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Abstract 
Economic analysis suggests that there is a long run relationship between variables 

under consideration as stipulated by theory. This means that the long run 

relationship properties are intact. In other words, the means and variances are 

constant and not depending on time. However, most empirical researches have 

shown that the constancy of the means and variances are not satisfied in analyzing 

time series variables. In the event of resolving this problem most cointegration 

techniques are wrongly applied, estimated, and interpreted. One of these techniques 

is the Autoregressive Distributed Lag (ARDL) cointegration technique or bound 

cointegration technique. Hence, this study reviews the issues surrounding the way 

cointegration techniques are applied, estimated and interpreted within the context 

of ARDL cointegration framework. The study shows that the adoption of the 
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ARDL cointegration technique does not require pretests for unit roots unlike other 

techniques. Consequently, ARDL cointegration technique is preferable when 

dealing with variables that are integrated of different order, I(0), I(1) or 

combination of the both and, robust when there is a single long run relationship 

between the underlying variables in a small sample size. The long run relationship 

of the underlying variables is detected through the F-statistic (Wald test). In this 

approach, long run relationship of the series is said to be established when the F-

statistic exceeds the critical value band. The major advantage of this approach lies 

in its identification of the cointegrating vectors where there are multiple 

cointegrating vectors. However, this technique will crash in the presence of 

integrated stochastic trend of I(2). To forestall effort in futility, it may be advisable 

to test for unit roots, though not as a necessary condition. Based on forecast and 

policy stance, there is need to explore the necessary conditions that give rise to 

ARDL cointegration technique in order to avoid its wrongful application, 

estimation, and interpretation. If the conditions are not followed, it may lead to 

model misspecification and inconsistent and unrealistic estimates with its 

implication on forecast and policy. However, this paper cannot claim to have 

treated the underlying issues in their greatest details, but have endeavoured to 

provide sufficient insight into the issues surrounding ARDL cointegration 

technique to young practitioners to enable them to properly apply, estimate, and 

interpret; in addition to following discussions of the issues in some more advanced 

texts. 
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1  Introduction 
  

Theoretically, economic analysis suggests that there is a long run relationship 

between variables under consideration. Oftentimes, econometricians/researchers 

have ignored the inherent dynamic features of most time series in the process of 

analyzing time series and formulating traditional regression models. It was assumed 

that the underlying time series were stationary or at least stationary around a 

deterministic trend and as well exhibited a long run relationship. Hence, it was 

normal to formulate an econometric model in the conventional way assuming that 

the means and variances of the variables were constant and not depending on time. 

Thus, the estimated models were used to analyze theories formulated at abstract 

level and, to forecast, evaluate and stimulate policies. 

Recent development in econometrics have however, revealed that  often times, 

most time series are not stationary as was conventionally thought. Therefore, 

different time series may not display the same features. Hence, it is possible to see 

some time series that display the feature of diverging away from their mean over 

time while others may converge to their mean over time. Time series that diverge 

away from their mean over time are said to be non-stationary. Therefore, the 

classical estimation of variables with this relationship most times gives misleading 

inferences or spurious regression. 

To overcome this problem of non-stationarity and prior restrictions on the lag 

structure of a model, econometric analysis of time series data has increasingly 

moved towards the issue of cointegration. The reason being that, cointegration is a 

powerful way of detecting the presence of steady state equilibrium between 

variables. Cointegration has become an over-riding requirement for any economic 

model using non-stationary time series data. If the variables do not cointegrate, 

then we have the problems of spurious regression and the results therein become 

almost meaningless. On the other hand, if the variables do cointegrate then we have 

cointegration.  
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In applied econometrics, the Granger (1981) and, Engle and Granger (1987), 

Autoregressive Distributed Lag(ARDL) cointegration technique or bound test of 

cointegration(Pesaran and Shin 1999 and Pesaran et al. 2001)  and, Johansen and 

Juselius(1990)  cointegration techniques have become the solution to determining 

the long run relationship between series that are non-stationary, as well as 

reparameterizing them to the Error Correction Model (ECM). The reparameterized 

result gives the short-run dynamics and long run relationship of the underlying 

variables. However, given  the versatility of cointegration technique in estimating 

relationship between non-stationary variables and reconciling the short run 

dynamics with long run equilibrium, most researchers still adopt the conventional 

way of estimation even when it is glaring to test for cointegration among the 

variables under consideration. That is most of the researchers are not conversant 

with the conditions that necessitate the application of cointegration test and the 

interpretation of the results therein, hence, presenting misleading inferences. 

With this background, the objective of this paper is to examine the conditions that 

necessitate the application of the Autoregressive Distributed Lag (ARDL) 

cointegration or bound test of cointegration technique and its interpretation. 

Accordingly, this paper is divided into five sections. Section one, which is the 

introduction.  Section two, examines the concept of stationarity, section three 

focuses on various unit roots tests, section four deals on ARDL cointegration 

approach, section five focuses on summary and conclusions.  

