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Foreword by Dirk J. Struik [1894-2000]

1

How did our mathematical concepts originate? And how did
our science of mathematics come into being?

For many mathematicians the answer to the second question
has been easy. Mathematics is a deductive science, and therefore
originated with the Greeks, beginning with Thales and
Pythagoras about 500 B.C. From them came many of our terms,
even the term mathematics itself. The term geometry shows that
the Greeks took many of their ideas from the Egyptians, because
it referred to the annual surveying of the land after the floods of
the Nile. Thus, according to this theory, Egyptians, as well as
Babylonians, had mathematics, but mostly in an empirical way.
The same held for China.

When, with the publication of such work as that of
Neugebauer on Babylonia and Needham on China in the 1930s
and later, it became clear that the mathematics of the Bronze Age
empires was far more sophisticated than was believed, many
mathematicians were willing to admit that the origin of mathe-
matics as a science had to be traced back from the fourth century
B.C. to the Sumerians and perhaps the Egyptians and Chinese as
well.

This meant that mathematics began in the period when
scribes of the Bronze Age states began to use symbols and spe-
cial terms for mathematical concepts. But where did these con-
cepts, and some of the terms already in existence, come from?

In years long past, there was a simple answer. God had
bestowed on Adam in Paradise a lot of mathematical knowledge,
which after his expulsion he bequeathed to his son Seth, the



father of Enos. Enos, having a foreboding of the Flood, had his
knowledge inscribed on two pillars, which survived the Flood. In
the course of time they were seen and studied by many a travel-
er, among them the patriarch Abraham, who brought his knowl-
edge to Egypt. And the Egyptians taught the Greeks.

We find such a story in Josephus, in the writings of the
seventeenth-century mathematician Tacquet, and in other places.
We present this story to our friends the Creationists, but prefer to
search for the origin of mathematical concepts elsewhere.

We shall have to watch the gradual evolution of Homo sapi-
ens all through the millennia of the prehistoric period for the ear-
liest stages of tool-making, of fishing and hunting to agriculture,
cattle raising, and trade—all through the Stone Age.

There has been much speculation on how the process of
acquiring knowledge of mathematical concepts, of forms and
number, has actually occurred.

One approach can be found in the words of one historian that
“the first geometrical [and arithmetical] considerations of
man . . . seem to have had their origin in simple observation,
stemming from human ability to recognize physical form [and
quantity], and compare shapes and sizes.” For instance: the form
of sun, moon, and certain flower heads led to the concept of a cir-
cle, the shape of ropes to line and curves, further spider webs and
honeycombs to more intricate forms, to triangles, spirals, solids.
Comparing heaps of objects to each other led to counting, first
only one, two, many, etc. This approach stresses onlooking,
reflection. It is a static point of view. We can call this the attitude
of homo observans.

Another approach, presented by Seidenberg, looks at reli-
gious impulses like the building of altars. As explained in this
book, this is not very satisfactory. What Gerdes stresses goes
beyond this and also beyond observation, and is the approach
through the effects of labor. Ever since the hominoids began to
walk erectly, their hands became free to make tools in the pro-
duction of their livelihood—first very primitive, but gradually
evolving into well-constructed artifacts. Man discovers,
improves, constructs, uses all kinds of forms. The number con-
cept grows. Man builds tents, houses; makes baskets, bags, nets,
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pottery, and weapons. Through the millennia, first very slowly,
then more rapidly, a great amount of knowledge of a mathemati-
cal art is obtained. This is a dynamic approach, the approach of
homo laborans. It is implicit in the Marxian point of view, and we
find it, for instance, in a note by Frederick Engels (1885), where
he points out that the basic ideas of line, surface, angle, and num-
ber are all borrowed from reality in the interplay of Man and
Nature. The objects seen in nature and in tools, in the villages and
in the fields, are never exact straight lines, circles, triangles,
squares. Only by activity throughout the centuries could Man be
led from these forms to the abstract concepts of mathematics.

Man, changing Nature, changes himself.
We do not entirely deny the value of the other approaches;

they stand in a dialectical relation to each other and the dynamic
point of view. There are still other factors to take into account, for
instance that of playing man, the man of games with a mathe-
matical strand. The homo ludens.

During the many centuries the tools improved. For instance,
arrowheads and hand axes become more efficient, well made; the
same holds for baskets, pottery, nets. The tools became more
symmetrical because of increased efficiency; and so we find, for
instance, baskets taking the form of cylinders or prisms. 

Incidentally, the symmetry and harmony of forms that turn
out to be most efficient (many examples appear in this book) also
strike us as more agreeable, beautiful. A source of the birth of
aesthetics? We can refer to the book.

2

In order to obtain more factual information on Stone Age
development, we can search for remnants of this age. There are
some rods, wood or bone, found in Africa, perhaps 10,000 years
old,* with carvings of parallel lines, perhaps the tally of hunting
results. Then there are the famed cave paintings in Spain and 

*Struik refers to a bone found at Ishango (Congo). Dating estimates of this
bone now range from 8,000 to 20,000 B.C. A still older bone with twenty-nine
clearly marked notches was found iSn a cave in the Lebombo Mountains on the
border between South Africa and Swaziland. This bone has been dated at
approximately 35,000 B.C. (see Gerdes 1994).



France, also very ancient, which show mathematical traces, if
only by the fact that they are two-dimensional projections of
solid bodies, hence exercises in mapping. We can also study
arrowheads and other artifacts.

Much richer information can be obtained by studying the cul-
ture of present-day indigenous peoples still living in Stone Age
conditions or at any rate retaining customs and memories of older
times before Western influence set in. Their culture may contain
many strains millennia old. Though we have some accounts of
mathematical lore by travelers or missionaries, such as some
reports on the counting of American Indians or the games of
Polynesians dating to the nineteenth and early twentieth century,
a systematic study of these cultures from a mathematical point of
view only took place in the years after World War II, and has led
to a novel field called ethnomathematics. This term was proposed
by Professor Ubiratan D’Ambrosio of Brazil, who has studied,
among other things, Latin American indigenous cultures.

One of the reasons for this interest has been political—
anticolonialism. Starting with the impetus given by the Russian
Revolution, the struggle against colonialism has led after the
Second World War to the dissolution of the old colonial empires.
The new politically independent states had to cope with the dev-
astating influence of the colonial regime on the old native cul-
tures, especially in Africa, Polynesia, and Micronesia. It has been
a struggle to recoup native identities, if possible. The search for
mathematical concepts inherent in these native cultures is part of
this search for identity.

Pioneering here has been the work of Claudia Zaslavsky; in
her book Africa Counts (1973), she surveys the mathematical (or
“protomathematical,” if you prefer) ideas in the cultures of peo-
ples living south of the Sahara. She finds them in their counting,
architecture, ornamentation, games, riddles, taboos, concepts of
time, weights and measures, even magic squares.

Since the appearance of her book, many studies in this field
have been published. We mention only Marcia Ascher’s book
Ethnomathematics (1991), which gives examples from many
parts of the third world, including even kinship relations. As to
Africa, here the main investigations have been led by Paulus
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Gerdes and his collaborators. In this book he deals with the geo-
metrical and ornamental aspect of native mathematics.

We learn in this book how mathematical concepts were
involved in the construction of baskets, mats, bags, from reeds,
leaves, and other parts of plants, as well as in the construction of
homes and pyramids. In the course of the centuries, the artifacts
and the methods of construction were improved, and so the con-
cepts of triangle, hexagon, circle, and rectangle could be devel-
oped until they led to the abstractions of the science of mathe-
matics.

Gerdes shows how, in the course of time, properties of these
geometrical figures could be discovered, including the Theorem
of Pythagoras. It has always been a mystery how knowledge of
this theorem appears in Babylonia around 2000 B.C.—where did it
come from? This look at the construction, use, and improvement
of artifacts can also lead to other properties. Is it possible that
Greek knowledge of the volume of a pyramid was developed out
of the way fruit (say apples) is piled up in the markets and could
this also have led to Pascal’s triangle? Gerdes believes that the
knowledge of the volume of the truncated pyramid could also
have been the result of sophisticated methods born out of
practices.

There is still another side of ethnomathematical study. It is its
importance for education. If pupils from the villages (and ghet-
tos) come to school and enter modern classrooms, will not the
indigenous mathematics in their upbringing facilitate their acqui-
sition of the modern mathematics of the classroom? This use of
the “intuitive” native mathematics may well be of help in easing
the mathematical angst we hear so much about.

This brings ethnomathematics in as a factor in the wide-
spread discussion on the improvement of mathematical instruc-
tion in our schools. His ideas can have wide application. To the
literature and the discussion of this subject, other writings of
Professor Gerdes have also made their contribution.

Dirk J. Struik
Belmont, Massachusetts

March 1998
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Preface

Most standard histories of mathematics ignore completely or
pay little attention to the existence of mathematical traditions
outside the so-called West. Geometry is presented as something
very special, born among the “rational Greeks.” Before them, at
most some practical rules would have been known. Most stan-
dard textbooks ignore geometrical thinking in daily life, in
particular in the daily life of the peoples of the “third world,” of
the “South.” 

Strong protests have arisen in recent decades against the
ignorance of mathematics outside the “West” and “North,” espe-
cially from the ethnomathematical movement. Claudia
Zaslavsky’s Africa Counts: Number and Pattern in African
Culture (1999, first edition 1973), Ubiratan D’Ambrosio’s Socio-
cultural Bases for Mathematics Education (1985) and Etnomate-
mática (1990), Alan Bishop’s Mathematical Enculturation
(1988), Marcia and Robert Ascher’s The Code of the Quipu: A
Study in Media, Mathematics and Culture (1981), Marcia
Ascher’s Ethnomathematics: A Multicultural View of Mathe-
matical Ideas (1991), Michael Closs’s Native American
Mathematics (1986), George Gheverghese Joseph’s The Crest of
the Peacock: Non-European Roots of Mathematics (1991), and
Arthur B. Powell and Marilyn Frankenstein’s Ethnomathematics:
Challenging Eurocentrism in Mathematics Education (1997) are
extremely important in demystifying the dominant views about
mathematics and in contributing to an alternative picture of math-
ematics as a panhuman activity.

In this perspective, Awakening of Geometrical Thought in
Early Culture considers early geometrical thinking, both as



embedded in various social activities surviving colonization in
the life of the peoples of the “South,” and in early history.
Chapter 1 discusses briefly some standard views of the origin of
geometrical concepts. Chapter 2 analyzes alternative views of
geometry stimulated by the philosophical reflections of Frederick
Engels and presents a wholly unexplored field of research: geo-
metrical thinking as embedded in mat- and basket-weaving.
Chapter 3, constituting the principal part of the book, analyzes
the emergence of a series of early geometrical concepts and rela-
tionships in socially important activities. Questions such as these
are considered: Where could the concept of a right angle have
come from? Where did the idea of a regular hexagon arise? How
is it possible to determine the rectangular base of a building?
Chapter 4 presents, on the basis of the ideas and the methodolo-
gy developed in the previous chapter, a series of hypotheses on
the possible role of social activity in the development of geome-
try in ancient Mesopotamia and Egypt. The last chapter offers
some general ideas on the awakening of geometrical thought
based on the analysis in this book. 

In other work, I have tried to build upon ideas developed in
Awakening of Geometrical Thought in Early Culture and, in
particular, to give concrete examples of how (reconstructed)
geometrical traditions may be incorporated into mathematics
education. One of the objectives of ethnomathematical research
is improving the teaching of mathematics by embedding it into
the cultural context of students and teachers. Such mathematics
education can heighten the appreciation of the scientific knowl-
edge inherent in culture by using this knowledge to lay the
foundations for providing quicker and better access to the scien-
tific heritage of the whole of humanity.

Awakening of Geometrical Thought in Early Culture is a
briefer version in English of a book originally written in 1985 in
German and Portuguese. A German-language version was
published in 1990 under the title Ethnogeometrie: Kulturanthro-
pologische Beiträge zur Genese und Didaktik der Geometrie
(Bad Salzdethfurth: Verlag Franzbecker), with a preface by
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Professor Peter Damerow (now at the Max Planck Institute for
the History of Science, Berlin), and including chapters on the
didactics of geometry in the context of an African country.
Shorter Portuguese-language editions have been published by
Universidade Pedagógica in Mozambique under the title Cultura
e o despertar do pensamento geométrico (1991) and by the
Universidade Federal do Paraná (Curitiba, Brazil, 1992) under
the title Sobre o despertar do pensamento geométrico, with a
preface by Professor Ubiratan D’Ambrosio (Universidade
Estadual de Campinas). These three editions include a chapter on
the artistic elaboration of symmetry ideas emerging from social
activity that has not been included in the English version. Neither
the Portuguese-language editions nor the English-language
edition include the original introduction on mathematical under-
development. The English edition includes a section on ancient
Mesopotamian and Egyptian methods for the determination of
the area of a circle that does not appear in the Portuguese-
language editions. The German-language edition may be consulted for
more notes and an extended bibliography, 
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1

Chapter One
Mathematicians on the Origin of
Elementary Geometrical Concepts

In this chapter, I shall consider some widely held opinions of
mathematicians about the origin and the early development of
geometry; in chapters 4 and 5, I shall discuss other common ideas
about early geometrical thought.

1. Did geometry have a beginning?

“Did geometry once have a beginning?” is a question that
Julian Coolidge implicitly raises when he writes in his History of
Geometrical Methods (1963), “Whatever be our definition of the
Homo sapiens, he must be accorded some geometrical ideas; in
fact, there would have been geometry if there had been no
Homines sapientes at all” (1). Geometrical forms appear both in
inanimate nature and also in organic life, and this phenomenon
may be explained as a consequence of mechanical and physio-
logical causes. Apart from this mechanical necessity—so asks
Coolidge—what is the earliest example of an intentional geomet-
rical construction? Maybe the making of a cell structure of the
honey bee, “if we avoid metaphysical difficulties over the
problem of the freedom of the will”? (1). No, the honeybee only
optimizes, but “the ablest geometer among the animals is surely
the spider” that weaves such beautiful (!) webs (2). According to
Coolidge, geometry exists outside humans and their activities.
Geometry is eternal. Coolidge’s history of (human?) geometrical
methods begins completely arbitrarily in Mesopotamia,1 as he is



lacking any criterion to find out when or which human beings
became able to observe or perceive geometrical forms in nature.2

2. Does geometry equal deductive geometry?

Quite often it is said that geometry started in ancient Egypt.3

Problems of field measurement led to a series of mostly only
approximate formulas, but as Leonard Blumenthal asserts in his
Modern View of Geometry, “the Egyptian surveyors were no
more geometers than Adam was a zoologist when he gave names
to the beasts of the field” (1961, 1). In his view, geometry
emerged as a science as soon as it became deductive in ancient
Greece. Even if one agrees to identify geometry with deductive
geometry, another doubt arises: were not pre-Greek observations
of, and reflections about, space rarely or never deductive? And
does an induction not presuppose a deduction?

Also Herbert Meschkowski begins his well-known book
Evolution of Mathematical Thought (1965) with Euclid’s
Elements. He argues that the first childish steps were surpassed
with the development of a rigorous system of mathematical
proofs. Although it might be true that the ancient Egyptians and
Babylonians had discovered quite a lot of theorems, nevertheless
“these insights were acquired by intuition or by direct observa-
tion” (emphasis added). The transition from intuition and direct
observation to the rigorous system of mathematical proofs
remains without explanation and appears therefore absolute. And
should not in particular this transition—if it had taken place in
reality—have been one of the most important transformations in
the evolution of mathematical thought? Now this transition
seems to be a (nondialectical) leap. On the other hand, would, for
example, the so-called Theorem of Pythagoras have been found
through mere intuition? Or would it have been the result of pure
direct observation?

3. Still in the dark: What is geometry? 

Raymond Wilder, the late chairman of the American
Mathematical Society (1955–1956) and of the Mathematical
Association of America (1965–1966), stresses in the chapter on
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1. Mathematicians on Origin of Geometrical Concepts 3

geometry in his book Evolution of Mathematical Concepts that
“instead of looking for miracles or gods or superhuman individ-
uals” in order to understand the level of Greek geometry, one
should try to find the continuous line that leads from Egyptian
and Babylonian geometry to Greek geometry (1968, 88). If one
agrees, then one may still raise the question whether this line
started in the ancient Orient or still earlier elsewhere. Wilder’s
answer remains in the dark: “There was a time” [where and
when?] “when mathematics included nothing that one would
place in a separate category and label geometry. . . . For at that
time mathematics consisted solely of an arithmetic of whole
numbers and fractions, together with an embryonic (albeit quite
remarkable) algebra” (1968, 88). Would fractions have emerged
earlier as the first geometrical concepts? If so, what then is
geometry?

4. Organizing spatial experiences

Contrary to Blumenthal and Meschkowski, the well-known
geometer and didactician of mathematics Han Freudenthal eval-
uates in a completely different way the significance of the Greek
deductive method when he notes forcefully: “Rather than as a
positive element, I am inclined to view the Greek efforts to for-
mulate and prove knowledge . . . by means of clumsy methods
and governed by strict conventions, as a symptom of a terrifying
dogmatism” that until today has retarded and sometimes endan-
gered the spread and dissemination of mathematical knowledge
(1982, 444). In Freudenthal’s view, geometry did not begin late
in history with the formulation of definitions and theorems, but
as early as the organization of the spatial experiences that led to
these definitions and theorems (1978, 278).

Why, when, and where did this organizing of spatial experi-
ences begin? Or, which human beings are able to perceive
geometric forms and relationships?

5. Who is able to perceive geometric forms and relationships?

Howard Eves, in his paper “The History of Geometry,”
answers the question, “Which human beings are able to perceive



geometric forms and relationships?” in the same way as
Coolidge: “All.” However, he presents other reasons: “The first
geometrical considerations of Man . . . seem to have had their
origin in simple observations stemming from human ability to
recognize physical form and to compare shapes and sizes” (1969,
165). Here he presupposes the ability to recognize and  compare
forms as a natural, a once-and-for-all given quality of human
beings.  Consequently, it turns out to be relatively easy to explain
the origin of early geometrical concepts. For instance, the outline
of the sun and the moon, the shape of the rainbow, and the seed
heads of many flowers, etc. led to the conception of circles. A
thrown stone describes a parabola; an unstretched cord hangs in
a catenary curve; a wound-up cord lies in a spiral; spider webs
illustrate regular polygons, etc. (168). So far, Eves’s position may
seem empiricist: the properties that are common to different
objects are of an immediately visible and perceivable character.
This perception remains mostly passive. Nevertheless he notes,
“Physical forms that possess an ordered character, contrasting as
they do with the haphazard and unorganized shapes of most bod-
ies, necessarily attract the attention of a reflective mind—and
some elementary geometric concepts are thereby brought to
light,” leading to a “subconscious geometry”4 (166; emphasis
added). But how do people know which forms possess an ordered
character? Or better still, why and how did humans necessarily
learn to discover order in nature? Why does the “subconscious
geometry” transform itself in ancient Egypt and Mesopotamia, as
Eves asserts (167), into “scientific geometry”?5

These questions indicate already how Eves’s position
may be dialectically sublated (aufgehoben): in order to geome-
trize, not only are geometrizable objects necessary, but also, to
consider and perceive these objects, the ability to  abstract all
their other properties apart from their shape is also needed. This
ability is the result of a long historical development based on
experience, to paraphrase Frederick Engels.6
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NOTES

1. Would it be by chance that for the same Coolidge the choice of geomet-
rical axioms is completely arbitrary? See Coolidge, 1963, 423.

2. Cf. Simon: “Never and nowhere mathematics was invented. . . .
Mathematical ideas are not at all restricted to Man. . . . When the spider pro-
duces its web, it uses its particularly built foot as a compass; the bees have
solved a difficult maximum problem when they construct their hexagonal cells”
(1973, xiii). 

3. Cf. Ball: “Geometry is supposed to have had its origin in land survey-
ing. . . . [S]ome methods of land-surveying must have been practiced from very
early times, but the universal tradition of antiquity asserted that the origin of
geometry was to be sought in Egypt” (1960, 5).

4. In what sense “subconscious”? “For want of a better name,” Eves calls
this knowledge of elementary geometric concepts “subconscious geometry.” He
notes, “This subconscious geometry was employed by very early man in the
making of decorative ornaments and patterns, and it is probably quite correct to
say that early art did much to prepare the way for later geometric development.
The evolution of subconscious geometry in little children is well known and
easily observed” (166).

5 Cf. Cantor: “Also geometrical concepts . . . must have emerged early in
history. Objects and figures limited by straight lines and curves must have
attracted the eye of Man, as soon as he started not only to see, but to look around
himself” (1922, 1:15). What, however, could have caused this changeover from
“seeing” to “looking around himself”?

6. “Counting requires not only objects that can be counted, but also the abil-
ity to exclude all properties of the objects considered except their number—and
this ability is the product of a long historical development based on experience”
(Engels 1987a, 36–37).





7

Chapter Two
How Did People Learn to Geometrize?

