
AWK

 i

AWK

 i

About the Tutorial

This tutorial takes you through AWK, one of the most prominent text-processing utility

on GNU/Linux. It is very powerful and uses simple programming language. It can

solve complex text processing tasks with a few lines of code.

Starting with an overview of AWK, its environment, and workflow, the tutorial

proceeds to explain the syntax, variables, operators, arrays, loops, and functions used

in AWK. It also covers topics such as output redirection and pretty printing.

Audience

This tutorial will be useful for software developers, system administrators, or any

enthusiastic reader inclined to learn how to do text processing and data extraction in

Unix-like environment.

Prerequisites

You must have a basic understanding of GNU/Linux operating system and shell

scripting.

Copyright & Disclaimer

 Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials

Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute

or republish any contents or a part of contents of this e-book in any manner without

written consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely

as possible, however, the contents may contain inaccuracies or errors. Tutorials Point

(I) Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness

of our website or its contents including this tutorial. If you discover any errors on our

website or in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

AWK

 ii

Table of Contents

About the Tutorial ... i

Audience .. i

Prerequisites .. i

Copyright & Disclaimer .. i

Table of Contents .. ii

1. OVERVIEW ... 1

Types of AWK .. 1

Typical Uses of AWK ... 1

2. AWK ENVIRONMENT .. 2

Installation Using Package Manager ... 2

Installation from Source Code ... 2

3. AWK WORKFLOW .. 4

Program Structure .. 5

Example .. 5

4. BASIC SYNTAX .. 7

AWK Command Line ... 7

AWK Program File ... 7

AWK Standard Options ... 8

5. BASIC EXAMPLES .. 13

Printing Column or Field ... 13

Printing All Lines ... 13

Printing Columns by Pattern ... 14

Printing Column in Any Order ... 14

Counting and Printing Matched Pattern .. 14

AWK

 iii

Printing Lines with More than 18 Characters .. 15

6. BUILT-IN VARIABLES ... 16

Standard AWK Variables ... 16

GNU AWK Specific Variables ... 20

7. OPERATORS ... 23

Arithmetic Operators .. 23

Increment and Decrement Operators ... 24

Assignment Operators .. 25

Relational Operators ... 27

Logical Operators .. 29

Ternary Operator .. 30

Unary Operators ... 31

Exponential Operators .. 31

String Concatenation Operator ... 32

Array Membership Operator ... 32

Regular Expression Operators ... 32

8. REGULAR EXPRESSIONS ... 34

Dot .. 34

Start of Line .. 34

End of Line .. 34

Match Character Set ... 35

Exclusive Set ... 35

Alteration ... 35

Zero or One Occurrence .. 36

Zero or More Occurrence .. 36

One or More Occurrence .. 36

Grouping ... 37

AWK

 iv

9. ARRAYS .. 38

Creating Array ... 38

Deleting Array Elements ... 38

Multi-Dimensional Arrays ... 39

10. CONTROL FLOW ... 41

If Statement .. 41

If-Else Statement .. 41

If-Else-If Ladder ... 42

11. LOOPS .. 43

For Loop .. 43

While Loop .. 43

Do-While Loop .. 44

Break Statement ... 44

Continue Statement .. 45

Exit Statement .. 46

12. BUILT-IN FUNCTIONS ... 47

Arithmetic Functions ... 47

String Functions .. 51

Time Functions .. 57

Bit Manipulation Functions ... 60

Miscellaneous Functions ... 62

13. USER-DEFINED FUNCTIONS .. 68

14. OUTPUT REDIRECTION ... 70

Redirection Operator .. 70

Append Operator .. 70

Pipe... 71

AWK

 v

Two-Way Communication ... 71

15. PRETTY PRINTING ... 73

Escape Sequences ... 73

Format Specifier .. 75

Optional Parameters with % ... 78

AWK

 1

AWK is an interpreted programming language. It is very powerful and specially

designed for text processing. Its name is derived from the family names of its authors

– Alfred Aho, Peter Weinberger, and Brian Kernighan.

The version of AWK that GNU/Linux distributes is written and maintained by the Free

Software Foundation (FSF); it is often referred to as GNU AWK.

Types of AWK

Following are the variants of AWK:

AWK - Original AWK from AT & T Laboratory.

NAWK - Newer and improved version of AWK from AT & T Laboratory.

GAWK - It is GNU AWK. All GNU/Linux distributions ship GAWK. It is fully compatible

with AWK and NAWK.

Typical Uses of AWK

Myriad of tasks can be done with AWK. Listed below are just a few of them:

 Text processing

 Producing formatted text reports

 Performing arithmetic operations

 Performing string operations, and many more

1. OVERVIEW

AWK

 2

This chapter describes how to set up the AWK environment on your GNU/Linux

system.

Installation Using Package Manager

Generally, AWK is available by default on most GNU/Linux distributions. You can

use which command to check whether it is present on your system or not. In case

you don’t have AWK, then install it on Debian based GNU/Linux using Advance

Package Tool (APT) package manager as follows:

[jeryy]$ sudo apt-get update

[jeryy]$ sudo apt-get install gawk

Similarly, to install AWK on RPM based GNU/Linux, use Yellowdog Updator

Modifier (YUM) package manager as follows:

[root]# yum install gawk

After installation, ensure that AWK is accessible via command line.

[jerry]$ which awk

On executing the above code, you get the following result:

/usr/bin/awk

Installation from Source Code

As GNU AWK is a part of the GNU project, its source code is available for free

download. We have already seen how to install AWK using package manager. Let us

now understand how to install AWK from its source code.

The following installation is applicable to any GNU/Linux software, and for most other

freely-available programs as well. Here are the installation steps:

Step 1 - Download the source code from an authentic place. The command-line

utility wget serves this purpose.

[jerry]$ wget http://ftp.gnu.org/gnu/gawk/gawk-4.1.1.tar.xz

2. AWK ENVIRONMENT

AWK

 3

Step 2 - Decompress and extract the downloaded source code.

[jerry]$ tar xvf gawk-4.1.1.tar.xz

Step 3 - Change into the directory and run configure.

[jerry]$./configure

Step 4 - Upon successful completion, the configure generates Makefile. To compile

the source code, execute a make command.

[jerry]$ make

Step 5 - You can run the test suite to ensure the build is clean. This is an optional

step.

[jerry]$ make check

Step 6 - Finally, install AWK. Make sure you have super-user privileges.

[jerry]$ sudo make install

That is it! You have successfully compiled and installed AWK. Verify it by executing

the awk command as follows:

[jerry]$ which awk

On executing this code, you get the following result:

/usr/bin/awk

AWK

 4

To become an expert AWK programmer, you need to know its internals. AWK follows

a simple workflow: Read, Execute, and Repeat. The following diagram depicts the

workflow of AWK:

Read

AWK reads a line from the input stream (file, pipe, or stdin) and stores it in memory.

Execute

All AWK commands are applied sequentially on the input. By default, AWK executes

commands on every line. We can restrict this by providing patterns.

Repeat

This process repeats until the file reaches its end.

3. AWK WORKFLOW

AWK

 5

Program Structure

Let us now understand the program structure of AWK.

BEGIN Block

The syntax of the BEGIN block is as follows:

BEGIN {awk-commands}

The BEGIN block gets executed at program start-up. It executes only once. This is

good place to initialize variables. BEGIN is an AWK keyword and hence it must be in

upper-case. Please note that this block is optional.

Body Block

The syntax of the body block is as follows:

/pattern/ {awk-commands}

The body block applies AWK commands on every input line. By default, AWK executes

commands on every line. We can restrict this by providing patterns. Note that there

are no keywords for the Body block.

END Block

The syntax of the END block is as follows:

END {awk-commands}

The END block executes at the end of the program. END is an AWK keyword and hence

it must be in upper-case. Please note that this block is optional.

Example

Let us create a file marks.txt which contains the serial number, name of the student,

subject name, and number of marks obtained.

1) Amit Physics 80

2) Rahul Maths 90

3) Shyam Biology 87

4) Kedar English 85

5) Hari History 89

Let us now display the file contents with header by using AWK script.

AWK

 6

[jerry]$ awk 'BEGIN{printf "Sr No\tName\tSub\tMarks\n"} {print}' marks.txt

When this code is executed, it produces the following result:

Sr No Name Sub Marks

1) Amit Physics 80

2) Rahul Maths 90

3) Shyam Biology 87

4) Kedar English 85

5) Hari History 89

At the start, AWK prints the header from the BEGIN block. Then in the body block, it

reads a line from a file and executes AWK's print command which just prints the

contents on the standard output stream. This process repeats until file reaches the

end.

AWK

 7

AWK is simple to use. We can provide AWK commands either directly from the

command line or in the form of a text file containing AWK commands.

AWK Command Line

We can specify an AWK command within single quotes at command line as shown:

awk [options] file ...

Example

Consider a text file marks.txt with following content:

1) Amit Physics 80

2) Rahul Maths 90

3) Shyam Biology 87

4) Kedar English 85

5) Hari History 89

Let us display the complete content of the file using AWK as follows:

[jerry]$ awk '{print}' marks.txt

On executing this code, you get the following result:

1) Amit Physics 80

2) Rahul Maths 90

3) Shyam Biology 87

4) Kedar English 85

5) Hari History 89

AWK Program File

We can provide AWK commands in a script file as shown:

awk [options] -f file

4. BASIC SYNTAX

AWK

 8

First, create a text file command.awk containing the AWK command as shown below:

{print}

Now we can instruct the AWK to read commands from the text file and perform the

action. Here, we achieve the same result as shown in the above example.

