Serial Interfaces:
SPI, 12C, UART
Demystified

Bruce E. Hall, W8BH

Objective: learn how to use SPI,
I2C, and UART on your AVR
microcontroller.

1) INTRODUCTION

It took me a long time to get here. I've used various flavors of AVR microcontrollers, writing to
them in assembly, C, and Arduino “wiring/processing”. For some reason, | always avoided
using the built-in serial communication hardware. Often | used someone else’s serial library.
Sometimes | emulated the protocol using GPIO pins. But eventually | realized that using the
built-in interfaces isn’t difficult after all. Here is my collection of quick-‘n-dirty serial interface
routines. This is all hobby-grade material: no fancy objects, no long list of initialization
options, or interrupt-driven code with ring buffers. But follow along, and you’ll be able to use
the serial hardware with minimal fuss and minimal code. At the end I'll use the UART and 12C
interfaces in a small RTC project.

2) SERIAL PERIPHERAL INTERFACE (SPI)

At its core, the SPI algorithm is very straightforward:
e Put a data bit on the serial data line.
e Pulse the clock line.
e Repeat for all the bits you want to send, usually 8 bits at a time.

You must set the microcontroller's SPI control register (SPCR) to enable SPI communication.
This is an eight-bit register that contains the following bits:

SPCR = 0x50:
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
SPIE SPE DORD MSTR CPOL CPHA SPR1 SPRO
0 1 0 1 0 0 0 0

The first bit on the left, SPIE, enables the SPI interrupt and is not needed for this application.
The SPE bit enables SPI. DORD determines the data direction: when 0, the most-significant
bit is sent & received first. MSTR determines if the micro acts as a master (1) or slave (0)
device. CPOL and CPHA together determine the transfer mode. Our TFT display works well
with Mode 0, in which both bits are zero. Finally, SPR1 and SPRO determine the transfer
speed, as a fraction of the microcontroller’s oscillator. When both are 0, the SPI transfer
speed is osc/4, which on my 16 MHz micro is 16/4 = 4 MHz. When both bits are 1, the
transfer speed is 0sc/256 = 62.5 kHz.

Using an SPCR value of 0x50, SPI is enabled as Master, in Mode 0 at 4 MHz. The code to
open SPI communication can be as simple as the following:

void SPI Init ()
{

SPCR = 0x50; // SPI enabled as Master, Mode0O at 4 MHz
}

To close SPI, just set the SPE bit to 0. This will stop SPI and return the four dedicated SPI
lines (MOSI, MISO, SCLK, SS) to the general purpose 1/O functions:

void SPI Close()
{

SPCR = 0x00; // clear SPI enable bit
}

Only one more routine is needed: the SPI transfer routine. SPI is a bidirectional protocol, with
two separate data lines. The data is transmitted over MOSI and received over MISO at the
same time. Even if we only want to send, we are always going to receive. And vice versa. If
you aren’t expecting any received data, just ignore what is returned to you.

The data transfer register is SPDR. Load this register with a value, and the data transfer will
start automatically. A bit in SPSR, the status register, will tell us when the transfer is
complete. As the data bits are serially shifted out of the transfer register, the received bits are
shifted in. When the transfer completes, SPDR will hold the received data:

byte SPI Xfer (byte data) // you can use uint8 t for byte
{

SPDR = data; // initiate transfer

while (! (SPSR & 0x80)); // wait for transfer to complete

return SPDR;

3) TESTING THE SPI INTERFACE

The three routines above are all we need for SPI. Let’'s make sure they work by doing a serial
loop-back test. In this test, the output data on MOSI is looped-back as the input on MISO.
Whatever value we put into the data register should come right back in.

Without a working display, we need a way to verify the data. You might want to use your fancy
debugger, or send the value to a monitor via UART, but here is something even simpler: flash

the LED on your controller board. Most AVR boards have a connected LED. On many AVR
boards, including the Arduino, the status LED is on PB5. Here is a routine to flash it:

void FlashLED (byte count)

// flash the on-board LED at ~ 2 Hz

{
DDRB |= _BV(DDBS); // Set PB5 as output
for (;count>0;count--)

{

PORTB |= _BV(PORTBYS) ; // turn LED on
_delay ms(250); // wait
PORTB &= ~ BV (PORTB5) ; // turn LED off
_delay ms(250); // wait

}

Now, disconnect the microcontroller's MOSI (digital 11, PB3) from the TFT display, and
connect it to the microcontroller's MISO line (digital 12, PB4). Run the following code:

void SPI LoopbackTest ()
{
SPI Init(); // start communication to TET
char 1 = SPI Xfer(5); // MISO to MOSI -> returns 5
// MISO to +5V -> returns 255
// MISO to Gnd =-> returns 0
SPI Close(); // return portB lines to general use
FlashLED (i+1) ; // flash (returned value + 1)
}

What happens? If all goes well, the LED will flash 6 times. The value 5 is sent out the MOSI
line, comes back in on the MISO line, and is returned from the SPI xfer routine.