It may be said that geometry arose from the needs of human
beings. The basic ideas of lines, surfaces, angles, polygons,
cubes, spheres, etc., are all, in one way or another, “borrowed”
from reality, observes Engels (1987a, 37). The important ques-
tion is how were they borrowed from reality? In other words,
how did the capacity to geometrize develop historically?

In his study Dialectics of Nature, Engels gave a hint about the
direction in which we should look for an answer. As their intelli-
gence grows in their creative interplay with nature, human beings
develop their capacities of reflection, observation, and analysis.
Human labor plays a fundamental role in this process.
Geometrical ideas and relationships are elaborated by human
beings (1987b, 476, 511).

1. The birth of geometry as a science

Broad outline. First approximation

Inspired by Engels’s reflections, a series of historians, mathe-
maticians, and philosophers stress, in broad outline, that geome-
try arose from practical life, from the effort to satisfy human
needs. Its transformation into a mathematical theory required an
immense period of time (see, e.g., Alexandrov 1977, 22).

Geometry emerged as an empirical, experimental science. In
the interaction with their environment, the people of the Old
Stone (Paleolithic) Age arrived at their first geometrical knowl-
edge (see, e.g., Struik 1948 and 1967; Hauser 1955, 11; Wussing
1979, 31). The process of the elaboration of abstract representa-
tions of spatial relationships initially took place extremely slowly



(Molodschi 1977, 23). After having collected sufficient factual
material with respect to the “simplest” spatial forms, it became
possible—under special societal conditions, as, for example, in
ancient Egypt, Mesopotamia, and China—to systematize the
collected factual material (Ruzavin 1977, 39). With this system-
atization, geometry started its transformation from an empirical
science into a mathematical science, achieving a first completion
with Euclid’s Elements: geometry as a “mathematical science
with its logical structure—proving of affirmations—and the
abstraction of the given object from its initial contents”
(Alexandrov 1974, 47).

Emergence of geometry as the perception
of spatial forms. Second approximation

The development that led to the transformation of geometry
from an empirical science to a theoretical science was, according
to Alexandrov (1974, 47) and Molodschi (1977, 23), long and
complex. Material objects and their relationships existed already
much earlier than Homo sapiens. The circular appearance of the
sun and moon, the smooth surface of a lake, the straightness of a
beam of light, etc., were always present and gave people the
possibility of observing them. But exact circles, straight lines, or
triangles never exist in nature. The chief reason, in Alexandrov’s
view, that people gradually became capable of working out geo-
metric concepts lies in the fact that human observation of nature
was not a passive but an active one in the sense that, to meet their
practical needs, human beings made objects more and more reg-
ular in shape. When they built their dwellings, enclosed their
plots of land, stretched bowstrings in their bows, modeled their
clay pots, etc., they discovered that a pot is curved, but a
stretched bowstring is straight. In short, stresses Alexandrov,
human beings “first gave form to their material and only then rec-
ognized form as that which is impressed on material and can
therefore be considered in itself as an abstraction from the mate-
rial” (1977, 10; emphasis added). As human beings made more
and more regular shapes and compared them with one another,
they learned to perceive “form unattached from the qualitative

8 AWAKENING OF GEOMETRICAL THOUGHT IN EARLY CULTURE
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particularity of the compared objects” (Molodschi 1977, 23).
Once capable of recognizing the form of the objects as such, peo-
ple could make products of better quality, which, once again,
contributed to a more precise elaboration of the abstract concept
of form. The dialectical interplay between active life and abstract
thinking constitutes the motor of the development of geometry.

2. An example of the influence of labor on
the emergence of early geometrical notions

In his study “Numbers in Paleolithic Graphic Art and the
Initial Stages in the Development of Mathematics” (1977),
Frolov analyzes important aspects of the emergence of the earli-
est geometrical notions in history. Archaeological and paleoneu-
rological research shows that not only Homo sapiens in the
Upper Paleolithic, but already their precursors of the Mousterian,
possessed well-developed speech and quite a high level of
abstract concepts. Already before labor had had a considerable
influence on the development of thinking, hand axes became
smaller and more elegant, taking on a geometrically regular and
symmetrical shape. To produce them, a sequence of multiple and
varied work operations were necessary, which led to a change in
the higher mental functions, like attention, memory, and lan-
guage. It was not accidental that gradually a symmetrical shape
was chosen: symmetry of the cutting edge reduces the resistance
of a hard body, diminishes friction, requires less muscular effort,
etc.; a symmetrical shape was, therefore, the most rational. In
other words, the first stages of tool-making activity show that a
symmetrical shape is not an imitation of symmetrical forms in
nature, but rather that it was attained in the course of the produc-
tion traditions of thousands of generations. The formation of the
concept of symmetry was dialectical. A significant step took
place: the most rational form became what was considered beau-
tiful; the symmetrical shape increasingly acquired an independ-
ent, technical, and aesthetic significance (Frolov 1977/78,
148–52; see also Breuil and Lantier 1959, 215 ff).

The Mousterians already fabricated more than sixty types of
tools. They also knew how to build dwellings for long occupancy,



and made the first attempts at depiction. In particular, a piece of
bone, more than 50,000 years old, found at La Ferrassie in
France, was covered with groups of fine parallel notches, pro-
voking various speculations. Okladnikov interprets these as the
“first ornamental compositions on our planet,” as a decisive step
in the development of art, and the logic of abstract concepts. He
writes that the creator of these notches

was capable of overcoming the inertia of long-term mental
stagnation and the chaos of associations. He brought order
into the stormy chaos of impressions. From them he select-
ed what was significant for him, and expressed it in the
abstract form of symmetrically arranged geometrical lines.
Clarity in place of the unclear and diffuse, order instead of
disorder, logic in place of cloudy sensations and flashes:
here is the objective meaning of this most ancient speci-
men of ornamentation. (cited in Frolov 1977, 155)

Frolov regards this composition of groups of parallel notches as
a first “mathematical structure,” which emerged after many hun-
dreds of thousands of years of practical application of identical
groups of rhythmic blows to obtain symmetrical tool shapes from
stone, and after numerous experiments in working bone with cut-
ting tools that left incisions. This is a possible interpretation, but
it does not clarify why the notches were carved exactly parallel
to one another. Would the thinking of their creator already have
been sufficiently independent, sufficiently freed from matter to
have been able to conceive such a pattern of parallel notches? Or
did the Mousterians perhaps have other working experiences in
which they found parallel lines? The search for other possible
contexts is further stimulated when Frolov observes about the
paintings in the caves of the Mousterians:

The use of the time factor in the “development” of rock
compositions in the depths of caves and the “winding” of
scenes on many places on the cylindrical surfaces of
mobile objects is of particular interest. . . . The genesis of

10 AWAKENING OF GEOMETRICAL THOUGHT IN EARLY CULTURE
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rectangular figures in Paleolithic art reflected, in...particu-
lar, the existence at that time of concepts about the areas of
objects. (1978, 75)

But whatever could have been the reason for the development of
the idea of the area of an object?

Parallel lines, spirals, right angles—in what other contexts
could these concepts have emerged?

3. An unexplored field: Geometrical concepts in weaving

In his famous study Science in History, Bernal suggests where
we might look for an answer: 

The idea of a right angle existed certainly before building
and, probably, even before textile weaving. Among the
mural paintings in the caves of Lascaux one encounters
rectangular figures divided as a little bit irregular chess
board, in which the squares are painted alternately in dif-
ferent colours. The most probable origin of these drawings
may be found in the art of interlacing, that as we know was
already really practiced during the Paleolithic. (1971, 251)

Not only the idea of a right angle, but also the notions of par-
allel lines and of spirals that develop with time might have been
formed in mat- and basket-weaving activities. Basketry was
already known during the Paleolithic and was, probably, a prior
stage to weaving. Both techniques are based on regularity and
perhaps led people, as Bernal supposes, “to distinguish patterns
and to use them in art and later in geometrical figures and in
mathematical analysis” (1971, 51). An attempt to analyze this
hypothesis immediately confronts one with some difficulties.

The folding of a leaf already leads to a straight line (see fig.
2.1). In a few minutes, one may produce a simple basket out of
palm leaves and use it for carrying fish, as may be illustrated by
the basket in fig. 2.2, coming from the Mozambican province of
Nampula. After having been used once or a few times, it is
thrown away. The ephemeral character of the materials that were
used makes it very difficult to reconstruct the history of mat- and
basket-weaving. It is not accidental, therefore, that books on the



history of technology normally dedicate no space or only a few
pages to the history of mat- and basket-weaving (see, e.g., Jonas
et al. 1969 and Sworykin et al. 1964). Existing and surviving

12 AWAKENING OF GEOMETRICAL THOUGHT IN EARLY CULTURE

Fig. 2.1. The folding of a leaf

Fig. 2.2. Simple disposable basket made out of palm leaves
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techniques may be analyzed for a better understanding of the
development of interlacing. Ethnographic data may be helpful in
attempts to reconstruct some fragments of the emergence of geo-
metrical concepts in weaving.1

NOTES

1. Also, D. Smith supposes in his History of Mathematics that such connec-
tions exist, but he does not advance an analysis of them: “A . . . prehistoric stage
of mathematical development is seen in the use of simple geometric forms as
were suggested by the plaiting of rushes, the first step in textile art” (1958 1:15;
emphasis added). See also Lietzman 1940, 9.
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Chapter Three
Early Geometrical Concepts and

Relationships in Societal Activities

1. The concept of a right angle

Already during the Lower Paleolithic Period, the hominids
had developed in their labor activities a first feeling for angle
amplitudes—for example, in what direction does one have to
hew to obtain sharper hand axes (fig. 3.1)?1 To fabricate more
effective harpoons (fig. 3.2)? They discovered the optimal direc-
tion for throwing their assagais (fig. 3.3).

Fig. 3.1. Production of hand axes

To avoid the overturn of their windscreens, the Australian
aborigines were forced to put the upper sticks perpendicularly to
the supporting sticks (fig. 3.4). To avoid their dams being swept
away by the water, the Wagheni of Congo, the Lamuts of the



Camchatca peninsula, and the Camaiura Indians of Brazil saw
themselves forced to fasten the barrier sticks perpendicularly to
the supporting sticks.2 To make a fire as quickly as possible, the
hardwood fire drill has to be rotated perpendicularly to the soft-
wood (see the example of Australian aborigines in fig. 3.5).3

Many hunting communities discovered that their arrows flew
easier and more forcefully when they were released perpendicu-
larly to the bow (fig. 3.6). Mozambican fishermen learned to fas-
ten the floaters perpendicularly to their mitumbui and cangaia
boats to maintain their equilibrium (fig. 3.7).
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Fig. 3.2. Harpoon points

Fig. 3.3. Throwing of an assagai
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Fig. 3.4. Windscreen

These are only a few examples of situations where people—
to satisfy best their needs—felt themselves forced through their
labor and the characteristics of the material with which they
were working to prefer mutually perpendicular directions.

The most widespread, and probably one of the oldest, activ-
itity encountered daily that required perpendicular orientations
was the binding of objects. A problem that occurs frequently, for
example, when weaving baskets and mats, constructing floats or
boats, building shelters or houses, is how to bind fast two or
more sticks, stems, or branches with the help of strands or thin-
ner ropes. If one chooses an arbitrary folding angle, as in fig. 3.8,
then the sticks can easily loosen and become undone (fig. 3.9).
Through experience, one learns only one position is suitable for

Fig. 3.5. Fire drill from Australia           Fig. 3.6. Shooting an arrow
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Fig. 3.7. Cangaia boat

 Folding angle

Fig. 3.8. Arbitrary folding angle

Fi.g. 3.9. Loosening of the bond

the fastening of two sticks (fig. 3.10). To bind together three or
more sticks with the same thread, the perpendicular position is
better approximated when the thread is thinner (fig. 3.11).

The same perpendicular position necessarily also emerges
when one sews reeds together to make a mat. The easiest way to
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bore through a reed with a needle is in a perpendicular direction
(fig. 3.12), as this offers less resistance.

When one draws the thread tighter, it automatically
assumes—independently of human will—a perpendicular
position in relation to the reeds (fig. 3.13). On the basis of this
experience, the other threads are sewn in the same way (fig.
3.14). Where should the last threads pass through the reeds? One
discovers that a thread that does not pass through all reeds, as in
the case of reed 1 in fig. 3.14, is not desirable. Reeds that are
(much) longer than the others, like reed 2, make rolling up the
mat difficult.

Fig. 3.10. Proper position

Fig. 3.11. Approximating a perpendicular position

Fig. 3.12. Boring through a reed with a needle
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Fig. 3.13. Tightening the thread

Fi.g. 3.14. One of the threads does
not pass through all reeds

Fig. 3. 15. Rectangular mat
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This process not only leads to the formation of the concept of
a right angle,4 but gives rise also to a first conceptualization of a
rectangle. The almost necessary rectangularity of the mat (fig.
3.15) facilitates, in turn, the fabrication of other similar mats; as
raw material, one needs reeds with the same length. At the time
of the Paleolithic, there were already needles in use that, apart
from having served for the processing of hides and, perhaps, the
fabrication of collars, may have also been used for mat-making.

One may also arrive at the same rectangular form in other
ways, such as in the case of Chinese mats or the hammocks of the
Yanomama Indians in northern Brazil (Biocca 1980, 152), where
two threads are simultaneously interlaced up and down in such a

Fig. 3.16. Pairs of threads are simultaneously interlaced

way that when one thread goes over the reed, the other passes
under it (fig. 3.16).

The concepts of right angle and rectangle were elaborated
through the practical activity of human beings. Once discovered
and “anchored,” they could be applied to other situations where
no immediate material necessity existed to favor these forms, as,
for example, in the rectangular weaving of strands of (approxi-
mately) the same width (fig. 3.17), where other amplitudes of
angle are possible and indeed are sometimes chosen (fig. 3.18).5



2. Where did the idea of a regular hexagon arise?

Did the idea of a regular hexagon arise from direct observa-
tion—for example, of the honeycombs of bees—or was it the
product of pure thought?

Old cultural elements with a hexagonal form are found in
geographical regions of the world situated far from each other.
For example, the Huarani (Ecuador), the Yekuana (Guyana), and
the Ticuna and Omagua Indians in northwestern Brazil make big
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Fig. 3.17. Rectangular plaiting/weaving

Fig. 3.18. Nonrectangular plaiting
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carrying baskets with hexagonal holes.6 The Pukóbye Indians in
the northeast of Brazil interlace their headbands hexagonally, just
as the Micmac-Algonkin Indians of eastern Canada do with their
snowshoes.7 In the northern coastal zones of Mozambique, one
weaves hexagonally the fish trap called lema and the carrying
basket litenga. Cooking plates with hexagonal holes are plaited in
Kenya, as are ladles used in boiling fruits among the Desana
Indians of the northwest Amazon (see Somjee 1993, 96; Reichel-
Dolmatoff 1985, 77). In Madagascar, fish traps and transport bas-
kets are woven hexagonally, just as the Mbuti (Congo) plait their
carrying baskets (see Faublée 1946, 28, 38; Meurant and
Thompson 1995, 162). Hexagonally plaited baskets are also
found among the Kha-ko in Laos (see photo in Grottanelli 1965,
8), as well as in China, India, Japan, Malaysia, and the
Philippines.8 On the island of Borneo (Indonesia), one meets
hexagonally woven railings; and among the Munda, in India, a
bird trap is interlaced in the same way.9 Can we, perhaps, dis-
cover in the making of these woven objects one possible germ of
the idea of a regular hexagon?

A practical problem that arises in the making of many kinds
of baskets is how one can produce a border that is simultaneous-
ly strong, relatively smooth, and stable. Frequently, a nonsmooth
border is bent (fig. 3.19a), or a separate smooth and firm border
is fastened to the basket, in order to solve the problem (fig.
3.19b). Let us now see how hexagonal weaving solves the same
problem.

Imagine the situation where both the border and walls of the
basket are made out of the same material. To fasten the border
well, one may try to wrap the other strands of plant around the
border strand, as displayed in figs. 3.20, 3.21, and 3.22 for the
case of one strand.

It may be noted that this folding forces the artisans to sym-
metrical forms, whether or not they wish to do so. Initially, they
are probably not conscious of the idea of symmetry, but the
beginning of the concept of symmetry has begun to emerge. One
or two folds only are little use. In the first case (fig. 3.23), the
border strand is free to slide down. In the second case, the border



24 AWAKENING OF GEOMETRICAL THOUGHT IN EARLY CULTURE

b) tray with a smooth, fastened border

Fig. 3.20. One fold

Fig. 3.21. Two folds

a) bending of a nonsmooth border

Fig. 3.19. Basket borders



3. Early Geometrical Concepts and Relationships    25

Fig. 3.22. Three folds

Fig. 3.23. A materially impossible fold

Fig. 3.24. A possible fold that, however, does not lie parallel to the border

loses its limiting function. At least three folds are necessary.
What can our artisans then still freely choose (see figs. 3.26a and
3.26b)? The angle of incidence is still variable. With a relatively
small angle of incidence, the border can come quickly undone.
Therefore, one needs the maximum possible angle of incidence,
realized materially when, at the moment the second fold is made,
one side of the strand touches the other. Figure 3.27 shows that
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Fig. 3.25. A possible and necessarily symmetrical fold

a) small angle of incidence

b) maximum angle of incidence

Fig. 3.27. Maximum angle of incidence of 60º

Fig. 3.26. Angles of incidence



3. Early Geometrical Concepts and Relationships    27

this maximum angle of incidence measures 60° if the border and
wall strands have the same width. If, afterward, other wall strands
are fastened to the border, and one links them together, then one
sees an image like the one in fig. 3.28.

Fig. 3.28. Several strands fastened to the border

Interlacing further the horizontal strands, one obtains auto-
matically a regular hexagonal pattern (fig. 3.29), or, if one skips
over one horizontal strand each time, a regular pattern appears
like that found among the Caraib Indians (fig. 3.30; see also
Kästner 1978, 101). Both weaving patterns are very stable; the
resulting holes are almost impossible to enlarge or reduce.

After this pattern is found in the context of fastening a border,
it proves possible to produce similar interlacing without a border

Fig. 3.29. A regular hexagonal pattern



(fig. 3.31). This plane pattern can be used for the vertical wall of
a basket—for example, as among the Kha-ko for a cylindrical
wall. But if the hexagonal pattern is applied to the bottom of a
basket, what form must this base display? An equilateral triangle,
an isosceles trapezium, and a rhombus belong to the materially
possible forms, as our artisans discover. Nevertheless, as they
know on the basis of their experiences, a convex and symmetrical,
rounder form is more appropriate for making a well-balanced,
handy basket. The hexagonal weaving pattern forces them to
choose the hexagonal form for the whole bottom of the basket.10

The similarity between the small hexagonal holes and the
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Fig. 3.30. A semiregular pentagonal pattern

Fig. 3.31. Starting with a hexagonal hole
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hexagonal base reinforces the growing idea of a regular hexagon
without the basket weaver, as we may assume, being aware, at the
first instance, of the six angles or of the six edges of the holes of
his or her basket.

In a dialectical interplay between the choice of objective
experimentation, and the nature and form of the material used, a
first hexagon concept could have been elaborated (labor!) in the
way I described here. The feeling for order increases. Necessary
for the production of a firm basket with holes is a repeatable, reg-
ular pattern. Through the repeated fabrication of each “cell” of
the basket, the capacity to compare is developed further. The arti-
san may observe, in particular, the congruence of the small
hexagonal holes and the similarity with the hexagonal bottom.
This enables the artisan to see the similarity with naturally occur-
ring hexagons and so to learn to observe hexagonality in
nature—for example, of the honeycombs of bees. In other words,
I should like to stress that the capacity to observe and recognize
order and regular spatial forms in nature has been shaped through
labor activity. But not only the capacity to observe. Simultane-
ously emerges the appreciation of the hexagonal pattern for the
production of firm baskets and sweet honey.

The practical, valuable properties of the hexagonal pattern
and the discovery of similar forms in nature stimulate further
interest in this form as such, and in its characteristic elements
like, for example, the angle of 60°. It cannot, after all, be acci-
dental (a present from God or a product of pure thinking) that the
Ticuna Indians, for whom honey is a welcome extra (Neumann
and Kästner 1983, 42)—we saw already that they make hexago-
nally woven carrying baskets—link hexagonally the two skins of
their drums without any material necessity forcing them to
choose that form (fig. 3.32). The thinking that developed,
enforced by active labor in order to produce something valuable,
has here liberated itself from the “reign of necessity,” since in this
case there is no necessity to opt for an angle of incidence of 60°.
This is an example, early in cultural history, of the emergence of
a relatively independent “mathematical” thinking. The diagonals
and the center of a regular hexagon have been discovered, along



with the relationship between hexagons and equilateral triangles
(see once again fig. 3.32).

How can one weave baskets with
a pattern of holes or open spaces?