[jerry]$ awk -f command.awk marks.txt

On executing this code, you get the following result:

1) Amit Physics 80

2) Rahul Maths 90

3) Shyam Biology 87

4) Kedar English 85

5) Hari History 89

AWK Standard Options

AWK supports the following standard options which can be provided from the

command line.

The -v Option

This option assigns a value to a variable. It allows assignment before the program

execution. The following example describes the usage of the -v option.

[jerry]$ awk -v name=Jerry 'BEGIN{printf "Name = %s\n", name}'

On executing this code, you get the following result:

Name = Jerry

The --dump-variables[=file] Option

It prints a sorted list of global variables and their final values to file. The default file

is awkvars.out.

[jerry]$ awk --dump-variables ''

[jerry]$ cat awkvars.out

On executing this code, you get the following result:

ARGC: 1

ARGIND: 0

AWK

 9

ARGV: array, 1 elements

BINMODE: 0

CONVFMT: "%.6g"

ERRNO: ""

FIELDWIDTHS: ""

FILENAME: ""

FNR: 0

FPAT: "[^[:space:]]+"

FS: " "

IGNORECASE: 0

LINT: 0

NF: 0

NR: 0

OFMT: "%.6g"

OFS: " "

ORS: "\n"

RLENGTH: 0

RS: "\n"

RSTART: 0

RT: ""

SUBSEP: "\034"

TEXTDOMAIN: "messages"

The --help Option

This option prints the help message on standard output.

[jerry]$ awk --help

On executing this code, you get the following result:

Usage: awk [POSIX or GNU style options] -f progfile [--] file ...

Usage: awk [POSIX or GNU style options] [--] 'program' file ...

POSIX options: GNU long options: (standard)

 -f progfile --file=progfile

 -F fs --field-separator=fs

 -v var=val --assign=var=val

AWK

 10

Short options: GNU long options: (extensions)

 -b --characters-as-bytes

 -c --traditional

 -C --copyright

 -d[file] --dump-variables[=file]

 -e 'program-text' --source='program-text'

 -E file --exec=file

 -g --gen-pot

 -h --help

 -L [fatal] --lint[=fatal]

 -n --non-decimal-data

 -N --use-lc-numeric

 -O --optimize

 -p[file] --profile[=file]

 -P --posix

 -r --re-interval

 -S --sandbox

 -t --lint-old

 -V --version

The --lint[=fatal] Option

This option enables checking of non-portable or dubious constructs. When an

argument fatal is provided, it treats warning messages as errors. The following

example demonstrates this:

[jerry]$ awk --lint '' /bin/ls

On executing this code, you get the following result:

awk: cmd. line:1: warning: empty program text on command line

awk: cmd. line:1: warning: source file does not end in newline

awk: warning: no program text at all!

The --posix Option

This option turns on strict POSIX compatibility, in which all common and gawk-specific

extensions are disabled.

AWK

 11

The --profile[=file] Option

This option generates a pretty-printed version of the program in a file. The default file

is awkprof.out. The following example demonstrates this:

[jerry]$ awk --profile 'BEGIN{printf"---|Header|--\n"} {print} END{printf"-

--|Footer|---\n"}' marks.txt > /dev/null

[jerry]$ cat awkprof.out

On executing this code, you get the following result:

gawk profile, created Sun Oct 26 19:50:48 2014

 # BEGIN block(s)

 BEGIN {

 printf "---|Header|--\n"

 }

 # Rule(s)

 {

 print $0

 }

 # END block(s)

 END {

 printf "---|Footer|---\n"

 }

The --traditional Option

This option disables all gawk-specific extensions.

The --version Option

This option displays the version information of the AWK program.

[jerry]$ awk --version

When this code is executed, it produces the following result:

GNU Awk 4.0.1

AWK

 12

Copyright (C) 1989, 1991-2012 Free Software Foundation.

AWK

 13

This chapter describes several useful AWK commands and their appropriate examples.

Consider a text file marks.txt to be processed with the following content:

1) Amit Physics 80

2) Rahul Maths 90

3) Shyam Biology 87

4) Kedar English 85

5) Hari History 89

Printing Column or Field

You can instruct AWK to print only certain columns from the input field. The following

example demonstrates this:

[jerry]$ awk '{print $3 "\t" $4}' marks.txt

On executing this code, you get the following result:

Physics 80

Maths 90

Biology 87

English 85

History 89

In the file marks.txt, the third column contains the subject name and the

fourth column contains the marks obtained in a particular subject. Let us print these

two columns using AWK print command. In the above example, $3 and $4 represent

the third and the fourth fields respectively from the input record.

Printing All Lines

By default, AWK prints all the lines that match pattern.

[jerry]$ awk '/a/ {print $0}' marks.txt

On executing this code, you get the following result:

2) Rahul Maths 90

3) Shyam Biology 87

5. BASIC EXAMPLES

AWK

 14

4) Kedar English 85

5) Hari History 89

In the above example, we are searching form pattern a. When a pattern match

succeeds, it executes a command from the body block. In the absence of a body block

- default action is taken which is print the record. Hence, the following command

produces the same result:

[jerry]$ awk '/a/' marks.txt

Printing Columns by Pattern

When a pattern match succeeds, AWK prints the entire record by default. But you can

instruct AWK to print only certain fields. For instance, the following example prints the

third and fourth field when a pattern match succeeds.

[jerry]$ awk '/a/ {print $3 "\t" $4}' marks.txt

On executing this code, you get the following result:

Maths 90

Biology 87

English 85

History 89

Printing Column in Any Order

You can print columns in any order. For instance, the following example prints the

fourth column followed by the third column.

[jerry]$ awk '/a/ {print $4 "\t" $3}' marks.txt

On executing the above code, you get the following result:

90 Maths

87 Biology

85 English

89 History

Counting and Printing Matched Pattern

Let us see an example where you can count and print the number of lines for which a

pattern match succeeded.

AWK

 15

[jerry]$ awk '/a/{++cnt} END {print "Count = ", cnt}' marks.txt

On executing this code, you get the following result:

Count = 4

In this example, we increment the value of counter when a pattern match succeeds

and we print this value in the END block. Note that unlike other programming

languages, there is no need to declare a variable before using it.

Printing Lines with More than 18 Characters

Let us print only those lines that contain more than 18 characters.

[jerry]$ awk 'length($0) > 18' marks.txt

On executing this code, you get the following result:

3) Shyam Biology 87

4) Kedar English 85

AWK provides a built-in length function that returns the length of the

string. $0 variable stores the entire line and in the absence of a body block, default

action is taken, i.e., the print action. Hence, if a line has more than 18 characters,

then the comparison results true and the line gets printed.

AWK

 16

AWK provides several built-in variables. They play an important role while writing AWK

scripts. This chapter demonstrates the usage of built-in variables.

Standard AWK Variables

The standard AWK variables are discussed below.

ARGC

It implies the number of arguments provided at the command line.

[jerry]$ awk 'BEGIN {print "Arguments =", ARGC}' One Two Three Four

On executing this code, you get the following result:

Arguments = 5

But why AWK shows 5 when you passed only 4 arguments? Just check the following

example to clear your doubt.

ARGV

It is an array that stores the command-line arguments. The array's valid index ranges

from 0 to ARGC-1.

[jerry]$ awk 'BEGIN { for (i = 0; i < ARGC - 1; ++i) { printf "ARGV[%d] =

%s\n", i, ARGV[i] } }' one two three four

On executing this code, you get the following result:

ARGV[0] = awk

ARGV[1] = one

ARGV[2] = two

ARGV[3] = three

CONVFMT

It represents the conversion format for numbers. Its default value is %.6g.

[jerry]$ awk 'BEGIN { print "Conversion Format =", CONVFMT }'

6. BUILT-IN VARIABLES

AWK

 17

On executing this code, you get the following result:

Conversion Format = %.6g

ENVIRON

It is an associative array of environment variables.

[jerry]$ awk 'BEGIN { print ENVIRON["USER"] }'

On executing this code, you get the following result:

jerry

To find names of other environment variables, use env command.

FILENAME

It represents the current file name.

[jerry]$ awk 'END {print FILENAME}' marks.txt

On executing this code, you get the following result:

marks.txt

Please note that FILENAME is undefined in the BEGIN block.

FS

It represents the (input) field separator and its default value is space. You can also

change this by using -F command line option.

[jerry]$ awk 'BEGIN {print "FS = " FS}' | cat -vte

On executing this code, you get the following result:

FS = $

NF

It represents the number of fields in the current record. For instance, the following

example prints only those lines that contain more than two fields.

[jerry]$ echo -e "One Two\nOne Two Three\nOne Two Three Four" | awk 'NF > 2'

AWK

 18

On executing this code, you get the following result:

One Two Three

One Two Three Four

NR

It represents the number of the current record. For instance, the following example

prints the record if the current record contains less than three fields.

[jerry]$ echo -e "One Two\nOne Two Three\nOne Two Three Four" | awk 'NR < 3'

On executing this code, you get the following result:

One Two

One Two Three

FNR

It is similar to NR, but relative to the current file. It is useful when AWK is operating

on multiple files. Value of FNR resets with new file.

OFMT

It represents the output format number and its default value is %.6g.

[jerry]$ awk 'BEGIN {print "OFMT = " OFMT}'

On executing this code, you get the following result:

OFMT = %.6g

OFS

It represents the output field separator and its default value is space.

