣∣ ≤ Fyf,max (3.6f)

k = 0 . . . (T − 1)

Henvx
(l) ≤ G

(l)
env + S

(l)
env,opt + S

(l)
tra,opt (3.6g)

l = (Tsplit + 1) . . . T∣∣∣Fyf,opt
(i) − Fyf,opt

(i−1)
∣∣∣ ≤ Fyf,max slew (3.6h)

i = 0 . . . T

where Tsplit + 1 is the instance when the time steps are longer for the environmental

envelope as detailed by Erlien, Fujita, and Gerdes [47]. The variables to be optimized

are the lateral front tire forces (Fyf,opt), the vehicle states (x), the slack variable

on the environmental constraint (Senv,opt), and the slack variable on the traffic laws

(Stra,opt). The tunable parameters in this optimization problem are the costs on the

vehicle states (Q), the cost on the change between inputs (R), and the costs on the

slack variables (σenv and σtra).

The slack variables are not only used to represent traffic laws but also to set a

hierarchy of deontological constraints and ensure that the problem always returns

a feasible solution. Hence, the slack variables are unbounded. Higher weights on
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a slack variable give it a higher precedence in a deontological framework. Here the

slack variables are used to weight the constraint version of traffic laws below that

of obstacle avoidance. In a more comprehensive version of a vehicle control system,

they could also be used to incorporate vehicle stability constraints such as those in

Beal and Gerdes [70] and Bobier and Gerdes [71]. The slack variable weights for

such constraints should be placed below that of collision avoidance in a deontological

sense as demonstrated in Funke, Brown, Erlien, and Gerdes [40]. Additional cost

terms could also be incorporated in the cost function such as those presented by Wei,

Dolan, and Litkouhi [15].

Optimization problem (3.6) is a quadratic program with a significantly sparse

structure that can be leveraged with an efficient solver for real-time implementation

[45]. For this work, CVXGEN, developed by Mattingley and Boyd [46], is used to solve

for the vector of optimal lateral front tire forces (Fyf,opt). The control input to the

autonomous vehicle at the next time step is the first solution (F
(0)
yf,opt) which, in turn,

is translated to a desired steering angle as described in Appendix A. An alternative

problem formulation, where the road lane dividers and shoulder are implemented as

additional constraints with a slack variable can be seen in Appendix B.

3.6 Experimental Results

The example from Section 3.2 sets the stage for demonstrating ethically motivated al-

gorithm design in real vehicle experiments. Depending upon the driving situation and

the engineering design choices made in the algorithms, the vehicle chooses a different

tube or a different trajectory within that tube. In these experiments, the weights

are changed to reflect different interpretations of the traffic laws. The philosophical

treatment of different objectives can therefore be translated through mathematics to

the actual motion of the vehicle. The weights were first chosen in simulation and

validated in-vehicle for the experiments. The actual numerical values for the weights

are not crucial; instead, the relative values affect the solution to the optimization

problem. In practice, they can be derived as a function of geographic indicators or

determined by perception algorithms.
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Figure 3.5: X1, an all electric, steer- and drive-by-wire research testbed.

Table 3.1: X1 vehicle parameters

Parameter Symbol Value Unit

Vehicle mass m 2009 kg
Yaw moment of inertia Izz 3000 kg m2

Distance from front axle to CG a 1.53 m
Distance from rear axle to CG b 1.23 m
Track width d 1.63 m
Front cornering stiffness Cαf 140 kN/rad
Rear cornering stiffness Cαr 170 kN/rad

The test vehicle used for these experiments is X1, an all-electric, drive- and steer-

by-wire vehicle shown in Figure 3.5. The parameters for this vehicle are specified in

Table 3.1. The vehicle is equipped with an integrated GPS/INS system that provides

real-time estimates of the vehicle states. In these experiments, obstacles and road

boundary locations are assumed to be known. All of the following experiments took

place on a cement surface which the controller models with constant friction.

3.6.1 Traffic Laws as Consequentialist Costs

In Section 3.4, the design choice to implement traffic laws as slack variables on the en-

vironmental constraints in the MPC formulation is discussed. Changing the weights

on the slack variables can influence the vehicle’s behavior as it navigates the scenario
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described in Section 3.2. A consequentialist approach allows for flexibility in weight-

ing the road bounds to reflect the severity of costs associated with crossing them.

Table 3.2 shows a set of weights where the shoulder is treated effectively as a hard

constraint by placing a high cost on the slack variable (representing, for instance, a

curb on the side of the road) while the double yellow lane divider is treated more as

a cost with lower weight. As seen in Figure 3.6, the vehicle maneuvers to the left of

the obstacle and crosses the divider. Because of the relatively high weight put on the

divider relative to the path tracking weight, the vehicle does not cross far into the

opposing lane but rather stays fairly close to the obstacle.

Upon interchanging the costs on road shoulder and road divider (representing a

stricter adherence to the law but an open space adjacent to the lane), Figure 3.7 shows

that the vehicle maneuvers to the right of the obstacle. Table 3.3 shows the weights

chosen for this particular situation. Since the weights describe essentially a mirror

image of the previous experiment, both the trajectory and the resulting steering angle

are reflections of the original case.

3.6.2 Traffic Laws as Deontological Constraints

Another philosophical approach to accounting for traffic laws is to describe them

deontologically as rigid rules. As the slack variable weights increase relative to the

other weights, the road boundary constraints begin to resemble hard or deontological

constraints. With this choice of weights, shown in Table 3.4, the tubes to the left

and right of the vehicle have unacceptably high costs and therefore the vehicle must

remain in the tube corresponding to the lane. Since that tube is blocked by the

obstacle, the vehicle must brake to a complete stop. Figure 3.8 shows the trajectory

as an independent longitudinal PD controller commands a brake force to bring the

vehicle to a stop before the end of the tube.

The MPC formulation is flexible enough to incorporate different treatments of

the environmental boundaries and the corresponding traffic laws. As this simple

example demonstrates, however, treating the double yellow lane boundary as a hard,

deontological constraint removes much of the flexibility from the vehicle path and
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Figure 3.6: The left tube is chosen because the traffic lane divider is considered safe
to cross.

Table 3.2: Weights resulting in a pass on the left

Parameter Symbol Value Unit

Lateral error Qe 0.7 m−1

Heading error Q∆ψ 0.5 rad−1

Smoothness R 0.1 kN−1

Environmental slack σenv 500 m−1

Road divider slack σleft 10 m−1

Road shoulder slack σright 150 m−1
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Figure 3.7: The right tube is chosen because evaluation of the scenario determined it
is safer to pass around the obstacle via the road shoulder.

Table 3.3: Weights resulting in a pass on the right

Parameter Symbol Value Unit

Lateral error Qe 0.7 m−1

Heading error Q∆ψ 0.5 rad−1

Smoothness R 0.1 kN−1

Environmental slack σenv 500 m−1

Road divider slack σleft 150 m−1

Road shoulder slack σright 10 m−1
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Figure 3.8: Since left and right path options are weighted equivalently, the tube is
considered to be blocked and the vehicle brakes to a complete stop.

Table 3.4: Weights resulting in a full stop

Parameter Symbol Value Unit

Lateral error Qe 10 m−1

Heading error Q∆ψ 1 rad−1

Smoothness R 0.1 kN−1

Environmental slack σenv 500 m−1

Road divider slack σleft 150 m−1

Road shoulder slack σright 150 m−1
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fails to reflect the way humans drive. This suggests that traffic laws may have to

be modified to give programmers the same flexibility demonstrated by their human

driver counterparts. Without that option, programmers need to choose how much to

weight the traffic laws in a consequentialist approach. In this MPC formulation, the

relative values of the weights chosen for the traffic slack variables determine how the

vehicle maneuvers around obstacles. These values can be a function of geographic

indicators, such as when a lane divider is a single, dashed yellow line or when it is

a double yellow line. Additionally, the weights can be determined by a perception

algorithm using information from lidars and cameras that determine the safety of the

terrain in each tube. These results demonstrate the flexibility of the MPC formulation

to account for responsible decision-making.

3.7 Discussion of Costs, Constraints, and Weights

The above examples illustrate the autonomous vehicle can exhibit very different be-

havior when the traffic laws are treated either deontologically or consequentially. The

benefit of mapping costs and constraints to deontology and consequentialism is two-

fold. Firstly, as demonstrated in this chapter, it can be used to justify a design goal

to be implemented as a cost or constraint by using either deontological or conse-

quential arguments. Secondly, if an engineer implements an algorithm with costs or

constraints, then this mapping can provide insight into what type of behavior the

implementation may implicate.

To further understand the implications of this mapping, moral psychologist Greene

suggests deontological rationalization arises during sensitive situations while conse-

quential reasoning comes forth in less severe scenarios [72]. This provides an explana-

tion as to why adhering to the double yellow line might be best represented as a cost,

unless the severity of the situation increases (i.e. oncoming traffic or erratic behavior

with the obstruction). When the scenario is of low risk, then treating certain traffic

laws as rules may be cumbersome, if not, inherently restrictive.

Beyond the choice of costs and constraints, the choice of weights in the optimiza-

tion problem ultimately influenced the vehicle behavior with regards to the traffic
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laws (σleft and σright). The other weights in the cost function also influence vehicle

behavior, such as path deviation (Qe and Q∆ψ), obstacle avoidance (σenv), and even

occupant comfort (R). Some of these weights are purely in the cost function (i.e.

not a slack variable) so they can only influence the vehicle behavior consequentially.

Yet, the principles of deontology and consequentialism do not provide insight into the

choice of weights which could affect the other aspects of the vehicle behavior.

3.8 Vehicle Character

Thus far, the variations in the MPC formulation have been motivated by traffic

situations for one particular vehicle. The experimental results indicate the principles

behind the ethical theories of consequentialism and deontology and how the theories

can implicate varying vehicle behavior. However, these theories do not explicitly guide

the choice of relative numerical values for the weights, which have a huge impact on

design goals beyond safety for automated vehicles. Thus, this section is motivated

by introducing a third normative ethical theory known as virtue ethics. Virtue ethics

points the focus of ethical behavior toward character rather than correct actions or

outcomes as emphasized by deontology and consequentialism. Under the framework

of virtue ethics, a decision is ethical as long as it adheres to the disposition of the

moral being. In other words, moral beings operate virtuously provided they always

perform the correct action in the correct situation that is in alignment with their

character [64].

The idea of the character of an agent naturally leads to a more specific concept

which will be utilized in this work called role morality. Role morality is the idea that

behavior within the context of a specific professional role and situation is acceptable

but may not be acceptable outside that setting [73]. Role morality is cited in fields

such as law and medicine to justify behavior that might be deemed unacceptable were

the behavior to take place outside a professional situation specific to that field. An

extreme example is Sanson, the executioner of Paris, as noted by Applbaum [74]. A

less extreme example is that of a physician prescribing medication to someone who is

not officially his or her patient. While writing prescriptions is acceptable within the
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professional bounds of a doctor-patient relationship, it is illegal outside of this role.

These acceptable roles and codes of conduct are based upon the societal expectation

of the service provided by professionals in that particular field; therefore, role morality

is derived not from any individual in charge of making the rules but from a collective

decision on what is best for society [73].

An important issue in the development of automated vehicles is therefore the

type of role or character different vehicles should have. Specifically, the role of a

vehicle affects the level of strictness by which a vehicle should adhere to a traffic

law. Previous experiments in Figures 3.6, 3.7, and 3.8 showcase the ability of an

autonomous vehicle to choose whether or not to violate the traffic law of obeying

a double yellow line boundary due to safety considerations. The level of fidelity

of either adherence or violation begs for a guiding principle, which can be motivated

through role morality. Different types of vehicles have different roles to play in society.

An ambulance running a red light while carrying a passenger with a life-threatening

condition to the hospital can acceptably break traffic laws: the role of an ambulance

in society is to transport people to the hospital as quickly as possible in order to save

lives. In contrast, a taxi carrying a passenger in a hurry may not run a red light to

save time because its societal role does not merit that behavior.