The hexagonal pattern can also have been discovered in
another way, where the intention had not been so much the con-
struction of a stable border, but the fabrication of a basket with a
pattern of holes. To satisfy several daily necessities, baskets with
small holes may be preferred: the water can stream outward
through the fish trap, small animals such as birds need sufficient
ventilation when they are transported in baskets, baskets with
open spaces are lighter and need less material for their fabrica-
tion, etc.

The first possibility of making baskets lies in the well-
known process of weaving at right angles over-one-under-one, in
particular, when the strips are relatively thick in respect to their
width (fig. 3.33, so-called wickerwork) as, for example, in some
types of Mozambican sieves. A variant is obtained when one uses
strands of different widths in the two directions, where multiple
strands are twisted together as they pass over the strips with
which they interlock (fig. 3.34, so-called twining). If the strands
at the disposal of the basket maker are relatively thin and wide,
then it would not be easy to weave a strong basket, because the
strands could easy be pushed aside under those conditions.

If this solution of interlacing in two directions at right angles
is not satisfactory because, for example, the holes are too small
or the raw materials are too difficult to find in sufficient quantity,
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Fig. 3.32. Threads that link the top and bottom skins of a Ticuna drum
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the artisan may try to interlace in three directions. How then
should one start? Three mutual arbitrary directions (as, for exam-
ple, in fig. 3.35a), are possible as starting points; but how should
one continue to interlace to obtain an object that does not fall
apart? To avoid the strands moving apart, it is important that the
second strand 4 go in the same direction as strand 1, passing next
to the crossing point of A on the same side as strand 1. When one
interlaces strand 5 in the same manner, one observes that this last

Fig. 3.33. Rectangular plaiting

Fig. 3.34. Twining with strands of different widths
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Fig. 3.35 (a–top, b–bottom).  Experimenting with three directions

strand does not, in general, lie parallel to the third strand (fig.
3.35b), etc. Experimenting, one discovers a regular (fig. 3.29) or
semiregular pattern (fig. 3.36). The Nambikwara Indians of
Brazil start with strands in two directions at right angles, and
interlace strands diagonally in the third direction as in fig. 3.36
(Levi-Strauss 1976, photos 19, 20).
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The practical optimality of the solution can contribute to the
placing of an aesthetic value on the hexagonal pattern and to the
isolation and the elaboration of its generating elements. For
example, the Igbo and Efik in the south of Nigeria use fig. 3.37
as symbol of profound love.

The choice of three “equal” directions, leading to a regular
hexagonal pattern, may have been suggested also by other expe-
riences of production. Indians in South America discovered that
the equilateral triangle is the optimal solution for the support of
an instrument to press out manioc on a fine sieve (fig. 3.38).

Another possibility is found, for example, in Thailand. Here
the solution uses four directions: two principal directions and two
auxiliary directions (fig. 3.39). Once again a regular pattern is
discovered. The form of the bigger holes is that of a semiregular
octagon.

Fig. 3.36. Nambikwara plaiting in three directions

Fig. 3.37. Igbo and Efik symbol of profound love
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Fig. 3.38. Manioc sieve

Fig. 3.39. Regular weaving in four directions
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3. How can one braid strands together?

In many situations where one needs cords, for example, to
bind a bundle of sticks, the individual plant strands are not strong
enough. So there then arises the question if and how with more
strands a better firmness might be achieved. To be able to raise
this question already presupposes the experience that quantity
and thickness are related to firmness—for example, the experi-
ence that over a bridge of three trunks one can drag more load
than over a bridge of only one trunk; or the experience that a
windscreen with thicker branches is firmer than one with thinner
branches.

A first possibility of solving the problem consists of using
various strands above and next to one another, as, for example,
can be frequently observed in the way borders are fastened to a
basket. On the other hand, it is also possible to interlace some
strands into a braid and thereby establish the concept of braiding.
Let us observe more closely this second possibility.

When one starts with only two strands, one may wrap one
around the other as in fig. 3.40; or tighten it more to avoid it

Fig.3.40. Wrapping a strand around another



other. One can start knotting the two strands at right angles, per-
pendicularly, because this relationship already proved itself to be
advantageous in other contexts, or because it enables a simple,
fast knot (figs. 3.42 and 3.43).

36 AWAKENING OF GEOMETRICAL THOUGHT IN EARLY CULTURE

Fig. 3.41. One strand wrapped tightly around another strand

slipping off, as in fig. 3.41. Once more we see that the material
itself requires regularity and symmetry. In many cases, however,
this interlacing does not correspond to the practical demands:
both strands shrink and dilate differently, for example, as a result
of warmth or humidity. For this reason, both strands should be
interlaced in the same manner. How can one do this practically?
In what sense in the same manner?—not to wrap one around the
other, but to interlace simultaneously both strands around each

Fig. 3.42. A side view of a knotted strand
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Now both strands are linked to each other, and they simulta-
neously lie in perpendicular directions. If one next folds arbitrar-
ily one strand over the other, it will be difficult to decide how to
continue the interlacing “in the same manner” (fig. 3.44).

Fig. 3.43. Two strands knotted together perpendicularly as seen from above

Fig. 3.44. How can one strand be folded around another?

Nevertheless, another possibility exists. One may fold the second
strand in such a way that it remains parallel to the first (fig. 3.45).
The perpendicular position can be recovered, folding the first
strand, in the same way, over the second, as in fig. 3.46.
Continuing in this manner, one obtains a braid (fig. 3.47).



The first is in fact a pseudobraid: one strand always lies on
the other. The second braid is already much firmer, but comes
undone when rotated around its axis. The question therefore
arises whether, in view of the lack of success with two strands,
success can be achieved with three strands. Figure 3.48 illustrates
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Fig. 3.45. After being folded, both strands lie parallel

Fig. 3.46. Folding the first strand similarly around the second
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what happens if one interlaces similarly three instead of two
strands. In this active “braiding” labor, the artisans discover the
advantages of an over-and-under alternation to increase the firm-
ness of the braid. 

The braid obtained in this manner (fig. 3.49) is indeed very
firm and, consequently, proves to be very useful for applications
such as the construction of houses or in the weaving of round
mats made out of braided sisal ropes in North Mozambique. 

Practical need forced the working human being to the dis-
covery process leading to the three-strand braid. The regularity of
the over-and-under alternation of the fabricated braid is the result
of creative human labor, and not its presupposition. The real,
existent, practical advantages of the discovered regular form lead
to a growing awareness of this order and regularity and stimulate
comparison with other results of labor. The regularity of the braid
simplifies its reproduction and thus reinforces the consciousness
of its form and the interest in it. With the growing consciousness
and interest, an appreciation of the discovered form emerges.
Simultaneously, the form is also applied where it is not necessary
as, for example, in the braiding of the beards of the pharaohs in
ancient Egypt or in the decoration of bronze objects in Benin and
of wooden cups in Congo (Crowe 1975, 26; 1971, 175)—the
form conveys a sense of beauty.

The successful interlacing of three strands prepares the way
for experiences with more strands. For example, with four

Fig. 3.47. A two-strand braid

alternately over
and under



strands it can become clear that a perpendicular crossing of the
strands is not necessary (fig. 3.50). In practice, however, one sees
that even with more strands, the artisans always choose the same
angle of folding (fig. 3.51); it is the unique angle of incidence that
guarantees that both parts of the strands, before and after the fold-
ing, stay perpendicular to each other. Putting two braids next to
one another, one discovers that such a special angle of incidence
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Fig. 3.48. Three-strand variant
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Fig. 3.50. Nonperpendicular crossing of the strands

Fig. 3.49. Three-strand braid

Fig. 3.51. Special angle of folding



has still another relation to the right angle: this angle is the half
of a right angle (fig. 3.52).

By comparing, one learns to recognize the same angle (45°)
in other situations, for example, when binding together perpen-
dicularly two sticks of equal thickness (fig. 3.53)11 or in the sim-
plest variation (over-two-under-two), where one interlaces at
right angles strands of two distinct colors (fig. 3.54, so-called
twill plaiting or twill work). Here the consciousness of this par-
ticular angle and the interest in it develop further. Thus it cannot
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Fig. 3.52. Particular property of the special angle of folding

Fig. 3.53. Binding together two sticks of equal thickness
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be accidental that the right angle and its half appear so often in
many artistic forms (see some examples from Africa in fig. 3.55).

Using more than three or four strands, one obtains a rectan-
gular mat with a relatively stable border (fig. 3.56). This type of
mat is widespread.

It should be noted that other possibilities exist theoretically,
as, for example, rectangular mats with a nonperpendicular
crossing, where the angles of incidence are different for the

Fig. 3.54. Angle of 45° appearing in over-two-under-two weaving

Fig. 3.55. Angle of 45° in African ornaments

Fig. 3.56. Pattern of a rectangular mat



observed playing a game with these patterns in the sand, the task
being to draw these figures (fig. 3.58) in the sand without lifting
a finger (Torday and Joyce 1911, 198).12

With these reflections in art and in games, early mathemati-
cal thought started to liberate itself from material necessity; form
became more independent of matter, and thus the concept of form
emerges—the way is made free for an intramathematical phase
of development.

The rectangular braiding process we have described is not the
only possible one. Another method that is very suitable for the
fabrication, for instance, of hats (fig. 3.59) and bags is found in
Africa (e.g., Mozambique and Nigeria), in Asia, in Hawaii, and
among Brazilian Indians. The basic braiding angle measures 60°.
Why 60°? An accidental discovery? The result of experimenta-
tion? Or an angle that proved itself already advantageous in other
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Fig. 3.57. Different angles of incidence for adjacent sides of the rectangle

contiguous sides of the rectangle (fig. 3.57). This variant, howev-
er, is not found in practice. Preference is given to interlacing at
right angles.

Upon discovery, the regular pattern (fig. 3.56) provokes, in
turn, further reflection and application. For example, the Kuba in
today’s Congo used this pattern, called mbolo, in the colorful dec-
oration of their textiles and in woodcarving. Their children were
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situations, like, for example, in the production of fish traps with
hexagonal holes? Let us see how one may produce a braid
hexagonally.

The artisan may start with two strands of equal width and
fold one of them once around the other (fig. 3.60) in such a way
that the angle of incidence measures 60°, as we saw in section 2.
When one now folds in the same way the second strand around
the first one, a figure is obtained that enables continuation with
normal over-and-under plaiting (fig. 3.61).

Proceeding on this basis, one can weave several types of
braid. Figure 3.62 presents two examples. A braid like the one in
fig. 3.62a might constitute a stimulus to weave closed mats in
three directions (fig. 3.63), as is common in the Far East. The
zigzag braid in fig. 3.62b is used in Mozambique for the
production of hats, starting first of all in a spiral from the future
center at the top of the hat (see the start in fig. 3.64). The same
zigzag braid is encountered in Kenya, Vietnam, China, and in the

Fig. 3.58. Mbolo patterns drawn in the sand

Fig. 3.59. A hexagonally woven hat
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Fig. 3.60. Start position

Fig. 3.61. The next steps
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Philippines as border ornamentation, e.g., for fans. On Hawaii it
is used to weave a headband called nihoniho (Bird et al., 1952,
39–58). On the Palau Islands (Oceania) the strips of a woman’s
apron are braided in the same way. The same technique was also
used among Indian peoples in South America, e.g., among the
Esmeraldo in Ecuador (Christopher 1952, plate 13) and in
Guyana (Roth 1970, 498–99).

Fig. 3.62. Three-strand braid

a b

Fig. 3.63. Weaving in three directions 



If the angle of incidence was different from 60°, as in fig.
3.65a, then one would arrive at a next position (fig. 3.65b) that
does not permit any further interlacing. In other words, the choice
of the angle was not at all accidental; it was imposed by materi-
als used for weaving. The angle of incidence here necessarily
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Fig. 3.64. The production of a hat starts at the center

a) angle of incidence different from 60°

Fig. 3.65. Angle of incidence incompatible for weaving

b) impossible to continue weaving
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also has to be 60°. From the awareness of this necessity acquired
through the achievement of certain aims arose the human free-
dom to produce hexagonally braided hats, fans, and bags, both
useful and appraised as beautiful.

4. How can one weave a button?

A problem frequently met in basket-making is closing a bas-
ket with a lid. A possible solution is obtained in the following
way. At least two laces are fastened to the lid as in fig. 3.66. An
equal number of buttons are fixed to the wall of the basket. To
close the basket, the laces are pulled around the respective but-
tons. To guarantee that the laces do not come off easily, what will
be the most advantageous shape for the buttons? Practical human
activity leads to the conclusion that a polygonal form is prefer-
able to a round shape. For this purpose, a square shape is used
among the Tsonga in the south of Mozambique (fig. 3.67).

Once the advantage of a square button is discovered and
accepted for its fabrication, the artisan-inventor has the task of
elaborating the successive steps for making a square button. Here
he or she may start with a little square mat. At first sight, one
understands that at least four strands are needed in order to plait
a little mat (fig. 3.68). How may one advance from here and,
without any further material, produce a strong, stable button that
does not easily come undone?

Fig. 3.66. Basket lid with two laces 
Fig. 3.67. Lace pulled around
a square knot



One verifies that it is useful to fold in two the part of a strand
that goes under the part of another strand perpendicular to it,
moving it first upward and then backward in the opposite direc-
tion. If this procedure is followed in the sequence indicated in fig.
3.69, with the folded-down part of the last strand passing under
the doubled part of the first strand, then one obtains a stable
“four-square” knot. If, at the end, one cuts off the protruding parts
of the strands, then the stability would be lost and the knot would
easily unravel. Therefore, the protruding parts are not cut off, but
the previous phase of the production process is repeated, dou-
bling and interlacing the protruding strands. One continues until
one of the strands is finished. Next, one cuts off the protruding
parts of the remaining strands. In this way a button is obtained in
the shape of a block with a square base. 

To avoid the necessity of cutting off some pieces of strand, it
becomes preferable to choose immediately, at the start, four
strands of equal length; the basket weaver puts them in a position
with rotational symmetry (see the examples in fig. 3.70). To
avoid the somewhat difficult interlacing with pairs of strand
parts, an initial position like the one in fig. 3.70c may be pre-
ferred, which makes it possible, after doubling the little parts of
strand, to continue weaving with only the longer parts.
Nevertheless, now there appears another difficulty. The start, that
is the first “layer” of the button, unravels relatively easily. The
Mozambican basket weavers overcome this difficulty by starting
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Fig. 3.68. Starting position



51 AWAKENING OF GEOMETRICAL THOUGHT IN EARLY CULTURE

Fig. 3.69. Using four strands to produce a knot 

Fig. 3.70. Starting position with rotational symmetry

a

b

c
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with two plant strands instead of four. Now they fold each strand
twice, more or less in their middle (fig. 3.71a), in such a way that
both protruding parts of one strand play the same role as two par-
allel strands in the case before. Next, one interlaces on the same
side the protruding parts of strand, thereby building up the suc-
cessive layers of the button (figs. 3.71b and c). The button
obtained in this manner is very firm and stable.13

In the discovery process reconstructed here, several geomet-
rical concepts like congruence, rotational symmetry, and square
were developing and became more deeply understood by the
active human being, the inventor. The proportional relationship
between the height of the button, that is, the number of “layers,”
and the length the strands can be found.

The “double-S” knot, that is, the first “layer” of the button
(figs. 3.71b and c), could also have been discovered or applied in

Fig. 3.71. Two interlaced strands 

a) a strand seen from above and from below

b) seen from below
c) seen from above
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a completely different context. In Kiribati in Micronesia (Koch
1965, 181ff.) and in Tuvalu in west Polynesia (Koch 1961, 148),
it is put on the end of a stem, and with these little “windmills” as
toys in their hands, children run against the wind (fig. 3.72).

Another variant of the same basic idea is met on Nonouti
Island in Kiribati (Koch 1965, 185). When one joins a third
strand to leave the plane of the “double-S” knot, one can fabri-
cate a cube. In this way the exterior of the cubic ball is woven for
the bwebwe game (fig. 3.73).

Fig. 3.73. Ball for the bwebwe game at Kiribati (formerly Gilbert Islands)

Fig. 3.72. Windmills from Tuvalu (formerly Ellice Islands)

5. The concept of a circle

In the practical activity of fabricating objects, people devel-
op forms and continually improve them with increasing adequa-
cy for their daily needs, Humans learn to recognize forms as
such and distinguish not only between form and material, but
also between changes of shape arising from the transformations
due to their labor and the changes in form occurring in nature,
such as the regular waxing and decreasing of the moon, the



building up of a bird’s nest, the centipede rolling itself into a spi-
ral when it feels itself threatened, the web woven by the spider,
etc. The clearly observed changes of form in nature can, in turn,
lead people to new ideas and experimentation. The construction
of a nest may stimulate the idea of a basket. The coiling up of a
centipede (fig. 3.74), some types of flies depositing their eggs in
a spiral (Sauer 1972, 32–33), or the rolling up of a rectangular
mat into a cylinder may have contributed to the idea of the pos-
sible use of a spiral for the fabrication of circular mats from rope
(fig. 3.81).
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Fig. 3.74. Coiling up of a centipede

Fig. 3.75. Spider's web
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The spinning of a web by a spider (fig. 3.75) could have had
a stimulating effect on weaving activity. Various sticks or strands
can be bound together and appear like the skeleton of a cobweb
(fig. 3.76). When one interlaces fibers or strands up and down,
“circling around” in the form of a spiral, starting from the center
where the sticks are bound together, one then obtains a primary
“web” (fig. 3.77). To increase the stability of the “web,” it is nec-
essary to draw the fibers tighter. The homogeneity of the fibers
leads to the need to adjust and equalize the angles between the
sticks. At the same time, one discovers that to produce a rela-
tively flat horizontal “web,” two fibers have to be interlaced
simultaneously, circling around the center in the form of a spiral,
but in opposite directions—that is, when one fiber passes over a

Fig. 3.76. Binding together some sticks

Fig. 3.77. Circling the fibers around the sticks



stick, the other passes under it (fig. 3.78). The “web” becomes
circular. When it is big enough, one may break off the sticks at
the border (fig. 3.79). With increasing experience, the necessity
of choosing sticks of the same length and joining them together
at their midpoints to avoid the necessity of breaking them off
later becomes clear. Emerging in this process is the concept of the
radius of a circle: in all directions the radii are equal; the circle
acquires a center (fig. 3.80). This concept formation may also be
stimulated when making round mats by coiling up a rope of sisal,
where a “center” serves as starting point, and one can observe the
distance between the perimeter and the center (fig. 3.81).
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Fig. 3.78. Improvement

Fig. 3.79. Breaking off the protruding stick parts
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When one folds the sticks upward—as done by Makhuwa
basket weavers in northeastern Mozambique—instead of break-
ing them off at the edge, and continues the spiral interlacing of
the fibers, the spatial figure that emerges, usually a basket, has
the form of a cylinder or a truncated cone (fig. 3.82). Also, as it
happens here, the homogeneous material forces a regular form in
the shape of a cylinder or a cone (constant surface tension).

Once the concept of radius is elaborated, the possibility
arises for a new circular construction, apart from the spiral and
constant-surface-tension methods (figs. 3.81 and 3.83). The new
construction can be applied immediately with a pair of com-
passes wherever equal distance to a center plays an important
role.

Fig. 3.80. “Spiral-radius-circle”

Fig. 3.81. A circular mat made by coiling a braid of sisal (Northern
Mozambique)



One method of drying fish in the northern coastal zones of
Mozambique is to attach the fish to little sticks in the sand at an
equal distance from a fire. That the fish should be “at the same
distance” from the fire when there is no wind is already a result
of experimentation and reflection. How can one ensure that the
fish are “equidistant” from the fire? The spiral method can be
applied, but it is a relatively roundabout way to do so in this con-
text. A basket with the shape of a truncated cone can be closed in
various ways with a lid in the form “spiral circle” (figs. 3.80 and
3.84), its “rotational” symmetry already presenting a suggestion
for the construction of a circle with the help of a “pair of com-
passes.” Figures 3.85 and 3.86 illustrate how fishermen on
Mozambique Island apply this construction to dry their fish.
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Fig. 3.82. A conical basket

Fig. 3.83. Circular bending of homogeneous material
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Fig. 3.84. Various lid positions

Fig. 3.85. Drying fish around a fire at Mozambique Island

Fig. 3.86. Circle construction for the fish drying



The making of a circular fan in the same coastal zone consti-
tutes an interesting variation of the already cited construction
with the help of a “pair of compasses,” as displayed in fig. 3.87.
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a) closed fan              b) opening of the fan                c) opened fan

The discovery of construction with the help of a “pair of com-
passes” can be applied in situations where there is no immediate
necessity for a circular form as, for example, in construction of
houses. Why should a house have a circular base?

In his book on the construction of houses in Southern Africa,
Frescura (1981) sketches the historical development of housing,
from cave shelters and tents to the beehive and cylindrical-
conical house. What he does not elucidate, however, is why, at a
certain moment, a circular base was chosen.