[jerry]$ awk 'BEGIN {print "OFS = " OFS}' | cat -vte

On executing this code, you get the following result:

OFS = $

ORS

It represents the output record separator and its default value is newline.

AWK

 19

[jerry]$ awk 'BEGIN {print "ORS = " ORS}' | cat -vte

On executing the above code, you get the following result:

ORS = $

$

RLENGTH

It represents the length of the string matched by match function. AWK's match

function searches for a given string in the input-string.

[jerry]$ awk 'BEGIN { if (match("One Two Three", "re")) { print RLENGTH } }'

On executing this code, you get the following result:

2

RS

It represents (input) record separator and its default value is newline.

[jerry]$ awk 'BEGIN {print "RS = " RS}' | cat -vte

On executing this code, you get the following result:

RS = $

$

RSTART

It represents the first position in the string matched by match function.

[jerry]$ awk 'BEGIN { if (match("One Two Three", "Thre")) { print RSTART } }'

On executing this code, you get the following result:

9

SUBSEP

It represents the separator character for array subscripts and its default value

is \034.

[jerry]$ awk 'BEGIN { print "SUBSEP = " SUBSEP }' | cat -vte

AWK

 20

On executing this code, you get the following result:

SUBSEP = ^\$

$0

It represents the entire input record.

[jerry]$ awk '{print $0}' marks.txt

On executing this code, you get the following result:

1) Amit Physics 80

2) Rahul Maths 90

3) Shyam Biology 87

4) Kedar English 85

5) Hari History 89

$n

It represents the nth field in the current record where the fields are separated by FS.

[jerry]$ awk '{print $3 "\t" $4}' marks.txt

On executing this code, you get the following result:

Physics 80

Maths 90

Biology 87

English 85

History 89

GNU AWK Specific Variables

GNU AWK specific variables are as follows:

ARGIND

It represents the index in ARGV of the current file being processed.

[jerry]$ awk '{ print "ARGIND = ", ARGIND; print "Filename = ",

ARGV[ARGIND] }' junk1 junk2 junk3

AWK

 21

On executing this code, you get the following result:

ARGIND = 1

Filename = junk1

ARGIND = 2

Filename = junk2

ARGIND = 3

Filename = junk3

BINMODE

It is used to specify binary mode for all file I/O on non-POSIX systems. Numeric values

of 1, 2, or 3 specify that input files, output files, or all files, respectively, should use

binary I/O. String values of r or w specify that input files or output files, respectively,

should use binary I/O. String values of rw or wr specify that all files should use binary

I/O.

ERRNO

A string indicates an error when a redirection fails for getline or if close call fails.

[jerry]$ awk 'BEGIN { ret = getline < "junk.txt"; if (ret == -1) print

"Error:", ERRNO }'

On executing this code, you get the following result:

Error: No such file or directory

FIELDWIDTHS

A space separated list of field widths variable is set, GAWK parses the input into fields

of fixed width, instead of using the value of the FS variable as the field separator.

IGNORECASE

When this variable is set, GAWK becomes case-insensitive. The following example

demonstrates this:

[jerry]$ awk 'BEGIN{IGNORECASE=1} /amit/' marks.txt

On executing this code, you get the following result:

1) Amit Physics 80

AWK

 22

LINT

It provides dynamic control of the --lint option from the GAWK program. When this

variable is set, GAWK prints lint warnings. When assigned the string value fatal, lint

warnings become fatal errors, exactly like --lint=fatal.

[jerry]$ awk 'BEGIN {LINT=1; a}'

On executing this code, you get the following result:

awk: cmd. line:1: warning: reference to uninitialized variable `a'

awk: cmd. line:1: warning: statement has no effect

PROCINFO

This is an associative array containing information about the process, such as real and

effective UID numbers, process ID number, and so on.

[jerry]$ awk 'BEGIN { print PROCINFO["pid"] }'

On executing this code, you get the following result:

4316

TEXTDOMAIN

It represents the text domain of the AWK program. It is used to find the localized

translations for the program's strings.

[jerry]$ awk 'BEGIN { print TEXTDOMAIN }'

On executing this code, you get the following result:

messages

The above output shows English text due to en_IN locale.

AWK

 23

Like other programming languages, AWK also provides a large set of operators. This

chapter explains AWK operators with suitable examples.

Arithmetic Operators

AWK supports the following arithmetic operators:

Addition

It is represented by plus (+) symbol which adds two or more numbers. The following

example demonstrates this:

[jerry]$ awk 'BEGIN { a = 50; b = 20; print "(a + b) = ", (a + b) }'

On executing this code, you get the following result:

(a + b) = 70

Subtraction

It is represented by minus (-) symbol which subtracts two or more numbers. The

following example demonstrates this:

[jerry]$ awk 'BEGIN { a = 50; b = 20; print "(a - b) = ", (a - b) }'

On executing this code, you get the following result:

(a - b) = 30

Multiplication

It is represented by asterisk (*) symbol which multiplies two or more numbers. The

following example demonstrates this:

[jerry]$ awk 'BEGIN { a = 50; b = 20; print "(a * b) = ", (a * b) }'

On executing this code, you get the following result:

(a * b) = 1000

7. OPERATORS

AWK

 24

Division

It is represented by slash (/) symbol which divides two or more numbers. The

following example illustrates this:

[jerry]$ awk 'BEGIN { a = 50; b = 20; print "(a / b) = ", (a / b) }'

On executing this code, you get the following result:

(a / b) = 2.5

Module

It is represented by percent (%) symbol which finds the module division of two or

more numbers. The following example illustrates this:

[jerry]$ awk 'BEGIN { a = 50; b = 20; print "(a % b) = ", (a % b) }'

On executing this code, you get the following result:

(a % b) = 10

Increment and Decrement Operators

AWK supports the following increment and decrement operators:

Pre-Increment

It is represented by ++. It increments the value of an operand by 1. This operator

first increments the value of the operand, then returns the incremented value. For

instance, in the following example, this operator sets the value of both the operands,

a and b, to 11.

awk 'BEGIN { a = 10; b = ++a; printf "a = %d, b = %d\n", a, b }'

On executing this code, you get the following result:

a = 11, b = 11

Pre-Decrement

It is represented by --. It decrements the value of an operand by 1. This operator first

decrements the value of the operand, then returns the decremented value. For

instance, in the following example, this operator sets the value of both the operands,

a and b, to 9.

AWK

 25

[jerry]$ awk 'BEGIN { a = 10; b = --a; printf "a = %d, b = %d\n", a, b }'

On executing the above code, you get the following result:

a = 9, b = 9

Post-Increment

It is represented by ++. It increments the value of an operand by 1. This operator

first returns the value of the operand, then it increments its value. For instance, the

following code sets the value of operand a to 11 and b to 10.

[jerry]$ awk 'BEGIN { a = 10; b = a++; printf "a = %d, b = %d\n", a, b }'

On executing this code, you get the following result:

a = 11, b = 10

Post-Decrement

It is represented by --. It decrements the value of an operand by 1. This operator first

returns the value of the operand, then it decrements its value. For instance, the

following code sets the value of the operand a to 9 and b to 10.

[jerry]$ awk 'BEGIN { a = 10; b = a--; printf "a = %d, b = %d\n", a, b }'

On executing this code, you get the following result:

a = 9, b = 10

Assignment Operators

AWK supports the following assignment operators:

Simple Assignment

It is represented by =. The following example demonstrates this:

[jerry]$ awk 'BEGIN { name = "Jerry"; print "My name is", name }'

On executing this code, you get the following result:

My name is Jerry

AWK

 26

Shorthand Addition

It is represented by +=. The following example demonstrates this:

[jerry]$ awk 'BEGIN { cnt=10; cnt += 10; print "Counter =", cnt }'

On executing this code, you get the following result:

Counter = 20

In the above example, the first statement assigns value 10 to the variable cnt. In the

next statement, the shorthand operator increments its value by 10.

Shorthand Subtraction

It is represented by -=. The following example demonstrates this:

[jerry]$ awk 'BEGIN { cnt=100; cnt -= 10; print "Counter =", cnt }'

On executing this code, you get the following result:

Counter = 90

In the above example, the first statement assigns value 100 to the variable cnt. In

the next statement, the shorthand operator decrements its value by 10.

Shorthand Multiplication

It is represented by *=. The following example demonstrates this:

[jerry]$ awk 'BEGIN { cnt=10; cnt *= 10; print "Counter =", cnt }'

On executing this code, you get the following result:

Counter = 100

In the above example, the first statement assigns value 10 to the variable cnt. In the

next statement, the shorthand operator multiplies its value by 10.

Shorthand Division

It is represented by /=. The following example demonstrates this:

[jerry]$ awk 'BEGIN { cnt=100; cnt /= 5; print "Counter =", cnt }'

On executing this code, you get the following result:

Counter = 20

AWK

 27

In the above example, the first statement assigns value 100 to the variable cnt. In

the next statement, the shorthand operator divides it by 5.

Shorthand Modulo

It is represented by %=. The following example demonstrates this:

[jerry]$ awk 'BEGIN { cnt=100; cnt %= 8; print "Counter =", cnt }'

On executing this code, you get the following result:

Counter = 4

Shorthand Exponential

It is represented by ^=. The following example demonstrates this:

[jerry]$ awk 'BEGIN { cnt=2; cnt ^= 4; print "Counter =", cnt }'

On executing this code, you get the following result:

Counter = 16

The above example raises the value of cnt by 4.

