

Historical Performance Analysis
Using AWR

April 2009

 Historical Performance Analysis Using AWR Page 2

Historical Performance Analysis Using AWR

INTRODUCTION
The Automatic Workload Repository (AWR) in Oracle Database 10g and 11g
stores a wealth of data regarding database performance. This data is a key
component of the Diagnostics and Tuning pack and is licensed as part of the
Diagnostics Pack. Oracle Enterprise Manager provides a graphical user interface
to this data, allowing you to display and diagnose the performance of your database.
The standard AWR report offers an alternate view into these statistics, by providing
detailed information for a specified time interval.

There are times when viewing longer term historical information would be useful.
Viewing this longer term historical information could help pinpoint when a
performance problem may have started. Was the onset sudden, or did the
workload gradually increase over a few weeks?

Viewing the historical performance of your workload can be helpful in identifying
peak hours and peak days. Similarly, certain historical characteristics of the
workload, such as I/O requests per second, or user calls per second, may be useful
to look at to see if the workload remains constant, is increasing or decreasing.

A trend of a high load SQL statement may be useful to determine whether the
characteristics of a SQL statement is changing – is it using more CPU, is it taking
more elapsed time per execution, is it retrieving more data per execution, or is it
simply getting executed more often?

Longer term charts of performance data can also help in capacity planning. By
identifying growing usage of key resources, you can identify possible future
resource constraints.

All of the above information is available in the AWR, but may not be easily visible
in the standard AWR report. Oracle Enterprise Manager does display the
performance information in graphs along several dimensions. However, the data
that is present in the AWR can be analyzed in many more ways than are possible to
present in a limited number of graphs. This paper gives several examples of graphs
you can create, to illustrate the kind of information you can mine.

By default, the AWR retention period is eight days. To do longer term historical
analysis you will need to either increase the default retention, or move the data to
another database. Details on doing so are discussed later in this paper.

AWR contains a wealth of data that can be
used for historical performance analysis.

The use of AWR views are licensed with
the Oracle Diagnostic Pack.

 Historical Performance Analysis Using AWR Page 3

With a few queries, and any charting utility the information can be extracted from
AWR in order to aid performance diagnosis and analysis. In the following
examples, we use Oracle SQL Developer to chart the data.

FIRST THINGS FIRST
The examples in this paper are meant to provide a guideline that you can use to
query your own AWR data. The queries can be easily modified to display the
specific data of interest that you want to analyze.

The query results have been structured to match the format used by SQL
Developer for charting (group, series, value) [Harper]. If you are using a different
charting utility, you may need to pivot the results to match the requirements of
your charting tools.

Some of the queries assume a default snapshot interval of 1 hour. If you are using
a different snapshot interval that is not a multiple of 1 hour, those queries may
need to be modified accordingly.

Query Basics
Most of the AWR tables store statistic values from instance startup. For trending
purposes, several queries in this paper use the lag() function in order to compute
statistic values for each time interval. The most common format for computing
these delta values for each interval is:

case when s.begin_interval_time = s.startup_time
 then value
 else value – lag(value,1) over (partition by stat_id
 , instance_number
 , dbid
 , s.startup_time
 order by snap_id)
 end delta_v

s.begin_interval_time = s.startup_time checks for the first snapshot after an
instance startup. In this case, the current value is returned as-is.

The lag() function returns the value for the statistic for the previous snapshot.
[SQLREF 008]. The difference between the current value and the previous value is
the delta that was incurred during the snapshot interval.

For the first snapshot in the range, the lag() function will return NULL. This will
not be used in the graph, as we will not have the delta value for that first snapshot
in the range.

Delta values for trending are computed
using the lag() function.

 Historical Performance Analysis Using AWR Page 4

AVERAGE ACTIVE SESSIONS
DB time is a key concept in the Oracle Performance Method and is reflected in the
statistics stored in the AWR. DB time is defined as the amount of time foreground
processes are spending in the database, either using CPU or in non-idle wait events.
The number of average active sessions during an interval is calculated as:

• eElapsedTimDBtimesiveSessionAverageAct /=

The value for DB time is stored in the view DBA_HIST_SYS_TIME_MODEL, while the
elapsed time can be calculated from the begin/end interval times in
DBA_HIST_SNAPSHOT.