 

 

2  Stationary and Non-Stationary Series Concept 

A non-stationary time series is a stochastic process with unit roots or structural 

breaks. However, unit roots are major sources of non-stationarity. The presence of 

a unit root implies that a time series under consideration is non-stationary while the 

absence of it entails that a time series is stationary.  This depicts that unit root is 
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one of the sources of non-stationarity. A non-stationary stochastic process could be 

Trend Stationary (deterministic) Process (TSP) or Difference Stationary Process 

(DSP). A time series is said to be trend stationary process if the trend is completely 

predictable and not variable, whereas if it is not predictable, we call it difference or 

integrated stochastic trend or difference stationary process. In the case of 

deterministic trend, the divergence from the initial value (represents non-stationary 

mean) is purely random and they die out quickly.  They do not contribute or affect 

the long run development of the time series. However, in the case of integrated 

stochastic trend, the random component (Ut) or divergence affects the long run 

development of the series. Utilizing time series with these features in any 

meaningful empirical analysis, the series must be purged of this trend. This is 

referred to as detrending of the series. This could be carried out in two ways, 

depending on whether the series is a difference stationary process or deterministic 

stationary process. If a series is DSP, it means it has a unit root; hence, the 

differencing of such series is stationary. Therefore, the solution to the non-

stationary series is to difference the series. Also, if a series is TSP, it means it 

exhibits a deterministic trend, while a trend stationary variable with non-constant 

mean may be I(0) after removal of a deterministic trend. That is, regressing such 

series on time(t) and the residuals from this regression will be stationary(Yt =βt + 

Ut). Hence, cointegration cannot be seen as a means to an end but restricted. It 

should be made clear that if a time series is TSP, but treated as DSP, this is called 

over-differencing. On the other hand, if a time series is DSP, but treated as TSP; 

this is referred to as under-differencing. The implications of these types of 

specification error can be serious, depending on how the serial correlation 

properties of the resulting error terms are handled. However, it has been observed 

that most time series are DSP rather than TSP. Therefore, when such non-stationary 

time series (DSP) are used in estimation of an econometric model, the Ordinary 

Least Square (OLS) traditional diagnostic statistics for evaluation of the validity of 

the model estimates such as, coefficient of determination (R2), Fisher’s Ratio(F-
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Statistic), Durbin-Watson(DW-Stat), t-statistic etc. become highly misleading and 

unreliable in terms of forecast and policy. In such series, the mean, variance, 

covariance and autocorrelation functions change overtime and affect the long run 

development of the series. The presence of unit root in these series leads to the 

violation of assumptions of constant means and variances of OLS. However, this 

review dwells on Difference Stationary Process rather than Trend Stationary 

Process since most time series are Difference Stationary Process. 

As demonstrated above, many time series variables are stationary only after 

differencing. Hence, using differenced variables for regressions imply loss of 

relevant long run properties or information of the equilibrium relationship between 

the variables under consideration. This means that we have to devise a way of 

retaining the relevant long run information of the variables. Cointegration makes it 

possible to retrieve the relevant long run information of the relationship between 

the considered variables that had been lost on differencing. That is, it integrates 

short run dynamics with long run equilibrium.  This is the basis for obtaining 

realistic estimates of a model, which is the driver of a meaningful forecast and 

policy implementation. Cointegration is a preferred step for modeling empirically 

meaningful relationships of DSP. Cointegration is concerned with the analysis of 

long run relations between integrated variables and reparameterizing the 

relationship between the considered variables into an Error Correction Model 

(ECM). Under the conventional Granger (1981) and, Engle and Granger (1987) 

cointegration analysis is not applicable in cases of variables that are integrated of 

different orders (i.e, series-A is I(1) and series-B is I(0)) while in Johansen and 

Juselius(1990), and ARDL cointegration procedure it is applicable.  The ARDL 

cointegration technique is used in determining the long run relationship between 

series with different order of integration (Pesaran and Shin, 1999, and Pesaran et al. 

2001). The reparameterized result gives the short-run dynamics and long run 

relationship of the considered variables. 
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Although ARDL cointegration technique does not require pre-testing for unit 

roots, to avoid ARDL model crash in the presence of integrated stochastic trend of 

I(2), we are of the view the unit root test should be carried out to know the number 

of unit roots in the series under consideration. This is presented in the next section. 

 

 

3  Unit Root Stochastic Process 

Given a Random Walk Model (RWM); 

             Yt = ρYt-1 + Ut                      (3.1)  

              -1≤ ρ ≤1 

In the above RWM without drift, If ρ =1, we are faced with unit root problem, that 

is, a situation of non-stationarity. In this case the variance of Yt is not stationary. 

However, If /ρ/ ≤1, that is if the absolute value of ρ is less than one, then the 

series, Yt is said to be stationary. Given this, Ut is said to be white noise and 

distributed normally with zero mean and unit variance. Hence, it follows that 

E(Yt) = 0 and Var(Yt) = 1/(1- ρ2).  
 

A stochastic process Yt is assumed to have a unit root problem if its first 

difference, (Yt-Yt-1) is stationary. In practice, the presence of unit root shows that 

the time series under consideration is non-stationary unless the reverse is the case. 

On the other hand, a series with unit root have no tendency to return to long-run 

deterministic path and the variance of the series is time dependent. A series with 

unit root suffers permanent effects from random shocks, thus, follow a random 

walk.  That is, using (dependent and independent) time series that contain unit root 

in regression analysis, the classical results of the regression may be misleading. 

However, I(1) variables that exhibit a random walk without drift may have a mean 

that is constant over time, expected value of zero and, with trending variance; 

hence making the series with unit root to have the tendency to return to long-run 

path after removing deterministic trend. This reemphasized that; cointegration 
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cannot be seen as a means to an end, but restricted.  However, this paper focuses on 

series with unit root, I(1) (no constant mean and variance) that have no tendency of 

returning to the long-run path.  