Shorthand Exponential

It is represented by **=. The following example demonstrates this:

[jerry]$ awk 'BEGIN { cnt=2; cnt **= 4; print "Counter =", cnt }'

On executing this code, you get the following result:

Counter = 16

This example also raises the value of cnt by 4.

Relational Operators

AWK supports the following relational operators:

Equal to

It is represented by ==. It returns true if both operands are equal, otherwise it returns

false. The following example demonstrates this:

awk 'BEGIN { a = 10; b = 10; if (a == b) print "a == b" }'

AWK

 28

On executing this code, you get the following result:

a == b

Not Equal to

It is represented by !=. It returns true if both operands are unequal, otherwise it

returns false.

[jerry]$ awk 'BEGIN { a = 10; b = 20; if (a != b) print "a != b" }'

On executing this code, you get the following result:

a != b

Less Than

It is represented by <. It returns true if the left-side operand is less than the right-

side operand; otherwise it returns false.

[jerry]$ awk 'BEGIN { a = 10; b = 20; if (a < b) print "a < b" }'

On executing this code, you get the following result:

a < b

Less Than or Equal to

It is represented by <=. It returns true if the left-side operand is less than or equal

to the right-side operand; otherwise it returns false.

[jerry]$ awk 'BEGIN { a = 10; b = 10; if (a <= b) print "a <= b" }'

On executing this code, you get the following result:

a <= b

Greater Than

It is represented by >. It returns true if the left-side operand is greater than the right-

side operand, otherwise it returns false.

[jerry]$ awk 'BEGIN { a = 10; b = 20; if (b > a) print "b > a" }'

AWK

 29

On executing the above code, you get the following result:

b > a

Greater Than or Equal to

It is represented by >=. It returns true if the left-side operand is greater than or equal

to the right-side operand; otherwise it returns false.

[jerry]$ awk 'BEGIN { a = 10; b = 10; if (a >= b) print "a >= b" }'

On executing this code, you get the following result:

b >= a

Logical Operators

AWK supports the following logical operators:

Logical AND

It is represented by &&. Its syntax is as follows:

expr1 && expr2

It evaluates to true if both expr1 and expr2 evaluate to true; otherwise it returns

false. expr2 is evaluated if and only if expr1 evaluates to true. For instance, the

following example checks whether the given single digit number is in octal format or

not.

[jerry]$ awk 'BEGIN {num = 5; if (num >= 0 && num <= 7) printf "%d is in

octal format\n", num }'

On executing this code, you get the following result:

5 is in octal format

Logical OR

It is represented by ||. The syntax of Logical OR is:

expr1 || expr2

It evaluates to true if either expr1 or expr2 evaluates to true; otherwise it returns

false. expr2 is evaluated if and only if expr1 evaluates to false. The following example

demonstrates this:

AWK

 30

[jerry]$ awk 'BEGIN {ch = "\n"; if (ch == " " || ch == "\t" || ch == "\n")

print "Current character is whitespace." }'

On executing this code, you get the following result:

Current character is whitespace.

Logical NOT

It is represented by exclamation mark (!). The following example demonstrates

this:

! expr1

It returns the logical compliment of expr1. If expr1 evaluates to true, it returns 0;

otherwise it returns 1. For instance, the following example checks whether a string is

empty or not.

[jerry]$ awk 'BEGIN { name = ""; if (! length(name)) print "name is empty

string." }'

On executing this code, you get the following result:

name is empty string.

Ternary Operator

We can easily implement a condition expression using ternary operator. The following

example demonstrates this:

condition expression ? statement1 : statement2

When the condition expression returns true, statement1 gets executed; otherwise

statement2 is executed. For instance, the following example finds the largest number

from two given numbers.

[jerry]$ awk 'BEGIN { a = 10; b = 20; (a > b) ? max = a : max = b; print

"Max =", max}'

On executing this code, you get the following result:

Max = 20

AWK

 31

Unary Operators

AWK supports the following unary operators:

Unary Plus

It is represented by +. It multiplies a single operand by +1.

[jerry]$ awk 'BEGIN { a = -10; a = +a; print "a =", a }'

On executing this code, you get the following result:

a = -10

Unary Minus

It is represented by -. It multiplies a single operand by -1.

[jerry]$ awk 'BEGIN { a = -10; a = -a; print "a =", a }'

On executing this code, you get the following result:

a = 10

Exponential Operators

There are two formats of exponential operators:

Exponential Format 1

It is an exponential operator that raises the value of an operand. For instance, the

following example raises the value of 10 by 2.

[jerry]$ awk 'BEGIN { a = 10; a = a ^ 2; print "a =", a }'

On executing this code, you get the following result:

a = 100

Exponential Format 2

It is an exponential operator that raises the value of an operand. For instance, the

following example raises the value of 10 by 2.

[jerry]$ awk 'BEGIN { a = 10; a = a ** 2; print "a =", a }'

AWK

 32

On executing this code, you get the following result:

a = 100

String Concatenation Operator

Space is a string concatenation operator that merges two strings. The following

example demonstrates this:

[jerry]$ awk 'BEGIN { str1="Hello, "; str2="World"; str3 = str1 str2; print

str3 }'

On executing this code, you get the following result:

Hello, World

Array Membership Operator

It is represented by in. It is used while accessing array elements. The following

example prints array elements using this operator.

[jerry]$ awk 'BEGIN { arr[0] = 1; arr[1] = 2; arr[2] = 3; for (i in arr)

printf "arr[%d] = %d\n", i, arr[i] }'

On executing this code, you get the following result:

arr[0] = 1

arr[1] = 2

arr[2] = 3

Regular Expression Operators

This example explains the two forms of regular expressions operators.

Match

It is represented as ~. It looks for a field that contains the match string. For instance,

the following example prints the lines that contain the pattern 9.

[jerry]$ awk '$0 ~ 9' marks.txt

AWK

 33

On executing this code, you get the following result:

2) Rahul Maths 90

5) Hari History 89

Not Match

It is represented as !~. It looks for a field that does not contain the match string. For

instance, the following example prints the lines that do not contain the pattern 9.

[jerry]$ awk '$0 !~ 9' marks.txt

On executing this code, you get the following result:

1) Amit Physics 80

3) Shyam Biology 87

4) Kedar English 85

AWK

 34

AWK is very powerful and efficient in handling regular expressions. A number of

complex tasks can be solved with simple regular expressions. Any command-line

expert knows the power of regular expressions.

This chapter covers standard regular expressions with suitable examples.

Dot

It matches any single character except the end of line character. For instance, the

following example matches fin, fun, fan, etc.

[jerry]$ echo -e "cat\nbat\nfun\nfin\nfan" | awk '/f.n/'

On executing the above code, you get the following result:

fun

fin

fan

Start of Line

It matches the start of line. For instance, the following example prints all the lines

that start with pattern The.

[jerry]$ echo -e "This\nThat\nThere\nTheir\nthese" | awk '/^The/'

On executing this code, you get the following result:

There

Their

End of Line

It matches the end of line. For instance, the following example prints the lines that

end with the letter n.

[jerry]$ echo -e "knife\nknow\nfun\nfin\nfan\nnine" | awk '/n$/'

8. REGULAR EXPRESSIONS

AWK

 35

On executing this code, you get the following result:

fun

fin

fan

Match Character Set

It is used to match only one out of several characters. For instance, the following

example matches pattern Call and Tall but not Ball.

[jerry]$ echo -e "Call\nTall\nBall" | awk '/[CT]all/'

On executing this code, you get the following result:

Call

Tall

Exclusive Set

In exclusive set, the carat negates the set of characters in the square brackets. For

instance, the following example prints only Ball.

[jerry]$ echo -e "Call\nTall\nBall" | awk '/[^CT]all/'

On executing this code, you get the following result:

Ball

Alteration

A vertical bar allows regular expressions to be logically ORed. For instance, the

following example prints Ball and Call.

[jerry]$ echo -e "Call\nTall\nBall\nSmall\nShall" | awk '/Call|Ball/'

On executing this code, you get the following result:

Call

Ball

AWK

 36

Zero or One Occurrence

It matches zero or one occurrence of the preceding character. For instance, the

following example matches Colour as well as Color. We have made u as an optional

character by using ?.

[jerry]$ echo -e "Colour\nColor" | awk '/Colou?r/'

On executing this code, you get the following result:

Colour

Color

Zero or More Occurrence

It matches zero or more occurrences of the preceding character. For instance, the

following example matches ca, cat, catt, and so on.

[jerry]$ echo -e "ca\ncat\ncatt" | awk '/cat*/'

On executing this code, you get the following result:

ca

cat

catt

One or More Occurrence

It matches one or more occurrences of the preceding character. For instance, the

following example matches one or more occurrences of 2.

[jerry]$ echo -e "111\n22\n123\n234\n456\n222" | awk '/2+/'

On executing this code, you get the following result:

22

123

234

222

AWK

 37

Grouping

Parentheses () are used for grouping and the character | is used for alternatives.

For instance, the following regular expression matches the lines containing

either Apple Juice or Apple Cake.

[jerry]$ echo -e "Apple Juice\nApple Pie\nApple Tart\nApple Cake" | awk

'/Apple (Juice|Cake)/'

On executing this code, you get the following result:

Apple Juice

Apple Cake

AWK

 38

AWK has associative arrays and one of the best thing about it is – the indexes need

not to be continuous set of number; you can use either string or number as an array

index. Also, there is no need to declare the size of an array in advance – arrays can

expand/shrink at runtime.

Its syntax is as follows:

array_name[index]=value

Where array_name is the name of array, index is the array index, and value is any

value assigning to the element of the array.

