
AWS Identity and
Access Management

User Guide

AWS Identity and Access Management User Guide

AWS Identity and Access Management: User Guide
Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not
Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or
discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may
or may not be affiliated with, connected to, or sponsored by Amazon.

AWS Identity and Access Management User Guide

Table of Contents
What is IAM? 1

Video introduction to IAM 1
IAM features 1
Accessing IAM 2
How IAM works 3

Terms 4
Principal ... 4
Request ... 5
Authentication 5
Authorization 5
Actions or operations 6
Resources 6

Users in AWS 6
First-time access only: Your root user credentials ... 7
IAM users ... 7
Federating existing users ... 9

Permissions and policies in IAM 10
Policies and accounts 10
Policies and users ... 10
Policies and groups 10
Federated users and roles ... 11
Identity-based and resource-based policies ... 11

What is ABAC? 12
Comparing ABAC to the traditional RBAC model ... 12

Security features outside IAM 13
Quick links to common tasks 14

Getting set up 16
Using IAM to give users access to your AWS resources 16
Do I need to sign up for IAM? 17
Additional resources 17

Getting started 18
Creating an IAM admin user and user group 19

Creating an administrator IAM user and user group (console) ... 19
Creating an IAM user and user group (AWS CLI) ... 20
Related resources 22

Creating a delegated user ... 22
Creating a delegated IAM user and user group (console) ... 19
Reducing the user group permissions 24

How IAM users sign in 25
Permissions required for console activities ... 26
Logging sign-in details in CloudTrail .. 26

IAM console search 26
Using IAM console search 27
Icons in the IAM console search results ... 27
Sample search phrases 28

Tutorials ... 29
Delegate access to the billing console 29

Prerequisites ... 30
Step 1: Activate access to billing data on your AWS test account 30
Step 2: Create IAM policies that grant permissions to billing data 30
Step 3: Attach billing policies to your user groups 31
Step 4: Test access to the billing console 32
Related resources 32
Summary 33

iii

AWS Identity and Access Management User Guide

Delegate access across AWS accounts using roles ... 33
Prerequisites ... 34
Step 1: Create a role 34
Step 2: Grant access to the role 37
Step 3: Test access by switching roles ... 38
Related resources 41
Summary 42

Create a customer managed policy 42
Prerequisites ... 42
Step 1: Create the policy 42
Step 2: Attach the policy 43
Step 3: Test user access 44
Related resources 44
Summary 44

Use attribute-based access control (ABAC) 44
Tutorial overview 45
Prerequisites ... 46
Step 1: Create test users ... 46
Step 2: Create the ABAC policy 47
Step 3: Create roles ... 50
Step 4: Test creating secrets ... 50
Step 5: Test viewing secrets ... 52
Step 6: Test scalability ... 54
Step 7: Test updating and deleting secrets ... 55
Summary 56
Related resources 56
Use SAML session tags for ABAC 56

Permit users to manage their credentials and MFA settings 59
Prerequisites ... 60
Step 1: Create a policy to enforce MFA sign-in 60
Step 2: Attach policies to your test user group 61
Step 3: Test your user's access 61
Related resources 62

Signing in to AWS 63
Sign in as the root user ... 63
Sign in as an IAM user ... 64
Your AWS account ID and its alias ... 66

Finding your AWS account ID 66
About account aliases 67
Creating, deleting, and listing an AWS account alias ... 67

AWS sign-in issues 68
I need my AWS account ID or AWS account alias ... 69
I forgot my IAM user name or password 69
I forgot the root user password for my AWS account 69
I don't have access to the email for my AWS account 69
I need to change the credit card for my AWS account 69
I need to report fraudulent AWS account activity ... 69
I need to close my AWS account 70

Identities ... 71
AWS account root user ... 71
IAM users ... 71
IAM user groups 71
IAM roles 72
Temporary credentials in IAM 72
When to create an IAM user (instead of a role) ... 72
When to create an IAM role (instead of a user) ... 72
Users ... 73

iv

AWS Identity and Access Management User Guide

How AWS identifies an IAM user ... 73
Users and credentials ... 74
Users and permissions 75
Users and accounts 75
Users as service accounts 75
Adding a user ... 75
Controlling user access to the console 80
How IAM users sign in to AWS 81
Managing users ... 83
Changing permissions for a user ... 86
Managing passwords 91
Access keys 102
Retrieving lost passwords or access keys 109
Multi-factor authentication (MFA) 110
Finding unused credentials ... 146
Getting credential reports ... 148
Using IAM with CodeCommit 153
Using IAM with Amazon Keyspaces 155
Managing server certificates 156

User groups 160
Creating user groups 162
Managing user groups 163

Roles 168
Terms and concepts 169
Common scenarios 171
Identity providers and federation 177
Service-linked roles ... 219
Creating roles ... 227
Using roles ... 253
Managing roles ... 279
Roles vs. resource-based policies ... 293

Tagging IAM resources 296
Choose an AWS tag naming convention 296
Rules for tagging in IAM and AWS STS 296
Tagging IAM users ... 298
Tagging IAM roles 300
Tagging customer managed policies ... 303
Tagging IAM identity providers ... 304
Tagging instance profiles 308
Tagging server certificates 310
Tagging virtual MFA devices 312
Session tags 313

Temporary security credentials ... 322
AWS STS and AWS regions 322
Common scenarios for temporary credentials ... 322
Requesting temporary security credentials ... 324
Using temporary credentials with AWS resources 334
Controlling permissions for temporary security credentials ... 337
Managing AWS STS in an AWS Region 356
Using AWS STS interface VPC endpoints ... 359
Using bearer tokens 360
Sample applications that use temporary credentials ... 361
Additional resources for temporary credentials ... 362

AWS account root user ... 362
Create or delete an AWS account 363
Enable MFA on the AWS account root user ... 363
Creating access keys for the root user ... 363

v

AWS Identity and Access Management User Guide

Deleting access keys for the root user ... 364
Changing the password for the root user ... 365
Securing the credentials for the root user ... 365
Transferring the root user owner 365

Log events with CloudTrail .. 365
IAM and AWS STS information in CloudTrail .. 365
Logging IAM and AWS STS API requests ... 366
Logging API requests to other AWS services 366
Logging Regional sign-in events 366
Logging user sign-in events 368
Logging sign-in events for temporary credentials ... 369
Example IAM API events in CloudTrail log 370
Example AWS STS API events in CloudTrail log 371
Example sign-in events in CloudTrail log 377

Access management 380
Access management resources 381
Policies and permissions 381

Policy types 381
Policies and the root user ... 386
Overview of JSON policies ... 386
Managed policies and inline policies ... 389
Permissions boundaries ... 395
Identity vs resource 404
Controlling access using policies ... 406
Control access to IAM users and roles using tags 414
Control access to AWS resources using tags 416
Example policies ... 418

Managing IAM policies ... 468
Creating IAM policies ... 468
Validating policies ... 474
Generating policies ... 475
Testing IAM policies ... 475
Add or remove identity permissions 484
Versioning IAM policies ... 492
Editing IAM policies ... 495
Deleting IAM policies ... 499
Refining permissions using access information 502

Understanding policies ... 520
Policy summary (list of services) ... 521
Service summary (list of actions) ... 531
Action summary (list of resources) ... 536
Example policy summaries 539

Permissions required 546
Permissions for administering IAM identities ... 547
Permissions for working in the AWS Management Console 548
Granting permissions across AWS accounts 548
Permissions for one service to access another 549
Required actions 549
Example policies for IAM 550

Security ... 553
Data protection 553

Data encryption in IAM and AWS STS 554
Key management in IAM and AWS STS 554
Internetwork traffic privacy in IAM and AWS STS 554

Logging and monitoring 555
Compliance validation 555
Resilience 556

vi

AWS Identity and Access Management User Guide

Infrastructure security ... 556
Configuration and vulnerability analysis ... 557
Security best practices and use cases 557

Security best practices 557
Business use cases 565

AWS managed policies ... 567
IAMAccessAnalyzerFullAccess 568
IAMAccessAnalyzerReadOnlyAccess 569
AccessAnalyzerServiceRolePolicy 569
.... 570

Policy updates 570
Access Analyzer ... 572

Validating policies ... 573
Generating policies ... 573
Supported resource types 573

S3 buckets ... 573
IAM roles 574
KMS keys 574
Lambda functions 575
SQS queues 575
Secrets Manager secrets ... 575

How Access Analyzer works 575
Getting started 576

Permissions required to use Access Analyzer ... 576
Enabling Access Analyzer ... 577
Access Analyzer status 578
Access Analyzer quotas 578
Using service-linked roles ... 579

Settings 580
Delegated administrator for Access Analyzer ... 580

Access Analyzer findings 581
Working with findings 582
Reviewing findings 582
Filtering findings 584
Archiving findings 586
Resolving findings 586

Access Analyzer policy validation 587
Validating policies in IAM (console) ... 587
Validating policies using Access Analyzer (AWS CLI or AWS API) ... 588
Policy check reference 588

Access Analyzer policy generation 648
How policy generation works 649
Service and action-level information 649
Things to know 651
Permissions required 651
Generate a policy based on CloudTrail activity (console) ... 653
Generate a policy using AWS CloudTrail data in another account 656
Generate a policy based on CloudTrail activity (AWS CLI) ... 658
Generate a policy based on CloudTrail activity (AWS API) ... 658

Archive rules ... 659
Preview access 660

Previewing access in Amazon S3 console 660
Previewing access with Access Analyzer APIs ... 661

Access Analyzer reference 664
Access Analyzer filter keys 664

Monitoring with EventBridge 667
Findings events 667

vii

AWS Identity and Access Management User Guide

Access preview events 667
Event notification frequency 667
Example findings events 668
Example access preview events 669
Creating an event rule using the console 670

Security Hub integration 672
How Access Analyzer sends findings to Security Hub 672
Viewing Access Analyzer findings in Security Hub 673
Typical finding from Access Analyzer ... 674
Enabling and configuring the integration 675
How to stop sending findings 675

Logging with CloudTrail .. 675
Access Analyzer information in CloudTrail .. 675
Understanding Access Analyzer log file entries ... 676

Troubleshooting IAM 678
General issues 678

I can't sign in to my AWS account 678
I lost my access keys 678
I get "access denied" when I make a request to an AWS service 679
I get "access denied" when I make a request with temporary security credentials 680
Policy variables aren't working 681
Changes that I make are not always immediately visible 681
I am not authorized to perform: iam:DeleteVirtualMFADevice 681
How do I securely create IAM users? ... 682

IAM policies ... 683
Troubleshoot using the visual editor ... 683
Troubleshoot using policy summaries ... 686
Troubleshoot policy management 692
Troubleshoot JSON policy documents 693

U2F security keys 697
I can't enable my U2F security key 697
I can't sign in using my U2F security key 698
I lost or broke my U2F key 698
Other issues 698

IAM roles 698
I can't assume a role 699
A new role appeared in my AWS account 700
I can't edit or delete a role in my AWS account 700
I'm not authorized to perform: iam:PassRole 701
Why can't I assume a role with a 12-hour session? (AWS CLI, AWS API) ... 701
I receive an error when I try to switch roles in the IAM console 701
My role has a policy that allows me to perform an action, but I get "access denied" 702
The service did not create the role's default policy version 702
There is no use case for a service role in the console 703

IAM and Amazon EC2 704
When attempting to launch an instance, I don't see the role I expected to see in the Amazon
EC2 console IAM Role list ... 704
The credentials on my instance are for the wrong role 704
When I attempt to call the AddRoleToInstanceProfile, I get an AccessDenied error 705
Amazon EC2: When I attempt to launch an instance with a role, I get an AccessDenied error ... 705
I can't access the temporary security credentials on my EC2 instance 705
What do the errors from the info document in the IAM subtree mean? 706

IAM and Amazon S3 707
How do I grant anonymous access to an Amazon S3 bucket? ... 707
I'm signed in as an AWS account root user; why can't I access an Amazon S3 bucket under my
account? 707

SAML 2.0 federation 707

viii

AWS Identity and Access Management User Guide

Invalid SAML response 708
RoleSessionName is required 708
Not authorized for AssumeRoleWithSAML 708
Invalid RoleSessionName characters ... 709
Invalid Source Identity characters ... 709
Invalid response signature 709
Failed to assume role 710
Could not parse metadata 710
Could not parse metadata 710
DurationSeconds exceeds MaxSessionDuration 710
Viewing a SAML response in your browser 710

Reference 713
IAM identifiers ... 713

Friendly names and paths 713
IAM ARNs 714
Unique identifiers ... 718

Quotas 719
IAM name requirements 720
IAM object quotas 720
IAM Access Analyzer quotas 722
IAM and STS character quotas 722

Services that work with IAM 725
Compute 726
Containers ... 727
Storage 727
Database 728
Developer tools ... 729
Security, identity, & compliance 730
Cryptography & PKI ... 731
Machine learning 732
Management tools ... 733
Migration & transfer ... 735
Mobile ... 736
Networking & content delivery 736
Media 737
Analytics ... 738
Application integration 739
Business applications 739
Satellite ... 740
Internet of Things 740
Robotics ... 741
Quantum Computing 741
Blockchain 741
Game development 741
AR & VR 742
Customer enablement 742
Customer engagement 742
End user computing 743
Billing and cost management 743
Additional resources 743

Policy reference 744
JSON element reference 744
Policy evaluation logic ... 784
Policy grammar 797
AWS managed policies for job functions 802
Global condition keys 812
IAM condition keys 830

ix

AWS Identity and Access Management User Guide

Actions, resources, and condition keys 842
Resources 843

Users and groups 843
Credentials (passwords, access keys, and MFA devices) ... 843
Permissions and policies ... 843
Federation and delegation 844
IAM and other AWS products ... 844

Using IAM with Amazon EC2 844
Using IAM with Amazon S3 844
Using IAM with Amazon RDS 845
Using IAM with Amazon DynamoDB 845

General security practices 845
General resources 845

Making HTTP query requests ... 847
Endpoints ... 847
HTTPS required 848
Signing IAM API requests ... 848

Document history 849

x

AWS Identity and Access Management User Guide
Video introduction to IAM

What is IAM?

AWS Identity and Access Management (IAM) is a web service that helps you securely control access to
AWS resources. You use IAM to control who is authenticated (signed in) and authorized (has permissions)
to use resources.

When you first create an AWS account, you begin with a single sign-in identity that has complete access
to all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account. We
strongly recommend that you do not use the root user for your everyday tasks, even the administrative
ones. Instead, adhere to the best practice of using the root user only to create your first IAM user. Then
securely lock away the root user credentials and use them to perform only a few account and service
management tasks.

Contents
• Video introduction to IAM (p. 1)
• IAM features (p. 1)
• Accessing IAM (p. 2)
• Understanding how IAM works (p. 3)
• Overview of AWS identity management: Users (p. 6)
• Overview of access management: Permissions and policies (p. 10)
• What is ABAC for AWS? (p. 12)
• Security features outside IAM (p. 13)
• Quick links to common tasks (p. 14)

Video introduction to IAM
AWS Training and Certification provides a 10-minute video introduction to IAM:

Introduction to AWS Identity and Access Management

IAM features
IAM gives you the following features:

Shared access to your AWS account

You can grant other people permission to administer and use resources in your AWS account without
having to share your password or access key.

Granular permissions

You can grant different permissions to different people for different resources. For example, you
might allow some users complete access to Amazon Elastic Compute Cloud (Amazon EC2), Amazon
Simple Storage Service (Amazon S3), Amazon DynamoDB, Amazon Redshift, and other AWS services.
For other users, you can allow read-only access to just some S3 buckets, or permission to administer
just some EC2 instances, or to access your billing information but nothing else.

1

https://twitter.com/AWSSecurityInfo
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#create-iam-users
https://www.aws.training/learningobject/video?id=16448

AWS Identity and Access Management User Guide
Accessing IAM

Secure access to AWS resources for applications that run on Amazon EC2

You can use IAM features to securely provide credentials for applications that run on EC2 instances.
These credentials provide permissions for your application to access other AWS resources. Examples
include S3 buckets and DynamoDB tables.

Multi-factor authentication (MFA)

You can add two-factor authentication to your account and to individual users for extra security.
With MFA you or your users must provide not only a password or access key to work with your
account, but also a code from a specially configured device.

Identity federation

You can allow users who already have passwords elsewhere—for example, in your corporate network
or with an internet identity provider—to get temporary access to your AWS account.

Identity information for assurance

If you use AWS CloudTrail, you receive log records that include information about those who made
requests for resources in your account. That information is based on IAM identities.

PCI DSS Compliance

IAM supports the processing, storage, and transmission of credit card data by a merchant or service
provider, and has been validated as being compliant with Payment Card Industry (PCI) Data Security
Standard (DSS). For more information about PCI DSS, including how to request a copy of the AWS
PCI Compliance Package, see PCI DSS Level 1.

Integrated with many AWS services

For a list of AWS services that work with IAM, see AWS services that work with IAM (p. 725).
Eventually Consistent

IAM, like many other AWS services, is eventually consistent. IAM achieves high availability by
replicating data across multiple servers within Amazon's data centers around the world. If a request
to change some data is successful, the change is committed and safely stored. However, the change
must be replicated across IAM, which can take some time. Such changes include creating or updating
users, groups, roles, or policies. We recommend that you do not include such IAM changes in the
critical, high-availability code paths of your application. Instead, make IAM changes in a separate
initialization or setup routine that you run less frequently. Also, be sure to verify that the changes
have been propagated before production workflows depend on them. For more information, see
Changes that I make are not always immediately visible (p. 681).

Free to use

AWS Identity and Access Management (IAM) and AWS Security Token Service (AWS STS) are features
of your AWS account offered at no additional charge. You are charged only when you access other
AWS services using your IAM users or AWS STS temporary security credentials. For information
about the pricing of other AWS products, see the Amazon Web Services pricing page.

Accessing IAM
You can work with AWS Identity and Access Management in any of the following ways.

AWS Management Console

The console is a browser-based interface to manage IAM and AWS resources. For more information
about accessing IAM through the console, see Signing in to the AWS Management Console as an IAM
user or root user (p. 63). For a tutorial that guides you through using the console, see Creating
your first IAM admin user and user group (p. 19).

2

https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/compliance/pci-dss-level-1-faqs/
https://wikipedia.org/wiki/Eventual_consistency
https://aws.amazon.com/pricing/

AWS Identity and Access Management User Guide
How IAM works

AWS Command Line Tools

You can use the AWS command line tools to issue commands at your system's command line to
perform IAM and AWS tasks. Using the command line can be faster and more convenient than the
console. The command line tools are also useful if you want to build scripts that perform AWS tasks.

AWS provides two sets of command line tools: the AWS Command Line Interface (AWS CLI) and the
AWS Tools for Windows PowerShell. For information about installing and using the AWS CLI, see the
AWS Command Line Interface User Guide. For information about installing and using the Tools for
Windows PowerShell, see the AWS Tools for Windows PowerShell User Guide.

AWS SDKs

AWS provides SDKs (software development kits) that consist of libraries and sample code for various
programming languages and platforms (Java, Python, Ruby, .NET, iOS, Android, etc.). The SDKs
provide a convenient way to create programmatic access to IAM and AWS. For example, the SDKs
take care of tasks such as cryptographically signing requests, managing errors, and retrying requests
automatically. For information about the AWS SDKs, including how to download and install them,
see the Tools for Amazon Web Services page.

IAM HTTPS API

You can access IAM and AWS programmatically by using the IAM HTTPS API, which lets you issue
HTTPS requests directly to the service. When you use the HTTPS API, you must include code to
digitally sign requests using your credentials. For more information, see Calling the IAM API using
HTTP query requests (p. 847) and the IAM API Reference.

Understanding how IAM works
Before you create users, you should understand how IAM works. IAM provides the infrastructure
necessary to control authentication and authorization for your account. The IAM infrastructure includes
the following elements:

Contents

• Terms (p. 4)

• Principal (p. 4)

• Request (p. 5)

• Authentication (p. 5)

• Authorization (p. 5)

• Actions or operations (p. 6)

• Resources (p. 6)

3

https://aws.amazon.com/cli/
https://aws.amazon.com/powershell/
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/powershell/latest/userguide/
https://aws.amazon.com/tools/
https://docs.aws.amazon.com/IAM/latest/APIReference/

AWS Identity and Access Management User Guide
Terms

Terms
Learn more about IAM terms.

IAM Resources

The user, group, role, policy, and identity provider objects that are stored in IAM. As with other AWS
services, you can add, edit, and remove resources from IAM.

IAM Identities

The IAM resource objects that are used to identify and group. You can attach a policy to an IAM
identity. These include users, groups, and roles.

IAM Entities

The IAM resource objects that AWS uses for authentication. These include IAM users and roles.
Principals

A person or application that uses the AWS account root user, an IAM user, or an IAM role to sign in
and make requests to AWS. Principals include federated users and assumed roles.

Principal
A principal is a person or application that can make a request for an action or operation on an AWS
resource. The principal is authenticated as the AWS account root user or an IAM entity to make requests

4

AWS Identity and Access Management User Guide
Request

to AWS. As a best practice, do not use your root user credentials for your daily work. Instead, create
IAM entities (users and roles). You can also support federated users or programmatic access to allow an
application to access your AWS account.

Request
When a principal tries to use the AWS Management Console, the AWS API, or the AWS CLI, that principal
sends a request to AWS. The request includes the following information:

• Actions or operations – The actions or operations that the principal wants to perform. This can be an
action in the AWS Management Console, or an operation in the AWS CLI or AWS API.

• Resources – The AWS resource object upon which the actions or operations are performed.
• Principal – The person or application that used an entity (user or role) to send the request.

Information about the principal includes the policies that are associated with the entity that the
principal used to sign in.

• Environment data – Information about the IP address, user agent, SSL enabled status, or the time of
day.

• Resource data – Data related to the resource that is being requested. This can include information
such as a DynamoDB table name or a tag on an Amazon EC2 instance.

AWS gathers the request information into a request context, which is used to evaluate and authorize the
request.

Authentication
A principal must be authenticated (signed in to AWS) using their credentials to send a request to AWS.
Some services, such as Amazon S3 and AWS STS, allow a few requests from anonymous users. However,
they are the exception to the rule.

To authenticate from the console as a root user, you must sign in with your email address and password.
As an IAM user, provide your account ID or alias, and then your user name and password. To authenticate
from the API or AWS CLI, you must provide your access key and secret key. You might also be required
to provide additional security information. For example, AWS recommends that you use multi-factor
authentication (MFA) to increase the security of your account. To learn more about the IAM entities that
AWS can authenticate, see IAM users (p. 73) and IAM roles (p. 168).

Authorization
You must also be authorized (allowed) to complete your request. During authorization, AWS uses
values from the request context to check for policies that apply to the request. It then uses the
policies to determine whether to allow or deny the request. Most policies are stored in AWS as JSON
documents (p. 386) and specify the permissions for principal entities. There are several types of
policies (p. 381) that can affect whether a request is authorized. To provide your users with permissions
to access the AWS resources in their own account, you need only identity-based policies. Resource-based
policies are popular for granting cross-account access (p. 548). The other policy types are advanced
features and should be used carefully.

AWS checks each policy that applies to the context of your request. If a single permissions policy includes
a denied action, AWS denies the entire request and stops evaluating. This is called an explicit deny.
Because requests are denied by default, AWS authorizes your request only if every part of your request is
allowed by the applicable permissions policies. The evaluation logic for a request within a single account
follows these general rules:

• By default, all requests are denied. (In general, requests made using the AWS account root user
credentials for resources in the account are always allowed.)

5

AWS Identity and Access Management User Guide
Actions or operations

• An explicit allow in any permissions policy (identity-based or resource-based) overrides this default.

• The existence of an Organizations SCP, IAM permissions boundary, or a session policy overrides the
allow. If one or more of these policy types exists, they must all allow the request. Otherwise, it is
implicitly denied.

• An explicit deny in any policy overrides any allows.

To learn more about how all types of policies are evaluated, see Policy evaluation logic (p. 784). If you
need to make a request in a different account, a policy in the other account must allow you to access the
resource and the IAM entity that you use to make the request must have an identity-based policy that
allows the request.

Actions or operations
After your request has been authenticated and authorized, AWS approves the actions or operations in
your request. Operations are defined by a service, and include things that you can do to a resource, such
as viewing, creating, editing, and deleting that resource. For example, IAM supports approximately 40
actions for a user resource, including the following actions:

• CreateUser

• DeleteUser

• GetUser

• UpdateUser

To allow a principal to perform an operation, you must include the necessary actions in a policy that
applies to the principal or the affected resource. To see a list of actions, resource types, and condition
keys supported by each service, see Actions, Resources, and Condition Keys for AWS Services.

Resources
After AWS approves the operations in your request, they can be performed on the related resources
within your account. A resource is an object that exists within a service. Examples include an Amazon
EC2 instance, an IAM user, and an Amazon S3 bucket. The service defines a set of actions that can be
performed on each resource. If you create a request to perform an unrelated action on a resource, that
request is denied. For example, if you request to delete an IAM role but provide an IAM group resource,
the request fails. To see AWS service tables that identify which resources are affected by an action, see
Actions, Resources, and Condition Keys for AWS Services.

Overview of AWS identity management: Users
For greater security and organization, you can give access to your AWS account to specific users—
identities that you create with custom permissions. You can further simplify access for those users by
federating existing identities into AWS.

Topics

• First-time access only: Your root user credentials (p. 7)

• IAM users (p. 7)

• Federating existing users (p. 9)

6

reference_policies_actions-resources-contextkeys.html
reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide
First-time access only: Your root user credentials

First-time access only: Your root user credentials
When you create an AWS account, you create an AWS account root user identity, which you use to sign in
to AWS. You can sign in to the AWS Management Console using this root user identity—that is, the email
address and password that you provided when creating the account. This combination of your email
address and password is also called your root user credentials.

When you use your root user credentials, you have complete, unrestricted access to all resources in your
AWS account, including access to your billing information and the ability to change your password. This
level of access is necessary when you first set up your account. However, we recommend that you don't
use root user credentials for everyday access. We especially recommend that you do not share your root
user credentials with anyone, because doing so gives them unrestricted access to your account. Only
service control policies (SCPs) in organizations can restrict the permissions that are granted to the root
user.

The following sections explain how you can use IAM to create and manage user identity and permissions
to provide secure, limited access to your AWS resources, both for yourself and for others who need to
work with your AWS resources.

IAM users
The "identity" aspect of AWS Identity and Access Management (IAM) helps you with the question "Who is
that user?", often referred to as authentication. Instead of sharing your root user credentials with others,
you can create individual IAM users within your account that correspond to users in your organization.
IAM users are not separate accounts; they are users within your account. Each user can have its own
password for access to the AWS Management Console. You can also create an individual access key for
each user so that the user can make programmatic requests to work with resources in your account. In
the following figure, the users Li, Mateo, DevApp1, DevApp2, TestApp1, and TestApp2 have been added
to a single AWS account. Each user has its own credentials.

7

AWS Identity and Access Management User Guide
IAM users

8

AWS Identity and Access Management User Guide
Federating existing users

Notice that some of the users are actually applications (for example, DevApp1). An IAM user doesn't
have to represent an actual person; you can create an IAM user in order to generate an access key for an
application that runs in your corporate network and needs AWS access.

We recommend that you create an IAM user for yourself and then assign yourself administrative
permissions for your account. You can then sign in as that user to add more users as needed.

Federating existing users
If the users in your organization already have a way to be authenticated, such as by signing in to your
corporate network, you don't have to create separate IAM users for them. Instead, you can federate those
user identities into AWS.

The following diagram shows how a user can use IAM to get temporary AWS security credentials to
access resources in your AWS account.

Federation is particularly useful in these cases:

• Your users already have identities in a corporate directory.

If your corporate directory is compatible with Security Assertion Markup Language 2.0 (SAML
2.0), you can configure your corporate directory to provide single-sign on (SSO) access to the AWS
Management Console for your users. For more information, see Common scenarios for temporary
credentials (p. 322).

If your corporate directory is not compatible with SAML 2.0, you can create an identity broker
application to provide single-sign on (SSO) access to the AWS Management Console for your users. For
more information, see Enabling custom identity broker access to the AWS console (p. 212).

If your corporate directory is Microsoft Active Directory, you can use AWS Directory Service to establish
trust between your corporate directory and your AWS account.

• Your users already have Internet identities.

If you are creating a mobile app or web-based app that can let users identify themselves through an
Internet identity provider like Login with Amazon, Facebook, Google, or any OpenID Connect (OIDC)
compatible identity provider, the app can use federation to access AWS. For more information, see
About web identity federation (p. 178).

Tip
To use identity federation with Internet identity providers, we recommend you use Amazon
Cognito.

9

https://aws.amazon.com/directoryservice/
https://docs.aws.amazon.com/cognito/latest/developerguide/what-is-amazon-cognito.html
https://docs.aws.amazon.com/cognito/latest/developerguide/what-is-amazon-cognito.html

AWS Identity and Access Management User Guide
Permissions and policies in IAM

Overview of access management: Permissions and
policies

The access management portion of AWS Identity and Access Management (IAM) helps you define
what a principal entity is allowed to do in an account. A principal entity is a person or application
that is authenticated using an IAM entity (user or role). Access management is often referred to as
authorization. You manage access in AWS by creating policies and attaching them to IAM identities
(users, groups of users, or roles) or AWS resources. A policy is an object in AWS that, when associated
with an identity or resource, defines their permissions. AWS evaluates these policies when a principal
uses an IAM entity (user or role) to make a request. Permissions in the policies determine whether the
request is allowed or denied. Most policies are stored in AWS as JSON documents. For more information
about policy types and uses, see Policies and permissions in IAM (p. 381).

Policies and accounts
If you manage a single account in AWS, then you define the permissions within that account using
policies. If you manage permissions across multiple accounts, it is more difficult to manage permissions
for your users. You can use IAM roles, resource-based policies, or access control lists (ACLs) for cross-
account permissions. However, if you own multiple accounts, we instead recommend using the AWS
Organizations service to help you manage those permissions. For more information, see What is AWS
Organizations? in the Organizations User Guide.

Policies and users
IAM users are identities in the service. When you create an IAM user, they can't access anything in
your account until you give them permission. You give permissions to a user by creating an identity-
based policy, which is a policy that is attached to the user or a group to which the user belongs. The
following example shows a JSON policy that allows the user to perform all Amazon DynamoDB actions
(dynamodb:*) on the Books table in the 123456789012 account within the us-east-2 Region.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "dynamodb:*",
 "Resource": "arn:aws:dynamodb:us-east-2:123456789012:table/Books"
 }
}

After you attach this policy to your IAM user, the user only has those DynamoDB permissions. Most users
have multiple policies that together represent the permissions for that user.

Actions or resources that are not explicitly allowed are denied by default. For example, if the preceding
policy is the only policy that is attached to a user, then that user is allowed to only perform DynamoDB
actions on the Books table. Actions on all other tables are prohibited. Similarly, the user is not allowed
to perform any actions in Amazon EC2, Amazon S3, or in any other AWS service. The reason is that
permissions to work with those services are not included in the policy.

Policies and groups
You can organize IAM users into IAM groups and attach a policy to a group. In that case, individual users
still have their own credentials, but all the users in a group have the permissions that are attached to
the group. Use groups for easier permissions management, and to follow our Security best practices in
IAM (p. 557).

10

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_introduction.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_introduction.html

AWS Identity and Access Management User Guide
Federated users and roles

Users or groups can have multiple policies attached to them that grant different permissions. In that
case, the permissions for the users are calculated based on the combination of policies. But the basic
principle still applies: If the user has not been granted an explicit permission for an action and a resource,
the user does not have those permissions.

Federated users and roles
Federated users don't have permanent identities in your AWS account the way that IAM users do.
To assign permissions to federated users, you can create an entity referred to as a role and define
permissions for the role. When a federated user signs in to AWS, the user is associated with the role and
is granted the permissions that are defined in the role. For more information, see Creating a role for a
third-party Identity Provider (federation) (p. 241).

Identity-based and resource-based policies
Identity-based policies are permissions policies that you attach to an IAM identity, such as an IAM user,
group, or role. Resource-based policies are permissions policies that you attach to a resource such as an
Amazon S3 bucket or an IAM role trust policy.

Identity-based policies control what actions the identity can perform, on which resources, and under
what conditions. Identity-based policies can be further categorized:

• Managed policies – Standalone identity-based policies that you can attach to multiple users, groups,
and roles in your AWS account. You can use two types of managed policies:

• AWS managed policies – Managed policies that are created and managed by AWS. If you are new to
using policies, we recommend that you start by using AWS managed policies.

• Customer managed policies – Managed policies that you create and manage in your AWS account.
Customer managed policies provide more precise control over your policies than AWS managed
policies. You can create, edit, and validate an IAM policy in the visual editor or by creating the JSON
policy document directly. For more information, see Creating IAM policies (p. 468) and Editing IAM
policies (p. 495).

• Inline policies – Policies that you create and manage and that are embedded directly into a single
user, group, or role. In most cases, we don't recommend using inline policies.

Resource-based policies control what actions a specified principal can perform on that resource and
under what conditions. Resource-based policies are inline policies, and there are no managed resource-

11

AWS Identity and Access Management User Guide
What is ABAC?

based policies. To enable cross-account access, you can specify an entire account or IAM entities in
another account as the principal in a resource-based policy.

The IAM service supports only one type of resource-based policy called a role trust policy, which is
attached to an IAM role. Because an IAM role is both an identity and a resource that supports resource-
based policies, you must attach both a trust policy and an identity-based policy to an IAM role. Trust
policies define which principal entities (accounts, users, roles, and federated users) can assume the role.
To learn how IAM roles are different from other resource-based policies, see How IAM roles differ from
resource-based policies (p. 293).

To see which services support resource-based policies, see AWS services that work with IAM (p. 725).
To learn more about resource-based policies, see Identity-based policies and resource-based
policies (p. 404).

What is ABAC for AWS?
Attribute-based access control (ABAC) is an authorization strategy that defines permissions based on
attributes. In AWS, these attributes are called tags. You can attach tags to IAM resources, including IAM
entities (users or roles) and to AWS resources. You can create a single ABAC policy or small set of policies
for your IAM principals. These ABAC policies can be designed to allow operations when the principal's
tag matches the resource tag. ABAC is helpful in environments that are growing rapidly and helps with
situations where policy management becomes cumbersome.

For example, you can create three roles with the access-project tag key. Set the tag value of the first
role to Heart, the second to Sun, and the third to Lightning. You can then use a single policy that
allows access when the role and the resource are tagged with the same value for access-project. For
a detailed tutorial that demonstrates how to use ABAC in AWS, see IAM tutorial: Define permissions to
access AWS resources based on tags (p. 44).

Comparing ABAC to the traditional RBAC model
The traditional authorization model used in IAM is called role-based access control (RBAC). RBAC defines
permissions based on a person's job function, known outside of AWS as a role. Within AWS a role usually
refers to an IAM role, which is an identity in IAM that you can assume. IAM does include managed policies
for job functions (p. 802) that align permissions to a job function in an RBAC model.

In IAM, you implement RBAC by creating different policies for different job functions. You then attach the
policies to identities (IAM users, groups of users, or IAM roles). As a best practice, you grant the minimum
permissions necessary for the job function. This is known as granting least privilege (p. 559). Do this by
listing the specific resources that the job function can access. The disadvantage to using the traditional
RBAC model is that when employees add new resources, you must update policies to allow access to
those resources.

For example, assume that you have three projects, named Heart, Sun, and Lightning, on which your
employees work. You create an IAM role for each project. You then attach policies to each IAM role to
define the resources that anyone allowed to assume the role can access. If an employee changes jobs
within your company, you assign them to a different IAM role. People or programs can be assigned to
more than one role. However, the Sun project might require additional resources, such as a new Amazon
S3 bucket. In that case, you must update the policy attached to the Sun role to specify the new bucket
resource. Otherwise, Sun project members are not allowed to access the new bucket.

ABAC provides the following advantages over the traditional RBAC model:

• ABAC permissions scale with innovation. It's no longer necessary for an administrator to update
existing policies to allow access to new resources. For example, assume that you designed your ABAC

12

AWS Identity and Access Management User Guide
Security features outside IAM

strategy with the access-project tag. A developer uses the role with the access-project =
Heart tag. When people on the Heart project need additional Amazon EC2 resources, the developer
can create new Amazon EC2 instances with the access-project = Heart tag. Then anyone on the
Heart project can start and stop those instances because their tag values match.

• ABAC requires fewer policies. Because you don't have to create different policies for different job
functions, you create fewer policies. Those policies are easier to manage.

• Using ABAC, teams can change and grow quickly. This is because permissions for new resources are
automatically granted based on attributes. For example, if your company already supports the Heart
and Sun projects using ABAC, it's easy to add a new Lightning project. An IAM administrator creates
a new role with the access-project = Lightning tag. It's not necessary to change the policy to
support a new project. Anyone that has permissions to assume the role can create and view instances
tagged with access-project = Lightning. Additionally, a team member might move from the
Heart project to the Lightning project. The IAM administrator assigns the user to a different IAM
role. It's not necessary to change the permissions policies.

• Granular permissions are possible using ABAC. When you create policies, it's a best practice to grant
least privilege (p. 559). Using traditional RBAC, you must write a policy that allows access to only
specific resources. However, when you use ABAC, you can allow actions on all resources, but only if the
resource tag matches the principal's tag.

• Use employee attributes from your corporate directory with ABAC. You can configure your SAML-
based or web identity provider to pass session tags to AWS. When your employees federate into AWS,
their attributes are applied to their resulting principal in AWS. You can then use ABAC to allow or deny
permissions based on those attributes.

For a detailed tutorial that demonstrates how to use ABAC in AWS, see IAM tutorial: Define permissions
to access AWS resources based on tags (p. 44).

Security features outside IAM
You use IAM to control access to tasks that are performed using the AWS Management Console, the
AWS Command Line Tools, or service API operations using the AWS SDKs. Some AWS products have
other ways to secure their resources as well. The following list provides some examples, though it is not
exhaustive.

Amazon EC2

In Amazon Elastic Compute Cloud you log into an instance with a key pair (for Linux instances) or
using a user name and password (for Microsoft Windows instances).

For more information, see the following documentation:

• Getting Started with Amazon EC2 Linux Instances in the Amazon EC2 User Guide for Linux
Instances

• Getting Started with Amazon EC2 Windows Instances in the Amazon EC2 User Guide for Windows
Instances

Amazon RDS

In Amazon Relational Database Service you log into the database engine with a user name and
password that are tied to that database.

For more information, see Getting Started with Amazon RDS in the Amazon RDS User Guide.
Amazon EC2 and Amazon RDS

In Amazon EC2 and Amazon RDS you use security groups to control traffic to an instance or
database.

13

https://aws.amazon.com/tools/#Command_Line_Tools
https://aws.amazon.com/tools/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2_GetStarted.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/EC2Win_GetStarted.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_GettingStarted.html

AWS Identity and Access Management User Guide
Quick links to common tasks

For more information, see the following documentation:

• Amazon EC2 Security Groups for Linux Instances in the Amazon EC2 User Guide for Linux Instances
• Amazon EC2 Security Groups for Windows Instances in the Amazon EC2 User Guide for Windows

Instances
• Amazon RDS Security Groups in the Amazon RDS User Guide

WorkSpaces

In Amazon WorkSpaces, users sign in to a desktop with a user name and password.

For more information, see Getting Started with WorkSpaces in the Amazon WorkSpaces
Administration Guide.

Amazon WorkDocs

In Amazon WorkDocs, users get access to shared documents by signing in with a user name and
password.

For more information, see Getting Started with Amazon WorkDocs in the Amazon WorkDocs
Administration Guide.

These access control methods are not part of IAM. IAM lets you control how these AWS products are
administered—creating or terminating an Amazon EC2 instance, setting up new WorkSpaces desktops,
and so on. That is, IAM helps you control the tasks that are performed by making requests to Amazon
Web Services, and it helps you control access to the AWS Management Console. However, IAM does
not help you manage security for tasks like signing in to an operating system (Amazon EC2), database
(Amazon RDS), desktop (Amazon WorkSpaces), or collaboration site (Amazon WorkDocs).

When you work with a specific AWS product, be sure to read the documentation to learn the security
options for all the resources that belong to that product.

Quick links to common tasks
Use the following links to get help with common tasks associated with IAM.

Sign in as an IAM user

See How IAM users sign in to AWS (p. 81).
Manage passwords for IAM users

You need a password in order to access the AWS Management Console, including access to billing
information.

For your AWS account root user, see Changing the AWS account root user password (p. 91).

For an IAM user, see Managing passwords for IAM users (p. 95).
Manage permissions for IAM users

You use policies to grant permissions to the IAM users in your AWS account. IAM users have no
permissions when they are created, so you must add permissions to allow them to use AWS
resources.

For more information, see Managing IAM policies (p. 468).
List the users in your AWS account and get information about their credentials

See Getting credential reports for your AWS account (p. 148).

14

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-network-security.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/using-network-security.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.RDSSecurityGroups.html
https://docs.aws.amazon.com/workspaces/latest/adminguide/getting_started.html
https://docs.aws.amazon.com/workdocs/latest/adminguide/getting_started.html

AWS Identity and Access Management User Guide
Quick links to common tasks

Add multi-factor authentication (MFA)

To add a virtual MFA device, see one of the following:
• Enable a virtual MFA device for your AWS account root user (console) (p. 115)
• Enable a virtual MFA device for an IAM user (console) (p. 113)

To add a U2F security key, see one of the following:
• Enable a U2F security key for the AWS account root user (console) (p. 119)
• Enable a U2F security key for another IAM user (console) (p. 118)

To add a hardware MFA device, see one of the following:
• Enable a hardware MFA device for the AWS account root user (console) (p. 124).
• Enable a hardware MFA device for another IAM user (console) (p. 124)

Get an access key

You need an access key if you want to make AWS requests using the AWS SDKs, the AWS Command
Line Tools, or the API operations.

Important
You can view and download your secret access key only when you create the access key. You
cannot view or recover a secret access key later. However, if you lose your secret access key,
you can create a new access key.

For your AWS account, see Managing Access Keys for your AWS Account.

For an IAM user, see Managing access keys for IAM users (p. 102).
Tag IAM resources

You can tag the following IAM resources:
• IAM users
• IAM roles
• Customer managed policies
• Identity providers
• Server certificates
• Virtual MFA devices

To learn about tags in IAM, see Tagging IAM resources (p. 296).