You may wonder if Xfer worked at all. Maybe nothing was transferred: the value 5 could have
stayed in the transfer register ‘untouched’. How can we know for sure?

For the doubters out there like me, take your wire on the MISO line and put to ground (logic 0).
Now, all bits shifted-in will be 0, and the value returned should be 0x00000000 = 0. If you run
the program now, the LED should flash only once. To further convince you, connect MISO to
+5V. Now, all bits shifted-in will be one, and the value returned will always be 0x11111111 =
255. The LED should not flash at all, since 255+1 = 256 = 0, for byte-sized variables.

| have posted an SPI project that drives a TFT display at http://w8bh.net/avr/AvrTET.pdf

4) THE I°C INTERFACE

Atmel calls their version of 12C the “two-wire” interface, or TWI. It is a serial-data protocol
which uses two data lines for communication: a data line (SDA) and a clock (SCL). Devices
on the 12C bus can either be masters or slaves. Masters initiate data transfers, and slaves
react only to master requests. In this article, the AVRmega328 is the master, and the RTC is
always the slave. Slaves are specified by a 7-bit address, plus a read/write bit. The device
address for the DS1307 is fixed at 0xdO.

Vee The interface circuit is “open collector”, which means
1 2 W m | that the data lines are passively kept high by resistors to

device device device

BCL
2D

-+

L
¥

L 4

http://w8bh.net/avr/AvrTFT.pdf
http://en.wikipedia.org/wiki/I%C2%B2C

Vcc. Any device on the bus can actively pull a data line low. Up to 128 devices can be put on
the same data bus.

There are plenty of good articles on TWI/12C programming for AVR microcontrollers. Check
out the following for a good start:

1. Non-GNU.org: http://www.nongnu.org/avr-libc/user-manual/group twi demo.html
2. AVR beginners: http://www.avrbeginners.net/architecture/twi/twi.html
3. ATMEL AVR315: http://www.atmel.com/Images/doc2564.pdf

Compared with SPI, using 12C is a bit more involved. The first job is to set the frequency of
the serial data clock. Typically, the clock frequency is 10 (slow mode), 100 (standard mode),
or 400 (fast mode) kHz. The maximum clock rate is determined by the slowest device on the
bus, as well as bus capacitance. As a practical matter, most I12C devices run at 100 kHz. The
DS1307 runs at 100 kHz.

Again, keep in mind there are already libraries available for using 12C with your AVR or
arduino. You do not need to do this yourself. A search for ‘12C master library’ will turn up a
few alternatives. Keep reading if you’'d like roll your own.

There are two special registers on the ATmega which control the SCL frequency: TWSR and
TWBR. TWSR is the TWI status register, and contains prescalar bits used to divide the CPU
clock frequency. We do not need a prescalar, so we can ignore these bits. The TWBR is the
bit-rate register. The SCL frequency is a function of the CPU frequency and this register,
according to the following formula: F_SCL in MHz = F_CPU/(16+2(TWBR)). Kinda
complicated, isn’'t it? To determine the value of TWBR we can rewrite it like this: TWBR =
((F_CPU/F_SCL)-16)/2. My CPU has a 16 MHz clock, and | want to run the interface in
standard 100 kHz mode. So the value of TWBR must be ((16/0.1)-16)/2 = (160-16)/2 = 72.

#define F_CPU 16000000L // CPU clock speed 16 MHz
#define F_SCL 100000L // I2C clock speed 100 kHz

void I2C_Init()
// at 16 MHz, the SCL frequency will be 16/(16+2(TWBR)), assuming prescalar of ©.
// so for 100KHz SCL, TWBR = ((F_CPU/F_SCL)-16)/2 = ((16/0.1)-16)/2 = 144/2 = 72.
{
TWSR
TWBR

0; // set prescalar to zero
((F_CPU/F_SCL)-16)/2; // set SCL frequency in TWI bit register

}

Here is the protocol for sending data from master to slave: “MT” (master transmit) mode

e Master generates Start Condition, status code 0x08 is returned

® Master sends slave address (0xd0), slave device returns ACK, status code 0x18

e Master sends one or more data bytes, slave device returns ACK, status code 0x28
e Master generates Stop Condition, no status code returned

After each operation, the ‘ready’ bit in TWCR will go to logic 0, and return to logic 1 when the
operation is completed. Byte-sized data is sent/received via the special TWDR register. The
start, stop, and data transfer conditions are specified by the TWCR control register. And the

http://www.nongnu.org/avr-libc/user-manual/group__twi__demo.html
http://www.avrbeginners.net/architecture/twi/twi.html
http://www.atmel.com/Images/doc2564.pdf

status codes are put in the TWSR register. Let’s look at the code and compare it to the
protocol. Here is how to generate a start condition:

#tdefine TW_START oxA4 // send start condition (TWINT,TWSTA,TWEN)
#define TW_READY (TWCR & 0x80) // ready when TWINT returns to logic 1.
#define TW_STATUS (TWSR & OxF8) // returns value of status register

byte I2C_Start()
// generate a TW start condition

{

TWCR = TW_START; // send start condition

while (!TW_READY); // wait

return (TW_STATUS==0x08); // return 1 if found; © otherwise
}

To generate a start, load TWCR with 0xA4 and wait. That’s all there is to it. Why 0xA4? OxA4
is binary 10100100. The three ‘1’ values correspond to the TWINT, TWSTA, and TWEN bits
of the control register. These bits enable the TWI interrupt, the start-condition, and the whole
TWI module. You will see many people write it like this: TWCR = (1<<TWINT) | (1<<TWSTA) |
(1<<TWEN). Most think that this ‘self-documenting’ style of coding is preferable, so please
use it if you like. For me, start is simply code 0xA4.