Thus, while deontology and consequentialism enable justification of vehicle goals

to be described as either constraints or costs, role morality can help determine the

strength of the applied rules and costs for different vehicles. For example, role morality

establishes the context for why an ambulance would be programmed to consider

breaking traffic laws more freely than a taxi.

Using the MPC formulation presented in Section 3.5, the character of a vehicle

that can acceptably break laws, such as an ambulance, can be modeled by varying

the weights on different objectives. As an example, the weights on tracking error

can be relatively reduced to imitate the desired behavior of an emergency response

vehicle. The relatively lower costs on lateral and heading error allow the vehicle more

freedom to deviate from the path. The experimental results using the weights in

Tables 3.5 and 3.6 are shown in Figures 3.9 and 3.10, respectively. These relative

weights were determined using the process described in Section 3.6. Because the
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Figure 3.9: Reduction of the cost on path following allows the vehicle behavior to
model emergency response vehicle character.

Table 3.5: Weights causing an ambulance vehicle character to pass on the left

Parameter Symbol Value Unit

Lateral error Qe 0.3 m−1

Heading error Q∆ψ 0.25 rad−1

Smoothness R 0.1 kN−1

Environmental slack σenv 500 m−1

Road divider slack σleft 5 m−1

Road shoulder slack σright 200 m−1
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Figure 3.10: Reduction of the cost on path following allows the vehicle behavior to
model emergency response vehicle character.

Table 3.6: Weights causing an ambulance vehicle character to pass on the right

Parameter Symbol Value Unit

Lateral error Qe 0.3 m−1

Heading error Q∆ψ 0.25 rad−1

Smoothness R 0.1 kN−1

Environmental slack σenv 500 m−1

Road divider slack σleft 200 m−1

Road shoulder slack σright 5 m−1
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lower relative costs on lateral and heading error with respect to smoothness allow for

greater path deviation, the emergency vehicle begins executing the maneuver earlier,

as shown in Figures 3.9 and 3.10. In this particular scenario, the smoothness of the

maneuver is potentially advantageous for an injured passenger.

While a vehicle can indeed be programmed to weight traffic laws and maneuver

objectives according to its societal role, developing an engineered system which may

not always observe the law is an uncomfortable proposition. This raises another

question of role morality: should the engineers designing such a system be responsible

for setting weights on the laws? Or, is a better solution to adapt the law to the

programming realities of automated systems? While not producing a simple answer,

the translation of philosophical frameworks to engineering terms does help to raise

the appropriate questions that must be resolved to field automated vehicles.

3.9 Limitations

An understanding of these philosophical frameworks provides engineers a way to bet-

ter judge the ethical implications of a motion planning algorithm. However, focusing

on philosophical frameworks may give the impression that the goal here is to pro-

gram an ethics module, when the actual goal is to program ethically, as envisioned

by philosopher Vallor [75]. Even though philosophers are the most trained in ethical

analysis and thus more equipped to address deeper ethical issues that may be present

in the technology or algorithm [76], it can be helpful to the engineer to connect

their design decisions to normative ethical theories as a way of realizing the impact

of those choices. An engineer may also recognize the importance of getting further

input on those choices from experts in ethics. Thus, the work here is a first step

at ethics capacity-building for engineers to better understand how deontological and

consequential reasoning can bring about different behavior.

Another limitation of this approach is the inability to guarantee the realization

of human values in the algorithm design. The focus has been on using philosophi-

cal frameworks to reason through the construction of a motion planning algorithm.

Because this does not explicitly address human values, a successful integration of
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human values can be difficult to determine. For example, when the traffic laws were

considered through consequential reasoning, mobility and safety were better achieved

over legality compared to when the traffic laws were considered deontologically. Even

though the choice of a consequentialist treatment of traffic law led to behavior likely

emulating what most human drivers do, this justification alone does not explicitly

address the value conflict. This will be explored further in the next chapter.

3.10 Summary

The normative ethical theories of deontology and consequentialism provide insight for

engineers to understand the implications of various design decisions when program-

ming autonomous vehicles. In particular, these concepts map to rule- and cost-based

engineering paradigms such as constraints and cost functions. Making these connec-

tions can enable engineers working at the deepest levels of programming automated

vehicles to connect their design choices with broader issues of societal acceptance.

The mapping of philosophical frameworks to mathematical frameworks can be used

as a tool by engineers as a way of thinking and reasoning through autonomous vehicle

motion planning designs. This chapter has examined how to incorporate objectives

such as path tracking, vehicle occupant comfort, and traffic laws as priorities in the

cost function while obstacle avoidance and vehicle slew rate limits enter as constraints

through an MPC formulation. The concept of role morality provides a further ba-

sis for different weighting schemes within the control formulation depending on the

vehicle type and function.

More complex scenarios may require the consideration of additional objectives

for the vehicle. Nevertheless, the simple obstacle avoidance maneuver in this chapter

already points out key challenges for balancing a respect for the law with the desire to

integrate smoothly with human drivers in traffic. Realizing the benefits of automated

vehicles will require further integration of legal and ethical considerations with the

underlying control code. In particular, a formal realization of human values could

help society better understand and trust autonomous vehicle technology.



Chapter 4

Motion Planning with Human

Values

Recognizing the parallelism between normative philosophical frameworks and mathe-

matical frameworks helps with framing and discussing the development of particular

algorithms for autonomous vehicle motion planning. The parallelism also helps with

understanding the human value implications for various objective trade-offs. But how

do engineers know what values to account for in the algorithms? Human values go

beyond just mobility, safety, and legality. In this chapter, ethical considerations that

map values to engineered technology are achieved through the formal, iterative pro-

cess of value sensitive design (VSD). The first iteration of VSD, which is a large part of

this chapter, appears in the Proceedings of the IEEE Intelligent Vehicles Symposium

of 2018 [77].

4.1 Introduction

The roadways are populated by many stakeholders, such as pedestrians, bicyclists and

vehicle occupants, and these stakeholders have values that predicate their expecta-

tions. Public expectations regarding autonomous vehicle driving behavior will likely

be based on similar human values. Mobility, safety, and legality are some reasonable

values to consider [78], [79]. Designers of autonomous vehicle technologies have the

63
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challenge of connecting these human values to engineering specifications. One way to

address this challenge is to integrate the stakeholders and their values into the design

process of algorithms for autonomous vehicle motion planning.

There are many design processes that account for human values and needs as well

as various stakeholders. One popular design process is known as human-centered de-

sign (HCD) [80], [81]. The methodologies of HCD involve engaging with a group of

stakeholders, largely direct users of the technology, in order for the designers to get

feedback on how to make design improvements. Both Millar [76] and Niemelä et al.

[82] suggest current HCD approaches lack a view point from ethics in terms of justi-

fying the designs or understanding a design’s potential ethical implications. Another

design process that includes an ethics evaluation is known as life-based design (LBD)

[83]. LBD takes a broad and holistic approach to the design task by investigating the

needs of stakeholders through their quality of life. It starts by identifying the human

requirements in the design activity, then the users and the technology requirements,

and then determines if the human’s quality of life improves based on the designed

technology. The analysis on the quality of life improvement explicitly includes an eth-

ical evaluation. LBD has this inherent justification that the technology must improve

quality of life for the users. HCD and LBD are both iterative design processes that

attempt to improve the design of technology for the respective users. HCD focuses

on values relating to usability and LBD focuses on values relating to quality of life.

With many stakeholders impacted by a potential technology, many more values need

to be considered, especially since these values may conflict.

Value sensitive design (VSD) [34], [35] is another human design process that ad-

dresses ethical considerations, but it does so earlier on in the design cycle by explicitly

investigating the values (usually emphasizing those with ethical import [1]) through-

out the entire design process. VSD is a tripartite methodology that can be applied

to any general design task by iterating over conceptual, technical, and empirical in-

vestigations. At every stage of the design process, human values are connected to the

designed technology. VSD is most applicable to a design task in which value conflicts

exist for ethical issues. Friedman, Kahn Jr., and Borning indicate VSD has been
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found to be widely useful in the human-computer interaction community to help bal-

ance privacy concerns with usability for end-users [35], [84]. In the design of an office

space with a virtual window viewing a public plaza, Friedman et al. also demonstrate

that recognizing indirect stakeholders (a component of the conceptualization phase)

uncovered privacy concerns for passersby. Denning, Borning, Friedman, Gill, Kohno,

and Maisel use VSD to construct a list of specifications to guide future designs of

a security system in implantable medical devices [85]. Furthermore, the generality

of VSD allows for modification to be in line with certain design tasks. Wynsberghe

appends to VSD the moral theory of care ethics in the design of health care robots

to ensure the robots reflect stakeholder values [86].

In designing algorithms for autonomous vehicle motion planning, engineers al-

ready account for some human values. Many algorithm designs focus on the values

of safety and efficiency as is demonstrated by Chen, Zhao, and Peng’s evaluation

framework of an autonomous vehicle approaching an unsignalized pedestrian cross-

walk [87]. Bandyopadhyay, Jie, Hsu, Ang, Rus, and Frazzoli [88] and Bandyopad-

hyay, Won, Frazzoli, Hsu, Lee, and Rus [89] also focus on safety and efficiency in the

construction of the reward function of a partially observable Markov decision process

(POMDP) for speed control in pedestrian environments. As do Brechtel, Gindele, and

Dillmann in the construction of the reward function of a speed control POMDP for

entering occluded intersections [90]. These examples demonstrate engineers want to

connect human values to an engineered technology. The focus on safety and efficiency

in the evaluation framework and motion planning policies highlights the difficulty of

designing for two conflicting values. Brechtel et al. additionally consider occupant

comfort in the reward function and suggest traffic rules can likewise be included in

future iterations of the POMDP design. Their discussion indicates a desire to ac-

count for the various human values at stake in the design of a motion planning policy.

To account for these values, it would be useful to have a methodology that can help

with determining which values to include because humans value more than just safety

and efficiency. Having a list of identified values is also useful to determine conflicts

amongst stakeholders and values. Establishing value conflicts early in the design pro-

cess can help engineers design technology that explicitly resolves them early on rather



CHAPTER 4. MOTION PLANNING WITH HUMAN VALUES 66

than requiring patchwork solutions to dissolve value tensions after a system deploys.

Here, it is proposed that VSD can help fill the gaps in the design process of motion

planning algorithms for autonomous vehicles. VSD is used to formalize the connection

of human values to engineering specifications by identifying a more complete list

of human values that are at stake in the design problem and by resolving value

conflicts through justification of design choices. This chapter demonstrates a modified

application of VSD for autonomous vehicle motion planning with the design task of

a speed controller for the scenario of a pedestrian crosswalk. The only constraint on

the speed along the path is an upper bound set by the speed limit. In order for the

autonomous vehicle to navigate the scenario safely, it likely needs to reduce its speed.

The speed is controlled by acceleration commands from POMDP policies designed

using VSD. The VSD speed controllers are the first two iterations from the design

process and are not final products. The iterative process of VSD helps document how

values are incorporated into the speed control design as well as how tensions amongst

the values are resolved.

The subsequent sections proceed as follows: Section 4.2 details the three phases of

the VSD methodology: conceptualization, technical implementation, and empirical

analysis. For the scenario of an occluded pedestrian crosswalk, Section 4.3 presents

the first iteration of VSD for the speed control design task. Section 4.4 describes the

second VSD iteration. An important part of designing a motion planning algorithm

with human values is ensuring the realization of said values, so Section 4.5 elaborates

on one technique that can assist with closing the loop on the integration of human

values into the technology. A summary is provided in Section 4.6.

4.2 Value Sensitive Design

The methodology of value sensitive design (VSD) consists of three phases: conceptual,

technical, and empirical [34], [35]. During the conceptual phase, the methodology in-

volves identifying the values encompassed by the designed technology. Additionally,

the conceptualization phase determines the direct and indirect stakeholders of the

technology. A feature of VSD holds that some technological implementations are
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Figure 4.1: Experimental scenario of occluded pedestrian crosswalk.

better suited to uphold certain values than other implementations. For the technical

phase, the technical solutions most in line with the identified values (from the concep-

tual phase) are used to develop the technology being designed. Finally, the empirical

phase allows for quantitative and qualitative analyses of the developed design, such

as data analysis or observations from human-user studies. This period allows for

inspection of how successfully the designed technology meets the conceptualization.