To learn about using tags to control access to AWS resources, see Controlling access to AWS
resources using tags (p. 416).

View the actions, resources, and condition keys for all services

This set of reference documentation can help you write detailed IAM policies. Each AWS service
defines the actions, resources, and condition context keys that you use in IAM policies. To learn more,
see Actions, Resources, and Condition Keys for AWS Services.

Get started with all of AWS

This set of documentation deals primarily with the IAM service. To learn about getting started with
AWS and using multiple services to solve a problem such as building and launching your first project,
see the Getting Started Resource Center.

15

https://aws.amazon.com/tools/
https://aws.amazon.com/tools/#Command_Line_Tools
https://aws.amazon.com/tools/#Command_Line_Tools
https://docs.aws.amazon.com/general/latest/gr/managing-aws-access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_actions-resources-contextkeys.html
https://aws.amazon.com/getting-started/

AWS Identity and Access Management User Guide
Using IAM to give users access to your AWS resources

Getting set up with IAM
AWS Identity and Access Management (IAM) helps you securely control access to Amazon Web Services
(AWS) and your account resources. IAM can also keep your account credentials private. With IAM, you can
create multiple IAM users under the umbrella of your AWS account or enable temporary access through
identity federation with your corporate directory. In some cases, you can also enable access to resources
across AWS accounts.

Without IAM, however, you must either create multiple AWS accounts—each with its own billing and
subscriptions to AWS products—or your employees must share the security credentials of a single AWS
account. In addition, without IAM, you cannot control the tasks a particular user or system can do and
what AWS resources they might use.

This guide provides a conceptual overview of IAM, describes business use cases, and explains AWS
permissions and policies.

Topics
• Using IAM to give users access to your AWS resources (p. 16)
• Do I need to sign up for IAM? (p. 17)
• Additional resources (p. 17)

Using IAM to give users access to your AWS
resources

Here are the ways you can use IAM to control access to your AWS resources.

Type of access Why would I use it? Where can I get more information?

Access for
users in your
AWS account

You want to add users under the
umbrella of your AWS account,
and you want to use IAM to
create users and manage their
permissions.

To learn how to use the AWS Management
Console to create users and to manage their
permissions in your AWS account, see Getting
started with IAM (p. 18).

To learn about using the IAM API or AWS
Command Line Interface to create users in your
AWS account, see Creating your first IAM admin
user and user group (p. 19).

For more information about working with IAM
users, see IAM Identities (users, user groups, and
roles) (p. 71).

Non-AWS
user access
via identity
federation
between your
authorization
system and
AWS

You have non-AWS users in
your identity and authorization
system, and they need access to
your AWS resources.

To learn how to use security tokens to give your
users access to your AWS account resources
through federation with your corporate
directory, go to Temporary security credentials
in IAM (p. 322). For information about the
AWS Security Token Service API, go to the AWS
Security Token Service API Reference.

16

https://docs.aws.amazon.com/STS/latest/APIReference/
https://docs.aws.amazon.com/STS/latest/APIReference/

AWS Identity and Access Management User Guide
Do I need to sign up for IAM?

Type of access Why would I use it? Where can I get more information?

Cross-account
access between
AWS accounts

You want to share access to
certain AWS resources with users
under other AWS accounts.

To learn how to use IAM to grant permissions
to other AWS accounts, see Roles terms and
concepts (p. 169).

Do I need to sign up for IAM?
If you don't already have an AWS account, you need to create one to use IAM. You don't need to
specifically sign up to use IAM. There is no charge to use IAM.

Note
IAM works only with AWS products that are integrated with IAM. For a list of services that
support IAM, see AWS services that work with IAM (p. 725).

To sign up for AWS

1. Open https://portal.aws.amazon.com/billing/signup.
2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code on the
phone keypad.

Additional resources
Here are some resources to help you get things done with IAM.

• Manage your AWS account credentials: AWS Security Credentials in the AWS General Reference
• Get started with and learn more about What is IAM? (p. 1)
• Set up a command line interface (CLI) to use with IAM. For the cross-platform AWS CLI, see the

AWS Command Line Interface Documentation and IAM CLI reference. You can also manage IAM with
Windows PowerShell; see the AWS Tools for Windows PowerShell Documentation and IAM Windows
PowerShell reference.

• Download an AWS SDK for convenient programmatic access to IAM: Tools for Amazon Web Services
• Get the FAQ: AWS Identity and Access Management FAQ
• Get technical support: AWS Support Center
• Get premium technical support: AWS Premium Support Center
• Find definitions of AWS terms: Amazon Web Services Glossary
• Get community support: IAM Discussion Forums
• Contact AWS: Contact Us

17

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html
http://aws.amazon.com/documentation/cli/
http://aws.amazon.com/documentation/cli/
https://docs.aws.amazon.com/cli/latest/reference/iam/index.html
http://aws.amazon.com/documentation/powershell/
https://docs.aws.amazon.com/powershell/latest/reference/items/AWS_Identity_and_Access_Management_cmdlets.html
https://docs.aws.amazon.com/powershell/latest/reference/items/AWS_Identity_and_Access_Management_cmdlets.html
http://aws.amazon.com/tools/
http://aws.amazon.com/iam/faqs/
https://console.aws.amazon.com/support/home#/
https://aws.amazon.com/premiumsupport/
https://docs.aws.amazon.com/general/latest/gr/glos-chap.html
https://forums.aws.amazon.com/forum.jspa?forumID=76
http://aws.amazon.com/contact-us/

AWS Identity and Access Management User Guide

Getting started with IAM
This topic shows you how to give access to your AWS resources by creating AWS Identity and Access
Management (IAM) users in your AWS account. First, you'll learn about IAM concepts you should
understand before you create groups and users, and then you'll walk through how to perform the
necessary tasks using the AWS Management Console. The first task is to set up an administrators group
for your AWS account. Having an administrators group for your AWS account isn't required, but we
strongly recommend it.

Note
This set of documentation deals primarily with the IAM service. To learn about getting started
with AWS and using multiple services to solve a problem such as building and launching your
first project, see the Getting Started Resource Center.

The following figure shows a simple example of an AWS account with three groups. A group is a
collection of users who have similar responsibilities. In this example, one group is for administrators (it's
called Admins). There's also a Developers group and a Test group. Each group has multiple users. Each
user can be in more than one group, although the figure doesn't illustrate that. You can't put groups
inside other groups. You use policies to grant permissions to groups.

In the procedure that follows, you will perform the following tasks:

• Create an Administrators group and give the group permission to access all of your AWS account's
resources.

• Create a user for yourself and add that user to the Administrators group.
• Create a password for your user so you can sign in to the AWS Management Console.

18

https://aws.amazon.com/getting-started/

AWS Identity and Access Management User Guide
Creating an IAM admin user and user group

You will grant the Administrators group permission to access all your available AWS account resources.
Available resources are any AWS products you use, or that you are signed up for. Users in the
Administrators group can also access your AWS account information, except for your AWS account's
security credentials.

Topics

• Creating your first IAM admin user and user group (p. 19)

• Creating your first IAM delegated user and user group (p. 22)

• How IAM users sign in to your AWS account (p. 25)

• IAM console search (p. 26)

Creating your first IAM admin user and user group
Important
If you found this page because you are looking for information about the Product
Advertising API to sell Amazon products on your website, see the Product Advertising API 5.0
Documentation.

As a best practice (p. 558), do not use the AWS account root user for any task where it's not required.
Instead, create a new IAM user for each person that requires administrator access. Then make those
users administrators by placing the users into an "Administrators" user group to which you attach the
AdministratorAccess managed policy.

Thereafter, the users in the administrators user group should set up the user groups, users, and so on, for
the AWS account. All future interaction should be through the AWS account's users and their own keys
instead of the root user. However, to perform some account and service management tasks, you must log
in using the root user credentials. To view the tasks that require you to sign in as the root user, see AWS
Tasks that Require Account Root User.

Creating an administrator IAM user and user group
(console)
This procedure describes how to use the AWS Management Console to create an IAM user for yourself
and add that user to a user group that has administrative permissions from an attached managed policy.

To create an administrator user for yourself and add the user to an administrators user group
(console)

1. Sign in to the IAM console as the account owner by choosing Root user and entering your AWS
account email address. On the next page, enter your password.

Note
We strongly recommend that you adhere to the best practice of using the Administrator
IAM user below and securely lock away the root user credentials. Sign in as the root user
only to perform a few account and service management tasks.

2. Enable access to billing data for the IAM admin user that you will create as follows:

a. On the navigation bar, choose your account name, and then choose My Account.

b. Next to IAM User and Role Access to Billing Information, choose Edit. You must be signed in as
the root user for this section to be displayed on the account page.

c. Select the check box to Activate IAM Access and choose Update.

d. On the navigation bar, choose Services and then IAM to return to the IAM console.

19

https://webservices.amazon.com/paapi5/documentation/
https://webservices.amazon.com/paapi5/documentation/
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html

AWS Identity and Access Management User Guide
Creating an IAM user and user group (AWS CLI)

3. In the navigation pane, choose Users and then choose Add users.
4. On the Details page, do the following:

a. For User name, type Administrator.
b. Select the check box for AWS Management Console access, select Custom password, and then

type your new password in the text box.
c. By default, AWS forces the new user to create a new password when first signing in. You can

optionally clear the check box next to User must create a new password at next sign-in to
allow the new user to reset their password after they sign in.

d. Choose Next: Permissions.
5. On the Permissions page, do the following:

a. Choose Add user to group.
b. Choose Create group.
c. In the Create group dialog box, for Group name type Administrators.
d. Select the check box for the AdministratorAccess policy.
e. Choose Create group.
f. Back on the page with the list of user groups, select the check box for your new user group.

Choose Refresh if you don't see the new user group in the list.
g. Choose Next: Tags.

6. (Optional) On the Tags page, add metadata to the user by attaching tags as key-value pairs. For
more information, see Tagging IAM resources (p. 296).

7. Choose Next: Review. Verify the user group memberships to be added to the new user. When you
are ready to proceed, choose Create user.

8. (Optional) On the Complete page, you can download a .csv file with login information for the user,
or send email with login instructions to the user.

You can use this same process to create more user groups and users and to give your users access to
your AWS account resources. To learn about using policies that restrict user permissions to specific
AWS resources, see Access management for AWS resources (p. 380) and Example IAM identity-based
policies (p. 418). To add additional users to the user group after it's created, see Adding and removing
users in an IAM user group (p. 164).

Creating an IAM user and user group (AWS CLI)
If you followed the steps in the previous section, you used the AWS Management Console to set up an
administrators user group while creating the IAM user in your AWS account. This procedure shows an
alternative way to create a user group.

Overview: Setting up an administrators user group

1. Create a user group and give it a name (for example, Admins). For more information, see Creating a
user group (AWS CLI) (p. 20).

2. Attach a policy that gives the user group administrative permissions—access to all AWS actions and
resources. For more information, see Attaching a policy to the user group (AWS CLI) (p. 21).

3. Add at least one user to the user group. For more information, see Creating an IAM user in your AWS
account (p. 75).

Creating a user group (AWS CLI)
This section shows how to create a user group in the IAM system.

20

AWS Identity and Access Management User Guide
Creating an IAM user and user group (AWS CLI)

Requirements

Install the AWS Command Line Interface (AWS CLI). For more information, see Installing the AWS CLI in
the AWS Command Line Interface User Guide.

To create an administrators user group (AWS CLI)

1. Type the aws iam create-group command with the name you've chosen for the user group.
Optionally, you can include a path as part of the user group name. For more information about
paths, see Friendly names and paths (p. 713). The name can consist of letters, digits, and the
following characters: plus (+), equal (=), comma (,), period (.), at (@), underscore (_), and hyphen (-).
The name is not case sensitive and can be a maximum of 128 characters in length.

In this example, you create a user group named Admins.

aws iam create-group --group-name Admins
{
 "Group": {
 "Path": "/",
 "CreateDate": "2014-06-05T20:29:53.622Z",
 "GroupId":"ABCDEFGHABCDEFGHABCDE",
 "Arn": "arn:aws:iam::123456789012:group/Admins",
 "GroupName": "Admins"
 }
}

2. Type the aws iam list-groups command to list the user groups in your AWS account and
confirm the user group was created.

aws iam list-groups
{
 "Groups": [
 {
 "Path": "/",
 "CreateDate": "2014-06-05T20:29:53.622Z",
 "GroupId":"ABCDEFGHABCDEFGHABCDE",
 "Arn": "arn:aws:iam::123456789012:group/Admins",
 "GroupName": "Admins"
 }
]
}

The response includes the Amazon Resource Name (ARN) for your new user group. The ARN is a
standard format that AWS uses to identify resources. The 12-digit number in the ARN is your AWS
account ID. The friendly name you assigned to the user group (Admins) appears at the end of the
user group's ARN.

Attaching a policy to the user group (AWS CLI)
This section shows how to attach a policy that lets any user in the user group perform any action
on any resource in the AWS account. You do this by attaching the AWS managed policy (p. 389)
called AdministratorAccess to the Admins user group. For more information about policies, see Access
management for AWS resources (p. 380).

To add a policy giving full administrator permissions (AWS CLI)

1. Type the aws iam attach-group-policy command to attach the policy called
AdministratorAccess to your Admins user group. The command uses the ARN of the AWS managed
policy called AdministratorAccess.

21

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/reference/iam/create-group.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-groups.html
https://docs.aws.amazon.com/cli/latest/reference/iam/attach-group-policy.html

AWS Identity and Access Management User Guide
Related resources

aws iam attach-group-policy --group-name Admins --policy-arn arn:aws:iam::aws:policy/
AdministratorAccess

If the command is successful, there is no response.
2. Type the aws iam list-attached-group-policies command to confirm the policy is attached

to the Admins user group.

aws iam list-attached-group-policies --group-name Admins

The response lists the names of the policies attached to the Admins user group. A response like the
following tells you that the policy named AdministratorAccess has been attached to the Admins user
group:

{
 "AttachedPolicies": [
 {
 "PolicyName": "AdministratorAccess",
 "PolicyArn": "arn:aws:iam::aws:policy/AdministratorAccess"
 }
],
 "IsTruncated": false
}

You can confirm the contents of a particular policy with the aws iam get-policy command.

Important
After you have the administrators user group set up, you must add at least one user to it. For
more information about adding users to a user group, see Creating an IAM user in your AWS
account (p. 75).

Related resources
For related information found in the Amazon Web Services General Reference, see the following resources:

• AWS Tasks that Require Account Root User

For related information in the IAM User Guide, see the following resources:

• Refining permissions in AWS using last accessed information (p. 502)
• IAM tutorial: Delegate access to the billing console (p. 29)

Creating your first IAM delegated user and user
group

To support multiple users in your AWS account, you must delegate permission to allow other people to
perform only the actions you want to allow. To do this, create an IAM user group with the permissions
those people need and then add IAM users to the necessary user groups as you create them. You can use
this process to set up the user groups, users, and permissions for your entire AWS account.

This solution is best used by small and medium organizations where an AWS administrator can manually
manage the users and user groups. For large organizations, you can use custom IAM roles (p. 212),
federation (p. 177), or single sign-on.

22

https://docs.aws.amazon.com/cli/latest/reference/iam/list-attached-group-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-policy.html
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html

AWS Identity and Access Management User Guide
Creating a delegated IAM user and user group (console)

Creating a delegated IAM user and user group
(console)
You can use the AWS Management Console to create an IAM user group with delegated permissions.
Then create an IAM user for someone else and add it to the user group.

To create a delegated user group and user for someone else (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Policies.

If this is your first time choosing Policies, the Welcome to Managed Policies page appears. Choose
Get Started.

3. Choose Create policy.

4. Choose the JSON tab and on the right side of the window choose Import managed policy.

5. In the Import managed policies window, type power to reduce the list of policies. Then choose the
PowerUserAccess row.

6. Choose Import to display the policy in the JSON tab.

7. Choose Next: Tags and then Next: Review.

8. On the Review policy page, for Name, type PowerUserExampleCorp. For Description, type
Allows full access to all services except those for user management. Then
choose Create policy to save your work.

9. In the navigation pane, choose User groups and then choose Create group.

10. In the User group name box, type PowerUsers.

11. In the list of policies, select the check box next to PowerUserExampleCorp.

12. Choose Create group.

13. In the navigation pane, choose Users and then choose Add users.

14. For User name, type mary.major@examplecorp.com.

15. Choose Add another user and type diego.ramirez@examplecorp.com for the second user.

16. Select the check box next to AWS Management Console access and choose Autogenerated
password. By default, AWS forces the new user to create a new password when first signing in.
Select the check box next to User must create a new password at next sign-in.

17. Choose Next: Permissions.

18. On the Set permissions page, do not add permissions to the users. You will add a policy after the
user confirms that they have changed their password and signed in.

19. Choose Next: Tags.

20. (Optional) Add metadata to the user by attaching tags as key-value pairs. For more information
about using tags in IAM, see Tagging IAM resources (p. 296).

21. Choose Next: Review to see the list of user group memberships to be added to the new user. When
you are ready to proceed, choose Create users.

22. Download or copy the passwords for your new users and deliver them to the users securely.
Separately, provide your users with a link to your IAM user console page and their user names.

23. After your user confirms that they can successfully sign in, choose Users in the navigation pane, if
necessary. Then choose one of the user's names.

24. In the Permissions tab, choose Add permissions. Choose Add user to group, and then select the
check box next to PowerUsers.

23

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Reducing the user group permissions

25. Choose Next: Review and then Add permissions.

Reducing the user group permissions
Members of the PowerUser user group have full access to all services except a few that provide user
management actions (like IAM and Organizations). After a predefined period of inactivity (such as 90
days) has passed, you can review the services that your user group members have accessed. Then you
can reduce the permissions of the PowerUserExampleCorp policy to include only the services that your
team needs.

For more information about the last accessed information, see Refining permissions in AWS using last
accessed information (p. 502).

Reviewing last accessed information
Wait for a predefined period of inactivity (such as 90 days) to pass. Then review the last accessed
information for your users or user groups to learn when they last attempted to access the services that
your PowerUserExampleCorp policy allows.

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose User groups and then choose the PowerUser group name.
3. On the user group summary page, choose the Access Advisor tab.

The table of last accessed information shows when the user group members last attempted to
access each service, in chronological order from the most recent attempt. The table includes only the
services that the policy allows. In this case, the PowerUserExampleCorp policy allows access to all
AWS services.

4. Review the table and make a list of the services that your user group members have recently
accessed.

For example, assume that within the last month, your team has accessed only the Amazon EC2 and
Amazon S3 services. But six months ago, they accessed Amazon EC2 Auto Scaling and IAM. You
know that they were investigating EC2 Auto Scaling, but decided that it wasn't necessary. You also
know that they used IAM to create a role to allow Amazon EC2 to access data in an S3 bucket. So you
decide to scale back the user's permissions to allow access to only the Amazon EC2 and Amazon S3
services.

Editing a policy to reduce permissions
After you review your last accessed information, you can edit your policy to allow access to only the
services that your users need.

To use data to allow access to only necessary services

1. In the navigation pane, choose Policies and then choose the PowerUserExampleCorp policy name.
2. Choose Edit policy, and then choose the JSON tab.
3. Edit the JSON policy document to allow only the services you want.

For example, edit the first statement that includes the Allow effect and the NotAction element to
allow only Amazon EC2 and Amazon S3 actions. To do this, replace it with the statement with the
FullAccessToSomeServices ID. Your new policy will look like the following example policy.

{

24

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
How IAM users sign in

 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "FullAccessToSomeServices",
 "Effect": "Allow",
 "Action": [
 "ec2:*",
 "s3:*"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:CreateServiceLinkedRole",
 "iam:DeleteServiceLinkedRole",
 "iam:ListRoles",
 "organizations:DescribeOrganization"
],
 "Resource": "*"
 }
]
}

4. To support the best practice of granting least privilege (p. 559), review and correct any errors,
warnings, or suggestions returned during policy validation (p. 474).

5. To further reduce your policies' permissions to specific actions and resources, view your events in
CloudTrail Event history. There you can view detailed information about the specific actions and
resources that your user has accessed. For more information, see Viewing CloudTrail Events in the
CloudTrail Console in the AWS CloudTrail User Guide.

How IAM users sign in to your AWS account
After you create IAM users (with passwords), those users can sign in to the AWS Management Console.
To sign in, they need your account ID or alias. They can also sign in from a custom URL that includes your
account ID.

Note
If your company has an existing identity system, you might want to create a single sign-on (SSO)
option. SSO gives users access to the AWS Management Console without requiring them to have
an IAM user identity. SSO also eliminates the need for users to sign in to your organization's site
and to AWS separately. For more information, see Enabling custom identity broker access to the
AWS console (p. 212).

Before you create a sign-in URL for your account, you create an account alias so that the URL includes
your account name instead of an account ID. For more information, see Your AWS account ID and its
alias (p. 66).

You can find the sign-in URL for an account on the Dashboard page in the IAM console.

25

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events-console.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events-console.html

AWS Identity and Access Management User Guide
Permissions required for console activities

To create a sign-in URL for your IAM users, use the following pattern:

https://account-ID-or-alias.signin.aws.amazon.com/console

IAM users can also sign in at the following endpoint and enter the account ID or alias manually, instead
of using your custom URL:

https://signin.aws.amazon.com/console

Permissions required for console activities
IAM users in your account have access only to the AWS resources that you specify in a policy. That policy
must be attached to the user or to an IAM group that the user belongs to. To work in the console, users
must have permissions to perform the actions that the console performs, such as listing and creating
AWS resources. For more information, see Access management for AWS resources (p. 380) and Example
IAM identity-based policies (p. 418).

If users in your account need programmatic access, you can create an access key pair (an access
key ID and a secret access key) for each user. For more information, see Managing access keys
(console) (p. 103).

Logging sign-in details in CloudTrail
If you enable CloudTrail to log sign-in events, you must understand how CloudTrail logs the events.
CloudTrail includes global and Regions log entries. Where a sign-in event is logged in CloudTrail depends
on how your users sign in. For details, see Logging IAM Events with CloudTrail.

IAM console search
As you navigate through the IAM Management Console to manage various IAM resources, you often need
to locate access keys. Or you might need to browse to the deeply nested IAM resources to find what you
need. A faster option is to use the IAM console search page. You can locate access keys related to your
account, IAM entities (such as users, groups, roles, identity providers), policies by name, and more.

The IAM console search feature can locate any of the following:

• IAM entity names that match your search keywords (for users, groups, roles, identity providers, and
policies)

26

https://docs.aws.amazon.com/IAM/latest/UserGuide/cloudtrail-integration.html

AWS Identity and Access Management User Guide
Using IAM console search

• AWS documentation topic names that match your search keywords

• Tasks that match your search keywords

The IAM console search feature does not return information about IAM Access Analyzer.

Every line in the search result is an active link. For example, you can choose the user name in the search
result, which takes you to that user's detail page. Or you can choose an action link, for example Create
user, to go to the Create User page.

Note
Access key search requires you to type the full access key ID in the search box. The search result
shows the user associated with that key. From there you can navigate directly to that user's
page, where you can manage their access key.

Using IAM console search
Use the Search page in the IAM console to find items related to that account.

To search for items in the IAM console

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Search.

3. In the Search box, type your search keywords.

4. Choose a link in the search results list to navigate to the corresponding part of the console or
documentation.

Icons in the IAM console search results
The following icons identify the types of items that are found by a search:

Icon Description

IAM users

IAM groups

IAM roles

IAM policies

Tasks such as "create user" or "attach policy"

Results from the keyword delete

27

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Sample search phrases

Icon Description

IAM documentation

Sample search phrases
You can use the following phrases in the IAM search. Replace terms in italics with the names of actual
IAM users, groups, roles, access keys, policies, or identity providers respectively that you want to locate.

• user_name or group_name or role_name or policy_name or identity_provider_name
• access_key

• add user user_name to groups or add users to group group_name
• remove user user_name from groups

• delete user_name or delete group_name or delete role_name, or delete policy_name, or
delete identity_provider_name

• manage access keys user_name

• manage signing certificates user_name

• users

• manage MFA for user_name

• manage password for user_name

• create role

• password policy

• edit trust policy for role role_name

• show policy document for role role_name

• attach policy to role_name

• create managed policy

• create user

• create group

• attach policy to group_name

• attach entities to policy_name

• detach entities to policy_name

• what is IAM

• how do I create an IAM user

• how do I use IAM console

• what is a user or what is a group, or what is a policy, or what is a role, or what is
an identity provider

28

AWS Identity and Access Management User Guide
Delegate access to the billing console

IAM tutorials
The following tutorials present complete end-to-end procedures for common tasks for AWS Identity and
Access Management (IAM). They are intended for a lab-type environment, with fictitious company names,
user names, and so on. Their purpose is to provide general guidance. They are not intended for direct use
in a production environment without careful review and adaptation to meet the unique needs of your
organization's environment.

Tutorials

• IAM tutorial: Delegate access to the billing console (p. 29)

• IAM tutorial: Delegate access across AWS accounts using IAM roles (p. 33)

• IAM tutorial: Create and attach your first customer managed policy (p. 42)

• IAM tutorial: Define permissions to access AWS resources based on tags (p. 44)

• IAM tutorial: Permit users to manage their credentials and MFA settings (p. 59)

IAM tutorial: Delegate access to the billing console
AWS account owners can delegate access to specific IAM users who need to view or manage the AWS
Billing and Cost Management data for an AWS account. The instructions that follow will help you set up
a pretested scenario. This scenario helps you gain hands-on experience configuring billing permissions
without concern for affecting your main AWS production account. If you attach a managed policy to your
IAM users instead of following this tutorial, you must first activate access to the AWS Billing and Cost
Management console in Step 1 (p. 30).

This workflow has four basic steps.

Step 1: Activate access to billing data on your AWS test account (p. 30)

If you create a single AWS account, only the AWS account owner (AWS account root user (p. 362))
has access to view and manage billing information. IAM users cannot access billing data until the
account owner activates IAM access and also attaches policies that provide billing actions to the
user or role. To view additional tasks that require you to sign in as the root user, see AWS Tasks that
Require Account Root User.

If you create a member account using AWS Organizations, this feature is enabled by default.

Step 2: Create IAM policies that grant permissions to billing data (p. 30)

After enabling billing access on your account, you must still explicitly grant access to billing data to
specific IAM users or user groups. You grant this access with a customer managed policy.

Step 3: Attach billing policies to your user groups (p. 31)

When you attach a policy to a user group, all members of that user group receive the complete set
of access permissions that are associated with that policy. In this scenario, you attach the new billing
policies to user groups containing only those users who require the billing access.

Step 4: Test access to the billing console (p. 32)

After you've completed the core tasks, you're ready to test the policy. Testing ensures that the policy
works the way you want it to.

29

https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://docs.aws.amazon.com/cli/latest/reference/organizations/create-account.html

AWS Identity and Access Management User Guide
Prerequisites

Prerequisites
Create a test AWS account to use with this tutorial. In this account create two test users and two test user
groups as summarized in the following table. Be sure to assign a password to each user so that you can
sign in later in Step 4.

Create user accounts Create and configure user group accounts

FinanceManager BillingFullAccessGroup FinanceManager

FinanceUser BillingViewAccessGroup FinanceUser

Step 1: Activate access to billing data on your AWS
test account
First, activate billing access for your test users in the AWS Billing and Cost Management console.

Note
If you create a member account using AWS Organizations, this feature is enabled by default.

To activate IAM user and role access to the Billing and Cost Management console

1. Sign in to the AWS Management Console with your root account credentials (specifically, the email
address and password that you used to create your AWS account).

2. On the navigation bar, choose your account name, and then choose My Account.

3. Next to IAM User and Role Access to Billing Information, choose Edit.

4. Select the Activate IAM Access check box to activate access to the Billing and Cost Management
console pages.

5. Choose Update.

You can now use IAM policies to control which pages a user can access.

After you have activated IAM user access, you can attach IAM policies to grant or deny access to specific
billing features. For more information about using policies to grant IAM users access to AWS Billing and
Cost Management Management features, see Using identity-based policies (IAM policies) for Billing and
Cost Management Management in the AWS Billing and Cost Management User Guide.

Step 2: Create IAM policies that grant permissions to
billing data
Next, create custom policies that grant both view and full access permissions to the pages within the
Billing and Cost Management console. For general information about IAM permissions policies, see
Managed Policies and Inline Policies (p. 389).

To create IAM policies that grant permissions to billing data

1. Sign in to the AWS Management Console as a user with administrator credentials. To adhere to
IAM best practices, don't sign in with your root user credentials. For more information, see Create
individual IAM users (p. 558).

30

https://docs.aws.amazon.com/cli/latest/reference/organizations/create-account.html
https://console.aws.amazon.com/billing/home#/account
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-permissions-ref.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-permissions-ref.html

AWS Identity and Access Management User Guide
Step 3: Attach billing policies to your user groups

2. Open the IAM console at https://console.aws.amazon.com/iam/.
3. In the navigation pane, choose Policies, and then choose Create policy.
4. On the Visual editor tab, choose Choose a service to get started. Then choose Billing.
5. Follow these steps to create two policies:

Full access

a. Choose Select actions and then select the check box next to All Billing actions (aws-portal:*).
You do not need to select a resource or condition for this policy.

b. Choose Review policy.
c. On the Review page, next to Name, type BillingFullAccess, and then choose Create policy

to save it.

Read-only access

a. Repeat steps 3 and 4 (p. 31).
b. Choose Select actions and then select the check box next to Read. You do not need to select a

resource or condition for this policy.
c. Choose Review policy.
d. On the Review page, for Name, type BillingViewAccess. Then choose Create policy to save it.

To review descriptions for each of the permissions available in IAM policies that grant users access to
the Billing and Cost Management console, see Billing Permissions Descriptions.

Step 3: Attach billing policies to your user groups
Now that you have custom billing policies available, you can attach them to their corresponding
user groups that you created earlier. Although you can attach a policy directly to a user or role, we
recommend (in accordance with IAM best practices) that you use user groups instead. For more
information, see Use user groups to assign permissions to IAM users (p. 559).

To attach billing policies to your user groups

1. In the navigation pane, choose Policies to display the full list of policies available to your AWS
account. To attach each policy to its appropriate user group, follow these steps:

Full access

a. In the policy search box, type BillingFullAccess, and then select the check box next to the
policy name.

b. Choose Actions, and then choose Attach.
c. In the identity (user, user group, and role) search box, type BillingFullAccessGroup, select

the check box next to the name of the user group, and then choose Attach policy.

Read-only access

a. In the policy search box, type BillingViewAccess, and then select the check box next to the
policy name.

b. Choose Actions, and then choose Attach.
c. In the identity (user, user group, and role) search box, type BillingViewAccessGroup, select

the check box next to the name of the user group, and then choose Attach policy.
2. Sign out of the console, and then proceed to Step 4: Test access to the billing console (p. 32).

31

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-permissions-ref.html#user-permissions

AWS Identity and Access Management User Guide
Step 4: Test access to the billing console

Step 4: Test access to the billing console
We recommend that you test access by signing in as each of the test users to learn what your users might
experience. Use the following steps to sign in using both test accounts to see the difference between
access rights.

To test billing access by signing in with both test user accounts

1. Use your AWS account ID or account alias, your IAM user name, and your password to sign in to the
IAM console.

Note
For your convenience, the AWS sign-in page uses a browser cookie to remember your IAM
user name and account information. If you previously signed in as a different user, choose
Sign in to a different account near the bottom of the page to return to the main sign-in
page. From there, you can type your AWS account ID or account alias to be redirected to the
IAM user sign-in page for your account.

2. Sign in with each account using the steps provided below so you can compare the different user
experiences.

Full access

a. Sign in to your AWS account as the user FinanceManager.
b. On the navigation bar, choose FinanceManager@<account alias or ID number> , and then

choose My Billing Dashboard.
c. Browse through the pages and choose the various buttons to ensure that you have full modify

permissions.

Read-only access

a. Sign in to your AWS account as the user FinanceUser.
b. On the navigation bar, choose FinanceUser@<account alias or ID number>, and then

choose My Billing Dashboard.
c. Browse through the pages. Notice that you can display costs, reports, and billing data with no

problems. However, if you choose an option to modify a value, you receive an Access Denied
message. For example, on the Preferences page, choose any of the check boxes on the page, and
then choose Save preferences. The console message informs you that you need ModifyBilling
permissions to make changes to that page.

Related resources
For related information found in the AWS Billing and Cost Management User Guide, see the following
resources:

• Activating Access to the Billing and Cost Management Console
• Example 4: Allow full access to AWS services but deny IAM users access to the Billing and Cost

Management console.
• Billing Permissions Descriptions

For related information in the IAM User Guide, see the following resources:

• Managed policies and inline policies (p. 389)
• Controlling user access to the AWS Management Console (p. 80)

32

https://console.aws.amazon.com/iam
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/grantaccess.html#ControllingAccessWebsite-Activate
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-permissions-ref.html#ExampleAllowAllDenyBilling
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-permissions-ref.html#ExampleAllowAllDenyBilling
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-permissions-ref.html#user-permissions

AWS Identity and Access Management User Guide
Summary

• Attaching a policy to an IAM user group (p. 165)

Summary
You've now successfully completed all of the steps necessary to delegate user access to the Billing and
Cost Management console. As a result, you've seen firsthand what your users billing console experience
will be like. You can now proceed to implement this logic in your production environment at your
convenience.

IAM tutorial: Delegate access across AWS accounts
using IAM roles

This tutorial teaches you how to use a role to delegate access to resources that are in different AWS
accounts that you own (Production and Development). You share resources in one account with users in a
different account. By setting up cross-account access in this way, you don't need to create individual IAM
users in each account. In addition, users don't have to sign out of one account and sign into another in
order to access resources in different AWS accounts. After configuring the role, you see how to use the
role from the AWS Management Console, the AWS CLI, and the API.

Note
IAM roles and resource-based policies delegate access across accounts only within a single
partition. For example, assume that you have an account in US West (N. California) in the
standard aws partition. You also have an account in China (Beijing) in the aws-cn partition. You
can't use an Amazon S3 resource-based policy in your account in China (Beijing) to allow access
for users in your standard aws account.

In this tutorial, imagine that the Production account is where live applications are managed. The
Development account is a sandbox where developers and testers can freely test applications. In
each account, application information is stored in Amazon S3 buckets. You manage IAM users in the
Development account, where you have two IAM user groups: Developers and Testers. Users in both user
groups have permissions to work in the Development account and access resources there. From time to
time, a developer must update the live applications in the Production account. These applications are
stored in an Amazon S3 bucket called productionapp.

At the end of this tutorial, you have the following:

• Users in the Development account (the trusted account) that are allowed to assume a specific role in
the Production account.

• A role in the Production account (the trusting account) that is allowed to access a specific Amazon S3
bucket.

• The productionapp bucket in the Production account.

Developers can use the role in the AWS Management Console to access the productionapp bucket
in the Production account. They can also access the bucket by using API calls that are authenticated by
temporary credentials provided by the role. Similar attempts by a Tester to use the role fail.

This workflow has three basic steps.

33

AWS Identity and Access Management User Guide
Prerequisites

Step 1: Create a role (p. 34)

First, you use the AWS Management Console to establish trust between the Production account
(ID number 999999999999) and the Development account (ID number 111111111111). You start
by creating an IAM role named UpdateApp. When you create the role, you define the Development
account as a trusted entity and specify a permissions policy that allows trusted users to update the
productionapp bucket.

Step 2: Grant access to the role (p. 37)

In this step of the tutorial, you modify the IAM user group policy so that Testers are denied access to
the UpdateApp role. Because Testers have PowerUser access in this scenario, we must explicitly deny
the ability to use the role.

Step 3: Test access by switching roles (p. 38)

Finally, as a Developer, you use the UpdateApp role to update the productionapp bucket in the
Production account. You see how to access the role through the AWS console, the AWS CLI, and the
API.

Prerequisites
This tutorial assumes that you have the following already in place:

• Two separate AWS accounts that you can use, one to represent the Development account, and one to
represent the Production account.

• Users and user groups in the Development account created and configured as follows:

User User group Permissions

David Developers

Theresa Testers

Both users are able to sign in and use the AWS
Management Console in the Development account.

• You do not need to have any users or user groups created in the Production account.
• An Amazon S3 bucket created in the Production account. We call it ProductionApp in this tutorial,

but because S3 bucket names must be globally unique, you must use a bucket with a different name.

Step 1: Create a role
You can allow users from one AWS account to access resources in another AWS account. To do this, create
a role that defines who can access it and what permissions it grants to users that switch to it.

In this step of the tutorial, you create the role in the Production account and specify the Development
account as a trusted entity. You also limit the role's permissions to only read and write access to the
productionapp bucket. Anyone who is granted permission to use the role can read and write to the
productionapp bucket.

34

AWS Identity and Access Management User Guide
Step 1: Create a role

Before you can create a role, you need the account ID of the Development AWS account. The account ID
is a unique identifier assigned to each AWS account.

To obtain the development AWS account ID

1. Sign in to the AWS Management Console as an administrator of the Development account, and open
the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation bar, choose Support, and then Support Center. Your currently signed-in 12-digit
account number (ID) appears in the Support Center navigation pane. For this scenario, we pretend
the Development account ID is 111111111111. However, you should use a valid account ID if you are
reconstructing the scenario in your test environment.

To create a role in the production account that can be used by the development account

1. Sign in to the AWS Management Console as an administrator of the Production account, and open
the IAM console.

2. Before creating the role, prepare the managed policy that defines the permissions that the role
requires. You attach this policy to the role in a later step.

You want to set read and write access to the productionapp bucket. Although AWS provides some
Amazon S3 managed policies, there isn't one that provides read and write access to a single Amazon
S3 bucket. You can create your own policy instead.

In the navigation pane on the left, choose Policies and then choose Create policy.

3. Choose the JSON tab and copy the text from the following JSON policy document. Paste this text
into the JSON text box, replacing the resource ARN (arn:aws:s3:::productionapp) with the real
one appropriate to your S3 bucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:ListAllMyBuckets",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:GetBucketLocation"
],
 "Resource": "arn:aws:s3:::productionapp"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject"
],
 "Resource": "arn:aws:s3:::productionapp/*"
 }
]
}

The ListBucket permission allows users to view objects in the productionapp bucket. The
GetObject, PutObject, DeleteObject permissions allows users to view, update, and delete
contents in the productionapp bucket.

35

https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Step 1: Create a role

4. Resolve any security warnings, errors, or general warnings generated during policy
validation (p. 474), and then choose Review policy.

Note
You can switch between the Visual editor and JSON tabs anytime. However, if you make
changes or choose Review policy in the Visual editor tab, IAM might restructure your policy
to optimize it for the visual editor. For more information, see Policy restructuring (p. 684).

5. On the Review page, type read-write-app-bucket for the policy name. Review the policy
Summary to see the permissions granted by your policy, and then choose Create policy to save your
work.

The new policy appears in the list of managed policies.

6. In the navigation pane on the left, choose Roles and then choose Create role.

7. Choose the Another AWS account role type.

8. For Account ID, type the Development account ID.

This tutorial uses the example account ID 111111111111 for the Development account. You should
use a valid account ID. If you use an invalid account ID, such as 111111111111, IAM does not let you
create the new role.

For now you do not need to require an external ID, or require users to have multi-factor
authentication (MFA) in order to assume the role. So leave these options unselected. For more
information, see Using multi-factor authentication (MFA) in AWS (p. 110).

9. Choose Next: Permissions to set the permissions that will be associated with the role.

10. Select the box next to the policy that you created previously.

Tip
For Filter, choose Customer managed to filter the list to include only the policies that you
have created. This hides the AWS created policies and makes it much easier to find the one
you're looking for.

Then choose Next: Tags.

11. (Optional) Add metadata to the user by attaching tags as key-value pairs. For more information
about using tags in IAM, see Tagging IAM resources (p. 296).

12. Choose Next: Review and type UpdateApp for the role name.

13. (Optional) For Role description, type a description for the new role.

14. After reviewing the role, choose Create role.

The UpdateApp role appears in the list of roles.

Now you must obtain the role's Amazon Resource Name (ARN), which is a unique identifier for the role.
When you modify the Developers and Testers user group's policy, you will specify the role's ARN to grant
or deny permissions.

To obtain the ARN for UpdateApp

1. In the navigation pane of the IAM console, choose Roles.

2. In the list of roles, choose the UpdateApp role.

3. In the Summary section of the details pane, copy the Role ARN value.

The Production account has an account ID of 999999999999, so the role ARN is
arn:aws:iam::999999999999:role/UpdateApp. Ensure that you supply the real AWS account
ID for your 'production' account.

36

AWS Identity and Access Management User Guide
Step 2: Grant access to the role

At this point, you have established trust between the Production and Development accounts. You did
this by creating a role in the Production account that identifies the Development account as a trusted
principal. You also defined what users who switch to the UpdateApp role can do.

Next, modify the permissions for the user groups.

Step 2: Grant access to the role
At this point, both Testers and Developers user group members have permissions that allow them
to freely test applications in the Development account. Here are the steps that are required to add
permissions to allow switching to the role.

To modify the Developers user group to allow them to switch to the UpdateApp role

1. Sign in as an administrator in the Development account, and open the IAM console.

2. Choose User groups, and then choose Developers.

3. Choose the Permissions tab, choose Add permissions, and then choose Create inline policy.

4. Choose the JSON tab.

5. Add the following policy statement to allow the AssumeRole action on the UpdateApp role in the
Production account. Be sure that you change PRODUCTION-ACCOUNT-ID in the Resource element
to the actual AWS account ID of the Production account.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::PRODUCTION-ACCOUNT-ID:role/UpdateApp"
 }
}

The Allow effect explicitly allows the Developers group access to the UpdateApp role in the
Production account. Any developer who tries to access the role will succeed.

6. Choose Review policy.

7. Type a Policy name like allow-assume-S3-role-in-production.

8. (Optional) For Description, type a description for the policy.

9. Choose Create policy.

In most environments, the following procedure is likely not needed. If, however, you use
PowerUserAccess permissions, then some groups might already be able to switch roles. The following
procedure shows how to add a "Deny" permission to the Testers group to ensure that they cannot
assume the role. If this procedure is not needed in your environment, then we recommend that you do
not add it. "Deny" permissions make the overall permissions picture more complicated to manage and
understand. Use "Deny" permissions only when there is not a better option.