The construction of a type of grass house among the Ngwane
in South Africa may serve as an example of the concrete dialecti-
cal interplay between active life and abstract thinking. Consider a
widely used way of producing round basket bowls that schemat-
ically can be summarized as follows: a woven square mat is fas-
tened to a circular border (see fig. 3.88 and section 8 of this chap-
ter). The border is circular as a consequence of the homogeneity
of the material that was bent; the bottom is interlaced at right
angles, not because it is materially necessary (fig. 3.89 displays
an alternative construction in the form of a spiral), but because it
is an already known way of making mats (transplantation of the
idea). The basket bowl fabricated in this way can also be turned
upside down to cover something (fig. 3.90).

Fig. 3.87. Circular fan
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Fig. 3.88. Schematic display of the production of a type of circular tray

Fig. 3.89. A basket coiled in a spiral Fig. 3.90. Basket turned upside down

Fig. 3.91. Phases in the construction of a Ngwane house

The experiences with basket bowls that are turned upside
down and with the older construction of tents could, upon being
united in human reflection, lead to the idea of an “inverted bowl-
house,” as illustrated by the construction of the house of the
Ngwane (fig. 3.91; see Knuffel 1973) or by the construction of
spiral igloos by the Inuit.



62 AWAKENING OF GEOMETRICAL THOUGHT IN EARLY CULTURE

In the construction of houses, no immediate practical neces-
sity exists either to plait the skeleton rectangularly or to choose
a circular base. These ideas had already been developed in anoth-
er context like the one described above, and were applied here
freed from material necessity. The manner in which the circular
border of a basket bowl is made is not suitable for the construc-
tion of the circular base of a house. On the other hand, construc-
tion with the help of a pair of compasses is much easier, and, in
fact, occurs.

In an analogous way, one may try to sketch the possible
development of ideas that led from the conical basket to the con-
ical hat and to the cylinder-conical house (fig. 3.92).

Fig. 3.92. The idea of the cylinder-conical house

6. The idea of a regular pentagon

Could the idea of a pentagram have been the result of direct
observation—for example, of starfish (fig. 3.93)? Or could it
have been derived from the diagonals drawn in a regular penta-
gon (fig. 3.94)?

Could the idea of a regular pentagon correspond to an intra-
mathematical development of the concepts of the equilateral
triangle, square, and regular hexagon? Or did it always exist,
independent of the real world of objects, in a Platonic world of
ideas?

basket hat house

turning upside
down necessary

cylindrical
support
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The pentagram was the emblem of the Pythagoreans. In
medieval Europe, the pentagonal star was viewed as a protection
for human beings against druids and angry spirits. Why did peo-
ple think pentagons provided such protection? Let us examine the
following practical problem that arises when harvesting cereals
to discover a possible real relationship—and thus not a magical
one—between protection and the form of the regular pentagon.

The kernels of grain are often torn off the stalk with the
hands. How can one protect the hands against cuts during the har-
vest without gloves?

What happens if one tries to weave a “thimble” with a flat
strand from a plant?

Fig. 3.93. Starfish

Fig. 3.94. Regular pentagon and pentagram



It is possible to fold a strand around the finger, but how can
one weave it into a thimble (fig. 3.95)? How can the tip of the fin-
ger be reliably protected?

Certainly it is necessary to join in one way or another both
parts of the strand. Let us remove the strand from the finger and
try to make the simplest knot (fig. 3.96). If one now carefully
tightens the knot, one obtains a figure that simplifies further
weaving (fig. 3.97a). Once proceeding in this way, it turns out
that it is not difficult to continue to interlace the strand, obtaining
a stable and solid thimble closed on four sides; the fifth lets the
finger enter (figs. 3.97 and 3.98). The finger protector made in
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Fig. 3.95. A strand folded around the fingertip

Fig. 3.96. Simple knot
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Fig. 3.97. Interlacing a finger protector

a

c

b

Fig. 3.98. The thimble put on the finger



this manner is pentagonal and regular, not because a God or any-
body else desired it a priori, not because a Pythagorean imagined
it, but as a result of human activity for dealing with the problem
of avoiding cuts on the fingers. The solution of the problem of
producing a finger protector presented itself, and its solution was
found, from the material possibilities.

On the Indonesian island of Roti, regular-pentagonal thim-
bles made out of strands of Lontar leaves are placed on the index
finger and thumb when grains are torn off the stalk (Hirschenberg
and Janata 1986, 263).

The type of problem solved here already appeared very early
in human history when an economy of harvesting emerged during
the end of the Paleolithic and Mesolithic periods in some limited
geographical regions as a result of the appearance of a massive
presence of wild plants. It is thus possible that the solution by
means of a regular pentagonal woven thimble dates from this
period. If this is the case, then the appearance of the regular pen-
tagon in cuneiform tablets from ancient Mesopotamia14 would be
less surprising.

Other weaving and knotting work could also have con-
tributed to the emergence of the concept of a (regular) pentagon.
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Fig. 3.99. The strands of a broom held together by pentagonally woven knots
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The strands of Mozambican brooms are held together by pentag-
onally woven knots (fig. 3.99). Does another reason for the
possible connection between the ideas of “pentagon” and “pro-
tection” reside here?15

The invention of the regular pentagonal, woven thimble may
stimulate playful activities like interlacing various knots on a row
(fig. 3.100a) or symbolic use in traditional Japanese family crests
(fig. 3.101). When one produces six pentagons and joins the first
with the sixth, one obtains a ring, as in fig. 3.100b. In this
continuing experimentation, one has already left the “reign of

a) interlacing various knots on a row

b) ring of six pentagonal knots

c) regular dodecahedron

Fig. 3.100. Symbolic uses of pentagons



necessity,” the reign of immediate material satisfaction of human
necessities. One may now try to weave a “round” closed figure.
With further experimenting and attempts to create a closed spa-
tial object, one discovers, without anticipating it, that there is
only one possibility, the dodecahedron—that is, a solid with
twelve faces of regular pentagons (fig. 3.100c). The liberty to
experiment and find many forms is thus lost; only one solution is
materially possible.

“Knowledge of the dodecahedron by the Pythagoreans in
antiquity is surprising,” writes Wussing, “perhaps related to the
fact that pyrite found in Italy crystallizes in dodecahedrons”
(1979, 47). An Etruscan dodecahedron made out of soapstone
goes back to the sixth century B.C. (van der Waerden 1954, 100).
Dodecahedrons of bronze and iron served as burial goods in
Celtic and Etruscan tombs. Were these dodecahedrons the prod-
uct of pure fantasy? Or did the pyrite crystal serve as model?
Perhaps, however, earlier situations of social activity leading to
the discovery of the dodecahedron, such as the one I described
with the pentagon, might have occurred. If this were the case,
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Fig. 3.101. Two traditional Japanese family crests
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then the Etruscan dodecahedron and the Pythagorean knowledge
would also appear less surprising.16

7. How can one weave baskets with a flat bottom?

Knowledge of the use of the coiling technique to make cir-
cular mats or flat dishes leads almost automatically to the ability
to produce baskets with a round bottom of the desired diameter.
One then sews a spiral upward onto the last spiral of the bottom
(fig. 3.102). As one proceeds upward, the form can be chosen at
will. This choice proves to be free only in a certain measure, as
the coiling method always forces a rotational symmetry on the
vessels when one starts with a circular base (see section 5 in this
chapter).

The coiling technique is reflected in the older pottery tech-
niques, whereby the clay is first rolled into cylindrical bars,
which are then joined one behind another into a spiral. The pot is
then shaped (fig. 3.103), retaining rotational symmetry. The
origin of the symmetry of the pots made in this way lies in the
imitation of the coiling technique from basketry. Although the
clay, as a new material, gave people the liberty to choose other
shapes, their thinking initially remained too influenced by the
basket-weaving tradition to allow the imagination of other shapes
for pot production. Once the restrictedness of this thinking was

Fig. 3.102. Production of a cylindrical basket using the coiling technique

Fig. 3.103. Shaping a pot
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surmounted, new forms could be tested. Completely unforeseen
circumstances, however, forced a return to the traditions of rota-
tional symmetry: sharp-edged vessels break more easily than
round-shaped vessels during firing, unbalanced pots are more dif-
ficult to carry on the head, etc.17 Would not a principal reason for
the relative uniformity of clay pots all over the world lie here?
Should one not look here for an important cause of what some
sociologists call the conservatism of potters (Foster 1961)?
Would not idealistic exaggeration, loosened from societal activi-
ty, become understandable, if one considers that the potters in
southern Mozambique produce circular shapes “instinctively”
(see, for example, Junod 1974, 2:106)?. Furthermore, would the
earlier making of clay vessels with rotational symmetry not have
been a precondition for the invention of the potter’s wheel, rather
than the other way around? Once discovered, the potter’s wheel
for the reproduction of vessels with rotational symmetry became
simplified with increased precision, further stimulating, in turn,
the formation of this symmetry concept.

Fig. 3.104. Bending upward the protruding parts of strand
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Let us return to the question of how one can weave baskets
with a flat base.

We already met the widespread mat-making technique that
consists of interlacing at right angles two groups of strands of
equal width. How can one continue to weave upward to get a bas-
ket with a flat bottom? When one bends upward the protruding
parts of strand (fig. 3.104), a “skeleton” of a basket appears. How
can one now link together the parts of strand protruding upward?
Without auxiliary strands or other material, this is not possible.
But when one interlaces horizontally or spirally new strands with

Fig. 3.105. Block-shaped basket

Fig. 3.106. Adding strands at a corner Fig. 3.107. Shape of a carrying basket

the vertically protruding pieces of strand, a basket in the shape of
a block is automatically obtained (fig. 3.105). The walls are
necessarily perpendicular to the bottom. For example, the cabaz
basket from Portugal is made in this manner (Silva 1961, 53, 76).
If one joins some extra vertical strands at the four corners (fig.
3.106), then one gets a more spacious basket, like the common
carrying basket in southern Mozambique seen in fig. 3.107.

The symmetries of the base reflect themselves in the partic-
ular shape of the labor product almost independently of the will



of the artisan—almost independently, as the artisan still has the
liberty to choose the number of auxiliary strands at the four cor-
ners. Once given the preference for an equal number of strands at
all four corners, then the two line symmetries of the rectangular
base generate two bilateral symmetries in space (fig. 3.108).

In this basketry labor, several symmetry concepts are further
developed: a certain connection between equality of quantities of
strands at the corners and “form equality” or symmetry properties
of the produced basket.
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Fig. 3.108. Two perpendicular planes of symmetry

Fig. 3.109. Folding a rectangular part
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On the other hand, the question arises whether it is possible,
with this same technique of interlacing at right angles, to weave
baskets with a flat bottom at once without auxiliary strands?
Obviously, such a possibility arises not just with the protruding
vertical pieces of strand (fig. 3.104), but when more parts of the
already plaited base are bent in the same direction. But which
parts?

Fig. 3.110. Bending the triangles to form the bottom

form of the bottom

bending the triangles

original rectangle

When one folds a rectangular part, then once again it
becomes possible to make a block-shaped basket (fig. 3.109).
One can, however, fold a triangle upward, rather than a rectangle.
This has to be done simultaneously with four right triangles at the
corners, with adjacent hypotenuses (fig. 3.110); otherwise one
would obtain a basket with rather big holes.

In principle, it proves to be possible to make baskets with
such an irregular base as in fig. 3.110, even if one demands that
the wall should be interlaced at right angles. Initially, when the
walls are woven, the basket becomes still more irregular than the
bottom. Where the interior angles are acute, the basket leans
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outward; where they are obtuse, the basket leans inward.
Moreover, the more obtuse the interior angle, the more difficult
it is to weave the corresponding part of the wall. This experience
may lead our hypothetical artisan to search for equal interior
angles, as acute as possible. The artisan then finds that the angles
should be right angles, that is, the inscribed quadrilateral must be
a rectangle.

As was already noted, the basket would initially tend to
become even more irregular than its bottom. But with further
weaving upward, its shape becomes ever more regular; it
becomes cylindrical (fig. 3.111). To guarantee an upright basket,
one may now try to choose a more balanced, more regular form
for the base—at least a rectangle. In this way, once more, the arti-
san arrives at the conclusion that the inscribed quadrilateral has
to be a rectangle.

When one starts with an arbitrary rectangle, it is generally
not easy to inscribe in it another rectangle. This stimulates the

Fig. 3.112. Rectangles
inscribed into a square

Fig. 3.111. Basket with a
nonrectangular bottom

artisan to choose the initial rectangle as balanced as possible—a
square. Now many inscribed rectangles turn out to be possible,
with sides making angles of 45° with the initial square (fig.
3.112).18

Our hypothetical artisan could have arrived at the same con-
clusion also in another way. Perhaps the artisan was already
acquainted with angles of 45° in another context—for example,
the three-strand braid. Or the artisan, skipping almost all the
phases of experimentation that I sketched, chooses a square as
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the initial rectangle, on the basis of personal or societally trans-
mitted experience and related formation of aesthetic-utilitarian
values, and doubles up such triangles so that the bottom of the
basket to be produced becomes a rectangle or even a square (fig.
3.113).

Consider cylindrical baskets with axes perpendicular to the
bottom. When the basket is woven upward, the rectangular or
square form of the base is, independently of the will of the arti-
san, naturally suppressed; the most homogeneous closed curve,
the equipotential curve—that is, the circle—carries itself through
cylindrically. In regions of the world situated far from each other,
such cylindrical baskets with square bases may be encountered.
They are found, for example, among the Carajá, Timbira, and
Guajajara Indians of eastern Brazil;19 among the North American
Cherokee and Chitimacha Indians (Mervin 1919); on Borneo and
Lombok (Indonesia); in the Philippines and in Laos (see photos
in LaPlantz 1993, 24, 47, 65); and among the Makonde of north-
ern Mozambique (see also section 8 in this chapter).

A similar process can be observed in the case of interlacing
in three directions at angles of 60°. To make the upward weaving
easier, the artisan has to choose “automatically” a regular hexa-
gon as the base. This time, the circle supersedes the hexagonal
bottom. One obtains a cylindrical basket with hexagonal base
(fig. 3.114), as is produced, for instance, in the Philippines. If one

Fig. 3.113. Cylindrical basket with
rectangular bottom

Fig. 3.114. Cylindrical basket with
hexagonal base 



does not add horizontal strands for weaving the wall, then the
basket will display rhombic holes on its wall.

Vessels often acquire the form of a cylinder, cone, or other
symmetrical shape. At first sight, this may appear the result of
instinctive impulses or of an innate feeling for these forms or—
in another idealistic variant—as generated by a collective
“cultural spirit” or as an imitation of natural phenomena. People,
however, create these forms in their practical activity, to satisfy
their daily needs. They elaborate them; they work them out. The
understanding of these forms develops further through the dis-
covery, reproduction, and social transmission of the methods for
the fabrication of baskets and other objects. This understanding
grows in the struggle with the material being used to produce
something useful: bows, boats, hand axes, baskets, pots. This
growing comprehension already won a certain independence
very early in history. In fig. 3.115 one sees an artistic composi-
tion of a cave bear. This Neanderthal construction, found in the
Drachenloch cave in Switzerland, demanded “from its creator,
independently of its simplicity, rather precise images of order and
symmetry,” as Panow underlines (1985, 69). Simultaneously, this
composition shows that its creator had already learned to
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Fig. 3.115. Composition of the cranium and bones of a cave bear

Fig. 3.116. Ndona lip ornament
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recognize symmetries in nature. The continual recourse to the old
and new practical advantages of symmetrical forms contributed
to their aesthetic appreciation and to their application even where
they were not necessary or immediately useful, as, for example,
in the case of the cylindrical ndona lip ornament among the
Makonde (fig. 3.116).

Fig. 3.117. Fastening the edges of the mat at their midpoints

8. The origin of some plaiting patterns and a unit for the
measurement of volume

Already in section 5 we met a sort of basket bowl called ungo
among the Swahili or chelo among the Makonde that is wide-
spread, at least in eastern and southern Africa (Stuhlman 1910,
4). It is used as a sieve or as a dish for food. Corn is shaken onto
it to scatter the chaff before the wind. How do the artisans make
such a useful basket bowl?

The weaver starts by plaiting a square mat. To produce the
border of the basket, a wooden board is bent and its two ends are
bound one to another. Now the artisan fastens the sides of the mat
at their respective midpoints to the border (fig. 3.117). Then the
weaver wets the mat to make it more flexible, and with a foot
presses the mat uniformly inward (fig. 3.118). To finish, the
weaver cuts off the protruding parts of the mat and fastens the
rest of the bottom to the border as, for example, in fig. 3.119.

The border of the chelo basket is necessarily circular as a
consequence of the homogeneity of the bent material. The per-
pendicularly woven mat has to be a square. Experience shows



that if the mat were not square, it would be more difficult to fas-
ten it to the border, and the basket would fall over rather easily.
To be able to round the mat, it is necessary that the basket weav-
er fasten it at four sides and not at two or three. Here, experience
plays an important role: the sides should not be fastened to the
border at arbitrary places, but exactly at their midpoints. Were
this not to be done, then practice shows that it becomes more dif-
ficult to round the mat on the shortest end; the distortion of the
initial right angles between the plant strands becomes greater.

How can the weaver guarantee that the mat really acquires a
square form? How does the weaver determine the midpoints of
the sides?
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Fig. 3.119. Part of the bottom fastened to the border

Fig. 3.118. Pressing the mat uniformly inward
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The artisan may use the palms of his or her hands to compare
the lengths of the sides, or count the number of strands in each
direction and compare the numbers. Another type of solution
seems to be more common: the midpoints of the sides are not
determined after weaving the mat, but before. The artisan from
the outset makes visible in one or another manner the line seg-
ments that will link the future midpoints of the opposite sides of
the square mat (fig. 3.120). Two basic methods are used,
sometimes simultaneously, as in fig. 3.121.

Fig. 3.121. Center of a square mat

Fig. 3.120. Line segments
that link the midpoints of
the opposite sides of the
square mat

In one method, a middle line is characterized by means of
change in the coloring, whereas in the other method, the manner
of plaiting is modified. Plaiting out from the center in this way,
the artisan can observe more easily whether or not the mat is real-
ly becoming square—the middle line helps the eye.

Another possibility consists in a systematic step-by-step
“plaiting around the center,” as fig. 3.122 illustrates. If, on the
contrary, the artisan interlaces two different colors permanently
in orthogonal directions, then the colored plaiting pattern can
give so much support that rigorous counting or measuring
becomes completely superfluous (see the examples in fig. 3.123).



The pattern does not allow any doubt about the squareness of the
mat. Moreover, the midpoints of its sides are immediately recog-
nizable.

The efficiency of these colored plaiting patterns contributes
to their being viewed as beautiful in the society in which they
arose. They become an aim in themselves and lead to new
experiments with colored plaiting patterns. The weaver discovers
new variations of form. Figure 3.124 presents some centers of
square mats, and fig. 3.125 shows some examples of basket
bowls. Once the designs are discovered, the artisan can also
apply them to other weaving techniques, where the production
process does not require a search for new forms. The color
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Fig. 3.122. Systematic plaiting around the center
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variations are emancipating. They become ornamental. Initially
transferred from one type of basket to another, they may liberate
themselves further from the original concrete context and finally
find a new expression in other materials—for example, in the
decoration of clay pots or wooden objects (see the examples in
fig. 3.126).

center of mat

Fig. 3.123. Two examples of colored plaiting patterns

basket seen
from above

sketch of the
square mat

center of mat

sketch of the
square mat

basket seen
from above

b

a
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d) Kenya

a) Vietnam b) China c) Angola

Fig. 3.124. Examples of centers of square mats

f) Halmahera (Indonesia) g) Chitimacha (Louisiana, USA)

e) Kenya
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Fig. 3.125. Two circular trays from Guyana (seen from above)

Fig. 3.126. New expression in other materials. a) woodcarving (Angola), 
b) ceramic decoration (Cameroon), c) woodcarving (Cameroon)

a
cb

Fig. 3.127. Basic structure of a circular tray

When one observes a chelo basket from above, two perpen-
dicular diameters are visible. The resulting figure (fig. 3.127)
gives rise to many artistic activities (see the examples in fig.
3.128).

In section 7, we saw how after folding four congruent isosce-
les triangles upward, artisans weave a cylindrical basket with a
square base. The Makonde of northern Mozambique produce



their likalala basket in this way. How do the likalala weavers
know that their mats are square and locate the midpoints of the
sides of the square mats? In other words, they have to solve
essentially the same problem that we encountered with the chelo
basket bowl. The artisan first plaits both line segments that have
to link the midpoints of the opposite sides of the square mat, that
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is, the diagonals of the future square base of the basket. The fol-
lowing procedure is used (Dias and Dias 1964, 139). With two
groups of six strands of the same width, the weaver fabricates the
center of the mat (fig. 3.129). The center displays a double
bilateral symmetry. The center is called yuyumunu, that is, the
mother who generates the mat with indication of the desired ele-
ments. After the center, the middle lines are woven by partial rep-
etition of the “center-mother”: each time four strands are inter-
laced (fig. 3.130, where four groups have been interlaced around

Fig. 3.129. Center of the bottom of a likalala basket

Fig. 3.128. Woodcarvings from Madagascar
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Fig. 3.130. Second phase

the center—one on the left, one on the right, and one above and
one under the center). If the number of these repetitions in each
of the four directions is equal, the mat, after the weaving is fin-
ished, will be square.