The next thing to do is send the bus address of the slave we are communicating with. For
example, the DS1307 real-time clock has a bus address of 0xdO. Here is our code to do that:

#tdefine DS1307 oxDo // I2C bus address of DS1307 RTC
#tdefine TW_SEND ox84 // send data (TWINT,TWEN)

byte I2C_SendAddr(addr)
// send bus address of slave

{

TWDR = addr; // load device's bus address

TWCR = TW_SEND; // and send it

while (!TW_READY); // wait

return (TW_STATUS==0x18); // return 1 if found; @ otherwise
¥

Put the address of the slave device into TWDR, put the send command in TWCR, and wait.
The next operation, sending a data byte, looks almost exactly the same. Notice that the
returned status code will be different, however:

byte I2C_Write (byte data) // sends a data byte to slave
{

TWDR = data; // load data to be sent

TWCR = TW_SEND; // and send it

while (!TW_READY); // wait

return (TW_STATUS!=0x28); // return 1 if found; © otherwise
}

For the DS1307 we will do this Write operation twice: once to set the address pointer on the
RTC, and again to supply the data for that address.

The last step is the send the Stop condition. Here we just set the command register to 0x94,
the value for TW_STOP. Again, this value sets the TW enable, TW interrupt, and TW stop
bits. Go ahead, use (1<<TWINT) | (1<<TWEN) | (1<<TWSTO) if you prefer. We do not have

to wait or check for status codes, so it is just a one-line command. Instead of writing a routine
| made a macro instead:

#tdefine TW_STOP ox94 // send stop condition (TWINT,TWSTO,TWEN)

#define I2C_Stop() TWCR = TW_STOP // inline macro for stop condition
Just a quick note on the status codes: I've written my routines to check the status, but | ignore

the results. In my simple setup this works OK. You may want to check each code and show
error messages when appropriate.

Reading data is little trickier: we have to write to the device first, to set its internal address
pointer, and then read to get the data at that address. Here is the protocol for receiving data
from the slave.

e Master generates Start Condition, status code 0x08 is returned

e Master sends slave bus address (0xd0), DS1307 returns ACK, status code 0x18

® Master sends address pointer, slave device returns ACK, status code 0x28

® Master generates another Start Condition = restart, status code 0x10 returned

® Master sends slave bus address + read bit (Oxd1), slave returns ACK, status code 0x40
® Master requests data byte with NACK, slave returns byte, status code 0x58

e Master sends Stop condition, no status code returned

The only new code required for reading is the read operation in the next to last step. It looks
very similar to the write operation. NACK is used to a request of a single (or last) byte of data.

#tdefine TW_NACK ox84 // read data with NACK (last byte)
#define READ 1
byte I2C_ReadNACK () // reads a data byte from slave
{
TWCR = TW_NACK; // nack = not reading more data
while (!TW_READY); // wait

return TWDR;
}

Putting it all together, here are sample routines for reading and writing registers on the slave
device. You will need to check the datasheet of the slave device you intend to use; each
device may have its own unique protocol for addressing its registers, memory contents, etc.

void I2C_WriteRegister(byte deviceRegister, byte data)

{
I2C_Start():
I2C_SendAddr(DS1307); // send bus address
I2C_Write(deviceRegister); // first byte = device register address
I2C_Write(data); // second byte = data for device register
I2C_Stop();

}

byte I2C_ReadRegister(byte deviceRegister)

{
byte data = 0;
I2C_Start();
I2C_SendAddr(DS1307); // send device bus address
I2C_Write(deviceRegister); // set register pointer
I2C_Start();

I2C_SendAddr(DS1307+READ); // restart as a read operation
data = I2C_ReadNACK(); // read the register data
I2C_Stop(); // stop

return data;

}

| wrote a RTC tutorial using the 12C interface at http://w8bh.net/avr/AvrDS1307.pdf

5) THE UART INTERFACE

Compared to 12C, using the UART is darn-easy. UART stands for Universal Asynchronous
Receive/Transmit. The hardware can also run in synchronous mode, so it is often called a
USART. A good article about the hardware is at avrbeginners.net. And a good programming
reference is Dean Camera’s UART article at fourwalledcubicle.com.