To modify the testers user group to deny permission to assume the UpdateApp role

1. Choose User groups, and then choose Testers.

2. Choose the Permissions tab, choose Add permissions, and then choose Create inline policy.

3. Choose the JSON tab.

4. Add the following policy statement to deny the AssumeRole action on the UpdateApp role. Be sure
that you change PRODUCTION-ACCOUNT-ID in the Resource element to the actual AWS account ID
of the Production account.

37

AWS Identity and Access Management User Guide
Step 3: Test access by switching roles

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Deny",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::PRODUCTION-ACCOUNT-ID:role/UpdateApp"
 }
}

The Deny effect explicitly denies the Testers group access to the UpdateApp role in the Production
account. Any tester who tries to access the role will get an access denied message.

5. Choose Review policy.

6. Type a Policy name like deny-assume-S3-role-in-production.

7. Choose Create policy.

The Developers user group now has permissions to use the UpdateApp role in the Production account.
The Testers user group is prevented from using the UpdateApp role.

Next, you'll learn how David, a developer, can access the productionapp bucket in the Production
account. David can access the bucket from the AWS Management Console, the AWS CLI, or the AWS API.

Step 3: Test access by switching roles
After completing the first two steps of this tutorial, you have a role that grants access to a resource in the
Production account. You also have one user group in the Development account whose users are allowed
to use that role. The role is now ready to use. This step discusses how to test switching to that role from
the AWS Management Console, the AWS CLI, and the AWS API.

Important
You can switch to a role only when you are signed in as an IAM user or a federated user.
Additionally, if you launch an Amazon EC2 instance to run an application, the application can
assume a role through its instance profile. You cannot switch to a role when you are signed in as
the AWS account root user.

Switch roles (console)

If David needs to work with in the Production environment in the AWS Management Console, he can
do so by using Switch Role. He specifies the account ID or alias and the role name, and his permissions
immediately switch to those permitted by the role. He can then use the console to work with the
productionapp bucket, but cannot work with any other resources in Production. While David is using
the role, he also cannot make use of his power-user privileges in the Development account. That's
because only one set of permissions can be in effect at a time.

Important
Switching roles using the AWS Management Console works only with accounts that do not
require an ExternalId. For example, assume that you grant access to your account to a third
party and require an ExternalId in a Condition element in your permissions policy. In that
case, the third party can access your account only by using the AWS API or a command line tool.
The third party cannot use the console because it cannot supply a value for ExternalId. For
more information about this scenario, see How to use an external ID when granting access to
your AWS resources to a third party (p. 231), and How to Enable Cross-Account Access to the
AWS Management Console in the AWS Security Blog.

There are two ways that David can use to enter the Switch Role page:

38

http://aws.amazon.com/blogs/security/how-to-enable-cross-account-access-to-the-aws-management-console
http://aws.amazon.com/blogs/security/how-to-enable-cross-account-access-to-the-aws-management-console

AWS Identity and Access Management User Guide
Step 3: Test access by switching roles

• David receives a link from his administrator that points to a pre-defined Switch Role configuration.
The link is provided to the administrator on the final page of the Create role wizard or on the Role
Summary page for a cross-account role. Choosing this link takes David to the Switch Role page with
the Account ID and Role name fields already filled in. All David needs to do is choose Switch Role and
he's done.

• The administrator does not send the link in email, but instead sends the Account ID number and
Role Name values. David must manually type them to switch roles. This is illustrated in the following
procedure.

To assume a role

1. David signs into the AWS Management Console using his normal user that is in the Development
user group.

2. He chooses the link that his administrator sent to him in email. This takes him to the Switch Role
page with the account ID or alias and the role name information already filled in.

—or—

He chooses his name (the Identity menu) on the navigation bar, and then chooses Switch Role.

If this is the first time that David tries to access the Switch Role page this way, he will first land on
a first-run Switch Role page. This page provides additional information on how switching roles can
permit users to manage resources across AWS accounts. David must choose the Switch Role button
on this page to complete the rest of this procedure.

3. Next, in order to access the role, David must manually type the Production account ID number
(999999999999) and the role name (UpdateApp).

Also, David wants to monitor which roles (and associated permissions) are currently active. To keep
track of this information, he types PRODUCTION in the Display Name text box, chooses the red color
option, and then chooses Switch Role.

4. David can now use the Amazon S3 console to work with the Amazon S3 bucket, or any other
resource to which the UpdateApp role has permissions.

5. When he is done with the work he needs to do, David can return to his original permissions. To do
that, he chooses the PRODUCTION role display name on the navigation bar and then chooses Back
to David @ 111111111111.

6. The next time that David wants to switch roles and chooses the Identity menu in the navigation bar,
he sees the PRODUCTION entry still there from last time. He can simply choose that entry to switch
roles immediately without having to reenter the account ID and role name.

Switch roles (AWS CLI)
If David needs to work in the Production environment at the command line, he can do so by using the
AWS CLI. He runs the aws sts assume-role command and passes the role ARN to get temporary
security credentials for that role. He then configures those credentials in environment variables so
subsequent AWS CLI commands work using the role's permissions. While David is using the role, he
cannot use his power-user privileges in the Development account. The reason is that only one set of
permissions can be in effect at a time.

Note that all access keys and tokens are examples only and cannot be used as shown. Replace with the
appropriate values from your live environment.

To assume a role

1. David opens a command prompt window, and confirms that the AWS CLI client is working by
running the command:

39

http://aws.amazon.com/cli/

AWS Identity and Access Management User Guide
Step 3: Test access by switching roles

aws help

Note
David's default environment uses the David user credentials from his default profile that
he created with the aws configure command. For more information, see Configuring the
AWS Command Line Interface in the AWS Command Line Interface User Guide.

2. He begins the switch role process by running the following command to switch to the UpdateApp
role in the Production account. He got the role ARN from the administrator that created the role.
The command requires that you provide a session name as well, you can choose any text you like for
that.

aws sts assume-role --role-arn "arn:aws:iam::999999999999:role/UpdateApp" --role-
session-name "David-ProdUpdate"

David then sees the following in the output:

{
 "Credentials": {
 "SecretAccessKey": "wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY",
 "SessionToken": "AQoDYXdzEGcaEXAMPLE2gsYULo
+Im5ZEXAMPLEeYjs1M2FUIgIJx9tQqNMBEXAMPLE
CvSRyh0FW7jEXAMPLEW+vE/7s1HRpXviG7b+qYf4nD00EXAMPLEmj4wxS04L/
uZEXAMPLECihzFB5lTYLto9dyBgSDy
EXAMPLE9/
g7QRUhZp4bqbEXAMPLENwGPyOj59pFA4lNKCIkVgkREXAMPLEjlzxQ7y52gekeVEXAMPLEDiB9ST3Uuysg
sKdEXAMPLE1TVastU1A0SKFEXAMPLEiywCC/Cs8EXAMPLEpZgOs+6hz4AP4KEXAMPLERbASP
+4eZScEXAMPLEsnf87e
NhyDHq6ikBQ==",
 "Expiration": "2014-12-11T23:08:07Z",
 "AccessKeyId": "AKIAIOSFODNN7EXAMPLE"
 }
}

3. David sees the three pieces that he needs in the Credentials section of the output.

• AccessKeyId

• SecretAccessKey

• SessionToken

David needs to configure the AWS CLI environment to use these parameters in subsequent calls.
For information about the various ways to configure your credentials, see Configuring the AWS
Command Line Interface. You cannot use the aws configure command because it does not
support capturing the session token. However, you can manually type the information into a
configuration file. Because these are temporary credentials with a relatively short expiration time, it
is easiest to add them to the environment of your current command line session.

4. To add the three values to the environment, David cuts and pastes the output of the previous step
into the following commands. You might want to cut and paste into a simple text editor to address
line wrap issues in the output of the session token. It must be added as a single long string, even
though it is shown line wrapped here for clarity.

Note
The following example shows commands given in the Windows environment, where "set"
is the command to create an environment variable. On a Linux or macOS computer, you
would use the command "export" instead. All other parts of the example are valid in all
three environments.

40

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-quick-configuration
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-quick-configuration
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#config-settings-and-precedence
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#config-settings-and-precedence

AWS Identity and Access Management User Guide
Related resources

set AWS_ACCESS_KEY_ID=AKIAIOSFODNN7EXAMPLE
set AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
set AWS_SESSION_TOKEN=AQoDYXdzEGcaEXAMPLE2gsYULo
+Im5ZEXAMPLEeYjs1M2FUIgIJx9tQqNMBEXAMPLECvS
Ryh0FW7jEXAMPLEW+vE/7s1HRpXviG7b+qYf4nD00EXAMPLEmj4wxS04L/
uZEXAMPLECihzFB5lTYLto9dyBgSDyEXA
MPLEKEY9/
g7QRUhZp4bqbEXAMPLENwGPyOj59pFA4lNKCIkVgkREXAMPLEjlzxQ7y52gekeVEXAMPLEDiB9ST3UusKd
EXAMPLE1TVastU1A0SKFEXAMPLEiywCC/Cs8EXAMPLEpZgOs+6hz4AP4KEXAMPLERbASP
+4eZScEXAMPLENhykxiHen
DHq6ikBQ==

At this point, any following commands run under the permissions of the role identified by those
credentials. In David's case, the UpdateApp role.

5. Run the command to access the resources in the Production account. In this example, David simply
lists the contents of his S3 bucket with the following command.

aws s3 ls s3://productionapp

Because Amazon S3 bucket names are universally unique, there is no need to specify the account
ID that owns the bucket. To access resources for other AWS services, refer to the AWS CLI
documentation for that service for the commands and syntax that are required to reference its
resources.

Using AssumeRole (AWS API)
When David needs to make an update to the Production account from code, he makes an AssumeRole
call to assume the UpdateApp role. The call returns temporary credentials that he can use to access the
productionapp bucket in the Production account. With those credentials, David can make API calls to
update the productionapp bucket. However, he cannot make API calls to access any other resources in
the Production account, even though he has power-user permissions in the Development account.

To assume a role

1. David calls AssumeRole as part of an application. He must specify the UpdateApp ARN:
arn:aws:iam::999999999999:role/UpdateApp.

The response from the AssumeRole call includes the temporary credentials with an AccessKeyId
and a SecretAccessKey. It also includes an Expiration time that indicates when the credentials
expire and you must request new ones.

2. With the temporary credentials, David makes an s3:PutObject call to update the productionapp
bucket. He would pass the credentials to the API call as the AuthParams parameter. Because the
temporary role credentials have only read and write access to the productionapp bucket, any
other actions in the Production account are denied.

For a code example (using Python), see Switching to an IAM role (AWS API) (p. 268).

Related resources
• For more information about IAM users and user groups, see IAM Identities (users, user groups, and

roles) (p. 71).

• For more information about Amazon S3 buckets, see Create a Bucket in the Amazon Simple Storage
Service Getting Started Guide.

41

https://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html

AWS Identity and Access Management User Guide
Summary

• To learn whether principals in accounts outside of your zone of trust (trusted organization or account)
have access to assume your roles, see What is IAM Access Analyzer?.

Summary
You have completed the cross-account API access tutorial. You created a role to establish trust with
another account and defined what actions trusted entities can take. Then, you modified a user group
policy to control which IAM users can access the role. As a result, developers from the Development
account can make updates to the productionapp bucket in the Production account by using temporary
credentials.

IAM tutorial: Create and attach your first customer
managed policy

In this tutorial, you use the AWS Management Console to create a customer managed policy (p. 391)
and then attach that policy to an IAM user in your AWS account. The policy you create allows an IAM test
user to sign in directly to the AWS Management Console with read-only permissions.

This workflow has three basic steps:

Step 1: Create the policy (p. 42)

By default, IAM users do not have permissions to do anything. They cannot access the AWS
Management Console or manage the data within unless you allow it. In this step, you create a
customer managed policy that allows any attached user to sign in to the console.

Step 2: Attach the policy (p. 43)

When you attach a policy to a user, the user inherits all of the access permissions that are associated
with that policy. In this step, you attach the new policy to a test user account.

Step 3: Test user access (p. 44)

Once the policy is attached, you can sign in as the user and test the policy.

Prerequisites
To perform the steps in this tutorial, you need to already have the following:

• An AWS account that you can sign in to as an IAM user with administrative permissions.

• A test IAM user that has no permissions assigned or group memberships as follows:

User name Group Permissions

PolicyUser <none> <none>

Step 1: Create the policy
In this step, you create a customer managed policy that allows any attached user to sign in to the AWS
Management Console with read-only access to IAM data.

42

https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html

AWS Identity and Access Management User Guide
Step 2: Attach the policy

To create the policy for your test user

1. Sign in to the IAM console at https://console.aws.amazon.com/iam/ with your user that has
administrator permissions.

2. In the navigation pane, choose Policies.

3. In the content pane, choose Create policy.

4. Choose the JSON tab and copy the text from the following JSON policy document. Paste this text
into the JSON text box.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "iam:GenerateCredentialReport",
 "iam:Get*",
 "iam:List*"
],
 "Resource": "*"
 }]
}

5. Resolve any security warnings, errors, or general warnings generated during policy
validation (p. 474), and then choose Review policy.

Note
You can switch between the Visual editor and JSON tabs anytime. However, if you make
changes or choose Review policy in the Visual editor tab, IAM might restructure your policy
to optimize it for the visual editor. For more information, see Policy restructuring (p. 684).

6. On the Review page, type UsersReadOnlyAccessToIAMConsole for the policy name. Review the
policy Summary to see the permissions granted by your policy, and then choose Create policy to
save your work.

The new policy appears in the list of managed policies and is ready to attach.

Step 2: Attach the policy
Next you attach the policy you just created to your test IAM user.

To attach the policy to your test user

1. In the IAM console, in the navigation pane, choose Policies.

2. At the top of the policy list, in the search box, start typing UsersReadOnlyAccesstoIAMConsole
until you can see your policy. Then check the box next to UsersReadOnlyAccessToIAMConsole in the
list.

3. Choose the Actions button, and then chose Attach.

4. For Filter, choose Users.

5. In the search box, start typing PolicyUser until that user is visible on the list. Then check the box
next to that user in the list.

6. Choose Attach Policy.

You have attached the policy to your IAM test user, which means that user now has read-only access to
the IAM console.

43

https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Step 3: Test user access

Step 3: Test user access
For this tutorial, we recommend that you test access by signing in as the test user so you can see what
your users might experience.

To test access by signing in with your test user account

1. Sign in to the IAM console at https://console.aws.amazon.com/iam/ with your PolicyUser test
user.

2. Browse through the pages of the console and try to create a new user or group. Notice that
PolicyUser can display data but cannot create or modify existing IAM data.

Related resources
For related information in the IAM User Guide, see the following resources:

• Managed policies and inline policies (p. 389)

• Controlling user access to the AWS Management Console (p. 80)

• Create individual IAM users (p. 558)

Summary
You've now successfully completed all of the steps necessary to create and attach a customer managed
policy. As a result, you are able to sign in to the IAM console with your test account to see what the
experience is like for your users.

IAM tutorial: Define permissions to access AWS
resources based on tags

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based on
attributes. In AWS, these attributes are called tags. You can attach tags to IAM resources, including IAM
entities (users or roles) and to AWS resources. You can define policies that use tag condition keys to
grant permissions to your principals based on their tags. When you use tags to control access to your
AWS resources, you allow your teams and resources to grow with fewer changes to AWS policies. ABAC
policies are more flexible than traditional AWS policies, which require you to list each individual resource.
For more information about ABAC and its advantage over traditional policies, see What is ABAC for
AWS? (p. 12).

Topics
• Tutorial overview (p. 45)

• Prerequisites (p. 46)

• Step 1: Create test users (p. 46)

• Step 2: Create the ABAC policy (p. 47)

• Step 3: Create roles (p. 50)

• Step 4: Test creating secrets (p. 50)

• Step 5: Test viewing secrets (p. 52)

• Step 6: Test scalability (p. 54)

44

https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Tutorial overview

• Step 7: Test updating and deleting secrets (p. 55)
• Summary (p. 56)
• Related resources (p. 56)
• IAM tutorial: Use SAML session tags for ABAC (p. 56)

Tutorial overview
This tutorial shows how to create and test a policy that allows IAM roles with principal tags to access
resources with matching tags. When a principal makes a request to AWS, their permissions are granted
based on whether the principal and resource tags match. This strategy allows individuals to view or edit
only the AWS resources required for their jobs.

Scenario

Assume that you're a lead developer at a large company named Example Corporation, and you're an
experienced IAM administrator. You're familiar with creating and managing IAM users, roles, and policies.
You want to ensure that your development engineers and quality assurance team members can access
the resources they need. You also need a strategy that scales as your company grows.

You choose to use AWS resource tags and IAM role principal tags to implement an ABAC strategy
for services that support it, beginning with AWS Secrets Manager. To learn which services support
authorization based on tags, see AWS services that work with IAM (p. 725). To learn which tagging
condition keys you can use in a policy with each service's actions and resources, see Actions, Resources,
and Condition Keys for AWS Services. You can configure your SAML-based or web identity provider to
pass session tags (p. 313) to AWS. When your employees federate into AWS, their attributes are applied
to their resulting principal in AWS. You can then use ABAC to allow or deny permissions based on those
attributes. To learn how using session tags with a SAML federated identity differs from this tutorial, see
IAM tutorial: Use SAML session tags for ABAC (p. 56).

Your Engineering and Quality Assurance team members are on either the Pegasus or Unicorn project.
You choose the following 3-character project and team tag values:

• access-project = peg for the Pegasus project
• access-project = uni for the Unicorn project
• access-team = eng for the Engineering team
• access-team = qas for the Quality Assurance team

Additionally, you choose to require the cost-center cost allocation tag to enable custom AWS billing
reports. For more information, see Using Cost Allocation Tags in the AWS Billing and Cost Management
User Guide.

Summary of key decisions

• Employees sign in with IAM user credentials and then assume the IAM role for their team and project.
If your company has its own identity system, you can set up federation to allow employees to
assume a role without IAM users. For more information, see IAM tutorial: Use SAML session tags for
ABAC (p. 56).

• The same policy is attached to all of the roles. Actions are allowed or denied based on tags.
• Employees can create new resources, but only if they attach the same tags to the resource that

are applied to their role. This ensures that employees can view the resource after they create it.
Administrators are no longer required to update policies with the ARN of new resources.

• Employees can read resources owned by their team, regardless of the project.
• Employees can update and delete resources owned by their own team and project.

45

reference_policies_actions-resources-contextkeys.html
reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html

AWS Identity and Access Management User Guide
Prerequisites

• IAM administrators can add a new role for new projects. They can create and tag a new IAM user to
allow access to the appropriate role. Administrators are not required to edit a policy to support a new
project or team member.

In this tutorial, you will tag each resource, tag your project roles, and add policies to the roles to allow
the behavior previously described. The resulting policy allows the roles Create, Read, Update, and
Delete access to resources that are tagged with the same project and team tags. The policy also allows
cross-project Read access for resources that are tagged with the same team.

Prerequisites
To perform the steps in this tutorial, you must already have the following:

• An AWS account that you can sign in to as an IAM user with administrative permissions. If you have a
new account and sign in as the AWS account root user, then create an IAM admin user (p. 19).

• Your 12-digit account ID, which you use to create the roles in step 3.

To find your AWS account ID number using the AWS Management Console, choose Support on the
navigation bar on the upper right, and then choose Support Center. The account number (ID) appears
in the navigation pane on the left.

• Experience creating and editing IAM users, roles, and policies in the AWS Management Console.
However, if you need help remembering an IAM management process, this tutorial provides links
where you can view step-by-step instructions.

Step 1: Create test users
For testing, create four IAM users with permissions to assume roles with the same tags. This makes it
easier to add more users to your teams. When you tag the users, they automatically get access to assume
the correct role. You don't have to add the users to the trust policy of the role if they work on only one
project and team.

1. Create the following customer managed policy named access-assume-role. For more
information about creating a JSON policy, see Creating IAM policies (p. 469).

ABAC policy: Assume any ABAC role, but only when the user and role tags match

The following policy allows a user to assume any role in your account with the access- name
prefix. The role must also be tagged with the same project, team, and cost center tags as the user.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "TutorialAssumeRole",
 "Effect": "Allow",

46

AWS Identity and Access Management User Guide
Step 2: Create the ABAC policy

 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::123456789012:role/access-*",
 "Condition": {
 "StringEquals": {
 "iam:ResourceTag/access-project": "${aws:PrincipalTag/access-
project}",
 "iam:ResourceTag/access-team": "${aws:PrincipalTag/access-team}",
 "iam:ResourceTag/cost-center": "${aws:PrincipalTag/cost-center}"
 }
 }
 }
]
}

To scale this tutorial to a large number of users, you can attach the policy to a group and add each
user to the group. For more information, see Creating IAM user groups (p. 162) and Adding and
removing users in an IAM user group (p. 164).

2. Create the following IAM users, attach the access-assume-role permissions policy, and add the
following tags. For more information about creating and tagging a new user, see Creating IAM users
(console) (p. 76).

ABAC users

User name User tags

access-Arnav-peg-eng access-project = peg

access-team = eng

cost-center = 987654

access-Mary-peg-qas access-project = peg

access-team = qas

cost-center = 987654

access-Saanvi-uni-eng access-project = uni

access-team = eng

cost-center = 123456

access-Carlos-uni-qas access-project = uni

access-team = qas

cost-center = 123456

Step 2: Create the ABAC policy
Create the following policy named access-same-project-team. You will add this policy to the roles
in a later step. For more information about creating a JSON policy, see Creating IAM policies (p. 469).

For additional policies that you can adapt for this tutorial, see the following pages:

• Controlling access for IAM principals (p. 415)
• Amazon EC2: Allows starting or stopping EC2 instances a user has tagged, programmatically and in the

console (p. 439)

47

AWS Identity and Access Management User Guide
Step 2: Create the ABAC policy

• EC2: Start or stop instances based on matching principal and resource tags (p. 440)
• EC2: Start or stop instances based on tags (p. 440)
• IAM: Assume roles that have a specific tag (p. 445)

ABAC Policy: Access Secrets Manager Resources Only When the Principal and Resource Tags Match

The following policy allows principals to create, read, edit, and delete resources, but only when those
resources are tagged with the same key-value pairs as the principal. When a principal creates a resource,
they must add access-project, access-team, and cost-center tags with values that match the
principal's tags. The policy also allows adding optional Name or OwnedBy tags.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllActionsSecretsManagerSameProjectSameTeam",
 "Effect": "Allow",
 "Action": "secretsmanager:*",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/access-project": "${aws:PrincipalTag/access-project}",
 "aws:ResourceTag/access-team": "${aws:PrincipalTag/access-team}",
 "aws:ResourceTag/cost-center": "${aws:PrincipalTag/cost-center}"
 },
 "ForAllValues:StringEquals": {
 "aws:TagKeys": [
 "access-project",
 "access-team",
 "cost-center",
 "Name",
 "OwnedBy"
]
 },
 "StringEqualsIfExists": {
 "aws:RequestTag/access-project": "${aws:PrincipalTag/access-project}",
 "aws:RequestTag/access-team": "${aws:PrincipalTag/access-team}",
 "aws:RequestTag/cost-center": "${aws:PrincipalTag/cost-center}"
 }
 }
 },
 {
 "Sid": "AllResourcesSecretsManagerNoTags",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetRandomPassword",
 "secretsmanager:ListSecrets"
],
 "Resource": "*"
 },
 {
 "Sid": "ReadSecretsManagerSameTeam",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:Describe*",
 "secretsmanager:Get*",
 "secretsmanager:List*"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/access-team": "${aws:PrincipalTag/access-team}"
 }

48

AWS Identity and Access Management User Guide
Step 2: Create the ABAC policy

 }
 },
 {
 "Sid": "DenyUntagSecretsManagerReservedTags",
 "Effect": "Deny",
 "Action": "secretsmanager:UntagResource",
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "aws:TagKeys": "access-*"
 }
 }
 },
 {
 "Sid": "DenyPermissionsManagement",
 "Effect": "Deny",
 "Action": "secretsmanager:*Policy",
 "Resource": "*"
 }
]
}

What does this policy do?

• The AllActionsSecretsManagerSameProjectSameTeam statement allows all of this service's
actions on all related resources, but only if the resource tags match the principal tags. By adding
"Action": "secretsmanager:*" to the policy, the policy grows as Secrets Manager grows. If
Secrets Manager adds a new API operation, you are not required to add that action to the statement.
The statement implements ABAC using three condition blocks. The request is allowed only if all three
blocks return true.

• The first condition block of this statement returns true if the specified tag keys are present on the
resource, and their values match the principal's tags. This block returns false for mismatched tags,
or for actions that don't support resource tagging. To learn which actions are not allowed by this
block, see Actions, Resources, and Condition Keys for AWS Secrets Manager. That page shows that
actions performed on the Secret resource type support the secretsmanager:ResourceTag/
tag-key condition key. Some Secrets Manager actions don't support that resource type, including
GetRandomPassword and ListSecrets. You must create additional statements to allow those
actions.

• The second condition block returns true if every tag key passed in the request is included in the
specified list. This is done using ForAllValues with the StringEquals condition operator. If
no keys or a subset of the set of keys is passed, then the condition returns true. This allows Get*
operations that do not allow passing tags in the request. If the requester includes a tag key that is
not in the list, the condition returns false. Every tag key that is passed in the request must match a
member of this list. For more information, see Using multiple keys and values (p. 770).

• The third condition block returns true if the request supports passing tags, if all three of the tags are
present, and if they match the principal tag values. This block also returns true if the request does
not support passing tags. This is thanks to ...IfExists (p. 767) in the condition operator. The
block returns false if there is no tag passed during an action that supports it, or if the tag keys and
values don't match.

• The AllResourcesSecretsManagerNoTags statement allows the GetRandomPassword and
ListSecrets actions that are not allowed by the first statement.

• The ReadSecretsManagerSameTeam statement allows read-only operations if the principal is tagged
with the same access-team tag as the resource. This is allowed regardless of the project or cost-center
tag.

• The DenyUntagSecretsManagerReservedTags statement denies requests to remove tags
with keys that begin with "access-" from Secrets Manager. These tags are used to control access to
resources, therefore removing tags might remove permissions.

49

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awssecretsmanager.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awssecretsmanager.html#awssecretsmanager-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awssecretsmanager.html#awssecretsmanager-actions-as-permissions

AWS Identity and Access Management User Guide
Step 3: Create roles

• The DenyPermissionsManagement statement denies access to create, edit, or delete Secrets
Manager resource-based policies. These policies could be used to change the permissions of the secret.

Important
This policy uses a strategy to allow all actions for a service, but explicitly deny permissions-
altering actions. Denying an action overrides any other policy that allows the principal to
perform that action. This can have unintended results. As a best practice, use explicit denies only
when there is no circumstance that should allow that action. Otherwise, allow a list of individual
actions, and the unwanted actions are denied by default.

Step 3: Create roles
Create the following IAM roles and attach the access-same-project-team policy that you created
in the previous step. For more information about creating IAM roles, see Creating a role to delegate
permissions to an IAM user (p. 227). If you choose to use federation instead of IAM users and roles, see
IAM tutorial: Use SAML session tags for ABAC (p. 56).

ABAC roles

Job function Role tags Role name Role description

Project
Pegasus
Engineering

access-project = peg

access-team = eng

cost-center = 987654

access-peg-
engineering

Allows engineers to read all
engineering resources and
create and manage Pegasus
engineering resources.

Project
Pegasus
Quality
Assurance

access-project = peg

access-team = qas

cost-center = 987654

access-peg-
quality-
assurance

Allows the QA team to read
all QA resources and create
and manage all Pegasus QA
resources.

Project Unicorn
Engineering

access-project = uni

access-team = eng

cost-center = 123456

access-uni-
engineering

Allows engineers to read all
engineering resources and
create and manage Unicorn
engineering resources.

Project Unicorn
Quality
Assurance

access-project = uni

access-team = qas

cost-center = 123456

access-uni-
quality-
assurance

Allows the QA team to read
all QA resources and create
and manage all Unicorn QA
resources.

Step 4: Test creating secrets
The permissions policy attached to the roles allows the employees to create secrets. This is allowed
only if the secret is tagged with their project, team, and cost center. Confirm that your permissions are
working as expected by signing in as your users, assuming the correct role, and testing activity in Secrets
Manager.

To test creating a secret with and without the required tags

1. In your main browser window, remain signed in as the administrator user so that you can review
users, roles, and policies in IAM. Use a browser incognito window or separate browser for your

50

AWS Identity and Access Management User Guide
Step 4: Test creating secrets

testing. There, sign in as the access-Arnav-peg-eng IAM user and open the Secrets Manager
console at https://console.aws.amazon.com/secretsmanager/.

2. Attempt to switch to the access-uni-engineering role. For more information about switching
roles in the AWS Management Console, see Switching to a role (console) (p. 260).

This operation fails because the access-project and cost-center tag values do not match for
the access-Arnav-peg-eng user and access-uni-engineering role.

3. Switch to the access-peg-engineering role. For more information about switching roles in the
AWS Management Console, see Switching to a role (console) (p. 260).

4. Store a new secret using the following information. To learn how to store a secret, see Creating a
Basic Secret in the AWS Secrets Manager User Guide.

1. In the Select secret type section, choose Other type of secrets. In the two text boxes, enter
test-access-key and test-access-secret.

You must have additional permissions to save credentials for specific AWS services. For example,
to create credentials for an Amazon RDS database, you must have permission to describe RDS
instances, RDS clusters, and Amazon Redshift clusters.

2. Enter test-access-peg-eng for the Secret name field.

3. Add different tag combinations from the following table and view the expected behavior.

4. Choose Store to attempt to create the secret. When the storage fails, return to the previous
Secrets Manager console pages and use the next tag set from the following table. The last tag set
is allowed and will successfully create the secret.

ABAC tag combinations for test-access-peg-eng role

access-
project
Tag value

access-
team Tag
value

cost-
center Tag
value

Additional
tags

Expected behavior

(none) (none) (none) (none) Denied because the access-
project tag value does not match
the role's value of peg.

uni eng 987654 (none) Denied because the access-
project tag value does not match
the role's value of peg.

peg qas 987654 (none) Denied because the access-team
tag value does not match the role's
value of eng.

peg eng 123456 (none) Denied because the cost-center
tag value does not match the role's
value of 987654.

peg eng 987654 owner =
Jane

Denied because the additional tag
owner is not allowed by the policy,
even though all three required tags
are present and their values match
the role's values.

peg eng 987654 Name = Jane Allowed because all three required
tags are present and their values
match the role's values. You are also

51

https://console.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_create-basic-secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_create-basic-secret.html

AWS Identity and Access Management User Guide
Step 5: Test viewing secrets

access-
project
Tag value

access-
team Tag
value

cost-
center Tag
value

Additional
tags

Expected behavior

allowed to include the optional Name
tag.

5. Sign out and repeat the first three steps of this procedure for each of the following roles and tag
values. In the fourth step in this procedure, test any set of missing tags, optional tags, disallowed
tags, and invalid tag values that you choose. Then use the required tags to create a secret with the
following tags and name.

ABAC roles and tags

User name Role name Secret name Secret tags

access-Mary-peg-
qas

access-peg-
quality-assurance

test-access-peg-
qas

access-project =
peg

access-team = qas

cost-center =
987654

access-Saanvi-
uni-eng

access-uni-
engineering

test-access-uni-
eng

access-project =
uni

access-team = eng

cost-center =
123456

access-Carlos-
uni-qas

access-uni-
quality-assurance

test-access-uni-
qas

access-project =
uni

access-team = qas

cost-center =
123456

Step 5: Test viewing secrets
The policy that you attached to each role allows the employees to view any secrets tagged with their
team name, regardless of their project. Confirm that your permissions are working as expected by testing
your roles in Secrets Manager.

To test viewing a secret with and without the required tags

1. Sign in as one of the following IAM users:

• access-Arnav-peg-eng

• access-Mary-peg-qas

• access-Saanvi-uni-eng

• access-Carlos-peg-qas

2. Switch to the matching role:

• access-peg-engineering

52

AWS Identity and Access Management User Guide
Step 5: Test viewing secrets

• access-peg-quality-assurance

• access-uni-engineering

• access-uni-quality-assurance

For more information about switching roles in the AWS Management Console, see Switching to a
role (console) (p. 260).

3. In the navigation pane on the left, choose the menu icon to expand the menu and then choose
Secrets.

4. You should see all four secrets in the table, regardless of your current role. This is expected because
the policy named access-same-project-team allows the secretsmanager:ListSecrets
action for all resources.

5. Choose the name of one of the secrets.

6. On the details page for the secret, your role's tags determine whether you can view the page
content. Compare the name of your role to the name of your secret. If they share the same team
name, then the access-team tags match. If they don't match, then access is denied.

ABAC secret viewing behavior for each role

Role name Secret name Expected behavior

test-access-peg-eng Allowed

test-access-peg-qas Denied

test-access-uni-eng Allowed

access-peg-engineering

test-access-uni-qas Denied

test-access-peg-eng Denied

test-access-peg-qas Allowed

test-access-uni-eng Denied

access-peg-quality-
assurance

test-access-uni-qas Allowed

test-access-peg-eng Allowed

test-access-peg-qas Denied

test-access-uni-eng Allowed

access-uni-engineering

test-access-uni-qas Denied

test-access-peg-eng Denied

test-access-peg-qas Allowed

test-access-uni-eng Denied

access-uni-quality-
assurance

test-access-uni-qas Allowed

7. From the breadcrumbs at the top of the page, choose Secrets to return to the list of secrets. Repeat
the steps in this procedure using different roles to test whether you can view each of the secrets.

53

AWS Identity and Access Management User Guide
Step 6: Test scalability

Step 6: Test scalability
An important reason for using attribute-based access control (ABAC) over role-based access control
(RBAC) is scalability. As your company adds new projects, teams, or people to AWS, you don't need to
update your ABAC-driven policies. For example, assume that Example Company is funding a new project,
code named Centaur. An engineer named Saanvi Sarkar will be the lead engineer for Centaur while
continuing to work on the Unicorn project. There are also several newly hired engineers, including Nikhil
Jayashankar, who will work on only the Centaur project.

To add the new project to AWS

1. Sign in as the IAM administrator user and open the IAM console at https://console.aws.amazon.com/
iam/.

2. In the navigation pane on the left, choose Roles and add an IAM role named access-cen-
engineering. Attach the access-same-project-team permissions policy to the role and add
the following tags:

• access-project = cen

• access-team = eng

• cost-center = 101010

3. In the navigation pane on the left, choose Users.

4. Add a new user named access-Nikhil-cen-eng, and attach the policy named access-assume-
role.

5. Use the procedures in Step 4: Test creating secrets (p. 50) and Step 5: Test viewing
secrets (p. 52). In another browser window, test that Nikhil can create only Centaur engineering
secrets, and that he can view all engineering secrets.

6. In the main browser window where you signed in as the administrator, choose access-Saanvi-
uni-eng.

7. On the Permissions tab, remove the access-assume-role permissions policy.

8. Add the following inline policy named access-assume-specific-roles. For more information
about adding an inline policy to a user, see To embed an inline policy for a user or role
(console) (p. 486).

ABAC policy: Assume only specific roles

This policy allows Saanvi to assume the engineering roles for the Pegasus or Centaur projects. It is
necessary to create this custom policy because IAM does not support multivalued tags. You can't
tag Saanvi's user with access-project = peg and access-project = cen. Additionally, the AWS
authorization model can't match both values. For more information, see Rules for tagging in IAM
and AWS STS (p. 296). Instead, you must manually specify the two roles that she can assume.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "TutorialAssumeSpecificRoles",
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": [
 "arn:aws:iam::123456789012:role/access-peg-engineering",
 "arn:aws:iam::123456789012:role/access-cen-engineering"
]
 }
]
}

54

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Step 7: Test updating and deleting secrets

9. Use the procedures in Step 4: Test creating secrets (p. 50) and Step 5: Test viewing
secrets (p. 52). In another browser window, confirm that Saanvi can assume both roles. Check that
she can create secrets for only her project, team, and cost center, depending on the role's tags. Also
confirm that she can view details about any secrets owned by the engineering team, including the
ones that she just created.

Step 7: Test updating and deleting secrets
The access-same-project-team policy that is attached to the roles allows the employees to update
and delete any secrets tagged with their project, team, and cost center. Confirm that your permissions
are working as expected by testing your roles in Secrets Manager.

To test updating and deleting a secret with and without the required tags

1. Sign in as one of the following IAM users:

• access-Arnav-peg-eng

• access-Mary-peg-qas

• access-Saanvi-uni-eng

• access-Carlos-peg-qas

• access-Nikhil-cen-eng

2. Switch to the matching role:

• access-peg-engineering

• access-peg-quality-assurance

• access-uni-engineering

• access-peg-quality-assurance

• access-cen-engineering

For more information about switching roles in the AWS Management Console, see Switching to a
role (console) (p. 260).

3. For each role, try to update the secret description and then try to delete the following secrets. For
more information, see Modifying a Secret and Deleting and Restoring a Secret in the AWS Secrets
Manager User Guide.

ABAC secret updating and deleting behavior for each role

Role name Secret name Expected behavior

test-access-peg-eng Allowed

test-access-uni-eng Denied

access-peg-engineering

test-access-uni-qas Denied

test-access-peg-qas Allowedaccess-peg-quality-
assurance

test-access-uni-eng Denied

test-access-uni-eng Allowedaccess-uni-engineering

test-access-uni-qas Denied

access-peg-quality-
assurance

test-access-uni-qas Allowed

55

https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_update-secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_delete-restore-secret.html

AWS Identity and Access Management User Guide
Summary

Summary
You've now successfully completed all of the steps necessary to use tags for attribute-based access
control (ABAC). You've learned how to define a tagging strategy. You applied that strategy to your
principals and resources. You created and applied a policy that enforces the strategy for Secrets Manager.
You also learned that ABAC scales easily when you add new projects and team members. As a result, you
are able to sign in to the IAM console with your test roles and experience how to use tags for ABAC in
AWS.

Note
You added policies that allow actions only under specific conditions. If you apply a different
policy to your users or roles that has broader permissions, then the actions might not be limited
to require tagging. For example, if you give a user full administrative permissions using the
AdministratorAccess AWS managed policy, then these policies don't restrict that access. For
more information about how permissions are determined when multiple policies are involved,
see Determining whether a request is allowed or denied within an account (p. 787).

Related resources
For related information in the IAM User Guide, see the following resources:

• What is ABAC for AWS? (p. 12)

• AWS global condition context keys (p. 812)

• Creating your first IAM admin user and user group (p. 19)

• Creating IAM users (console) (p. 76)

• Creating a role to delegate permissions to an IAM user (p. 227)

• Tagging IAM resources (p. 296)

• Controlling access to AWS resources using tags (p. 416)

• Switching to a role (console) (p. 260)

• IAM tutorial: Use SAML session tags for ABAC (p. 56)

To learn how to monitor the tags in your account, see Monitor tag changes on AWS resources with
serverless workflows and Amazon CloudWatch Events.

IAM tutorial: Use SAML session tags for ABAC
Attribute-based access control (ABAC) is an authorization strategy that defines permissions based on
attributes. In AWS, these attributes are called tags. You can attach tags to IAM resources, including IAM
entities (users or roles), and to AWS resources. When the entities are used to make requests to AWS, they
become principals and those principals include tags.

You can also pass session tags (p. 313) when you assume a role or federate a user. You can then define
policies that use tag condition keys to grant permissions to your principals based on their tags. When you
use tags to control access to your AWS resources, you allow your teams and resources to grow with fewer
changes to AWS policies. ABAC policies are more flexible than traditional AWS policies, which require
you to list each individual resource. For more information about ABAC and its advantage over traditional
policies, see What is ABAC for AWS? (p. 12).

If your company uses a SAML-based identity provider (IdP) to manage corporate user identities, you
can use SAML attributes for fine-grained access control in AWS. Attributes can include cost center
identifiers, user email addresses, department classifications, and project assignments. When you pass
these attributes as session tags, you can then control access to AWS based on these session tags.

56

http://aws.amazon.com/blogs/mt/monitor-tag-changes-on-aws-resources-with-serverless-workflows-and-amazon-cloudwatch-events/
http://aws.amazon.com/blogs/mt/monitor-tag-changes-on-aws-resources-with-serverless-workflows-and-amazon-cloudwatch-events/

AWS Identity and Access Management User Guide
Use SAML session tags for ABAC

To complete the ABAC tutorial (p. 44) by passing SAML attributes to your session principal, complete
the tasks in IAM tutorial: Define permissions to access AWS resources based on tags (p. 44), with the
changes that are included in this topic.

Prerequisites
To perform the steps to use SAML session tags for ABAC, you must already have the following:

• Access to a SAML-based IdP where you can create test users with specific attributes.
• An AWS account that you can sign in to as an IAM user with administrative permissions. If you have a

new account and sign in as the AWS account root user, then create an IAM admin user (p. 19).
• Experience creating and editing IAM users, roles, and policies in the AWS Management Console.

However, if you need help remembering an IAM management process, the ABAC tutorial provides links
where you can view step-by-step instructions.

• Experience setting up a SAML-based IdP in IAM. To view more details and links to detailed IAM
documentation, see Passing session tags using AssumeRoleWithSAML (p. 318).

Step 1: Create a test IAM user
Skip the instructions in Step 1: Create test users (p. 46). Because your identities are defined in your
provider, it's not necessary for you to add IAM users for your employees.

Step 2: Create the ABAC policy
Follow the instructions in Step 2: Create the ABAC policy (p. 47) to create the specified managed
policy in IAM.

Step 3: Create and configure the SAML role
When you use the ABAC tutorial for SAML, you must perform additional steps to create the role,
configure the SAML IdP, and enable AWS Management Console access. For more information, see Step 3:
Create roles (p. 50).

Step 3A: Create the SAML role

Create a single role that trusts your SAML identity provider and the test-session-tags user that you
created in step 1. The ABAC tutorial uses separate roles with different role tags. Because you are passing
session tags from your SAML IdP, you need only one role. To learn how to create a SAML-based role, see
Creating a role for SAML 2.0 federation (console) (p. 247).

Name the role access-session-tags. Attach the access-same-project-team permissions policy
to the role. Edit the role trust policy to use the following policy. For detailed instructions on how to edit
the trust relationship of a role, see Modifying a role (console) (p. 280).