Once the middle lines are woven, the mat is completed quad-
rant by quadrant (figs. 3.131 and 3.132).

The direct counting of the strands has been avoided here. The
artisan only counts the number of repetitions: the strands are thus
grouped in sets of four. Perhaps these or similar experiences have
contributed in earlier phases of cultural development to counting
with 3, 4, 5, or 6 as base.

This way of producing mats starting with the “mother”
enables standardization of the likalala baskets. As soon as the
corresponding societal need arises, this possibility can be real-
ized, as indeed happened among the Makonde. For example, it
became necessary to know the yield of corn, sorghum, beans,
etc., in order to decide what part could be used for exchange. The
yield is measured in likalala-units by pouring the corn or
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Fig. 3.132. Completion of the four quadrants

Fig. 3.131. Completion of the first quadrant
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sorghum into a grain silo. In the case of the likalala basket, the
basic pattern is repeated five times; the strands have a width of
approximately 16 mm. Once the base and the height of the basket
are standardized, one obtains the likalala-unit for the measure-
ment of volumes (approximately 50 liters). A smaller unit for the
measurement of volumes is the ipichi basket, which has the same
shape (approximately 13 liters), where the basic pattern is repeat-
ed only four times; the strands are also smaller, approximately 9
mm (Guerreiro 1966, 17).

The plaiting patterns that appear in the making of the chelo
and likalala baskets can be used and elaborated not only in art,
but also in geometry, as suggested, for example, by some draw-
ings in cuneiform texts from ancient Mesopotamia (fig. 3.133;
see Neugebauer 1935, 139, 140).

Fig. 3.133. Some drawings in cuneiform text from ancient Mesopotamia

9. How can one determine the rectangular base of a building?

The hypothesis presented by Moritz Cantor, according to
which land surveyors and “cord-stretchers” in ancient Egypt laid
out the right angles of the bases of their temples and pyramids
with the help of a rope with 3 + 4 + 5 = 12 knots (1922, 105–6)
is copied in ninety percent of the books as if it were a “univer-
sally known fact” (van der Waerden 1954, 6). No evidence exists,
however, that mathematicians in ancient Egypt were aware of
this possibility, which is based upon the relationship that we des-
ignate today as the Theorem of Pythagoras (Gillings 1982, 238,
242). The determination of the base of a temple in a solemn cer-
emony is described by Kurt Vogel: “The orientation was realized



by means of determining the direction of the north with the help
of the Great Bear. . . . Nothing was said about how the second
basic direction perpendicular to the meridian was found” (1959,
59, 60). Why was this not explained? Perhaps it was already such
a well-known construction that it did not seem worthwhile
describing. What type of construction could have been so well
known at that time?
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Fig. 3.134. In several zones of Mozambique, a rectangle of bark is cut off a
tree to make a cylindrical vessel to store food.

Examples of early knowledge about rectangles

With the emergence of agriculture began a new phase in the
construction of houses. The sedentary mode of life made it possi-
ble to construct bigger and more durable houses. In Hacilar in
western Anatolia and Çatal Hüyük in central Anatolia (now
Turkey), houses with assorted rectangular rooms were already
being built in the eighth millennium B.C. (Herrmann 1984, 1:173,
335). The rectangular form itself—for example, rectangular
mats—and its use (e.g., fig. 3.134) probably reach back to much
earlier times (see section 1). What knowledge about rectangles
could have been acquired from this experience?

From the production of rectangular mats, it almost immedi-
ately follows that their opposite sides have equal length; on the
one hand, all the reeds are of equal length and, on the other hand,
their number does not change when one goes from one side to the
other (fig. 3.135). When one folds a mat at its middle, the result-
ing mat has half the length; when one turns the mat over by rotat-
ing it about one of its sides—length or width—it still occupies the
same place. In other words, the rectangle has two axes of
symmetry (fig. 3.136). Whether other conclusions are drawn
from the symmetry of the rectangle—for example, that its
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Fig. 3.135. Reeds of equal length.

reeds of equal length

same number of reeds 

first symmetry axis.

second symmetry axis

turning the mat around over its width

turning the mat around over its length

Fig. 3.136. The symmetry axes of a rectangular mat

folding a mat at its middle



One often stores ropes or threads by wrapping them up
around some crossed sticks (fig. 3.139). In this way knots are
avoided. This experience clears the way for an interesting toying
with threads. When one coils the thread around two crossed
sticks and, upon arriving at a stick, straightens it between the two
sticks, the thread—unanticipatedly and independently of human
will—forms a rectangular “thread cross” (fig. 3.140). Looking at
the result, the person doing this concludes that the four stick radii,
after having been broken off at the corners of the rectangle, have

diagonals have the same length (fig. 3.137)—will probably
depend on the experiences with symmetry in the particular
cultures.

When mats of the same size are put next to one another—for
example, when eating, working, or sleeping, as in fig.
3.138—bigger rectangles are obtained. This already gives the
possibility of determining the rectangular base of a building.
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Fig. 3.138. Joining mats of the same size

Fig. 3.137. Discovering that the diagonals have equal length
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Fig. 3.139. Coiled rope

Fig. 3.140. Rectangular thread cross

Fig. 3.141. Center of rotation of a rectangle

the same length and that the threads run around them the same
number of times.

It can be discovered not only that the diagonals of a rectan-
gle are equal, but also that they intersect at their midpoints and
that the rectangle has a center of rotation (fig. 3.141). And if,
besides this, one has already appropriated the concept of a circle

as a set of points (in the same plane) equidistant from a center,
then it can be discovered that the vertices of a rectangle are
situated on a circle whose center coincides with the center of the
rectangle, leading to the fundamental figure of Thales of Miletus
(fig. 3.142).



If the two sticks were initially crossed perpendicularly, a
square will result automatically and independently of the will
(fig. 3.143), like, for example, the thread crosses among the
Guajajara Indians in northeastern Brazil (Neumann and Kästner
1983, 36),21 among the Marind-anim in Papua New Guinea (Wirz
1978, 82), and among the Garadjeri in northwestern Australia.22

The Guajajara thread square served as a toy and represented the
wings of a bat. These wings could never have been the model for
the thread square; on the contrary, only the created thread cross
could have enabled human beings to compare and interpret it as
the wings of a bat. Not only were interpretations enabled, but also
new knowledge could be acquired:

a) If the diagonals of a rectangle are perpendicular to each
other, then the rectangle will be a square, or, inversely, the
diagonals of a square intersect each other perpendicularly;

b) the diagonals of a square are of equal length and intersect
in their midpoints;
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Fig. 3.143. Square thread cross

Fig. 3.142. Thales’ fundamental figure
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c) the vertices of a square lie on a circle whose center coin-
cides with the point of intersection of the diagonals.

The last conclusion could have been drawn by the Guajajara
Indians and other populations also on the basis of their cylindri-
cal baskets with square bases.

We already met another relationship between rectangles and
cylinders: a rectangle of bark was sewn into a cylindrical vessel.
New relationships may be discovered in the making of baskets
and handbags. The Tsonga-speaking population in the south of
Mozambique fabricate their huama or funeco baskets as follows.
Two strands of palm leaf are knotted together, pentagonally, as
illustrated in fig. 3.144.23

Let us observe this pentagonal knot more closely. The
strands protrude on three sides; on two sides the knot is closed.

Fig. 3.144. Knotting together two strands

When flattened (for example, when made from paper), it takes
on a semiregular shape with angles of 108°, 90°, 90°, 126°, and
126° (fig. 3.145a). In it is hidden, however, the regular pentagon
and pentagram. If one interlaces such a knot with two relatively
wide and thin strands and holds them up in front of the light, a
regular pentagon and an almost complete pentagram appear at
the same time (figs. 3.145b, 3.146) Does an alternative birth-
place for the pentagram lie here?

To make huama and funeco baskets, one joins not two
strands, but two pairs of strands (fig. 3.145b).24 The result is
shown in fig. 3.146: a pentagonal knot made of four strands.



Now the artisan plaits these groups of four strands almost per-
pendicularly and in accordance with the “over-two-under-two”
weave. A mat is obtained (fig. 3.147), but the weaver does not
continue indefinitely. The border of the mat is bent into a circle;
the first and the last knot become neighbors. Thereafter the bas-
ket maker continues to weave normally. In this way, one obtains

94 AWAKENING OF GEOMETRICAL THOUGHT IN EARLY CULTURE

Fig. 3.146. Knotting together four strands

Fig. 3.147. Flat mat with border of pentagonal knots

Fig. 3.145. Structure of the pentagonal knot

ba
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almost automatically a cylindrical wall. When the wall is suffi-
ciently high, the series of knots at the underside is folded inward;
one compresses the cylinder and sews together the two halves of
the series of knots (fig. 3.148). The cylindrical form disappears
and a flat rectangular handbag emerges.

Fig. 3.148. Folding the knots inward, compressing and sewing the two sides
at the bottom

Fig. 3.149. Conical wall and trapezium-shaped bag 

Most probably, when this handbag form was discovered,
there had been no intention beforehand to give it a rectangular
form. The cylindrical shape that, in turn, replaced the plane mat
was necessarily replaced by the rectangular shape of the final
bag—it had to be closed at the underside. Use of strands that
become gradually narrower, instead of strands with parallel
edges, would have first resulted in a conical wall and, upon being
closed at the underside, the bag would take on the shape of a tra-
pezium (fig. 3.149). Possible ways of finishing this type of bag
are shown in fig. 3.150, with two handles or with cover in the
same form and a shoulder strap. As the figures already show,
strands of different colorings are commonly used in such a way
that diagonal bands become visible. Because of symmetry or
because all strands have the same length, it can be shown that
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a b c

Fig. 3.151. Recognizing diagonals of equal length

both diagonals of each rectangle and of each isosceles trapezium
have the same length (fig. 3.151).

Similarly, other knowledge can be acquired—for example,
that the segments that link the vertices of two neighboring angles
of a rectangle with the midpoint of the opposite side are congru-
ent (fig. 3.151c). The interest in the rectangle with its diagonals
is reflected in ornaments on ceramics not only in Mozambique,
but also, for example, in the so-called “beaker-culture” at the end
of the third millennium B.C. in west and southern Europe (van der
Waerden 1983, 34).

Examples of the construction of rectangles

The interest in the rectangle and its diagonals is not only aes-
thetic, but, above all, also practical. If the opposite sides of a
quadrilateral are equal and if its diagonals are also equal, then the

Handbag               opened shoulder bag       closed shoulder bag

Fig. 3.150. Hand and shoulder bags
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quadrilateral is a rectangle. This “inverted” knowledge gave
peasants of several regions of Mozambique and elsewhere, like
the Kpelle of Liberia (Gay and Cole 1967, 61), an easy method
for laying out the rectangular bases of their houses.

Vogel formulates the hypothesis that the ancient Egyptians
might have used the carpenter’s square (fig. 3.152) or might have
realized the well-known construction based on the equilateral
triangle to fix two perpendicular directions (1959, 60). The meth-
ods suggested by Vogel have the disadvantage that they have to

Fig. 3.153. Table skeletons from the tomb of Tutankhamum

Fig. 3.152. Carpenter’s square 

be applied three times to construct a rectangle. The method of
comparing diagonals of a parallelogram has the advantage of
leading simultaneously to the four internal right angles. The sym-
metric skeletons of a table in the tomb of Tutankhamun (ca.
1346–1336 B.C.) allows me to suppose that the artisans of ancient
Egypt certainly knew that the diagonals of a rectangle are of
equal length (fig. 3.153). Perhaps they knew the method of com-
paring diagonals or a procedure like that used by the Kwakiutl
Indians of Vancouver Island. The Kwakiutl determined the
square base of their houses in the following way. From point A
that was to become the midpoint of the front side of the house,



they stretched a rope to the midpoint B of the rear side (fig.
3.154). Then they divided the rope into two halves and stretched
it from the first point A, the first half of the rope being stretched
leftward (endpoint C) and the other half rightward (endpoint D).
Then, with the help of a second rope they compared the distance
between C and B with the distance between D and B, and, if nec-
essary, they adjusted the positions of C and D until BC and BD
were equal. Once arrived at this equality, they had found the ver-
tices of the front side. In the same way they found the vertices of
the rear side (Struik 1948, 48; Seidenberg 1962b, 521–22).
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Fig. 3.154. Kwakiutl procedure

With a slight modification, the Kwakiutl method can also be
applied to the construction of rectangles that are not square.23

The Kwakiutl method and the method of comparing diagonals
can achieve a high precision, in particular when the dimensions
of the sides of the base are relatively big, as they were, for exam-
ple, in the case of the pyramids of Gizeh in ancient Egypt. These
methods present, however, a disadvantage that becomes increas-
ingly problematic as the distances become larger: one has to
walk quite a distance back and forth with the ropes to compare
the distances. To avoid this inconvenience, one might work
simultaneously with two ropes instead of only one. But in these
circumstances, the awareness of the need to make comparison in
another way arises: measurement! Once a measurement is nec-
essary, there might then emerge another reason to compare the
lengths of the sides and diagonals of rectangles. If this was the
case, then it becomes more understandable why it is that
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Pythagorean triplets appeared for the first time in an ancient
Mesopotamian text, “Plimpton 322,” written during the dynasty
of Hamurabi, about 1800 B.C. These triplets refer to the length,
width, and diagonals of rectangles (van der Waerden 1983, 2).

It is also possible, nevertheless, to construct rectangles of
large dimensions without making measurements. The experience
of the Guajajara Indians with their thread square could have led
to the following determination of a rectangle: when one stretches
simultaneously two ropes of equal length that are attached to one
another at their midpoints, the endpoints then constitute the ver-
tices of a rectangle (fig. 3.155). In some zones of Mozambique
this is the way the peasants lay out the rectangular base of their
houses.

Fig. 3.155. Rectangle construction

NOTES

1. See Leroi-Gourhan 1983, 83, on the importance of the choice of the hew
direction.

2. See photos in Grottanelli 1969, 3:227, 231, 236–37.
3. See photo 1 in UNESCO 1983, 15. See also, for example, Weule 1970,

196 (East Africa). Softwood on exhibit in the Egyptian Museum (Cairo) shows
that also in ancient Egypt the fire drill was rotated at a right angle to the soft-
wood.

4. Hauser writes: “The right angle is already therefore one of the oldest geo-
metrical concepts, as it emerges out of the vertical position of the human being
when standing.” Would humans not have become aware of the perpendicular
character of this vertical position in relation to the ground after they have
already elaborated through their activities an image of “perpendicular to one
another” (1955, 11)?

5. For example, to weave a Hawaiian straight-edged headband, the strands
are woven at an angle of 60° (see Bird et al. 1982, 59–69).



6. See, e.g., Guss 1989, 73; Roth 1970, 320-43; Neumann and Kästner
1983, 8, 43, 93; Mason 1904, 488, plate 240, for other examples from Brazilian
Indians.

7. See photo in Grottanelli 1965, 45 (cf. also Mason 1904, 275). Baskets
plaited in open hexagonal weave also appear among North American Indians—
for example among the Delaware and among the Mashpee in the northeast (see
photos in Turnbaugh and Turnbaugh 1986, 17, 19).

8. See, e.g., Ranjan et al. 1986, Dunsmore 1983, and Lane 1986.
9. See photos in Bodrogi 1978, 17, and Icke-Schwalbe 1983, 82. Other

examples may be found, for example, in Roth 1970, 1:362; and Faublée 1946,
19, 28, 38.

10. See the description of the making of hexagonal baskets in Guyana in
Roth 1970.

11. A frequent situation in the building of houses. Cf. the figures in Denyer
1982, 100.

12. For a reconstruction of the sand-drawing tradition in Africa south of the
equator, see Gerdes 1994, 1995, 1997. Deacon (1934) described comparable
drawings from Malekula (Oceania); cf. also Ascher (1988a; 1988b; 1991, chap.
2).

13. This “double-S” knot was also the distinctive start of basketry among
the Pima and Papago Indians in Arizona (Whiteford 1988, 121).

14. For example, on the tablets from Susa (Bruins and Rutten 1961;
Neugebauer 1970, 47).

15. Further examples of fivefold symmetry and (basket) weaving in various
cultures are given in Gerdes 1992.

16. The woven sepak raga ball with its twelve pentagonal holes (Dunsmore
1983; Gerdes 1992) would be another possibility.

17. In his history of geometry, Mainzer remarks in this respect: “Regular
pottery products with cylindrical or spherical shape prove themselves to be
more stable and saving in the use of material” (1980, 19). More stable, yes. But
how could one in practice have discovered that these shapes saved material?

18. Nonsquare rectangles are occasionally applied, for example, by the
Chitimacha Indians in Louisiana (Mason 1904, plate 133) and by the Arawak
Indians in Guyana (Mason 1904, plate 239; Roth 1970, plates 116, 117).

19. Neumann and Kästner 1983, 16, 24, 54.
20 Another example is provided by several zones of Mozambique, where a

rectangle of bark is cut off a tree to make a cylindrical vessel for storing food
(see fig. 3.134 on p. 88).

21. See Albaum 1972 on the making of thread crosses among North
American Indians.

22. Exhibited, for example, at the Berlin Ethnographic Museum.
23 See also the making of sipatsi handbags in Mozambique’s Inhambane

Province (Gerdes and Bulafo 1994).
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Chapter Four
Societal Activity in the Formation

of Ancient Geometry

1. Did geometry have a ritual origin?

According to Abraham Seidenberg, the dominant tendency in
the historiography of mathematics prior to the 1970s viewed
classical Greece as the source of the geometric or constructive
tradition, and ancient Babylonia as the source of the algebraic or
computational tradition in the history of mathematics (1978,
316). Seidenberg criticizes this view: “What are regarded as the
two main sources of Western mathematics, namely Pythagorean
mathematics and Old-Babylonian mathematics, both flow from a
still older source” (1978, 329). Where may this older common
source be found? This common source is to be sought, in his
opinion, either in the oldest Indian—that is, Vedic—mathematics,
or in a still older mathematics very much like it (329).

The Sulvasutras—that is, “cord rules”—give procedures of a
geometric character for the construction of altars of various
shapes, using cords and bamboo sticks. The shape of the altar
depended on the ritual. There were square altars, circular altars,
and also falcon-shaped altars. The basic falcon-shaped altar had
an area of 7½ square purushas. The same shape was also required
in the construction of larger altars, for the same ritual purpose,
with areas of 8½, 9½, etc., square purushas. In order to solve
these construction problems, one actually used explicit knowl-
edge of the Theorem of Pythagoras for finding a square equal in
area to two given squares. From this, Seidenberg concludes in his
paper “The Ritual Origin of Geometry” that “in the successive



augmentations of the falcon shaped altar, not only is the Theorem
of Pythagoras used, but we see, in all likelihood, the motive of its
invention” (1962b, 492; emphasis added). On the same page of
his article, however, Seidenberg contradicts himself when he rec-
ognizes that “the observation that in a right triangle the square on
the hypotenuse is the sum of the squares on the legs would have
an immediate theological application” (emphasis added). What
now? Motive or application? How could the Vedic ritualists,
questions Seidenberg, seize the Theorem of Pythagoras from
Greece or Babylonia and make it a vital part of their solemn rit-
uals? The reverse process, that is, the secularization of a ritual
practice, would be much easier to understand (501). In other
words, Seidenberg decides finally for “motive.”

In section 3, I shall return to the discovery of the Theorem of
Pythagoras and try to show that it is not necessary to look for the
cause of its discovery in theological speculations. I would now
like to pose another question. Even if Seidenberg were right, and
the Theorem of Pythagoras and the classical problems of “squar-
ing the circle” and of the “duplication of the cube” were born as
a kind of theological geometry from a ritual praxis (Seidenberg
1962b, 520), would this prove at the same time that the birth of
all geometry was in ritual?

Maybe as an answer to this or to a similar question from one
of the referees of the Archive for the History of Exact Sciences,
Seidenberg closes his famous paper with a very short ethno-
graphic section. In Madagascar, a ritual personage called
mpanandro lays out the foundations of a house, square in shape;
he finds the center as the intersection of the diagonals. The way
of laying out the lines of a square house by the Kwakiutl of
Vancouver Island (see chap. 3, sect. 9) is very reminiscent of the
Sulvasutras. The Omaha Indians considered sacred the circular
form of their houses. The Chavante Indians of Brazil have their
houses in a perfect circle, and “as this shape could have no use-
ful purpose,”—very doubtful!—“its origin in ritual is indicated”
(1962b, 522; emphasis added). And then, without any further
proof, Seidenberg concludes that “the circle and the square arise
from ritual activities” (523). Here, however, Seidenberg became
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a victim of his own prejudice—my research has shown that many
early geometrical forms are materially necessary. Or is matter, in
Seidenberg’s view, also of ritual origin?1

Seidenberg’s attempts to demonstrate the ritual origin of
geometry are not isolated. In an analogous way, he strives to
prove the ritual origin of counting (1962a). He admits without
any hesitation that his studies are “intended as a contribution to
the general theory that civilization had a ritual origin” (1). This
theory is closely related to the theory of diffusion of culture,
according to which various widespread practices and beliefs may
be explained on the basis of diffusion, in general from one unique
center of birth. Thus, Seidenberg concludes in relation to count-
ing that “counting was invented in a civilized center, in elabora-
tion of the Creation ritual, as a means of calling participants in
ritual onto the ritual scene, once and only once, and thence dif-
fused” (37; emphasis added). 