Creating Array

To gain more insight on array, let us create and access the elements of an array.

[jerry]$ awk 'BEGIN {

fruits["mango"]="yellow";

fruits["orange"]="orange"

print fruits["orange"] "\n" fruits["mango"]

}'

On executing this code, you get the following result:

orange

yellow

In the above example, we declare the array as fruits whose index is fruit name and

the value is the color of the fruit. To access array elements, we use

array_name[index] format.

Deleting Array Elements

For insertion, we used assignment operator. Similarly, we can use delete statement

to remove an element from the array. The syntax of delete statement is as follows:

delete array_name[index]

9. ARRAYS

AWK

 39

The following example deletes the element orange. Hence the command does not

show any output.

[jerry]$ awk 'BEGIN {

fruits["mango"]="yellow";

fruits["orange"]="orange";

delete fruits["orange"];

print fruits["orange"]

}'

Multi-Dimensional Arrays

AWK only supports one-dimensional arrays. But you can easily simulate a multi-

dimensional array using the one-dimensional array itself.

For instance, given below is a 3x3 three-dimensional array:

100 200 300

400 500 600

700 800 900

In the above example, array[0][0] stores 100, array[0][1] stores 200, and so on. To

store 100 at array location [0][0], we can use the following syntax:

array["0,0"] = 100

Though we gave 0,0 as index, these are not two indexes. In reality, it is just one index

with the string 0,0.

The following example simulates a 2-D array:

[jerry]$ awk 'BEGIN {

array["0,0"] = 100;

array["0,1"] = 200;

array["0,2"] = 300;

array["1,0"] = 400;

array["1,1"] = 500;

array["1,2"] = 600;

print array elements

print "array[0,0] = " array["0,0"];

print "array[0,1] = " array["0,1"];

AWK

 40

print "array[0,2] = " array["0,2"];

print "array[1,0] = " array["1,0"];

print "array[1,1] = " array["1,1"];

print "array[1,2] = " array["1,2"];

}'

On executing this code, you get the following result:

array[0,0] = 100

array[0,1] = 200

array[0,2] = 300

array[1,0] = 400

array[1,1] = 500

array[1,2] = 600

You can also perform a variety of operations on an array such as sorting its

elements/indexes. For that purpose, you can use assort and asorti functions.

AWK

 41

Like other programming languages, AWK provides conditional statements to control

the flow of a program. This chapter explains AWK's control statements with suitable

examples.

If Statement

It simply tests the condition and performs certain actions depending upon the

condition. Given below is the syntax of if statement:

if (condition)

 action

We can also use a pair of curly braces as given below to execute multiple actions:

if (condition)

{

 action-1

 action-1

 .

 .

 action-n

}

For instance, the following example checks whether a number is even or not:

[jerry]$ awk 'BEGIN {num = 10; if (num % 2 == 0) printf "%d is even

number.\n", num }'

On executing this code, you get the following result:

10 is even number.

If-Else Statement

In if-else syntax, we can provide a list of actions to be performed when a condition

becomes false.

10. CONTROL FLOW

AWK

 42

The syntax of if-else statement is as follows:

if (condition)

 action-1

else

 action-2

In the above syntax, action-1 is performed when the condition evaluates to true and

action-2 is performed when the condition evaluates to false. For instance, the following

example checks whether a number is even or not:

[jerry]$ awk 'BEGIN {num = 11; if (num % 2 == 0) printf "%d is even

number.\n", num; else printf "%d is odd number.\n", num }'

On executing this code, you get the following result:

11 is odd number.

If-Else-If Ladder

We can easily create an if-else-if ladder by using multiple if-else statements. The

following example demonstrates this:

[jerry]$ awk 'BEGIN {

a=30;

if (a==10)

 print "a = 10";

else if (a == 20)

 print "a = 20";

else if (a == 30)

 print "a = 30";

}'

On executing this code, you get the following result:

a = 30

AWK

 43

This chapter explains AWK's loops with suitable example. Loops are used to execute

a set of actions in a repeated manner. The loop execution continues as long as the

loop condition is true.

For Loop

The syntax of for loop is:

for (initialisation; condition; increment/decrement)

 action

Initially, the for statement performs initialization action, then it checks the condition.

If the condition is true, it executes actions, thereafter it performs increment or

decrement operation. The loop execution continues as long as the condition is true.

For instance, the following example prints 1 to 5 using for loop:

[jerry]$ awk 'BEGIN { for (i = 1; i <= 5; ++i) print i }'

On executing this code, you get the following result:

1

2

3

4

5

While Loop

The while loop keeps executing the action until a particular logical condition evaluates

to true. Here is the syntax of while loop:

while (condition)

 action

AWK first checks the condition; if the condition is true, it executes the action. This

process repeats as long as the loop condition evaluates to true. For instance, the

following example prints 1 to 5 using while loop:

[jerry]$ awk 'BEGIN {i = 1; while (i < 6) { print i; ++i } }'

11. LOOPS

AWK

 44

On executing this code, you get the following result:

1

2

3

4

5

Do-While Loop

The do-while loop is similar to the while loop, except that the test condition is

evaluated at the end of the loop. Here is the syntax of do-while loop:

do

 action

while (condition)

In a do-while loop, the action statement gets executed at least once even when the

condition statement evaluates to false. For instance, the following example prints 1 to

5 numbers using do-while loop:

[jerry]$ awk 'BEGIN {i = 1; do { print i; ++i } while (i < 6) }'

On executing this code, you get the following result:

1

2

3

4

5

Break Statement

As its name suggests, it is used to end the loop execution. Here is an example which

ends the loop when the sum becomes greater than 50.

[jerry]$ awk 'BEGIN {sum = 0; for (i = 0; i < 20; ++i) { sum += i; if (sum

> 50) break; else print "Sum =", sum } }'

AWK

 45

On executing this code, you get the following result:

Sum = 0

Sum = 1

Sum = 3

Sum = 6

Sum = 10

Sum = 15

Sum = 21

Sum = 28

Sum = 36

Sum = 45

Continue Statement

The continue statement is used inside a loop to skip to the next iteration of the loop.

It is useful when you wish to skip the processing of some data inside the loop. For

instance, the following example uses continue statement to print the even numbers

between 1 to 20.

[jerry]$ awk 'BEGIN {for (i = 1; i <= 20; ++i) {if (i % 2 == 0) print i ;

else continue} }'

On executing this code, you get the following result:

2

4

6

8

10

12

14

16

18

20

AWK

 46

Exit Statement

It is used to stop the execution of the script. It accepts an integer as an argument

which is the exit status code for AWK process. If no argument is supplied, exit returns

status zero. Here is an example that stops the execution when the sum becomes

greater than 50.

[jerry]$ awk 'BEGIN {sum = 0; for (i = 0; i < 20; ++i) { sum += i; if (sum

> 50) exit(10); else print "Sum =", sum } }'

On executing this code, you get the following result:

Sum = 0

Sum = 1

Sum = 3

Sum = 6

Sum = 10

Sum = 15

Sum = 21

Sum = 28

Sum = 36

Sum = 45

Let us check the return status of the script.

[jerry]$ echo $?

On executing this code, you get the following result:

10

AWK

 47

AWK has a number of functions built into it that are always available to the

programmer. This chapter describes Arithmetic, String, Time, Bit manipulation, and

other miscellaneous functions with suitable examples.

Arithmetic Functions

AWK has the following built-in arithmetic functions:

atan2(y, x)

It returns the arctangent of (y/x) in radians. The following example demonstrates

this:

[jerry]$ awk 'BEGIN {

 PI = 3.14159265

 x = -10

 y = 10

 result = atan2 (y,x) * 180 / PI;

 printf "The arc tangent for (x=%f, y=%f) is %f degrees\n", x, y, result

}'

On executing this code, you get the following result:

The arc tangent for (x=-10.000000, y=10.000000) is 135.000000 degrees

cos(expr)

This function returns the cosine of expr, which is expressed in radians. The following

example demonstrates this:

[jerry]$ awk 'BEGIN {

 PI = 3.14159265

 param = 60

 result = cos(param * PI / 180.0);

 printf "The cosine of %f degrees is %f.\n", param, result

12. BUILT-IN FUNCTIONS

AWK

 48

}'

On executing this code, you get the following result:

The cosine of 60.000000 degrees is 0.500000.

exp(expr)

This function is used to find the exponential value of a variable.

[jerry]$ awk 'BEGIN {

 param = 5

 result = exp(param);

 printf "The exponential value of %f is %f.\n", param, result

}'

On executing this code, you get the following result:

The exponential value of 5.000000 is 148.413159.

int(expr)

This function truncates the expr to an integer value. The following example

demonstrates this:

[jerry]$ awk 'BEGIN {

 param = 5.12345

 result = int(param)

 print "Truncated value =", result

}'

On executing this code, you get the following result:

Truncated value = 5

log(expr)

This function calculates the natural logarithm of a variable.

[jerry]$ awk 'BEGIN {

AWK

 49

 param = 5.5

 result = log (param)

 printf "log(%f) = %f\n", param, result

}'

On executing this code, you get the following result:

log(5.500000) = 1.704748

rand

This function returns a random number N, between 0 and 1, such that 0 <= N < 1.