The following role trust policy allows your SAML identity provider and the test-session-tags user
to assume the role. When they assume the role, they must pass the three specified session tags. The
sts:TagSession action is required to allow passing session tags.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowSamlIdentityAssumeRole",
 "Effect": "Allow",
 "Action": [
 "sts:AssumeRoleWithSAML",
 "sts:TagSession"
],

57

AWS Identity and Access Management User Guide
Use SAML session tags for ABAC

 "Principal": {"Federated":"arn:aws:iam::123456789012:saml-
provider/ExampleCorpProvider"},
 "Condition": {
 "StringLike": {
 "aws:RequestTag/cost-center": "*",
 "aws:RequestTag/access-project": "*",
 "aws:RequestTag/access-team": [
 "eng",
 "qas"
]
 },
 "StringEquals": {"SAML:aud": "https://signin.aws.amazon.com/saml"}
 }
 }
]
}

The AllowSamlIdentityAssumeRole statement allows members of the Engineering and Quality
Assurance teams to assume this role when they federate into AWS from the Example Corporation IdP.
The ExampleCorpProvider SAML provider is defined in IAM. The administrator has already set up the
SAML assertion to pass the three required session tags. The assertion can pass additional tags, but these
three must be present. The identity's attributes can have any value for the cost-center and access-
project tags. However, the access-team attribute value must match eng or qas to indicate that the
identity is on the Engineering or Quality Assurance team.

Step 3B: Configure the SAML IdP

Configure your SAML IdP to pass the cost-center, access-project, and access-team attributes as
session tags. For more information, see Passing session tags using AssumeRoleWithSAML (p. 318).

To pass these attributes as session tags, include the following elements in your SAML assertion.

<Attribute Name="https://aws.amazon.com/SAML/Attributes/PrincipalTag:cost-center">
 <AttributeValue>987654</AttributeValue>
</Attribute>
<Attribute Name="https://aws.amazon.com/SAML/Attributes/PrincipalTag:access-project">
 <AttributeValue>peg</AttributeValue>
</Attribute>
<Attribute Name="https://aws.amazon.com/SAML/Attributes/PrincipalTag:access-team">
 <AttributeValue>eng</AttributeValue>
</Attribute>

Step 3B: Enable console access

Enable console access for your federated SAML users. For more information, see Enabling SAML 2.0
federated users to access the AWS Management Console (p. 209).

Step 4: Test creating secrets
Federate into the AWS Management Console using the access-session-tags role. For more
information, see Enabling SAML 2.0 federated users to access the AWS Management Console (p. 209).
Then follow the instructions in Step 4: Test creating secrets (p. 50) to create secrets. Use different
SAML identities with attributes to match the tags that are indicated in the ABAC tutorial. For more
information, see Step 4: Test creating secrets (p. 50).

Step 5: Test viewing secrets
Follow the instructions in Step 5: Test viewing secrets (p. 52) to view the secrets that you created in
the previous step. Use different SAML identities with attributes to match the tags that are indicated in
the ABAC tutorial.

58

AWS Identity and Access Management User Guide
Permit users to manage their credentials and MFA settings

Step 6: Test scalability
Follow the instructions in Step 6: Test scalability (p. 54) to test scalability. Do this by adding a new
identity in your SAML-based IdP with the following attributes:

• cost-center = 101010

• access-project = cen

• access-team = eng

Step 7: Test updating and deleting secrets
Follow the instructions in Step 7: Test updating and deleting secrets (p. 55) to update and delete
secrets. Use different SAML identities with attributes to match the tags that are indicated in the ABAC
tutorial.

Important
Delete all of the secrets that you created to avoid billing charges. For details about pricing in
Secrets Manager, see AWS Secrets Manager Pricing.

Summary
You've now successfully completed all of the steps necessary to use SAML session tags and resource tags
for permissions management.

Note
You added policies that allow actions only under specific conditions. If you apply a different
policy to your users or roles that has broader permissions, then the actions might not be limited
to require tagging. For example, if you give a user full administrative permissions using the
AdministratorAccess AWS managed policy, then these policies don't restrict that access. For
more information about how permissions are determined when multiple policies are involved,
see Determining whether a request is allowed or denied within an account (p. 787).

IAM tutorial: Permit users to manage their
credentials and MFA settings

You can permit your users to manage their own multi-factor authentication (MFA) devices and
credentials on the My Security Credentials page. You can use the AWS Management Console to
configure credentials (access keys, passwords, signing certificates, and SSH public keys) and MFA devices
for your users. This is useful for a small number of users. But that task could quickly become time
consuming as the number of users grows. Security best practices specify that users should regularly
change their passwords and rotate their access keys. They should also delete or deactivate credentials
that are not needed. We also highly recommend that they use MFA for sensitive operations. This tutorial
shows you how to enable these best practices without burdening your administrators.

This tutorial shows how to allow users to access AWS services, but only when they sign in with MFA. If
they are not signed in with an MFA device, then users cannot access other services.

This workflow has three basic steps.

Step 1: Create a policy to enforce MFA sign-in (p. 60)

Create a customer managed policy that prohibits all actions except the few IAM actions. These
exceptions allow a user to change their own credentials and manage their MFA devices on the My

59

https://aws.amazon.com/secrets-manager/pricing/

AWS Identity and Access Management User Guide
Prerequisites

Security Credentials page. For more information about accessing that page, see How IAM users
change their own password (console) (p. 101).

Step 2: Attach policies to your test user group (p. 61)

Create a user group whose members have full access to all Amazon EC2 actions if they sign
in with MFA. To create such a user group, you attach both the AWS managed policy called
AmazonEC2FullAccess and the customer managed policy you created in the first step.

Step 3: Test your user's access (p. 61)

Sign in as the test user to verify that access to Amazon EC2 is blocked until the user creates an MFA
device. The user can then sign in using that device.

Prerequisites
To perform the steps in this tutorial, you must already have the following:

• An AWS account that you can sign in to as an IAM user with administrative permissions.
• Your account ID number, which you type into the policy in Step 1.

To find your account ID number, on the navigation bar at the top of the page, choose Support and
then choose Support Center. You can find your account ID under this page's Support menu.

• A virtual (software-based) MFA device (p. 113), U2F security key (p. 116), or hardware-based MFA
device (p. 121).

• A test IAM user who is a member of a user group as follows:

Create user account Create and configure user group account

MFAUser

Choose only the option for
AWS Management Console
access, and assign a
password.

EC2MFA MFAUser

Do NOT attach any
policies or otherwise grant
permissions to this user
group.

Step 1: Create a policy to enforce MFA sign-in
You begin by creating an IAM customer managed policy that denies all permissions except those required
for IAM users to manage their own credentials and MFA devices.

1. Sign in to the AWS Management Console as a user with administrator credentials. To adhere to IAM
best practices, don't sign in with your AWS account root user credentials. For more information, see
Create individual IAM users.

2. Open the IAM console at https://console.aws.amazon.com/iam/.

3. In the navigation pane, choose Policies, and then choose Create policy.
4. Choose the JSON tab and copy the text from the following JSON policy document: AWS: Allows

MFA-authenticated IAM users to manage their own credentials on the My Security Credentials
page (p. 422).

5. Paste the policy text into the JSON text box. Resolve any security warnings, errors, or general
warnings generated during policy validation (p. 474), and then choose Review policy.

Note
You can switch between the Visual editor and JSON tabs anytime. However, the policy
above includes the NotAction element, which is not supported in the visual editor. For

60

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#create-iam-users
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Step 2: Attach policies to your test user group

this policy, you will see a notification on the Visual editor tab. Return to the JSON tab to
continue working with this policy.

6. On the Review page, type Force_MFA for the policy name. For the policy description, type This
policy allows users to manage their own passwords and MFA devices but
nothing else unless they authenticate with MFA. Review the policy Summary to see
the permissions granted by your policy, and then choose Create policy to save your work.

The new policy appears in the list of managed policies and is ready to attach.

Step 2: Attach policies to your test user group
Next you attach two policies to the test IAM user group, which will be used to grant the MFA-protected
permissions.

1. In the navigation pane, choose User groups.
2. In the search box, type EC2MFA, and then choose the group name (not the check box) in the list.
3. Choose the Permissions tab, choose Add permissions, and then choose Attach policy.
4. On the Attach permission policies to EC2MFA group page, in the search box, type EC2Full. Then

select the check box next to AmazonEC2FullAccess in the list. Don't save your changes yet.
5. In the search box, type Force, and then select the check box next to Force_MFA in the list.
6. Choose Attach policies.

Step 3: Test your user's access
In this part of the tutorial, you sign in as the test user and verify that the policy works as intended.

1. Sign in to your AWS account as MFAUser with the password you assigned in the previous section.
Use the URL: https://<alias or account ID number>.signin.aws.amazon.com/console

2. Choose EC2 to open the Amazon EC2 console and verify that the user has no permissions to do
anything.

3. In the navigation bar on the upper right, choose the MFAUser user name, and then choose My
Security Credentials.

61

AWS Identity and Access Management User Guide
Related resources

4. Now add an MFA device. In the Multi-factor Authentication (MFA) section, choose Assign MFA
device.

Note
You might receive an error that you are not authorized to perform
iam:DeleteVirtualMFADevice. This could happen if someone previously began
assigning a virtual MFA device to this user and cancelled the process. To continue, you or
another administrator must delete the user's existing MFA device. For more information, see
I am not authorized to perform: iam:DeleteVirtualMFADevice (p. 681).

5. For this tutorial, we use a virtual (software-based) MFA device, such as the Google Authenticator app
on a mobile phone. Choose Virtual MFA device, and then click Continue.

IAM generates and displays configuration information for the virtual MFA device, including a QR
code graphic. The graphic is a representation of the secret configuration key that is available for
manual entry on devices that do not support QR codes.

6. Open your virtual MFA app. (For a list of apps that you can use for hosting virtual MFA devices, see
Virtual MFA Applications.) If the virtual MFA app supports multiple accounts (multiple virtual MFA
devices), choose the option to create a new account (a new virtual MFA device).

7. Determine whether the MFA app supports QR codes, and then do one of the following:

• From the wizard, choose Show QR code. Then use the app to scan the QR code. For example, you
might choose the camera icon or choose an option similar to Scan code, and then use the device's
camera to scan the code.

• In the Manage MFA Device wizard, choose Show secret key, and then type the secret key into
your MFA app.

When you are finished, the virtual MFA device starts generating one-time passwords.
8. In the Manage MFA Device wizard, in the MFA Code 1 box, type the one-time password that

currently appears in the virtual MFA device. Wait up to 30 seconds for the device to generate a new
one-time password. Then type the second one-time password into the MFA Code 2 box. Choose
Assign MFA.

Important
Submit your request immediately after generating the codes. If you generate the codes and
then wait too long to submit the request, the MFA device is successfully associated with the
user. However, the MFA device is out of sync. This happens because time-based one-time
passwords (TOTP) expire after a short period of time. If this happens, you can resync the
device (p. 130).

The virtual MFA device is now ready to use with AWS.
9. Sign out of the console and then sign in as MFAUser again. This time AWS prompts you for an MFA

code from your phone. When you get it, type the code in the box and then choose Submit.
10. Choose EC2 to open the Amazon EC2 console again. Note that this time you can see all the

information and perform any actions you want. If you go to any other console as this user, you see
access denied messages. The reason is that the policies in this tutorial grant access only to Amazon
EC2.

Related resources
For related information found in the IAM User Guide, see the following resources:

• Using multi-factor authentication (MFA) in AWS (p. 110)
• Enabling MFA devices for users in AWS (p. 112)
• Using MFA devices with your IAM sign-in page (p. 82)

62

https://aws.amazon.com/iam/details/mfa/#Virtual_MFA_Applications

AWS Identity and Access Management User Guide
Sign in as the root user

Signing in to the AWS Management
Console as an IAM user or root user

The AWS Management Console provides a web-based user interface that you can use to create and
manage your AWS resources. For example, you can start and stop Amazon EC2 instances, create Amazon
DynamoDB tables, create Amazon S3 buckets, and so on.

Before you can use the AWS Management Console, you must sign in to your AWS account. The process
that you will use to sign in to your AWS account depends on what type of AWS user you are. There are
two different types of users in AWS. You are either the account owner (root user) or you are an IAM user.
The root user is created when the AWS account is created using the email address and password that
were used to create the account. IAM users are created by the root user or an IAM administrator within
the AWS account.

If you do not remember your credentials or have trouble signing in using your credentials, see AWS sign-
in issues (p. 68).

Contents

• Sign in as the root user (p. 63)

• Sign in as an IAM user (p. 64)

• Your AWS account ID and its alias (p. 66)

• Troubleshooting AWS sign-in or account issues (p. 68)

Sign in as the root user
Before you sign in to an AWS account as the root user, be sure that you have the following required
information.

Requirements

• The email address used to create the AWS account.

• The password for the root user.

To sign in to an AWS account as the root user

1. Open https://console.aws.amazon.com/.

2. If you have not signed in previously using this browser, the main sign-in page appears as follows.
Choose Root user, enter the email address associated with your account, and choose Next.

63

https://console.aws.amazon.com/

AWS Identity and Access Management User Guide
Sign in as an IAM user

If you have signed in as a root user previously using this browser, your browser might remember the
email address for the AWS account. If so, you'll see the screen shown in the next step instead.

If you have signed in previously as an IAM user using this browser, your browser might display the
IAM user sign in page instead. To return to the main sign-page, choose Sign in using root user
email.

3. Enter your password and choose Sign in.

Sign in as an IAM user
Before you sign into an AWS account as an IAM user, be sure that you have the following required
information. If you do not have this information, contact the administrator for the AWS account.

Requirements

• One of the following:

• The account alias.

• The 12-digit AWS account ID.

• The user name for your IAM user.

• The password for your IAM user.

64

AWS Identity and Access Management User Guide
Sign in as an IAM user

If you are a root user or IAM administrator and need to provide the AWS account ID or AWS account alias
to an IAM user, see Your AWS account ID and its alias (p. 66).

If you are an IAM user, you can log in using either a sign-in URL or the main sign-in page.

To sign in to an AWS account as an IAM user using an IAM users sign-in URL

1. Open a browser and enter the following sign-in URL, replacing account_alias_or_id with the
account alias or account ID provided by your administrator.

https://account_alias_or_id.signin.aws.amazon.com/console/

2. Enter your IAM user name and password and choose Sign in.

To sign in to an AWS account as an IAM user using the main sign-in page

1. Open https://console.aws.amazon.com/.

2. If you have not signed in previously using this browser, the main sign-in page appears. Choose IAM
user, enter the account alias or account ID, and choose Next.

65

https://console.aws.amazon.com/

AWS Identity and Access Management User Guide
Your AWS account ID and its alias

If you have signed in as an IAM user previously using this browser, your browser might remember the
account alias or account ID for the AWS account. If so, you'll see the screen shown in the next step
instead.

3. Enter your IAM user name and password and choose Sign in.

If you have signed in as an IAM user for a different AWS account previously using this browser, or you
need to sign in as a root user instead, choose Sign in using root user email to return to the main
sign-in page.

Your AWS account ID and its alias
To sign in to an AWS account as an IAM user, you must have an account alias or an account ID for the
AWS account. If you are signed in to the AWS Management Console or have configured the AWS CLI or
an AWS SDK with your account credentials, you can find the account alias or account ID for the AWS
account. If you cannot sign in, ask your administrator for the information that you need to sign in.

Topics
• Finding your AWS account ID (p. 66)
• About account aliases (p. 67)
• Creating, deleting, and listing an AWS account alias (p. 67)

Finding your AWS account ID
You can find the account ID for your AWS account using the following methods.

Finding Your Account ID using the console
In the navigation bar, choose Support, and then Support Center. Your currently signed-in 12-digit
account number (ID) appears in the Support Center navigation pane.

Finding Your Account ID using the AWS CLI
Use the following command to view your user ID, account ID, and your user ARN:

66

AWS Identity and Access Management User Guide
About account aliases

• aws sts get-caller-identity

Finding Your Account ID using the API
Use the following API to view your user ID, account ID, and your user ARN:

• GetCallerIdentity

About account aliases
If you want the URL for your sign-in page to contain your company name (or other friendly identifier)
instead of your AWS account ID, you can create an account alias. This section provides information about
AWS account aliases and lists the API operations that you use to create an alias.

Your sign-in page URL has the following format, by default.

https://Your_Account_ID.signin.aws.amazon.com/console/

If you create an AWS account alias for your AWS account ID, your sign-in page URL looks like the
following example.

https://Your_Account_Alias.signin.aws.amazon.com/console/

The original URL containing your AWS account ID remains active and can be used after you create your
AWS account alias.

Tip
To create a bookmark for your account sign-in page in your web browser, you should manually
type the sign-in URL in the bookmark entry. Don't use your web browser's "bookmark this page"
feature.

Creating, deleting, and listing an AWS account alias
You can use the AWS Management Console, the IAM API, or the command line interface to create or
delete your AWS account alias.

Considerations

• Your AWS account can have only one alias. If you create a new alias for your AWS account, the new
alias overwrites the previous alias, and the URL containing the previous alias stops working.

• The account alias must be unique across all Amazon Web Services products. It must contain only digits,
lowercase letters, and hyphens. For more information on limitations on AWS account entities, see IAM
and AWS STS quotas (p. 719).

Creating, editing, and deleting aliases (console)
You can create, edit, and delete an account alias from the AWS Management Console.

To create, edit, or remove an account alias (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Dashboard.

67

https://docs.aws.amazon.com/cli/latest/reference/sts/get-caller-identity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
AWS sign-in issues

3. In the AWS Account section, find Account Alias, and choose Create. If an alias already exists, then
choose Edit.

4. Type the name you want to use for your alias, then choose Save changes.
5. To remove the alias, next to Account Alias choose Delete, and then choose Delete. The sign-in URL

reverts to using your AWS account ID.

Creating, deleting, and listing aliases (AWS CLI)
To create an alias for your AWS Management Console sign-in page URL, run the following command:

• aws iam create-account-alias

To delete an AWS account ID alias, run the following command:

• aws iam delete-account-alias

To display your AWS account ID alias, run the following command:

• aws iam list-account-aliases

Creating, deleting, and listing aliases (AWS API)
To create an alias for your AWS Management Console sign-in page URL, call the following operation:

• CreateAccountAlias

To delete an AWS account ID alias, call the following operation:

• DeleteAccountAlias

To display your AWS account ID alias, call the following operation:

• ListAccountAliases

Troubleshooting AWS sign-in or account issues
Use the information here to help you troubleshoot sign-in and other AWS account issues. For step-by-
step directions to sign in to an AWS account, see Signing in to the AWS Management Console as an IAM
user or root user (p. 63).

If you are having trouble signing in to Amazon.com, see Amazon Customer Service instead.

Issues
• I need my AWS account ID or AWS account alias (p. 69)
• I forgot my IAM user name or password (p. 69)
• I forgot the root user password for my AWS account (p. 69)
• I don't have access to the email for my AWS account (p. 69)
• I need to change the credit card for my AWS account (p. 69)
• I need to report fraudulent AWS account activity (p. 69)

68

https://docs.aws.amazon.com/cli/latest/reference/iam/create-account-alias.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-account-alias.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-account-aliases.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateAccountAlias.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteAccountAlias.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAccountAliases.html
https://www.amazon.com/gp/help/customer/contact-us/

AWS Identity and Access Management User Guide
I need my AWS account ID or AWS account alias

• I need to close my AWS account (p. 70)

I need my AWS account ID or AWS account alias
If you are an IAM user and you are not signed in, you must ask your administrator for the AWS account ID
or AWS account alias. You need this information, plus your IAM user name and password, to sign in to an
AWS account.

I forgot my IAM user name or password
If you are an IAM user, your administrator provides your credentials. If you forget your password, you
must ask your administrator to reset it.

For security purposes, AWS doesn't have access to view, provide, or change your credentials.

I forgot the root user password for my AWS account
If you are a root user and you have lost or forgot the password for your AWS account, you can reset your
password. You must know the email address used to create the AWS account and you must have access
to the email account. For more information, see Resetting lost or forgotten passwords or access keys for
AWS (p. 109).

I don't have access to the email for my AWS account
When you create an AWS account, you provide an email address and password. These are the credentials
for the AWS account root user. If you are not sure of the email address associated with your AWS
account, check for saved correspondence from no-reply@amazon.com to any email address for your
organization that might have been used to open the AWS account.

If you know the email address but no longer have access to the email, first try to recover access to the
email using one of the following options:

• If you own the domain for email address, you can restore a deleted email address. Alternatively, you
can set up a catch-all for your email account, which "catches all" messages sent to email addresses that
no longer exist in the mail server and redirects them to another email address.

• If the email address on the account is part of your corporate email system, we recommend that you
contact your IT system administrators. They might be able to help you regain access to the email.

If you're still not able to sign in to your AWS account, you can find alternate support options at Contact
us. Expand I cannot login to my AWS account and choose Request Support for AWS Account
Credentials. Provide the information in the form and choose Submit.

I need to change the credit card for my AWS account
To change the credit card for your AWS account, you must be able to sign in. AWS has protections in
place that require you to prove that you're the account owner. For directions, see Managing your credit
card payment methods in the AWS Billing and Cost Management User Guide.

I need to report fraudulent AWS account activity
If you suspect fraudulent activity using your AWS account and would like to make a report, see How do I
report abuse of AWS resources.

69

https://aws.amazon.com/contact-us/
https://aws.amazon.com/contact-us/
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/manage-cc.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/manage-cc.html
http://aws.amazon.com/premiumsupport/knowledge-center/report-aws-abuse/
http://aws.amazon.com/premiumsupport/knowledge-center/report-aws-abuse/

AWS Identity and Access Management User Guide
I need to close my AWS account

If you are having trouble with a purchase made on Amazon.com, see Amazon Customer Service.

I need to close my AWS account
If you have an AWS account, you can use the following directions to close it: Closing an Account in the
Billing and Cost Management User Guide.

70

https://www.amazon.com/gp/help/customer/contact-us/
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/close-account.html

AWS Identity and Access Management User Guide
AWS account root user

IAM Identities (users, user groups,
and roles)

Having trouble signing in to AWS? Make sure that you're on the correct AWS sign-in page (p. 63) for
your type of user. If you are the AWS account root user (account owner), you can sign in to AWS using
the credentials that you set up when you created the AWS account. If you are an IAM user, your account
administrator can give you the credentials that you can use to sign in to AWS. If you need to request
support, do not use the feedback link on this page, as the form is received by the AWS Documentation
team, not AWS Support. Instead, on the Contact Us page, expand I cannot login to my AWS Account
and choose Request Support for AWS Account Credentials.

The AWS account root user or an IAM administrator for the account can create IAM identities. An IAM
identity provides access to an AWS account. A user group is a collection of IAM users managed as a unit.
An IAM identity represents a user, and can be authenticated and then authorized to perform actions in
AWS. Each IAM identity can be associated with one or more policies. Policies determine what actions a
user, role, or member of a user group can perform, on which AWS resources, and under what conditions.

AWS account root user (p. 362)
When you first create an Amazon Web Services (AWS) account, you begin with a single sign-in identity
that has complete access to all AWS services and resources in the account. This identity is called the AWS
account root user and is accessed by signing in with the email address and password that you used to
create the account.

Important
We strongly recommend that you do not use the root user for your everyday tasks, even the
administrative ones. Instead, adhere to the best practice of using the root user only to create
your first IAM user. Then securely lock away the root user credentials and use them to perform
only a few account and service management tasks. To view the tasks that require you to sign in
as the root user, see AWS Tasks That Require Root User.

IAM users (p. 73)
An IAM user (p. 73) is an entity that you create in AWS. The IAM user represents the person or service
who uses the IAM user to interact with AWS. A primary use for IAM users is to give people the ability
to sign in to the AWS Management Console for interactive tasks and to make programmatic requests
to AWS services using the API or CLI. A user in AWS consists of a name, a password to sign into the
AWS Management Console, and up to two access keys that can be used with the API or CLI. When you
create an IAM user, you grant it permissions by making it a member of a user group that has appropriate
permission policies attached (recommended), or by directly attaching policies to the user. You can also
clone the permissions of an existing IAM user, which automatically makes the new user a member of the
same user groups and attaches all the same policies. To add IAM users to your IAM account, see Creating
an IAM user in your AWS account (p. 75).

IAM user groups (p. 160)
An IAM user group (p. 160) is a collection of IAM users. You can use user groups to specify permissions
for a collection of users, which can make those permissions easier to manage for those users. For
example, you could have a user group called Admins and give that user group the types of permissions

71

http://aws.amazon.com/contact-us/
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#create-iam-users
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#create-iam-users
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html

AWS Identity and Access Management User Guide
IAM roles

that administrators typically need. Any user in that user group automatically has the permissions that
are assigned to the user group. If a new user joins your organization and should have administrator
privileges, you can assign the appropriate permissions by adding the user to that user group. Similarly,
if a person changes jobs in your organization, instead of editing that user's permissions, you can remove
him or her from the old user groups and add him or her to the appropriate new user groups. A user
group cannot be identified as a Principal in a resource-based policy. A user group is a way to attach
policies to multiple users at one time. When you attach an identity-based policy to a user group, all of
the users in the user group receive the permissions from the user group. For more information about
these policy types, see Identity-based policies and resource-based policies (p. 404).

IAM roles (p. 168)
An IAM role (p. 168) is very similar to a user, in that it is an identity with permission policies that
determine what the identity can and cannot do in AWS. However, a role does not have any credentials
(password or access keys) associated with it. Instead of being uniquely associated with one person, a role
is intended to be assumable by anyone who needs it. An IAM user can assume a role to temporarily take
on different permissions for a specific task. A role can be assigned to a federated user (p. 177) who
signs in by using an external identity provider instead of IAM. AWS uses details passed by the identity
provider to determine which role is mapped to the federated user.

Temporary credentials in IAM (p. 322)
Temporary credentials are primarily used with IAM roles, but there are also other uses. You can request
temporary credentials that have a more restricted set of permissions than your standard IAM user.
This prevents you from accidentally performing tasks that are not permitted by the more restricted
credentials. A benefit of temporary credentials is that they expire automatically after a set period of
time. You have control over the duration that the credentials are valid.

When to create an IAM user (instead of a role)
Because an IAM user is just an identity with specific permissions in your account, you might not need
to create an IAM user for every occasion on which you need credentials. In many cases, you can take
advantage of IAM roles and their temporary security credentials instead of using the long-term
credentials associated with an IAM user.

• You created an AWS account and you're the only person who works in your account.

It's possible to work with AWS using the root user credentials for your AWS account, but we don't
recommend it. Instead, we strongly recommend that you create an IAM user for yourself and use the
credentials for that user when you work with AWS. For more information, see Security best practices in
IAM (p. 557).

• Other people in your user group need to work in your AWS account, and your user group is using
no other identity mechanism.

Create IAM users for the individuals who need access to your AWS resources, assign appropriate
permissions to each user, and give each user his or her own credentials. We strongly recommend that
you never share credentials among multiple users.

When to create an IAM role (instead of a user)
Create an IAM role in the following situations:

72

AWS Identity and Access Management User Guide
Users

You're creating an application that runs on an Amazon Elastic Compute Cloud (Amazon EC2) instance
and that application makes requests to AWS.

Don't create an IAM user and pass the user's credentials to the application or embed the credentials
in the application. Instead, create an IAM role that you attach to the EC2 instance to give temporary
security credentials to applications running on the instance. When an application uses these
credentials in AWS, it can perform all of the operations that are allowed by the policies attached to
the role. For details, see Using an IAM role to grant permissions to applications running on Amazon
EC2 instances (p. 270).

You're creating an app that runs on a mobile phone and that makes requests to AWS.

Don't create an IAM user and distribute the user's access key with the app. Instead, use an identity
provider like Login with Amazon, Amazon Cognito, Facebook, or Google to authenticate users and
map the users to an IAM role. The app can use the role to get temporary security credentials that
have the permissions specified by the policies attached to the role. For more information, see the
following:

• Amazon Cognito Overview in the AWS Mobile SDK for Android Developer Guide

• Amazon Cognito Overview in the AWS Mobile SDK for iOS Developer Guide

• About web identity federation (p. 178)

Users in your company are authenticated in your corporate network and want to be able to use AWS
without having to sign in again—that is, you want to allow users to federate into AWS.

Don't create IAM users. Configure a federation relationship between your enterprise identity system
and AWS. You can do this in two ways:

• If your company's identity system is compatible with SAML 2.0, you can establish trust between
your company's identity system and AWS. For more information, see About SAML 2.0-based
federation (p. 183).

• Create and use a custom proxy server that translates user identities from the enterprise into IAM
roles that provide temporary AWS security credentials. For more information, see Enabling custom
identity broker access to the AWS console (p. 212).

IAM users
An AWS Identity and Access Management (IAM) user is an entity that you create in AWS to represent the
person or application that uses it to interact with AWS. A user in AWS consists of a name and credentials.

An IAM user with administrator permissions is not the same thing as the AWS account root user. For more
information about the root user, see AWS account root user (p. 362).

Important
If you found this page because you are looking for information about the Product
Advertising API to sell Amazon products on your website, see the Product Advertising API 5.0
Documentation.

How AWS identifies an IAM user
When you create a user, IAM creates these ways to identify that user:

• A "friendly name" for the user, which is the name that you specified when you created the user, such as
Richard or Anaya. These are the names you see in the AWS Management Console.

• An Amazon Resource Name (ARN) for the user. You use the ARN when you need to uniquely identify
the user across all of AWS. For example, you could use an ARN to specify the user as a Principal in
an IAM policy for an Amazon S3 bucket. An ARN for an IAM user might look like the following:

73

https://docs.aws.amazon.com/mobile/sdkforandroid/developerguide/cognito-auth.html#d0e840
https://docs.aws.amazon.com/mobile/sdkforios/developerguide/cognito-auth.html#d0e664
https://webservices.amazon.com/paapi5/documentation/
https://webservices.amazon.com/paapi5/documentation/

AWS Identity and Access Management User Guide
Users and credentials

arn:aws:iam::account-ID-without-hyphens:user/Richard

• A unique identifier for the user. This ID is returned only when you use the API, Tools for Windows
PowerShell, or AWS CLI to create the user; you do not see this ID in the console.

For more information about these identifiers, see IAM identifiers (p. 713).

Users and credentials
You can access AWS in different ways depending on the user credentials:

• Console password (p. 91): A password that the user can type to sign in to interactive sessions such
as the AWS Management Console. Disabling the password (console access) for a user prevents them
from signing in the to the AWS Management Console using their user name and password. It does not
change their permissions or prevent them from accessing the console using an assumed role.

• Access keys (p. 102): A combination of an access key ID and a secret access key. You can assign two
to a user at a time. These can be used to make programmatic calls to AWS. If the user has active access
keys, they continue to function and allow access through the AWS CLI, Tools for Windows PowerShell,
AWS API, or the AWS Console Mobile Application.

• SSH keys for use with CodeCommit (p. 153): An SSH public key in the OpenSSH format that can be
used to authenticate with CodeCommit.

• Server certificates (p. 156): SSL/TLS certificates that you can use to authenticate with some AWS
services. We recommend that you use AWS Certificate Manager (ACM) to provision, manage, and
deploy your server certificates. Use IAM only when you must support HTTPS connections in a region
that is not supported by ACM. To learn which regions support ACM, see AWS Certificate Manager
endpoints and quotas in the AWS General Reference.

You can choose the credentials that are right for your IAM user. When you use the AWS Management
Console to create a user, you must choose to at least include a console password or access keys. By
default, a brand new IAM user created using the AWS CLI or AWS API has no credentials of any kind. You
must create the type of credentials for an IAM user based on the needs of your user.

Take advantage of the following options to administer passwords, access keys, and MFA devices:

• Manage passwords for your IAM users (p. 91). Create and change the passwords that permit
access to the AWS Management Console. Set a password policy to enforce a minimum password
complexity. Allow users to change their own passwords.

• Manage access keys for your IAM users (p. 102). Create and update access keys for programmatic
access to the resources in your account.

• You can enhance the security of the user's credentials by enabling multi-factor authentication
(MFA) (p. 110) for the user. With MFA, users have to provide two forms of identification: First, they
provide the credentials that are part of their user identity (a password or access key). In addition, they
provide a temporary numeric code that's generated on a hardware device or by an application on a
smartphone or tablet, or sent by AWS to an SMS-compatible mobile device.

• Find unused passwords and access keys (p. 146). Anyone who has a password or access keys for
your account or an IAM user in your account has access to your AWS resources. The security best
practice is to remove passwords and access keys when users no longer need them.

• Download a credential report for your account (p. 148). You can generate and download a
credential report that lists all IAM users in your account and the status of their various credentials,
including passwords, access keys, and MFA devices. For passwords and access keys, the credential
report shows how recently the password or access key has been used.

74

https://docs.aws.amazon.com/general/latest/gr/acm.html
https://docs.aws.amazon.com/general/latest/gr/acm.html
https://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html
https://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html

AWS Identity and Access Management User Guide
Users and permissions

Users and permissions
By default, a brand new IAM user has no permissions (p. 380) to do anything. The user is not authorized
to perform any AWS operations or to access any AWS resources. An advantage of having individual
IAM users is that you can assign permissions individually to each user. You might assign administrative
permissions to a few users, who then can administer your AWS resources and can even create and
manage other IAM users. In most cases, however, you want to limit a user's permissions to just the tasks
(AWS actions or operations) and resources that are needed for the job.

Imagine a user named Diego. When you create the IAM user Diego, you can create a password for
that user. You also attach permissions to the IAM user that let him launch a specific Amazon EC2
instance and read (GET) information from a table in an Amazon RDS database. For procedures on how
to create users and grant them initial credentials and permissions, see Creating an IAM user in your AWS
account (p. 75). For procedures on how to change the permissions for existing users, see Changing
permissions for an IAM user (p. 86). For procedures on how to change the user's password or access
keys, see Managing user passwords in AWS (p. 91) and Managing access keys for IAM users (p. 102).

You can also add a permissions boundary to your users. A permissions boundary is an advanced feature
that allows you to use AWS managed policies to limit the maximum permissions that an identity-based
policy can grant to a user or role. For more information about policy types and uses, see Policies and
permissions in IAM (p. 381).

Users and accounts
Each IAM user is associated with one and only one AWS account. Because users are defined within your
AWS account, they don't need to have a payment method on file with AWS. Any AWS activity performed
by users in your account is billed to your account.

The number and size of IAM resources in an AWS account are limited. For more information, see IAM and
AWS STS quotas (p. 719).

Users as service accounts
An IAM user is a resource in IAM that has associated credentials and permissions. An IAM user can
represent a person or an application that uses its credentials to make AWS requests. This is typically
referred to as a service account. If you choose to use the long-term credentials of an IAM user in your
application, do not embed access keys directly into your application code. The AWS SDKs and the AWS
Command Line Interface allow you to put access keys in known locations so that you do not have to
keep them in code. For more information, see Manage IAM User Access Keys Properly in the AWS General
Reference. Alternatively, and as a best practice, you can use temporary security credentials (IAM roles)
instead of long-term access keys.

Creating an IAM user in your AWS account

You can create one or more IAM users in your AWS account. You might create an IAM user when someone
joins your team, or when you create a new application that needs to make API calls to AWS.

Important
If you found this page because you are looking for information about the Product
Advertising API to sell Amazon products on your website, see the Product Advertising API 5.0
Documentation.
If you arrived at this page from the IAM console, it is possible that your account does not include
IAM users, even though you are signed in. You could be signed in as the AWS account root user,

75

https://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html#iam-user-access-keys
https://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html#use-roles
https://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html#use-roles
https://twitter.com/AWSSecurityInfo
https://webservices.amazon.com/paapi5/documentation/
https://webservices.amazon.com/paapi5/documentation/

AWS Identity and Access Management User Guide
Adding a user

using a role, or signed in with temporary credentials. To learn more about these IAM identities,
see IAM Identities (users, user groups, and roles) (p. 71).

Topics
• Creating IAM users (console) (p. 76)
• Creating IAM users (AWS CLI) (p. 78)
• Creating IAM users (AWS API) (p. 79)

The process of creating a user and enabling that user to perform work tasks consists of the following
steps:

1. Create the user in the AWS Management Console, the AWS CLI, Tools for Windows PowerShell, or
using an AWS API operation. If you create the user in the AWS Management Console, then steps 1–4
are handled automatically, based on your choices. If you create the users programmatically, then you
must perform each of those steps individually.

2. Create credentials for the user, depending on the type of access the user requires:
• Programmatic access: The IAM user might need to make API calls, use the AWS CLI, or use the Tools

for Windows PowerShell. In that case, create an access key (access key ID and a secret access key) for
that user.

• AWS Management Console access: If the user needs to access the AWS Management Console,
create a password for the user (p. 95). Disabling console access for a user prevents them from
signing in the to the AWS Management Console using their user name and password. It does not
change their permissions or prevent them from accessing the console using an assumed role.

As a best practice, create only the credentials that the user needs. For example, for a user who requires
access only through the AWS Management Console, do not create access keys.

3. Give the user permissions to perform the required tasks by adding the user to one or more groups.
You can also grant permissions by attaching permissions policies directly to the user. However, we
recommend instead that you put your users in groups and manage permissions through policies
that are attached to those groups. You can also use a permissions boundary (p. 395) to limit the
permissions that a user can have, though this is not common.

4. (Optional) Add metadata to the user by attaching tags. For more information about using tags in IAM,
see Tagging IAM resources (p. 296).

5. Provide the user with the necessary sign-in information. This includes the password and the console
URL for the account sign-in page where the user provides those credentials. For more information, see
How IAM users sign in to AWS (p. 81).

6. (Optional) Configure multi-factor authentication (MFA) (p. 110) for the user. MFA requires the user to
provide a one-time-use code each time he or she signs into the AWS Management Console.

7. (Optional) Give users permissions to manage their own security credentials. (By default, users do not
have permissions to manage their own credentials.) For more information, see Permitting IAM users to
change their own passwords (p. 99).

For information about the permissions that you need in order to create a user, see Permissions required
to access IAM resources (p. 546).

Creating IAM users (console)
You can use the AWS Management Console to create IAM users.

To create one or more IAM users (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

76

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Adding a user

2. In the navigation pane, choose Users and then choose Add users.

3. Type the user name for the new user. This is the sign-in name for AWS. If you want to add multiple
users, choose Add another user for each additional user and type their user names. You can add up
to 10 users at one time.

Note
The number and size of IAM resources in an AWS account are limited. For more information,
see IAM and AWS STS quotas (p. 719). User names can be a combination of up to 64
letters, digits, and these characters: plus (+), equal (=), comma (,), period (.), at sign (@),
underscore (_), and hyphen (-). Names must be unique within an account. They are not
distinguished by case. For example, you cannot create two users named TESTUSER and
testuser.

4. Select the type of access this set of users will have. You can select programmatic access, access to
the AWS Management Console, or both.

• Select Programmatic access if the users require access to the API, AWS CLI, or Tools for Windows
PowerShell. This creates an access key for each new user. You can view or download the access
keys when you get to the Final page.

• Select AWS Management Console access if the users require access to the AWS Management
Console. This creates a password for each new user.

a. For Console password, choose one of the following:

• Autogenerated password. Each user gets a randomly generated password that meets the
account password policy (p. 92). You can view or download the passwords when you get to
the Final page.

• Custom password. Each user is assigned the password that you type in the box.

b. (Optional) We recommend that you select Require password reset to ensure that users are
forced to change their password the first time they sign in.

Note
If an administrator has enabled the Allow users to change their own password
account password policy setting, then this check box does nothing. Otherwise, it
automatically attaches an AWS managed policy named IAMUserChangePassword to
the new users. The policy grants them permission to change their own passwords.

5. Choose Next: Permissions.

6. On the Set permissions page, specify how you want to assign permissions to this set of new users.
Choose one of the following three options:

• Add user to group. Choose this option if you want to assign the users to one or more groups that
already have permissions policies. IAM displays a list of the groups in your account, along with
their attached policies. You can select one or more existing groups, or choose Create group to
create a new group. For more information, see Changing permissions for an IAM user (p. 86).

• Copy permissions from existing user. Choose this option to copy all of the group memberships,
attached managed policies, embedded inline policies, and any existing permissions
boundaries (p. 395) from an existing user to the new users. IAM displays a list of the users in your
account. Select the one whose permissions most closely match the needs of your new users.

• Attach existing policies directly. Choose this option to see a list of the AWS managed and
customer managed policies in your account. Select the policies that you want to attach to the new
users or choose Create policy to open a new browser tab and create a new policy from scratch.
For more information, see step 4 in the procedure Creating IAM policies (p. 469). After you create
the policy, close that tab and return to your original tab to add the policy to the new user. As a
best practice (p. 559), we recommend that you instead attach your policies to a group and then
make users members of the appropriate groups.

7. (Optional) Set a permissions boundary (p. 395). This is an advanced feature.

77

https://console.aws.amazon.com/iam/home?#/account_settings
https://console.aws.amazon.com/iam/home?#/account_settings
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/IAMUserChangePassword

AWS Identity and Access Management User Guide
Adding a user

Open the Set permissions boundary section and choose Use a permissions boundary to control
the maximum user permissions. IAM displays a list of the AWS managed and customer managed
policies in your account. Select the policy to use for the permissions boundary or choose Create
policy to open a new browser tab and create a new policy from scratch. For more information, see
step 4 in the procedure Creating IAM policies (p. 469). After you create the policy, close that tab
and return to your original tab to select the policy to use for the permissions boundary.

8. Choose Next: Tags.

9. (Optional) Add metadata to the user by attaching tags as key-value pairs. For more information
about using tags in IAM, see Tagging IAM resources (p. 296).

10. Choose Next: Review to see all of the choices you made up to this point. When you are ready to
proceed, choose Create user.

11. To view the users' access keys (access key IDs and secret access keys), choose Show next to each
password and access key that you want to see. To save the access keys, choose Download .csv and
then save the file to a safe location.

Important
This is your only opportunity to view or download the secret access keys, and you must
provide this information to your users before they can use the AWS API. Save the user's new
access key ID and secret access key in a safe and secure place. You will not have access to
the secret keys again after this step.

12. Provide each user with his or her credentials. On the final page you can choose Send email next
to each user. Your local mail client opens with a draft that you can customize and send. The email
template includes the following details to each user:

• User name

• URL to the account sign-in page. Use the following example, substituting the correct account ID
number or account alias:

https://AWS-account-ID or alias.signin.aws.amazon.com/console

For more information, see How IAM users sign in to AWS (p. 81).

Important
The user's password is not included in the generated email. You must provide them to the
customer in a way that complies with your organization's security guidelines.