Average Active Sessions is a quick indication of database performance and health.
If the number of average active sessions is low, that is an indication that the
database is idle. If the number of active sessions increases drastically, that is usually
an indication of a performance problem – the sessions are either waiting or using
CPU.

Figure 1 shows the average active sessions for a RAC database with 2 nodes over
the past 7 days. The graph shows a peak of 38 average active sessions, and
minimal to no activity over a span of 2 days.

The SQL query that produced the graph in Figure 1 can be found in Appendix A.

Figure 1: Average Active Sessions on Instance 1 and 2

Average Active Sessions can be calculated
as DB time / Elapsed Time

 Historical Performance Analysis Using AWR Page 5

AVERAGE ACTIVE SESSIONS BY WAIT CLASS
Another interesting graph is a view of average active sessions but broken down by
wait class, rather than by instance. This graph can be a good indication of the
efficiency of your database. It can also highlight scalability issues in your
application or database.

The graph in Figure 2 shows the same information that is displayed by the
historical view on the Performance Page in Enterprise Manager. The additional
value is that you can extend the graph for longer time periods when you are mining
the AWR data directly.

You can query the view DBA_HIST_EVENT_NAME to see a mapping of individual wait
events to their wait class.

Figure 2 shows the average active sessions for a RAC database with four nodes
over a seven day period, starting with Sunday. The graph shows a peak of roughly
80 average active sessions, with less activity on Saturday and Sunday . We can see
that 'User I/O' is the dominant wait class and 'DB CPU' is the second major
component of the workload.

The SQL query that produced the graph in Figure 2 can be found in Appendix B.

Figure 2: Average Active Sessions by Wait Class

 Historical Performance Analysis Using AWR Page 6

CPU INFORMATION
CPU Information is available in the view DBA_HIST_OSSTAT. This data is only
captured every snapshot interval, by default one hour. The data displayed will be
averaged over the snapshot interval and may not accurately reflect the peaks that
occur in the system.

In particular, the CPU load is only meaningful for the time the snapshot was taken.
If the load on the system is constant, then this value may be useful for trending.
However, if the load patterns fluctuate from minute to minute, this data will likely
be less useful.

This graph in Figure 3 displays the CPU Usage for a two node RAC system for a
seven day period, broken down by node. The graph runs from Sunday through
Saturday. It is easy to see that the CPU usage peaks around noon on business days.

The SQL query that produced the graph in Figure 3 can be found in Appendix C.

Figure 3: CPU Load

 Historical Performance Analysis Using AWR Page 7

SQL ELAPSED TIME PER EXECUTION
Historical SQL statistics are stored in the view DBA_HIST_SQLSTAT. There is a
wide variety of information in that view about SQL statement execution. Some
important information in that view include data on SQL statement I/O, CPU time
and elapsed execution time

Graphing the elapsed execution time of key SQL can alert you to things such as
unexpected plan changes, I/O issues, or other types of database contention. In an
OLTP environment, there are generally key SQL that are easily identified and that
are critical to the workload functioning properly. Reviewing the performance
history of these SQL alerts you to possible issues in your environment.

The graph in Figure 4 is a graph of the elapsed time of a single SQL statement on a
single node over a week. While there is some variation in execution time, the
variation was acceptable for this statement in this OLTP system.

The SQL query that produced the graph in Figure 4 can be found in Appendix D.

Figure 4: SQL Elapsed Time per Execution

 Historical Performance Analysis Using AWR Page 8

SYSSTAT
The Oracle database keeps track of a large number of statistics about the system
activity in the V$SYSSTAT view. The database reference guide lists the statistics and
their meaning. The 'Instance Activity Stats' section of an AWR report also lists this
information. There are system wide statistics about many aspects of database
operation. That data is persisted to the AWR in the DBA_HIST_SYSSTAT view.

Graphing this information over time can give you insights into various aspects of
your system performance.

The graph in Figure 5 is a graph of 'session logical reads' over a week for a four
node RAC system. The value of the 'session logical reads' statistic is the number
of database blocks that have been read from memory. More technically, it is the
sum of 'db block gets' and 'consistent gets'. The graph runs from Sunday through
Saturday. As with some of the previous graphs, the system shows expected peaks
during the business days.

