AVL trees

Today

- AVL delete and subsequent rotations
- Testing your knowledge with interactive demos!

AVL tree

- Is a binary search tree
- Has an additional height constraint:
- For each node x in the tree, Height(x.left) differs from Height(x.right) by at most 1
- I promise:
- If you satisfy the height constraint, then the height of the tree is $O(\lg n)$.
- (Proof is easy, but no time! =])

AVL tree

- To be an AVL tree, must always:
- (1) Be a binary search tree
- (2) Satisfy the height constraint
- Suppose we start with an AVL tree, then delete as if we're in a regular BST.
- Will the tree be an AVL tree after the delete?
- (1) It will still be a BST...
- (2) Will it satisfy the height constraint?
- (Not covering insert, since you already did in class)

BST Delete breaks an AVL tree

Replacing the height constraint with balance factors

- Instead of thinking about the heights of nodes, it is helpful to think in terms of balance factors
- The balance factor $b f(x)=h(x . r i g h t)-h(x . l e f t)$
$-b f(x)$ values $-1,0$, and 1 are allowed
- If $\operatorname{bf}(x)<-1$ or $\operatorname{bf}(x)>1$ then tree is NOT AVL

Same example with $\mathbf{b f}(\mathbf{x})$, not $\mathbf{h}(\mathbf{x})$

bf <-1
so NOT an AVL tree!

What else can BST Delete break?

- Balance factors of ancestors...

Need a new Delete algorithm

- Goal: if tree is AVL before Delete, then tree is AVL after Delete.
- Step 1: do BST delete.
- This maintains the BST property, but can cause the balance factors of ancestors to be outdated!
- Step 2: fix the height constraint and update balance factors.
- Update any invalid balance factors affected by delete. - After updating them, they can be <-1 or >1.
- Do rotations to fix any balance factors that are too small or large while maintaining the BST property.
- Rotations can cause balance factors to be outdated also!

Bad balance factors

- Start with an AVL tree, then do a BST Delete.
- What bad values can bf(x) take on?
- Delete can reduce a subtree's height by 1.
- So, it might increase or decrease h(x.right) $h(x . l e f t)$ by 1 .
- So, bf(x) might increase or decrease bv 1.
- This means:

2 cases

- if $\mathrm{bf}(\mathrm{x})=1$ before Delete, it might become 2. BAD.
- If $\mathrm{bf}(\mathrm{x})=-1$ before Delete, it might become -2. BAD.
- If $\mathrm{bf}(\mathrm{x})=0$ before Delete, then it is still $-1,0$ or 1 . OK.

Problematic cases for Delete(a)

- $b f(x)=-2$ is just symmetric to $b f(x)=2$.
- So, we just look at bf(x) $=2$.

Delete(a): 3 subcases for $b f(x)=2$

- Since tree was AVL before, $\mathbf{b f}(\mathbf{z})=\mathbf{- 1 , 0}$ or $\mathbf{1}$

Fixing case $b f(x)=2, b f(z)=0$

- We do a single left rotation
- Preserves the BST property, and fixes $\operatorname{bf}(\mathrm{x})=2$

Fixing case $b f(x)=2, b f(z)=1$

- We do a single left rotation (same as last case)
- Preserves the BST property, and fixes $\operatorname{bf}(\mathrm{x})=2$

Delete(a): $b f(x)=2, b f(z)=-1$ subcases

Case $\mathbf{b f}(\mathbf{z})=-1$: we have 3 subcases. (More details)
Case $b f(y)=0 \quad$ Case $b f(y)=-1 \quad$ Case $b f(y)=1$

Double right-left rotation

- All three subcases of $b f(x)=2, b f(z)=-1$ simply perform a double right-left rotation.

Delete subcases for $b f(x)=2, b f(z)=-1$

- Case bf(y)=0: double right-left rotation!

Delete subcases for $b f(x)=2, b f(z)=-1$

- Case $b f(y)=-1$: double right-left rotation!

Delete subcases for $b f(x)=2, b f(z)=-1$

- Case $b f(y)=1$: double right-left rotation!

Recursively fixing balance factors

- Idea: start at the node we deleted, fix a problem, then recurse up the tree to the root.
- At each node x, we update the balance factor: bf(x) := h(bf.right) - h(bf.left).
- If $b f(x)=-2$ or +2 , we perform a rotation.
- Then, we update the balance factors of every node that was changed by the rotation.
- Finally, we recurse one node higher up.

Interactive AVL Deletes

- Interactive web applet