There are various methods of testing unit roots. They include; Durbin-Watson 

(DW) test, Dickey-Fuller test(1979)(DF), Augmented Dickey-Fuller(1981)(ADF) 

test, Philip-Perron(1988) (PP) test, among others. It is of the view that before 

pursuing formal tests to plot the time series under consideration, to determine the 

likely features of the series and; run the classical regression. If the series is trending 

upwards it shows that the mean of the series has been changing with time. In the 

case of the classical regression, if Durbin– Watson statistics is very low and a high 

R2 (Granger–Newbold, 1974), this perhaps reveals that the series is not stationary. 

This is the initial step for a more formal test of stationarity.  The most popular 

strategy for testing the stationarity property of a single time series involves using 

the Dickey Fuller or Augmented Dickey Fuller test respectively. The choice of the 

right tests depends on the set up of the problem which is of interest to the 

practitioner. It is difficult to follow the latest advances or to understand the 

problems between employing various tests. This should not be understood as a 

motive for not performing other types of unit root tests.  Comparing different 

results from different test methods is a good way of testing the sensitivity of your 

conclusions. Once you understand how these tests work, and their limitations, you 

will understand when to use any test. The advantage is that it enables us to 

understand the meaning and purpose of any test.  However, when a test result is 

inconclusive, the usual way is to continue the analysis with a warning note, or 

simply assume one of the alternatives. Thus, the unit roots test is basically required 

to ascertain the number of times a variable/series has to be differenced to achieve 

stationarity. From this comes the definition of integration: A variable Y, is said to 

be integrated of order d, I(d)] if it attained stationarity after differencing  d 

times(Engle and Granger, 1987). 
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3.1 The Durbin-Watson Test 

This test is a simple but unreliable test for unit root. To understand how this 

test works, recollect that the DW-value is calculated as DW =2(1−ˆρ)( Harvey, 

1981), where ρ = ˆρ is the  estimated first order autocorrelation. Thus, if Yt is a 

random walk, ρ will equal unity and the DW value is zero. Under the null that Yt is 

a random walk, the DW statistic calculated from the first order autocorrelation of 

the series Yt = Yt−1 +Vt, will approach one. The DW value approaches 0 under the 

null of a random walk. A DW value significantly different from zero rejects the 

hypothesis that Yt is a random walk and I(1), in favor of the alternative that Yt is 

not I(1), and perhaps I(0). The test is limited by the assumption that Yt is a random 

walk variable. This test is not good for integrated variables in general. The critical 

value at the 5% level for the maintained hypothesis of I(1) versus I(0) is 0.17. A 

higher value rejects I(1) )( Bo Sjö, 2008). 
 

 

 

3.2 Dickey-Fuller (DF) (1979) Test for Unit Roots  

 Assume that Yt is random walk process, Yt = Yt−1 + μt, then the regression 

model becomes Yt = ρYt−1+ μt. Subtract Yt−1 from both sides of the equation, 

                Yt-Yt-1 =  α1Yt-1 -Yt-1 + ut            (3.2) 

                ΔYt =  (α-1)Yt-1 +  ut            (3.3) 

              ΔYt = (α-1)Yt-1+ α2T + ut            (3.4) 

Where α-1= р1,   Δ is change in Yt or first difference operator and t is the trend 

factor. ut is a white nose residual. 

            ΔYt =  р1Yt-1 +  ut           (3.5) 

With a drift we have; 

          ΔYt = α0  + р1Yt-1 + ut               (3.6) 

 In practice, we test the hypothesis that р=0. If р=0, “α” in equation 3.2 will be 

equal to 1, meaning that we have a unit root. Therefore, the series under 
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consideration is non-stationary. In the case where р ≥ 0, that is, the time series is 

stationary with zero mean and in the case of 3.4, the series, Yt is stationary around 

a deterministic trend. If р ≥ 1, it means that the underlying variable will be 

explosive. 

However, conducting the DF test as in (3.3) or (3.4), it is assumed that Ut is 

uncorrelated. But in the case the error terms (Ut) are correlated, the Augmented 

Dickey-Fuller (ADF) is resorted to, since it adjusts the DF test to take care of 

possible autocorrelation in the error terms (Ut), by adding the lagged difference 

term of the dependent variable, ∆Yt.  

 

 

3.3 The Augmented Dickey-Fuller (ADF) (1981) tests for Unit Root                                                                                                                                                                                                           

      Restrictive ADF Model: ΔYt = р1Yt-1  + 
1

i t i

k

i
Yα −

=

∆∑   + ut        (3.7)                                      

                                                               
                                                                                         

      Restrictive ADF Model: ΔYt = р1Yt-1+ α2T +
1

i t i

k

i
Yα −

=

∆∑  + ut               (3.8)                                      

                                                               

      General ADF Model: ΔYt = α0 + р1Yt-1 + 
1

i t i

k

i
Yα −

=

∆∑  + ut        (3.9)                                      

                                                                    

     General ADF Model: ΔYt = α0 + р1Yt-1+ α2T +
1

i t i

k

i
Yα −

=

∆∑  + ut      (3.10)                                      

ut is a pure white noise error term and ∆Yt-1 =(Yt-1 –Yt-2), ∆Yt-1 =(Yt-1 –Yt-2), etc. 