A footnote by the translator of the Russian edition of Struik’s
Concise History of Mathematics reads, “Readers may judge for
themselves how improbable it is that counting among all peoples
has a common origin, considering the isolation of prehistoric
communities and the evident inequality of the development of
counting among various peoples, and the fact that among one and
the same people different words were used to designate the same
quantity of objects of different sorts, etc.” (Pogrybysskii 1978,
28). It therefore does not surprise us that from within ethnology,
the prejudices and preconceptions of the theory of diffusion of
culture have already been strongly criticized. For example,
Marvin Harris, in his monumental work The Rise of
Anthropological Theory, writes the following about diffusionism:
“As soon as we admit, as the archaeology of the New World now
compels, that independent invention has occurred on a massive
scale, diffusion is by definition not only superfluous, but the very
incarnation of antiscience” (1969, 378). Through the acceptance
of a primacy of diffusion over independent invention, the repre-
sentatives of diffusionism underestimate the creative capacities
of humankind. Like other proponents of diffusion theory,
Seidenberg overestimates the importance of diffusion for the



development of geometry and exaggerates the possible connec-
tions between religious ideas and geometry. Having said this, we
should not go to the other extreme. In fact, diffusion plays an
important role in the development of mathematics.2 The task is to
analyze and understand historically the dialectics of diffusion and
independent invention. Actually, magical or religious thinking
may, in certain periods, reflect itself onto conceptions of number
and of space. What matters is to try to explain the reasons for this
phenomenon.

2. The possible formation of pyramid concepts

The greatest pyramid of Gizeh, 147 m in height and built in
ancient Egypt under the reign of Cheops (ca. 2545–2520 B.C.),
was considered, in antiquity, one of the seven wonders of the
world. The pharaohs were honored at that time as gods. Was,
therefore, the marvelous shape of their monumental tombs con-
ceived in their godly fantasy and designed to remain incompre-
hensible to the people?
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a) mastaba b) step pyramid c)  pyramid

Fig. 4.1. Development from mastaba to pyramid

There were step pyramids (fig. 4.1b) on the Tonga and Tahiti
islands in Polynesia, on the northwest coast of Peru, and also in
the Mesoamerican cultures, where they constituted the bases for
the temples. Just as in ancient Egypt, we are also dealing here
with class societies. The Tahitian marae “represented a hierarchy
just like the society” (Bellwood 1978, 82). Although the class
character of such societies allows us to understand the differ-
ences in the dimensions of their pyramids, the source of the
differences in shape is not immediately clear. Is the pyramidal
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shape of the temples of Central America perhaps an attempt to
imitate the mighty volcanoes, as the cover of Wolf’s book Sons
of the Shaking Earth suggests (1969)?3 But, if so, where does
their regularity, such as the square base, come from? Could it
have been an architectonic attempt to overcome chaos in nature,
as Wertheim suggests, when he refers to the ceremonial center of
Monte Albán in the Oaxaca Valley? “From its very beginning a
departure from nature. The men who built it not only did not
respect the lay of the land; they rejected it; they saw it as part of
chaos on which man must impose order” (cited in Wolf 1969,
97).

As I have shown through various examples, thinking in terms
of order does not fall from heaven, but reflects societal
experience with production. Once this experience had been
established to the extent that regularity took on an aesthetic
value—and this was certainly the case in the “pyramid soci-
eties”—then new and, in a certain sense, ordered forms and
shapes could have been created without the existence of an
immediate, inescapable material obligation. In regard to the pyr-
amids of ancient Egypt,

their shape and basic idea must have come from the tomb
made out of heaped up sand, of which the monumentalized
form, the mastaba [fig. 4.1a], constituted the constructive
starting point for configuration of the step pyramid of the
third dynasty (Djoser complex, Saqqara, ca. 2600 B.C.).
Under the sovereigns of the fourth dynasty (ca. 2570–2450
B.C.), the pyramids received their classical shape with flat
faces and a square base. This was the result of a secular
process in the history of building. (Herrmann 1984,
2:182)4 

When I said, “without the existence of an immediate,
inescapable material obligation,” I meant by this that in this con-
crete case, on the one hand, other shapes were possible, such as
the shape of a cone, and, on the other hand, that the choice of
form was limited. It is easier to construct a step pyramid than a
tower of the same height. Still, one may consider whether this



involves a totally new figure, invented for the first time, or could
an already known form have served as a model. Let us now
consider two situations that might have already occurred at an
earlier stage of cultural development than that of ancient Egypt
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Fig. 4.2. Mandarin pyramids with three fruits at the base

and that led to pyramid concepts.

Pyramids of fruits

Weight, volume, or number may be used as a measure when
fruits are exchanged or sold. For example, in Mozambican mar-
kets, mandarins are sold frequently in groups of four or five.

To arrange the fruits so they can be examined, but not occu-
py too much space, they are piled up as in fig. 4.2. The same
methods are also seen at other markets in Africa, Asia, and South
America, sometimes with four fruits at the base (fig. 4.3). If one

Fig. 4.3. Mandarin pyramids with four and nine fruits at the base
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wishes, the fruits can be further piled up in groups of ten or
twenty (fig. 4.4).5 This experience may have contributed to the
formation and development of a tetrahedron concept. It reflects

Fig. 4.4. Sets of 10 and 20 fruits

Fig. 4.5. Equal “heights,” equal bases, and equal volumes

an optimal way of stacking round objects: each mandarin on a
new layer rests only on the three mandarins of the layer beneath
it, so that it will not roll down and a minimal base space is
occupied. If one has sufficient space for the base, then it is
possible to pile the objects up in a step pyramid with a square
bottom, like, for example, flour sacks stacked up in West African
harbors or oranges in pyramids of many layers in today’s Egypt.
We may ask whether Democritus (ca. 460–370 B.C.)—or other
atomists before him—might have had such pyramids of fruits as



an image model when he showed that two pyramids with equal
base and equal height have the same volume. If, for example, one
carefully piles up the ten mandarins of a “tetrahedron” in anoth-
er way, with a “pyramid” of approximately the same height, both

108 AWAKENING OF GEOMETRICAL THOUGHT IN EARLY CULTURE

Fig. 4.6. Bending a mat in one direction

Fig. 4.7. Taking away some horizontal strands

“pyramids” will have equal volumes, as an equal number of
“atoms,” that is, mandarins, lie in corresponding layers: 6, 3, and
1, etc. (fig. 4.5).

Woven pyramids

Let us suppose that one is able to use the widespread tech-
nique of plaiting mats with similar strands in two perpendicular
directions. How can one, without any further material or auxil-
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iary means, make a bowl or a funnel out of such a mat? It is easy
to bend or fold the mat in one direction (fig. 4.6). When one
releases the bent mat, however, it returns to its initial plane shape.
When one tries to bend the mat simultaneously in two directions,
one feels how the material resists forcefully; there seems to be
too much material to transform the plane mat into a bent object.
The easiest way to reduce the quantity is to take away some par-
allel strands from one of its sides (fig. 4.7). And now something
has to be done with the loose parts of the strands. But what? One
group of loose parts can be plaited together with the other group
of loose parts, as in fig. 4.8. To avoid gaps both groups necessar-
ily, have to be woven perpendicularly (fig. 4.9). Actually, a

Fig. 4.9. To plait the protruding parts of strand perpendicularly

Fig. 4.8. Plaiting the protruding parts



“bowl” is obtained in this way. The production process can still
be improved. To avoid an imbalance in the number of strands in
each direction, after they have been woven together, one finds
that both groups of strands should be of the same size (fig. 4.10).
To avoid the necessity of cutting off the loose pieces of strand,
the quantity of strands that were removed must correspond to half
of the width of the mat (fig. 4.11), that is, both groups of initially
loose strands are made square. 

Thus far, the process of invention or discovery proceeded
almost automatically, depending on the objective (weaving a
“bowl” or “funnel” without any other auxiliary means), the
material, and their reciprocal interaction. It turns out that the
length of the mat can be freely chosen. But if one does not reflect
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Fig. 4.10. The groups of strands on the left and the right have the same size

Fig. 4.11. Both groups of protruding strand parts are squares
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consciously on this liberty, it is only relative; it is culturally
embedded. Possibly, the artisan simply prefers the square as the
form for the original rectangular mat, as this shape, in other con-
texts, had already shown itself to be advantageous, rational, or
beautiful. An artisan preferring a “bowl” with rotational symme-

seen from above                seen from the side

Fig. 4.12. Plaited basket “bowl” or “'funnel”'

Fig. 4.13. New pot shape

try (fig. 4.12) discovers that the initial rectangular mat has to be
a square. However this last step might have come about, the arti-
sans from the Nyassa and Nampula provinces in northern
Mozambique start with a square mat (see the scheme in fig.
4.12).

The result has been considered beautiful and has inspired
ceramists in the same region to find new shapes for their pots
(fig. 4.13). This was not, however, a simple transplantation of
form, not a mere imitating or copying. The model, the objective
possibilities of clay as the new material, and the potter’s experi-



ence, united in the creative labor process, are reflected in the new
pot shape.

The weaver did not only serve as a source of inspiration for
potters. The weaver finds that as a consequence of intensive use,
the strands on the sides easily become loose. To avoid this, it
becomes necessary to fasten a border to the “bowl.” The plant
strands are relatively flexible, so that when the artisan uses stiff
sticks for the border, a very particular object is unexpectedly
obtained (fig. 4.14). It has three plane faces; each face formed by
a right isosceles triangle, while the border is formed by an equi-
lateral triangle (fig. 4.15). The plaited square has been trans-
formed into a pyramid; the original square border “generated” the
equilateral, triangular border of the pyramid.6 A pyramid concept
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Fig. 4.14. Nyassa pyramid

seen from above

seen from the side

Fig. 4.15. Shapes of a face and border
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is thus born in this labor process. With this, the foundations are
laid for further development. For example, when one joins four
“Nyassa pyramids”—called eheleo in the Makhuwa language—
of the same size, as in fig. 4.16a, then one obtains a pyramid with
a square base. 

And when one joins together two of these new pyramids, or
eight “Nyassa pyramids,” as in fig. 4.16b, then one obtains a reg-
ular octahedron!7

In the north of Mozambique, in the south of Tanzania (Weule

Fig. 4.16. Building up polyhedra with Nyassa pyramids:  a) pyramid with
square base built up with four Nyassa pyramids. b) regular octahedron built
up with eight Nyassa pyramids

a

b



1908, 10 and table 19), and in Congo, a “Nyassa pyramid” is used
as a funnel in the production of salt. As fig. 4.17 shows, the fun-
nel is hung on a skeleton of sticks, and earth containing salt is put
in it. Hot water is poured on the earth and the salt water is caught
under the basket. After the water evaporates, the salt remains.
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Fig. 4.17. Eheleo funnel
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3. The “pinnacle of achievement” of
mathematics in ancient Egypt

The “pinnacle of achievement” of mathematics in ancient
Egypt is the exact result for the volume of a truncated pyramid



4. Role of Societal Activity 115

(with square base) corresponding to the application of the formula 
(Wussing 1979, 37). “An outstanding accomplishment,” consid-
ers van der Waerden (1954, 34), or “the very acme of Egyptian
mathematical achievement,” according to Gillings (1982, 187).
Unfortunately, the original text of the Moscow Mathematical
Papyrus, in which the exercise about a truncated pyramid is
included, does not permit us to conclude how the result had been
found. Probably the formula was not discovered in a merely
empirical way: “It must have been obtained on the basis of a the-

Fig. 4.18. Nyassa pyramid (s denotes the length of its edge)

oretical argument; how?” asks van der Waerden (1954, 34). To
answer this question “how?” Coolidge (1963) and Gillings
(1982) present a summary of earlier hypotheses. I will formulate
a new hypothesis

Basket weaving had achieved a high level of development in
ancient Egypt. Let us suppose that something like the Nyassa
pyramid was already known at that stage.8

If a Nyassa pyramid filled with cereals is emptied several

,
6

1
                               )1( 3sVnp =

times in succession, say into a cubic basket of the same edge
length, one finds that the basket is filled exactly to the brim after
the sixth time. Or, inversely, a full cubic basket can completely



fill six Nyassa pyramids with edges of the same length as that of
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Fig. 4.19. Surface transformation

the cubic basket. Once the formula Vc = s3 for the volume Vc of
a cube of edge s is known, it follows immediately for the volume
of a Nyassa pyramid Vnp that
where s denotes the length of its edge (fig. 4.18).

Let us consider now a pyramid of square base that is
composed of four equal Nyassa pyramids (as in fig. 4.16); its

volume Vp is given by
where s denotes the length of the edges of the Nyassa pyramids.

),(
3

1
                     (6) 22

21
nbmaVVV pptp −=−=

If a denotes the length of the edge of the base of the new
pyramid, then the following relation is obviously valid:

(2)   ,
6

1
4 3sV p ×=  

(3) a2 = 2 s2,

as follows from the transformation in fig. 4.19. With this formula,
(2) can be transformed to
or, if one now extrapolates to arbitrary pyramids with square
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Fig. 4.20. Truncated pyramid as the “difference” of two pyramids obtained
by “subtracting” a small pyramid from a larger one

base,
where h denotes the height of the pyramid. In other words, the
volume of such a pyramid is found as one-third of the product of
its height and the area of its base.

And let us now go to the “pinnacle of achievement.” A trun-
cated pyramid (tp) with square base may be considered as the
“difference” of two pyramids (fig. 4.20). From formula (5), we
have for the its volume Vtp:
where m and n denote their respective heights and a and b the
lengths of the sides of the bases of the two pyramids. How can
one apply this formula, however, if one does not know m and n,
but only the height of the truncated pyramid, that is, m – n? It

seems very probable that one needs more knowledge—for exam-
ple, of the similarity relation

h : n = (a – b) : b.

),(
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1

6

1

6

1
                (7) 3333

211
tstsVVV npnptp −=−=−=

m



118 AWAKENING OF GEOMETRICAL THOUGHT IN EARLY CULTURE

Thus we started from the general formula (5) and we ended in a
“deadlock.” Let us therefore first consider particular cases—for
example, that of the truncated pyramid that may be conceived of

Fig. 4.22. Truncated pyramid with square base

Fig. 4.21. “Difference” of two Nyassa pyramids

).(
3

2
)(

6

1
44                     (8) 3333

1
tstsVV tptp −=−×==

as the “difference” of two Nyassa pyramids (fig. 4.21). Using for-
mula (1), one obtains:
where s and t denote the respective lengths of the edges of the
two Nyassa pyramids. When one now joins four of these trun-
cated pyramids, one obtains a truncated pyramid with a square
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base, the volume of which is fourfold that of the other (fig. 4.22):
How can one transform this formula into terms of the lengths

a and b of the edges of the respective squares and of the height
h?

Fig. 4.23. Decomposition of a cube
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difference s3 – t3 corresponds to the difference of the volumes of
two cubes. Is it possible to represent this difference in still anoth-
er way? A simple decomposition of the bigger cube, as in fig.
4.23, shows:

= 
3

1 h(2s2 + 2st + 2t2). 

Obviously one has h = s – t. What follows from here? The
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that is, ab = 2st.
In this manner, one arrives at

for the volume of that truncated pyramid. Once formulated in this
form, it can be easily generalized to the volume of an arbitrary
truncated pyramid with square base.

Let us now compare my hypothesis with the well-known
hypotheses of Gillings, Neugebauer, and van der Waerden.

Gillings considers a truncated pyramid with square base as
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that is,

(9) s3 – t3 = (s – t)(s2 + st + t2) = h(s2 + st + t2).

Therefore:

We saw already that a2 = 2s2 and, in the same way, we have
b2 = 2t2. On the basis of fig. 4.24, one obtains

ab + s2 + t2 = 2st + s2 + t2,

Fig. 4.24. Transformation of a square

(12)       Vtp =
3

1 ma2 – 
3

1 nb2 = 
3

1 [(h + n)a2 – nb2 ]  

               = 
3

1 [ha2 + na2 – nb2] =
3

1 h[a2 + (a2 – b2)]. 

s3 = t3 + (s – t)s2 + (s – t)st + (s – t)t2,
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Gillings supposes, a scribe in ancient Egypt could have first ana-
lyzed a special case. If a = 2b, then m = 2n, that is, h = n. Under
these circumstances, it is easy to transform formula (6) as
follows:

From fig. 4.25, one obtains

(13) a2 – b2 = ab + b2

if a = 2b. And in this manner one may realize “magically” the

  . )(
3

                            (11) 22 baba
h

Vtp ++=

the difference of two pyramids (fig. 4.20). For its volume, we
have, as we already saw,
where m and n denote the respective heights and a and b the
lengths of the bases of the two pyramids. As I already showed, it
is difficult in general to apply this formula if only a, b and the
height h of the truncated pyramid are known. Therefore, as

Fig. 4.25. Special case a = 2b

(12)      Vtp = 
3

1 h[a2 + (a2 – b2)], 

transition from formula (12) into the “pinnacle of achievement”

Vtp = 
3

1 h[ 2a2 – b2 ], 

of Egyptian mathematics:
Afterward, the scribe could have verified the formula in



other cases, like a = 3b, a = 4b, a = 5b, etc., and then he might
have concluded that it is valid for all truncated pyramids with a
square base (Gillings 1982, 191–93).

Very beautiful! Nevertheless, Gillings’s reconstruction of the
sequence of thought of an Egyptian scribe remains incomplete.
The transition from (12) to (11) is not immediately necessary: for
the time being, equation (12) will do:
that is,
as it is only formulated in terms of a, b, and h. It only needed to
be transformed at the moment when one verifies that it is not true
in other cases. And it is also not immediately clear at the outset
what transformation is necessary to obtain a formula that is valid
in general. The alternatives
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(8)        Vtp = 
3

2 ( s3 – t3) 

(14) a2 + (a2 – b2) = a2 + 3b2,

(15) a2 + (a2 – b2) = 3ab + b2,

could have been chosen instead of

(13) a2 + (a2 - b2) = a2 + ab + b2. 

In other words, Gillings’s hypothesis presupposes on the part
of the Egyptian scribes an experience with verification and, con-
sequently, if necessary, the adaptation of formulas. Here resides
an important distinction with my hypothesis. In my case, it is
immediately verified that the formula
is not satisfactory, as it is not expressed in terms of the lengths a
and b of the sides of the square bases and the height h, and for

.)(
3

)(
2

 2              (16) 22 ba
h

bab
h

hbVtp −+−×+=

that reason cannot be generalized. Therefore, its transformation is
immediately necessary. This means that there is no presupposi-
tion of verification being needed to arrive at the intended
conclusion.
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In his book Über vorgriechische Mathematik [Pre-Greek
mathematics] (1929), Otto Neugebauer considers the special case
in which one of the edges is perpendicular to the base. He decom-
poses the truncated pyramid into four parts: one rectangular
block, two prisms, and one pyramid, as shown in fig. 4.26. The
volume of the truncated pyramid is equal to the sum of the vol-
umes of its parts:

Neugebauer conjectures that equation (11) of ancient Egypt
could have been deduced from here by means of an algebraic

Fig. 4.26. Neugebauer's decomposition

Fig. 4.27. First phase of van der Waerden's transformation
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(11) Vtp = 
3

h a2 + 

3

h ab + 

3

h b2 = 
)(

3
22 baba

h ++ . 

Fig. 4.28. Second phase of van der Waerden's transformation

transformation. But “can one justify the assumption that the
Egyptians were able to make such an algebraic transformation?”
questions van der Waerden. “They were able to calculate with
concrete numbers, but not with general quantities” (1954, 34).
Van der Waerden is led to the presupposition that this transfor-

Fig. 4.29. Third phase of van der Waerden's transformation
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mation would have been realized in a geometrical way. 
The two prisms in fig. 4.26 are changed to rectangular blocks

of half the height, and the pyramid is also transformed into such
a block, but with one-third of the original height (fig. 4.27). Then
the upper third of the first of these blocks is removed and placed
on the top of the second one (fig. 4.28).

In this way there appears a solid that can be divided into three
horizontal layers, each of which has a height h/3. The lowest of
these layers has a base with area equal to a2; the middle layer has
a base with area equal to ab; and the top layer has a base with
area equal to b2. Therefore:

“This derivation of the formula does not transcend the level
of Egyptian mathematics,” observes van der Waerden in his book
Science Awakening (1954, 35). However, one very important
question is not answered by van der Waerden (and herein lies a
distinction between his hypothesis and mine): why should the
scribe have chosen exactly this transformation and not another?
Was the choice of these geometrical transformations the result of
experimenting, or alternatively, did the scribe already know the
formula, in particular, the common factor h/3, and did he only
look for a justification post factum? In his later book Geometry
and Algebra in Ancient Civilizations, van der Waerden conjec-
tures that the correct formula for the volume of a truncated pyra-
mid, which one encounters both in ancient China and in ancient
Egypt, had a “pre-Babylonian common source” (1983, 44). 