Throughout the design development, the designer iterates over the various phases un-

til all three align. Engineers already implicitly iterate over conceptual, technical and

empirical phases as they design new technology. VSD provides a tool to help formalize

the engineering process to explicitly account for values embedded in the technology

by identifying the values and tracking these values throughout the iterations.

4.3 The First Iteration

Designing an autonomous vehicle motion planning algorithm is a broad design task

because of the many situations the vehicle may encounter on the roadways. With

such potentially broad impact, the list of stakeholders and values may be untenable

to design for as a first iteration. To simplify the design task, this chapter will focus

on a particular scenario as a form of case-study in order to confine the stakeholder

and value consideration space. The scenario in Figure 4.1 depicts a two-lane roadway

with a single, dashed yellow line. The roadway also comprises a marked pedestrian

crosswalk. In front of the crosswalk is a large, illegally parked van. From the perspec-

tive of the autonomous vehicle approaching the crosswalk, the crosswalk is partially

occluded because of the obstructing van. The steering controller from Chapter 2 will
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continue to laterally control the vehicle around the van along an obstacle-free path.

The design task is to develop a speed control algorithm along the given path such

that the autonomous vehicle safely navigates through the scenario.

4.3.1 Conceptualization

To start the VSD process, the direct and indirect stakeholders involved with the

scenario and design task are identified in addition to the human values. Identifying

both the direct and indirect stakeholders forces engineers and programmers to think

more deeply about the consequences and who is affected by the designed technology.

For this scenario, the direct stakeholders are the autonomous vehicle, occupants in the

autonomous vehicle, the pedestrian potentially crossing the street, and the authority

of traffic laws. An indirect stakeholder is the obstructing vehicle parked on the road

because it is assumed that the autonomous vehicle can follow an obstacle-free path

around the occlusion. For this first iteration, the focus is on these stakeholders, but

there are many more stakeholders, such as bicyclists or bystanders.

Determining the human values involved in the scenario and design task is critical

to VSD and the engineering process. Traffic scenarios, in general, relate to balancing

the human values of mobility, safety, and legality. By considering the stakeholders,

more values at stake can be uncovered. In lieu of engaging with actual stakeholders,

the human values to consider in this conceptualization stem from Haidt [91] and Choi

and Ji [92]. Haidt suggests there is a set of values (or moral foundations) inherent to

human beings, such as care and respect for others, fairness and reciprocity, respect for

authority, and individual autonomy, while Choi et al. indicates trust and transparency

are important for the acceptance of autonomous vehicles. How these moral values

are defined could lead to different technology designs, so more thorough definitions

are provided by considering the stakeholders to clearly define what is meant by each

value for this particular scenario:

• Care and respect for others manifests by the desire to not harm other persons.

• Fairness and reciprocity affect both the vehicle occupants and pedestrian stake-

holders in that the autonomous vehicle should not take biased or discriminatory
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actions based on information about the stakeholders. The autonomous vehicle

should treat all individuals involved as equal agents.

• Respect for authority engages the relationship between the autonomous vehicle

and its adherence to traffic laws.

• Trust emerges when the pedestrian assumes an oncoming vehicle yields to his

or her right-of-way while crossing within the crosswalk. Transparency occurs

when the autonomous vehicle’s actions facilitate this trust.

• Individual autonomy of the vehicle occupants acknowledges the desire to get

from one destination to another with little impedance.

Since these human values have been identified as necessary to incorporate in the

motion planning algorithm, I relate them all to an engineering specification for use

in the technical implementation phase. A summary is shown in Table 4.1.

Safety and Legality

When navigating an occluded pedestrian crosswalk, the relationship between legality

and safety are closely tied. According to the California Driver’s Handbook [93],

pedestrians have the right-of-way in a crosswalk. When a pedestrian may be present,

a driver is encouraged to reduce the vehicle speed when approaching a crosswalk and

be prepared to stop as specified by California Vehicle Code §21950:

(a) The driver of a vehicle shall yield the right-of-way to a pedestrian

crossing the roadway within any marked crosswalk or within any

unmarked crosswalk at an intersection, except as otherwise provided

in this chapter.

(b) This section does not relieve a pedestrian from the duty of using due

care for his or her safety. No pedestrian may suddenly leave a curb or

other place of safety and walk or run into the path of a vehicle that

is so close as to constitute an immediate hazard. No pedestrian may

unnecessarily stop or delay traffic while in a marked or unmarked

crosswalk.
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(c) The driver of a vehicle approaching a pedestrian within any marked

or unmarked crosswalk shall exercise all due care and shall reduce the

speed of the vehicle or take any other action relating to the operation

of the vehicle as necessary to safeguard the safety of the pedestrian.

(d) Subdivision (b) does not relieve a driver of a vehicle from the duty of

exercising due care for the safety of any pedestrian within any marked

crosswalk or within any unmarked crosswalk at an intersection.

As the vehicle code alludes, following the law and driving safely strongly correlate.

For this iteration, I assume safety and legality to be the same engineering specification

for this scenario: if the autonomous vehicle adheres to the legal requirement, then

it also takes safe actions. The key pieces of information necessary for safe and legal

decision-making are vehicle speed (vt), distance to crosswalk (dt), and whether or not

a pedestrian is crossing the street (ct). Again, this connects to the ethical values of

care and respect for others, respect for authority, and fairness and reciprocity.

Efficiency and Mobility

The metric of time efficiency captures the human value of mobility. Time efficiency

is directly related to the speed of the vehicle (vt) for the given path. This objective

relates to the moral value of individual autonomy.

Smoothness

Smooth driving affects occupant comfort and interjects trust and transparency be-

tween the stakeholders. For longitudinal control, smoothness can be captured through

the change in vehicle speed, which is equivalent to knowing the acceleration command

(at) and change in time (∆t).

4.3.2 Technical Implementation

Many motion planning approaches can be tailored to solve the pedestrian occlusion

scenario. Rather than just choosing an arbitrary approach, VSD maintains that
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Table 4.1: Summary of human values mapping to engineering specifications for the
first VSD iteration.

Human Value Engineering Specification Information

Safety

Safety and Legality

vt
dt
ct

Legality
Care and respect for others
Respect for authority
Fairness and reciprocity

Mobility
Efficiency vtIndividual autonomy

Trust
Smoothness

at
∆tTransparency

the choice of technology or algorithm implicates certain values. Here, the lateral

motion continues to be controlled by the formulation in Chapter 2 and the longi-

tudinal motion is chosen to be controlled by a stochastic optimization problem. A

stochastic optimization problem can account for modeled uncertainty present in the

driving scenario while balancing the identified values through the objective function.

Furthermore, the problem can be formulated as an open-loop or a closed-loop plan-

ning problem. Closed-loop planning accounts for future state information because it

breaks the planning problem into simpler sub-problems (i.e. dynamic programming),

while open-loop does not (like stochastic MPC [94]) because it requires constructing

a static sequence of actions. To obtain an offline policy to inspect and verify before

putting on an autonomous vehicle, a closed-loop planning approach is chosen and the

problem is constructed as a partially observable Markov decision process (POMDP)

[95]. Throughout the design of the POMDP, every design choice is connected back

to values from the conceptualization phase in order to justify the engineering and

explicitly record the embedding of said values.

Partially Observation Markov Decision Process

In a POMDP, an agent makes decisions based on its history of observations o1, . . . , ot.

To reduce the information stored, the history is summarized in a belief state b, which
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is a distribution over the states. The optimal policy is represented as a set of alpha

vectors, which convert the belief state to a control input or action. Given the values of

safety and legality, efficiency and mobility, and smoothness, the information necessary

to address each value in the objective function is captured by the state vector

x = [vt dt ct]
> (4.1)

and the control input

ut = at, (4.2)

where vt is the vehicle speed, dt is the vehicle distance to the crosswalk, ct is the

pedestrian detection and at is the longitudinal acceleration. An alternative formula-

tion with the actions as desired speed is presented in Appendix C. The top speed of

the roadway is assumed to be 10 m/s, so the vehicle speed is upper bounded by the

speed limit to coincide with the safety and legality objective. The pedestrian detec-

tion is a Boolean value because the pedestrian is either crossing or not, and, in order

to uphold the values of fairness and reciprocity, the detection does not rely on other

information about the pedestrian that may be discriminatory. The control input,

or action, is limited to ±3 m/s2 to provide comfortable acceleration and deceleration

values, which further addresses the objective of smoothness for occupant comfort.

For the dynamics (or state transitions), a point mass model of the vehicle is used

to calculate the distance to the crosswalk and vehicle speed. The detection of a

pedestrian crossing maintains some uncertainty over time. When the pedestrian is

detected, there is a 90 % probability the pedestrian will continue to be detected at

the next time step. This probability is chosen in order to capture the high likeli-

hood the pedestrian will remain in the crosswalk as he or she crosses the street while

acknowledging he or she will not remain in the crosswalk for all time. When the

pedestrian is not detected, then there is a 50 % chance he or she will continue to not

be detected, which captures the uncertainty due to the occlusion. This probability

is chosen to capture the randomness of a pedestrian potentially appearing. These

pedestrian state transition probabilities are rather arbitrarily chosen in the first it-

eration to demonstrate the process. In practice, the state transition probabilities
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could come from event-based statistics or another model. The control loop assumes

perfect information for the distance to the crosswalk and vehicle speed. However,

there is observation uncertainty for the pedestrian crossing with a false positive of

5 % for detecting and a false positive of 5 % for not detecting the pedestrian, which

captures the uncertainty due to sensor noise. These false positive rates were chosen

arbitrarily small but, in practice, would come from the perception system’s capability

of detecting pedestrians.

The goal is for the autonomous vehicle to smoothly drive safely and efficiently

through the crosswalk while adhering to the relevant traffic laws. The reward function

defines the stage cost g(xt, ut) for every state and action, which further connects the

conceptualization values to the technical implementation. The reward for a state-

action pair involves adding stage costs (4.4), (4.5), and (4.6) for that state and action.

The stage cost for safety and legality is partly derived from physical properties so

that the computed reward at a given state is then a function of the amount of de-

celeration needed to stop the vehicle. The constant acceleration point mass equation

used to relate the constant deceleration needed to come to a complete stop given the

distance to the crosswalk and vehicle speed is

at = − v2
t

2dt
. (4.3)

This leads to the following stage cost for safety and legality:

gsafe(xt, ut) = −
(
ζ

v2
t

dt + ε
+ η1(dt = 0)

)
1(ct), (4.4)

where ε > 0 is a buffer in the denominator to soften the constraint, ζ > 0 is a weight

on the penalty incurred by driving quickly as the vehicle gets closer to the crosswalk,

η > 0 is a terminal penalty independent of velocity to encourage the vehicle to stop

when the pedestrian is crossing, and 1(·) is a function that evaluates to 1 if the

Boolean logic is true and 0 if false.
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For efficiency and mobility, the stage cost takes the form of

gefficient(xt, ut) = λvt1(¬ct), (4.5)

where λ > 0 is a reward weight to encourage higher speed when the pedestrian is not

crossing.

To achieve smoothness for occupant comfort, the objective is realized through a

penalty stage cost on the change in velocity:

gsmooth(xt, ut) = −ξ(vt − vt+1)2 = −ξ(at∆t)2, (4.6)

where ξ is the weight penalizing large changes in velocity. This stage cost only depends

on the current input and the time step.