SPI 12C UART
Typical speed 1-20 MHz 100-400 kHz 9 — 56 kHz
Typical use High-speed hardware Multiple devices ona Keyboard, character
common bus LCD/Monitor

As opposed to SPI and 12C, which are often used for binary data exchange between hardware
devices, UART is often used for transmission of (slower) ASCII data. For example, you might
use the UART for keyboard input or monitor/character LCD output. Speedy SPI transfers data
to dedicated hardware devices at MHz speeds, while UART transfers are a thousand times
slower.

UART Frame Each data frame consists of
N\ a start bit, a variable number
of data bits, an optional

_ | parity bit, and 1 or 2 stop
ol1 12 |3 lals |6 |7 = bits. The most common
— ", i configuration is 1 start bit, 8
i N : P data bits, no parity bit, and 1
S Message Bits (1 character) é % : stop bit (“8N1”).

In asynchronous mode, there is no clock line: data is transmitted on the transmit line (Tx) and
received on the receive line (Rx). The UART is initialized by configuring control registers that
determine the baud rate, parity, number of stop bits:

#define BAUDRATE 9600

void UART Init()
{

UBRRO = F CPU/ (BAUDRATE*16L)-1; // set speed according to BAUDRATE define
UCSROB = 0x18; // enable UART: set Rx,Tx enable bits
UCSROC = 0x06; // set mode: 8 data bits, no parity, 1 stop bit

}

The first control register, UBRRO, controls the data transmission rate. The value is determined
from the desired baud rate and CPU frequency. For example, a baud rate of 9600 bps on my

http://w8bh.net/avr/AvrDS1307.pdf
http://www.avrbeginners.net/architecture/uart/uart.html
http://www.fourwalledcubicle.com/AVRArticles.php

16 MHz controller requires a register value of (16000000/9600/16)-1 = 130. Setting bits 4 and
3 in the second control register UCSROB, enables the special Rx & Tx data lines. The third
control register, UCSROC, sets the data frame format. For 8N1, the most common data frame
format, the register value should be set to 0x06. Check out the AVRmega328 datasheet for
information on all of the available options.

Once initialized, the controller handles all of the implementation details. Reading & writing
byte-sized data from/to the UART data register, UDRO, looks like this:

#define RX READY (UCSROA & 0x80) // check bit7 of UCSRAO
#define TX READY (UCSROA & 0x20) // check bit5 of UCSRAOQ

void UART Write (byte data)

{
while (!TX READY); // wait until ready to send
UDRO = data; // OK, send it now!

}

byte UART Read()

{
while (!RX_READY); // wait until byte rec'd
return UDRO; // OK, return it.

}

In both routines, the first line waits until the UART is ready to send/receive. The second line
writes/reads the data register. That’s pretty simple, isn’t it?

6) TESTING THE UART INTERFACE

The UART uses two data lines, so try a loopback test like the one for SPI. Tie the Tx
(PD1/TxD) and Rx (PD0O/RxD) lines together, and run the following routine:

void UART_LoopbackTest ()
{

UART Write(5); // send a '5' out the Tx line
byte b = UART Read(); // listen on Rx line
FlashLED (b) ; // indicate value returned

}

If all goes well, the LED should flash 5 times.

7) MAKING LIBRARIES

Each of the interfaces is a great candidate for a library. For example, put the three SPI
routines in a file called spi.c. Then make a header file called spi.h that includes only the
function declarations. Do the same for UART and I2C. Now you can include whichever
interface you need like this:

include “spi.h”

8) DS1307 RTC REVISITED

In the DS1307 tutorial | used a character LCD for output.
Let’s use the UART interface to use our computer screen
instead. The AVR TxD and RxD lines require additional
hardware to connect back to your PC. In the ‘old days’,
all PCs had RS232 serial ports, and you would use a
Max232 chip to convert the +/- 12V signals from the
computer to the TTL (+5V) logic levels on the micro. A
quick internet search for “Max232 module” will give you
several options costing around $5. To the left is one
available for around $3 at NewEgg.

However, most modern PCs have abandoned

BLACK FTDI Friend' by Adafruit

RS232 ports and use USB ports instead. To 3‘;"‘;; 0 g
connect AVR serial lines to USB | use the “FTDI ; e TR

friend” adapter from Adafruit. It will set you back . ‘ 41X | U
about $15. Connect TxD to the adapter input line Dol N s A
(Rx), RxD to the output line (Tx), and GND to _—

ground.

Next, connect your DS1307 module. Run the SDA line to A4/PC4. Run the SCL line to

A5/PC5. And power the module with +5V and GND. Your module must include pullup
resistors on the SDA and SCL lines.

2l S E e [WEEEW ||[wwj| wwwws

DC Boarduino . . | ssmas' wuus : ol e
- | DS1307 RTC
A6NO @ tImepan 9. ::
DPECTS o wilgmifitite -5 =
Lo Bl FTDI Friend

lqer1s ™=
GREEN

=

=

-

Ny v

D@Rx - 1K
-

-

.

-

2
LR N X
- e e

w

LI
R R B
w
£
-

-

-

.