Creating IAM users (AWS CLI)
You can use the AWS CLI to create an IAM user.

To create an IAM user (AWS CLI)

1. Create a user.

• aws iam create-user

2. (Optional) Give the user access to the AWS Management Console. This requires a password. You
must also give the user the URL of your account's sign-in page. (p. 81)

• aws iam create-login-profile

3. (Optional) Give the user programmatic access. This requires access keys.

• aws iam create-access-key

• Tools for Windows PowerShell: New-IAMAccessKey

78

https://docs.aws.amazon.com/cli/latest/reference/iam/create-user.html
https://docs.aws.amazon.com/cli/latest/reference/iam/create-login-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/create-access-key.html
https://docs.aws.amazon.com/powershell/latest/reference/Index.html?page=New-IAMAccessKey.html&tocid=New-IAMAccessKey

AWS Identity and Access Management User Guide
Adding a user

• IAM API: CreateAccessKey

Important
This is your only opportunity to view or download the secret access keys, and you must
provide this information to your users before they can use the AWS API. Save the user's
new access key ID and secret access key in a safe and secure place. You will not have
access to the secret keys again after this step.

4. Add the user to one or more groups. The groups that you specify should have attached policies that
grant the appropriate permissions for the user.

• aws iam add-user-to-group

5. (Optional) Attach a policy to the user that defines the user's permissions. Note: We recommend that
you manage user permissions by adding the user to a group and attaching a policy to the group
instead of attaching directly to a user.

• aws iam attach-user-policy

6. (Optional) Add custom attributes to the user by attaching tags. For more information, see Managing
tags on IAM users (AWS CLI or AWS API) (p. 300).

7. (Optional) Give the user permission to manage their own security credentials. For more information,
see AWS: Allows MFA-authenticated IAM users to manage their own credentials on the My Security
Credentials page (p. 422).

Creating IAM users (AWS API)
You can use the AWS API to create an IAM user.

To create an IAM user from the (AWS API)

1. Create a user.

• CreateUser

2. (Optional) Give the user access to the AWS Management Console. This requires a password. You
must also give the user the URL of your account's sign-in page. (p. 81)

• CreateLoginProfile

3. (Optional) Give the user programmatic access. This requires access keys.

• CreateAccessKey

Important
This is your only opportunity to view or download the secret access keys, and you must
provide this information to your users before they can use the AWS API. Save the user's
new access key ID and secret access key in a safe and secure place. You will not have
access to the secret keys again after this step.

4. Add the user to one or more groups. The groups that you specify should have attached policies that
grant the appropriate permissions for the user.

• AddUserToGroup

5. (Optional) Attach a policy to the user that defines the user's permissions. Note: We recommend that
you manage user permissions by adding the user to a group and attaching a policy to the group
instead of attaching directly to a user.

• AttachUserPolicy

6. (Optional) Add custom attributes to the user by attaching tags. For more information, see Managing
tags on IAM users (AWS CLI or AWS API) (p. 300).

79

https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateAccessKey.html
https://docs.aws.amazon.com/cli/latest/reference/iam/add-user-to-group.html
https://docs.aws.amazon.com/cli/latest/reference/iam/attach-user-policy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateUser.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateLoginProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateAccessKey.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AddUserToGroup.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachUserPolicy.html

AWS Identity and Access Management User Guide
Controlling user access to the console

7. (Optional) Give the user permission to manage their own security credentials. For more information,
see AWS: Allows MFA-authenticated IAM users to manage their own credentials on the My Security
Credentials page (p. 422).

Controlling user access to the AWS Management
Console
Users with permission who sign in to your AWS account through the AWS Management Console can
access your AWS resources. The following list shows the ways that you can grant users access to your
AWS account resources through the AWS Management Console. It also shows how users can access other
AWS account features through the AWS website.

Note
There is no charge to use IAM.

The AWS Management Console

You create a password for each user who needs access to the AWS Management Console. Users
access the console through your IAM-enabled AWS account sign-in page. For information about
accessing the sign-in page, see Signing in to the AWS Management Console as an IAM user or
root user (p. 63). For information about creating passwords, see Managing user passwords in
AWS (p. 91).

You can disable user access to the AWS Management Console by removing their password. This
prevents them from signing into the AWS Management Console using their user name and
password. It does not change their permissions or prevent them from accessing the console using an
assumed role. If the user has active access keys, they continue to function and allow access through
the AWS CLI, Tools for Windows PowerShell, AWS API, or the AWS Console Mobile Application.

Your AWS resources, such as Amazon EC2 instances, Amazon S3 buckets, and so on

Even if your users have passwords, they still need permission to access your AWS resources. When
you create a user, that user has no permissions by default. To give your users the permissions
they need, you attach policies to them. If you have many users who perform the same tasks with
the same resources, you can assign those users to a group. Then assign the permissions to that
group. For information about creating users and groups, see IAM Identities (users, user groups, and
roles) (p. 71). For information about using policies to set permissions, see Access management for
AWS resources (p. 380).

AWS Discussion Forums

Anyone can read the posts on the AWS Discussion Forums. Users who want to post questions or
comments to the AWS Discussion Forum can do so using their user name. The first time a user posts
to the AWS Discussion Forum, the user is prompted to enter a nickname and email address. Only
that user can use that nickname in the AWS Discussion Forums.

Your AWS account billing and usage information

You can grant users access your AWS account billing and usage information. For more information,
see Controlling Access to Your Billing Information in the AWS Billing and Cost Management User
Guide.

Your AWS account profile information

Users cannot access your AWS account profile information.

Your AWS account security credentials

Users cannot access your AWS account security credentials.

80

https://forums.aws.amazon.com/
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/control-access-billing.html

AWS Identity and Access Management User Guide
How IAM users sign in to AWS

Note
IAM policies control access regardless of the interface. For example, you could provide a user
with a password to access the AWS Management Console. The policies for that user (or any
groups the user belongs to) would control what the user can do in the AWS Management
Console. Or, you could provide the user with AWS access keys for making API calls to AWS. The
policies would control which actions the user could call through a library or client that uses
those access keys for authentication.

How IAM users sign in to AWS
To sign in to the AWS Management Console as an IAM user, you must provide your account ID or account
alias in addition to your user name and password. When your administrator created your IAM user in the
console (p. 76), they should have sent you your sign-in credentials, including your user name and the
URL to your account sign-in page that includes your account ID or account alias.

https://My_AWS_Account_ID.signin.aws.amazon.com/console/

Tip
To create a bookmark for your account sign-in page in your web browser, you should manually
type the sign-in URL for your account in the bookmark entry. Do not use your web browser
bookmark feature because redirects can obscure the sign-in URL.

You can also sign in at the following general sign-in endpoint and type your account ID or account alias
manually:

https://console.aws.amazon.com/

For convenience, the AWS sign-in page uses a browser cookie to remember the IAM user name and
account information. The next time the user goes to any page in the AWS Management Console, the
console uses the cookie to redirect the user to the account sign-in page.

You have access only to the AWS resources that your administrator specifies in the policy that is attached
to your IAM user identity. To work in the console, you must have permissions to perform the actions
that the console performs, such as listing and creating AWS resources. For more information, see Access
management for AWS resources (p. 380) and Example IAM identity-based policies (p. 418).

Note
If your organization has an existing identity system, you might want to create a single sign-on
(SSO) option. SSO gives users access to the AWS Management Console for your account without
requiring them to have an IAM user identity. SSO also eliminates the need for users to sign in
to your organization's site and to AWS separately. For more information, see Enabling custom
identity broker access to the AWS console (p. 212).

Logging sign-in details in CloudTrail

If you enable CloudTrail to log sign-in events to your logs, you need to be aware of how CloudTrail
chooses where to log the events.

• If your users sign-in directly to a console, they are redirected to either a global or a regional sign-in
endpoint, based on whether the selected service console supports regions. For example, the main
console home page supports regions, so if you sign in to the following URL:

https://alias.signin.aws.amazon.com/console

you are redirected to a regional sign-in endpoint such as https://us-
east-2.signin.aws.amazon.com, resulting in a regional CloudTrail log entry in the user's region's
log:

81

https://console.aws.amazon.com/

AWS Identity and Access Management User Guide
How IAM users sign in to AWS

On the other hand, the Amazon S3 console does not support regions, so if you sign in to the following
URL

https://alias.signin.aws.amazon.com/console/s3

AWS redirects you to the global sign-in endpoint at https://signin.aws.amazon.com, resulting in
a global CloudTrail log entry.

• You can manually request a certain regional sign-in endpoint by signing in to the region-enabled main
console home page using a URL syntax like the following:

https://alias.signin.aws.amazon.com/console?region=ap-southeast-1

AWS redirects you to the ap-southeast-1 regional sign-in endpoint and results in a regional
CloudTrail log event.

For more information about CloudTrail and IAM, see Logging IAM events with CloudTrail .

If users need programmatic access to work with your account, you can create an access key pair
(an access key ID and a secret access key) for each user, as described in Managing access keys
(console) (p. 103).

Using MFA devices with your IAM sign-in page
IAM users who are configured with multi-factor authentication (MFA) (p. 110) devices must use their
MFA devices to sign in to the AWS Management Console. After the user enters the user name and
password, AWS checks the user's account to see if MFA is required for that user. The following sections
provide information on how users complete signing in when MFA is required.

Topics
• Signing in with a virtual MFA device (p. 82)
• Signing in with a U2F security key (p. 82)
• Signing in with a hardware MFA device (p. 83)

Signing in with a virtual MFA device

If MFA is required for the user, a second sign-in page appears. In the MFA code box, the user must enter
the numeric code provided by the MFA application.

If the MFA code is correct, the user can access the AWS Management Console. If the code is incorrect, the
user can try again with another code.

A virtual MFA device can go out of sync. If a user cannot sign in to the AWS Management Console after
several tries, the user is prompted to synchronize the virtual MFA device. The user can follow the on-
screen prompts to synchronize the virtual MFA device. For information about how you can synchronize
a device on behalf of a user in your AWS account, see Resynchronizing virtual and hardware MFA
devices (p. 130).

Signing in with a U2F security key

If MFA is required for the user, a second sign-in page appears. The user needs to tap the U2F security key.

Unlike other MFA devices, U2F security keys do not go out of sync. Administrators can deactivate a U2F
security key if it's lost or broken. For more information, see Deactivating MFA devices (console) (p. 134).

82

https://docs.aws.amazon.com/IAM/latest/UserGuide/cloudtrail-integration.html

AWS Identity and Access Management User Guide
Managing users

For information on browsers that support U2F and U2F devices that AWS supports, see Supported
configurations for using U2F security keys (p. 120).

Signing in with a hardware MFA device

If MFA is required for the user, a second sign-in page appears. In the MFA code box, the user must enter
the numeric code provided by a hardware MFA device.

If the MFA code is correct, the user can access the AWS Management Console. If the code is incorrect, the
user can try again with another code.

A hardware MFA device can go out of sync. If a user cannot sign in to the AWS Management Console
after several tries, the user is prompted to synchronize the MFA token device. The user can follow the on-
screen prompts to synchronize the MFA token device. For information about how you can synchronize
a device on behalf of a user in your AWS account, see Resynchronizing virtual and hardware MFA
devices (p. 130).

Managing IAM users
Amazon Web Services offers multiple tools for managing the IAM users in your AWS account. You can list
the IAM users in your account or in a user group, or list all user groups that a user is a member of. You
can rename or change the path of an IAM user. You can also delete an IAM user from your AWS account.

For more information about adding, changing, or removing managed policies for an IAM user, see
Changing permissions for an IAM user (p. 86). For information about managing inline policies for IAM
users, see Adding and removing IAM identity permissions (p. 484), Editing IAM policies (p. 495), and
Deleting IAM policies (p. 499). As a best practice, use managed policies instead of inline policies. To
learn more about validating IAM policies, see Validating IAM policies (p. 474).

For information about managing IAM user passwords, see Managing passwords for IAM users (p. 95),

Topics

• View user access (p. 83)

• Listing IAM users (p. 83)

• Renaming an IAM user (p. 84)

• Deleting an IAM user (p. 85)

View user access
Before you delete a user, you should review its recent service-level activity. This is important because
you don't want to remove access from a principal (person or application) who is using it. For more
information about viewing last accessed information, see Refining permissions in AWS using last
accessed information (p. 502).

Listing IAM users
You can list the IAM users in your AWS account or in a specific IAM user group, and list all the user
groups that a user is in. For information about the permissions that you need in order to list users, see
Permissions required to access IAM resources (p. 546).

To list all the users in the account

• AWS Management Console: In the navigation pane, choose Users. The console displays the users in
your AWS account.

83

https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Managing users

• AWS CLI: aws iam list-users
• AWS API: ListUsers

To list the users in a specific user group

• AWS Management Console: In the navigation pane, choose User groups, choose the name of the user
group, and then choose the Users tab.

• AWS CLI: aws iam get-group
• AWS API: GetGroup

To list all the user groups that a user is in

• AWS Management Console: In the navigation pane, choose Users, choose the user name, and then
choose the Groups tab.

• AWS CLI: aws iam list-groups-for-user
• AWS API: ListGroupsForUser

Renaming an IAM user
To change a user's name or path, you must use the AWS CLI, Tools for Windows PowerShell, or AWS API.
There is no option in the console to rename a user. For information about the permissions that you need
in order to rename a user, see Permissions required to access IAM resources (p. 546).

When you change a user's name or path, the following happens:

• Any policies attached to the user stay with the user under the new name.
• The user stays in the same user groups under the new name.
• The unique ID for the user remains the same. For more information about unique IDs, see Unique

identifiers (p. 718).
• Any resource or role policies that refer to the user as a principal (the user is being granted access) are

automatically updated to use the new name or path. For example, any queue-based policies in Amazon
SQS or resource-based policies in Amazon S3 are automatically updated to use the new name and
path.

IAM does not automatically update policies that refer to the user as a resource to use the new name
or path; you must manually do that. For example, imagine that user Richard has a policy attached to
him that lets him manage his security credentials. If an administrator renames Richard to Rich, the
administrator also needs to update that policy to change the resource from this:

arn:aws:iam::111122223333:user/division_abc/subdivision_xyz/Richard

to this:

arn:aws:iam::111122223333:user/division_abc/subdivision_xyz/Rich

This is true also if an administrator changes the path; the administrator needs to update the policy to
reflect the new path for the user.

To rename a user

• AWS CLI: aws iam update-user

84

https://docs.aws.amazon.com/cli/latest/reference/iam/list-users.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListUsers.html
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/get-group.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetGroup.html
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/list-groups-for-user.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListGroupsForUser.html
https://docs.aws.amazon.com/cli/latest/reference/iam/update-user.html

AWS Identity and Access Management User Guide
Managing users

• AWS API: UpdateUser

Deleting an IAM user
You might delete an IAM user from your account if someone quits your company. If the user is only
temporarily away from your company, you can disable the user's credentials instead of deleting the user
entirely from the AWS account. That way, you can prevent the user from accessing the AWS account's
resources during the absence but you can re-enable the user later.

For more information about disabling credentials, see Managing access keys for IAM users (p. 102). For
information about the permissions that you need in order to delete a user, see Permissions required to
access IAM resources (p. 546).

Topics
• Deleting an IAM user (console) (p. 85)
• Deleting an IAM user (AWS CLI) (p. 85)

Deleting an IAM user (console)

When you use the AWS Management Console to delete an IAM user, IAM automatically deletes the
following information for you:

• The user
• Any user group memberships—that is, the user is removed from any IAM user groups that the user was

a member of
• Any password associated with the user
• Any access keys belonging to the user
• All inline policies embedded in the user (policies that are applied to a user via user group permissions

are not affected)

Note
IAM removes any managed policies attached to the user when you delete the user, but does
not delete managed policies.

• Any associated MFA device

To delete an IAM user (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users, and then select the check box next to the user name that you
want to delete.

3. At the top of the page, choose Delete.
4. In the confirmation dialog box, enter the username in the text input field to confirm the deletion of

the user. Choose Delete.

Deleting an IAM user (AWS CLI)

Unlike the AWS Management Console, when you delete a user with the AWS CLI, you must delete the
items attached to the user manually. This procedure illustrates the process.

To delete a user from your account (AWS CLI)

1. Delete the user's password, if the user has one.

85

https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateUser.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Changing permissions for a user

aws iam delete-login-profile

2. Delete the user's access keys, if the user has them.

aws iam list-access-keys (to list the user's access keys) and aws iam delete-access-key

3. Delete the user's signing certificate. Note that when you delete a security credential, it's gone
forever and can't be retrieved.

aws iam list-signing-certificates (to list the user's signing certificates) and aws iam
delete-signing-certificate

4. Delete the user's SSH public key, if the user has them.

aws iam list-ssh-public-keys (to list the user's SSH public keys) and aws iam delete-
ssh-public-key

5. Delete the user's Git credentials.

aws iam list-service-specific-credentials (to list the user's git credentials) and aws
iam delete-service-specific-credential

6. Deactivate the user's multi-factor authentication (MFA) device, if the user has one.

aws iam list-mfa-devices (to list the user's MFA devices), aws iam deactivate-mfa-
device (to deactivate the device), and aws iam delete-virtual-mfa-device (to permanently
delete a virtual MFA device)

7. Delete the user's inline policies.

aws iam list-user-policies (to list the inline policies for the user) and aws iam delete-
user-policy (to delete the policy)

8. Detach any managed policies that are attached to the user.

aws iam list-attached-user-policies (to list the managed policies attached to the user)
and aws iam detach-user-policy (to detach the policy)

9. Remove the user from any user groups.

aws iam list-groups-for-user (to list the user groups to which the user belongs) and aws
iam remove-user-from-group

10. Delete the user.

aws iam delete-user

Changing permissions for an IAM user
You can change the permissions for an IAM user in your AWS account by changing its group
memberships, by copying permissions from an existing user, by attaching policies directly to a user, or by
setting a permissions boundary (p. 395). A permissions boundary controls the maximum permissions
that a user can have. Permissions boundaries are an advanced AWS feature.

For information about the permissions that you need in order to modify the permissions for a user, see
Permissions required to access IAM resources (p. 546).

Topics

• View user access (p. 87)

• Generate a policy based on a user's access activity (p. 87)

• Adding permissions to a user (console) (p. 87)

86

https://docs.aws.amazon.com/cli/latest/reference/iam/delete-login-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-access-keys.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-access-key.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-signing-certificates.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-signing-certificate.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-signing-certificate.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-ssh-public-keys.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-ssh-public-key.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-ssh-public-key.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-service-specific-credentials.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-service-specific-credential.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-service-specific-credential.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-mfa-devices.html
https://docs.aws.amazon.com/cli/latest/reference/iam/deactivate-mfa-device.html
https://docs.aws.amazon.com/cli/latest/reference/iam/deactivate-mfa-device.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-virtual-mfa-device.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-user-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-user-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-user-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-attached-user-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/detach-user-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-groups-for-user.html
https://docs.aws.amazon.com/cli/latest/reference/iam/remove-user-from-group.html
https://docs.aws.amazon.com/cli/latest/reference/iam/remove-user-from-group.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-user.html

AWS Identity and Access Management User Guide
Changing permissions for a user

• Changing permissions for a user (console) (p. 89)

• Removing a permissions policy from a user (console) (p. 90)

• Removing the permissions boundary from a user (console) (p. 91)

• Adding and removing a user's permissions (AWS CLI or AWS API) (p. 91)

View user access
Before you change the permissions for a user, you should review its recent service-level activity. This is
important because you don't want to remove access from a principal (person or application) who is using
it. For more information about viewing last accessed information, see Refining permissions in AWS using
last accessed information (p. 502).

Generate a policy based on a user's access activity
You might sometimes grant permissions to an IAM entity (user or role) beyond what they require. To
help you refine the permissions that you grant, you can generate an IAM policy that is based on the
access activity for an entity. IAM Access Analyzer reviews your AWS CloudTrail logs and generates a policy
template that contains the permissions that have been used by the entity in your specified date range.
You can use the template to create a managed policy with fine-grained permissions and then attach
it to the IAM entity. That way, you grant only the permissions that the user or role needs to interact
with AWS resources for your specific use case. To learn more, see Generate policies based on access
activity (p. 475).

Adding permissions to a user (console)
IAM offers three ways to add permissions policies to a user:

• Add user to group – Make the user a member of a group. The policies from the group are attached to
the user.

• Copy permissions from existing user – Copy all group memberships, attached managed policies,
inline policies, and any existing permissions boundaries from the source user.

• Attach policies directly to user – Attach a managed policy directly to the user. As a best
practice (p. 559), we recommend that you instead attach your policies to a group and then make
users members of the appropriate groups.

Important
If the user has a permissions boundary, then you cannot add more permissions to a user than
are allowed by the permissions boundary.

Adding permissions by adding the user to a group

Adding a user to a group affects the user immediately.

To add permissions to a user by adding the user to a group

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. Review the current group memberships for users in the Groups column of the console. If necessary,
add the column to the users table by completing the following steps:

1.
Above the table on the far right, choose the settings symbol ().

87

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Changing permissions for a user

2. In the Manage Columns dialog box, select the Groups column. Optionally, you can also clear the
check box for any column headings that you do not want to appear in the users table.

3. Choose Close to return to the list of users.

The Groups column tells you to which groups the user belongs. The column includes the group
names for up to two groups. If the user is a member of three or more groups, the first two groups
are shown (ordered alphabetically), and the number of additional group memberships is included.
For example, if the user belongs to Group A, Group B, Group C, and Group D, then the field contains
the value Group A, Group B + 2 more. To see the total number of groups to which the user belongs,
you can add the Group count column to the users table.

4. Choose the name of the user whose permissions you want to modify.
5. Choose the Permissions tab, and then choose Add permissions. Choose Add user to group.
6. Select the check box for each group that you want the user to join. The list shows each group's name

and the policies that the user receives if made a member of that group.
7. (Optional) In addition to selecting from existing groups, you can choose Create group to define a

new group:

a. In the new tab, for Group name, type a name for your new group.

Note
The number and size of IAM resources in an AWS account are limited. For more
information, see IAM and AWS STS quotas (p. 719). Group names can be a
combination of up to 128 letters, digits, and these characters: plus (+), equal (=),
comma (,), period (.), at sign (@), and hyphen (-). Names must be unique within an
account. They are not distinguished by case. For example, you cannot create two groups
named TESTGROUP and testgroup.

b. Select one or more check boxes for the managed policies that you want to attach to the group.
You can also create a new managed policy by choosing Create policy. If you do, return to this
browser tab or window when the new policy is done; choose Refresh; and then choose the new
policy to attach it to your group. For more information, see Creating IAM policies (p. 468).

c. Choose Create group.
d. Return to the original tab, refresh your list of groups. Then select the check box for your new

group.
8. Choose Next: Review to see the list of group memberships to be added to the user. Then choose

Add permissions.

Adding permissions by copying from another user

Copying permissions affects the user immediately.

To add permissions to a user by copying permissions from another user

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Choose Users in the navigation pane, choose the name of the user whose permissions you want to
modify, and then choose the Permissions tab.

3. Choose Add permissions, and then choose Copy permissions from existing user. The list displays
available users along with their group memberships and attached policies. If the full list of groups
or policies doesn't fit on one line, you can choose the link for and n more. Doing that opens a new
browser tab and see the full list of policies (Permissions tab) and groups (Groups tab).

4. Select the radio button next to the user whose permissions you want to copy.
5. Choose Next: Review to see the list of changes that are to be made to the user. Then choose Add

permissions.

88

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Changing permissions for a user

Adding permissions by attaching policies directly to the user

Attaching policies affects the user immediately.

To add permissions to a user by directly attaching managed policies

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Choose Users in the navigation pane, choose the name of the user whose permissions you want to
modify, and then choose the Permissions tab.

3. Choose Add permissions, and then choose Attach existing policies directly to user.
4. Select one or more check boxes for the managed policies that you want to attach to the user. You

can also create a new managed policy by choosing Create policy. If you do, return to this browser
tab or window when the new policy is done. Choose Refresh; and then select the check box for the
new policy to attach it to your user. For more information, see Creating IAM policies (p. 468).

5. Choose Next: Review to see the list of policies that are to be attached to the user. Then choose Add
permissions.

Setting the permissions boundary for a user

Setting a permissions boundary affects the user immediately.

To set the permissions boundary for a user

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.
3. Choose the name of the user whose permissions boundary you want to change.
4. Choose the Permissions tab. If necessary, open the Permissions boundary section and then choose

Set boundary.
5. Select the policy that you want to use for the permissions boundary.
6. Choose Set boundary.

Changing permissions for a user (console)
IAM allows you to change the permissions that are associated with a user in the following ways:

• Edit a permissions policy – Edit a user's inline policy, the inline policy of the user's group, or edit a
managed policy that is attached to the user directly or from a group. If the user has a permissions
boundary, then you cannot provide more permissions than are allowed by the policy that was used as
the user's permissions boundary.

• Changing the permissions boundary – Change the policy that is used as the permissions boundary for
the user. This can expand or restrict the maximum permissions that a user can have.

Editing a permissions policy attached to a user

Changing permissions affects the user immediately.

To edit a user's attached managed policies

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

89

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Changing permissions for a user

2. In the navigation pane, choose Users.

3. Choose the name of the user whose permissions policy you want to change.

4. Choose the Permissions tab. If necessary, open the Permissions policies section.

5. Choose the name of the policy that you want to edit to view details about the policy. Choose the
Used as tab to view other entities that might be affected if you edit the policy.

6. Choose the Permissions tab and review the permissions granted by the policy. Then choose Edit
policy.

7. Edit the policy using the Visual editor tab or the JSON tab and resolve any policy
validation (p. 474) recommendations. For more information, see Editing IAM policies (p. 495).

8. Choose Review policy, review the policy summary, and then choose Save changes.

Changing the permissions boundary for a user

Changing a permissions boundary affects the user immediately.

To change the policy used to set the permissions boundary for a user

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. Choose the name of the user whose permissions boundary you want to change.

4. Choose the Permissions tab. If necessary, open the Permissions boundary section and then choose
Change boundary.

5. Select the policy that you want to use for the permissions boundary.

6. Choose Change boundary.

Removing a permissions policy from a user (console)

Removing a policy affects the user immediately.

To revoke permissions for IAM users

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. Choose the name of the user whose permissions boundary you want to remove.

4. Choose the Permissions tab.

5. If you want to revoke permissions by removing an existing policy, view the Policy type to
understand how the user is getting that policy before choosing X to remove the policy:

• If the policy applies because of group membership, then choosing X removes the user from the
group. Remember that you might have multiple policies attached to a single group. If you remove
a user from a group, the user loses access to all policies that it received through that group
membership.

• If the policy is a managed policy attached directly to the user, then choosing X detaches the policy
from the user. This does not affect the policy itself or any other entity that the policy might be
attached to.

• If the policy is an inline embedded policy, then choosing X removes the policy from IAM. Inline
policies that are attached directly to a user exist only on that user.

90

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Managing passwords

Removing the permissions boundary from a user (console)
Removing a permissions boundary affects the user immediately.

To remove the permissions boundary from a user

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.
3. Choose the name of the user whose permissions boundary you want to remove.
4. Choose the Permissions tab. If necessary, open the Permissions boundary section and then choose

Remove boundary.
5. Choose Remove to confirm that you want to remove the permissions boundary.

Adding and removing a user's permissions (AWS CLI or AWS API)
To add or remove permissions programmatically, you must add or remove the group memberships,
attach or detach the managed policies, or add or delete the inline policies. For more information, see the
following topics:

• Adding and removing users in an IAM user group (p. 164)
• Adding and removing IAM identity permissions (p. 484)

Managing user passwords in AWS
You can manage passwords for your AWS account root user and for IAM users in your account. IAM users
need passwords in order to access the AWS Management Console. Users do not need passwords to access
AWS resources programmatically by using the AWS CLI, Tools for Windows PowerShell, the AWS SDKs or
APIs. For those environments, users need access keys (p. 102) instead.

Contents
• Changing the AWS account root user password (p. 91)
• Setting an account password policy for IAM users (p. 92)
• Managing passwords for IAM users (p. 95)
• Permitting IAM users to change their own passwords (p. 99)
• How an IAM user changes their own password (p. 100)

Changing the AWS account root user password
You must be signed in as the AWS account root user and not an IAM user to change the root user
password. To learn how to reset a forgotten root user password, see Resetting lost or forgotten
passwords or access keys for AWS (p. 109).

To change the password for the root user

1. Use your AWS account email address and password to sign in to the AWS Management Console as
the AWS account root user.

Note
If you see three text boxes, then you previously signed in to the console with IAM user
credentials. Your browser might remember this preference and open this account-specific

91

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html

AWS Identity and Access Management User Guide
Managing passwords

sign-in page every time that you try to sign in. You cannot use the IAM user sign-in page to
sign in as the account owner. If you see the IAM user sign-in page, choose Sign in using root
user email near the bottom of the page. This returns you to the main sign-in page. From
there, you can sign in as the root user using your AWS account email address and password.

2. In the upper right corner of the console, choose your account name or number and then choose My
Security Credentials.

3. Expand the Password section and choose the Click here text to change your password.

4. Choose a strong password. Although you can set an account password policy for IAM users (p. 92),
that policy does not apply to your AWS account root user.

AWS requires that your password meet these conditions:

• have a minimum of 8 characters and a maximum of 128 characters

• include a minimum of three of the following mix of character types: uppercase, lowercase,
numbers, and ! @ # $ % ^ & * () <> [] {} | _+-= symbols

• not be identical to your AWS account name or email address

Note
AWS is rolling out improvements to the sign-in process. One of those improvements is to
enforce a more secure password policy for your account. If your account has been upgraded,
you are required to meet the password policy above. If your account has not yet been
upgraded, then AWS does not enforce this policy, but highly recommends that you follow
its guidelines for a more secure password.

To protect your password, it's important to follow these best practices:

• Change your password periodically and keep your password private, since anyone who knows your
password may access your account.

• Use a different password on AWS than you use on other sites.

• Avoid passwords that are easy to guess. These include passwords such as secret, password,
amazon, or 123456. They also include things like a dictionary word, your name, email address, or
other personal information that can easily be obtained.

Setting an account password policy for IAM users

You can set a custom password policy on your AWS account to specify complexity requirements and
mandatory rotation periods for your IAM users' passwords. If you don't set a custom password policy,
IAM user passwords must meet the default AWS password policy. For more information, see Custom
password policy options (p. 94).

Topics

• Rules for setting a password policy (p. 93)

• Permissions required to set a password policy (p. 93)

• Default password policy (p. 94)

• Custom password policy options (p. 94)

• Setting a password policy (console) (p. 94)

• Setting a password policy (AWS CLI) (p. 95)

• Setting a password policy (AWS API) (p. 95)

92

https://docs.aws.amazon.com/IAM/latest/UserGuide/ console.html#user-sign-in-page

AWS Identity and Access Management User Guide
Managing passwords

Rules for setting a password policy

The IAM password policy does not apply to the AWS account root user password or IAM user access keys.
If a password expires, the IAM user can't sign in to the AWS Management Console but can continue to use
their access keys.

When you create or change a password policy, most of the password policy settings are enforced the
next time your users change their passwords. However, some of the settings are enforced immediately.
For example:

• When the minimum length and character type requirements change, these settings are enforced
the next time that your users change their passwords. Users are not forced to change their existing
passwords, even if the existing passwords do not adhere to the updated password policy.

• When you set a password expiration period, the expiration period is enforced immediately. For
example, assume that you set a password expiration period of 90 days. In that case, the password
expires for all IAM users whose existing password is older than 90 days. Those users are required to
change their password the next time that they sign in.

You can't create a "lockout policy" to lock a user out of the account after a specified number of failed
sign-in attempts. For enhanced security, we recommend that you combine a strong password policy
with multi-factor authentication (MFA). For more information about MFA, see Using multi-factor
authentication (MFA) in AWS (p. 110).

Permissions required to set a password policy

You must configure permissions to allow an IAM entity (user or role) to view or edit their account
password policy. You can include the following password policy actions in an IAM policy:

• iam:GetAccountPasswordPolicy – Allows the entity to view the password policy for their account

• iam:DeleteAccountPasswordPolicy – Allows the entity to delete the custom password policy for
their account and revert to the default password policy

• iam:UpdateAccountPasswordPolicy – Allows the entity to create or change the custom password
policy for their account

The following policy allows full access to view and edit the account password policy. To learn how to
create an IAM policy using this example JSON policy document, see the section called “Creating policies
on the JSON tab” (p. 469).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "FullAccessPasswordPolicy",
 "Effect": "Allow",
 "Action": [
 "iam:GetAccountPasswordPolicy",
 "iam:DeleteAccountPasswordPolicy",
 "iam:UpdateAccountPasswordPolicy"
],
 "Resource": "*"
 }
]
}

For information about the permissions required for an IAM user to change their own password, see
Permitting IAM users to change their own passwords (p. 99).

93

AWS Identity and Access Management User Guide
Managing passwords

Default password policy

If an administrator does not set a custom password policy, IAM user passwords must meet the default
AWS password policy. The default password policy enforces the following conditions:

• Minimum password length of 8 characters and a maximum length of 128 characters
• Minimum of three of the following mix of character types: uppercase, lowercase, numbers, and ! @ #
$ % ^ & * () _ + - = [] { } | ' symbols

• Not be identical to your AWS account name or email address

Custom password policy options

When you configure a custom password policy for your account, you can specify the following conditions:

• Password minimum length – You can specify a minimum of 6 characters and a maximum of 128
characters.

• Password strength – You can select any of the following check boxes to define the strength of your
IAM user passwords:
• Require at least one uppercase letter from Latin alphabet (A–Z)
• Require at least one lowercase letter from Latin alphabet (a–z)
• Require at least one number
• Require at least one nonalphanumeric character ! @ # $ % ^ & * () _ + - = [] { } | '

• Enable password expiration – You can select and specify a minimum of 1 and a maximum of 1,095
days that IAM user passwords are valid after they are set. For example, after 90 days a user's password
expires and they must set a new password before accessing the AWS Management Console. The AWS
Management Console warns IAM users when they are within 15 days of password expiration. IAM users
can change their password at any time if they have permission. When they set a new password, the
expiration period for that password starts over. An IAM user can have only one valid password at a
time.

• Password expiration requires administrator reset – Select this option to prevent IAM users from
updating their own passwords after the password expires. Before you select this option, confirm
that your AWS account has more than one user with administrative permissions to reset IAM user
passwords. Also consider providing access keys to allow administrators to reset IAM user passwords
programmatically. If you clear this check box, IAM users with expired passwords must still set a new
password before they can access the AWS Management Console.

• Allow users to change their own password – You can permit all IAM users in your account to use
the IAM console to change their own passwords, as described in Permitting IAM users to change
their own passwords (p. 99). Alternatively, you can allow only some users to manage passwords,
either for themselves or for others. To do so, you clear this check box. For more information about
using policies to limit who can manage passwords, see Permitting IAM users to change their own
passwords (p. 99).

• Prevent password reuse – You can prevent IAM users from reusing a specified number of previous
passwords. You can specify a minimum number of 1 and a maximum number of 24 previous passwords
that can't be repeated.

Setting a password policy (console)

You can use the AWS Management Console to create, change, or delete a custom password policy.

To create a custom password policy (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

94

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Managing passwords

2. In the navigation pane, choose Account settings.
3. In the Password policy section, choose Change password policy.
4. Select the options that you want to apply to your password policy and choose Save changes.

To change a custom password policy (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Account settings.
3. In the Password policy section, choose Change.
4. Select the options that you want to apply to your password policy and choose Save changes.

To delete a password policy (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Account settings.
3. In the Password policy section, choose Delete.
4. Confirm that you want to delete the custom password policy by choosing Delete custom.

Setting a password policy (AWS CLI)

You can use the AWS Command Line Interface to set a password policy.

To manage the custom account password policy from the AWS CLI

Run the following commands:

• To create or change the custom password policy: aws iam update-account-password-policy
• To view the password policy: aws iam get-account-password-policy
• To delete the custom password policy: aws iam delete-account-password-policy

Setting a password policy (AWS API)

You can use AWS API operations to set a password policy.

To manage the custom account password policy from the AWS API

Call the following operations:

• To create or change the custom password policy: UpdateAccountPasswordPolicy
• To view the password policy: GetAccountPasswordPolicy
• To delete the custom password policy: DeleteAccountPasswordPolicy

Managing passwords for IAM users
IAM users who use the AWS Management Console to work with AWS resources must have a password in
order to sign in. You can create, change, or delete a password for an IAM user in your AWS account.

After you have assigned a password to a user, the user can sign in to the AWS Management Console
using the sign-in URL for your account, which looks like this:

95

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/update-account-password-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-account-password-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-account-password-policy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateAccountPasswordPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetAccountPasswordPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteAccountPasswordPolicy.html

AWS Identity and Access Management User Guide
Managing passwords

https://12-digit-AWS-account-ID or alias.signin.aws.amazon.com/console

For more information about how IAM users sign in to the AWS Management Console, see Signing in to
the AWS Management Console as an IAM user or root user (p. 63).

Even if your users have their own passwords, they still need permissions to access your AWS resources.
By default, a user has no permissions. To give your users the permissions they need, you assign
policies to them or to the groups they belong to. For information about creating users and groups,
see IAM Identities (users, user groups, and roles) (p. 71). For information about using policies to set
permissions, see Changing permissions for an IAM user (p. 86).

You can grant users permission to change their own passwords. For more information, see Permitting
IAM users to change their own passwords (p. 99). For information about how users access your
account sign-in page, see Signing in to the AWS Management Console as an IAM user or root user (p. 63).

Topics

• Creating, changing, or deleting an IAM user password (console) (p. 96)

• Creating, changing, or deleting an IAM user password (AWS CLI) (p. 98)

• Creating, changing, or deleting an IAM user password (AWS API) (p. 98)

Creating, changing, or deleting an IAM user password (console)

You can use the AWS Management Console to manage passwords for your IAM users.

When users leave your organization or no longer need AWS access, it is important to find the credentials
that they were using and ensure that they are no longer operational. Ideally, you delete credentials if
they are no longer needed. You can always recreate them at a later date if the need arises. At the very
least, you should change the credentials so that the former users no longer have access.

To add a password for an IAM user (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. Choose the name of the user whose password you want to create.

4. Choose the Security credentials tab, and then under Sign-in credentials, choose Manage password
next to Console password.

5. In Manage console access, for Console access choose Enable if not already selected. If console
access is disabled, then no password is needed.

6. For Set password, choose whether to have IAM generate a password or create a custom password:

• To have IAM generate a password, choose Autogenerated password.

• To create a custom password, choose Custom password, and type the password.

Note
The password that you create must meet the account's password policy (p. 92).

7. To require the user to create a new password when signing in, choose Require password reset. Then
choose Apply.

Important
If you select the Require password reset option, make sure that the user has permission to
change his or her password. For more information, see Permitting IAM users to change their
own passwords (p. 99).

96

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Managing passwords

8. If you choose the option to generate a password, choose Show in the New password dialog box.
This lets you view the password so you can share it with the user.

Important
For security reasons, you cannot access the password after completing this step, but you can
create a new password at any time.

To change the password for an IAM user (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.
3. Choose the name of the user whose password you want to change.
4. Choose the Security credentials tab, and then under Sign-in credentials, choose Manage password

next to Console password.
5. In Manage console access, for Console access choose Enable if not already selected. If console

access is disabled, then no password is needed.
6. For Set password, choose whether to have IAM generate a password or create a custom password:

• To have IAM generate a password, choose Autogenerated password.
• To create a custom password, choose Custom password, and type the password.

Note
The password that you create must meet the account's password policy (p. 92), if one
is currently set.

7. To require the user to create a new password when signing in, choose Require password reset. Then
choose Apply.

Important
If you select the Require password reset option, make sure that the user has permission to
change his or her password. For more information, see Permitting IAM users to change their
own passwords (p. 99).

8. If you choose the option to generate a password, choose Show in the New password dialog box.
This lets you view the password so you can share it with the user.

Important
For security reasons, you cannot access the password after completing this step, but you can
create a new password at any time.

To delete (disable) an IAM user's password (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.
3. Choose the name of the user whose password you want to delete.
4. Choose the Security credentials tab, and then under Sign-in credentials, choose Manage password

next to Console password.
5. For Console access, choose Disable, and then choose Apply.

Important
You can disable user access to the AWS Management Console by removing their password. This
prevents them from signing in the to the AWS Management Console using their user name and
password. It does not change their permissions or prevent them from accessing the console
using an assumed role. If the user has active access keys, they continue to function and allow

97

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Managing passwords

access through the AWS CLI, Tools for Windows PowerShell, AWS API, or the AWS Console
Mobile Application.

Creating, changing, or deleting an IAM user password (AWS CLI)

You can use the AWS CLI API to manage passwords for your IAM users.

To create a password (AWS CLI)

1. (Optional) To determine whether a user has a password, run this command: aws iam get-login-
profile

2. To create a password, run this command: aws iam create-login-profile

To change a user's password (AWS CLI)

1. (Optional) To determine whether a user has a password, run this command: aws iam get-login-
profile

2. To change a password, run this command: aws iam update-login-profile

To delete (disable) a user's password (AWS CLI)

1. (Optional) To determine whether a user has a password, run this command: aws iam get-login-
profile

2. (Optional) To determine when a password was last used, run this command: aws iam get-user
3. To delete a password, run this command: aws iam delete-login-profile

Important
When you delete a user's password, the user can no longer sign in to the AWS Management
Console. If the user has active access keys, they continue to function and allow access through
the AWS CLI, Tools for Windows PowerShell, or AWS API function calls. When you use the AWS
CLI, Tools for Windows PowerShell, or AWS API to delete a user from your AWS account, you
must first delete the password using this operation. For more information, see Deleting an IAM
user (AWS CLI) (p. 85).

Creating, changing, or deleting an IAM user password (AWS API)

You can use the AWS API to manage passwords for your IAM users.