The number of lagged difference terms to be included is often determined 

empirically, the reason being to include enough terms so that the error term in (3.5) 

and (3.6) are serially uncorrelated. k is the lagged values of ∆Y, to control for 

higher-order correlation assuming that the series follow an AP(p). In ADF р=0 is 
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still tested and follow the same asymptotic distribution as DF statistic.  H0: р1 

=0(р1 ∼ I(1)), against Ha : р1 < 0(р1∼ I(0)).  
 

In practice, an DF or ADF value with less than its critical value shows that the 

underlying series is non-stationary. Contrarily, when an DF or ADF value that is 

greater than its critical value shows that the underlying series is stationary. 

However, the null hypothsis cannot be rejected about non-stationarity based on 

ADF test, since its power is not strong as such. This decision can be verified using 

other related tests, such as Kwiatkowski-Phillips-Schmidt-Shin (1992)(KPSS) or 

Philips-Perron (PP) test. PP test has the same null hypothesis as ADF, and its 

asymptotic distribution is the same as the ADF test statistic. But in the case of 

KPSS test, the null hypothesis is different; it assumes stationarity of the variable of 

interest. The results from ADF test differ from KPSS as KPSS does not provide a 

p-value, showing different critical values instead. In this case, the test statistic value 

is compared with the critical value on desired significance level. If the test statistic 

is higher than the critical value, we reject the null hypothesis and when test statistic 

is lower than the critical value, we cannot reject the null hypothesis.  However, 

when there is a conflicting of the tests, it all depends on the researchers aim and 

objective. In general, the null hypothesis for ADF reads that the series is non- 

stationary while KPSS reads that the series is stationary. For the treatment of 

serial correlation, PP reads that there is serial correlation (non-parametric) while 

ADF reads that there is serial correlation (parametric). 

The test can also be performed on variables in first differences as a test for I(2). 

Under the null, ˆр1 will be negatively biased in a limited sample, thus, unless yt is 

explosive. A significant positive value implies an explosive process, which can be a 

very difficult alternative hypothesis to handle.  Conversely, When testing for I(2) or 

differencing twice, a trend term is not a possible alternative. The two interesting 

models here are the ones with and without a constant term. Furthermore, lag length 

in the augmentation can also be assumed to be shorter. 
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However, it is a good strategy to start with the model containing both a 

constant and a trend (3.10), because this model is the least restricted. If a unit root 

is rejected here, due to a significant р1, there is no need to continue testing. If р1 = 0 

cannot be rejected, the improved efficiency in a model without a time trend might 

be better. There is also the lag length in the augmentation to consider ( Bo Sjö, 

2008). 

A substantial weakness of the original Dickey-Fuller test(equation 3.3) as 

earlier stated is that it does not take account of possible autocorrelation in the error 

process Ut. If μt is autocorrelated (that is, it is not white noise) then the OLS 

estimates of the equations and, of its variants are inefficient. Therefore the simple 

solution is to apply ADF by using the difference lagged dependent variable as 

explanatory variables to take care of the autocorrelation.  

The choice of the number of lags (p) to be included in the unit root test is based 

on the significant lag of the autocorrelation function (ACF) and the partial 

autocorrelation function (PACF) plots of the correlogram and partial correlogram. 

The value of p is taken to be the number of lags at which the ACF cuts of or the 

number of lags of the PACF that are significantly difference from zero. By rule of 

thumb, we compute ACF up to one-third to one-quarter of the length of the time 

series. The ACF and PACF show different lags that are correlated and compared 

with the confidence bounds, mostly at 95 percent level. This will lead to AR 

process in cognizance of the properties of the residual(Uko and Nkoro, 2012). The 

characteristic of a time series has a far reaching implication for economic and 

policy formulation and implementation. When a series has a unit root (р1 =0 ), any 

shock to the data series is long lasting. Hence, there will be a cumulative 

divergence from the mean/trend of the series. The instability exhibited by this 

series will tend to render any policy formulated and implemented on the basis of a 

model estimated using such data series inefficient. This is because what drives any 

policy formulation and implementation is the clear assumption of the stability of 

the series. 
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However, the Augmented Dickey-Fuller(ADF) test is considered superior 

because of its popularity and wide application.  The ADF test adjusts the DF test to 

take care of possible autocorrelation in the error terms by adding the lagged 

difference term of the dependent variable. In the case of PP test it also take cares of 

the autocorrelation in the error term and, its asymptotic distribution is the same as 

the ADF test statistic. However, ADF is commonly used because of its easy 

applicability. 

 

 
 

4 Cointegration Test 

Modeling time series in order to keep their long-run information intact can be 

done through cointegration. Granger (1981) and, Engle and Granger(1987) were 

the first to formalize the idea of cointegration, providing tests and estimation 

procedure to evaluate the existence of long-run relationship between set of 

variables within a dynamic specification framework. Cointegration test examines 

how time series, which though may be individually non-stationary and drift 

extensively away from equilibrium can be paired such that the workings of 

equilibrium forces will ensure they do not drift too far apart. That is, cointegration 

involves a certain stationary linear combination of variables which are individually 

non-stationary but integrated to an order, I(d).  Cointegration is an econometric 

concept that mimics the existence of a long-run equilibrium among underlying 

economic time series that converges over time.  Thus, cointegration establishes a 

stronger statistical and economic basis for empirical error correction model, which 

brings together short and long-run information in modeling variables.  Testing for 

cointegration is a necessary step to establish if a model empirically exhibits 

meaningful long run relationships. If it failed to establish the cointegration among 

underlying variables, it becomes imperative to continue to work with variables in 

differences instead. However, the long run information will be missing. There are 

several tests of cointegration, other than Engle and Granger(1987) procedure, 
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among them is;  Autoregressive Distributed Lag cointegration technique or bound  

cointegration testing technique. This becomes the focal point of this paper. 