~“ 2 % B 8 0B GOQCOODTOD SNBSS

~-x ¥ E S C8ENDO0DO OO
®zx 2 ¥ X 5 EGEEREE
“% ¥ ¥ E K ¥ M W N DB EE
g " EE YT ERREEE

g% T ® S EEEEREE®.
g% T EEEREREEEER

http://w8bh.net/avr/AvrDS1307.pdf
http://www.adafruit.com/products/284
http://www.adafruit.com/products/284

You should have two lines running from the clock module to the micro, and two lines from the
micro your USB adapter.

Once everything is connected, verify that your computer recognizes the FTDI board. Connect
a USB cable between your computer and the adapter, and then check the computer’s device
manager -> ports. You should see a USB serial port listed, such as ‘COM9’. If not, follow the
device manufacturer’s recommendation for installing the appropriate driver.

Next, you need a console application. Windows used to have a preinstalled application called
‘Hypertext’, but it is no longer available on all computers. | recommend one called ‘PuTTY’,
which available at putty.org and elsewhere. In putty.exe, select connection type: serial and
enter the name of the communication port, such as ‘COM9’, that you got from the device
manager.

If you are doing this for the very first time, you can easily verify that the USB adapter and
console app are configured correctly: temporarily disconnect both data lines between the
micro and the adapter. Now do a loopback test by connecting the adapter’'s Tx and Rx lines
together. Anything you type in the console application will be sent out the Tx line, back into
Rx, and be displayed on the console screen. If you have more than one application running
on your computer, make sure the console app is ‘on top’ and has focus.

Once the console app and USB adapter are working, let’s add our microcontroller and extend
the loopback test:

void Typewriter ()

{

for (char ch=0; ch!="'!";) // wait for stop char '!'
{
ch = UART Read(); // get byte from keyboard
UART Write(ch); // send it to output
if (ch=='\r") // if it is a <return>
UART Write('\n'"); // add a <newline>

}

This code will read a byte from the UART and echo it back to the console. There is a check
for the return character, since <return> doesn’t bump the cursor to the next line on my
console.

Now, instead of writing to the LCD via LCD_Char(), we send the data to the computer screen
via UART_Write(). The source code below shows the slightly modified routines. In addition,
we can prompt the user for updated time information, and get the information via keyboard
input.

Many console applications do terminal-emulation, and allow you to control the cursor and
display colors via escape-codes. See http://ascii-table.com/ansi-escape-sequences.php for a
list of these codes. In the source code, ANSI escape sequences are used for clearing the
screen and for setting cursor position.

http://www.putty.org/
http://ascii-table.com/ansi-escape-sequences.php

9) SOURCE CODE

J R et ettt
// Serial interfaces: useful SPI, I2C, and UART routines
//

// Author : Bruce E. Hall <bhall66@gmail.com>

// Website : http://w8bh.net/avr/serial.pdf

// Version : 1.0

// Date : 12 May 2014

// Target : ATmega328P microcontroller

// Language : C, using AVR studio 6

// Size : 1994 bytes

//

// Fuse settings: 8 MHz osc with 65 ms Delay, SPI enable; *NO* clock/8

//

// Demo will get time & date info from from DS1307-RTC module via I2C

// and display time & date on computer console via UART.

//
ettt
// GLOBAL DEFINES

#define F_CPU 16000000 // run CPU at 16 MHz

#define LED 5 // Boarduino LED on PB5

#define ClearBit(x,y) x &= ~ BV(y) // equivalent to cbi (x,y)

#define SetBit(x,y) x |= BV(y) // equivalent to sbi(x,y)

I
// INCLUDES

#include <avr/io.h> // deal with port registers

#include <util/delay.h> // used for delay ms function

#include <stdlib.h> // used for itoa, atoi

I
// TYPEDEFS

typedef uint8 t byte; // I just like byte & sbyte better

typedef int8 t sbyte;

[T
// GLOBAL VARIABLES

[T -
// MISC ROUTINES

void msDelay (int delay) // put into a routine

{

for

// to remove code inlining
(int 1=0;i<delay;i++) // at cost of timing accuracy

_delay ms(1);

}

void FlashLED (byte count)
// flash the on-board LED at ~ 3 Hz

{

SetBit (DDRB, LED) ; // make sure PB5 is an output

for

{

}

(; count; count--)

SetBit (PORTB, LED) ; // turn LED on
msDelay (100) ; // wait
ClearBit (PORTB, LED) ; // turn LED off
msDelay (200) ; // wait

long IntToBCD (int 1)
// converts an integer into its Hex BCD equivalent. Ex: decimal 32 --> 0x32

{

long ans = 0;

byte digit, shiftvalue = 0;
while (i>0)

{

digit = (i % 10); // get least significant decimal digit
ans += (digit << shiftvalue); // add it in proper position

i /= 10; // remove least significant digit
shiftvalue += 4; // bump up digit position in answer

}

return ans;

[/ e
// SPI ROUTINES

//

// How to use the SPI:

//

// 1. The data rate is set in SPI Init, by setting bits in the SPCR (below) .

// By default, the rate is FCPU/2 = 8 MHz for a 16 MHz board.

// The microcontroller is Master, and the external device is Slave.