Fig. 4.30. Lui Hui's decomposition of a fang-t'ing



The mathematics of ancient China was summarized in the
work Mathematics in Nine Books. This compilation survived in a
version in the year 263 by Liu Hui. Liu Hui gives a derivation for
the volume of a fang-t’ing, a truncated pyramid with a square
base (fig. 4.30), in which he decomposes it into a block, four
prisms, and four yang-ma’s (pyramids with a square base, where
one edge is perpendicular to the base). To explain that the volume
of a yang-ma’ is equal to two thirds of the volume of a prism with
the same base and same height, Liu Hui applies a limit process
(Wagner 1979, 169, 173). “These explanations satisfy many of
the criteria for what we would call a proof,” asserts Wagner
(164). A thought process in terms of limits could not arise at the
beginning; the derivation of Liu Hui is, indeed, a justification of
knowledge already acquired in another way. At least some parts
of the Mathematics in Nine Books, because of the tradition of oral
transmission, date to a much earlier era, perhaps even to a pre-
Babylonian period.

My hypothesis may fill a gap here. My conjecture for
the derivation of the formula for the volume of a truncated
pyramid with square base has its starting point in material
products of human labor (Nyassa pyramid and cubic bas-
kets) and in their empirically discovered relationships
[Vnp = (1/6)Vc or Vc = 6 Vnp], and each next step in the rea-
soning is constructive in the sense that it results, without
any deviation, from the search for an answer to questions
like “s3 – t3 = ?” or “2st = ?”

4. How could the Theorem of Pythagoras be discovered 
thousands of years before Pythagoras?

Discovered only once?

Both in Greek-Hellenistic antiquity and also in ancient
Mesopotamia, India, and China, “Pythagorean triples” have not
only been calculated, but the so-called Theorem of Pythagoras
was also known. The research of Thom and Thom on the geom-
etry of the megalithic gravesides on the British Isles suggests that
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its constructors used “Pythagorean triples” (1980; van der
Waerden 1983, 16ff). The relationship between these numerical
triples (a,b,c) with a2 + b2 = c2 and the right-triangle theorem,
however, is not immediately evident. Moreover, van der Waerden
assumes it is not so easy to discover the Theorem of Pythagoras
(16).

Van der Waerden conjectures that “a common origin of the
whole theory . . . [is] highly probable” (1983, 10, 45). The
Theorem of Pythagoras was, according to van der Waerden,
already known about 2000 B.C., when the ancestors of the Greeks
and of the Aryan tribes that later invaded India still lived next to
each other in the region of the Danube (14).

Simplest case

Is the Theorem of Pythagoras so difficult to find that it would
be discovered only once in human history? Perhaps van der
Waerden and Seidenberg are right. However, at least the simplest
case of the theorem, where both sides of the right triangle have
the same length, has been and continues to be discovered again
and again. How this particular case of the theorem is formulated
does not matter here (see the examples in figs. 4.31 and 4.32).

Surely one may ask how it could be possible to arrive at the
general theorem from this special case.

Twins

That only the Theorem of Pythagoras, but not Pythagorean
triples, appeared later in the works of Euclid, Archimedes, and
Apolonius does not mean, however, that a relationship between
those numerical triples and the theorem with the same name had
not been recognized before in human history, but only that, at
some historical moment, knowledge of it may have disappeared.
This does not mean that the mathematicians were not able to
understand it. On the contrary, the Pythagorean triples became
superfluous for the geometers. The Theorem of Pythagoras had
been freed—generalized in such a way that any reference to these
triples of whole numbers would again restrict it. The theorem and
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Malekula (Oceania)

Halaf ceramics (Mesopotamia, 6th millennium B.C.)

Apenayé Indians (Brazil)

Fig. 4.31. Examples of ornaments composed of squares and triangles

the numerical triples might have born as twins—that is the con-
jecture that I should like to present here as a possibility—but later
each went its own way: geometry and number theory.

This reflection helps us to advance our tracing of the possi-
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Dogon (Mali)

Igbo (Nigeria)

Madagascar

Fig. 4.32. Further examples of ornaments composed of squares and triangles



ble birth(s) of the twins. One should look for situations where one
encounters at the same time squares, sums of squares, right
angles, and whole numbers. Most probably, the concept of a
geometrical square is older than that of an arithmetical square. In
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Fig. 4.34. Discovering an equality by counting unit squares

Fig. 4.35. Counting the unit squares of a chessboard pattern

Fig. 4.33. Counting the unit squares
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Fig. 4.36. The sides of the larger and the smaller squares are not parallel

Fig. 4.37. A woven-strip pattern

which contexts do geometrical squares with countable areas
appear?—in basket and textile weaving, in embroidery, and in
laying tiles.

The right track?

When strands of equal width are plaited, squares that can be
decomposed into small unit squares appear. Their areas are,
therefore, relatively easily counted (fig. 4.33). In this way one,
in fact, obtains squares, but not immediately those squares that
constitute the sum of two squares. Only when one is accidental-
ly lucky does one discover that 52 = 32 + 42 (fig. 4.34) and be
stimulated to search further for such particularities. It seems
unlikely, however, that the Theorem of Pythagoras would have
been discovered by this path.

If one plaits with strands of two colors, one may obtain a
chessboard pattern that certainly enables one to consider squares
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as sums (fig. 4.35), but not yet as sums of squares.
Did we come to a dead end? Or are we still on the right track?

Second phase

Let us return to the simplest case of the Theorem of
Pythagoras and note that the sides of the sum square and of the
two minor squares are, in general, not parallel (fig. 4.36).

What weaving pattern could have served as a model for this
nonparallel position of the three squares? The widespread
“toothed” weaving pattern of fig. 4.37 reflects itself often like
fig. 4.38 on smooth ornaments on pots and on wooden and metal-
lic objects.

In the same way, the weaving patterns of fig. 4.39 correspond
to the simplest case of the Theorem of Pythagoras.

Now we are probably on the right track: such toothed, woven
squares of distinct colorings are well known, as the examples in
fig. 4.40 underline.

Fig. 4.39. Woven centers that correspond to the simplest case of the Theorem
of Pythagoras

Fig. 4.38. Smooth ornaments
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Mbangala (Angola)

Fig. 4.40. Woven, toothed squares 

Krikati Indians (Brazil)

Fig. 4.41. Toothed squares with a chessboard coloring
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Fig. 4.42. Ancient Egyptian wall painting of a basket

Fig. 4.43. Toothed square as the “sum” of two squares. First example

Fig. 4.44. Toothed square as the “sum”' of two squares. Second example



In other words, the toothed square is the sum of two squares,
with the first composed of black unit squares and the second
composed of white unit squares (fig. 4.43).

Would this observation be merely accidental? This result
stimulates further searching. As the example in fig. 4.44 shows,
it was not merely accidental. 

Another geometric transformation (fig. 4.45) leads to the
same conclusion that each toothed square is the sum of two
smooth squares.

Third phase

A new phase emerges when our hypothetical “Pythagoras”
discovers a particularity of the following case. On the one hand,
it is observed that the toothed square in fig. 4.46 has the same
area as two squares of 3 and 4 unit squares on each side, respec-
tively, together. On the other hand, purely geometric (fig. 4.47a)
or arithmetic-geometric reasoning (fig. 4.47b or 4.47c) leads to
the conclusion (fig. 4.48) that two squares of 3 and 4 unit squares
on each side, respectively, have together the same area as a
square with 5 unit squares on each side, that is, 32 + 42 = 52.
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Fig. 4.45. Another geometric transformation of toothed squares
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Fig. 4.46. A special case

Fig. 4.47. Transformation of a particular toothed square 

a

c

b



The field of a board game found in one of the royal tombs of
Ur (middle of the third millennium B.C.) lets me suppose that at
that time this particularity of the toothed square with 7 unit
squares on its diagonal (fig. 4.49) was already known.

Is this case (32 + 42 = 52) the only one, or do more exist?
Let us follow our “Pythagoras” in a further search for toothed

squares that consist of a square number of unit squares or that can
be transformed into a smooth square.

Possible further developments

From the point at which we have arrived, several further
developments are possible. They can take place independently of
one another or they may occur simultaneously, influencing one
another.

Toward Pythagorean triplets (1)

One may compose a list of sums of squares of two consecu-
tive (natural) numbers and, upon comparing them with a table of
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Fig. 4.48. Conclusion: 32 + 42 = 52

4.49. Detail of an ancient Mesopotamian board game
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hypotenuse (fig. 4.50) to try to transform them into “triangles” of
equal area with a smooth cathetus and toothed hypotenuse (fig.
4.51), and afterward try to join these latter triangles to the origi-
nal sides of the toothed square in order to obtain a smooth square
(see the scheme in fig. 4.52). 

This becomes possible for the first time when the side of the
first “triangle” has 6 teeth (fig. 4.53). Therefore, a toothed square
with 21 unit squares (6 + 8 + 1 + 6 = 21, fig. 4.54) on each side
and with 41 unit squares on its diagonal can be transformed into
a smooth square with 29 of these unit squares on each side
(8 + 1 + 11 + 1 + 8 = 29). In other words: 202 + 212= 292

These and other results can also be obtained if one under-
stands that the intended transformation is only possible when the

Fig. 4.51. “Triangle” with
a toothed hypotenuse

Fig. 4.50.  “Triangle”
with a toothed cathetus

square numbers, discover that 202 + 212 = 292, 1192 + 1202 =
1692, etc. This purely arithmetic way does not seem very
probable.

Toward Pythagorean triplets (2)

One may try to transform in a manner that is analogous to fig.
4.47a other toothed squares into “real” smooth squares. A trans-
formation done in an arbitrary way, then, will rarely be success-
ful. A smooth square appears only for the second time when the
diagonal of the toothed square is composed of 41 unit squares.
However, in examining more closely the special case of fig.
4.47a, one may try to “cut off” from all the corners of the toothed
square, equal “triangles” with a toothed cathetus10 and smooth
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Fig. 4.52. Schematic representation of the transformation of a toothed square
into a smooth square

number of unit squares of the first “triangle” (fig. 4.50) is equal
to the number of unit squares of the second “triangle”—that is,
to express it in another way, when a square number (fig. 4.55) is
equal to a triangular number. It is only necessary to compare
both lists of numbers (see table 1) to discover

(6 + 8 + 6)2 + (6 + 8 + 6 + 1)2 = [8 + 1 + (2 × 6 – 1) + 1 + 8]2,

that is,
202 + 212 = 292

and
(35 + 49 + 35)2 + (35 + 49 + 35 + 1)2

= [49 + 1 + (2 × 35 – 1) + 1 + 49]2,
that is,

1192 + 1202 = 1692, etc.



I note that it may thus be discovered that the sum of the first
n odd numbers is always equal to a square n2 (fig. 4.55).
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Table 1

Natural numbers            Square numbers          Triangular numbers

1
2
3
4
...
6
7
8
...
35
...
49
...

1
4
9
16
...
36
...
...
...

1225
...
...
...

1
3
6
...
...
...
...
36
...
...
...

1225
...

Fig. 4.53. Attempt to transform “triangles” with toothed catheti into 
“triangles” with toothed hypotenuses
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Toward Pythagorean triplets (3)

Which observations may our “Pythagoras” arrive at by con-
sidering a toothed square together with its circumscribed smooth
square (fig. 4.56)?

When counting the unit squares inside and outside the
toothed square, it can be noted that in the interior there is always
one more unit square than on the outside (fig. 4.57).

Fig. 4.54. Transformation of a toothed square with 21 unit squares on each
side into a smooth square with 29 unit squares on each side

Fig. 4.55. Transformation of a “triangle” with toothed catheti into a square

Fig. 4.56. Toothed squares together with their circumscribed smooth squares



In a purely geometric way, it is also possible to arrive at the
same conclusion when one decomposes a toothed square as in
fig. 4.58. It follows that the number of unit squares of the cir-
cumscribed smooth square (= d2) plus one is equal to two times
the number N of unit squares inside the corresponding toothed
square (fig. 4.59), that is, 

d2 + 1 = 2N.
In other words, N is a square number if half of d2 + 1 is a

square number. To encounter such N’s, one elaborates a table (see
table 2) and compares it with a table of squares (see table 3). In
this way the desired solutions of the equation 

d2 + 1 = 2N

may be found:
12 + 1 = 2 × 12,
72 + 1 = 2 × 52,
412 + 1 = 2 × 292,
2392 + 1 = 2 × 1692, etc.
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Fig. 4.57. Counting the unit squares inside and outside a toothed square

Fig. 4.58. Decomposition of a toothed square
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Now, which are the toothed squares composed of 52, 292,
1692, etc., unit squares? The length of the side of the circum-
scribed square is equal to the number of unit squares on the diag-
onals of the toothed square. And, in its turn, the number of unit
squares on each diagonal is equal to the sum of the lengths of the
sides of two smooth squares in which the toothed square can be
decomposed (see figs. 4.43 and 4.44). Therefore, keeping in mind
that 7 = 3 + 4, 41 = 20 + 21, 239 = 119 + 120, etc., we obtain the
following results:

Fig. 4.59. Relationship between a smooth square and its corresponding
toothed square

Table 2

Table 3
d

1
3
5
7
9

…
41
…

239
…

d2

1
9

25
49
81
…

1681
…

57121
…

d2 + 1

2
10
26
50
82
…

1682
…

57122
…

½ (d2 +1)

1
3

13
25
41
…

841
…
…28561
…

t

1
…
5

…
29
…

169
…

t2

1
…
25
…

841
…

28561
…



32 + 42 = 52,

202 + 212 = 292,

1192 + 1202 = 1692, etc.

Toward Pythagorean triplets (4)

It is possible that our “Pythagoras” arrives at the following
observations. If one decomposes a toothed square into two
smooth squares, then the difference between these new squares is
equal to the number of unit squares on the diagonals. This obser-
vation can be the result of arithmetic or geometric reasoning:

4 – 1 = 3,
9 – 4 = 5,
16 – 9 = 7,

25 – 16 = 9, etc.,

or be the result of discovering first a new decomposition of the
toothed square, whereby both parts have the same area as both
smooth squares (fig. 4.60). It also may have been discovered in
the same manner that the sum of the first n consecutive odd num-
bers is always equal to a square n2.

On the other hand, the number of unit squares on the diago-
nals is equal to the sum of the lengths of the sides of the two
smooth squares (figs. 4.43 and 4.44). Therefore, it is possible to
arrive at the conclusion presented in fig. 4.61. If, in turn, this sum
of the lengths of the sides of the two smooth squares, or better
still, the sum of the unit squares of the sides of the two smooth
squares, is equal to a square, then one finds once again that the
sum of the areas of two squares is equal to the area of a third
square. To find these cases, it is only necessary to look for odd
square numbers: 9, 25, 49, 81, 121, 169, ... and then one obtains
successively:

9 =  4 +   5 → 9 +   42 =   52   → 32 +  42 =   52,
25 = 12 + 13 → 25 + 122 = 132    → 52 + 122 = 132,
49 = 24 + 25 → 49 + 242 = 252    → 72 + 242 = 252, etc.

The process of forming sums in fig. 4.61 could have been dis-
covered outside the described context. Our context, however,
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explains why the idea of looking for squares that are the sum of
other squares emerged intralogically. This search might have
been reinforced by extramathematical ideas. Once discovered,
this process can be generalized (fig. 4.62) and, analogously, new
Pythagorean triplets can now be found:

82 + 152 = 172,
122 + 352 = 372, etc.

In a more general way, it may be said that all Pythagorean triplets
can be found, in principle, with the help of the geometric trans-
formation in fig. 4.63, that is, with the help of

Fig. 4.60. Other decompositions of a toothed square

Fig. 4.61. Construction of bigger squares



c2 = b2+ [c(c – b) + b(c – b)],
c2 = b2 + (c + b)(c – b).

To find Pythagorean triplets (a,b,c), one has to look for solu-
tions of the equation

(c + b)(c – b) = a2.

Toward the Theorem of Pythagoras

The particular experience with the toothed square, whose
diagonal has length 7, and the square whose side has length 5—
they have the same area (figs. 4.47 and 4.64)—can also stimulate
further geometrical search: Every toothed square must be equal
to a real (smooth) square.

Let us consider the smallest toothed square (fig. 4.65). How
can it be transformed into a real square of the same area?

The dotted squares in figs. 4.66a and 4.66b are obviously too
big. The dotted square in fig. 4.66c is too small; it takes away
from the toothed square more than what it adds at the same time.
Nevertheless, the way we began seems to be advantageous.
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Fig. 4.62. Extension

Fig. 4.63. Geometric transformation implying c2 = b2 + (c + b)(c – b)
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When one continues to experiment, one finds a solution that
takes away exactly as much as it adds (fig. 4.67). This very suc-
cessful experience can be easily transferred to other cases, like
the ones illustrated in figs. 4.68a and 4.68b.

The result obtained when the length of the diagonal of the
toothed square is equal to 7 (unit squares) can be compared with
the previous result (fig. 4.64). Both squares are really of the same

Fig. 4.64. Toothed square with a diagonal of  length 7 (units) and a smooth
square with a side of length 5 (units)

Fig. 4.65. The smallest toothed square

Fig. 4.66. Comparison of areas

a b c



size; their sides are equal. A doubting “Pythagoras” would sure-
ly be convinced by now that a smooth square of the same area
could always be obtained this way.

If our “Pythagoras” draws the new square in a rectangular
array, together with the two squares of which the sum of the areas
is equal to its area, then there exist only a few possibilities to do
this in such a way that the three squares “touch” each other (fig.
4.69). A comparison with the simplest case (fig. 4.70) might have
contributed to the choice of the position in fig. 4.69b.

Once drawn as in fig. 4.69b (compare with fig. 4.71), the
Theorem of Pythagoras could have been conjectured in its gen-
eral form. Simultaneously, the representation in a rectangular
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Fig. 4.68. Transformation of toothed squares into smooth squares of the same
area

a
b

Fig. 4.67. Transformation of the smallest toothed square into a smooth square
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array offers a good starting point for the discovery of a proof of
the Theorem of Pythagoras (fig. 4.72a), as in ancient China (see
van der Waerden 1983, 27), leading to:

c2 = (a + b)2 – 2ab = a2 + b2,

or as by the Indian Bhâskara II (ca. 1169) (fig. 4.72b), leading to:

c2 = (a – b)2 + 2ab = a2 + b2,

b

a

Fig. 4.69. Three squares drawn together in a rectangular grid



or still as the method of Tabit Ibn-Qurra (ca. 83–901), who
worked in Baghdad (fig. 4.72c).

On approximations of √2

Not only Pythagorean triplets and the Theorem of
Pythagoras could have been discovered in this way, but it could
have led also to related considerations—for example, to good
approximations of √2, as I should like to show now.
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Fig. 4.70. Simplest case

Fig.  4.71. A toothed square with an area equal to the sum of the areas of the
two smooth squares: C = A + B
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Let us return to fig. 4.68b. The diagonal of the smooth square
of side 5 units is a little bigger than the diagonal (of length 7 unit
squares) of the toothed square. Therefore, the ratio of the length
of the diagonal and the length of the side of a smooth square is a
little bit bigger than 7/5, that is

√2 ≈ 7/5 = 1.4.

Better approximations are found with bigger Pythagorean
triplets (a,b,c), where b = a + 1. For example, with (20,21,29),
one obtains

√2 ≈ (20+21)/29 = 1.41379....

The first triple that appears in “Plimpton 322” of ancient
Mesopotamia, (119,120,169) (Neugebauer 1969, 37) leads to:

4.72. Designs that suggest ideas for a proof of the Theorem of Pythagoras



√2 ≈ (119+120)/169 = 1.414201....

This approximation value is already rather near the value that
can be encountered in a cuneiform text of ancient Babylonia:
1.414213 (Neugebauer 1969, 35).

Retrospect

Taking widespread plaiting patterns as the starting point, I
have shown how the factual relationship that today is called
Theorem of Pythagoras could have been discovered step by step
and intramathematically in direct connection with Pythagorean
triplets. There were no jumps that could only be explained by
extramathematical influences; neither the right angle nor the sum
of squares that appears in the Theorem of Pythagoras fell from
heaven. Completely superfluous is the supposition of Seidenberg
that the motif for the discovery of this theorem has to be sought
in the ritual identification of God with a square (1962b, 492,
498). According to Seidenberg, the religious idea of the unifica-
tion of various gods into one God was the reason for seeking
squares that are sums of squares.

Moreover, the possible precursors for the Theorem of
Pythagoras described here are so simple (in particular, if one
compares them with the level of mathematics of ancient
Mesopotamia) that it may be conjectured that they were already
known long before 2000 B.C. For the same reason, it seems to me
too early to assume, as van der Waerden does, that the knowledge
of ancient Mesopotamia, India, China, Greece, and Neolithic
Great Britain would be of a common origin.