 

 

4.1 Autoregressive Distributed Lag Model (ARDL) Approach to 

Cointegration Testing or Bound Cointegration Testing Approach 
 

When one cointegrating vector exists, Johansen and Juselius(1990) 

cointegration procedure cannot be applied. Hence,  it become imperative to explore  

Pesaran and Shin (1995) and Pesaran et al (1996b) proposed Autoregressive 

Distributed Lag (ARDL) approach to cointegration or bound procedure for a long-

run relationship, irrespective of whether the underlying variables are I(0), I(1) or a 

combination of both. In such situation, the application of ARDL approach to 

cointegration will give realistic and efficient estimates. Unlike the Johansen and 

Juselius(1990) cointegration procedure, Autoregressive Distributed Lag (ARDL) 

approach to cointegration helps in identifying the cointegrating vector(s). That is, 

each of the underlying variables stands as a single long run relationship equation. If 

one cointegrating vector (i.e the underlying equation) is identified, the ARDL 

model of the cointegrating vector is reparameterized into ECM. The 

reparameterized result gives short-run dynamics (i.e. traditional ARDL) and long 

run relationship of the variables of a single model. The re-parameterization is 

possible because the ARDL is a dynamic single model equation and of the same 

form with the ECM. Distributed lag Model simply means the inclusion of 

unrestricted lag of the regressors in a regression function.  

This cointegration testing procedure specifically helps us to know whether the 

underlying variables in the model are cointegrated or not, given the endogenous 

variable. However, when there are multiple cointegrating vectors ARDL Approach 

to cointegration cannot be applied. Hence, Johansen and Juselius(1990) approach 
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becomes the alternative. The next sections expose the requirement for using this 

approach and its application. 

The ARDL(p,q1,q2......qk) model specification is given as follows; 

Ф(L,p)yt = ( )
1

,i i i

k

i
tL q xβ

=
∑  + δwt +ut             (4.1) 

where 

Ф(L,p) = 1- Ф1L - Ф2L2-….-ФpLp 

β(L,q) = 1- β1L - β2L2-….-βqLq,            for i=1,2,3…….k,  ut ~ iid(0;δ2). 

L is a lag operator such that L0yt =Xt, L1yt=yt-1, and  wt is a s x1 vector of 

deterministic variables such as the intercept term, time trends, seasonal dummies, 

or exogenous variables with the fixed lags. P=0,1,2…,m, q=0,1,2….,m, i=1,2….,k: 

namely a total of (m+1)k+1 different ARDL models. The maximum lag order, m, is 

chosen by the user. Sample period, t = m+1, m+2….,n. 

OR   

The ADRL(p,q) model specification:                 

Ф(L)yt = φ + θ(L)xt + ut,          (4.2) 
 

 with 

Ф(L) = 1− Ф1L−...− ФpLp, 

θ(L) = β0- β1L-...- βqLq. 
 

Hence, the general ARDL(p,q1,q2......qk) model; 

Ф(L)yt = φ + θ 1(L)x1t + θ 2(L)x2t + θ k(L)xkt + μt        (4.3) 

Using the lag operator L applied to each component of a vector, Lky=yt-k, is 

convenient to define the lag polynomial  Ф(L,p) and the vector polynomial β(L,q).   

As long as it can be assumed that the error term ut is a white noise process, or more 

generally, is stationary and independent of xt, xt-1, … and yt, yt-1, …, the ARDL 

models can be estimated consistently by ordinary least squares. 

 

4.2 Requirements for the Application of Autoregressive Distributed 

Lag Model (ARDL) Approach to Cointegration Testing 
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• Irrespective of whether the underlying variables are I(0) or I(1) or a 

combination of both, ARDL technique can be applied. This helps to avoid 

the pretesting problems associated with standard cointegration analysis 

which requires the classification of the variables into I(0) and I(1). This 

means that the bound cointegration testing procedure does not require the 

pre-testing of the variables included in the model for unit roots and is robust 

when there is a single long run relationship between the underlying 

variables, 

• If the F-statistics (Wald test) establishes that there is a single long run 

relationship and the sample data size is small or finite, the ARDL error 

correction representation becomes relatively more efficient.  

• If the F-statistics (Wald test) establishes that there are multiple long-run 

relations, ARDL approach cannot be applied.  Hence, an alternative 

approach like Johansen and Juselius (1990) can be applied. That is, if the 

various single expression/equation of the underlying individual variable as 

dependent variable shows a feedback effect(multiple long run relationships) 

between the variables, then a multivariate procedure need to be employed. 

• If the trace or Maximal eigenvalue or the F-statistics establishes that there is 

a single long-run relationship, ARDL approach can be applied rather than 

applying Johansen and Juselius approach. 

 

 To determine whether the above requirements are met or not see section 4.3. 