// 2. Connect the transmit line (MOSI/D11/PB3) to the external device MOSI line.
// 3. Connect the receive line (MISO/D12/PB4) to the external device MISO line.
// 4. Connect the serial clock (SCK/D13/PB5) to the external device SCK line

// 5. Ground the external device select line; usually select is active-low.

// 6. sStart the SPI with SPI_Init.

// 7. Transfer bytes between micro and device with SPI_Xfer

//

// SPI Status Control Register (SPCR) —---------

//

// b7 b6 b5 b4 b3 b2 bl b0

// SPCR: SPIE SPE DORD MSTR CPOL CPHA SPR1 SPRO

// 0 1 0 1 . 0 0 0 1

//

// SPIE - enable SPI interrupt

// SPE - enable SPI

// DORD - 0=MSB first, 1=LSB first

// MSTR - O=slave, l=master

// CPOL - O=clock starts low, l=clock starts high

// CPHA - O=read on rising-edge, l=read on falling-edge
// SPRx - 00=osc/4, 0l=osc/16, 10=osc/64, 1ll=osc/128

// SPCR = 0x50: SPI enabled as Master, mode 0, at 16/4 = 4 MHz

void SPI_Init()

{
SPCR = 0x50; // SPI enabled as Master, ModeO at 4 MHz
SetBit (SPSR, SPI2X) ; // double the SPI rate: 4-->8 MHz

}

void SPI Close()
{

SPCR = 0x00; // clear SPI enable bit
}

byte SPI Xfer (byte data)

{
SPDR = data; // initiate transfer
while (! (SPSR & 0x80)); // wait for transfer to complete
return SPDR;

e
// I2C (TWI) ROUTINES

//

// How to use the I2C:

//

// 1. Set the data transmission speed in the F_SCL define.

// Common speeds are 100 kHz (100000L) and 400 kHz (400000L).

// The microcontroller is Master, and the external device is Slave.

// 2. Connect the data line (SDA/PC4) to the external device SDA line.

// 3. Connect the clock (SCL/PC5) to the external device SCL line

// 4. Attach 3.3K pullup resistors from SDA to Vcc and SCL to Vcc.

// 5. Start the SPI with I2C Init.

// 6. Reading & Writing data to is often device specific:

// use I2C_Send to send a 'raw' byte over the bus

// use I2C Write to send a byte to a specific bus address

// use I2C WriteRegister to send a byte to a specific device register

// use I2C ReadAck to read a byte from slave, with an acknowledgment

// use I2C ReadNACK to read a byte from slave, with no acknowledgment

// use I2C ReadRegister to read a byte from a specific device register
#define F_SCL 100000L // I2C clock speed 100 KHz

#define READ 1

#define TW_START 0xA4 // send start condition (TWINT, TWSTA, TWEN)
#define TW_STOP 0x94 // send stop condition (TWINT, TWSTO, TWEN)
#define TW_ACK 0xC4 // return ACK to slave

#define TW NACK 0x84 // don't return ACK to slave

#define TW_SEND 0x84 // send data (TWINT, TWEN)

#define TW_READY (TWCR & 0x80) // ready when TWINT returns to logic 1.
#define TW_STATUS (TWSR & O0xF8) // returns value of status register
#define I2C_Stop () TWCR = TW_STOP // inline macro for stop condition

void I2C_Init()
// at 16 MHz, the SCL frequency will be 16/ (16+2 (TWBR)), assuming prescalar of 0.
// so for 100KHz SCL, TWBR = ((F_CPU/F_SCL)-16)/2 = ((16/0.1)-16)/2 = 144/2 = 72.
{
TWSR
TWBR

0; // set prescalar to zero
((F_CPU/F_SCL)-16)/2; // set SCL frequency in TWI bit register

}

byte I2C_Detect (byte addr)
// look for device at specified address; return l=found, O=not found

{

TWCR = TW_START; // send start condition

while (!TW READY) ; // wait

TWDR = addr; // load device's bus address

TWCR = TW_SEND; // and send it

while (!TW_READY) ; // wait

return (TW_STATUS==0x18); // return 1 if found; 0 otherwise

}

byte I2C FindDevice (byte start)
// returns with address of first device found; O=not found
{
for (byte addr=start;addr<O0xFF;addr++) // search all 256 addresses

{

if (I2C_Detect (addr)) // I2C detected?

return addr; // leave as soon as one is found
}
return 0; // none detected, so return 0.