For instance, the following example generates three random numbers:

[jerry]$ awk 'BEGIN {

 print "Random num1 =" , rand()

 print "Random num2 =" , rand()

 print "Random num3 =" , rand()

}'

On executing this code, you get the following result:

Random num1 = 0.237788

Random num2 = 0.291066

Random num3 = 0.845814

sin(expr)

This function returns the sine of expr, which is expressed in radians. The following

example demonstrates this:

[jerry]$ awk 'BEGIN {

 PI = 3.14159265

 param = 30.0

 result = sin(param * PI /180)

 printf "The sine of %f degrees is %f.\n", param, result

}'

AWK

 50

On executing this code, you get the following result:

The sine of 30.000000 degrees is 0.500000.

sqrt(expr)

This function returns the square root of expr.

[jerry]$ awk 'BEGIN {

 param = 1024.0

 result = sqrt(param)

 printf "sqrt(%f) = %f\n", param, result

}'

On executing this code, you get the following result:

sqrt(1024.000000) = 32.000000

srand([expr])

This function generates a random number using seed value. It uses expr as the new

seed for the random number generator. In the absence of expr, it uses the time of

day as the seed value.

[jerry]$ awk 'BEGIN {

 param = 10

 printf "srand() = %d\n", srand()

 printf "srand(%d) = %d\n", param, srand(param)

}'

On executing this code, you get the following result:

srand() = 1

srand(10) = 1417959587

AWK

 51

String Functions

AWK has the following built-in String functions:

asort(arr [, d [, how]])

This function sorts the contents of arr using GAWK's normal rules for comparing

values, and replaces the indexes of the sorted values arr with sequential integers

starting with 1.

[jerry]$ awk 'BEGIN {

 arr[0] = "Three"

 arr[1] = "One"

 arr[2] = "Two"

 print "Array elements before sorting:"

 for (i in arr) {

 print arr[i]

 }

 asort(arr)

 print "Array elements after sorting:"

 for (i in arr) {

 print arr[i]

 }

}'

On executing this code, you get the following result:

Array elements before sorting:

Three

One

Two

Array elements after sorting:

One

Three

Two

AWK

 52

asorti(arr [, d [, how]])

The behavior of this function is the same as that of asort(), except that the array

indexes are used for sorting.

[jerry]$ awk 'BEGIN {

 arr["Two"] = 1

 arr["One"] = 2

 arr["Three"] = 3

 asorti(arr)

 print "Array indices after sorting:"

 for (i in arr) {

 print arr[i]

 }

}'

On executing this code, you get the following result:

Array indices after sorting:

One

Three

Two

gsub(regex, sub, string)

gsub stands for global substitution. It replaces every occurrence of sub with regex.

The third parameter is optional. If it is omitted, then $0 is used.

[jerry]$ awk 'BEGIN {

 str = "Hello, World"

 print "String before replacement = " str

 gsub("World", "Jerry", str)

 print "String after replacement = " str

}'

AWK

 53

On executing this code, you get the following result:

String before replacement = Hello, World

String after replacement = Hello, Jerry

index(str, sub)

It checks whether sub is a substring of str or not. On success, it returns the position

where sub starts; otherwise it returns 0. The first character of str is at position 1.

[jerry]$ awk 'BEGIN {

 str = "One Two Three"

 subs = "Two"

 ret = index(str, subs)

 printf "Substring \"%s\" found at %d location.\n", subs, ret

}'

On executing this code, you get the following result:

Substring "Two" found at 5 location.

length(str)

It returns the length of a string.

[jerry]$ awk 'BEGIN {

 str = "Hello, World !!!"

 print "Length = ", length(str)

}'

On executing this code, you get the following result:

Length = 16

match(str, regex)

It returns the index of the first longest match of regex in string str. It returns 0 if no

match found.

AWK

 54

[jerry]$ awk 'BEGIN {

 str = "One Two Three"

 subs = "Two"

 ret = match(str, subs)

 printf "Substring \"%s\" found at %d location.\n", subs, ret

}'

On executing this code, you get the following result:

Substring "Two" found at 5 location.

split(str, arr, regex)

This function splits the string str into fields by regular expression regex and the fields

are loaded into the array arr. If regex is omitted, then FS is used.

[jerry]$ awk 'BEGIN {

 str = "One,Two,Three,Four"

 split(str, arr, ",")

 print "Array contains following values"

 for (i in arr) {

 print arr[i]

 }

}'

On executing this code, you get the following result:

Array contains following values

One

Two

Three

Four

sprintf(format, expr-list)

This function returns a string constructed from expr-list according to format.

[jerry]$ awk 'BEGIN {

 str = sprintf("%s", "Hello, World !!!")

AWK

 55

 print str

}'

On executing this code, you get the following result:

Hello, World !!!

strtonum(str)

This function examines str and return its numeric value. If str begins with a leading

0, it is treated as an octal number. If str begins with a leading 0x or 0X, it is taken as

a hexadecimal number. Otherwise, assume it is a decimal number.

[jerry]$ awk 'BEGIN {

 print "Decimal num = " strtonum("123")

 print "Octal num = " strtonum("0123")

 print "Hexadecimal num = " strtonum("0x123")

}'

On executing this code, you get the following result:

Decimal num = 123

Octal num = 83

Hexadecimal num = 291

sub(regex, sub, string)

This function performs single substitution. It replaces the first occurrence of sub with

regex. The third parameter is optional. If it is omitted, $0 is used.

[jerry]$ awk 'BEGIN {

 str = "Hello, World"

 print "String before replacement = " str

 sub("World", "Jerry", str)

 print "String after replacement = " str

}'

AWK

 56

On executing this code, you get the following result:

String before replacement = Hello, World

String after replacement = Hello, Jerry

substr(str, start, l)

This function returns the substring of string str, starting at index start of length l. If

length is omitted, the suffix of str starting at index start is returned.

[jerry]$ awk 'BEGIN {

 str = "Hello, World !!!"

 subs = substr(str, 1, 5)

 print "Substring = " subs

}'

On executing this code, you get the following result:

Substring = Hello

tolower(str)

This function returns a copy of string str with all upper-case characters converted to

lower-case.

[jerry]$ awk 'BEGIN {

 str = "HELLO, WORLD !!!"

 print "Lowercase string = " tolower(str)

}'

On executing this code, you get the following result:

Lowercase string = hello, world !!!

toupper(str)

This function returns a copy of string str with all lower-case characters converted to

upper case.

AWK

 57

[jerry]$ awk 'BEGIN {

 str = "hello, world !!!"

 print "Uppercase string = " toupper(str)

}'

On executing this code, you get the following result:

Uppercase string = HELLO, WORLD !!!

Time Functions

AWK has the following built-in time functions:

systime

This function returns the current time of the day as the number of seconds since the

Epoch (1970-01-01 00:00:00 UTC on POSIX systems).

[jerry]$ awk 'BEGIN {

 print "Number of seconds since the Epoch = " systime()

}'

On executing this code, you get the following result:

Number of seconds since the Epoch = 1418574432

mktime(datespec)

This function converts datespec string into a timestamp of the same form as returned

by systime(). The datespec is a string of the form YYYY MM DD HH MM SS.

[jerry]$ awk 'BEGIN {

 print "Number of seconds since the Epoch = " mktime("2014 12 14 30 20 10")

}'

On executing this code, you get the following result:

Number of seconds since the Epoch = 1418604610

AWK

 58

strftime([format [, timestamp[, utc-flag]]])

This function formats timestamps according to the specification in format.

[jerry]$ awk 'BEGIN {

 print strftime("Time = %m/%d/%Y %H:%M:%S", systime())

}'

On executing this code, you get the following result:

Time = 12/14/2014 22:08:42

The following time formats are supported by AWK:

Date format

specification

Description

%a The locale’s abbreviated weekday name.

%A The locale’s full weekday name.

%b The locale’s abbreviated month name.

%B The locale’s full month name.

%c The locale’s appropriate date and time representation. (This is %A

%B %d %T %Y in the C locale.)

%C The century part of the current year. This is the year divided by 100

and truncated to the next lower integer.

%d The day of the month as a decimal number (01–31).

%D Equivalent to specifying %m/%d/%y.

%e The day of the month, padded with a space if it is only one digit.

%F Equivalent to specifying %Y-%m-%d. This is the ISO 8601 date

format.

%g The year modulo 100 of the ISO 8601 week number, as a decimal

number (00–99). For example, January 1, 1993 is in week 53 of

1992. Thus, the year of its ISO 8601 week number is 1992, even

though its year is 1993. Similarly, December 31, 1973 is in week 1

of 1974. Thus, the year of its ISO week number is 1974, even

though its year is 1973.

%G The full year of the ISO week number, as a decimal number.

%h Equivalent to %b.

%H The hour (24-hour clock) as a decimal number (00–23).

AWK

 59

%I The hour (12-hour clock) as a decimal number (01–12).

%j The day of the year as a decimal number (001–366).

%m The month as a decimal number (01–12).

%M The minute as a decimal number (00–59).

%n A newline character (ASCII LF).

%p The locale’s equivalent of the AM/PM designations associated with a

12-hour clock.

%r The locale’s 12-hour clock time. (This is %I:%M:%S %p in the C

locale.)

%R Equivalent to specifying %H:%M.

%S The second as a decimal number (00–60).

%t A TAB character.

%T Equivalent to specifying %H:%M:%S.

%u The weekday as a decimal number (1–7). Monday is day one.

%U The week number of the year (the first Sunday as the first day of

week one) as a decimal number (00–53).

%V The week number of the year (the first Monday as the first day of

week one) as a decimal number (01–53).

%w The weekday as a decimal number (0–6). Sunday is day zero.

%W The week number of the year (the first Monday as the first day of

week one) as a decimal number (00–53).