 

 

 

4.3 Advantages of ARDL Approach 

• Since each of the underlying variables stands as a single equation,  

endogeneity is less of a problem in the ARDL technique because it is free of 
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residual correlation (i.e. all variables are assumed endogenous). Also, it 

enable us analyze the reference model.  

• When there is a single long run relationship, the ARDL procedure can 

distinguish between dependent and explanatory variables. That is, the 

ARDL approach assumes that only a single reduced form equation 

relationship exists between the dependent variable and the exogenous 

variables (Pesaran, Smith, and Shin, 2001).  

• The major advantage of this approach lies in its identification of the 

cointegrating vectors where there are multiple cointegrating vectors. 

• The Error Correction Model (ECM) can be derived from ARDL model 

through a simple linear transformation, which integrates short run 

adjustments with long run equilibrium without losing long run information. 

The associated ECM model takes a sufficient number of lags to capture the 

data generating process in general to specific modeling frameworks. 

 

 

4.4 The steps of the ARDL Cointegration Approach  

This sub-section explores how one determines whether the above requirements 

are met. 

Step 1: Determination of the Existence of the Long Run Relationship of the 

Variables 

At the first stage the existence of the long-run relation between the variables 

under investigation is tested by computing the Bound F-statistic (bound test for 

cointegration) in order to establish a long run relationship among the variables. 

This bound F-statistic is carried out on each of the variables as they stand as 

endogenous variable while others are assumed as exogenous variables. 

In practice, testing the relationship between the forcing variable(s) in the 

ARDL model leads to hypothesis testing of the long-run relationship among the 
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underlying variables. In doing this, current values of the underlying variable(s) are 

excluded from ARDL model approach to Cointegration.  

This approach is illustrated by using an ARDL (p,q) regression with an I(d) 

regressor, 

yt = Ф1yt-1 + … + Фpyt-p +  θ0xt + θ1xt-1 …+ q1xt-p  +u1t        (4.4)        

or                                                                                      

xt = Ф2xt-1 + … + Фpxt-p +  θ0yt + θ1yt-1 …+ q1yt-p  + u2t        (4.5)       
 
 

                 t =1,2,…T                  μt ~  iid(0, δ2). 
 

For convenience the deterministic regressors such as constant and linear time 

trend are not included. Where Ф, θ0 and θ1 are unknown parameters, and xt(  or yt) 

is an I(d) process generated by; 

xt= xt-1+Ԑt; 
or 

yt= yt-1+Ԑt; 
ut and Ԑt are uncorrelated for all lags such that xt (or yt) is strictly exogenous with 

respect to ut..  Ԑt  is a general linear stationary process. 

(Cointegration/stability Condition) /Ф/ <1, so that the model is dynamically stable. 

This assumption is similar to the stationarity condition for an AR(1) process and 

implies that there exists a stable long-run relationship between yt(xt) and xt (yt). If 

Ф =1, then there would be no long-run relationship. In practice, this can also be 

denoted as follows: 

The ARDL (p,q1,q2......qk) model approach to Cointegration testing; 

        ∆𝑋𝑡 =  𝛿0𝑖 + 1
1

k

i
i tXα

=
−∆∑  + 2

1
t i

k

i
Yα −

=

∆∑  +  δ1X𝑡−1 + δ2Y𝑡−1 + v1𝑡                    (4.6)  

    ∆Y𝑡 = 𝛿0𝑖  + 1
1
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i
i

tYα
=

−∆∑  + 2
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t i

k

i
Xα −

=

∆∑  +  δ1Y𝑡−1 + δ2X𝑡−1 + v1𝑡           (4.7) 

 k is the ARDL model  maximum lag order and chosen by the user. The F-statistic 

is carried out on the joint null hypothesis that the coefficients of the lagged 
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variables (δ1X𝑡−1 δ1Y𝑡−1 or δ1Y𝑡−1 δ1X𝑡−1) are zero. (δ1 – δ2) correspond to the 

long-run relationship, while (α1 – α2) represent the short-run dynamics of the 

model. 
 

The hypothesis that the coefficients of the lag level variables are zero is to be 

tested.  

The null of non-existence of the long-run relationship is defined by; 

Ho: δ1 = δ2= 0 (null, i.e. the long run relationship does not exist) 

H1: δ1 ≠ δ2 ≠ 0 (Alternative, i.e. the long run relationship exists) 

This is tested in each of the models as specified by the number of variables. 

This can also be denoted as follows: 

                            FX(X1│Y1,. . . . . Yk)                                                (4.8) 

                            Fy(Y1│X1,. . . . . Xk)                                                 (4.9) 

The hypothesis is tested by means of the F- statistic (Wald test) in equation 4.8 and 

4.9, respectively. The distribution of this F-statistics is non-standard, irrespective of 

whether the variables in the system are I(0) or I(1). The critical values of the F-

statistics for different number of variables (K), and whether the ARDL model 

contains an intercept and/or trend are available in Pesaran and Pesaran (1996a), and 

Pesaran et al. (2001). They give two sets of critical values. One set assuming that 

all the variables are I(0)(i.e. lower critical bound which assumes all the variables 

are I(0), meaning that there is no cointegration among the underlying variables) and 

another assuming that all the variables in the ARDL model are I(1)( i.e. upper 

critical bound which assumes all the variables are I(1), meaning that there is 

cointegration among the underlying variables). For each application, there is a band 

covering all the possible classifications of the variables into I(0) and I(1). However, 

according to Narayan (2005), the existing critical values in Pesaran et al. (2001) 

cannot be applied for small sample sizes as they are based on large sample sizes. 