The SQL query that produced the graph in Figure 5 can be found in Appendix E.

Figure 5: SYSSTAT - Logical Reads

 Historical Performance Analysis Using AWR Page 9

DATABASE DISK SPACE USAGE
Every DBA wants to track the amount of disk space the database is using and how
that usage changes over time.

The view DBA_HIST_TBSPC_SPACE_USAGE stores information about tablespace usage
at each snapshot. It is possible to graph the data at that level of granularity.
However, because we want to graph the usage over weeks or months, one data
point a day will meet our needs. For the graph below, we've arbitrarily chosen to
use the data from the first snapshot of each day. We could have chosen to pick
the average size over the day, or we could have chosen the maximum size for each
day.

An additional issue with the TABLESPACE_SIZE column in the
DBA_HIST_TBSPC_SPACE_USAGE table is that it stores the size as the number of
database blocks. We need to multiply each tablespace size with the blocksize as
obtained from the DBA_HIST_DATAFILE view.

The graph in Figure 6 is the daily total database size for an eleven terabyte database
graphed over a month. It is clear that the database is growing. If we would graph
the size for a larger time period, it would be fairly easy to do some linear trending.

The SQL query that produced the graph in Figure 6 can be found in Appendix F.

Figure 6: Total Database Size

 Historical Performance Analysis Using AWR Page 10

IOSTAT BY FILETYPE
I/O statistics are stored in the AWR in several ways. The view
DBA_HIST_IOTYPE_FILE breaks down I/O by type of file, such as data file or log
file, and by type of I/O such as single block reads in megabytes or multiblock reads
in megabytes. The view DBA_HIST_IOSTAT_FUNCTION breaks I/O down by the type
of function served by the I/O such as DBWR or LGWR. These views are available
in Oracle Database 11g.

Of course, there are many different ways to sum and view the data.

The graph in Figure 7 shows reads for data files for a four node cluster over a
week. The bars in the graph represent the number of gigabytes read per hour,
summed over the four nodes. There is not as clear a usage pattern here as in some
earlier graphs. There is a large spike late on Friday night that might bear further
investigation.

The SQL query that produced the graph in Figure 7 can be found in Appendix G.

Figure 7 IOSTAT by filetype

 Historical Performance Analysis Using AWR Page 11

PGA USAGE
With the implementation of automatic memory management features in the Oracle
database, managing memory and the many parameters that control it has become
much simpler in recent versions of Oracle. Automatic memory management of the
PGA was introduced in Oracle 9i with the PGA_AGGREGATE_TARGET parameter.

There is a section of the AWR report which gives advice on how to size your PGA,
the 'PGA MEMORY ADVISORY'. If you want to trend the changes of usage
over time in your PGA, you can use the data in the DBA_HIST_PGASTAT view.

The graph in Figure 8 charts the statistic 'total PGA allocated' in megabytes over a
week for a four node RAC system. The value recorded for that statistic is the value
at the time the snapshot was taken and may vary between snapshots. For OLTP
systems the value would probably be relatively stable over the snapshot period,
while it could vary widely in a DSS system. The 'total PGA allocated' gradually
increases over most of the week, which suggests a graph over a longer time period
could be interesting. The longer term graph is not produced here for the sake of
legibility in the limited space.

The SQL query that produced the graph in Figure 8 can be found in Appendix H.

Figure 8: Total PGA In Use

 Historical Performance Analysis Using AWR Page 12

DATA RETENTION
To get the data to do longer term historical analysis, you have several options. By
default, the data is retained in the AWR repository for eight days. You can easily
increase the retention period.

However, if you are doing intensive analysis, or wish to retain the data for extended
periods of time, you might wish to move the data to a non-production database
with sufficient space and processing power for analysis.

One simple solution is to export specific AWR tables and import them into a data
warehouse database.