%x The locale’s appropriate date representation. (This is %A %B %d

%Y in the C locale.)

%X The locale’s appropriate time representation. (This is %T in the C

locale.)

%y The year modulo 100 as a decimal number (00–99).

%Y The full year as a decimal number (e.g. 2011).

%z The time-zone offset in a +HHMM format (e.g., the format

necessary to produce RFC 822/RFC 1036 date headers).

%Z The time zone name or abbreviation; no characters if no time zone

is determinable.

AWK

 60

Bit Manipulation Functions

AWK has the following built-in bit manipulation functions:

and

Performs bitwise AND operation.

[jerry]$ awk 'BEGIN {

 num1 = 10

 num2 = 6

 printf "(%d AND %d) = %d\n", num1, num2, and(num1, num2)

}'

On executing this code, you get the following result:

(10 AND 6) = 2

compl

It performs bitwise COMPLEMENT operation.

[jerry]$ awk 'BEGIN {

 num1 = 10

 printf "compl(%d) = %d\n", num1, compl(num1)

}'

On executing this code, you get the following result:

compl(10) = 9007199254740981

lshift

It performs bitwise LEFT SHIFT operation.

[jerry]$ awk 'BEGIN {

 num1 = 10

 printf "lshift(%d) by 1 = %d\n", num1, lshift(num1, 1)

}'

On executing this code, you get the following result:

AWK

 61

lshift(10) by 1 = 20

rshift

It performs bitwise RIGHT SHIFT operation.

[jerry]$ awk 'BEGIN {

 num1 = 10

 printf "rshift(%d) by 1 = %d\n", num1, rshift(num1, 1)

}'

On executing this code, you get the following result:

rshift(10) by 1 = 5

or

It performs bitwise OR operation.

[jerry]$ awk 'BEGIN {

 num1 = 10

 num2 = 6

 printf "(%d OR %d) = %d\n", num1, num2, or(num1, num2)

}'

On executing this code, you get the following result:

(10 OR 6) = 14

xor

It performs bitwise XOR operation.

[jerry]$ awk 'BEGIN {

 num1 = 10

 num2 = 6

 printf "(%d XOR %d) = %d\n", num1, num2, xor(num1, num2)

}'

On executing this code, you get the following result:

AWK

 62

(10 bitwise xor 6) = 12

Miscellaneous Functions

AWK has the following miscellaneous functions:

close(expr)

This function closes file of pipe.

[jerry]$ awk 'BEGIN {

 cmd = "tr [a-z] [A-Z]"

 print "hello, world !!!" |& cmd

 close(cmd, "to")

 cmd |& getline out

 print out;

 close(cmd);

}'

On executing this code, you get the following result:

HELLO, WORLD !!!

Does the script look cryptic? Let us demystify it.

 The first statement, cmd = "tr [a-z] [A-Z]" - is the command to which we

establish the two way communication from AWK.

 The next statement, i.e., the print command, provides input to the tr

command. Here &| indicates two-way communication.

 The third statement, i.e., close(cmd, "to"), closes the to process after

competing its execution.

 The next statement cmd |& getline out stores the output into out variable

with the aid of getline function.

 The next print statement prints the output and finally the close function closes

the command.

delete

This function deletes an element from an array. The following example shows the

usage of the close function:

AWK

 63

[jerry]$ awk 'BEGIN {

 arr[0] = "One"

 arr[1] = "Two"

 arr[2] = "Three"

 arr[3] = "Four"

 print "Array elements before delete operation:"

 for (i in arr) {

 print arr[i]

 }

 delete arr[0]

 delete arr[1]

 print "Array elements after delete operation:"

 for (i in arr) {

 print arr[i]

 }

}'

On executing this code, you get the following result:

Array elements before delete operation:

One

Two

Three

Four

Array elements after delete operation:

Three

Four

exit

This function stops the execution of a script. It also accepts an optional expr which

becomes AWK's return value. The following example describes the usage of exit

function.

AWK

 64

[jerry]$ awk 'BEGIN {

 print "Hello, World !!!"

 exit 10

 print "AWK never executes this statement."

}'

On executing this code, you get the following result:

Hello, World !!!

fflush

This function flushes any buffers associated with open output file or pipe. The following

syntax demonstrates the function.

fflush([output-expr])

If no output-expr is supplied, it flushes the standard output. If output-expr is the null

string (""), then it flushes all open files and pipes.

getline

This function instructs AWK to read the next line. The following example reads and

displays the marks.txt file using getline function.

[jerry]$ awk '{getline; print $0}' marks.txt

On executing this code, you get the following result:

2) Rahul Maths 90

4) Kedar English 85

5) Hari History 89

The script works fine. But where is the first line? Let us find out.

At the start, AWK reads the first line from the file marks.txt and stores it

into $0 variable.

In the next statement, we instructed AWK to read the next line using getline. Hence

AWK reads the second line and stores it into $0 variable.

And finally, AWK's print statement prints the second line. This process continues until

the end of the file.

AWK

 65

next

The next function changes the flow of the program. It causes the current processing

of the pattern space to stop. The program reads the next line, and starts executing

the commands again with the new line. For instance, the following program does not

perform any processing when a pattern match succeeds.

[jerry]$ awk '{if ($0 ~/Shyam/) next; print $0}' marks.txt

On executing this code, you get the following result:

1) Amit Physics 80

2) Rahul Maths 90

4) Kedar English 85

5) Hari History 89

nextfile

The nextfile function changes the flow of the program. It stops processing the current

input file and starts a new cycle through pattern/procedures statements, beginning

with the first record of the next file. For instance, the following example stops

processing the first file when a pattern match succeeds.

First create two files. Let us say file1.txt contains:

file1:str1

file1:str2

file1:str3

file1:str4

And file2.txt contains:

file2:str1

file2:str2

file2:str3

file2:str4

Now let us use the nextfile function.

[jerry]$ awk '{ if ($0 ~ /file1:str2/) nextfile; print $0 }' file1.txt

file2.txt

On executing this code, you get the following result:

AWK

 66

file1:str1

file2:str1

file2:str2

file2:str3

file2:str4

return

This function can be used within a user-defined function to return the value. Please

note that the return value of a function is undefined if expr is not provided. The

following example describes the usage of the return function.

First, create a functions.awk file containing AWK command as shown below:

function addition(num1, num2)

{

 result = num1 + num2

 return result

}

BEGIN {

 res = addition(10, 20)

 print "10 + 20 = " res

}

On executing this code, you get the following result:

10 + 20 = 30

system

This function executes the specified command and returns its exit status. A return

status 0 indicates that a command execution has succeeded. A non-zero value

indicates a failure of command execution. For instance, the following example displays

the current date and also shows the return status of the command.

[jerry]$ awk 'BEGIN { ret = system("date"); print "Return value = " ret }'

On executing this code, you get the following result:

Sun Dec 21 23:16:07 IST 2014

AWK

 67

Return value = 0

AWK

 68

Functions are basic building blocks of a program. AWK allows us to define our own

functions. A large program can be divided into functions and each function can be

written/tested independently. It provides re-usability of code.

Given below is the general format of a user-defined function:

function function_name(argument1, argument2, ...)

{

 function body

}

In this syntax, the function_name is the name of the user-defined function. Function

name should begin with a letter and the rest of the characters can be any combination

of numbers, alphabetic characters, or underscore. AWK's reserve words cannot be

used as function names.

Functions can accept multiple arguments separated by comma. Arguments are not

mandatory. You can also create a user-defined function without any argument.

function body consists of one or more AWK statements.

Let us write two functions that calculate the minimum and the maximum number and

call these functions from another function called main. The functions.awk file

contains:

Returns minimum number

function find_min(num1, num2)

{

 if (num1 < num2)

 return num1

 return num2

}

Returns maximum number

function find_max(num1, num2)

{

 if (num1 > num2)

 return num1

13. USER-DEFINED FUNCTIONS

AWK

 69

 return num2

}

Main function

function main(num1, num2)

{

 # Find minimum number

 result = find_min(10, 20)

 print "Minimum =", result

 # Find maximum number

 result = find_max(10, 20)

 print "Maximum =", result

}

Script execution starts here

BEGIN {

 main(10, 20)

}

On executing this code, you get the following result:

Minimum = 10

Maximum = 20

AWK

 70

So far, we displayed data on standard output stream. We can also redirect data to a

file. A redirection appears after the print or printf statement. Redirections in AWK are

written just like redirection in shell commands, except that they are written inside the

AWK program. This chapter explains redirection with suitable examples.

Redirection Operator

The syntax of the redirection operator is:

print DATA > output-file

It writes the data into the output-file. If the output-file does not exist, then it creates

one. When this type of redirection is used, the output-file is erased before the first

output is written to it. Subsequent write operations to the same output-file do not

erase the output-file, but append to it. For instance, the following example

writes Hello, World !!! to the file.

Let us create a file with some text data.

[jerry]$ echo "Old data" > /tmp/message.txt

[jerry]$ cat /tmp/message.txt

On executing this code, you get the following result:

Old data

Now let us redirect some contents into it using AWK's redirection operator.

[jerry]$ awk 'BEGIN { print "Hello, World !!!" > "/tmp/message.txt" }'

[jerry]$ cat /tmp/message.txt

On executing this code, you get the following result:

Hello, World !!!

Append Operator

The syntax of append operator is as follows:

print DATA >> output-file

14. OUTPUT REDIRECTION

AWK

 71

It appends the data into the output-file. If the output-file does not exist, then it

creates one. When this type of redirection is used, new contents are appended at the

end of file. For instance, the following example appends Hello, World !!! to the file.