Hence, Narayan (2005) provides a set of critical values for small sample sizes, 

ranging from 30 to 80 observations. The critical values are 2.496 - 3.346, 2.962 – 

3.910, and 4.068 – 5.250 at 90%, 95%, and 99%, respectively. 
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If the relevant  computed F-statistic for the joint significance of the level 

variables in each of the equations(4.6 and 4.9), δ1, and δ2  falls outside this band, a 

conclusive decision can be made, without the need to know whether the underlying 

variables are I(0) or I(1), or fractionally integrated. That is, when the computed F-

statistic is greater than the upper bound critical value, then the H0 is rejected (the 

variables are cointegrated). If the F-statistic is below the lower bound critical value, 

then the H0 cannot be rejected (there is no cointegration among the variables). If 

long run (or multiple long-run relationships) relationships exist in both equations 

(4.8 and 4.9) the ARDL approach cannot be applied, hence, Johansen and Juselius 

(1990) approach becomes the alternative. 

  If the computed statistic falls within(between the lower and upper bound) the 

critical value band, the result of the inference is inconclusive and depends on 

whether the underlying variables are I(0) or I(1). It is at this stage in the analysis 

that the investigator may have to carry out unit root tests on the variables (Pesaran 

and Pesaran, 1996a). Also, if the variables are I(2), the computed F-statistics of the 

bounds test are rendered invalid because they are based on the assumption that the 

variables are 1(0) or 1(1) or mutually cointegrated (Chigusiwa et al., 2011).  

However, to forestall an effort in futility, it may be advisable to first perform unit 

roots, though not as a necessary condition in order to ensure that none of the 

variables is I(2) or beyond, before carrying out the bound F-test.  

Step 2: Choosing the Appropriate Lag Length for the ARDL Model/ 

Estimation of the Long Run Estimates of the Selected ARDL Model 

If a long run relationship exists between the underlying variables, while the 

hypothesis of no long run relations between the variables in the other equations 

cannot be rejected, then ARDL approach to cointegration can be applied. The issue 

of finding the appropriate lag length for each of the underlying variables in the 

ARDL model is very important because we want to have Gaussian error terms (i.e. 

standard normal error terms that do not suffer from non-normality, autocorrelation, 

heteroskedasticity etc.). In order to select the appropriate model of the long run 
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underlying equation, it is necessary to determine the optimum lag length(k)  by 

using proper model  order selection criteria such as; the Akaike Information 

Criterion(AIC), Schwarz Bayesian Criterion (SBC)  or Hannan-Quinn 

Criterion(HQC).  

The values of AIC, SBC and LP for model 4.3 are given by; 

AICp = -n/2(1+log2π)-n/2logδ2-P 

SBCp = log(δ2) +(logn/n)P 

HQC =log δ +(2loglogn/n)P 

           LRp,p = n(log[∑p]-log[ˆ∑p])  

Where δ2 is Maximum Likelihood(ML) estimator of the variance of the regression 

disturbances, ˆ∑p  is the estimated sum of squared residuals, and 𝑛 is the number of 

estimated parameters, p=0,1,2……P, where P is the optimum order of  the model 

selected. 

The ARDL model should be estimated given the variables in their levels (non-

differenced data) form. The lags of the variables should be alternated, model re-

estimated and compared. Model selection criteria- The model with the smallest 

AIC, SBC estimates or small standard errors and high R2 performs relatively better. 

The estimates from the best performed become the long run coefficients.  This is 

appropriate to embark on if it is satisfied that there is long-run relationship between 

the underlying variables in order to avoid spurious regression.  

The long-run coefficients for yt( or xt) to a unit change in xt( or yt) are 

estimated by; 

              ˆθi   =   ˆβi(1, ˆqi)          =      ˆβi0 + ˆβi1 + . . .+ ˆβiq                  i = 1, 2 . . . 

                                   ˆϕ(1,ˆp)                  1 – ˆϕ1 – ˆϕ2 - . . .ˆϕp 

Where ˆp  and ˆqi , i =1, 2,. . .k are the selected(estimated values of p and q, i =1, 2. 

. ,k 

Similarly, the long-run coefficients associated with the deterministic/exogenous 

variables with fixed lags are estimated by; 

                                 ˆψ           =           ˆδ(ˆp, ˆq1,ˆq2,. . ˆ qk) 
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                                                               1 – ˆϕ1 – ˆϕ2 - . .ˆϕp 

Where ˆδ(ˆp, ˆq1,ˆq2,. . ˆ qk) denote the OLS estimate of δ in (equation 4.1) for the 

selected ARDL model.  

 

In practice, this can also be denoted as follows: 

The selected ARDL(k)  model long run equation; 

           Y𝑡 =  𝛿0  + 1
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𝑋s (𝑋1𝑡, 𝑋2𝑡 , 
 𝑋3𝑡, ……….. 𝑋n𝑡) are the explanatory or the long run forcing variables, k 

is the number of optimum lag order. 

The best performed model provides the estimates of the associated Error Correction 

Model (ECM). 
 

 

Step 3: Reparameterization of ARDL Model into Error Correction Model 
 

As we said earlier, when non-stationary variables are regressed in a model we 

may get results that are spurious.  One way of resolving this is to difference the 

data (since most data exhibit DSP) in order to achieve stationarity of the variables. 