5. How did ancient Mesopotamians and Egyptians
determine the area of a circle?

On the ancient Mesopotamian method

A series of clay tablets with mathematical content was found
in 1933 in Susa (today Shush, Iran), the ancient capital of Elam,
about 200 km east of Babylon. These cuneiform texts date from
the end of the First Dynasty of Babylon, ca. 1894–1595 B.C. They
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have shown that the level of ancient Mesopotamian geometry
was higher than the historians of mathematics had previously
thought (Bruins and Rutten 1961, 18). Mesopotamian mathe-
matics had really arrived at an understanding not only of the the-
oretical content of the Theorem of Pythagoras, but also of the
connections between areas and perimeters of regular polygons
and circles (Wussing, 1979, 41).

The first part of the surviving clay tablets consists of a table
with geometric constants. The second row gives 5′ or 5/60 as the
constant of a GAM circle11—that is, the area of a circle Ac is
equal to 1/12 of the square of its perimeter p:

(1)          Ac = 
1
12  p2 

(2)                         ,
3

1
pd =  

 

(4)          Ac = 
π4

1 p2, 

(5)                      d = 
π
1 p,  

(6)           r = 
π2

1 p. 

The third and fourth row give 20′ = 20/60 or 1/3 as the con-
stant of the GAM-circle diameter d, and 10′ = 10/60 or 1/6 as that
of the GAM-circle radius r, that is:

and

For a “real” circle, the relationships (1), (2), and (3) should
be replaced by:

(3)            .
6

1
pr =  

In other words, in the first three rows, the approximate value
π ≈ 3 is used to calculate the area, diameter, and radius of a circle.

and



As was the case in ancient Egypt, calculations were often done with this
approximate value. The scribes from Susa, however, were well
aware that this value π ≈ 3 constitutes only a first approximation,
as row 30 of the same table points out.

Row 30 gives 57′ 36″ = 57/60 + 36/602 = 24/25 as a correc-
tive value for the “perfect” SAR-circle,12 that is, one corrects (1),
(2), and (3) in the following way:
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,
12

1

25

24
                                  (7) 2pAc ×=

(8)     d = ,
3

1

25

24
p×  

and

Comparison of (8) with (5), for example, immediately yields:

may have been discovered by the Mesopotamian mathematicians
(or by their predecessors) is still open.

As possible answers to this question, I shall present two
hypotheses. I assume, as a starting point, a mat-weaving tech-
nique that was probably known in ancient Mesopotamia (see
Forbes 1956, 172f, and its accompanying fig. 3.133).

First hypothesis

Circular mats may be made by coiling (fig. 3.81). Their
diameter is easily countable if one uses the width of the spiral as
the unit of measurement. The fifth spiral has a length of 25. When
one starts this spiral, the diameter is 7 units; at the end of the fifth
spiral, the diameter is 9 units (fig. 4.73). The average diameter is
8 units. In other words, a circle with a diameter of 8 units has a

(9)     r  = ,
6

1

25

24
p×  

.
8

1
3                                  (10) ≈π

The question of how this better approximate value .3 8
1≈π
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perimeter of approximately 25 units, that is:

Second hypothesis

A very old, widespread way of making round baskets was
described in chapter 3 (figs. 3.117–19). It may be summarized as
follows: the four sides of a square mat are bound fast at their mid-
points to a circular border; the weaver presses the mat uniformly
inward, cuts off the protruding parts of the mat, and fastens the
rest of the bottom to the border. In doing so, the basket weaver
often selects the plaiting pattern such that it can be seen
immediately whether or not the mat is square and where the mid-
points of its sides fall (see the example in fig. 4.74). The depth or
height of a basket woven in this way depends on the ratio of the

(11)           .
8

1
3

8

25 =≈=
d

pπ  

Fig. 4.73. The fifth spiral has a length of 25 units

square mat                                      nonsquare mat 

Fig. 4.74. Support function of the weaving pattern in recognizing square mats



diameter of the circular border to the length of the side of the
square mat. The basket maker may place a border on the mat
before it is fastened (so that their centers coincide) in order to
determine the right ratio, which guarantees the desired height of
the basket (see the examples in fig. 4.75).

In this context, an artisan13 could have noted that when the
ratio of the radius of the circular mat to half the length of the side
of the square mat is equal to 4:5 (under certain conditions of
dimensions and plaiting pattern, this proportion is immediately
visible, as the example in fig. 4.76a shows), then the areas of the
circle Ac and of the smaller visible square Ass that touches the
bigger square at the midpoints of its sides are almost equal (fig.
4.76b).

In other words, when 
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Fig. 4.75. Comparing the diameter of the circular border with the side length
of the square mat

(where Abs denotes the area of the bigger square—that is, of the
square mat), it is possible to transform (13) into:

(12)   r : 
2

s = 4 : 5, 

then

(13) Ac ≈ Ass , 

where s denotes the length of the side of the square mat.
From (12) and the relation

,
2

1

2

1
                                   (14) 2sAA bsss ==
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,
8

1
3

8

25
)2

4

5
(

2

1

2

1
                     (15) 2222 rrrsAc ==×=≈

that is,

.
8

1
3                                   (16)  

2
≈=

r

Acπ

Fig. 4.76. The ratio of the radius of the circular border to half the length of a
side of the square mat is 4:5

a

b



The basket weaver could, in this context, also arrive at the
following equivalent conclusion. To fabricate the border of the
basket, a wooden board is bent, and both its ends are fastened to
one another. In doing so, the artisan could have observed that, if
the wooden board measures 5/2 times the length of the side of the
square mat, the areas of the circle and of the smaller visible
square formed by the midpoints of the sides of the square mat are
almost equal (see once more fig. 4.76). In other words, if
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(17)   ,
2

5
sp =  

(18)       ,
25

2
)

5

2
(

2

1

2

1 222 ppsAc ==≈  

or 

(19)            .
8

1
3

2

25

4

1

4

1 2

=×==
cA

pπ  

then

(13) Ac ≈ Ass.

From (14) and (17), one then obtains for the area of a circle

On the ancient Egyptian method

Problems 48 and 50 of the papyrus having the name of its
collector, Scott A. Rhind (1833–1863), give an indication of how
areas of circles were calculated in ancient Egypt. The text of
problem 50 reads: “Example of the calculation of a circular field
of [diameter] 9 [units]. What is its area? Take away 1/9 of its
diameter. The remainder is 8. Multiply 8 by 8. It makes 64.
Therefore it contains 64 setat of land” (see Neugebauer 1931,
422–23; Gillings 1982, 140). In other words, the composer of this
papyrus, the scribe Ahmose (ca. 1650 B.C.), determined the length
of the side of the square that has approximately the same area as
that of the circle to be 8/9 of the diameter of the circle, which
implies for the value of π:
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How did the ancient Egyptians find this remarkably close
approximation, which is indeed “a great accomplishment” (van
der Waerden 1954, 32)?

To answer this question, interesting hypotheses have been
formulated by Neugebauer (1931), Bruins (1946), Vogel (1959),
Gillings (1982), Eganjan (1977), Hermann Engels (1977), and
others.

The conjectures of Neugebauer, Bruins, Vogel, and Gillings
are essentially rather similar. The circle is approximated in area
by that of a semiregular octagon ABCDEFGH, which is produced
on the basis of the circumscribed square by dividing each of its
sides into three equal parts, and then by linking the vertices A, B,
C, ..., as in fig. 4.77. The area of this octagon is obviously equal
to 7/9, or 63/81 of the area of the square. Substituting for 63/81
the approximate value 64/81 or (8/9)2, one is then led to the
Egyptian formula. The aforementioned conjectures distinguish
themselves in the way they explain the jump from 63 to 64 (from
63/81 to 64/81). For example, Neugebauer explains it as follows.
The first correction (fig. 4.77),

.1605.3
81

256
)

9

8
(4 2 ==≈π

,
9

7

9

1

9

1 2222 dddd =−−

Fig. 4.77. Neugebauer's hypothesis



is too crude, as might have been verified, for example, in the case
of the volume of a cylinder. But a mere formal iteration of the
first step, by (1/9)d2, leads immediately to the very good result:
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“Such a preference for formal repetitions is witnessed by the
whole of Egyptian calculation procedures” (Neugebauer 1931,
429).

To Hermann Engels, the conjecture of the semiregular octa-
gon seems too complicated (1977, 137). He suggests the follow-
ing alternative. One knows that it was usual in Egyptian craft
work to carry over drawings in a fixed ratio from one medium to
another by means of a net of squares. What may be said about cir-
cles that arise in these nets of squares? The circle in fig. 4.78 has,

intuitively, the same area as the square ABCD. By dividing every
square into 16 equal subsquares, the Egyptian artisans could have
observed that

where r denotes the circle radius and s the length of the side of
square ABCD. Then the following is valid for the area of the
circle:

Fig. 4.78. Hermann Engels’s hypothesis

28

9 s
r ×≈ , 

(d2 2

9

1
d− ) .

81

64
)

9

1
(

9

1 222 ddd =−−  
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The conjecture of Hermann Engels has the advantage that the
derivation of the formula starts from a handwork technique
known at that time. The explanation by Neugebauer and others
finds support in the rough sketch accompanying problem 48 of
the Rhind Papyrus that may be interpreted as a square with an
inscribed octagon. I shall now propose another interpretation of
this sketch that enables one to derive the ancient Egyptian
formula without any jump from 63 to 64. In this proposal,
Hermann Engels’s reference to the square-net method will prove
itself rather useful.

First hypothesis

The octagon, only roughly sketched by Ahmose, could corre-
spond to a crenate or toothed figure like the one in fig. 4.79.
Examples of this sort have already been met in this chapter and
in chapter 3.

.)
9

8
()2

9

8
( 222 drsAc ×=×≈≈

Fig. 4.79. A toothed “octagonal” figure

Now let us imagine a circle drawn into a square net as in fig.
4.80. The toothed figure (fig. 4.81) composed of all squares of the
grid that lie completely or mostly inside the circle has approxi-
mately the same area as the circle. This last toothed design (fig.
4.81) coincides with the example in fig. 4.79. By means of a



simple geometric transformation (fig. 4.82), one sees that this
toothed figure has the same area as a new square (fig. 4.83). The
length of the side of this new square is 1/9 shorter than the diam-
eter of the circle. Therefore it may be concluded:

area of the circle ≈ area of the toothed figure 
= area of the new square
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Fig. 4.80. A circle drawn in a grid; its diameter measures 18 units

.)
9

( 2d
d −=

Second hypothesis14

The first hypothesis does not constitute the only possibility of
relating the derivation of the ancient Egyptian formula for the
area of a circle to production techniques. Just as in the case of the

Fig. 4.81. The circle and the toothed figure drawn together
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ancient Mesopotamian formula, further connections may be
traced in the fabrication of circular mats.

The coiling technique was used in ancient Egypt for the
making of circular mats (see Schmidl 1928). A string is rolled up
around a fixed point and then sewn into successive spirals (fig.
4.84). Normally, a small piece of the end will be cut off in order
to give the impression of an exact circle (fig. 4.85). The string can
be considered a rectangle, whose width is taken as the unit of
measurement. When the length L of the string is equal to a square
n2, the exposed surface area of the string is equal to that of a
square with side n; it may be assumed that coiling the string does
not essentially change its area. Now the diameter d of the spiral

Fig. 4.82. Geometric transformation of the toothed “octagonal” figure

Fig. 4.83. Old and new squares



circle can be easily counted. For n = 8, one gets experimentally
d = 9. Therefore, the area of a circle of diameter d = 9 is approx-
imately equal to a square of side n = 8. In other words, one finds:
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Fig. 4.84. Coiled rope

Fig. 4.85. “Spiral-circle”

which is exactly the ancient Egyptian formula for the area of a
circle.

NOTES

1. In his 1981 paper “The Ritual Origin of the Circle and Square,”
Seidenberg summarizes his view as follows: “In the Creation ritual the partici-
pants brought various objects onto the ritual scene and were identified with
these objects. In elaboration of the ritual these objects, and in particular stars,
were studied. The participants identified with stars moved in imitation of the
stars, thereby giving the ritual scene a circular shape: this is the origin of the
circle. The circle was bisected by the two sides of a dual organization taking up
the two sides of a circular ritual scene. The two sides split, giving rise to
quadrants. Then representatives of the four sections placed themselves about the
center of the circle in positions corresponding to the positions of the four
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sections, thereby giving rise to the square. The square was valued as a figure
dual to the circle. Both the circle and the square are offspring of the ancient
Creation ritual complex” ( 324). Cf. discussion here in chap. 3, sect. 8, on
squares, circles, and quadrants in basket weaving.

2. See, for example, Wilder 1981, 48f.
3. Walter R. Fuchs formulates another hypothesis: “The construction of pyr-

amids was closely related to the belief in afterlife and influenced by the cult of
the sun. To arrive at heaven, the god-human Egyptian king had to go up
enormous stairs or to use the sunrays. . . . The sunrays, when seen as they break
through a thick layer of clouds, may be imitated by the geometric pure shape of
the pyramid, as we see it in the Gizeh monument” (1976, 76–77). Does this
explain the square base of the pyramid? Why not a circular base?

4. See also Watson 1987.
5. In this way, 4, 10, and 20 are tetrahedron numbers. Does herein lie anoth-

er reason for the fact that so many number systems use 10 or 20 as a base?
6. If one fastens a circular border to the “dish,” one obtains a conical object

that may serve as a funnel or as a hat, as on the islands of Sumatra, Java, and
Borneo (Indonesia), and in China.

7. It does not seem very likely that the regular octahedron would have first
been discovered so late in human cultural history—-by Theaetetus of Athens
(ca. 415–368 B.C.), as a scholium in Book XIII of Euclid’s Elements wants us to
believe (see van der Waerden 1954, 100, 173).

8. Cf. Schmidl 1928, in particular, photo 8 and table 2.
9. Cf. Bastin 1961, 116; Farrand 1900, 397; Barrett 1908, 199. In Japan, it

appears as a traditional family crest (Adachi 1972, 12–13); in Nigeria and
ancient Mexico, as a textile decoration (Picton and Mack 1979, 35, 75;
Weitlanger-Johnson 1976, 63–64), etc.

10. A straight line falling perpendicularly on another straight line or sur-
face—Ed.

11. See note 12. 
12. GAM and SAR refer to different measurement systems found on the

tables and used in the calculations.
13. Or a scribe, for example, when analyzing how this type of basket could

be standardized.
14. I also formulate other hypotheses in Gerdes 1985.
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Chapter Five
Conclusion: Awakening
of Geometrical Thought

1. Methodology

The study of the awakening of geometrical thought is a rela-
tively new field of research and demands the development of
adequate methods. Almost no written sources  exist, and oral tra-
dition may give only partial answers to questions about early
geometrical knowledge. Presented in this book are some ele-
ments for the elaboration of the methodology of research on the
subject. According to a principal element of this methodology,
the researcher studies first of all the usual production techniques
(for example, weaving) of traditional labor products such as
mats, baskets, traps, etc., and at each stage of the fabrication
process asks which aspects of a geometrical nature play a role in
arriving at the next stage. This methodological starting point
proves to be fertile because readily hidden, “frozen” geometrical
thought may be encountered.

The unfreezing of geometrical thought hidden or frozen in
old and widespread techniques like those of basketry makes it
possible to reflect on the early history of geometry. In this
respect, the study presented here shows that the aspect of activi-
ty has been considered too little in the study of the origin of basic
mathematical concepts.

2. Activity and the awakening of geometrical thought

The multiplicity of forms in nature is so large that it becomes
necessary to explain how humans gradually acquired the ability
to perceive certain forms in nature. There are no forms in nature



that are a priori conducive to human observation. The capacity of
human beings to recognize geometrical forms in nature and also
in their own products was formed in activity.

The capacity to recognize order and regular spatial forms in
nature has been developed through labor activity. Regularity—as
has been shown by a series of examples in this book, such as the
ordered up-and-down alternation of the three-strand braid—is the
result of human creative labor and not its presupposition. It is the
real, practical advantages of the invented regular form that lead
to the growing awareness of order and regularity. The same
advantages stimulate comparison with other products of labor
and with natural phenomena. The regularity of the labor product
simplifies its reproduction, and in that way the consciousness of
its form and the interest in it become reinforced. With the grow-
ing awareness develops simultaneously a positive valuing of the
discovered form: the form is then also used where it is not nec-
essary; it is considered beautiful.

The cylinder, cone, or other symmetrical shapes of vessels,
the hexagonal patterns of baskets, hats, and snowshoes, etc., may
at first sight appear to be the result of instinctive impulses or of
an innate feeling for these forms or—in another idealist variant—
as generated by a collective “cultural spirit” or “archetype,” or
also, mechanically, as an imitation of natural phenomena—for
example, of crystal structure or of honeycombs. In fact, however,
humans create these forms in their practical activity to be able to
satisfy their daily needs. They elaborate them. The understand-
ing of these materially necessary forms emerges and develops
further through interaction with the given material in order to be
able to produce something useful: bows, boats, hand axes, bas-
kets, pots, etc. From the recognition of these necessities and of
the thereby acquired possibilities of employing them to achieve
certain aims emerged the human freedom to make things that are
useful and considered beautiful.

Social activity plays an important role in the formation and
development of early geometrical notions. We should not forget,
however, that it assumes this role in diverse and rather different
ways. No individual suddenly—that is without preconditions—
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arrived at the conclusion that hand axes should be symmetrical.
On the contrary. The symmetrical shape of the hand ax is the
result of long historical development. The practical necessity of
using a right angle, for example, to guarantee stability, was and
continues to be “felt,” that is, continues to be discovered daily by
isolated individuals or by people working together. The discov-
ery of the necessity of an angle of 60º to fasten the border of a
basket firmly was the result of individual or collective experience
and reflection. In this last case, the consciousness of the resulting
form—a hexagonal pattern—remains probably more accentuated
in the process of invention than in the other cases.  More research
is needed on how these different discovery processes entered
(and enter) into the sociocultural knowledge of geometry.

Possibilities of intramathematical development

With the reflection in art and games of shapes formed in
activity, early mathematical thinking started to liberate itself from
material necessity: form becomes emancipated from matter, and
thus emerges the concept and understanding of form; the way is
made free for intramathematical development.

In the interplay of the needs important to a society, material
possibilities, and experimental activity, certain shapes—for
example, symmetrical forms—proved themselves to be optimal.
Thinking in terms of order and symmetry does not need a myth-
ical explanation. It reflects the societal experience of production.
Once this experience has established itself to the degree that the
regularity has acquired an aesthetic value, then also new and, in
a certain sense, ordered shapes could be created without an
immediate, inescapable material compulsion existing for them. In
this process, the early geometrical thinking develops further—
that is, the capacity to create thinkable or imaginable forms. 

Possible sediment of magical thinking
in the imagination of space

The emergence from human activity of certain basic
forms—for example, the circle and the square—could have been
“forgotten” in the course of history. It could be unknown not only



to artisans—who imitate the materially necessary forms without
being aware of why they are necessary—but also to those who
remain outside the reproduction process. With the disappearance
of the knowledge of the origin of these basic forms, there may
arise magical or religious thinking—for example, the coupling of
God and the square as a sediment in imagination and representa-
tion of space.

Relative uniformity of ideal structures

Often the relative uniformity of ideal structures is not really
explained: one seeks refuge in God, in an objective world of
ideas independent of human beings (Platonism) or in a general
diffusion from a unique place of discovery. This study shows,
however, that with respect to the awakening of geometrical
thought, this relative uniformity of ideal structures reflects the
unity of humankind, or more accurately, the unity of nature: equal
situations led generally to equal problems with similar attempts
to solve them, although possibly widely differing in detail.
Corresponding societal activity, together with the general human
constitution, enabled the elaboration of equal basic forms.

3. New hypotheses on the history of ancient geometry

On the basis of widespread early geometrical shapes and con-
structions, new hypotheses on the history of ancient geometry
can be formulated. For instance, there could have been practical
reasons for the significance of Thales’ basic figures. The impor-
tance of the construction of rectangles in the daily life of many
peoples—for example, for the building of houses—could have
been reflected in Greek geometry. In this study I showed, for
example, how one may derive in an easy way—more easily than
in the hypotheses formulated so far—the correct ancient
Egyptian formula for the volume of a truncated pyramid with a
square base. In this derivation, one starts from certain early mate-
rial products of labor and their empirically discovered mathemat-
ical relationships, and each next step in the thinking process is
constructive in the sense, that it results, without any deviation,
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from the search for possible answers to still unsolved questions.
Perhaps in this respect the most surprising result of this investi-
gation lies in the explanation of how, starting from widespread
weaving patterns, step by step, intramathematically, the relation-
ship that today is called the Theorem of Pythagoras, with its
direct connection with the Pythagorean numerical triplets, could
have been discovered. The possibility of formulating this type of
hypothesis reinforces the thesis about the unity of humankind
with respect to the awakening of geometrical thought.
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