Another possibility is to use the two scripts supplied with Oracle database 10.2.0.4
and above. These scripts, awrextr.sql and awrload.sql, can be find in the
$ORACLE_HOME/rdbms/admin directory. 'awrextr.sql' uses Data Pump to
extract data for a given snapshot range from your AWR. 'awrload.sql' can then be
used on target database to load the extracted Data Pump file.

CONCLUSION
There is a wealth of data available in the Oracle database AWR. This data can be
used for historical performance analysis. This paper has provided a number
example SQL and graphs to help you get started mining all the information that is
available to you.

 Historical Performance Analysis Using AWR Page 13

LICENSE INFORMATION
The dictionary views referenced in these queries are licensed with Oracle
Diagnostic Pack.
(http://download.oracle.com/docs/cd/B28359_01/license.111/b28287/options.h
tm#CIHIHDDJ)

REFERENCES
[Harper 2007] Harper, Sue 2007. Now Reporting, Oracle Magazine May/Jun 2007.
(http://www.oracle.com/technology/oramag/oracle/07-may/o37sql.html)

[SQLREF 008] Oracle Database SQL Language Reference 11g Release 1 (11.1)
(http://download.oracle.com/docs/cd/B28359_01/server.111/b28286/functions0
72.htm#i1327527)

[SQLREF 009] Oracle® Database Reference 11g Release 1 (11.1)
(http://download.oracle.com/docs/cd/B28359_01/server.111/b28320/toc.htm)

 Historical Performance Analysis Using AWR Page 14

APPENDIX A: ACTIVE SESSIONS

select to_char(end_interval_time,'mm-dd hh24') snap_time
 , instance_number
 , avg(v_ps) pSec
 from (
 select end_interval_time
 , instance_number
 , v/ela v_ps
 from (
 select round(s.end_interval_time,'hh24') end_interval_time
 , s.instance_number
 , (case when s.begin_interval_time = s.startup_time
 then value
 else value - lag(value,1) over (partition by sy.stat_id
 , sy.dbid

 , s.instance_number
 , s.startup_time

 order by sy.snap_id)
 end)/1000000 v
 , (cast(s.end_interval_time as date) - cast(s.begin_interval_time as date))*24*3600 ela
 from dba_hist_snapshot s
 , dba_hist_sys_time_model sy
 where s.dbid = sy.dbid
 and s.instance_number = sy.instance_number
 and s.snap_id = sy.snap_id
 and sy.stat_name = 'DB time'
 and s.end_interval_time > to_date(:start_time,'MMDDYYYY')
 and s.end_interval_time < to_date(:end_time,'MMDDYYYY')))
 group by to_char(end_interval_time,'mm-dd hh24'), instance_number
 order by to_char(end_interval_time,'mm-dd hh24'), instance_number

 Historical Performance Analysis Using AWR Page 15

APPENDIX B: ACTIVE SESSONS PER WAIT CLASS

select to_char(end_time,'mm-dd hh24') snap_time
 , wait_class
 , sum(pSec) avg_sess
 from
 (select end_time
 , wait_class
 , p_tmfg/1000000/ela pSec
 from (
 select round(s.end_interval_time,'hh24') end_time
 , (cast(s.end_interval_time as date) - cast(s.begin_interval_time as date))*24*3600 ela
 , s.snap_id
 , wait_class
 , e.event_name
 , case when s.begin_interval_time = s.startup_time
 then e.time_waited_micro_fg
 else e.time_waited_micro_fg
 - lag(time_waited_micro_fg) over (partition by event_id
 , e.dbid
 , e.instance_number
 , s.startup_time
 order by e.snap_id)
 end p_tmfg
 from dba_hist_snapshot s
 , dba_hist_system_event e
 where s.dbid = e.dbid
 and s.instance_number = e.instance_number
 and s.snap_id = e.snap_id
 and s.end_interval_time > to_date(:start_date,'MMDDYYYY')
 and s.end_interval_time < to_date(:end_date,'MMDDYYYY')
 and e.wait_class != 'Idle'
 union all
 select trunc(s.end_interval_time,'hh24') end_time
 , (cast(s.end_interval_time as date) - cast(s.begin_interval_time as date))*24*3600 ela
 , s.snap_id
 , t.stat_name wait_class
 , t.stat_name event_name
 , case when s.begin_interval_time = s.startup_time
 then t.value
 else t.value
 - lag(value) over (partition by stat_id
 , t.dbid
 , t.instance_number
 , s.startup_time
 order by t.snap_id)
 end p_tmfg
 from dba_hist_snapshot s
 , dba_hist_sys_time_model t
 where s.dbid = t.dbid
 and s.instance_number = t.instance_number
 and s.snap_id = t.snap_id
 and s.end_interval_time > to_date(:start_date,'MMDDYYYY')
 and s.end_interval_time < to_date(:end_date,'MMDDYYYY')
 and t.stat_name = 'DB CPU'))
 group by to_char(end_time,'mm-dd hh24'), wait_class
 order by to_char(end_time,'mm-dd hh24'), wait_class