To create a password (AWS API)

1. (Optional) To determine whether a user has a password, call this operation: GetLoginProfile
2. To create a password, call this operation: CreateLoginProfile

To change a user's password (AWS API)

1. (Optional) To determine whether a user has a password, call this operation: GetLoginProfile
2. To change a password, call this operation: UpdateLoginProfile

To delete (disable) a user's password (AWS API)

1. (Optional) To determine whether a user has a password, run this command: GetLoginProfile
2. (Optional) To determine when a password was last used, run this command: GetUser
3. To delete a password, run this command: DeleteLoginProfile

98

https://docs.aws.amazon.com/cli/latest/reference/iam/get-login-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-login-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/create-login-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-login-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-login-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/update-login-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-login-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-login-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-user.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-login-profile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetLoginProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateLoginProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetLoginProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateLoginProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetLoginProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetUser.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteLoginProfile.html

AWS Identity and Access Management User Guide
Managing passwords

Important
When you delete a user's password, the user can no longer sign in to the AWS Management
Console. If the user has active access keys, they continue to function and allow access through
the AWS CLI, Tools for Windows PowerShell, or AWS API function calls. When you use the AWS
CLI, Tools for Windows PowerShell, or AWS API to delete a user from your AWS account, you
must first delete the password using this operation. For more information, see Deleting an IAM
user (AWS CLI) (p. 85).

Permitting IAM users to change their own passwords
You can grant IAM users the permission to change their own passwords for signing in to the AWS
Management Console. You can do this in one of two ways:

• Allow all IAM users in the account to change their own passwords (p. 99).
• Allow only selected IAM users to change their own passwords (p. 99). In this scenario, you disable

the option for all users to change their own passwords and you use an IAM policy to grant permissions
to only some users. This approach allows those users to change their own passwords and optionally
other credentials like their own access keys.

Important
We recommend that you set a custom password policy (p. 92) that requires IAM users to
create strong passwords.

To allow all IAM users change their own passwords

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, click Account settings.
3. In the Password policy section, choose Change password policy if your account uses the default

password policy. If your account uses a custom password policy, choose Change.
4. Select Allow users to change their own password, and then click save changes.
5. Provide users with the following instructions for changing their passwords: How an IAM user

changes their own password (p. 100).

For information about the AWS CLI, Tools for Windows PowerShell, and API commands that you can use
to change the account's password policy (which includes letting all users change their own passwords),
see Setting a password policy (AWS CLI) (p. 95).

To allow selected IAM users change their own passwords

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, click Account settings.
3. In the Password policy section, make sure that Allow users to change their own password is not

selected. If this check box is selected, all users can change their own passwords. (See the previous
procedure.)

4. Create the users who should be allowed to change their own password, if they do not already exist.
For details, see Creating an IAM user in your AWS account (p. 75).

5. Create an IAM group for the users who should be allowed to change their passwords, and then add
the users from the previous step to the group. For details, see Creating your first IAM admin user and
user group (p. 19) and Managing IAM user groups (p. 163).

This step is optional, but it's a best practice to use groups to manage permissions. That way, you can
add and remove users and change the permissions for the group as a whole.

99

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Managing passwords

6. Assign the following policy to the group. For more information, see Managing IAM policies (p. 468).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:GetAccountPasswordPolicy",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "iam:ChangePassword",
 "Resource": "arn:aws:iam::account-id-without-hyphens:user/${aws:username}"
 }
]
}

This policy grants access to the ChangePassword action, which lets users change only their own
passwords from the console, the AWS CLI, Tools for Windows PowerShell, or the API. It also grants
access to the GetAccountPasswordPolicy action, which lets the user view the current password
policy; this permission is required so that the user can view the account password policy on the
Change password page. The user must be allowed to read the current password policy to ensure
that the changed password meets the requirements of the policy.

7. Provide users with the following instructions for changing their passwords: How an IAM user
changes their own password (p. 100).

For more information

For more information on managing credentials, see the following topics:

• Permitting IAM users to change their own passwords (p. 99)

• Managing user passwords in AWS (p. 91)

• Setting an account password policy for IAM users (p. 92)

• Managing IAM policies (p. 468)

• How an IAM user changes their own password (p. 100)

How an IAM user changes their own password

If you have been granted permission to change your own IAM user password, you can use a special page
in the AWS Management Console to do this. You can also use the AWS CLI or AWS API.

Topics

• Permissions required (p. 100)

• How IAM users change their own password (console) (p. 101)

• How IAM users change their own password (AWS CLI or AWS API) (p. 101)

Permissions required

To change the password for your own IAM user, you must have the permissions from the following
policy: AWS: Allows IAM users to change their own console password on the My Security Credentials
page (p. 430).

100

https://docs.aws.amazon.com/IAM/latest/APIReference/API_ChangePassword.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetAccountPasswordPolicy.html

AWS Identity and Access Management User Guide
Managing passwords

How IAM users change their own password (console)

The following procedure describes how IAM users can use the AWS Management Console to change their
own password.

To change your own IAM user password (console)

1. Use your AWS account ID or account alias, your IAM user name, and your password to sign in to the
IAM console.

Note
For your convenience, the AWS sign-in page uses a browser cookie to remember your IAM
user name and account information. If you previously signed in as a different user, choose
Sign in to a different account near the bottom of the page to return to the main sign-in
page. From there, you can type your AWS account ID or account alias to be redirected to the
IAM user sign-in page for your account.

To get your AWS account ID, contact your administrator.

2. In the navigation bar on the upper right, choose your user name, and then choose My Security
Credentials.

3. On the AWS IAM Credentials tab, choose Change password.

4. For Current password, enter your current password. Enter a new password for New password and
Confirm new password. Then choose Change password.

Note
The new password must meet the requirements of the account password policy. For more
information, see Setting an account password policy for IAM users (p. 92).

How IAM users change their own password (AWS CLI or AWS API)

The following procedure describes how IAM users can use the AWS CLI or AWS API to change their own
password.

To change your own IAM password, use the following:

• AWS CLI: aws iam change-password

101

https://console.aws.amazon.com/iam
https://docs.aws.amazon.com/cli/latest/reference/iam/change-password.html

AWS Identity and Access Management User Guide
Access keys

• AWS API: ChangePassword

Managing access keys for IAM users

Note
If you found this page because you are looking for information about the Product
Advertising API to sell Amazon products on your website, see the Product Advertising API 5.0
Documentation.

Access keys are long-term credentials for an IAM user or the AWS account root user. You can use access
keys to sign programmatic requests to the AWS CLI or AWS API (directly or using the AWS SDK). For more
information, see Signing AWS API Requests in the Amazon Web Services General Reference.

Access keys consist of two parts: an access key ID (for example, AKIAIOSFODNN7EXAMPLE) and a secret
access key (for example, wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY). Like a user name and
password, you must use both the access key ID and secret access key together to authenticate your
requests. Manage your access keys as securely as you do your user name and password.

Important
Do not provide your access keys to a third party, even to help find your canonical user ID. By
doing this, you might give someone permanent access to your account.

As a best practice, use temporary security credentials (IAM roles) instead of access keys, and disable any
AWS account root user access keys. For more information, see Best Practices for Managing AWS Access
Keys in the Amazon Web Services General Reference.

If you still need to use long-term access keys, you can create, modify, view, or rotate your access keys
(access key IDs and secret access keys). You can have a maximum of two access keys. This allows you to
rotate the active keys according to best practices.

When you create an access key pair, save the access key ID and secret access key in a secure location. The
secret access key is available only at the time you create it. If you lose your secret access key, you must
delete the access key and create a new one. For more details, see Resetting lost or forgotten passwords
or access keys for AWS (p. 109).

Topics

• Permissions required (p. 102)

• Managing access keys (console) (p. 103)

• Managing access keys (AWS CLI) (p. 105)

• Managing access keys (AWS API) (p. 106)

• Rotating access keys (p. 106)

• Auditing access keys (p. 109)

Permissions required

To create access keys for your own IAM user, you must have the permissions from the following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CreateOwnAccessKeys",

102

https://docs.aws.amazon.com/IAM/latest/APIReference/API_ChangePassword.html
https://twitter.com/AWSSecurityInfo
https://webservices.amazon.com/paapi5/documentation/
https://webservices.amazon.com/paapi5/documentation/
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html#FindingCanonicalId
https://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html
https://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html

AWS Identity and Access Management User Guide
Access keys

 "Effect": "Allow",
 "Action": [
 "iam:CreateAccessKey",
 "iam:GetUser",
 "iam:ListAccessKeys"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 }
]
}

To rotate access keys for your own IAM user, you must have the permissions from the following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ManageOwnAccessKeys",
 "Effect": "Allow",
 "Action": [
 "iam:CreateAccessKey",
 "iam:DeleteAccessKey",
 "iam:GetAccessKeyLastUsed",
 "iam:GetUser",
 "iam:ListAccessKeys",
 "iam:UpdateAccessKey"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 }
]
}

Managing access keys (console)

You can use the AWS Management Console to manage an IAM user's access keys.

To create, modify, or delete your own IAM user access keys (console)

1. Use your AWS account ID or account alias, your IAM user name, and your password to sign in to the
IAM console.

Note
For your convenience, the AWS sign-in page uses a browser cookie to remember your IAM
user name and account information. If you previously signed in as a different user, choose
Sign in to a different account near the bottom of the page to return to the main sign-in
page. From there, you can type your AWS account ID or account alias to be redirected to the
IAM user sign-in page for your account.

To get your AWS account ID, contact your administrator.

2. In the navigation bar on the upper right, choose your user name, and then choose My Security
Credentials.

103

https://console.aws.amazon.com/iam

AWS Identity and Access Management User Guide
Access keys

3. Expand the Access keys (access key ID and secret access key) section.

4. Do any of the following:

• To create an access key, choose Create New Access Key. If this feature is disabled, then you must
delete one of the existing keys before you can create a new one. A warning explains that you have
only this one opportunity to view or download the secret access key. To copy the key to paste it
somewhere else for safekeeping, choose Show Access Key. To save the access key ID and secret
access key to a .csv file to a secure location on your computer, choose Download Key File.

• To disable an active access key, choose Make Inactive.

• To reenable an inactive access key, choose Make Active.

• To delete your access key, choose Delete. AWS recommends that before you do this, you first
deactivate the key and test that it’s no longer in use. When you use the AWS Management
Console, you must deactivate your key before deleting it.

To create, modify, or delete another IAM user's access keys (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. Choose the name of the user whose access keys you want to manage, and then choose the Security
credentials tab.

4. In the Access keys section, do any of the following:

• To create an access key, choose Create access key. Then choose Download .csv file to save the
access key ID and secret access key to a CSV file on your computer. Store the file in a secure
location. You will not have access to the secret access key again after this dialog box closes. After
you download the CSV file, choose Close. When you create an access key, the key pair is active by
default, and you can use the pair right away.

• To disable an active access key, choose Make inactive.

• To reenable an inactive access key, choose Make active.

• To delete your access key, choose Delete. AWS recommends that before you do this, you first
deactivate the key and test that it’s no longer in use. When you use the AWS Management
Console, you must deactivate your key before deleting it.

104

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Access keys

To list the access keys for an IAM user (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. Choose the name of the intended user, and then choose the Security credentials tab. The user's
access keys and the status of each key is displayed.

Note
Only the user's access key ID is visible. The secret access key can only be retrieved when the
key is created.

To list the access key IDs for multiple IAM users (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. If necessary, add the Access key ID column to the users table by completing the following steps:

a.
Above the table on the far right, choose the settings icon ().

b. In Manage columns, select Access key ID.

c. Choose Close to return to the list of users.

4. The Access key ID column shows each access key ID, followed by its state; for example,
23478207027842073230762374023 (Active) or 22093740239670237024843420327 (Inactive).

You can use this information to view and copy the access keys for users with one or two access keys.
The column displays None for users with no access key.

Note
Only the user's access key ID and status is visible. The secret access key can only be retrieved
when the key is created.

To find which IAM user owns a specific access key (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. In the search box, type or paste the access key ID of the user you want to find.

4. If necessary, add the Access key ID column to the users table by completing the following steps:

a.
Above the table on the far right, choose the settings icon ().

b. In Manage columns, select Access key ID.

c. Choose Close to return to the list of users and confirm that the filtered user owns the specified
access key.

Managing access keys (AWS CLI)
To manage an IAM user's access keys from the AWS CLI, run the following commands.

• To create an access key: aws iam create-access-key

• To disable or reenable an access key: aws iam update-access-key

105

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/create-access-key.html
https://docs.aws.amazon.com/cli/latest/reference/iam/update-access-key.html

AWS Identity and Access Management User Guide
Access keys

• To list a user's access keys: aws iam list-access-keys
• To determine when an access key was most recently used: aws iam get-access-key-last-used
• To delete an access key: aws iam delete-access-key

Managing access keys (AWS API)
To manage an IAM user's access keys from the AWS API, call the following operations.

• To create an access key: CreateAccessKey
• To disable or reenable an access key: UpdateAccessKey
• To list a user's access keys: ListAccessKeys
• To determine when an access key was most recently used: GetAccessKeyLastUsed
• To delete an access key: DeleteAccessKey

Rotating access keys
As a security best practice, we recommend that you regularly rotate (change) IAM user access keys. If
your administrator granted you the necessary permissions, you can rotate your own access keys.

Administrators, for details about granting your users permissions to rotate their own access keys, see
AWS: Allows IAM users to manage their own password, access keys, and SSH public keys on the My
Security Credentials page (p. 431). You can also apply a password policy to your account to require that
all of your IAM users periodically rotate their passwords. You can choose how often they must do so. For
more information, see Setting an account password policy for IAM users (p. 92).

Important
As a best practice, do not use your AWS account root user. If you use the AWS account root user
credentials, we recommend that you also regularly rotate them. The account password policy
does not apply to the root user credentials. IAM users cannot manage credentials for the AWS
account root user, so you must use the root user credentials (not a user's) to change the root
user credentials. Note that we recommend against using the root user for everyday work in AWS.

Topics
• Rotating IAM user access keys (console) (p. 106)
• Rotating access keys (AWS CLI) (p. 107)
• Rotating access keys (AWS API) (p. 108)

Rotating IAM user access keys (console)

You can rotate access keys from the AWS Management Console.

To rotate access keys for an IAM user without interrupting your applications (console)

1. While the first access key is still active, create a second access key.

a. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

b. In the navigation pane, choose Users.
c. Choose the name of the intended user, and then choose the Security credentials tab.
d. Choose Create access key and then choose Download .csv file to save the access key ID and

secret access key to a .csv file on your computer. Store the file in a secure location. You will not
have access to the secret access key again after this closes. After you have downloaded the .csv
file, choose Close.

106

https://docs.aws.amazon.com/cli/latest/reference/iam/list-access-keys.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-access-key-last-used.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-access-key.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateAccessKey.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateAccessKey.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAccessKeys.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetAccessKeyLastUsed.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteAccessKey.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Access keys

The new access key is active by default. At this point, the user has two active access keys.
2. Update all applications and tools to use the new access key.
3. Determine whether the first access key is still in use by reviewing the Last used column for the

oldest access key. One approach is to wait several days and then check the old access key for any use
before proceeding.

4. Even if the Last used column value indicates that the old key has never been used, we recommend
that you do not immediately delete the first access key. Instead, choose Make inactive to deactivate
the first access key.

5. Use only the new access key to confirm that your applications are working. Any applications and
tools that still use the original access key will stop working at this point because they no longer
have access to AWS resources. If you find such an application or tool, you can choose Make active to
reenable the first access key. Then return to Step 3 (p. 107) and update this application to use the
new key.

6. After you wait some period of time to ensure that all applications and tools have been updated, you
can delete the first access key:

a. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

b. In the navigation pane, choose Users.
c. Choose the name of the intended user, and then choose the Security credentials tab.
d. Locate the access key to delete and choose its X button at the far right of the row. Enter the

access key ID to confirm the deletion and then choose Delete.

To determine when access keys need rotating (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.
3. If necessary, add the Access key age column to the users table by completing the following steps:

a.
Above the table on the far right, choose the settings icon ().

b. In Manage columns, select Access key age.
c. Choose Close to return to the list of users.

4. The Access key age column shows the number of days since the oldest active access key was created.
You can use this information to find users with access keys that need rotating. The column displays
None for users with no access key.

Rotating access keys (AWS CLI)

You can rotate access keys from the AWS Command Line Interface.

To rotate access keys without interrupting your applications (AWS CLI)

1. While the first access key is still active, create a second access key, which is active by default. Run the
following command:

• aws iam create-access-key

At this point, the user has two active access keys.
2. Update all applications and tools to use the new access key.
3. Determine whether the first access key is still in use by using this command:

107

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/create-access-key.html

AWS Identity and Access Management User Guide
Access keys

• aws iam get-access-key-last-used

One approach is to wait several days and then check the old access key for any use before
proceeding.

4. Even if step Step 3 indicates no use of the old key, we recommend that you do not immediately
delete the first access key. Instead, change the state of the first access key to Inactive using this
command:

• aws iam update-access-key

5. Use only the new access key to confirm that your applications are working. Any applications and
tools that still use the original access key will stop working at this point because they no longer
have access to AWS resources. If you find such an application or tool, you can switch its state back
to Active to reenable the first access key. Then return to step Step 2 and update this application to
use the new key.

6. After you wait some period of time to ensure that all applications and tools have been updated, you
can delete the first access key with this command:

• aws iam delete-access-key

For more information, see the following:

• How to Rotate Access Keys for IAM Users. This entry on the AWS Security Blog provides more
information on key rotation.

• Security best practices in IAM (p. 557). This page provides general recommendations for helping to
secure your AWS resources.

Rotating access keys (AWS API)

You can rotate access keys using the AWS API.

To rotate access keys without interrupting your applications (AWS API)

1. While the first access key is still active, create a second access key, which is active by default. Call the
following operation:

• CreateAccessKey

At this point, the user has two active access keys.

2. Update all applications and tools to use the new access key.

3. Determine whether the first access key is still in use by calling this operation:

• GetAccessKeyLastUsed

One approach is to wait several days and then check the old access key for any use before
proceeding.

4. Even if step Step 3 indicates no use of the old key, we recommend that you do not immediately
delete the first access key. Instead, change the state of the first access key to Inactive calling this
operation:

• UpdateAccessKey

5. Use only the new access key to confirm that your applications are working. Any applications and
tools that still use the original access key will stop working at this point because they no longer

108

https://docs.aws.amazon.com/cli/latest/reference/iam/get-access-key-last-used.html
https://docs.aws.amazon.com/cli/latest/reference/iam/update-access-key.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-access-key.html
http://aws.amazon.com/blogs/security/how-to-rotate-access-keys-for-iam-users/
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateAccessKey.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetAccessKeyLastUsed.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateAccessKey.html

AWS Identity and Access Management User Guide
Retrieving lost passwords or access keys

have access to AWS resources. If you find such an application or tool, you can switch its state back
to Active to reenable the first access key. Then return to step Step 2 and update this application to
use the new key.

6. After you wait some period of time to ensure that all applications and tools have been updated, you
can delete the first access key calling this operation:

• DeleteAccessKey

For more information, see the following:

• How to Rotate Access Keys for IAM Users. This entry on the AWS Security Blog provides more
information on key rotation.

• Security best practices in IAM (p. 557). This page provides general recommendations for helping to
secure your AWS resources.

Auditing access keys
You can review the AWS access keys in your code to determine whether the keys are from an account
that you own. You can pass an access key ID using the aws sts get-access-key-info AWS CLI
command or the GetAccessKeyInfo AWS API operation.

The AWS CLI and AWS API operations return the ID of the AWS account to which the access key belongs.
Access key IDs beginning with AKIA are long-term credentials for an IAM user or an AWS account root
user. Access key IDs beginning with ASIA are temporary credentials that are created using AWS STS
operations. If the account in the response belongs to you, you can sign in as the root user and review
your root user access keys. Then, you can pull a credentials report (p. 148) to learn which IAM user owns
the keys. To learn who requested the temporary credentials for an ASIA access key, view the AWS STS
events in your CloudTrail logs.

For security purposes, you can review AWS CloudTrail logs (p. 369) to learn who performed an action
in AWS. You can use the sts:SourceIdentity condition key in the role trust policy to require users to
specify an identity when they assume a role. For example, you can require that IAM users specify their
own user name as their source identity. This can help you determine which user performed a specific
action in AWS. For more information, see sts:SourceIdentity (p. 841).

This operation does not indicate the state of the access key. The key might be active, inactive, or deleted.
Active keys might not have permissions to perform an operation. Providing a deleted access key might
return an error that the key doesn't exist.

Resetting lost or forgotten passwords or access keys
for AWS
Having trouble signing in to AWS? Make sure that you're on the correct AWS sign-in page (p. 63) for
your type of user. If you are the AWS account root user (account owner), you can sign in to AWS using
the credentials that you set up when you created the AWS account. If you are an IAM user, your account
administrator can give you the credentials that you can use to sign in to AWS. If you need to request
support, do not use the feedback link on this page, as the form is received by the AWS Documentation
team, not AWS Support. Instead, on the Contact Us page, expand I cannot login to my AWS Account
and choose Request Support for AWS Account Credentials.

On the main sign-in page, you must enter your email address to sign in as the root user, or enter your
account ID to sign in as an IAM user. You can provide your password only on the sign-in page that
matches your user type. For more information, see Signing in to the AWS Management Console as an
IAM user or root user (p. 63).

109

https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteAccessKey.html
http://aws.amazon.com/blogs/security/how-to-rotate-access-keys-for-iam-users/
https://docs.aws.amazon.com/cli/latest/reference/sts/get-access-key-info.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetAccessKeyInfo.html
http://aws.amazon.com/contact-us/

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

If you are on the correct sign-in page and lose or forget your passwords or access keys, you cannot
retrieve them from IAM. Instead, you can reset them using the following methods:

• AWS account root user password – If you forget your root user password, you can reset the password
from the AWS Management Console. For details, see the section called “Resetting a lost or forgotten
root user password” (p. 110) later in this topic.

• AWS account access keys – If you forget your account access keys, you can create new access keys
without disabling the existing access keys. If you are not using the existing keys, you can delete those.
For details, see Creating access keys for the root user (p. 363) and Deleting access keys for the root
user (p. 364).

• IAM user password – If you are an IAM user and you forget your password, you must ask your
administrator to reset your password. To learn how an administrator can manage your password, see
Managing passwords for IAM users (p. 95).

• IAM user access keys – If you are an IAM user and you forget your access keys, you will need new
access keys. If you have permission to create your own access keys, you can find instructions for
creating a new one at Managing access keys (console) (p. 103). If you do not have the required
permissions, you must ask your administrator to create new access keys. If you are still using your old
keys, ask your administrator not to delete the old keys. To learn how an administrator can manage
your access keys, see Managing access keys for IAM users (p. 102).

You should follow the AWS best practice (p. 563) of periodically changing your password and AWS
access keys. In AWS, you change access keys by rotating them. This means that you create a new one,
configure your applications to use the new key, and then delete the old one. You are allowed to have two
access key pairs active at the same time for just this reason. For more information, see Rotating access
keys (p. 106).

Resetting a lost or forgotten root user password
When you first created your AWS account, you provided an email address and password. These are your
AWS account root user credentials. If you forget your root user password, you can reset the password
from the AWS Management Console.

To reset your root user password:

1. Use your AWS account email address to begin signing in to the AWS Management Console as the
root user and then choose Next.

Note
If you are signed in to the AWS Management Console with IAM user credentials, then you
must sign out before you can reset the root user password. If you see the account-specific
IAM user sign-in page, choose Sign-in using root account credentials near the bottom of
the page. If necessary, provide your account email address and choose Next to access the
Root user sign in page.

2. Choose Forgot your password?.

3. Provide the email address that is associated with the account. Then provide the CAPTCHA text and
choose Continue.

4. Check the email that is associated with your AWS account for a message from Amazon Web Services.
The email will come from an address ending in @amazon.com or @aws.amazon.com. Follow the
directions in the email. If you don't see the email in your account, check your spam folder. If you no
longer have access to the email, see I don't have access to the email for my AWS account (p. 69).

Using multi-factor authentication (MFA) in AWS

110

https://console.aws.amazon.com/
https://console.aws.amazon.com/
https://twitter.com/AWSSecurityInfo

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

For increased security, we recommend that you configure multi-factor authentication (MFA) to help
protect your AWS resources. You can enable MFA for IAM users or the AWS account root user. When
you enable MFA for the root user, it affects only the root user credentials. IAM users in the account are
distinct identities with their own credentials, and each identity has its own MFA configuration.

Topics
• What is MFA? (p. 111)
• Enabling MFA devices for users in AWS (p. 112)
• Checking MFA status (p. 129)
• Resynchronizing virtual and hardware MFA devices (p. 130)
• Deactivating MFA devices (p. 134)
• What if an MFA device is lost or stops working? (p. 136)
• Configuring MFA-protected API access (p. 138)
• Sample code: Requesting credentials with multi-factor authentication (p. 143)

What is MFA?
MFA adds extra security because it requires users to provide unique authentication from an AWS
supported MFA mechanism in addition to their regular sign-in credentials when they access AWS
websites or services:

• Virtual MFA devices. A software app that runs on a phone or other device and emulates a physical
device. The device generates a six-digit numeric code based upon a time-synchronized one-time
password algorithm. The user must type a valid code from the device on a second webpage during
sign-in. Each virtual MFA device assigned to a user must be unique. A user cannot type a code from
another user's virtual MFA device to authenticate. Because they can run on unsecured mobile devices,
virtual MFA might not provide the same level of security as U2F devices or hardware MFA devices.
We do recommend that you use a virtual MFA device while waiting for hardware purchase approval
or while you wait for your hardware to arrive. For a list of a few supported apps that you can use as
virtual MFA devices, see Multi-Factor Authentication. For instructions on setting up a virtual MFA
device with AWS, see Enabling a virtual multi-factor authentication (MFA) device (console) (p. 113).

• U2F security key. A device that you plug into a USB port on your computer. U2F is an open
authentication standard hosted by the FIDO Alliance. When you enable a U2F security key, you sign
in by entering your credentials and then tapping the device instead of manually entering a code. For
information on supported AWS U2F security keys, see Multi-Factor Authentication. For instructions on
setting up a U2F security key with AWS, see Enabling a U2F security key (console) (p. 116).

• Hardware MFA device. A hardware device that generates a six-digit numeric code based upon a time-
synchronized one-time password algorithm. The user must type a valid code from the device on a
second webpage during sign-in. Each MFA device assigned to a user must be unique. A user cannot
type a code from another user's device to be authenticated. For information on supported hardware
MFA devices, see Multi-Factor Authentication. For instructions on setting up a hardware MFA device
with AWS, see Enabling a hardware MFA device (console) (p. 121).

• SMS text message-based MFA. A type of MFA in which the IAM user settings include the phone
number of the user's SMS-compatible mobile device. When the user signs in, AWS sends a six-digit
numeric code by SMS text message to the user's mobile device. The user is required to type that code
on a second webpage during sign-in. Note that SMS-based MFA is available only for IAM users. You
cannot use this type of MFA with the AWS account root user. For more information about enabling
SMS text messaging-based MFA, see PREVIEW – Enabling SMS text message MFA devices (p. 126).

Note
AWS will soon end support for SMS multi-factor authentication (MFA). We are not allowing
new customers to preview this feature. We recommend that existing customers switch to one
of the following alternative methods of MFA: virtual (software-based) MFA device (p. 113),
U2F security key (p. 116), or hardware MFA device (p. 121). You can view users in your

111

http://aws.amazon.com/iam/details/mfa/
https://fidoalliance.org
http://aws.amazon.com/iam/details/mfa/
http://aws.amazon.com/iam/details/mfa/

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

account with an assigned SMS MFA device. To do so, go to the IAM console, choose Users from
the navigation pane, and look for users with SMS in the MFA column of the table.

For answers to commonly asked questions about AWS MFA, go to the AWS Multi-Factor Authentication
FAQs.

Enabling MFA devices for users in AWS
The steps for configuring MFA depend on the type of MFA device you are using.

Topics

• General steps for enabling MFA devices (p. 112)

• Enabling a virtual multi-factor authentication (MFA) device (console) (p. 113)

• Enabling a U2F security key (console) (p. 116)

• Enabling a hardware MFA device (console) (p. 121)

• PREVIEW – Enabling SMS text message MFA devices (p. 126)

• Enabling and managing virtual MFA devices (AWS CLI or AWS API) (p. 127)

General steps for enabling MFA devices

The following overview procedure describes how to set up and use MFA and provides links to related
information.

1. Get an MFA device such as one of the following. You can enable only one MFA device per AWS account
root user or IAM user.

• A virtual MFA device, which is a software app that is compliant with RFC 6238, a standards-based
TOTP (time-based one-time password) algorithm. You can install the app on a phone or other
device. For a list of a few supported apps that you can use as virtual MFA devices, see Multi-Factor
Authentication.

• A U2F security key with an AWS supported configuration (p. 120), such as one of the U2F devices
discussed on the Multi-Factor Authentication page.

• A hardware-based MFA device, such as one of the AWS supported hardware token devices discussed
on the Multi-Factor Authentication page.

• A mobile phone that can receive standard short message service (SMS) text messages.

Notes
• If you choose to use SMS-based MFA, text messaging charges from your mobile device's

carrier may apply.

• SMS-based MFA is only available for IAM users and cannot be used for the root user.

2. Enable the MFA device.

• IAM users with virtual or hardware MFA devices: Enable from the AWS Management Console, AWS
CLI, or the IAM API.

• IAM users with U2F security keys or a mobile phone that can receive SMS text messages: Enable
from the AWS Management Console only.

• AWS account root users with any type of MFA device (except SMS MFA, which is not supported for
root users): Enable from the AWS Management Console only.

For information about enabling each type of MFA device, see the following pages:

• Virtual MFA device: Enabling a virtual multi-factor authentication (MFA) device (console) (p. 113)

• U2F security key: Enabling a U2F security key (console) (p. 116)

• Hardware MFA device: Enabling a hardware MFA device (console) (p. 121)

112

http://aws.amazon.com/iam/faqs/#MFA_FAQs
http://aws.amazon.com/iam/faqs/#MFA_FAQs
https://tools.ietf.org/html/rfc6238
https://tools.ietf.org/html/rfc6238
http://aws.amazon.com/iam/details/mfa/
http://aws.amazon.com/iam/details/mfa/
http://aws.amazon.com/iam/details/mfa/
http://aws.amazon.com/iam/details/mfa/

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

• SMS MFA device: PREVIEW – Enabling SMS text message MFA devices (p. 126)
3. Use the MFA device when you log in to or access AWS resources. Note the following:

• U2F security keys: To access an AWS website, enter your credentials and then tap the U2F security
key when prompted.

• Virtual MFA devices, hardware MFA devices, and SMS MFA devices: To access an AWS website, you
need an MFA code from the device in addition to your user name and password. If AWS determines
that the IAM user you sign in as is MFA-enabled with SMS, then it automatically sends the MFA code
to the configured phone number.

To access MFA-protected API operations, you need the following:
• An MFA code
• The identifier for the MFA device (the device serial number of a physical device or the ARN of a

virtual or SMS device defined in AWS)
• The usual access key ID and secret access key

Notes
• You cannot pass the MFA information for a U2F security key or SMS MFA device to AWS STS

API operations to request temporary credentials.
• You cannot use AWS CLI commands or AWS API operations to enable U2F security

keys (p. 116).

For more information, see Using MFA devices with your IAM sign-in page (p. 82).

Enabling a virtual multi-factor authentication (MFA) device (console)

You can use a phone or other device as a virtual multi-factor authentication (MFA) device. To do this,
install a mobile app that is compliant with RFC 6238, a standards-based TOTP (time-based one-time
password) algorithm. These apps generates a six-digit authentication code. Because they can run on
unsecured mobile devices, virtual MFA might not provide the same level of security as U2F devices or
hardware MFA devices. We do recommend that you use a virtual MFA device while waiting for hardware
purchase approval or while you wait for your hardware to arrive.

Most virtual MFA apps support creating multiple virtual devices, allowing you to use the same app for
multiple AWS accounts or users. However, you can enable only one MFA device per user.

For a list of virtual MFA apps that you can use, see Multi-Factor Authentication. Note that AWS requires a
virtual MFA app that produces a six-digit OTP.

Topics
• Permissions required (p. 113)
• Enable a virtual MFA device for an IAM user (console) (p. 113)
• Enable a virtual MFA device for your AWS account root user (console) (p. 115)
• Replace or "rotate" a virtual MFA device (p. 116)

Permissions required

To manage virtual MFA devices for your IAM user, you must have the permissions from the following
policy: AWS: Allows MFA-authenticated IAM users to manage their own MFA device on the My Security
Credentials page (p. 428).

Enable a virtual MFA device for an IAM user (console)

You can use IAM in the AWS Management Console to enable and manage a virtual MFA device for an
IAM user in your account. You can attach tags to your IAM resources, including virtual MFA devices, to

113

https://tools.ietf.org/html/rfc6238
https://tools.ietf.org/html/rfc6238
http://aws.amazon.com/iam/details/mfa/

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

identify, organize, and control access to them. You can tag virtual MFA devices only when you use the
AWS CLI or AWS API. To enable and manage an MFA device using the AWS CLI or AWS API, see Enabling
and managing virtual MFA devices (AWS CLI or AWS API) (p. 127). To learn more about tagging IAM
resources, see Tagging IAM resources (p. 296).

Note
You must have physical access to the hardware that will host the user's virtual MFA device in
order to configure MFA. For example, you might configure MFA for a user who will use a virtual
MFA device running on a smartphone. In that case, you must have the smartphone available in
order to finish the wizard. Because of this, you might want to let users configure and manage
their own virtual MFA devices. In that case, you must grant users the permissions to perform the
necessary IAM actions. For more information and for an example of an IAM policy that grants
these permissions, see AWS: Allows MFA-authenticated IAM users to manage their own MFA
device on the My Security Credentials page (p. 428).

To enable a virtual MFA device for an IAM user (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. In the User Name list, choose the name of the intended MFA user.

4. Choose the Security credentials tab. Next to Assigned MFA device, choose Manage.

5. In the Manage MFA Device wizard, choose Virtual MFA device, and then choose Continue.

IAM generates and displays configuration information for the virtual MFA device, including a QR
code graphic. The graphic is a representation of the "secret configuration key" that is available for
manual entry on devices that do not support QR codes.

6. Open your virtual MFA app. For a list of apps that you can use for hosting virtual MFA devices, see
Multi-Factor Authentication.

If the virtual MFA app supports multiple virtual MFA devices or accounts, choose the option to create
a new virtual MFA device or account.

7. Determine whether the MFA app supports QR codes, and then do one of the following:

• From the wizard, choose Show QR code, and then use the app to scan the QR code. For example,
you might choose the camera icon or choose an option similar to Scan code, and then use the
device's camera to scan the code.

• In the Manage MFA Device wizard, choose Show secret key, and then type the secret key into
your MFA app.

When you are finished, the virtual MFA device starts generating one-time passwords.

8. In the Manage MFA Device wizard, in the MFA code 1 box, type the one-time password that
currently appears in the virtual MFA device. Wait up to 30 seconds for the device to generate a new
one-time password. Then type the second one-time password into the MFA code 2 box. Choose
Assign MFA.

Important
Submit your request immediately after generating the codes. If you generate the codes
and then wait too long to submit the request, the MFA device successfully associates with
the user but the MFA device is out of sync. This happens because time-based one-time
passwords (TOTP) expire after a short period of time. If this happens, you can resync the
device (p. 130).

The virtual MFA device is now ready for use with AWS. For information about using MFA with the AWS
Management Console, see Using MFA devices with your IAM sign-in page (p. 82).

114

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://aws.amazon.com/iam/details/mfa/

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

Enable a virtual MFA device for your AWS account root user (console)

You can use the AWS Management Console to configure and enable a virtual MFA device for your root
user. To enable MFA devices for the AWS account, you must be signed in to AWS using your root user
credentials.

Before you enable MFA for your root user, review your account settings and contact information to
make sure that you have access to the email and phone number. If your MFA device is lost, stolen, or
not working, you can still sign in as the root user by verifying your identity using that email and phone
number. To learn about signing in using these alternative factors of authentication, see What if an MFA
device is lost or stops working? (p. 136).

To configure and enable a virtual MFA device for use with your root user (console)

1. Sign in to the AWS Management Console.

2. On the right side of the navigation bar, choose your account name, and choose My Security
Credentials. If necessary, choose Continue to Security Credentials. Then expand the Multi-Factor
Authentication (MFA) section on the page.

3. Choose Activate MFA.

4. In the wizard, choose Virtual MFA device, and then choose Continue.

IAM generates and displays configuration information for the virtual MFA device, including a QR
code graphic. The graphic is a representation of the secret configuration key that is available for
manual entry on devices that do not support QR codes.

5. Open the virtual MFA app on the device.

If the virtual MFA app supports multiple virtual MFA devices or accounts, choose the option to create
a new virtual MFA device or account.

6. The easiest way to configure the app is to use the app to scan the QR code. If you cannot scan the
code, you can type the configuration information manually. The QR code and secret configuration
key generated by IAM are tied to your AWS account and cannot be used with a different account.
They can, however, be reused to configure a new MFA device for your account in case you lose access
to the original MFA device.

• To use the QR code to configure the virtual MFA device, from the wizard, choose Show QR code.
Then follow the app instructions for scanning the code. For example, you might need to choose
the camera icon or choose a command like Scan account barcode, and then use the device's
camera to scan the QR code.

• In the Manage MFA Device wizard, choose Show secret key, and then type the secret key into
your MFA app.

115

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

Important
Make a secure backup of the QR code or secret configuration key, or make sure that you
enable multiple virtual MFA devices for your account. A virtual MFA device might become
unavailable, for example, if you lose the smartphone where the virtual MFA device is
hosted). If that happens and you are not able to sign into your account by Recovering a root
user MFA device (p. 136), you will not be able to sign in to your account and you will have
to contact customer service to remove MFA protection for the account.

The device starts generating six-digit numbers.

7. In the Manage MFA Device wizard, in the MFA Code 1 box, enter the six-digit number that's
currently displayed by the MFA device. Wait up to 30 seconds for the device to generate a new
number, and then type the new six-digit number into the MFA Code 2 box.

Important
Submit your request immediately after generating the codes. If you generate the codes
and then wait too long to submit the request, the MFA device successfully associates with
the user but the MFA device is out of sync. This happens because time-based one-time
passwords (TOTP) expire after a short period of time. If this happens, you can resync the
device (p. 130).

8. Choose Assign MFA, and then choose Finish.

The device is ready for use with AWS. For information about using MFA with the AWS Management
Console, see Using MFA devices with your IAM sign-in page (p. 82).

Replace or "rotate" a virtual MFA device

You can have only one MFA device assigned to a user at a time. If the user loses a device or needs to
replace it for any reason, you must first deactivate the old device. Then you can add the new device for
the user.

• To deactivate the device currently associated with another IAM user, see Deactivating MFA
devices (p. 134).

• To add a replacement virtual MFA device for another IAM user, follow the steps in the procedure
Enable a virtual MFA device for an IAM user (console) (p. 113) above.

• To add a replacement virtual MFA device for the AWS account root user, follow the steps in the
procedure Enable a virtual MFA device for your AWS account root user (console) (p. 115) earlier in this
topic.

Enabling a U2F security key (console)

Universal 2nd Factor (U2F) security keys are a type of MFA device (p. 110) that you can use to protect
your AWS resources. You plug your U2F security key into a USB port on your computer and enable it
using the instructions that follow. After you enable it, you tap it when prompted to securely complete
the sign-in process. If you already use a U2F security key with other services, and it has an AWS
supported configuration (p. 120) (for example, the Yubikey 4 or 5 from Yubico), you can also use it with
AWS. Otherwise, you need to purchase a U2F security key if you want to use U2F for MFA in AWS. For
specifications and purchase information, see Multi-Factor Authentication.

U2F is an open authentication standard hosted by the FIDO Alliance. When you enable a U2F key in AWS,
the U2F security key creates a new key pair for use with only AWS. First, you enter your credentials. When
prompted, you tap the U2F security key, which responds to the authentication challenge issued by AWS.
To learn more about the U2F standard, see Universal 2nd Factor.

You can enable one MFA device (of any kind) per root user or IAM user.

116

http://aws.amazon.com/iam/details/mfa/
https://fidoalliance.org
https://en.wikipedia.org/wiki/Universal_2nd_Factor

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

Topics
• Permissions required (p. 117)
• Enable a U2F security key for your own IAM user (console) (p. 117)
• Enable a U2F security key for another IAM user (console) (p. 118)
• Enable a U2F security key for the AWS account root user (console) (p. 119)
• Replace a U2F security key (p. 120)
• Supported configurations for using U2F security keys (p. 120)

Permissions required

To manage a U2F security key for your own IAM user while protecting sensitive MFA-related actions, you
must have the permissions from the following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowManageOwnUserMFA",
 "Effect": "Allow",
 "Action": [
 "iam:DeactivateMFADevice",
 "iam:EnableMFADevice",
 "iam:GetUser",
 "iam:ListMFADevices",
 "iam:ResyncMFADevice"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 },
 {
 "Sid": "DenyAllExceptListedIfNoMFA",
 "Effect": "Deny",
 "NotAction": [
 "iam:EnableMFADevice",
 "iam:GetUser",
 "iam:ListMFADevices",
 "iam:ResyncMFADevice"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}",
 "Condition": {
 "BoolIfExists": {
 "aws:MultiFactorAuthPresent": "false"
 }
 }
 }
]
}

Enable a U2F security key for your own IAM user (console)

You can enable a U2F security key for your own IAM user from the AWS Management Console only, not
from the AWS CLI or AWS API.

Note
Before you can enable a U2F security key, you must have physical access to the device.

To enable a U2F security key for your own IAM user (console)

1. Use your AWS account ID or account alias, your IAM user name, and your password to sign in to the
IAM console.

117

https://console.aws.amazon.com/iam

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

Note
For your convenience, the AWS sign-in page uses a browser cookie to remember your IAM
user name and account information. If you previously signed in as a different user, choose
Sign in to a different account near the bottom of the page to return to the main sign-in
page. From there, you can type your AWS account ID or account alias to be redirected to the
IAM user sign-in page for your account.

To get your AWS account ID, contact your administrator.

2. In the navigation bar on the upper right, choose your user name, and then choose My Security
Credentials.

3. On the AWS IAM credentials tab, in the Multi-factor authentication section, choose Manage MFA
device.

4. In the Manage MFA device wizard, choose U2F security key, and then choose Continue.

5. Insert the U2F security key into your computer's USB port.

6. Tap the U2F security key, and then choose Close when U2F setup is complete.

The U2F security key is ready for use with AWS. For information about using MFA with the AWS
Management Console, see Using MFA devices with your IAM sign-in page (p. 82).

Enable a U2F security key for another IAM user (console)

You can enable a U2F security key for another IAM user from the AWS Management Console only, not
from the AWS CLI or AWS API.