In order to solve the POMDP, the method of QMDP is used to approximate an

optimal solution [95]. Although QMDP assumes that at the next time step the state

will be fully observable, it is well suited for this problem because the actions are not

information gathering, meaning the actions do not directly reduce the uncertainty of

the scenario. Another motivation to use QMDP is that it is an offline solver, which

means in the next phase (empirical analysis), the policy can be inspected ahead of

time before deploying on a vehicle. To solve the POMDP with this method, the state

and action spaces are discretized, but continuousness is maintained using multilinear

grid interpolations [96] for the state transitions. Vehicle speed increments in steps

of 0.5 m/s, vehicle distance to crosswalk increments by 1 m, and accelerations are

quantized by 0.1 m/s2 intervals. These discretizations were chosen such that the sizes

of the state and action spaces in the POMDP were kept small: 2,563 total states

(includes terminal state) and 61 possible actions.

Throughout the technical implementation, every design choice in the POMDP is

connected back to a value from the conceptualization phase as a way to document

and justify the engineering of this technology. The next section shows how well this

implementation realizes the conceptualization.
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4.3.3 Empirical Analysis

The third phase of the VSD methodology entails qualitative and quantitative analy-

ses. In order to discuss how the VSD process impacts the design of a speed control

algorithm, it is first compared to a deterministic proportional speed control as a

baseline. A qualitative discussion compares the resulting policies of the baseline and

POMDP. Quantitative analysis comes from real-time in-vehicle experiments on Trudi,

an automated Ford Fusion.

Baseline

The baseline is a deterministic proportional speed control for comparison. Once the

pedestrian is detected, a constant deceleration is commanded based on the current

vehicle velocity and distance to the crosswalk as in Eq. (4.7a), which also assumes a

point mass model with constant acceleration. When no pedestrian is detected, then

the vehicle resumes a proportional cruise control with gain kp and known desired

velocity vdes as in Eq. (4.7b). The logic is as follows:

if ct

at = − v2
t

2dt
(4.7a)

else

at = kp(vdes − vt) (4.7b)

The baseline is intentionally simple as it allows for examination of the design

characteristics due to the limited number of design choices considered in this baseline

implementation.

Policy Comparison

The baseline controller (4.7) is a closed-loop policy, mapping every state to an action,

and is graphically represented in Figure 4.2. The values along the horizontal-axis

are the vehicle speed, and the values along the vertical-axis are the distance to the
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crosswalk. The colors indicate the action. The policy figure is bisected by pedestrian

detection. The baseline policy seems to be safe when the pedestrian is detected as ev-

idenced by coasting (zero acceleration) when the vehicle is further from the crosswalk

and increasing braking commands as it gets closer. But this part of the policy lacks

efficiency when the pedestrian is crossing. In contrast, when the pedestrian is not

detected, it is efficient but not safe. This dichotomous behavior highlights the need to

anticipate transitioning from one set of logic to the other because of the uncertainty

about a pedestrian crossing. The baseline policy lacks an explicit resolution of the

value conflict between safety and efficiency for the scenario.

The closed-loop policy of the POMDP designed in the technical implementation

phase is represented as a set of alpha vectors, where each alpha vector corresponds

to an action. Using the optimal expected utility for each state, the corresponding

action is shown in Figure 4.3. When the pedestrian is crossing, the policy indicates a

balance between efficiency further away from the crosswalk and safety as the vehicle

approaches. There is significant improvement in terms of safety while the pedestrian

is not crossing while maintaining some efficiency. The policy also indicates smooth

actions across the state space.

The choice of weights in the reward function for this policy are summarized in

Table 4.2. These weights were originally hand-tuned to produce a nice blending of

positive accelerations away from the crosswalk and negative accelerations closer to

the crosswalk. The weights were then more finely tuned when conducting in-vehicle

experiments in order to resolve the value tension between the pedestrian and the

vehicle as presented in the next section. With these weights, at the extreme state of

vt = 10 m/s, dt = 0 m, and ct, the term for constant deceleration in gsafe gives a penalty

of -2.5, while gefficient is 2.5 when ¬ct. The additional penalty by η in gsafe means safety

and legality are prioritized in this first implementation. The numerical value for the

buffer is the most arbitrary decision; it was chosen such that the numerator does not

evaluate to zero and to limit the magnitude of the constant deceleration term. Lastly,

ξ is chosen to try to produce smooth acceleration commands.

The goal of this first iteration is to determine how value tensions can be addressed

in the implementation. The specific weights that tie directly to the human values are
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Figure 4.2: Baseline closed-loop policy mapping each state to an action.
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Figure 4.3: Closed-loop policy depicting optimal action at that state assuming perfect
state information.
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Table 4.2: Weights of the reward function

Variable Weight Unit

Safety and legality (ζ) 0.2 s2/m
Safety and legality (η) 0.2 −
Buffer (ε) 8 m
Efficiency (λ) 0.25 s/m
Smoothness (ξ) 1 s2/m2

ζ and η for safety and legality, λ for efficiency, and ξ for smoothness. If the overall

design seems satisfactory, then exact gains can be further tuned through a Pareto, or

multi-objective, optimization over these weights to better determine the value trade-

off to implement. This is demonstrated later in Section 4.5. In this case, however,

further tuning of the weights is forgone until additional analysis determines this design

is satisfactory.

Experimental Results

To further illustrate how well the VSD speed controller realizes the human values,

an in-vehicle experiment was conducted using a fully automated hybrid Ford Fusion

known as Trudi. Trudi is equipped with an Oxford Technical Solutions RT4000 dif-

ferential GPS/INS unit, which obtains pose information of 2 cm accuracy with the

addition of a Novatel base station to communicate corrections. Vehicle state infor-

mation is calculated using the pose information as well as velocities and accelerations

from the INS. Additionally, Trudi has four Velodyne HDL-32E lidars, which return

a 3D point cloud with intensity values. The point cloud data is used to construct a

2D occupancy grid to parse an obstacle detections list. The intensity values are used

as a simple classifier for the pedestrian, which is a large person-shaped cardboard

cutout (Figure 4.4) covered in retro-reflective material. The vehicle is tasked with

following an obstacle-free path around the occluding vehicle using a deterministic

model predictive steering control as in Brown, Funke, Erlien, and Gerdes [97] and

Chapter 2.

For the policy execution of the POMDP, an observation of the vehicle speed,
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Figure 4.4: Experimental setup of occluded pedestrian crosswalk using an inflatable
van for the occluding vehicle and a retro-reflective cardboard cutout for the pedestrian
that moves along a track.

vehicle distance to crosswalk, and detection of the pedestrian are used to update the

belief with a Bayesian filter. The approximate optimal action taken is then

arg max
a

α>a b, (4.8)

where αa is an alpha vector for each action a and b is the belief state as a vector.

Both the policy solver and policy execution are implemented using the POMDPs.jl

library [98].

The experimental scenario involves an occluded pedestrian crosswalk on a two-lane

roadway. The vehicle starts from a stopped position at the beginning of the road. As

the vehicle approaches the crosswalk, the pedestrian suddenly appears in the crosswalk

from behind the occluding vehicle. The control algorithms have no prior knowledge

as to when the pedestrian will appear. Figures 4.5 and 4.6 depict the overhead driven

trajectory, acceleration commands and speed profile for the baseline and POMDP
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Figure 4.5: Baseline trajectory overhead, acceleration command, and speed profile
using deterministic speed control (circle indicates when the pedestrian was detected).
The vehicle decelerates upon detection of the pedestrian, but does not yield.
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Figure 4.6: POMDP trajectory overhead, acceleration command, and speed profile
using belief about pedestrian detection (circle indicates when the pedestrian was
detected).
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policies, respectively. The circles in Figure 4.5 and 4.6 indicate when the pedestrian

was detected by the intensity filter. For both approaches, the immediate time step

after detection commands a large deceleration. Because the baseline control is at full

speed when the pedestrian appears, it is unable to legally yield to the pedestrian.

In contrast, the POMDP policy has the vehicle decelerate much earlier and has it

reach a lower maximum speed. Consequently, Trudi successfully stops for the sudden

pedestrian.

4.3.4 Lessons Learned

This first iteration of the speed control design demonstrates the difficulty of designing

an algorithm in the midst of competing values. There are some components of the

implementation to highlight and some things to improve.

Positive Outcomes

• Accounting for the pedestrian uncertainty allowed the vehicle to successfully

yield to the pedestrian. This effect largely came from the vehicle approaching

the crosswalk at a “reasonable speed” because the POMDP anticipated future

state information.

• The only information with regard to the pedestrian used was whether he or

she was detected. This largely upheld the values of fairness and reciprocity but

should be more explicit.

• With proper choice of weights, the tension between safety/legality and effi-

ciency/mobility can be balanced.

• The design decision to model the problem as a POMDP and solve for an offline

policy helped with investigating and balancing some of the value tensions in

this design task.
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Things to Improve

• Remove the limitation on braking authority, which led to a prioritization of

occupant comfort above safety.

• Although the POMDP formulation is intentionally designed for occupant com-

fort, it optimized only for smoothness in velocity and did not account for the

jerk vehicle occupants experience due to choppy acceleration commands. When

considering merely the closed-loop policies, the value of smoothness seems to

be achieved, but the in-vehicle experiments indicate that smoothness may not

have been properly accounted for with this first iteration.

• This particular scenario is not generalizable to non-occluded crosswalks.

• Pedestrian modeling is key to the value tension, so more focus is needed there.

The next iteration will explore how to maintain these positive attributes while

addressing some of the downsides of this implementation.

4.4 The Second Iteration

The iterative process of value sensitive design is not only helpful to identify how to

improve the technical implementation but can also be used to re-evaluate the design

task. In the second iteration, the scenario is revised to focus on the uncertainty

of pedestrian behavior. By eliminating the occluding vehicle, the design task can

investigate how pedestrian intent affects the vehicle behavior and vice versa. The

pedestrian behavior introduces a lot of uncertainty in crosswalk scenarios, and the

inclusion of an occluding vehicle obfuscates the pedestrian-vehicle interaction. Hence,

the occlusion is removed and a pedestrian is positioned at the side of the road as shown

in Figure 4.7. As the iterations progress, it is reasonable to assume the designer will

gain a better understanding of the pedestrian-vehicle interaction. At which point,

the occlusion can be re-introduced to the design task or used as a test case in the

analysis phase.
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Figure 4.7: Experimental scenario of pedestrian crosswalk.

4.4.1 Conceptualization

The design task still involves various stakeholders and touches upon many human

values. The direct stakeholders are now the occupants in the autonomous vehicle,

the pedestrian potentially crossing the street, and the authority of traffic laws. Even

with the removal of the occluding vehicle, the values at stake in the scenario are still

mobility, safety, legality, care and respect for others, fairness and reciprocity, respect

for authority, trust and transparency, and individual autonomy. The values take on

the same definition as in Section 4.3.1, but how they translate to an engineering

specification is going to be refined.

In the last iteration, the only human values explicitly considered were those that

related to an engineering objective. This iteration serves to clarify how each identified

value is to be captured in the technology. In particular, the value of fairness and

reciprocity does not translate directly to an engineering objective. Instead, it becomes

a higher-level design constraint that limits the information to be non-discriminatory,

e.g. no age or gender information.

The other values are addressed by relating them to specifications that can be

captured by engineering terms. These are all summarized in Table 4.3

Legality and Respect for Authority

Upon closer inspection of the California Vehicle Code, safety and legality are not

strictly the same requirement. The vehicle code only requires drivers to exhibit “due

care” to be safe, which is not the same requirement to actually be safe. The vehicle

code further specifies reducing the vehicle speed and taking actions as necessary to
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safeguard the safety of the pedestrian. The key pieces of information necessary for

legal decision-making are vehicle speed (vt), vehicle distance to crosswalk (dt), and

pedestrian behavior. In order to safeguard the pedestrian, the autonomous vehicle

must have information about whether the pedestrian is going to transition from the

sidewalk to the crosswalk. The pedestrian behavior is assumed to be captured by the

pedestrian position (ct) and pedestrian posture (pt), which are non-discriminatory.

Safety, Care and Respect for Others

The value of safety is a more strict interpretation of the vehicle code. Safety focuses

on harm and injury reduction. To achieve this value, the same information as for

legality is needed: vehicle speed (vt), vehicle distance to crosswalk (dt), pedestrian

position (ct) and pedestrian posture (pt).