 Historical Performance Analysis Using AWR Page 16

APPENDIX C: CPU LOAD PER INSTANCE

select to_char(round(s.end_interval_time,'hh24'),'mm-dd hh24') snap_time
 , os.instance_number
 , os.value
 from dba_hist_snapshot s
 , dba_hist_osstat os
 where s.dbid = os.dbid
 and s.instance_number = os.instance_number
 and s.snap_id = os.snap_id
 and os.stat_name = 'LOAD'
 and s.end_interval_time > to_date(:start_date,'MMDDYYYY')
 and s.end_interval_time < to_date(:end_date,'MMDDYYYY')
order by to_char(trunc(s.end_interval_time,'hh24'),'mm-dd hh24'), os.instance_number

 Historical Performance Analysis Using AWR Page 17

APPENDIX D: SQL ELAPSED TIME PER EXECUTION

select to_char(round(end_interval_time,'hh24'),'mm-dd hh24') snap_time
 , sql_id
 , sum(elapsed_time_delta/1000000)/decode(sum(executions_delta),0,null,sum(executions_delta))
avg_elapsed
 from dba_hist_sqlstat sq
 , dba_hist_snapshot s
 where sq.sql_id (+) = :sql_id
 and sq.dbid (+) = s.dbid
 and sq.instance_number (+) = s.instance_number
 and sq.snap_id (+) = s.snap_id
 and s.end_interval_time > to_date(:start_date,'MMDDYYYY')
 and s.end_interval_time < to_date(:end_date,'MMDDYYYY')
 group by to_char(round(end_interval_time,'hh24'),'mm-dd hh24'), sql_id
 order by to_char(round(end_interval_time,'hh24'),'mm-dd hh24')

 Historical Performance Analysis Using AWR Page 18

APPENDIX E: SYSSTAT - LOGICAL READS

select to_char(round(end_interval_time,'hh24'),'mm-dd hh24') snap_time
 , instance_number
 , avg(pSec) perSec
 from (select end_interval_time
 , instance_number
 , greatest(v/ela,0) pSec
 from (
 select /*+ leading(s,sn,sy) */ s.snap_id
 , s.instance_number
 , s.dbid
 , s.end_interval_time
 , case when s.begin_interval_time = s.startup_time
 then sy.value
 else sy.value - lag(sy.value,1) over (partition by sy.stat_id
 , sy.instance_number
 , sy.dbid
 , s.startup_time
 order by sy.snap_id)
 end v
 , (cast(end_interval_time as date) - cast(begin_interval_time as date))*24*3600 ela
 from dba_hist_snapshot s
 , dba_hist_sysstat sy
 , dba_hist_stat_name sn
 where s.dbid = sy.dbid
 and s.instance_number = sy.instance_number
 and s.snap_id = sy.snap_id
 and s.dbid = sn.dbid
 and sy.stat_id = sn.stat_id
 and end_interval_time between to_timestamp(:start_date,'MMDDYYYY')
 and to_timestamp(:end_date,'MMDDYYYY')
 and sn.stat_name = 'session logical reads'
)
)
group by to_char(round(end_interval_time,'hh24'),'mm-dd hh24'), instance_number
order by to_char(round(end_interval_time,'hh24'),'mm-dd hh24'), instance_number