Let us create a file with some text data.

[jerry]$ echo "Old data" > /tmp/message.txt

[jerry]$ cat /tmp/message.txt

On executing this code, you get the following result:

Old data

Now let us append some contents to it using AWK's append operator.

[jerry]$ awk 'BEGIN { print "Hello, World !!!" >> "/tmp/message.txt" }'

[jerry]$ cat /tmp/message.txt

On executing this code, you get the following result:

Old data

Hello, World !!!

Pipe

It is possible to send output to another program through a pipe instead of using a file.

This redirection opens a pipe to command, and writes the values of items through this

pipe to another process to execute the command. The redirection argument command

is actually an AWK expression. Here is the syntax of pipe:

print items | command

Let us use tr command to convert lowercase letters to uppercase.

[jerry]$ awk 'BEGIN { print "hello, world !!!" | "tr [a-z] [A-Z]" }'

On executing this code, you get the following result:

HELLO, WORLD !!!

Two-Way Communication

AWK can communicate to an external process using |&, which is two-way

communication. For instance, the following example uses tr command to convert

lowercase letters to uppercase. Our command.awk file contains:

AWK

 72

BEGIN {

 cmd = "tr [a-z] [A-Z]"

 print "hello, world !!!" |& cmd

 close(cmd, "to")

 cmd |& getline out

 print out;

 close(cmd);

}

On executing this code, you get the following result:

HELLO, WORLD !!!

Does the script look cryptic? Let us demystify it.

 The first statement, cmd = "tr [a-z] [A-Z]", is the command to which we

establish the two-way communication from AWK.

 The next statement, i.e., the print command provides input to the tr command.

Here &| indicates two-way communication.

 The third statement, i.e., close(cmd, "to"), closes the to process after

competing its execution.

 The next statement cmd |& getline out stores the output into out variable

with the aid of getline function.

 The next print statement prints the output and finally the close function closes

the command.

AWK

 73

So far, we have used AWK's print and printf functions to display data on standard

output. But the printf function is much more efficient. This function has been borrowed

from the C language and it is very helpful while producing formatted output. Here is

the syntax of the printf statement:

printf fmt, expr-list

In the above syntax, fmt is a string of format specifications and constants. expr-list is

a list of arguments corresponding to format specifiers.

Escape Sequences

Similar to any string, format can contain embedded escape sequences. Discussed

below are the escape sequences supported by AWK:

New Line

The following example prints Hello and World in separate lines using newline

character:

[jerry]$ awk 'BEGIN { printf "Hello\nWorld\n" }'

On executing this code, you get the following result:

Hello

World

Horizontal Tab

The following example uses horizontal tab to display different field:

[jerry]$ awk 'BEGIN { printf "Sr No\tName\tSub\tMarks\n" }'

On executing the above code, you get the following result:

Sr No Name Sub Marks

15. PRETTY PRINTING

AWK

 74

Vertical Tab

The following example uses vertical tab after each filed:

[jerry]$ awk 'BEGIN { printf "Sr No\vName\vSub\vMarks\n" }'

On executing this code, you get the following result:

Sr No

 Name

 Sub

 Marks

Backspace

The following example prints a backspace after every field except the last one. It

erases the last number from the first three fields. For instance, Field 1 is displayed

as Field, because the last character is erased with backspace. However, the last

field Field 4 is displayed as it is, as we did not have a \b after Field 4.

[jerry]$ awk 'BEGIN { printf "Field 1\bField 2\bField 3\bField 4\n" }'

On executing this code, you get the following result:

Field Field Field Field 4

Carriage Return

In the following example, after printing every field, we do a Carriage Return and

print the next value on top of the current printed value. It means, in the final output,

you can see only Field 4, as it was the last thing to be printed on top of all the

previous fields.

[jerry]$ awk 'BEGIN { printf "Field 1\rField 2\rField 3\rField 4\n" }'

On executing this code, you get the following result:

Field 4

Form Feed

The following example uses form feed after printing each field.

[jerry]$ awk 'BEGIN { printf "Sr No\fName\fSub\fMarks\n" }'

AWK

 75

On executing this code, you get the following result:

Sr No

 Name

 Sub

 Marks

Format Specifier

As in C-language, AWK also has format specifiers. The AWK version of the printf

statement accepts the following conversion specification formats:

%c

It prints a single character. If the argument used for %c is numeric, it is treated as a

character and printed. Otherwise, the argument is assumed to be a string, and the

only first character of that string is printed.

[jerry]$ awk 'BEGIN { printf "ASCII value 65 = character %c\n", 65 }'

On executing this code, you get the following result:

ASCII value 65 = character A

%d and %i

It prints only the integer part of a decimal number.

[jerry]$ awk 'BEGIN { printf "Percentages = %d\n", 80.66 }'

On executing this code, you get the following result:

Percentages = 80

%e and %E

It prints a floating point number of the form [-]d.dddddde[+-]dd.

[jerry]$ awk 'BEGIN { printf "Percentages = %E\n", 80.66 }'

On executing this code, you get the following result:

Percentages = 8.066000e+01

AWK

 76

The %E format uses E instead of e.

[jerry]$ awk 'BEGIN { printf "Percentages = %e\n", 80.66 }'

On executing this code, you get the following result:

Percentages = 8.066000E+01

%f

It prints a floating point number of the form [-]ddd.dddddd.

[jerry]$ awk 'BEGIN { printf "Percentages = %f\n", 80.66 }'

On executing this code, you get the following result:

Percentages = 80.660000

%g and %G

Uses %e or %f conversion, whichever is shorter, with non-significant zeros

suppressed.

[jerry]$ awk 'BEGIN { printf "Percentages = %g\n", 80.66 }'

On executing this code, you get the following result:

Percentages = 80.66

The %G format uses %E instead of %e.

[jerry]$ awk 'BEGIN { printf "Percentages = %G\n", 80.66 }'

On executing this code, you get the following result:

Percentages = 80.66

%o

It prints an unsigned octal number.

[jerry]$ awk 'BEGIN { printf "Octal representation of decimal number 10 =

%o\n", 10}'

On executing this code, you get the following result:

Octal representation of decimal number 10 = 12

AWK

 77

%u

It prints an unsigned decimal number.

[jerry]$ awk 'BEGIN { printf "Unsigned 10 = %u\n", 10 }'

On executing this code, you get the following result:

Unsigned 10 = 10

%s

It prints a character string.

[jerry]$ awk 'BEGIN { printf "Name = %s\n", "Sherlock Holmes" }'

On executing this code, you get the following result:

Name = Sherlock Holmes

%x and %X

It prints an unsigned hexadecimal number. The %X format uses uppercase letters

instead of lowercase.

[jerry]$ awk 'BEGIN { printf "Hexadecimal representation of decimal number

15 = %x\n", 15}'

On executing this code, you get the following result:

Hexadecimal representation of decimal number 15 = f

Now let use %X and observe the result:

[jerry]$ awk 'BEGIN { printf "Hexadecimal representation of decimal number

15 = %X\n", 15}'

On executing this code, you get the following result:

Hexadecimal representation of decimal number 15 = F

%%

It prints a single % character and no argument is converted.

[jerry]$ awk 'BEGIN { printf "Percentages = %d%%\n", 80.66 }'

AWK

 78

On executing this code, you get the following result:

Percentages = 80%

Optional Parameters with %

With %, we can use the following optional parameters:

Width

The field is padded to the width. By default, the field is padded with spaces but when

0 flag is used, it is padded with zeroes.

[jerry]$ awk 'BEGIN { num1 = 10; num2 = 20; printf "Num1 = %10d\nNum2 =

%10d\n", num1, num2 }'

On executing this code, you get the following result:

Num1 = 10

Num2 = 20

Leading Zeros

A leading zero acts as a flag, which indicates that the output should be padded with

zeroes instead of spaces. Please note that this flag only has an effect when the field

is wider than the value to be printed. The following example describes this:

[jerry]$ awk 'BEGIN { num1 = -10; num2 = 20; printf "Num1 = %05d\nNum2 =

%05d\n", num1, num2 }'

On executing this code, you get the following result:

Num1 = -0010

Num2 = 00020

Left Justification

The expression should be left-justified within its field. When the input-string is less

than the number of characters specified, and you want it to be left justified, i.e., by

adding spaces to the right, use a minus symbol (–) immediately after the % and before

the number.

In the following example, output of the AWK command is piped to the cat command

to display the END OF LINE($) character.

[jerry]$ awk 'BEGIN { num = 10; printf "Num = %-5d\n", num }' | cat -vte

AWK

 79

On executing this code, you get the following result:

Num = 10 $

Prefix Sign

It always prefixes numeric values with a sign, even if the value is positive.

[jerry]$ awk 'BEGIN { num1 = -10; num2 = 20; printf "Num1 = %+d\nNum2 =

%+d\n", num1, num2 }'

On executing this code, you get the following result:

Num1 = -10

Num2 = +20

Hash

For %o, it supplies a leading zero. For %x and %X, it supplies a leading 0x or 0X

respectively, only if the result is non-zero. For %e, %E, %f, and %F, the result always

contains a decimal point. For %g and %G, trailing zeros are not removed from the

result. The following example describes this:

[jerry]$ awk 'BEGIN { printf "Octal representation = %#o\nHexadecimal

representation = %#X\n", 10, 10}'

On executing this code, you get the following result:

Octal representation = 012

Hexadecimal representation = 0XA