Mobility and Efficiency

The metric of time efficiency is still captured by the value of mobility, and is directly

related to the speed of the vehicle (vt) for a straight path.

Mobility and Smoothness

An additional aspect of mobility is smooth driving, which still affects occupant com-

fort and interjects trust and transparency between the stakeholders. In this iteration,

the value of mobility is intended to improve by using both the previous acceleration

(at−1) and current acceleration command (at) for smooth change in actions.

4.4.2 Technical Implementation

A new iteration provides an opportunity to choose a different technique or algorithm

that better aligns with the defined values. Since the POMDP helped to illuminate

value tensions in the previous iteration, the POMDP is kept in this iteration since it

seems to offer potential resolution. Dynamic programming is used again to compute

an optimal policy to control the longitudinal acceleration of the vehicle based on the

belief of a pedestrian crossing.
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Table 4.3: Summary of human values mapping to engineering specifications for the
second VSD iteration.

Human Value Engineering Specification Information

Fairness and reciprocity Do not use discriminatory information.

Legality

vt
Legality dt
Respect for authority ct

pt

Safety

vt
Safety dt
Care and respect for others ct

pt

Mobility

Mobility

vt
at−1

at

Individual autonomy
Trust
Transparency

Given the engineering specifications of legality, safety, and mobility, the informa-

tion necessary to address their respective values in the objective function is captured

by the state vector

x = [vt dt ct pt at−1]> (4.9)

and the control input

ut = at, (4.10)

where vt is the vehicle speed, dt is the vehicle distance to the crosswalk, ct is the

pedestrian position, pt is the pedestrian posture, and at−1 and at are the previous

and current longitudinal acceleration, respectively. The top speed of the roadway

is assumed to be 10 m/s, so the vehicle speed is upper bounded by the speed limit

to coincide with both the legality and safety objectives. The pedestrian position

is either in the crosswalk or on the sidewalk, and the pedestrian posture is either

stopped while the pedestrian makes eye contact with the vehicle, is distracted, or is

in motion. In order to continue to uphold the values of fairness and reciprocity, the

pedestrian states do not rely on other information about the pedestrian that may
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be discriminatory. Previously, the control input was limited to ±3 m/s2 to provide

comfortable acceleration values, but this impeded the vehicle’s ability to be safe.

Here, the control algorithm allows the vehicle to use its full braking authority by

allowing deceleration up to −10 m/s2.

The dynamics (or state transitions) still use a point mass model of the vehicle

to calculate the distance to the crosswalk and vehicle speed. A new model for the

pedestrian is developed in order to further investigate the value tensions for the design

task (Table 4.4). The likelihood of the pedestrian transitioning from the sidewalk to

the crosswalk is a function of the pedestrian posture. The likelihood is 50 % when

the pedestrian is distracted and 86.7 % [99] when the pedestrian is in motion. (The

probability of 86.7 % is calculated from Schroeder and Rouphail’s [99] statistics on

yield and non-yield events for an assertive pedestrian at site B.) When the pedestrian

is stopped while making eye contact with the vehicle, the probability of transitioning

is a function of the vehicle’s distance to the crosswalk

Pr(ct | ¬ct; pt = STOPPED) = (pxing/dmax)dt, (4.11)

where pxing is 52.3 % [99] likelihood and dmax is the maximum distance the vehicle is

defined to be away from the crosswalk. (The probability of 52.3 % is calculated from

Schroeder and Rouphail’s [99] statistics on yield and non-yield events for a pedestrian

waiting on the near side at site B.) Once within the crosswalk, the pedestrian is

assumed to stay in the crosswalk for the next time step. The control loop assumes

perfect information for the vehicle distance to the crosswalk, vehicle speed, and, for

simplicity, the pedestrian posture. However, there is observation uncertainty for the

pedestrian position with a false positive of 5 %, which captures sensor uncertainty.

These false positive rates were again chosen arbitrarily small but, in practice, would

come from the perception system’s capability of detecting pedestrians.

The goal is still for the autonomous vehicle to smoothly drive safely and efficiently

through the crosswalk while adhering to the relevant traffic laws. The reward function

defines the stage cost g(xt, ut) for every state and action, which again further connects
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Table 4.4: Pedestrian transition model for the second VSD iteration.

Pedestrian posture Transition probability Pr(ct | ¬ct)
Distracted 0.5
Stopped 0.523†(dt/dmax)
Moving 0.867†

†calculated from yield event statistics [99]

the conceptualization values to the technical implementation. The reward for a state-

action pair involves adding stage costs (4.12), (4.13), and (4.16) for that state and

action.

The stage cost for legality derives from the constant acceleration point mass equa-

tions relating the constant deceleration needed to come to a complete stop given the

distance to the crosswalk and vehicle speed, and is as follows

glegality(xt, ut) = −ζ v2
t

dt + ε
1(ct), (4.12)

where ε > 0 is a buffer in the denominator to soften the constraint, and ζ > 0 is a

weight on the penalty incurred by driving quickly as the vehicle gets closer to the

crosswalk.

The stage cost for safety is

gsafety(xt, ut) = −η1(ct ∧ dt < 0), (4.13)

where η > 0 is a terminal penalty independent of velocity to encourage the vehicle to

stop when the pedestrian is crossing.

For mobility, the stage cost consists of two terms:

gefficient(xt, ut) = λvt1(¬ct) (4.14)

and

gsmooth(xt, ut) = −ξ(at−1 − at)2. (4.15)
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The total stage cost for mobility then becomes:

gmobility(xt, ut) = gefficient(xt, ut) + gsmooth(xt, ut) = λvt1(¬ct)− ξ(at−1 − at)2, (4.16)

where λ > 0 is a reward weight to encourage higher speed when the pedestrian is not

crossing, and ξ > 0 is a penalty on large changes in acceleration.

To solve the POMDP, the method of QMDP is used again to approximate an

optimal solution. In this iteration, vehicle speed increments in steps of 0.5 m/s,

vehicle distance to crosswalk increments by 1 m, and accelerations are quantized by

0.5 m/s2 intervals. These discretizations were chosen such that the sizes of the state

and action spaces in the POMDP were kept small: 142,884 total states (includes

terminal states) and 27 possible actions.

4.4.3 Empirical Analysis

The empirical analysis for the second iteration focuses on experimental results. A

policy comparison is not included in this analysis because, unlike the baseline, the

state space of this POMDP cannot be fully represented in three dimensions. This is

because the POMDP policies are conditioned on the previous acceleration command.

Experimental Results

Once again, in-vehicle experiments are conducted using Trudi. However, instead of

using the lidar sensors and retro-reflective material for pedestrian detections, these

experiments use computer vision to identify the presence of a pedestrian [100]. With

the definition of a static polygon for the shape of the road, the pedestrian detection is

used to determine whether the pedestrian is in the crosswalk influence area (i.e. the

sidewalk) or in the crosswalk. The vehicle is tasked with following a straight line path

down the road still using a deterministic model predictive steering control as in Brown

et al. and Chapter 2. The experimental scenario involves a pedestrian crosswalk on

a two-lane roadway (Figure 4.8). The vehicle is at speed when the pedestrian enters

the crosswalk influence area, at which point the policy starts executing. As the

vehicle approaches the crosswalk, the pedestrian may or may not transition into the
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Figure 4.8: Experimental setup of pedestrian crosswalk using a cardboard cutout for
the pedestrian that moves along a track. Depicts the pedestrian posture of stopped.

crosswalk. The control algorithms have no prior knowledge as to whether or when

the pedestrian will transition.

The baseline from the first iteration is used again for comparison against the

new POMDP policies. It is considered to be an aggressive baseline since it will

not yield to the pedestrian until he or she has entered into the crosswalk. As an

alternative, a conservative baseline is also considered, according to which the vehicle

starts to yield to the pedestrian once he or she enters the crosswalk influence area.

The policies are the same, except for what is considered to be the crosswalk influence

area which determines when to switch between cruise control and braking. Yet, they

do not account for the pedestrian posture. Figures 4.9 and 4.10 depict the overhead

driven trajectory, acceleration commands, and speed profile for the aggressive and

conservative baselines, respectively. The circles indicate when the pedestrian was

detected to be in the crosswalk by the computer vision algorithm. Since there is no

circle in the aggressive baseline, this means the pedestrian never entered the crosswalk.

The vehicle continued at the speed limit, never yielding to the pedestrian, because the
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Figure 4.9: Aggressive baseline trajectory overhead, acceleration command, and speed
profile using deterministic speed control. There is no red circle because the pedestrian
does not enter the crosswalk.
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Figure 4.10: Conservative baseline trajectory overhead, acceleration command, and
speed profile using deterministic speed control (circle indicates when the pedestrian
was detected).
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pedestrian did not enter the crosswalk. For the conservative baseline, the perception

system detected the pedestrian to be in the crosswalk influence area when the vehicle

was 12.99 m away from the crosswalk, and the vehicle successfully yielded to the

pedestrian.

For the policy execution of the POMDP, an observation of the vehicle speed,

vehicle distance to crosswalk, pedestrian posture, and pedestrian location are used to

update the belief with a Bayesian filter just like the previous iteration. Figures 4.11-

4.14 depict the overhead driven trajectory, acceleration commands, and speed profile

for the POMDP policies. The circles indicate when the pedestrian was detected in

the crosswalk by the computer vision algorithm.

In this second POMDP implementation, the pedestrian postures are independent

from each other. Hence, a different set of weights are used in the reward function

for each posture (Table 4.5). This is reasonable because each pedestrian posture

is a unique sub-scenario that requires a different vehicle response. The numerical

value for the buffer is still rather arbitrary; it is chosen such that the numerator does

not evaluate to zero and to limit the magnitude of the constant deceleration term.

Again, the other weights can be further tuned with additional analysis through Pareto

optimization (see Section 4.5) but are chosen preliminarily here to see if this design

is satisfactory.

For the scenario of the distracted pedestrian (Figure 4.11), the weights are cho-

sen such that safety, efficiency, and smoothness are prioritized to similar normalized

values: ηn = 0.5, λn = 0.5, and ξn = 0.507, respectively, at the extreme states and

actions when vt = 10 m/s, dt < 0 m, and at−1 − at = 13 m/s2. The legality term is

normalized to ζn = 0.125 when vt = 10 m/s and dt = 0 m, suggesting lower prioritiza-

tion. Figure 4.11 shows that once the pedestrian enters the crosswalk influence area,

the policy executes small negative accelerations to slow the vehicle down to around

1.5 m/s and to make it coast until the pedestrian enters the crosswalk. Once the

pedestrian enters the crosswalk, the vehicle comes to a complete stop.

When the pedestrian is walking (Figure 4.12), the terms for efficiency and smooth-

ness increase to normalized values of λn = 1 and ξn = 1.69. With higher efficiency, the

vehicle drives at a faster speed down the road and more smoothness is consequently
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Table 4.5: Weights of the reward function with respect to pedestrian posture (pt)

pt = DISTRACTED pt = WALKING pt = STOPPED

Variable Weight Weight Weight Unit

Legality (ζ) 0.01 0 0.01 s2/m
Buffer (ε) 8 8 8 m
Safety (η) 0.5 0.5 0.5 −
Mobility (λ) 0.05 0.1 0.03 s/m
Mobility (ξ) 0.003 0.01 0.003 s2/m2

needed to smoothly decelerate the vehicle from the faster speed in case the pedestrian

enters the crosswalk. Because of the high probability the pedestrian transitions to the

crosswalk, there is consequently a high belief of 0.36 that the pedestrian is crossing.

This means the impact of the safety and legality terms largely influence the vehicle

behavior well before the pedestrian is physically within the crosswalk. To reduce the

large impact of the safety and legality terms, one of the terms is reduced to 0 (legality,

in this instance) to allow the vehicle to progress towards the crosswalk. With these

weights, the vehicle again coasts until the pedestrian is detected. As the vehicle gets

closer to the crosswalk, it smoothly decelerates to a complete stop.