 Historical Performance Analysis Using AWR Page 19

APPENDIX F: DISK SPACE USAGE

-- Get the datbase block size from dba_hist_datafile
WITH ts_info as (
 select dbid, ts#, tsname, max(block_size) block_size
 from dba_hist_datafile
 group by dbid, ts#, tsname),
-- Get the maximum snaphsot id for each day from dba_hist_snapshot
snap_info as (
 select dbid,to_char(trunc(end_interval_time,'DD'),'MM/DD/YY') dd, max(s.snap_id) snap_id
 from dba_hist_snapshot s
 where s.end_interval_time > to_date(:start_time,'MMDDYYYY')
 and s.end_interval_time < to_date(:end_time,'MMDDYYYY')
 group by dbid,trunc(end_interval_time,'DD'))
-- Sum up the sizes of all the tablespaces for the last snapshot of each day
select s.dd, s.dbid, sum(tablespace_size*f.block_size)
 from dba_hist_tbspc_space_usage sp,
 ts_info f,
 snap_info s
 where s.dbid = sp.dbid
 and s.snap_id = sp.snap_id
 and sp.dbid = f.dbid
 and sp.tablespace_id = f.ts#
 group by s.dd, s.dbid
 order by s.dd

 Historical Performance Analysis Using AWR Page 20

APPENDIX G: IOSTAT BY FILETYPE

select to_char(round(end_interval_time,'hh24'),'mm-dd hh24') snap_time
 , instance_number
 , sum(megabytes) / 1024 Gigabytes
from
(
 select end_interval_time
 , instance_number
 , megabytes
 from
 (
 select s.snap_id
 , s.instance_number
 , s.dbid
 , s.end_interval_time
 , case when s.begin_interval_time = s.startup_time
 then nvl(ft.small_read_megabytes+large_read_megabytes,0)
 else nvl(ft.small_read_megabytes+large_read_megabytes,0) -
 lag(nvl(ft.small_read_megabytes+large_read_megabytes,0),1)
 over (partition by ft.filetype_id
 , ft.instance_number
 , ft.dbid
 , s.startup_time
 order by ft.snap_id)
 end megabytes
 from dba_hist_snapshot s
 , dba_hist_iostat_filetype ft
 , dba_hist_iostat_filetype_name fn
 where s.dbid = ft.dbid
 and s.instance_number = ft.instance_number
 and s.snap_id = ft.snap_id
 and s.dbid = fn.dbid
 and ft.filetype_id = fn.filetype_id
 and end_interval_time between to_timestamp(:start_date,'MMDDYYYY')
 and to_timestamp(:end_date,'MMDDYYYY')
 and fn.filetype_name = 'Data File'
)
)
group by to_char(round(end_interval_time,'hh24'),'mm-dd hh24'), instance_number
order by to_char(round(end_interval_time,'hh24'),'mm-dd hh24'), instance_number
/

 Historical Performance Analysis Using AWR Page 21

APPENDIX H: TOTAL PGA IN USE

select to_char(round(s.end_interval_time,'hh24'),'mm-dd hh24') snap_time
 , g.instance_number
 , g.value/1048576 mbytes
 from dba_hist_snapshot s
 , dba_hist_pgastat g
 where s.snap_id = g.snap_id
 and s.instance_number = g.instance_number
 and s.dbid = g.dbid
 and g.name = 'total PGA allocated'
 and s.end_interval_time > to_date(:start_date,'MMDDYYYY')
 and s.end_interval_time < to_date(:end_date,'MMDDYYYY')
 order by to_char(s.end_interval_time,'mm-dd hh24:mi')
 , g.instance_number
/

Hisorical Analysis of Performance Using AWR
April 2009
Authors: Kurt Engeleiter, Cecilia Gervasio Grant
Contributing Authors:

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
oracle.com

Copyright © 2009, Oracle and/or its affiliates. All rights reserved.
This document is provided for information purposes only and the
contents hereof are subject to change without notice.
This document is not warranted to be error-free, nor subject to any
other warranties or conditions, whether expressed orally or implied
in law, including implied warranties and conditions of merchantability
or fitness for a particular purpose. We specifically disclaim any
liability with respect to this document and no contractual obligations
are formed either directly or indirectly by this document. This document
may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without o-ur prior written permission.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates.
Other names may be trademarks of their respective owners. 0408