118

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

To enable a U2F security key for another IAM user (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. Choose the name of the user for whom you want to enable MFA, and then choose the Security
credentials tab.

4. Next to Assigned MFA device, choose Manage.

5. In the Manage MFA device wizard, choose U2F security key, and then choose Continue.

6. Insert the U2F security key into your computer's USB port.

7. Tap the U2F security key, and then choose Close when U2F setup is complete.

The U2F security key is ready for use with AWS. For information about using MFA with the AWS
Management Console, see Using MFA devices with your IAM sign-in page (p. 82).

Enable a U2F security key for the AWS account root user (console)

You can configure and enable a virtual MFA device for your root user from the AWS Management Console
only, not from the AWS CLI or AWS API.

If your U2F security key is lost, stolen, or not working, you can still sign in using alternative factors of
authentication. To learn about signing in using alternative factors of authentication, see What if an MFA
device is lost or stops working? (p. 136). To disable this feature, contact AWS Support.

To enable the U2F key for your root user (console)

1. Sign in to the IAM console as the account owner by choosing Root user and entering your AWS
account email address. On the next page, enter your password.

Note
If you see three text boxes, then you previously signed in to the console with IAM user
credentials. Your browser might remember this preference and open this account-specific
sign-in page every time that you try to sign in. You cannot use the IAM user sign-in page to
sign in as the account owner. If you see the IAM user sign-in page, choose Sign in using root
user email near the bottom of the page. This returns you to the main sign-in page. From
there, you can sign in as the root user using your AWS account email address and password.

2. On the right side of the navigation bar, choose on your account name, and then choose My Security
Credentials. If necessary, choose Continue to Security Credentials.

119

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/support/home#/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/console.html#user-sign-in-page

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

3. Expand the Multi-factor authentication (MFA) section.
4. Choose Manage MFA or Activate MFA, depending on which option you chose in the preceding step.
5. In the wizard, choose U2F security key and then choose Continue.
6. Insert the U2F security key into your computer's USB port.

7. Tap the U2F security key, and then choose Close when U2F setup is complete.

The U2F security key is ready for use with AWS. The next time you use your root user credentials to sign
in, you must tap your U2F security key to complete the sign-in process.

Replace a U2F security key

You can have only one MFA device (virtual, U2F security key, or hardware) assigned to a user at a time. If
the user loses a U2F key or needs to replace it for any reason, you must first deactivate the old U2F key.
Then you can add a new MFA device for the user.

• To deactivate the device currently associated with a user, see Deactivating MFA devices (p. 134).
• To add a new U2F security for an IAM user, see Enabling a U2F security key (console) (p. 116).

If you don't have access to a new U2F security key, you can enable a new virtual MFA device or hardware
MFA device. See one of the following for instructions:

• Enabling a virtual multi-factor authentication (MFA) device (console) (p. 113)
• Enabling a hardware MFA device (console) (p. 121)

Supported configurations for using U2F security keys

You can use U2F as a multi-factor authentication (MFA) method in AWS using currently supported
configurations. These include U2F devices supported by AWS and browsers that support U2F.

U2F devices supported by AWS

AWS currently supports U2F-compliant security devices that plug into USB ports on your computer.

120

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

Note
AWS requires access to the physical USB port on your computer to verify your U2F device. U2F
MFA will not work with a virtual machine, a remote connection, or a browser's incognito mode.

For information on purchasing a supported device, see Multi-Factor Authentication.

Browsers that support U2F

The following browsers currently support the use of U2F security keys:

• Google Chrome, version 38 and later.
• Opera, version 40 and later.
• Mozilla Firefox, version 57 and later.

Note
Most Firefox versions that currently support U2F do not enable support by default.
For instructions on enabling U2F support in Firefox, see Troubleshooting U2F security
keys (p. 697).

Browser plugins

AWS currently supports only browsers that natively support the U2F standard. AWS does not support
using plugins to add U2F browser support. Also note that some browser plugins are incompatible with
the U2F standard and can cause unexpected results with U2F security keys.

For information on disabling browser plugins and other troubleshooting tips, see I can't enable my U2F
security key (p. 697).

Mobile environments

AWS does not currently support the use of U2F security keys with mobile browsers or non-USB U2F
devices.

The AWS Console Mobile App does not currently support using U2F security keys for MFA.

AWS CLI and AWS API

AWS currently supports using U2F security keys only in the AWS Management Console. Using U2F
security keys for MFA is not currently supported in the AWS CLI and AWS API, or for access to MFA-
protected API operations (p. 138).

Additional resources

• For more information on using U2F security keys in AWS, see Enabling a U2F security key
(console) (p. 116).

• For help with troubleshooting U2F in AWS, see Troubleshooting U2F security keys (p. 697).
• For general industry information on U2F support, see Universal 2nd Factor.

Enabling a hardware MFA device (console)

A hardware MFA device generates a six-digit numeric code based upon a time-synchronized one-time
password algorithm. The user must type a valid code from the device when prompted during the sign-
in process. Each MFA device assigned to a user must be unique; a user cannot type a code from another
user's device to be authenticated.

Hardware MFA devices and U2F security keys (p. 116) are both physical devices that you purchase. The
difference is that hardware MFA devices generate a code that you view and then enter when prompted

121

http://aws.amazon.com/iam/details/mfa/
https://docs.aws.amazon.com/cli/latest/userguide/
https://aws.amazon.com/tools/
https://en.wikipedia.org/wiki/Universal_2nd_Factor

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

when signing it to AWS. With a U2F security key, you don't see or type an authentication code. Instead,
the U2F security key generates a response without presenting it to the user and the service validates it.
For specifications and purchase information for both device types, see Multi-Factor Authentication.

You can enable a hardware MFA device for an IAM user from the AWS Management Console, the
command line, or the IAM API. To enable an MFA device for your AWS account root user, see Enable a
hardware MFA device for the AWS account root user (console) (p. 124).

You can enable one MFA device (of any kind) per root user or IAM user.

Note
If you want to enable the device from the command line, use iam-userenablemfadevice
aws iam enable-mfa-device. To enable the MFA device with the IAM API, use the
EnableMFADevice operation.

Topics
• Permissions required (p. 122)
• Enable a hardware MFA device for your own IAM user (console) (p. 123)
• Enable a hardware MFA device for another IAM user (console) (p. 124)
• Enable a hardware MFA device for the AWS account root user (console) (p. 124)
• Replace or "rotate" a physical MFA device (p. 126)

Permissions required

To manage a hardware MFA device for your own IAM user while protecting sensitive MFA-related actions,
you must have the permissions from the following policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowManageOwnUserMFA",
 "Effect": "Allow",
 "Action": [
 "iam:DeactivateMFADevice",
 "iam:EnableMFADevice",
 "iam:GetUser",
 "iam:ListMFADevices",
 "iam:ResyncMFADevice"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 },
 {
 "Sid": "DenyAllExceptListedIfNoMFA",
 "Effect": "Deny",
 "NotAction": [
 "iam:EnableMFADevice",
 "iam:GetUser",
 "iam:ListMFADevices",
 "iam:ResyncMFADevice"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}",
 "Condition": {
 "BoolIfExists": {
 "aws:MultiFactorAuthPresent": "false"
 }
 }
 }
]
}

122

http://aws.amazon.com/iam/details/mfa/
https://docs.aws.amazon.com/cli/latest/reference/iam/userenablemfadevice.html
https://docs.aws.amazon.com/cli/latest/reference/iam/enable-mfa-device.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_EnableMFADevice.html

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

Enable a hardware MFA device for your own IAM user (console)

You can enable your own hardware MFA device from the AWS Management Console.

Note
Before you can enable a hardware MFA device, you must have physical access to the device.

To enable a hardware MFA device for your own IAM user (console)

1. Use your AWS account ID or account alias, your IAM user name, and your password to sign in to the
IAM console.

Note
For your convenience, the AWS sign-in page uses a browser cookie to remember your IAM
user name and account information. If you previously signed in as a different user, choose
Sign in to a different account near the bottom of the page to return to the main sign-in
page. From there, you can type your AWS account ID or account alias to be redirected to the
IAM user sign-in page for your account.

To get your AWS account ID, contact your administrator.
2. In the navigation bar on the upper right, choose your user name, and then choose My Security

Credentials.

3. On the AWS IAM credentials tab, in the Multi-factor authentication section, choose Manage MFA
device.

4. In the Manage MFA device wizard, choose Hardware MFA device and then choose Continue.
5. Type the device serial number. The serial number is usually on the back of the device.
6. In the MFA code 1 box, type the six-digit number displayed by the MFA device. You might need to

press the button on the front of the device to display the number.

7. Wait 30 seconds while the device refreshes the code, and then type the next six-digit number into
the MFA code 2 box. You might need to press the button on the front of the device again to display
the second number.

8. Choose Assign MFA.

123

https://console.aws.amazon.com/iam

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

Important
Submit your request immediately after generating the authentication codes. If you generate
the codes and then wait too long to submit the request, the MFA device successfully
associates with the user but the MFA device becomes out of sync. This happens because
time-based one-time passwords (TOTP) expire after a short period of time. If this happens,
you can resync the device (p. 130).

The device is ready for use with AWS. For information about using MFA with the AWS Management
Console, see Using MFA devices with your IAM sign-in page (p. 82).

Enable a hardware MFA device for another IAM user (console)

You can enable a hardware MFA device for another IAM user from the AWS Management Console.

To enable a hardware MFA device for another IAM user (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.
3. Choose the name of the user for whom you want to enable MFA, and then choose the Security

credentials tab.
4. Next to Assigned MFA device, choose Manage.
5. In the Manage MFA device wizard, choose Hardware MFA device and then choose Continue.
6. Type the device serial number. The serial number is usually on the back of the device.
7. In the MFA code 1 box, type the six-digit number displayed by the MFA device. You might need to

press the button on the front of the device to display the number.

8. Wait 30 seconds while the device refreshes the code, and then type the next six-digit number into
the MFA code 2 box. You might need to press the button on the front of the device again to display
the second number.

9. Choose Assign MFA.

Important
Submit your request immediately after generating the authentication codes. If you generate
the codes and then wait too long to submit the request, the MFA device successfully
associates with the user but the MFA device becomes out of sync. This happens because
time-based one-time passwords (TOTP) expire after a short period of time. If this happens,
you can resync the device (p. 130).

The device is ready for use with AWS. For information about using MFA with the AWS Management
Console, see Using MFA devices with your IAM sign-in page (p. 82).

Enable a hardware MFA device for the AWS account root user (console)

You can configure and enable a virtual MFA device for your root user from the AWS Management Console
only, not from the AWS CLI or AWS API.

If your MFA device is lost, stolen, or not working, you can still sign in using alternative factors of
authentication. If you can't sign in with your MFA device, you can sign in by verifying your identity using
the email and phone that are registered with your account. Before you enable MFA for your root user,
review your account settings and contact information to make sure that you have access to the email and

124

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

phone number. To learn about signing in using alternative factors of authentication, see What if an MFA
device is lost or stops working? (p. 136). To disable this feature, contact AWS Support.

Note
You might see different text, such as Sign in using MFA and Troubleshoot your authentication
device. However, the same features are provided. In either case, if you cannot verify your
account email address and phone number using alternative factors of authentication, contact
AWS Support to deactivate your MFA setting.

To enable the MFA device for your root user (console)

1. Sign in to the IAM console as the account owner by choosing Root user and entering your AWS
account email address. On the next page, enter your password.

Note
If you see three text boxes, then you previously signed in to the console with IAM user
credentials. Your browser might remember this preference and open this account-specific
sign-in page every time that you try to sign in. You cannot use the IAM user sign-in page to
sign in as the account owner. If you see the IAM user sign-in page, choose Sign in using root
user email near the bottom of the page. This returns you to the main sign-in page. From
there, you can sign in as the root user using your AWS account email address and password.

2. On the right side of the navigation bar, choose on your account name, and then choose My Security
Credentials. If necessary, choose Continue to Security Credentials.

3. Expand the Multi-factor authentication (MFA) section.

4. Choose Manage MFA or Activate MFA, depending on which option you chose in the preceding step.

5. In the wizard, choose Hardware MFA device and then choose Continue.

6. In the Serial number box, type the serial number that is found on the back of the MFA device.

7. In the MFA code 1 box, type the six-digit number displayed by the MFA device. You might need to
press the button on the front of the device to display the number.

8. Wait 30 seconds while the device refreshes the code, and then type the next six-digit number into
the MFA code 2 box. You might need to press the button on the front of the device again to display
the second number.

9. Choose Assign MFA. The MFA device is now associated with the AWS account.

Important
Submit your request immediately after generating the authentication codes. If you generate
the codes and then wait too long to submit the request, the MFA device successfully
associates with the user but the MFA device becomes out of sync. This happens because

125

https://console.aws.amazon.com/support/home#/
https://aws.amazon.com/forms/aws-mfa-support
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/console.html#user-sign-in-page

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

time-based one-time passwords (TOTP) expire after a short period of time. If this happens,
you can resync the device (p. 130).

The next time you use your root user credentials to sign in, you must type a code from the MFA
device.

Replace or "rotate" a physical MFA device

You can have only one MFA device assigned to a user at a time. If the user loses a device or needs to
replace it for any reason, you must first deactivate the old device. Then you can add the new device for
the user.

• To deactivate the device currently associated with a user, see Deactivating MFA devices (p. 134).

• To add a replacement hardware MFA device for an IAM user, follow the steps in the procedure Enable a
hardware MFA device for another IAM user (console) (p. 124) earlier in this topic.

• To add a replacement virtual MFA device for the AWS account root user, follow the steps in the
procedure Enable a hardware MFA device for the AWS account root user (console) (p. 124) earlier in
this topic.

PREVIEW – Enabling SMS text message MFA devices

AWS will soon end support for SMS multi-factor authentication (MFA). We are not allowing new
customers to preview this feature. We recommend that existing customers switch to one of the following
alternative methods of MFA:

• A virtual (software-based) (p. 113) MFA device

• A U2F security key (p. 116)

• A hardware-based (p. 121) MFA device

Tip
You can view users in your account with an assigned SMS MFA device. In the IAM console, choose
Users from the navigation pane, and look for users with SMS in the MFA column of the table.

An SMS (short message service) MFA device can be any mobile device with a phone number that can
receive standard SMS text messages. When an MFA code is needed, AWS sends it to the phone number
that is configured for the IAM user.

Note
SMS MFA can be used only with IAM users. It cannot be used with the AWS account root user. To
protect the root user with MFA, you must use a virtual MFA device, U2F security key, or hardware
MFA device.

Enable an SMS MFA device for an IAM user (console)

You can use IAM in the AWS Management Console to configure an IAM user with a phone number to
enable SMS MFA.

Note
Currently, you can manage SMS MFA only in the AWS Management Console.

To enable SMS MFA for an IAM user (console)

1. Use your AWS account ID or account alias, your IAM user name, and your password to sign in to the
IAM console.

126

http://wikipedia.org/wiki/Short_Message_Service
https://console.aws.amazon.com/iam

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

Note
For your convenience, the AWS sign-in page uses a browser cookie to remember your IAM
user name and account information. If you previously signed in as a different user, choose
Sign in to a different account near the bottom of the page to return to the main sign-in
page. From there, you can type your AWS account ID or account alias to be redirected to the
IAM user sign-in page for your account.

2. In the navigation pane, choose Users.
3. In the User Name list, choose the name (not the check box) of the intended MFA user.
4. Choose the Security credentials tab. Next to Assigned MFA device, choose Manage.
5. In the Manage MFA Device wizard, choose An SMS MFA device, and then choose Continue.
6. Type the phone number to which you want to send MFA codes for this IAM user, and then choose

Continue.
7. A six-digit authentication code is immediately sent to the specified phone number for verification.

Type the six-digit code and then choose Continue. If the code does not arrive in a reasonable
amount of time), choose Resend Code. Note that SMS is not a service with a guaranteed delivery
time.

8. If AWS successfully verifies the code, the wizard ends. Otherwise, choose Finish to close the wizard.

Change the phone number for SMS MFA for an IAM user

To change the phone number of the SMS MFA device assigned to an IAM user, you must delete the
current MFA device. Then create a new device with the new phone number. To learn how to delete a
device, see Deactivating MFA devices (p. 134).

Enabling and managing virtual MFA devices (AWS CLI or AWS API)

You can use AWS CLI commands or AWS API operations to enable a virtual MFA device for an IAM user.
You cannot enable an MFA device for the AWS account root user with the AWS CLI, AWS API, Tools for
Windows PowerShell, or any other command line tool. However, you can use the AWS Management
Console to enable an MFA device for the root user.

When you enable an MFA device from the AWS Management Console, the console performs multiple
steps for you. If you instead create a virtual device using the AWS CLI, Tools for Windows PowerShell, or
AWS API, then you must perform the steps manually and in the correct order. For example, to create a
virtual MFA device, you must create the IAM object and extract the code as either a string or a QR code
graphic. Then you must sync the device and associate it with an IAM user. See the Examples section of
New-IAMVirtualMFADevice for more details. For a physical device, you skip the creation step and go
directly to syncing the device and associating it with the user.

You can attach tags to your IAM resources, including virtual MFA devices, to identify, organize, and
control access to them. You can tag virtual MFA devices only when you use the AWS CLI or AWS API.

To create the virtual device entity in IAM to represent a virtual MFA device

These commands provide an ARN for the device that is used in place of a serial number in many of the
following commands.

• AWS CLI: aws iam create-virtual-mfa-device
• AWS API: CreateVirtualMFADevice

To enable an MFA device for use with AWS

These commands synchronize the device with AWS and associate it with a user or the root user. If the
device is virtual, use the ARN of the virtual device as the serial number.

127

https://docs.aws.amazon.com/powershell/latest/reference/Index.html?page=New-IAMVirtualMFADevice.html&tocid=New-IAMVirtualMFADevice
https://docs.aws.amazon.com/cli/latest/reference/iam/create-virtual-mfa-device.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateVirtualMFADevice.html

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

Important
Submit your request immediately after generating the authentication codes. If you generate the
codes and then wait too long to submit the request, the MFA device successfully associates with
the user but the MFA device becomes out of sync. This happens because time-based one-time
passwords (TOTP) expire after a short period of time. If this happens, you can resynchronize the
device using the commands described below.

• AWS CLI: aws iam enable-mfa-device

• AWS API: EnableMFADevice

To deactivate a device

Use these commands to disassociate the device from the user and deactivate it. If the device is virtual,
use the ARN of the virtual device as the serial number. You must also separately delete the virtual device
entity.

• AWS CLI: aws iam deactivate-mfa-device

• AWS API: DeactivateMFADevice

To list virtual MFA device entities

Use these commands to list virtual MFA device entities.

• AWS CLI: aws iam list-virtual-mfa-devices

• AWS API: ListVirtualMFADevices

To tag a virtual MFA device

Use these commands to tag a virtual MFA device.

• AWS CLI: aws iam tag-mfa-device

• AWS API: TagMFADevice

To list tags for a virtual MFA device

Use these commands to list the tags attached to a virtual MFA device.

• AWS CLI: aws iam list-mfa-device-tags

• AWS API: ListMFADeviceTags

To untag a virtual MFA device

Use these commands to remove tags attached to a virtual MFA device.

• AWS CLI: aws iam untag-mfa-device

• AWS API: UntagMFADevice

To resynchronize an MFA device

Use these commands if the device is generating codes that are not accepted by AWS. If the device is
virtual, use the ARN of the virtual device as the serial number.

• AWS CLI: aws iam resync-mfa-device

128

https://docs.aws.amazon.com/cli/latest/reference/iam/enable-mfa-device.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_EnableMFADevice.html
https://docs.aws.amazon.com/cli/latest/reference/iam/deactivate-mfa-device.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeactivateMFADevice.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-virtual-mfa-devices.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListVirtualMFADevices.html
https://docs.aws.amazon.com/cli/latest/reference/iam/tag-mfa-device.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagMFADevice.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-mfa-device-tags.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListMFADeviceTags.html
https://docs.aws.amazon.com/cli/latest/reference/iam/untag-mfa-device.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UntagMFADevice.html
https://docs.aws.amazon.com/cli/latest/reference/iam/resync-mfa-device.html

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

• AWS API: ResyncMFADevice

To delete a virtual MFA device entity in IAM

After the device is disassociated from the user, you can delete the device entity.

• AWS CLI: aws iam delete-virtual-mfa-device
• AWS API: DeleteVirtualMFADevice

To recover a virtual MFA device that is lost or not working

Sometimes, an IAM user's device that hosts the virtual MFA app is lost, replaced, or not working.
When this happens, the user can't recover it on their own. IAM users must contact an administrator
to deactivate the device. For more information, see What if an MFA device is lost or stops
working? (p. 136).

Checking MFA status
Use the IAM console to check whether an AWS account root user or IAM user has a valid MFA device
enabled.

To check the MFA status of a root user

1. Sign in to the AWS Management Console with your root user credentials and then open the IAM
console at https://console.aws.amazon.com/iam/.

2. In the navigation bar on the upper right, choose your user name, and then choose My Security
Credentials.

3. Check under Multi-factor Authentication (MFA) to see whether MFA is enabled or disabled. If MFA

has not been activated, an alert symbol () is displayed.

If you want to enable MFA for the account, see one of the following:

• Enable a virtual MFA device for your AWS account root user (console) (p. 115)
• Enable a U2F security key for the AWS account root user (console) (p. 119)
• Enable a hardware MFA device for the AWS account root user (console) (p. 124)

To check the MFA status of IAM users

1. Open the IAM console at https://console.aws.amazon.com/iam/.
2. In the navigation pane, choose Users.
3. If necessary, add the MFA column to the users table by completing the following steps:

a.
Above the table on the far right, choose the settings icon ().

b. In Manage Columns, select MFA.
c. (Optional) Clear the check box for any column headings that you do not want to appear in the

users table.
d. Choose Close to return to the list of users.

4. The MFA column tells you about the MFA device that is enabled. If no MFA device is active for the
user, the console displays Not enabled. If the user has an MFA device enabled, the MFA column
shows the type of device that is enabled with a value of Virtual, U2F Security Key, Hardware, or
SMS.

129

https://docs.aws.amazon.com/IAM/latest/APIReference/API_ResyncMFADevice.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-virtual-mfa-device.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteVirtualMFADevice.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

5. To view additional information about the MFA device for a user, choose the name of the user whose
MFA status you want to check. Then choose the Security credentials tab.

6. If no MFA device is active for the user, the console displays No next to Assigned MFA device. If the
user has an MFA device enabled, the Assigned MFA device item shows a value for the device:

• The device serial number of a hardware device (usually the number from the back of the device),
such as GAHT12345678

• The ARN in AWS for an SMS device, such as arn:aws:iam::123456789012:sms-
mfa/username

• The ARN in AWS for a virtual device, such as arn:aws:iam::123456789012:mfa/username

If you want to change the current setting, choose Manage next to Assigned MFA Device.

For more information on enabling MFA, see the following:

• Enabling a virtual multi-factor authentication (MFA) device (console) (p. 113)

• Enabling a U2F security key (console) (p. 116)

• Enabling a hardware MFA device (console) (p. 121)

• PREVIEW – Enabling SMS text message MFA devices (p. 126)

Resynchronizing virtual and hardware MFA devices

You can use AWS to resynchronize your virtual and hardware multi-factor authentication (MFA) devices. If
your device is not synchronized when you try to use it, the sign-in attempt fails and IAM prompts you to
resynchronize the device.

Note
U2F security keys do not go out of sync. If a U2F security key is lost or broken, you can
deactivate it. For instructions on deactivating any MFA device type, see To deactivate an MFA
device for another IAM user (console) (p. 134).

As an AWS administrator, you can resynchronize your IAM users' virtual and hardware MFA devices if they
get out of synchronization.

If your AWS account root user MFA device is not working, you can resynchronize your device using the
IAM console with or without completing the sign-in process.

Topics

• Permissions required (p. 130)

• Resynchronizing virtual and hardware MFA devices (IAM console) (p. 131)

• Resynchronizing virtual and hardware MFA devices (AWS CLI) (p. 133)

• Resynchronizing virtual and hardware MFA devices (AWS API) (p. 134)

Permissions required

To resynchronize virtual or hardware MFA devices for your own IAM user, you must have the permissions
from the following policy: This policy does not allow you to create or deactivate a device.

{
 "Version": "2012-10-17",
 "Statement": [
 {

130

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

 "Sid": "AllowListActions",
 "Effect": "Allow",
 "Action": [
 "iam:ListVirtualMFADevices"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowUserToViewAndManageTheirOwnUserMFA",
 "Effect": "Allow",
 "Action": [
 "iam:ListMFADevices",
 "iam:ResyncMFADevice"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 },
 {
 "Sid": "BlockAllExceptListedIfNoMFA",
 "Effect": "Deny",
 "NotAction": [
 "iam:ListMFADevices",
 "iam:ListVirtualMFADevices",
 "iam:ResyncMFADevice"
],
 "Resource": "*",
 "Condition": {
 "BoolIfExists": {
 "aws:MultiFactorAuthPresent": "false"
 }
 }
 }
]
}

Resynchronizing virtual and hardware MFA devices (IAM console)

You can use the IAM console to resynchronize virtual and hardware MFA devices.

To resynchronize a virtual or hardware MFA device for your own IAM user (console)

1. Use your AWS account ID or account alias, your IAM user name, and your password to sign in to the
IAM console.

Note
For your convenience, the AWS sign-in page uses a browser cookie to remember your IAM
user name and account information. If you previously signed in as a different user, choose
Sign in to a different account near the bottom of the page to return to the main sign-in
page. From there, you can type your AWS account ID or account alias to be redirected to the
IAM user sign-in page for your account.

To get your AWS account ID, contact your administrator.

2. In the navigation bar on the upper right, choose your user name, and then choose My Security
Credentials.

131

https://console.aws.amazon.com/iam

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

3. On the AWS IAM credentials tab, in the Multi-factor authentication section, choose Manage MFA
device.

4. In the Manage MFA device wizard, choose Resync, and then choose Continue.

5. Type the next two sequentially generated codes from the device into MFA code 1 and MFA code 2.
Then choose Continue.

Important
Submit your request immediately after generating the codes. If you generate the codes
and then wait too long to submit the request, the request appears to work but the device
remains out of sync. This happens because time-based one-time passwords (TOTP) expire
after a short period of time.

To resynchronize a virtual or hardware MFA device for another IAM user (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users, and then choose the name of the user whose MFA device
needs to be resynchronized.

3. Choose the Security credentials tab. Next to Assigned MFA device, choose Manage.

4. In the Manage MFA device wizard, choose Resync, and then choose Continue.

5. Type the next two sequentially generated codes from the device into MFA code 1 and MFA code 2.
Then choose Continue.

Important
Submit your request immediately after generating the codes. If you generate the codes
and then wait too long to submit the request, the request appears to work but the device
remains out of sync. This happens because time-based one-time passwords (TOTP) expire
after a short period of time.

To resynchronize your root user MFA before signing in (console)

1. On the Amazon Web Services Sign In With Authentication Device page, choose Having problems
with your authentication device? Click here.

132

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

Note
You might see different text, such as Sign in using MFA and Troubleshoot your
authentication device. However, the same features are provided.

2. In the Re-Sync With Our Servers section, type the next two sequentially generated codes from the
device into MFA code 1 and MFA code 2. Then choose Re-sync authentication device.

3. If necessary, type your password again and choose Sign in. Then complete the sign-in using your
MFA device.

To resynchronize your root user MFA device after signing in (console)

1. Sign in to the IAM console as the account owner by choosing Root user and entering your AWS
account email address. On the next page, enter your password.

Note
If you see three text boxes, then you previously signed in to the console with IAM user
credentials. Your browser might remember this preference and open this account-specific
sign-in page every time that you try to sign in. You cannot use the IAM user sign-in page to
sign in as the account owner. If you see the IAM user sign-in page, choose Sign in using root
user email near the bottom of the page. This returns you to the main sign-in page. From
there, you can sign in as the root user using your AWS account email address and password.

2. On the right side of the navigation bar, choose on your account name, and then choose My Security
Credentials. If necessary, choose Continue to Security Credentials.

3. Expand the Multi-factor authentication (MFA) section on the page.

4. Next to your active MFA device, choose Resync.

5. In the Manage MFA device dialog box, type the next two sequentially generated codes from the
device into MFA code 1 and MFA code 2. Then choose Continue.

Important
Submit your request immediately after generating the codes. If you generate the codes and
then wait too long to submit the request, the MFA device is successfully associated with
the user, but the MFA device is out of sync. This happens because time-based one-time
passwords (TOTP) expire after a short period of time.

Resynchronizing virtual and hardware MFA devices (AWS CLI)

You can resynchronize virtual and hardware MFA devices from the AWS CLI.

To resynchronize a virtual or hardware MFA device for an IAM user (AWS CLI)

At a command prompt, issue the aws iam resync-mfa-device command:

133

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/console.html#user-sign-in-page
https://docs.aws.amazon.com/cli/latest/reference/iam/resync-mfa-device.html

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

• Virtual MFA device: Specify Amazon Resource Name (ARN) of device as the serial number.

aws iam resync-mfa-device --user-name Richard --serial-number
 arn:aws:iam::123456789012:mfa/RichardsMFA --authentication-code1 123456 --
authentication-code2 987654

• Hardware MFA device: Specify hardware device's serial number as serial number. The format is vendor-
specific. For example, you can purchase a gemalto token from Amazon. Its serial number is typically
four letters followed by four numbers.

aws iam resync-mfa-device --user-name Richard --serial-number ABCD12345678 --
authentication-code1 123456 --authentication-code2 987654

Important
Submit your request immediately after generating the codes. If you generate the codes and
then wait too long to submit the request, the request fails because the codes expire after a short
time.

Resynchronizing virtual and hardware MFA devices (AWS API)

IAM has an API call that performs synchronization. In this case, we recommend that you give your virtual
and hardware MFA device users permission to access this API call. Then build a tool based on that API call
so your users can resynchronize their devices whenever they need to.

To resynchronize a virtual or hardware MFA device for an IAM user (AWS API)

• Send the ResyncMFADevice request.

Deactivating MFA devices
If you have having trouble signing in with a multi-factor authentication (MFA) device as an IAM user,
contact your administrator for help.

As an administrator, you can deactivate the device for another IAM user. This allows the user to sign in
without using MFA. You might do this as a temporary solution while the MFA device is replaced, or if
the device is temporarily unavailable. However, we recommend that you enable a new device for the
user as soon as possible. To learn how to enable a new MFA device, see the section called “Enabling MFA
devices” (p. 112).

Note
If you use the API or AWS CLI to delete a user from your AWS account, you must deactivate or
delete the user's MFA device. You make this change as part of the process of removing the user.
For more information about deleting users, see Managing IAM users (p. 83).

Topics
• Deactivating MFA devices (console) (p. 134)
• Deactivating MFA devices (AWS CLI) (p. 135)
• Deactivating MFA devices (AWS API) (p. 136)

Deactivating MFA devices (console)

To deactivate an MFA device for another IAM user (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

134

https://docs.aws.amazon.com/IAM/latest/APIReference/API_ResyncMFADevice.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

2. In the navigation pane, choose Users.

3. To deactivate the MFA device for a user, choose the name of the user whose MFA you want to
remove.

4. Choose the Security credentials tab. Next to Assigned MFA device, choose Manage.

5. In the Manage MFA device wizard, choose Remove, and then choose Remove.

The device is removed from AWS. It cannot be used to sign in or authenticate requests until it is
reactivated and associated with an AWS user or AWS account root user.

To deactivate the MFA device for your AWS account root user (console)

1. Sign in to the IAM console as the account owner by choosing Root user and entering your AWS
account email address. On the next page, enter your password.

Note
If you see three text boxes, then you previously signed in to the console with IAM user
credentials. Your browser might remember this preference and open this account-specific
sign-in page every time that you try to sign in. You cannot use the IAM user sign-in page to
sign in as the account owner. If you see the IAM user sign-in page, choose Sign in using root
user email near the bottom of the page. This returns you to the main sign-in page. From
there, you can sign in as the root user using your AWS account email address and password.

2. On the right side of the navigation bar, choose on your account name, and then choose My Security
Credentials. If necessary, choose Continue to Security Credentials.

3. Expand the Multi-factor authentication (MFA) section.

4. In the row for the MFA device that you want to deactivate, choose Deactivate.

The MFA device is deactivated for the AWS account. Check the email that is associated with your AWS
account for a confirmation message from Amazon Web Services. The email informs you that your
Amazon Web Services multi-factor authentication (MFA) has been deactivated. The message will come
from an address ending in @amazon.com or @aws.amazon.com.

Deactivating MFA devices (AWS CLI)

To deactivate an MFA device for an IAM user (AWS CLI)

• Run this command: aws iam deactivate-mfa-device

135

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/console.html#user-sign-in-page
https://docs.aws.amazon.com/cli/latest/reference/iam/deactivate-mfa-device.html

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

Deactivating MFA devices (AWS API)

To deactivate an MFA device for an IAM user (AWS API)

• Call this operation: DeactivateMFADevice

What if an MFA device is lost or stops working?
If your virtual MFA device (p. 113) or hardware MFA device (p. 121) appears to be functioning
properly, but you cannot use it to access your AWS resources, it might be out of synchronization
with AWS. For information about synchronizing a virtual MFA device or hardware MFA device, see
Resynchronizing virtual and hardware MFA devices (p. 130). U2F security keys (p. 116) do not go out
of sync.

If your AWS account root user multi-factor authentication (MFA) device (p. 110) is lost, damaged, or not
working, you can recover access to your account. IAM users must contact an administrator to deactivate
the device.

Recovering a root user MFA device

If your AWS account root user multi-factor authentication (MFA) device (p. 110) is lost, damaged, or not
working, you can sign in using alternative methods of authentication. This means that if you can't sign
in with your MFA device, you can sign in by verifying your identity using the email and phone registered
with your account.

Before you sign in as a root user using alternative factors of authentication, make sure that you have
access to the email and phone number that are associated with your account. If you no longer have
access to the email or phone, you must contact AWS Support. They can disable your MFA device so that
you can sign in and add a new one.

To sign in using alternative factors of authentication as an AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and entering
your AWS account email address. On the next page, enter your password.

2. On the Amazon Web Services Sign In With Authentication Device page, choose Having problems
with your authentication device? Click here.

Note
You might see different text, such as Sign in using MFA and Troubleshoot your
authentication device. However, the same features are provided. In either case, if you
cannot verify your account email address and phone number using alternative factors of
authentication, contact AWS Support to deactivate your MFA device.

3. If required, type your password again and choose Sign in.
4. In the Sign In Using Alternative Factors of Authentication section, choose Sign in using

alternative factors.
5. To authenticate your account by verifying the email address, choose Send verification email.
6. Check the email that is associated with your AWS account for a message from Amazon Web Services

(no-reply-aws@amazon.com). Follow the directions in the email.

If you don't see the email in your account, check your spam folder, or return to your browser and
choose Resend the email.

7. After you verify your email address, you can continue authenticating your account. To verify your
phone number, choose Call me now.

8. Answer the call from AWS and, when prompted, enter the 6-digit number from the AWS website on
your phone keypad.

136

https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeactivateMFADevice.html
https://aws.amazon.com/forms/aws-mfa-support
https://console.aws.amazon.com/
https://aws.amazon.com/forms/aws-mfa-support

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

If you don't receive a call from AWS, choose Sign in to sign in to the console again and start over. Or
choose AWS Support to contact support for help.

9. After you verify your phone number, you can sign in to your account by choosing Sign in to the
console.

10. The next step varies depending on the type of MFA you are using:

• For a virtual MFA device, remove the account from your device. Then go to the AWS Security
Credentials page and delete the old MFA virtual device entity before you create a new one.

• For a U2F security key, go to the AWS Security Credentials page and deactivate the old U2F key
before enabling a new one.

• For a hardware MFA device, contact the third-party provider for help fixing or replacing the device.
You can continue to sign in using alternative factors of authentication until you receive your new
device. After you have the new hardware MFA device, go to the AWS Security Credentials page and
delete the old MFA hardware device entity before you create a new one.

Note
You don't have to replace a lost or stolen MFA device with the same type of device. For
example, if you break your U2F security key and order a new one, you can use virtual MFA or
a hardware MFA device until you receive a new U2F security key.

11. If your MFA device is missing or stolen, also change your AWS password (p. 91) in case an attacker
has stolen the authentication device and might also have your current password.

Recovering an IAM user MFA device

If you are an IAM user and your device is lost or stops working, you can't recover it by yourself. You must
contact an administrator to deactivate the device. Then you can enable a new device.

To get help for an MFA device as an IAM user

1. Contact the AWS administrator or other person who gave you the user name and password for
the IAM user. The administrator must deactivate the MFA device as described in Deactivating MFA
devices (p. 134) so that you can sign in.

2. The next step varies depending on the type of MFA you are using:

• For a virtual MFA device, remove the account from your device. Then enable the virtual device as
described in Enabling a virtual multi-factor authentication (MFA) device (console) (p. 113).

• For a U2F security key, contact the third-party provider for help replacing the device. When
you receive the new U2F security key, enable it as described in Enabling a U2F security key
(console) (p. 116).

• For a hardware MFA device, contact the third-party provider for help fixing or replacing the
device. After you have the new physical MFA device, enable the device as described in Enabling a
hardware MFA device (console) (p. 121).

Note
You don't have to replace a lost or stolen MFA device with the same type of device. For
example, if you break your U2F security key and order a new one, you can use virtual MFA or
a hardware MFA device until you receive a new U2F security key.

3. If your MFA device is missing or stolen, also change your password (p. 100) in case an attacker has
stolen the authentication device and might also have your current password.

137

https://console.aws.amazon.com/iam/home?#security_credential
https://console.aws.amazon.com/iam/home?#security_credential
https://console.aws.amazon.com/iam/home?#security_credential
https://console.aws.amazon.com/iam/home?#security_credential

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

Configuring MFA-protected API access
With IAM policies, you can specify which API operations a user is allowed to call. In some cases, you
might want the additional security of requiring users to be authenticated with AWS multi-factor
authentication (MFA) before you allow them to perform particularly sensitive actions.

For example, you might have a policy that allows a user to perform the Amazon EC2 RunInstances,
DescribeInstances, and StopInstances actions. But you might want to restrict a destructive action
like TerminateInstances and ensure that users can perform that action only if they authenticate with
an AWS MFA device.

Topics
• Overview (p. 138)
• Scenario: MFA protection for cross-account delegation (p. 140)
• Scenario: MFA protection for access to API operations in the current account (p. 142)
• Scenario: MFA protection for resources that have resource-based policies (p. 142)

Overview

Adding MFA protection to API operations involves these tasks:

1. The administrator configures an AWS MFA device for each user who needs to make API requests
that require MFA authentication. This process is described at Enabling MFA devices for users in
AWS (p. 112).

2. The administrator creates policies for the users that include a Condition element that checks
whether the user authenticated with an AWS MFA device.

3. The user calls one of the AWS STS API operations that support the MFA parameters AssumeRole or
GetSessionToken, depending on the scenario for MFA protection, as explained later. As part of the
call, the user includes the device identifier for the device that's associated with the user. The user also
includes the time-based one-time password (TOTP) that the device generates. In either case, the user
gets back temporary security credentials that the user can then use to make additional requests to
AWS.

Note
MFA protection for a service's API operations is available only if the service supports
temporary security credentials. For a list of these services, see Using Temporary Security
Credentials to Access AWS.

If authorization fails, AWS returns an access denied error message (as it does for any unauthorized
access). With MFA-protected API policies in place, AWS denies access to the API operations specified in
the policies if the user attempts to call an API operation without valid MFA authentication. The operation
is also denied if the time stamp of the request for the API operation is outside of the allowed range
specified in the policy. The user must be reauthenticated with MFA by requesting new temporary security
credentials with an MFA code and device serial number.

IAM policies with MFA conditions

Policies with MFA conditions can be attached to the following:

• An IAM user or group
• A resource such as an Amazon S3 bucket, Amazon SQS queue, or Amazon SNS topic
• The trust policy of an IAM role that can be assumed by a user

You can use an MFA condition in a policy to check the following properties:

138

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/STS/latest/UsingSTS/UsingTokens.html
https://docs.aws.amazon.com/STS/latest/UsingSTS/UsingTokens.html

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

• Existence—To simply verify that the user did authenticate with MFA, check that the
aws:MultiFactorAuthPresent key is True in a Bool condition. The key is only present when the
user authenticates with short-term credentials. Long-term credentials, such as access keys, do not
include this key.

• Duration—If you want to grant access only within a specified time after MFA authentication, use a
numeric condition type to compare the aws:MultiFactorAuthAge key's age to a value (such as 3600
seconds). Note that the aws:MultiFactorAuthAge key is not present if MFA was not used.

The following example shows the trust policy of an IAM role that includes an MFA condition to test
for the existence of MFA authentication. With this policy, users from the AWS account specified in the
Principal element (replace ACCOUNT-B-ID with a valid AWS account ID) can assume the role that this
policy is attached to. However such users can only assume the role if the user is authenticated using MFA.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": {"AWS": "ACCOUNT-B-ID"},
 "Action": "sts:AssumeRole",
 "Condition": {"Bool": {"aws:MultiFactorAuthPresent": "true"}}
 }
}

For more information on the condition types for MFA, see AWS global condition context keys (p. 812),
Numeric condition operators (p. 763), and Condition operator to check existence of condition keys
 (p. 768).

Choosing between GetSessionToken and AssumeRole

AWS STS provides two API operations that let users pass MFA information: GetSessionToken and
AssumeRole. The API operation that the user calls to get temporary security credentials depends on
which of the following scenarios applies.

Use GetSessionToken for the following scenarios:

• Call API operations that access resources in the same AWS account as the IAM user who makes the
request. Note that temporary credentials from a GetSessionToken request can access IAM and
AWS STS API operations only if you include MFA information in the request for credentials. Because
temporary credentials returned by GetSessionToken include MFA information, you can check for
MFA in individual API operations made by the credentials.

• Access to resources that are protected with resource-based policies that include an MFA condition.

The purpose of the GetSessionToken operation is to authenticate the user using MFA. You cannot use
policies to control authentication operations.

Use AssumeRole for the following scenarios:

• Call API operations that access resources in the same or a different AWS account. The API calls can
include any IAM or AWS STS API. Note that to protect access you enforce MFA at the time when the
user assumes the role. The temporary credentials returned by AssumeRole do not include MFA
information in the context, so you cannot check individual API operations for MFA. This is why you
must use GetSessionToken to restrict access to resources protected by resource-based policies.