For the stopped pedestrian, the normalized legality term increases back to ζn =

0.125 while efficiency and smoothness decrease to λn = 0.3 and ξn = 0.507. Smooth-

ness is really important in this scenario for the autonomous vehicle to demonstrate

transparency about its intentions to move through the environment, and hence is

chosen to have the highest prioritization. Using these weights, two different scenarios

were tested. The scenario depicted in Figure 4.14 shows the vehicle gradually accel-

erating as the vehicle gets closer to the crosswalk because of decreasing belief that

the pedestrian will cross the street. Since the pedestrian does not want to cause an

immediate hazard, it does not enter the crosswalk. In the second stopped pedestrian

scenario, Figure 4.14 portrays the pedestrian crossing the street before the vehicle

accelerates too much. Once the pedestrian is in the crosswalk, the vehicle comes to a

complete stop.
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Figure 4.11: Distracted pedestrian POMDP trajectory overhead, acceleration com-
mand, and speed profile using the belief of the pedestrian crossing (circle indicates
when the pedestrian was detected).
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Figure 4.12: Walking pedestrian POMDP trajectory overhead, acceleration com-
mand, and speed profile using the belief of the pedestrian crossing (circle indicates
when the pedestrian was detected).
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Figure 4.13: Stopped pedestrian POMDP trajectory overhead, acceleration com-
mand, and speed profile using the belief of the pedestrian crossing. There is no
red circle because the pedestrian does not enter the crosswalk.
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Figure 4.14: Stopped pedestrian POMDP trajectory overhead, acceleration com-
mand, and speed profile using the belief of the pedestrian crossing (circle indicates
when the pedestrian was detected). Pedestrian takes right of way.
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With the focus on pedestrian behavior in this second iteration, the scenario inher-

ently gains complexity around the value tension between the pedestrian’s intent and

the autonomous vehicle’s desire to travel down the road. The weights chosen here are

still rather arbitrary trade-offs over the value statements. Hence, a deeper analysis is

likely appropriate at this point to better determine if a particular design point can

resolve the value tensions. For example, a Pareto optimization would be useful to

simulate over many scenarios as the choice of weights change. This is demonstrated

in the next section (Section 4.5).

4.4.4 Lessons Learned

This second iteration of the speed control design demonstrates improvements in han-

dling the value conflicts as the engineering specifications refine in terms of the identi-

fied values. There are still components of the implementation to highlight and some

things to improve because this is not the final product.

Positive Outcomes

• In all scenarios, accounting for the pedestrian uncertainty allowed the vehicle to

successfully yield to the pedestrian. The design choice of modeling the problem

as a POMDP meant dynamic programming could be used to account for future

state information in the policy.

• The only information about the pedestrian used was whether he or she was in

the crosswalk and what posture he or she composed. This continued to uphold

the values of fairness and reciprocity.

• The continued design decision to model the problem as a POMDP and solve for

an offline policy helped to investigate and balance some of the value tensions in

this design task. Although the actual choice of weights were rather arbitrary,

it demonstrated the potential for the value tensions to be resolved.

• Smoothness improved with the penalty on change in acceleration and the influ-

ence corresponded directly with ξ.
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• Efficiency continued to correspond to the term λ.

• Modeling the pedestrian as a function of posture gave insight into pedestrian

intent and crossing the street.

– For the stopped pedestrian, the vehicle slowly increased its speed as it

approached the crosswalk to indicate to the pedestrian it will yield if he

or she enters the crosswalk but also wants to travel down the road.

– The random probability for the distracted pedestrian allowed the vehicle

to approach the crosswalk at a very cautious speed.

Things to Improve

• Pedestrian modeling needs to continue to improve

– Pedestrian posture and position did not seem to fully grasp the pedestrian’s

intent to cross the street. Other parameters could be considered while

keeping in mind the values of fairness and reciprocity to mitigate use of

biased information or discriminatory actions by the vehicle.

– There is likely some correlation between distraction and motion for the

pedestrian which may indicate a higher likelihood of transitioning for the

distracted posture. Other pedestrian models could be considered to further

study nuances in pedestrian posture and motion.

– The pedestrian transitions assume the pedestrian will stay within the cross-

walk once they enter the crosswalk. This is not true in reality. More ex-

ploration into modeling the transition from the crosswalk to the sidewalk

(or safe distance from the autonomous vehicle’s traveling lane) should be

considered.

• The vehicle tended to stop short of the crosswalk. This could be a result of poor

choice of weights or the reward function could adjust, i.e. add a slight penalty

on large decelerations so the vehicle only comes to a full stop when necessary.

This will help with the engineering specification of mobility and efficiency.
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• In the situation with the moving pedestrian, the high likelihood of transitioning

greatly increased the influence of the safety and legality terms on the policy.

These weights either need to be tuned down significantly or maybe an alternative

formulation should be considered to better isolate the impact of safety and

legality.

If another iteration were to occur (this thesis only presents two iterations), then it

would investigate how to maintain these positive attributes while addressing some of

the downsides of this second implementation. Further investigation into the choice of

weights in the reward function is also needed in order to determine how well mobility,

safety, and legality can be realized with this implementation. This could be done

with a Pareto, or multi-objective, optimization over the weights, for example, and is

demonstrated in Section 4.5 for the first iteration.

4.5 Closing the Loop on Human Values

The policy comparison and experimental results demonstrate a potentially reason-

able speed control algorithm design, but only for a particular set of weights. The

behavior of the vehicle can greatly vary depending on the choice of weights in the

reward function. To more directly analyze how well the designed technology aligns

with the stakeholder values, an analysis technique is needed. One way to perform this

analysis is with the technique of Pareto (or multi-objective) optimization in order to

determine which set of weights best align with the values. A design is Pareto optimal

if one objective cannot improve without worsening at least one other objective. To

construct a frontier of Pareto optimal points, the design objectives map to a criterion

space using evaluation criteria. The determination of Pareto optima serves to close

the loop on the design process where human values map to engineering objectives, en-

gineering objectives map to evaluation criteria, and evaluation criteria map to human

values. Thus, engineers can focus on Pareto optimal designs without committing to

a particular prioritization between objectives ahead of time. The Pareto frontier can

then be taken back to a larger group of stakeholders to determine the final design to

deploy.
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An example of a Pareto frontier for the first VSD iteration is constructed by vary-

ing the weights in the reward function that correspond to the engineering objectives.

For each combination of weights in the reward function, a different optimal policy

is generated. For each given optimal policy, Monte Carlo simulations are run and

the simulation results are calculated against evaluation criteria. The objective of

safety and legality maps to the criterion of the vehicle velocity at the crosswalk. The

objective of efficiency maps to the criterion of average time to complete maneuver.

The objective of smoothness maps to the criterion of average maximum change in

acceleration. The Monte Carlo simulations entail the pedestrian suddenly appearing

from behind the occluding vehicle at random times whenever the autonomous vehicle

is within 20 m of the crosswalk. The simulations include the assumption that the

pedestrian takes about 4 s to cross the street.

The resulting Pareto frontier can then be brought back to a larger group of stake-

holders, such as policymakers, lawyers, and public interest groups, to determine which

set of weights to deploy on the autonomous vehicle. Figure 4.15 shows an example

of a slice of the Pareto frontier for safety and legality vs. mobility. It is additionally

colorized by the yield rate for the simulated suddenly appearing pedestrian scenarios.

The larger group of stakeholders can confer the Pareto frontiers to additional informa-

tion, such as injury curves [101], user studies, emissions curves [102], and congestion

studies [103].

Pareto optimization is not the only tool that can help close the loop on human

values. Another utilitarian-like analysis tool could be a risk management or cost-

benefit analysis for a set of outcomes [104]. Or maybe a deontological-like analysis

is more desirable where thresholds or conditions are determined by policymakers or

by re-engaging with stakeholders. This Pareto analysis is a first step on demonstrat-

ing how appropriate analysis tools can help determine how successfully a technical

implementation embodies the human values identified in the conceptualization phase.
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Figure 4.15: Pareto frontier of POMDP for various weights mapped to evaluation
criteria.

4.6 Summary

This chapter demonstrates the formal connection of human values into the design of

a speed control algorithm through the conceptualization and technical implementa-

tion phases. The empirical analysis phase helps identify areas of improvement for

subsequent iterations. In the first iteration, a POMDP is chosen to help realize the

values of safety and legality, efficiency and mobility, and smoothness for a scenario

with a large vehicle parked in front of a pedestrian crosswalk. The POMDP helped

with capturing the uncertainty in the situation and allowed the vehicle to be proac-

tive by approaching the crosswalk at a reasonable speed, which led to a successful

yield to a suddenly appearing pedestrian. The pedestrian model in the first iteration

is very simple, so the second iteration considers a slight change in the scenario by

removing the occlusion and improves the pedestrian model to look more closely at
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the value tension between the pedestrian and autonomous vehicle. In the second iter-

ation, the values of legality, safety, efficiency, and smoothness were refined in terms of

the technical implementation. Additional analysis with Pareto optimization provides

further insight into how well an implementation aligns with the identified values. It-

erating through VSD helps engineers think more deeply about how human values are

implicated in the technology as it develops.

The focus here has been on engineers and programmers as designers, but VSD

allows for other stakeholders to be involved in the design process, such as policymakers

and civil servants. VSD is not only a valuable tool for engineers, but can widely

encompass other contributors at a company or from third party groups to help ensure

autonomous vehicles behave in socially acceptable ways.



Chapter 5

Conclusions

Engineers make design decisions every day and may not realize that these choices can

have ethical implications, especially with regards to autonomous vehicle motion plan-

ning algorithms. The following distance for platooning autonomous vehicles seems

like a straightforward parameter to choose. However, it can influence fuel efficiency,

reaction time, and potentially impact surrounding traffic. This thesis serves to pro-

vide engineers with tools to gain a better understanding of how the choice of these

parameters and various algorithm implementations can influence vehicle behavior and

society at large.

Of course, not all engineering decisions deal with conflicting values; often times

they deal with the one value of safety. Safety is an important value to treat judiciously,

so Chapter 2 centers on modeling steering system delays in a motion planning algo-

rithm to safely control the vehicle laterally. Within this task are several engineering

trade-offs, such as algorithm complexity and implementation overhead.

For autonomous vehicle motion planning with ethical considerations, the two ap-

proaches suggested in this thesis are steps towards better engineers and better au-

tonomous vehicle motion planning algorithms. The first approach turns directly to

philosophy and uses parallels between philosophical and mathematical frameworks

to justify the decisions in the design of an autonomous vehicle steering control al-

gorithm. Deontological reasoning, a rule-based philosophy, can be used to justify

the use of rule-based mathematical techniques, such as set theory and constraints.

105



CHAPTER 5. CONCLUSIONS 106

Consequential reasoning, a cost-based philosophy, can be used to justify the use of

cost-based mathematical paradigms, like optimization. There are many ways to pro-

gram an autonomous vehicle, and Chapter 3 suggests that model predictive control is

one way to harness the positive attributes of both deontology and consequentialism,

given that MPC solves a constrained optimization problem. The choice of weights can

lead to different vehicle behavior, so further insight is sought from a third philosophy

known as virtue ethics. This mapping can equip engineers with better reasons for

the design choice of a cost, constraint, or weight when formulating motion planning

algorithms.

If a wide range of stakeholders (ideally, representative of a society) and explicit

consideration of human values are involved in the design process, then engineers may

be better equipped to ethically program autonomous vehicle motion planning algo-

rithms. The stakeholders and the identified values provide guidance to the engineers

and bring it perspectives they may not have considered at the start in isolation. Chap-

ter 4 explores such an approach by applying a modified value sensitive design process

to connect human values into engineering specifications. Various analysis techniques

can be incorporated to help ensure the realization of the identified human values. An

example design task of an autonomous vehicle speed control algorithm for navigating

through a pedestrian crosswalk demonstrates such a process. Even with an ethically

designed implementation, there could be an array of design points to choose from.