In this case, the estimates of the parameters from the regression model may be 

correct and the spurious equation problem resolved. However, the regression 

equation only gives us the short-run relationship between the variables. It does not 

give any information about the long run behaviour of the parameters in the model. 

This constitutes a problem since researchers are mainly interested in long-run 

relationships between the variables under consideration, and in order to resolve 

this, the concept of cointegration and the ECM becomes imperative. With the 

specification of ECM, we now have both long-run and short-run information 

incorporated. 

The unrestricted error correction model associated with the ARDL(ˆp, ˆq1,ˆq2,. 

. ˆ qk) model can be obtain by rewriting equation 4.1 in terms of the lagged levels 

and the first differences of yt..x1t..  ,x2t. . . xkt and wt.  First note that; 

                                            yt = Δyt + yt-1 
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                                             yt-1 = yt 
1

1

s

j
i jy

−

=
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and similarly, 
 

                                            wt = Δwt +wt-1 

                                             xt = Δxt +xt-1 

                                             x1t-s = yit-1  
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j
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Substituting these relations into 4.1 we have;  

  Δyt = - ϕ(1,ˆp)ECt-I + 0
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ECt is the error correction term defined by; 

                                         ECt = Ԑt = yt ^

1
it

k

i
i

xθ
=

−∑ – ψ’wt 

The term ECt as the speed of adjustment parameter or feedback effect is 

derived as the error term from the cointegration models (4.6 and 4.7) whose 

coefficients are obtained by normalizing the equation on Xt (4.6) and Y𝑡 (4.7) 

respectively. The ECt shows how much of the disequilibrium is being corrected, 

that is, the extent to which any disequilibrium in the previous period is being 

adjusted in yt.  A positive coefficient indicates a divergence, while a negative 

coefficient indicates convergence. If the estimate of ECt = 1, then 100% of the 

adjustment takes place within the period, or the adjustment is instantaneous and 

full, if the estimate of ECt = 0.5, then 50% of the adjustment takes place each 

period/year. ECt = 0, shows that there is no adjustment, and to claim that there is a 

long-run relationship does not make sense any more. 
 

Recall that ϕ(1,ˆp) = 1- ˆϕ1 - ˆϕ2 - . . . ˆϕp measures the quantitative importance 

of the error correction term. The remaining coefficients ˆϕj and βij, relate to the 

short-run dynamics of the model’s convergence to equilibrium. ECt is the residuals 

that are obtained from the estimated cointegration model of equations 4.6 and 4.7. 
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The ARDL models and its associated ECM can be estimated by the OLS 

method.   

  

 

5 Summary and Conclusion  

Given the deficiencies associated with standard Johansen and Juselius(1990) 

cointegration procedure,  it becomes imperative to explore Pesaran and Shin (1999) 

and Pesaran et al (1996b) proposed Autoregressive Distributed Lag (ARDL) 

approach to cointegration or bound procedure for a long-run relationship. Some of 

the deficiencies include: identifying the cointegrating vector(s) where there are 

multiple cointegrating relations; applicability when one cointegrating vector of 

different order exists. Based on this, this study reviewed Autoregressive Distributed 

Lag (ARDL) Approach to cointegration testing in terms of its application, 

estimation and interpretation. Given this, the following findings were made:   

• ARDL cointegration technique is adopted irrespective of whether the 

underlying variables are I(0), I(1) or a combination of both, and cannot be 

applied when the underlying  variables are integrated of order I(2). 

However, to avoid crashing of the ARDL technique and, effort in futility, it 

is advisable to tests for unit roots since variables that are integration of 

order I(2) leads to the crashing of the technique.  

• If the trace or Maximal eigenvalue or the F-statistics establishes that there 

exists a single long-run relation among the variables (i.e underlying 

variables), ARDL approach can be applied rather than applying Johansen 

and Juselius approach. The ARDL technique provides a unified framework 

for testing and estimating of cointegration relations in the context of a 

single equation.   



Emeka Nkoro and Aham Kelvin Uko                                                                               87 

• If the F-statistics (Wald test) establishes that there is a single long run 

relationship and the sample data size is small (n≤ 30) or finite, the ARDL 

error correction representation becomes relatively more efficient.  

• The ARDL model is reparameterized into ECM when there is one 

cointegrating vector among the underlying variables. The reparameterized 

result gives the short-run dynamics and long run relationship of the 

underlying variables.  

• When there are multiple long-run relationships, ARDL approach cannot be 

applied. Hence, an alternative approach like Johansen and Juselius (1990) 

becomes more appropriate. 

 

This review is an important starting point for future practitioners, as well as a 

more reliable research. ARDL cointegration technique is one of the greatest 

discoveries of the 20th century solution to the analysis of series with one 

cointegrating vector and, it does not require pretesting of unit root. Therefore, there 

is need to explore the necessary conditions that give rise to ARDL cointegration 

technique in order to avoid its wrongful application, estimation, and interpretation 

which may in turn lead to model misspecification and unrealistic estimates. 

However, this paper cannot claim to have treated the underlying issues in their 

greatest details, but have endeavoured to provide sufficient insight into the issues 

surrounding Autoregressive Distributed Lag (ARDL) cointegration technique to 

young practitioners to enable them apply the technique, estimate the problem 

therein, and interpret the result thereafter. Also, to enable them follow discussions 

of the issues in some more advanced texts. 
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