}

void I2C_Start (byte slaveAddr)
{

I2C Detect (slaveAddr) ;
}

byte I2C Send(byte data) // sends a data byte to slave
{

TWDR = data; // load data to be sent

TWCR = TW_SEND; // and send it

while (!TWﬁREADY); // wait

return (TW_STATUS!=0x28);
}

byte I2C ReadACK() // reads a data byte from slave
{
TWCR = TW_ACK; // ack = will read more data
while (!TW_READY); // wait

}

return TWDR;
//return (TW_STATUS!=0x28);

byte I2C ReadNACK()

{

}

TWCR

= TW_NACK;

while (!TW_READY);

retu

//re

rn TWDR;
turn (TW_STATUS!=0x28);

//

//
//

void I2C Write (byte busAddr, byte data)

{

}

12C
12C
12C

Start (busAddr) ;
Send (data) ;
Stop () ;

//
//

reads a data byte from slave

nack = not reading more data
wait

send bus address
then send the data byte

void I2C WriteRegister (byte busAddr, byte deviceRegister, byte data)

{

}

12C_
12C_

12C_
12C_

Start (busAddr) ;

Send (deviceRegister) ;
Send (data) ;

Stop ()

//

send bus address

// first byte = device register address
second byte = data for device register

1/

byte I2C_ReadRegister (byte busAddr, byte deviceRegister)

{

//
//
//
//
//
//
//
//
//
//
//
//

byte

12C_
12C
12C

data

I2C

retu

data = 0;

Start (busAddr) ;

Send (deviceRegister) ;
Start (busAddr+READ) ;
= I2C_ReadNACK() ;
Stop () ;

rn data;

//
//
//
//
//

send device address

set register pointer
restart as a read operation
read the register data

stop

USART ROUTINES

How

g w N

to use the USART:

Set the serial transmission speed in the BAUDRATE define.

rates are: 300, 1200, 2400, 4800,

The mode is set at 8 data
Connect the transmit line
Connect the receive line

bits, 1
(Tx/PD1)
(Rx/PDO)

Start the UART with UART Init.
Send bytes with UART Write; Receive bytes with UART Read.

#define BAUDRATE 9600
#define RX READY (UCSROA & 0x80)
#define TX READY (UCSROA & 0x20)

void UART Init ()

{

}

UBRRO = F7CPU/(BAUDRATE*16L)
UCSROB = 0x18;
UCSROC = 0x06;

void UART Close()

{
}

UCSROB = 0x00;

void UART Write (byte data)

{

whil

e (!TX READY);

!/
//

-1; //

//
//

//

//

9600, 14400, 19200, 28800, 57600.
stop bit, no parity (most common) .
to the external device Rx line.

to the external device Tx line.

check bit7 of UCSRAQ
check bit5 of UCSRAO

set speed according to BAUDRATE de
enable UART: set Rx,Tx enable bits
set mode: 8 data bits, no parity,

disable Rx,Tx

wait until ready to send

Common baud

fine

1 stop bit

UDRO = data; // OK, send it now!
}

byte UART Read()

{
while (!RX READY); // wait until byte rec'd
return UDRO; // OK, return it.

}

byte UART KeyPressed()
// returns 0x80 if input available; 0 otherwise
{
return RX READY;
}

void UART_SendString(char *st)
// send a string to the UART
{
for (;*st;st++) // for each non-nul character
UART Write(*st); // send it to uart
}

char * UART_GetString(char *st)
// get a string of characters [80 max!!] from the UART
// string is returned when <enter> key is pressed

{

char c;

byte count=0;

while ((count<80) && ((c = UART Read()) != '\r'"))

{
UART Write(c); // echo char back to console
st [count++] = c; // add char to string

}

st[count]="\0"; // add NULL termination

return st;

[
// DS1307 RTC ROUTINES

#define DS1307 0xDO // 1I2C bus address of DS1307 RTC
#define SECONDS_REGISTER 0x00
#define MINUTES REGISTER 0x01
#define HOURS_REGISTER 0x02
#define DAYOFWK REGISTER 0x03
#define DAYS REGISTER 0x04
#define MONTHS_REGISTER 0x05
#define YEARS REGISTER 0x06
#define CONTROL_REGISTER 0x07
#define RAM BEGIN 0x08
#define RAM END 0x3F

void DS1307_GetTime (byte *hours, byte *minutes, byte *seconds)
// returns hours, minutes, and seconds in BCD format
{
*hours = I2C_ReadRegister (DS1307,HOURS_REGISTER) ;
*minutes = IZC_ReadRegister(DSl307,MINUTES_REGISTER);
*seconds = I2C ReadRegister (DS1307,SECONDS REGISTER) ;
if (*hours & 0x40) // 12hr mode:
*hours &= O0x1F; // use bottom 5 bits (pm bit = temp & 0x20)
else *hours &= 0x3F; // 24hr mode: use bottom 6 bits
}

void DS1307_GetDate (byte *months, byte *days, byte *years)
// returns months, days, and years in BCD format
{
*months = I2C ReadRegister (DS1307,MONTHS REGISTER) ;
*days = I2C ReadRegister (DS1307,DAYS REGISTER);
*years = I2C_ReadRegister (DS1307,YEARS REGISTER) ;

void DS1307 Now (byte *months, byte *days, byte *years, byte *hours, byte *minutes,
{

DS1307 GetDate (months, days, years);

DS1307 GetTime (hours, minutes, seconds);