Additional analysis, such as Pareto optimization, can help facilitate communication

back to the larger group of stakeholders, along with other justifying resources, to

determine which design point to deploy.

5.1 Contributions

This thesis makes the following contributions:

• An MPC formulation to compensate for the delay due to the steer-

ing actuation on an autonomous vehicle platform. The formulation used

simple, computationally efficient models to improve the functionality of an au-

tonomous vehicle (Chapter 2).
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• An incorporation of the traffic laws pertaining to lane dividers in

model predictive steering control and crosswalks in partially observ-

able speed control. The traffic law §21460 is included in the formulation of

the model predictive steering control in order to investigate adherence to dou-

ble yellow lines when steering an autonomous vehicle around an obstruction

(Chapter 3). The traffic law §21950 is embedded in the model of a POMDP for

controlling the speed of an autonomous vehicle through a crosswalk (Chapter 4).

• A mapping of philosophical principles to mathematical principles.

The philosophical frameworks of deontology, consequentialism, and virtue ethics

map to the mathematical concepts of constraints, costs, and choice of weights

(Chapter 3). This helps engineers to understand the implications of choosing

when to use a cost and constraint or even the weights.

• An application of a modified value sensitive design approach to the

design of motion planning algorithms. VSD is applied to the design of a

speed controller for crosswalk scenarios in order to identify human values that

could be implicated in the design task. Iterating through the design task teases

out tensions amongst the values until the designed technology aligns with the

identified human values.

5.2 Further Work

Although this thesis focuses on the decision layer of the autonomous vehicle stack,

human values can be impacted at all levels in the design of an autonomous vehicle:

how sensors are used, how perception algorithms are developed, and even how the

vehicles are tested and deployed can have ethical implications.

5.2.1 Generalizability

The efficacy of the approaches in the thesis were demonstrated by scenarios. It is then

unclear how well these approaches may scale or generalize to the real-world because
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the real-world has an unbounded number of scenarios to encounter. This is likely

an important consideration for those developing autonomous vehicles, so including

scalability or generalizability in the design process could help clarify the feasibility of

such consideration.

Even if scalability was not accounted for at the beginning of the design, there

are some techniques for scaling problem formulations with single-users. For example,

Bandyopadhyay et al. [88], [89] formulate a speed control POMDP for an autonomous

vehicle to drive down a street with a single pedestrian nearby with unknown intent.

In the experiment, they started a new instance of the POMDP for each individual

pedestrian encountered. Each instance output an action. The ultimate action taken

was the most conservative of the set. Another approach is utility fusion [7], where the

utilities of each encountered pedestrian are combined additively or minimized. Once

the utilities reconcile, the ultimate action is taken from the policy.

5.2.2 Quantify Engineering Improvement with VSD

Value sensitive design has the potential to change the way engineers engineer. It forces

the engineers to consider whether the conditional statement or reward function they

are coding will further the values identified in the conceptualization. This is a purely

qualitative observation. In order to quantify the usefulness of such an approach,

a user-study with engineers should be conducted. There could be two groups of

engineers that go through the same design task: one group learns about VSD and

the other does not. At the end of the design task, the engineering implementation

can be compared but also interviews of the engineers to document their thought and

justification process of the designs.

5.2.3 Philosophical Frameworks and VSD

Although there are limitations of the philosophical frameworks approach in Chapter 3,

they can still serve a purpose in the engineering process. The focus of Chapter 4 was

on engineering analysis, but a more rigorous philosophical analysis could also be

included. An engineer equipped with an understanding of the relationship between
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these philosophical and mathematical frameworks could conduct some preliminary

analysis or gage simpler implications in the design process. However, the philosophers

are those truly trained to make moral judgements, so VSD could be a great way to

further engage them in the design process as they can do a philosophical analysis

in parallel to the engineering analysis. (A similar argument can be made for a legal

analysis.)

5.2.4 Policy

Government regulators recognize the importance of ethical considerations in the de-

sign of autonomous vehicle technology [105]–[107]. Claims have been made in this

thesis that a process like VSD can help policymakers and regulators. This is largely

due to a conversation centered around human values, which everyone can understand.

However, it is important to actually engage policymakers to determine if they find

this process useful.

5.3 Outlook

Before society can enjoy the benefits of autonomous vehicle technology, society should

have a way to contribute to the conversation of its development. By engaging a larger

group of stakeholders, a wider of range of perspectives can be included in the design

process. This means better technology for everyone.
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Vehicle Model
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Figure A.1: Schematic of bicycle model.

A.1 Velocity States

The vehicle sideslip angle, β, and yaw rate, r, are the velocity states in the vehicle

model. The sideslip angle is

β = tan

(
Uy

Ux

)
≈ Uy

Ux

, (A.1)

where the lateral and longitudinal velocities are denoted in the body-fixed frame as

Uy and Ux, respectively. As simplifications, we assume Ux >> Uy and that Ux is
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constant.

The equations of motion for the sideslip and yaw rate are

β̇ =
Fyf + Fyr

mUx

− r (A.2)

ṙ =
aFyf − bFyr

Izz

. (A.3)

Here, the lateral tire force of the [front, rear] axle is denoted as Fy[f,r], the vehicle mass

is denoted as m, the yaw inertia is denoted as Izz, and the distances from the center

of gravity of the vehicle to the front and rear axles are denoted a and b, respectively.

The front tire slip angle, αf , and rear tire slip angle, αr, can be expressed as:

αf = tan−1

(
β +

ar

Ux

)
− δ

≈ β +
ar

Ux

− δ (A.4)

αr = tan−1

(
β − br

Ux

)
≈ β − br

Ux

(A.5)

The linear expressions result from small angle approximations.

The brush tire model proposed by Fiala [41] and presented in the following form

by Pacejka [42] provides a model of the relationship between the lateral tire forces

and tire slip angles:

Fy =


−Cα tanα + C2

α

3µFz
| tanα| tanα

− C3
α

27µ2F 2
z

tan3 α, |α| < arctan
(

3µFz

Cα

)
−µFzsgn α, otherwise

= ftire (α) (A.6)

Here, the surface coefficient of friction is given as µ, the normal load is given as Fz[f,r],

and the tire cornering stiffness is given as Cα.
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The vehicle model used by the online MPC controller utilizes the front tire force

to keep the problem linear with regards to the input. The resulting steer angle, δ,

follows from (A.4) and (A.6):

δ = β +
ar

Ux

− f−1
tire (Fyf) (A.7)

To address the nonlinearity of the rear tires, the brush tire model is linearized at

a given rear tire slip angle (ᾱr), and the rear tire force (Fyr) is thus modeled as an

affine function of αr:

Fyr = F̄yr − C̄ᾱr(αr − ᾱr) (A.8)

where F̄yr = ftire (ᾱr) and C̄ᾱr is the equivalent cornering stiffness at ᾱr. In the initial

time steps of the prediction horizon, the current rear slip angle, αr, is chosen to be

ᾱr. This allows the MPC controller to explicitly consider rear tire saturation in the

near term prediction [70].

The equations of motion of the velocity states can now be formulated as affine

functions of the states and input, Fyf :

β̇ =
Fyf + F̄yr − C̄ᾱr

(
β − br

Ux
− ᾱr

)
mUx

− r (A.9)

ṙ =
aFyf − b

[
F̄yr − C̄ᾱr

(
β − br

Ux
− ᾱr

)]
Izz

(A.10)

A.2 Position States

The position states of the vehicle, the heading deviation (∆ψ) and lateral deviation

(e), are in reference to a nominal path that need not be obstacle-free.

The equations of motion of the heading deviation and lateral deviation are:

∆̇ψ = r (A.11)

ė = Ux sin (∆ψ) + Uy cos (∆ψ) (A.12)
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To approximate the above nonlinear equations as linear functions of the vehicle states,

small angle assumptions for ∆ψ and β are employed to yield:

ė ≈ Ux∆ψ + Uxβ (A.13)

Thus, (A.9), (A.10), (A.11), and (A.13) combine to produce a continuous state-

space representation of the vehicle model:

ẋ = Ac (ᾱr)x+BcFyf + dc (ᾱr) (A.14)

with

x =
[
β r ∆ψ e

]>

Ac (ᾱr) =



− C̄ᾱr

mUx

bC̄ᾱr

mUx
2 − 1 0 0

bC̄ᾱr

Izz
− b2C̄ᾱr

IzzUx
0 0

0 1 0 0

Ux 0 Ux 0


Bc =

[
1

mUx

a
Izz

0 0
]>

dc (ᾱr) =
[
F̄yf−ᾱrC̄ᾱr

mUx
− b(F̄yf−ᾱrC̄ᾱr)

Izz
0 0

]>
Here, c denotes a continuous-time model. Ac (ᾱr) indicates a linearization of Ac about

ᾱr.



Appendix B

Alternative Lane Divider MPC

Formulation

The formulation below was presented at the IEEE International Symposium on Ethics

in Engineering, Science and Technology of 2016 [108].

For control of lateral tire forces, a model predictive control (MPC) algorithm

calculates the vehicle input from an affine vehicle model. The vehicle model used

in the MPC formulation is a 4-state bicycle dynamic model with a constant speed

assumption. The state vector is comprised of vehicle sideslip angle β, yaw rate r,

heading deviation ∆ψ, and lateral deviation e:

x = [β r ∆ψ e]>.

The control input to the vehicle model u, is the lateral tire force which has a nonlinear

relationship to the steering angle. However, representing the vehicle input as a lateral

tire force results in a linear relationship to the vehicle states:

xk+1 = Akxk +Bkuk + Ck, k = 1 . . . T (B.1)

for each time step in the prediction horizon k up to finite time T .

Path tracking is accomplished by associating a nonzero diagonal entry in the

weighting matrix Q to lateral deviation and heading deviation as these states are
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defined relative to a nominal or desired path.

The safe driving space a vehicle may traverse in the environment is represented

via the following constraint

Hk
envx

k ≤ Gk
env, k = 1 . . . T (B.2)

where the vehicle states are bound to stay within an environment that is obstacle-free.

Traffic lane boundaries for a roadway are encoded as

Hk
trax

k ≤ Gk
tra, k = 1 . . . T (B.3)

where the subscript “tra” represents terms associated with traffic laws.

The complete optimization problem is as follows:

minimize
u

T∑
k=1

(xk)>Qkxk + (vk)>Rkvk + . . .

W k
envσ

k
env +W k

tra(σktra)2 (B.4a)

subject to xk+1 = Akxk +Bkuk + Ck (B.4b)

Hk
envx

k ≤ Gk
env + σkenv (B.4c)

Hk
trax

k ≤ Gk
tra + σktra (B.4d)

|uk| ≤ umax (B.4e)

|vk| ≤ vkmax (B.4f)

where vk = uk−uk−1 is the change in lateral tire force, σenv and σtra are slack variables

on the constraints enforcing the safe environment and traffic lanes, and vkmax and ukmax

are physical limits in the steering system and tire forces.

Cost R determines how much weight is placed on change in steering inputs. Cost

Wenv determines how much weight is placed on remaining within the safe environ-

mental envelope; i.e. avoiding collisions with obstacles. Cost Wtra determines the

weight placed on obeying traffic laws, such as not crossing a double yellow line. The

more weight that is placed on the cost terms containing a slack variable, the more the
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constraint of environmental envelope violation and/or traffic law violation are prior-

itized in the list of constraints. The traffic law slack variable σtra is quadratic in the

cost function to prevent penalizing relatively small violations of the lane boundary,

while the environmental slack variable σenv is linear because even small violations of

the environment is undesirable.



Appendix C

Speed Scale POMDP Formulation

The speed control partially observable Markov decision process (POMDP) formula-

tion of Chapter 4 directly commands acceleration values to the vehicle. Because the

acceleration commands change every time step, the steering MPC cannot predict how

the speed will change throughout the prediction horizon. Thus, Chapter 4 assumes

constant speed throughout the prediction horizon. An alternative speed prediction

for steering MPC would be to use a speed profile as presented by Funke et al. In order

to marry POMDP speed control with MPC speed profile predictions, an alternative

POMDP formulation would be to scale the desired speed profile rather than command

acceleration directly. This appendix demonstrates the speed scaling POMDP formu-

lation through the scenario of a pedestrian crosswalk on a two-lane roadway with

a large vehicle occluding the event of a pedestrian crossing as shown in Figure 4.1.

Simulation results with this implementation are available on arXiv [109].

The state space is represented in a low dimensional subspace that captures pose

and motion of the vehicle as well as perception information. The components of the

state considered in this work are velocity of the vehicle (vt), vehicle distance along the

path (dt), and the event of a pedestrian crossing (ct). Speed and distance along the

path are continuous states. To further reduce the problem size, states vt and dt are

discretized. The max speed considered for the scenario is 10 m/s with discretization

intervals of 1 m/s. The distance along the path is discretized into 0.5 m intervals for

a path that is 60 m long. State ct is already discretized as a binary occurrence.
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The vehicle actuation considered here is longitudinal acceleration. Commanded

longitudinal acceleration is determined by proportional speed control. Thus, the

POMDP action space is a speed scaling factor applied to the desired speed in the

longitudinal control. After discretization of the action space, the actions are A =

{0 %, 10 %, 20 %, 30 %, 40 %, 50 %, 60 %, 70 %, 80 %, 90 %, 100 %}.
The observation space captures information the agent observes after taking an

action. In this work, the observations are provided just from the lidar sensors. Two

types of observations are considered number of unobservable tiles (nt) and the de-

tection of a pedestrian crossing (ct). To simplify the problem size, the number of

unobservable tiles is reduced to 10 discretized bins linearly spaced between 0 and

1800 unobservable tiles. The detection of a pedestrian crossing is handled by a dif-

ferent perception algorithm specifically designed to detect pedestrians. For example,

it could be an image recognition algorithm using cameras.

The reward function in this POMDP formulation is designed with the following

objectives in mind:

• Encourage the vehicle to drive to the end of the path.

• If a pedestrian is detected, then the vehicle should yield to the pedestrian. Thus,

non-zero scale factors are penalized when a pedestrian crossing event is true.

• Additionally, the vehicle should not drive fast when it cannot see the pedestrian.

To achieve the goals outlined, the reward function is specified using two costs:

• Complete path reward: The reward for the vehicle to drive to the end of the

path +100.

• Not yielding cost: The cost when the vehicle does not yield to the crosswalk

-50.

• Too fast cost: The cost to deter the vehicle from speeding around the occlu-

sion because it is close to a pedestrian crosswalk is set to -5, which is orders

of magnitude lower than the collision cost. For this work, it is simply imple-

mented as penalizing the vehicle for going faster than 6 m/s when it cannot see

a pedestrian crossing.
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The reward is assumed to be zero for all other states.

The dynamics of the system are not actually stochastic, but rather uncertainty

is introduced from the crude discretization of the state space. Also, the event of

a pedestrian crossing is modeled as a random process. The following parameters

characterize the state transition model:

• Speed scaling and changes in speed are not immediately realized in the state

space discretization because the vehicle simulation is closer to continuous time.

• Vehicle is assumed to be stopped or moving forward (does not reverse direction).

• If a pedestrian is present within the crosswalk, then the person is assumed to

be standing still.

Even though the state in a POMDP is a belief state, the state transition function for a

POMDP is the same as for an MDP (assumes no state uncertainty). Even though the

state includes truth about a pedestrian crossing event, the problem only maintains a

belief about whether there is a pedestrian crossing event based on observations.

In a typical POMDP problem, the observation model is defined as the conditional

probability of observing each observation o given the current state s and the action

a taken to get there: Pr(o | s, a). For this work, it is assumed the action does

not contribute to the observation o given s. Thus, the dependence on a is dropped

and the observation model need only specify Pr(o | s). Using the observation space

described above, the observation model is the probability of having a number of

unobservable tiles and detecting a pedestrian given the current state Pr(on, oc | s). A

simple observation model of uniform distribution is implemented if the state where a

pedestrian is not crossing is observed. Given a state where the pedestrian is crossing,

the observation distribution increases to favor detecting a pedestrian crossing by 30 %.
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[83] J. Leikas, P. Saariluoma, J. Heinilä, and M. Ylikauppila, “A methodological

model for life-based design,” International Review of Social Sciences and Hu-

manities, vol. 4, no. 2, pp. 118–136, 2013.

[84] B. Friedman, P. H. Kahn Jr., and A. Borning, “Value sensitive design: Theory

and methods,” University of Washington, Tech. Rep., 2002.

[85] T. Denning, A. Borning, B. Friedman, B. T. Gill, T. Kohno, and W. H. Maisel,

“Patients, pacemakers, and implantable defibrillators,” in Proceedings of the

International Conference on Human Factors in Computing Systems, 2010,

pp. 917–926.

[86] A. van Wynsberghe, “Designing robots for care: Care centered value-sensitive

design,” Science and Engineering Ethics, vol. 19, no. 2, pp. 407–433, 2013.

[87] B. Chen, D. Zhao, and H. Peng, “Evaluation of automated vehicles encoun-

tering pedestrians at unsignalized crossings,” in Proceedings of the IEEE In-

telligent Vehicles Symposium, 2017, pp. 1679–1685.

[88] T. Bandyopadhyay, C. Z. Jie, D. Hsu, M. H. Ang, D. Rus, and E. Frazzoli,

“Intention-aware pedestrian avoidance,” in Experimental Robotics: The 13th

International Symposium on Experimental Robotics, J. P. Desai, G. Dudek, O.

Khatib, and V. Kumar, Eds., Heidelberg: Springer, 2013, pp. 963–977.

[89] T. Bandyopadhyay, K. Won, E. Frazzoli, D. Hsu, W. Lee, and D. Rus, “Intention-

aware motion planning,” in Algorithmic Foundations of Robotics X, 2013,

pp. 475–491.

[90] S. Brechtel, T. Gindele, and R. Dillmann, “Probabilistic decision-making under

uncertainty for autonomous driving using continuous pomdps,” in Proceedings

of the IEEE Conference on Intelligent Transportation Systems, 2014, pp. 392–

399.



BIBLIOGRAPHY 130

[91] J. Haidt, The Righteous Mind: Why Good People Are Divided by Politics and

Religion. Vintage, 2012.

[92] J. K. Choi and Y. G. Ji, “Investigating the importance of trust on adopting an

autonomous vehicle,” International Journal of Human-Computer Interaction,

vol. 31, no. 10, pp. 692–702, 2015.

[93] California Driver Handbook, State of California Department of Motor Vehicles,

2017.

[94] D. Q. Mayne, “Model predictive control: Recent developments and future

promise,” Automatica, vol. 50, no. 12, pp. 2967–2986, 2014.

[95] M. J. Kochenderfer, Decision Making Under Uncertainty: Theory and Appli-

cation. MIT Press, 2015.

[96] S. Davies, “Multidimensional triangulation and interpolation for reinforcement

learning,” in Proceedings of the International Conference on Neural Informa-

tion Processing Systems, 1997, pp. 1005–1011.

[97] M. Brown, J. Funke, S. Erlien, and J. C. Gerdes, “Safe driving envelopes for

path tracking in autonomous vehicles,” Control Engineering Practice, vol. 61,

pp. 307–316, 2017.

[98] M. Egorov, Z. N. Sunberg, E. Balaban, T. A. Wheeler, J. K. Gupta, and M. J.

Kochenderfer, “POMDPs.jl: A framework for sequential decision making under

uncertainty,” Journal of Machine Learning Research, vol. 18, no. 26, pp. 1–5,

2017.

[99] B. J. Schroeder and N. M. Rouphail, “Event-based modeling of driver yielding

behavior at unsignalized crosswalks,” Journal of Transportation Engineering,

vol. 137, no. 7, pp. 455–465, 2011.

[100] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” in Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition,

2017, pp. 6517–6525.

[101] B. C. Tefft, “Impact speed and a pedestrian’s risk of severe injury or death,”

AAA Foundation for Traffic Safety, Tech. Rep., 2011.



BIBLIOGRAPHY 131

[102] P. S. Bokare and A. K. Maurya, “Study of effect of speed, acceleration and

deceleration of small petrol car on its tail pipe,” International Journal for

Traffic and Transport Engineering, vol. 3, no. 4, pp. 465–478, 2013.

[103] F. Soriguera, I. Mart́ınez, M. Sala, and M. Menéndez, “Effects of low speed lim-

its on freeway traffic flow,” Transportation Research Part C: Emerging Tech-

nologies, vol. 77, pp. 257–274, 2017.

[104] N. J. Goodall, “Away from trolley problems and toward risk management,”

Applied Artificial Intelligence, vol. 30, no. 8, pp. 810–821, 2016.

[105] Automated Driving Systems 2.0: A Vision for Safety, National Highway Traffic

Safety Administration, 2017.

[106] National Highway Traffic Safety Administration. (2017). What is NHTSA’s

approach to ethical considerations? [Online]. Available: https://www.nhtsa.

gov/manufacturers/automated-driving-systems (visited on 11/22/2017).

[107] Ethics Commission: Automated and Connected Driving, Bundesministerium

für Verkehr und digitale Infrastruktur (BMVi), 2017.

[108] S. Pan, S. M. Thornton, and J. C. Gerdes, “Prescriptive and proscriptive moral

regulation for autonomous vehicles in approach and avoidance,” in Proceedings

of the IEEE International Symposium on Ethics in Engineering, Science and

Technology, 2016.

[109] S. M. Thornton, “Autonomous vehicle speed control for safe navigation of

occluded pedestrian crosswalk,” ArXiv e-prints, 2018. arXiv: 1802 . 06314

[cs.RO].

https://www.nhtsa.gov/manufacturers/automated-driving-systems
https://www.nhtsa.gov/manufacturers/automated-driving-systems
http://arxiv.org/abs/1802.06314
http://arxiv.org/abs/1802.06314

	Abstract
	Acknowledgments
	Introduction
	Motivation
	Autonomous Vehicle Motion Planning
	Mobility and Safety
	Mobility, Safety, and Legality

	Autonomous Vehicles and Ethics
	Dissertation Contributions
	Delay Compensation of Steering Actuation in MPC
	Incorporation of Traffic Laws: Lane Dividers and Crosswalks
	Mapping of Philosophical to Mathematical Frameworks
	Demonstration of Modified Value Sensitive Design

	Dissertation Outline

	Comparative Analysis of Steering System Modeling in MPC
	Introduction
	Steering System
	Model Predictive Control
	Problem Formulation
	Experimental Results

	Modeling for Pure Delay
	Problem Formulation
	Experimental Results

	Modeling for Dynamic Lag
	First-Order Lag
	Second-Order Lag
	Experimental Results

	Summary

	Costs, Constraints, and Weights from Philosophical Principles
	Introduction
	Scenario
	Philosophical Frameworks
	Design Choices
	Path Tracking
	Steering
	Obstacle Avoidance
	Traffic Laws

	Model Predictive Control Formulation
	Vehicle Model
	Optimization

	Experimental Results
	Traffic Laws as Consequentialist Costs
	Traffic Laws as Deontological Constraints

	Discussion of Costs, Constraints, and Weights
	Vehicle Character
	Limitations
	Summary

	Motion Planning with Human Values
	Introduction
	Value Sensitive Design
	The First Iteration
	Conceptualization
	Technical Implementation
	Empirical Analysis
	Lessons Learned

	The Second Iteration
	Conceptualization
	Technical Implementation
	Empirical Analysis
	Lessons Learned

	Closing the Loop on Human Values
	Summary

	Conclusions
	Contributions
	Further Work
	Generalizability
	Quantify Engineering Improvement with VSD
	Philosophical Frameworks and VSD
	Policy

	Outlook

	Vehicle Model
	Velocity States
	Position States

	Alternative Lane Divider MPC Formulation
	Speed Scale POMDP Formulation