}

void DS1307 SetTimeDate (byte mon, byte day, byte year, byte hour, byte min)
// note: hours are 0-23, years are 2-digit (2014 is 14).
{
byte adj = 0;
if (hour>11)
{
hour -= 12;
adj = 0x40; // set 12-hr mode
}
I2C WriteRegister (DS1307,MONTHS REGISTER, IntToBCD (mon)) ;
I2C WriteRegister (DS1307,DAYS REGISTER, IntToBCD(day)):;
I2C WriteRegister (DS1307,YEARS REGISTER, IntToBCD (year));
I2C WriteRegister (DS1307,HOURS REGISTER, IntToBCD (hour)+adj);
I2C WriteRegister (DS1307,MINUTES REGISTER, IntToBCD(min));
I2C WriteRegister (DS1307,SECONDS REGISTER, 0x00); // seconds at :00

/o
// APPLICATION ROUTINES

void Generic_PutChar (char ch)
// called when its time to output a character
// output device can be UART, LCD, whatever...
{

UART Write (ch);
}

void TwoDigits (byte data)

// helper function for WriteDate() & WriteTime ()
// input is two digits in BCD format

// output is two ASCII numeric characters

{

byte temp = data>>4; // get upper digit
Generic PutChar (temp+'0"'); // send it
data &= O0xO0F; // get lower digit
Generic PutChar (data+'0"'); // send it

}

void WriteDate ()
// outputs the current date in mm/dd/yy format
{

byte months, days, years;

DS1307 GetDate (&months, &days, &years) ;

TwoDigits (months) ; // mm
Generic PutChar('/');
TwoDigits (days) ; // dd
Generic PutChar('/');
TwoDigits (years) ; /] ¥y

Generic PutChar (' ');

}

void WriteTime ()
// outputs the current time in hh:mm:ss format
{

byte hours, minutes, seconds;

DS1307 GetTime (&hours, &éminutes, &seconds) ;

TwoDigits (hours) ; // hh
Generic PutChar(':');
TwoDigits (minutes) ; // mm
Generic PutChar(':'");
TwoDigits (seconds) ; // ss

Generic PutChar (' ');

byte

*seconds)

void UART SendInt (int data)
// sends the integer value to output console

{

char st[8] = ""; // save enough space for result
itoa (data,st,10); // convert to ascii string, base 10
UART_ SendString(st); // display it on LCD

}

void UART_ SendHex (int data)
// sends the hexadecimal value to output console

{

char st[8] = ""; // save enough space for result
itoa(data,st,16); // convert to ascii string, base 16
UART_ SendString(st); // display it on LCD

}

void ANSI GotoXY (int x, int y)
// send ANSI escape code to console that move cursor to x,y
{
UART_ SendString ("\033[");
UART_SendInt (x);
UART Write(';');
UART SendInt (y);
UART_Write ("H");
}

void ANSI ClearScreen ()
// sends ANSI escape codes to console that clear the screen
// see: http://ascii-table.com/ansi-escape-sequences.php

{
UART SendString("\033[2J\033[;H"); // clear & goto top-left
}

void UART LoopbackTest ()
{

UART Write(5); // send a '5' out the Tx line
byte b = UART Read(); // list on Rx line
FlashLED (b) ; // indicate value returned

}

int PromptInt (char *prompt)
// prompts user for integer input; returns input value

{

char st[80]; // temp buffer for user input
UART SendString (prompt) ; // display the prompt on console
UART GetString(st); // get user's input

return atoi (st); // convert to integer & return it

}

int PromptHex (char *prompt)
// prompts user for hexadecimal input; returns input value

{

char st[80]; // temp buffer for user input
UART SendString (prompt); // display the prompt on console
UART GetString(st); // get user's input

return strtol (st,NULL, 16); // convert to integer & return it

}

void Console SetTimeDate ()
// interactive way to set DS1307 date & time via TTY console

{

int mon, day, year, hour, min;

mon = PromptInt ("\r\nEnter the month (1-12, or 0 to skip): ");
if (!mon) return;

day = PromptInt ("\r\nEnter the day (1-31): ");

year = PromptInt ("\r\nEnter the 2-digit year: ");

hour = PromptInt ("\r\nEnter the hours (0-23): ");

min = PromptInt ("\r\nEnter the minutes (0-59): ");

DS1307_SetTimeDate (mon,day, year, hour,min) ;

void Typewriter ()

{

//
//

int

UART_ SendString("\r\n> Welcome to W8BH. Type '!' to stop.\r\n");
for (char ch=0; ch!="!1";) // wait for stop char '!'
{
ch = UART Read(); // get byte from keyboard
UART Write (ch); // send it to output
if (ch=='\r") // if it is a <return>
UART Write('\n'); // add a <newline>

}
UART SendString ("\r\n> Bye!\r\n");

MAIN PROGRAM
main ()

UART Init();

I2C Init();

//Typewriter () ;

ANSI_ClearScreen();

Console SetTimeDate();

ANSI ClearScreen();

UART_ SendString("Welcome to W8BH. Current Time:");

while (1) // forever...

{
ANSI GotoXY (4,6); // goto line 4, col 6
WriteDate () ; // show date/time

WriteTime () ;
msDelay (5000) ; // wait 5 seconds