Details about how to implement these scenarios are provided later in this document.

139

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

Important points about MFA-protected API access

It's important to understand the following aspects of MFA protection for API operations:

• MFA protection is available only with temporary security credentials, which must be obtained with
AssumeRole or GetSessionToken.

• You cannot use MFA-protected API access with AWS account root user credentials.

• You cannot use MFA-protected API access with U2F security keys.

• Federated users cannot be assigned an MFA device for use with AWS services, so they cannot access
AWS resources controlled by MFA. (See next point.)

• Other AWS STS API operations that return temporary credentials do not support MFA. For
AssumeRoleWithWebIdentity and AssumeRoleWithSAML, the user is authenticated by an external
provider and AWS cannot determine whether that provider required MFA. For GetFederationToken,
MFA is not necessarily associated with a specific user.

• Similarly, long-term credentials (IAM user access keys and root user access keys) cannot be used with
MFA-protected API access because they don't expire.

• AssumeRole and GetSessionToken can also be called without MFA information. In that case, the
caller gets back temporary security credentials, but the session information for those temporary
credentials does not indicate that the user authenticated with MFA.

• To establish MFA protection for API operations, you add MFA conditions to policies. A policy must
include the aws:MultiFactorAuthPresent condition key to enforce the use of MFA. For cross-
account delegation, the role's trust policy must include the condition key.

• When you allow another AWS account to access resources in your account, the security of your
resources depends on the configuration of the trusted account (the other account, not yours). This is
true even when you require multi-factor authentication. Any identity in the trusted account that has
permission to create virtual MFA devices can construct an MFA claim to satisfy that part of your role's
trust policy. Before you allow members of another account access to your AWS resources that require
multi-factor authentication, you should ensure that the trusted account's owner follows security best
practices. For example, the trusted account should restrict access to sensitive API operations, such as
MFA device-management API operations, to specific, trusted identities.

• If a policy includes an MFA condition, a request is denied if users have not been MFA authenticated, or
if they provide an invalid MFA device identifier or invalid TOTP.

Scenario: MFA protection for cross-account delegation

In this scenario, you want to delegate access to IAM users in another account, but only if the users are
authenticated with an AWS MFA device. (For more information about cross-account delegation, see Roles
terms and concepts (p. 169).

Imagine that you have account A (the trusting account that owns the resource to be accessed), with
the IAM user Anaya, who has administrator permission. She wants to grant access to user Richard in
account B (the trusted account), but wants to make sure that Richard is authenticated with MFA before
he assumes the role.

1. In the trusting account A, Anaya creates an IAM role named CrossAccountRole and sets the
principal in the role's trust policy to the account ID of account B. The trust policy grants permission
to the AWS STS AssumeRole action. Anaya also adds an MFA condition to the trust policy, as in the
following example.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": {"AWS": "ACCOUNT-B-ID"},

140

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

 "Action": "sts:AssumeRole",
 "Condition": {"Bool": {"aws:MultiFactorAuthPresent": "true"}}
 }
}

2. Anaya adds a permissions policy to the role that specifies what the role is allowed to do. The
permissions policy for a role with MFA protection is no different than any other role-permission policy.
The following example shows the policy that Anaya adds to the role; it allows an assuming user to
perform any Amazon DynamoDB action on the table Books in account A. This policy also allows the
dynamodb:ListTables action, which is required to perform actions in the console.

Note
The permissions policy does not include an MFA condition. It is important to understand that
the MFA authentication is used only to determine whether a user can assume the role. Once
the user has assumed the role, no further MFA checks are made.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "TableActions",
 "Effect": "Allow",
 "Action": "dynamodb:*",
 "Resource": "arn:aws:dynamodb:*:ACCOUNT-A-ID:table/Books"
 },
 {
 "Sid": "ListTable",
 "Effect": "Allow",
 "Action": "dynamodb:ListTable",
 "Resource": "*"
 }
]
}

3. In trusted account B, the administrator makes sure that IAM user Richard is configured with an AWS
MFA device and that he knows the ID of the device. The device ID is the serial number if it's a hardware
MFA device, or the device's ARN if it's a virtual MFA device.

4. In account B, the administrator attaches the following policy to user Richard (or a group that he's a
member of) that allows him to call the AssumeRole action. The resource is set to the ARN of the role
that Anaya created in step 1. Notice that this policy does not contain an MFA condition.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": ["sts:AssumeRole"],
 "Resource": ["arn:aws:iam::ACCOUNT-A-ID:role/CrossAccountRole"]
 }]
}

5. In account B, Richard (or an application that Richard is running) calls AssumeRole. The
API call includes the ARN of the role to assume (arn:aws:iam::ACCOUNT-A-ID:role/
CrossAccountRole), the ID of the MFA device, and the current TOTP that Richard gets from his
device.

When Richard calls AssumeRole, AWS determines whether he has valid credentials, including the
requirement for MFA. If so, Richard successfully assumes the role and can perform any DynamoDB
action on the table named Books in account A while using the role's temporary credentials.

For an example of a program that calls AssumeRole, see Calling AssumeRole with MFA authentication
(Python) (p. 145).

141

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

Scenario: MFA protection for access to API operations in the current account

In this scenario, you should ensure that a user in your AWS account can access sensitive API operations
only when the user is authenticated using an AWS MFA device.

Imagine that you have account A that contains a group of developers who need to work with EC2
instances. Ordinary developers can work with the instances, but they are not granted permissions for
the ec2:StopInstances or ec2:TerminateInstances actions. You want to limit those "destructive"
privileged actions to just a few trusted users, so you add MFA protection to the policy that allows these
sensitive Amazon EC2 actions.

In this scenario, one of those trusted users is user Sofía. User Anaya is an administrator in account A.

1. Anaya makes sure that Sofía is configured with an AWS MFA device and that Sofía knows the ID of
the device. The device ID is the serial number if it's a hardware MFA device, or the device's ARN if it's a
virtual MFA device.

2. Anaya creates a group named EC2-Admins and adds user Sofía to the group.
3. Anaya attaches the following policy to the EC2-Admins group. This policy grants users permission

to call the Amazon EC2 StopInstances and TerminateInstances actions only if the user has
authenticated using MFA.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "ec2:StopInstances",
 "ec2:TerminateInstances"
],
 "Resource": ["*"],
 "Condition": {"Bool": {"aws:MultiFactorAuthPresent": "true"}}
 }]
}

4. Note
For this policy to take effect, users must first sign out and then sign in again.

If user Sofía needs to stop or terminate an Amazon EC2 instance, she (or an application that she is
running) calls GetSessionToken. This API operation passes the ID of the MFA device and the current
TOTP that Sofía gets from her device.

5. User Sofía (or an application that Sofía is using) uses the temporary credentials provided by
GetSessionToken to call the Amazon EC2 StopInstances or TerminateInstances action.

For an example of a program that calls GetSessionToken, see Calling GetSessionToken with MFA
authentication (Python and C#) (p. 144) later in this document.

Scenario: MFA protection for resources that have resource-based policies

In this scenario, you are the owner of an S3 bucket, an SQS queue, or an SNS topic. You want to make
sure that any user from any AWS account who accesses the resource is authenticated by an AWS MFA
device.

This scenario illustrates a way to provide cross-account MFA protection without requiring users to assume
a role first. In this case, the user can access the resource if three conditions are met: The user must be
authenticated by MFA, be able to get temporary security credentials from GetSessionToken, and be in
an account that is trusted by the resource's policy.

Imagine that you are in account A and you create an S3 bucket. You want to grant access to this bucket
to users who are in several different AWS accounts, but only if those users are authenticated with MFA.

142

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

In this scenario, user Anaya is an administrator in account A. User Nikhil is an IAM user in account C.

1. In account A, Anaya creates a bucket named Account-A-bucket.

2. Anaya adds the bucket policy to the bucket. The policy allows any user in account A, account B, or
account C to perform the Amazon S3 PutObject and DeleteObject actions in the bucket. The
policy includes an MFA condition.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {"AWS": [
 "ACCOUNT-A-ID",
 "ACCOUNT-B-ID",
 "ACCOUNT-C-ID"
]},
 "Action": [
 "s3:PutObject",
 "s3:DeleteObject"
],
 "Resource": ["arn:aws:s3:::ACCOUNT-A-BUCKET-NAME/*"],
 "Condition": {"Bool": {"aws:MultiFactorAuthPresent": "true"}}
 }]
}

Note
Amazon S3 offers an MFA Delete feature for root account access (only). You can enable
Amazon S3 MFA Delete when you set the versioning state of the bucket. Amazon S3 MFA
Delete cannot be applied to an IAM user, and is managed independently from MFA-protected
API access. An IAM user with permissions to delete a bucket cannot delete a bucket with
Amazon S3 MFA Delete enabled. For more information on Amazon S3 MFA Delete, see MFA
Delete.

3. In account C, an administrator makes sure that user Nikhil is configured with an AWS MFA device and
that he knows the ID of the device. The device ID is the serial number if it's a hardware MFA device, or
the device's ARN if it's a virtual MFA device.

4. In account C, Nikhil (or an application that he is running) calls GetSessionToken. The call includes
the ID or ARN of the MFA device and the current TOTP that Nikhil gets from his device.

5. Nikhil (or an application that he is using) uses the temporary credentials returned by
GetSessionToken to call the Amazon S3 PutObject action to upload a file to Account-A-bucket.

For an example of a program that calls GetSessionToken, see Calling GetSessionToken with MFA
authentication (Python and C#) (p. 144) later in this document.

Note
The temporary credentials that AssumeRole returns won't work in this case. Although the
user can provide MFA information to assume a role, the temporary credentials returned by
AssumeRole don't include the MFA information. That information is required in order to
meet the MFA condition in the policy.

Sample code: Requesting credentials with multi-factor
authentication

The following examples show how to call GetSessionToken and AssumeRole operations and pass
MFA authentication parameters. No permissions are required to call GetSessionToken, but you must
have a policy that allows you to call AssumeRole. The credentials returned are then used to list all S3
buckets in the account.

143

https://docs.aws.amazon.com/AmazonS3/latest/dev/MultiFactorAuthenticationDelete.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/MultiFactorAuthenticationDelete.html

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

Calling GetSessionToken with MFA authentication (Python and C#)

The following examples, written using the AWS SDK for Python (Boto) and AWS SDK for .NET, show how
to call GetSessionToken and pass MFA authentication information. The temporary security credentials
returned by the GetSessionToken operation are then used to list all S3 buckets in the account.

The policy attached to the user who runs this code (or to a group that the user is in) provides the
permissions for the returned temporary credentials. For this example code, the policy must grant the
user permission to request the Amazon S3 ListBuckets operation.

Using Python

import boto
from boto.s3.connection import S3Connection
from boto.sts import STSConnection

Prompt for MFA time-based one-time password (TOTP)
mfa_TOTP = raw_input("Enter the MFA code: ")

The calls to AWS STS GetSessionToken must be signed with the access key ID and secret
access key of an IAM user. The credentials can be in environment variables or in
a configuration file and will be discovered automatically
by the STSConnection() function. For more information, see the Python SDK
documentation: http://boto.readthedocs.org/en/latest/boto_config_tut.html

sts_connection = STSConnection()

Use the appropriate device ID (serial number for hardware device or ARN for virtual
 device).
Replace ACCOUNT-NUMBER-WITHOUT-HYPHENS and MFA-DEVICE-ID with appropriate values.

tempCredentials = sts_connection.get_session_token(
 duration=3600,
 mfa_serial_number="®ion-arn;iam::ACCOUNT-NUMBER-WITHOUT-HYPHENS:mfa/MFA-DEVICE-ID",
 mfa_token=mfa_TOTP
)

Use the temporary credentials to list the contents of an S3 bucket
s3_connection = S3Connection(
 aws_access_key_id=tempCredentials.access_key,
 aws_secret_access_key=tempCredentials.secret_key,
 security_token=tempCredentials.session_token
)

Replace BUCKET-NAME with an appropriate value.
bucket = s3_connection.get_bucket(bucket_name="BUCKET-NAME")
objectlist = bucket.list()
for obj in objectlist:
 print obj.name

Using C#

Console.Write("Enter MFA code: ");
string mfaTOTP = Console.ReadLine(); // Get string from user

/* The calls to AWS STS GetSessionToken must be signed using the access key ID and secret
 access key of an IAM user. The credentials can be in environment variables or in
 a configuration file and will be discovered automatically
 by the AmazonSecurityTokenServiceClient constructor. For more information, see
 https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/net-dg-config-creds.html
*/
AmazonSecurityTokenServiceClient stsClient =
 new AmazonSecurityTokenServiceClient();

144

http://aws.amazon.com/sdkforpython/
http://aws.amazon.com/sdkfornet/

AWS Identity and Access Management User Guide
Multi-factor authentication (MFA)

GetSessionTokenRequest getSessionTokenRequest = new GetSessionTokenRequest();
getSessionTokenRequest.DurationSeconds = 3600;

// Replace ACCOUNT-NUMBER-WITHOUT-HYPHENS and MFA-DEVICE-ID with appropriate values
getSessionTokenRequest.SerialNumber = "arn:aws:iam::ACCOUNT-NUMBER-WITHOUT-HYPHENS:mfa/MFA-
DEVICE-ID";
getSessionTokenRequest.TokenCode = mfaTOTP;

GetSessionTokenResponse getSessionTokenResponse =
 stsClient.GetSessionToken(getSessionTokenRequest);

// Extract temporary credentials from result of GetSessionToken call
GetSessionTokenResult getSessionTokenResult =
 getSessionTokenResponse.GetSessionTokenResult;
string tempAccessKeyId = getSessionTokenResult.Credentials.AccessKeyId;
string tempSessionToken = getSessionTokenResult.Credentials.SessionToken;
string tempSecretAccessKey = getSessionTokenResult.Credentials.SecretAccessKey;
SessionAWSCredentials tempCredentials = new SessionAWSCredentials(tempAccessKeyId,
 tempSecretAccessKey, tempSessionToken);

// Use the temporary credentials to list the contents of an S3 bucket
// Replace BUCKET-NAME with an appropriate value
ListObjectsRequest S3ListObjectsRequest = new ListObjectsRequest();
S3ListObjectsRequest.BucketName = "BUCKET-NAME";
S3Client = AWSClientFactory.CreateAmazonS3Client(tempCredentials);
ListObjectsResponse S3ListObjectsResponse =
 S3Client.ListObjects(S3ListObjectsRequest);
foreach (S3Object s3Object in S3ListObjectsResponse.S3Objects)
{
 Console.WriteLine(s3Object.Key);
}

Calling AssumeRole with MFA authentication (Python)

The following example, written using the AWS SDK for Python (Boto), shows how to call AssumeRole
and pass MFA authentication information. The temporary security credentials returned by AssumeRole
are then used to list all Amazon S3 buckets in the account.

For more information about this scenario, see Scenario: MFA protection for cross-account
delegation (p. 140).

import boto
from boto.s3.connection import S3Connection
from boto.sts import STSConnection

Prompt for MFA time-based one-time password (TOTP)
mfa_TOTP = raw_input("Enter the MFA code: ")

The calls to AWS STS AssumeRole must be signed with the access key ID and secret
access key of an IAM user. (The AssumeRole API operation can also be called using
 temporary
credentials, but this example does not show that scenario.)
The IAM user credentials can be in environment variables or in
a configuration file and will be discovered automatically
by the STSConnection() function. For more information, see the Python SDK
documentation: http://boto.readthedocs.org/en/latest/boto_config_tut.html

sts_connection = STSConnection()

Use appropriate device ID (serial number for hardware device or ARN for virtual device)
Replace ACCOUNT-NUMBER-WITHOUT-HYPHENS, ROLE-NAME, and MFA-DEVICE-ID with appropriate
 values
tempCredentials = sts_connection.assume_role(
 role_arn="arn:aws:iam::ACCOUNT-NUMBER-WITHOUT-HYPHENS:role/ROLE-NAME",

145

http://aws.amazon.com/sdkforpython/

AWS Identity and Access Management User Guide
Finding unused credentials

 role_session_name="AssumeRoleSession1",
 mfa_serial_number="arn:aws:iam::ACCOUNT-NUMBER-WITHOUT-HYPHENS:mfa/MFA-DEVICE-ID",
 mfa_token=mfa_TOTP
)

Use the temporary credentials to list the contents of an S3 bucket
s3_connection = S3Connection(
 aws_access_key_id=tempCredentials.credentials.access_key,
 aws_secret_access_key=tempCredentials.credentials.secret_key,
 security_token=tempCredentials.credentials.session_token
)

Replace BUCKET-NAME with a real bucket name
bucket = s3_connection.get_bucket(bucket_name="BUCKET-NAME")
objectlist = bucket.list()
for obj in objectlist:
 print obj.name

Finding unused credentials
To increase the security of your AWS account, remove IAM user credentials (that is, passwords and access
keys) that are not needed. For example, when users leave your organization or no longer need AWS
access, find the credentials that they were using and ensure that they are no longer operational. Ideally,
you delete credentials if they are no longer needed. You can always recreate them at a later date if the
need arises. At the very least, you should change the password or deactivate the access keys so that the
former users no longer have access.

Of course, the definition of unused can vary and usually means a credential that has not been used
within a specified period of time.

Finding unused passwords
You can use the AWS Management Console to view password usage information for your users. If you
have a large number of users, you can use the console to download a credential report with information
about when each user last used their console password. You can also access the information from the
AWS CLI or the IAM API.

To find unused passwords (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.
3. If necessary, add the Console last sign-in column to the users table:

a.
Above the table on the far right, choose the settings icon ().

b. In Manage Columns, select Console last sign-in.
c. Choose Close to return to the list of users.

4. The Console last sign-in column shows the date when the user last signed in to AWS through the
console. You can use this information to find users with passwords who have not signed in for more
than a specified period of time. The column displays Never for users with passwords that have never
signed in. None indicates users with no passwords. Passwords that have not been used recently
might be good candidates for removal.

Important
Due to a service issue, password last used data does not include password use from May 3rd
2018 22:50 PDT to May 23rd 2018 14:08 PDT. This affects last sign-in dates shown in the
IAM console and password last used dates in the IAM credential report, and returned by the

146

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_finding-unused.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/SupportedTypes.xmlid_credentials_getting-report.html

AWS Identity and Access Management User Guide
Finding unused credentials

GetUser API operation. If users signed in during the affected time, the password last used
date that is returned is the date the user last signed in before May 3rd 2018. For users that
signed in after May 23rd 2018 14:08 PDT, the returned password last used date is accurate.
If you use password last used information to identify unused credentials for deletion, such
as deleting users who did not sign in to AWS in the last 90 days, we recommend that you
adjust your evaluation window to include dates after May 23rd 2018. Alternatively, if your
users use access keys to access AWS programmatically you can refer to access key last used
information because it is accurate for all dates.

To find unused passwords by downloading the credentials report (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Credential report.
3. Choose Download Report to download a comma-separated value (CSV) file named

status_reports_<date>T<time>.csv. The fifth column contains the password_last_used
column with the dates or one of the following:

• N/A – Users that do not have a password assigned at all.
• no_information – Users that have not used their password since IAM began tracking password age

on October 20, 2014.

To find unused passwords (AWS CLI)

Run the following command to find unused passwords:

• aws iam list-users returns a list of users, each with a PasswordLastUsed value. If the value
is missing, then the user either has no password or the password has not been used since IAM began
tracking password age on October 20, 2014.

To find unused passwords (AWS API)

Call the following operation to find unused passwords:

• ListUsers returns a collection of users, each of which has a <PasswordLastUsed> value. If the
value is missing, then the user either has no password or the password has not been used since IAM
began tracking password age on October 20, 2014.

For information about the commands to download the credentials report, see Getting credential reports
(AWS CLI) (p. 152).

Finding unused access keys
You can use the AWS Management Console to view access key usage information for your users. If you
have a large number of users, you can use the console to download a credentials report to find when
each user last used their access keys. You can also access the information from the AWS CLI or the IAM
API.

To find unused access keys (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.
3. If necessary, add the Access key last used column to the users table:

147

https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetUser.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/list-users.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListUsers.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Getting credential reports

a.
Above the table on the far right, choose the settings icon ().

b. In Manage Columns, select Access key last used.
c. Choose Close to return to the list of users.

4. The Access key last used column shows the number of days since the user last accessed AWS
programmatically. You can use this information to find users with access keys that have not been
used for more than a specified period of time. The column displays None for users with no access
keys. Access keys that have not been used recently might be good candidates for removal.

To find unused access keys by downloading the credentials report (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Credential Report.
3. Choose Download Report to download a comma-separated value (CSV) file named

status_reports_<date>T<time>.csv. Columns 11 through 13 contain the last used date,
Region, and service information for access key 1. Columns 16 through 18 contain the same
information for access key 2. The value is N/A if the user does not have an access key or the user has
not used the access key since IAM began tracking access key age on April 22, 2015.

To find unused access keys (AWS CLI)

Run the following commands to find unused access keys:

• aws iam list-access-keys returns information about the access keys for a user, including the
AccessKeyID.

• aws iam get-access-key-last-used takes an access key ID and returns output that includes the
LastUsedDate, the Region in which the access key was last used, and the ServiceName of the last
service requested. If LastUsedDate is missing, then the access key has not been used since IAM began
tracking access key age on April 22, 2015.

To find unused access keys (AWS API)

Call the following operations to find unused access keys:

• ListAccessKeys returns a list of AccessKeyID values for access keys that are associated with the
specified user.

• GetAccessKeyLastUsed takes an access key ID and returns a collection of values. Included are the
LastUsedDate, the Region in which the access key was last used, and the ServiceName of the last
service requested. If the value is missing, then either the user has no access key or the access key has
not been used since IAM began tracking access key age on April 22, 2015.

For information about the commands to download the credentials report, see Getting credential reports
(AWS CLI) (p. 152).

Getting credential reports for your AWS account
You can generate and download a credential report that lists all users in your account and the status of
their various credentials, including passwords, access keys, and MFA devices. You can get a credential
report from the AWS Management Console, the AWS SDKs and Command Line Tools, or the IAM API.

You can use credential reports to assist in your auditing and compliance efforts. You can use the report
to audit the effects of credential lifecycle requirements, such as password and access key rotation. You

148

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/list-access-keys.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-access-key-last-used.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAccessKeys.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetAccessKeyLastUsed.html
https://aws.amazon.com/tools
https://aws.amazon.com/tools/#Command_Line_Tools

AWS Identity and Access Management User Guide
Getting credential reports

can provide the report to an external auditor, or grant permissions to an auditor so that he or she can
download the report directly.

You can generate a credential report as often as once every four hours. When you request a report, IAM
first checks whether a report for the AWS account has been generated within the past four hours. If so,
the most recent report is downloaded. If the most recent report for the account is older than four hours,
or if there are no previous reports for the account, IAM generates and downloads a new report.

Topics
• Required permissions (p. 149)
• Understanding the report format (p. 149)
• Getting credential reports (console) (p. 152)
• Getting credential reports (AWS CLI) (p. 152)
• Getting credential reports (AWS API) (p. 152)

Required permissions
The following permissions are needed to create and download reports:

• To create a credential report: iam:GenerateCredentialReport
• To download the report: iam:GetCredentialReport

Understanding the report format
Credential reports are formatted as comma-separated values (CSV) files. You can open CSV files with
common spreadsheet software to perform analysis, or you can build an application that consumes the
CSV files programmatically and performs custom analysis.

The CSV file contains the following columns:

user

The friendly name of the user.
arn

The Amazon Resource Name (ARN) of the user. For more information about ARNs, see IAM
ARNs (p. 714).

user_creation_time

The date and time when the user was created, in ISO 8601 date-time format.
password_enabled

When the user has a password, this value is TRUE. Otherwise it is FALSE.The value for the AWS
account root user is always not_supported.

password_last_used

The date and time when the AWS account root user or IAM user's password was last used to sign
in to an AWS website, in ISO 8601 date-time format. AWS websites that capture a user's last sign-
in time are the AWS Management Console, the AWS Discussion Forums, and the AWS Marketplace.
When a password is used more than once in a 5-minute span, only the first use is recorded in this
field.
• The value in this field is no_information in these cases:

• The user's password has never been used.

149

https://en.wikipedia.org/wiki/ISO_8601
http://www.iso.org/iso/iso8601

AWS Identity and Access Management User Guide
Getting credential reports

• There is no sign-in data associated with the password, such as when user's password has not
been used after IAM started tracking this information on October 20, 2014.

• The value in this field is N/A (not applicable) when the user does not have a password.

Important
Due to a service issue, password last used data does not include password use from May 3rd
2018 22:50 PDT to May 23rd 2018 14:08 PDT. This affects last sign-in dates shown in the IAM
console and password last used dates in the IAM credential report, and returned by the GetUser
API operation. If users signed in during the affected time, the password last used date that is
returned is the date the user last signed in before May 3rd 2018. For users that signed in after
May 23rd 2018 14:08 PDT, the returned password last used date is accurate.
If you use password last used information to identify unused credentials for deletion, such as
deleting users who did not sign in to AWS in the last 90 days, we recommend that you adjust
your evaluation window to include dates after May 23rd 2018. Alternatively, if your users use
access keys to access AWS programmatically you can refer to access key last used information
because it is accurate for all dates.

password_last_changed

The date and time when the user's password was last set, in ISO 8601 date-time format. If the user
does not have a password, the value in this field is N/A (not applicable). The value for the AWS
account (root) is always not_supported.

password_next_rotation

When the account has a password policy that requires password rotation, this field contains the date
and time, in ISO 8601 date-time format, when the user is required to set a new password. The value
for the AWS account (root) is always not_supported.

mfa_active

When a multi-factor authentication (p. 110) (MFA) device has been enabled for the user, this value
is TRUE. Otherwise it is FALSE.

access_key_1_active

When the user has an access key and the access key's status is Active, this value is TRUE. Otherwise
it is FALSE.

access_key_1_last_rotated

The date and time, in ISO 8601 date-time format, when the user's access key was created or last
changed. If the user does not have an active access key, the value in this field is N/A (not applicable).

access_key_1_last_used_date

The date and time, in ISO 8601 date-time format, when the user's access key was most recently used
to sign an AWS API request. When an access key is used more than once in a 15-minute span, only
the first use is recorded in this field.

The value in this field is N/A (not applicable) in these cases:
• The user does not have an access key.
• The access key has never been used.
• The access key has not been used after IAM started tracking this information on April 22, 2015.

access_key_1_last_used_region

The AWS Region in which the access key was most recently used. When an access key is used more
than once in a 15-minute span, only the first use is recorded in this field.

The value in this field is N/A (not applicable) in these cases:

150

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_finding-unused.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/SupportedTypes.xmlid_credentials_getting-report.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetUser.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetUser.html
https://en.wikipedia.org/wiki/ISO_8601
https://docs.aws.amazon.com/IAM/latest/UserGuide/Using_ManagingPasswordPolicies.html
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601
https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS Identity and Access Management User Guide
Getting credential reports

• The user does not have an access key.
• The access key has never been used.
• The access key was last used before IAM started tracking this information on April 22, 2015.
• The last used service is not Region-specific, such as Amazon S3.

access_key_1_last_used_service

The AWS service that was most recently accessed with the access key. The value in this field uses the
service's namespace—for example, s3 for Amazon S3 and ec2 for Amazon EC2. When an access key
is used more than once in a 15-minute span, only the first use is recorded in this field.

The value in this field is N/A (not applicable) in these cases:
• The user does not have an access key.
• The access key has never been used.
• The access key was last used before IAM started tracking this information on April 22, 2015.

access_key_2_active

When the user has a second access key and the second key's status is Active, this value is TRUE.
Otherwise it is FALSE.

Note
Users can have up to two access keys, to make rotation easier. For more information about
rotating access keys, see Rotating access keys (p. 106).

access_key_2_last_rotated

The date and time, in ISO 8601 date-time format, when the user's second access key was created or
last changed. If the user does not have a second active access key, the value in this field is N/A (not
applicable).

access_key_2_last_used_date

The date and time, in ISO 8601 date-time format, when the user's second access key was most
recently used to sign an AWS API request. When an access key is used more than once in a 15-minute
span, only the first use is recorded in this field.

The value in this field is N/A (not applicable) in these cases:
• The user does not have a second access key.
• The user's second access key has never been used.
• The user's second access key was last used before IAM started tracking this information on April

22, 2015.
access_key_2_last_used_region

The AWS Region in which the user's second access key was most recently used. When an access key is
used more than once in a 15-minute span, only the first use is recorded in this field. The value in this
field is N/A (not applicable) in these cases:
• The user does not have a second access key.
• The user's second access key has never been used.
• The user's second access key was last used before IAM started tracking this information on April

22, 2015.
• The last used service is not Region-specific, such as Amazon S3.

access_key_2_last_used_service

The AWS service that was most recently accessed with the user's second access key. The value in this
field uses the service's namespace—for example, s3 for Amazon S3 and ec2 for Amazon EC2. When
an access key is used more than once in a 15-minute span, only the first use is recorded in this field.
The value in this field is N/A (not applicable) in these cases:

151

https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601
https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS Identity and Access Management User Guide
Getting credential reports

• The user does not have a second access key.
• The user's second access key has never been used.
• The user's second access key was last used before IAM started tracking this information on April

22, 2015.
cert_1_active

When the user has an X.509 signing certificate and that certificate's status is Active, this value is
TRUE. Otherwise it is FALSE.

cert_1_last_rotated

The date and time, in ISO 8601 date-time format, when the user's signing certificate was created or
last changed. If the user does not have an active signing certificate, the value in this field is N/A (not
applicable).

cert_2_active

When the user has a second X.509 signing certificate and that certificate's status is Active, this
value is TRUE. Otherwise it is FALSE.

Note
Users can have up to two X.509 signing certificates, to make certificate rotation easier.

cert_2_last_rotated

The date and time, in ISO 8601 date-time format, when the user's second signing certificate was
created or last changed. If the user does not have a second active signing certificate, the value in this
field is N/A (not applicable).

Getting credential reports (console)
You can use the AWS Management Console to download a credential report as a comma-separated
values (CSV) file.

To download a credential report (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Credential report.
3. Choose Download Report.

Getting credential reports (AWS CLI)
To download a credentials report (AWS CLI)

1. Generate a credentials report. AWS stores a single report. If a report exists, generating a credentials
report overwrites the previous report. aws iam generate-credential-report

2. View the last report that was generated: aws iam get-credential-report

Getting credential reports (AWS API)
To download a credentials report (AWS API)

1. Generate a credentials report. AWS stores a single report. If a report exists, generating a credentials
report overwrites the previous report. GenerateCredentialReport

2. View the last report that was generated: GetCredentialReport

152

https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/generate-credential-report.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-credential-report.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GenerateCredentialReport.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetCredentialReport.html

AWS Identity and Access Management User Guide
Using IAM with CodeCommit

Using IAM with CodeCommit: Git credentials, SSH
keys, and AWS access keys
CodeCommit is a managed version control service that hosts private Git repositories in the AWS cloud. To
use CodeCommit, you configure your Git client to communicate with CodeCommit repositories. As part
of this configuration, you provide IAM credentials that CodeCommit can use to authenticate you. IAM
supports CodeCommit with three types of credentials:

• Git credentials, an IAM-generated user name and password pair you can use to communicate with
CodeCommit repositories over HTTPS.

• SSH keys, a locally generated public-private key pair that you can associate with your IAM user to
communicate with CodeCommit repositories over SSH.

• AWS access keys (p. 102), which you can use with the credential helper included with the AWS CLI to
communicate with CodeCommit repositories over HTTPS.

Note
You cannot use SSH keys or Git credentials to access repositories in another AWS account. To
learn how to configure access to CodeCommit repositories for IAM users and groups in another
AWS account, see Configure cross-account access to an AWS CodeCommit repository using roles
in the AWS CodeCommit User Guide.

See the following sections for more information about each option.

Use Git credentials and HTTPS with CodeCommit
(recommended)

With Git credentials, you generate a static user name and password pair for your IAM user, and then use
those credentials for HTTPS connections. You can also use these credentials with any third-party tool or
integrated development environment (IDE) that supports static Git credentials.

Because these credentials are universal for all supported operating systems and compatible with most
credential management systems, development environments, and other software development tools,
this is the recommended method. You can reset the password for Git credentials at any time. You can
also make the credentials inactive or delete them if you no longer need them.

Note
You cannot choose your own user name or password for Git credentials. IAM generates these
credentials for you to help ensure they meet the security standards for AWS and secure
repositories in CodeCommit. You can download the credentials only once, at the time they are
generated. Make sure that you save the credentials in a secure location. If necessary, you can
reset the password at any time, but doing so invalidates any connections configured with the old
password. You must reconfigure connections to use the new password before you can connect.

See the following topics for more information:

• To create an IAM user, see Creating an IAM user in your AWS account (p. 75).

• To generate and use Git credentials with CodeCommit, see For HTTPS Users Using Git Credentials in
the AWS CodeCommit User Guide.

Note
Changing the name of an IAM user after generating Git credentials does not change the user
name of the Git credentials. The user name and password remain the same and are still valid.

153

https://docs.aws.amazon.com/codecommit/latest/userguide/cross-account.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-gc.html

AWS Identity and Access Management User Guide
Using IAM with CodeCommit

To rotate service specific credentials

1. Create a second service-specific credential set in addition to the set currently in use.

2. Update all of your applications to use the new set of credentials and validate that the applications
are working.

3. Change the state of the original credentials to "Inactive".

4. Ensure that all of your applications are still working.

5. Delete the inactive service-specific credentials.

Use SSH keys and SSH with CodeCommit

With SSH connections, you create public and private key files on your local machine that Git and
CodeCommit use for SSH authentication. You associate the public key with your IAM user and store the
private key on your local machine. See the following topics for more information:

• To create an IAM user, see Creating an IAM user in your AWS account (p. 75).

• To create an SSH public key and associate it with an IAM user, see For SSH Connections on Linux,
macOS, or Unix or see For SSH Connections on Windows in the AWS CodeCommit User Guide.

Note
The public key must be encoded in ssh-rsa format or PEM format. The minimum bit-length of
the public key is 2048 bits, and the maximum length is 16384 bits. This is separate from the size
of the file you upload. For example, you can generate a 2048-bit key, and the resulting PEM file
is 1679 bytes long. If you provide your public key in another format or size, you will see an error
message stating that the key format is not valid.

Use HTTPS with the AWS CLI credential helper and CodeCommit

As an alternative to HTTPS connections with Git credentials, you can allow Git to use a cryptographically
signed version of your IAM user credentials or Amazon EC2 instance role whenever Git needs to
authenticate with AWS to interact with CodeCommit repositories. This is the only connection method for
CodeCommit repositories that does not require an IAM user. This is also the only method that works with
federated access and temporary credentials. Unless your business needs require federated access or the
use of temporary credentials, creating and using IAM users for access is strongly recommended. See the
following topics for more information:

• To learn more about federated access, see Identity providers and federation (p. 177) and Providing
access to externally authenticated users (identity federation) (p. 175).

• To learn more about temporary credentials, see Temporary security credentials in IAM (p. 322) and
Temporary Access to CodeCommit Repositories.

The AWS CLI credential helper is not compatible with other credential helper systems, such as Keychain
Access or Windows Credential Management. There are additional configuration considerations when
you configure HTTPS connections with the credential helper. For more information, see For HTTPS
Connections on Linux, macOS, or Unix with the AWS CLI Credential Helper or HTTPS Connections on
Windows with the AWS CLI Credential Helper in the AWS CodeCommit User Guide.

154

https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-unixes.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-unixes.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-ssh-windows.html
https://docs.aws.amazon.com/codecommit/latest/userguide/temporary-access.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-https-unixes.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-https-unixes.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-https-windows.html
https://docs.aws.amazon.com/codecommit/latest/userguide/setting-up-https-windows.html

AWS Identity and Access Management User Guide
Using IAM with Amazon Keyspaces

Using IAM with Amazon Keyspaces (for Apache
Cassandra)
Amazon Keyspaces (for Apache Cassandra) is a scalable, highly available, and managed Apache
Cassandra-compatible database service. You can access Amazon Keyspaces using the AWS Management
Console, by running a cqlsh client, or using an Apache 2.0 licensed Cassandra driver.

Note
If you plan to interact with Amazon Keyspaces only through the console, you don't need to
generate service-specific credentials. For more information, see Accessing Amazon Keyspaces
(for Apache Cassandra) in the Amazon Keyspaces (for Apache Cassandra) Developer Guide.

You must generate service-specific credentials to allow your users to access Amazon Keyspaces using
cqlsh or an Apache 2.0 licensed Cassandra driver. Service-specific credentials allow an IAM user to
interact with one AWS service, but no others.

For more information about the permissions required to access Amazon Keyspaces, see Amazon
Keyspaces (for Apache Cassandra) Identity-Based Policy Examples in the Amazon Keyspaces (for Apache
Cassandra) Developer Guide.

Generating Amazon Keyspaces credentials (console)

You can use the AWS Management Console to generate Amazon Keyspaces (for Apache Cassandra)
credentials for your IAM users.

To generate Amazon Keyspaces service-specific credentials (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users and then choose the name of the user that requires the
credentials.

3. On the Security Credentials tab beneath Credentials for Amazon Keyspaces (for Apache
Cassandra), choose Generate credentials.

4. Your service-specific credentials are now available. This is the only time that the password can be
viewed or downloaded. You cannot recover it later. However, you can reset your password at any
time. Save the user and password in a secure location, because you'll need them later.

Generating Amazon Keyspaces credentials (AWS CLI)

You can use the AWS CLI to generate Amazon Keyspaces (for Apache Cassandra) credentials for your IAM
users.

To generate Amazon Keyspaces service-specific credentials (AWS CLI)

• Use the following command:

• aws iam create-service-specific-credential

Generating Amazon Keyspaces credentials (AWS API)

You can use the AWS API to generate Amazon Keyspaces (for Apache Cassandra) credentials for your IAM
users.

155

https://docs.aws.amazon.com/keyspaces/latest/devguide/console_keyspaces.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/console_keyspaces.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/security_iam_id-based-policy-examples.html#security_iam_id-based-policy-examples-console
https://docs.aws.amazon.com/keyspaces/latest/devguide/security_iam_id-based-policy-examples.html#security_iam_id-based-policy-examples-console
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/create-service-specific-credential.html

AWS Identity and Access Management User Guide
Managing server certificates

To generate Amazon Keyspaces service-specific credentials (AWS API)

• Complete the following operation:

• CreateServiceSpecificCredential

Managing server certificates in IAM
To enable HTTPS connections to your website or application in AWS, you need an SSL/TLS server
certificate. For certificates in a Region supported by AWS Certificate Manager (ACM), we recommend
that you use ACM to provision, manage, and deploy your server certificates. In unsupported Regions,
you must use IAM as a certificate manager. To learn which Regions ACM supports, see AWS Certificate
Manager endpoints and quotas in the AWS General Reference.

ACM is the preferred tool to provision, manage, and deploy your server certificates. With ACM you can
request a certificate or deploy an existing ACM or external certificate to AWS resources. Certificates
provided by ACM are free and automatically renew. In a supported Region, you can use ACM to manage
server certificates from the console or programmatically. For more information about using ACM, see
the AWS Certificate Manager User Guide. For more information about requesting an ACM certificate, see
Request a Public Certificate or Request a Private Certificate in the AWS Certificate Manager User Guide.
For more information about importing third party certificates into ACM, see Importing Certificates in the
AWS Certificate Manager User Guide.

Use IAM as a certificate manager only when you must support HTTPS connections in a Region that is not
supported by ACM. IAM securely encrypts your private keys and stores the encrypted version in IAM SSL
certificate storage. IAM supports deploying server certificates in all Regions, but you must obtain your
certificate from an external provider for use with AWS. You cannot upload an ACM certificate to IAM.
Additionally, you cannot manage your certificates from the IAM Console.

For more information about uploading third party certificates to IAM, see the following topics.

Contents
• Uploading a server certificate (AWS API) (p. 156)
• Retrieving a server certificate (AWS API) (p. 157)
• Listing server certificates (AWS API) (p. 157)
• Tagging and Untagging Server Certificates (AWS API) (p. 158)
• Renaming a server certificate or updating its path (AWS API) (p. 158)
• Deleting a server certificate (AWS API) (p. 158)
• Troubleshooting (p. 159)

Uploading a server certificate (AWS API)
To upload a server certificate to IAM, you must provide the certificate and its matching private key. When
the certificate is not self-signed, you must also provide a certificate chain. (You don't need a certificate
chain when uploading a self-signed certificate.) Before you upload a certificate, ensure that you have all
these items and that they meet the following criteria:

• The certificate must be valid at the time of upload. You cannot upload a certificate before its validity
period begins (the certificate's NotBefore date) or after it expires (the certificate's NotAfter date).

• The private key must be unencrypted. You cannot upload a private key that is protected by a password
or passphrase. For help decrypting an encrypted private key, see Troubleshooting (p. 159).

• The certificate, private key, and certificate chain must all be PEM-encoded. For help converting these
items to PEM format, see Troubleshooting (p. 159).

156

https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateServiceSpecificCredential.html
https://docs.aws.amazon.com/general/latest/gr/acm.html
https://docs.aws.amazon.com/general/latest/gr/acm.html
https://docs.aws.amazon.com/general/latest/gr/acm.html
https://docs.aws.amazon.com/acm/latest/userguide/acm-overview.html
https://docs.aws.amazon.com/acm/latest/userguide/gs-acm-request-public.html
https://docs.aws.amazon.com/acm/latest/userguide/gs-acm-request-private.html
https://docs.aws.amazon.com/acm/latest/userguide/import-certificate.html
https://docs.aws.amazon.com/general/latest/gr/acm.html

AWS Identity and Access Management User Guide
Managing server certificates

To use the IAM API to upload a certificate, send an UploadServerCertificate request. The following
example shows how to do this with the AWS Command Line Interface (AWS CLI). The example assumes
the following:

• The PEM-encoded certificate is stored in a file named Certificate.pem.

• The PEM-encoded certificate chain is stored in a file named CertificateChain.pem.

• The PEM-encoded, unencrypted private key is stored in a file named PrivateKey.pem.

• (Optional) You want to tag the server certificate with a key–value pair. For example, you might add
the tag key Department and the tag value Engineering to help you identify and organize your
certificates.

To use the following example command, replace these file names with your own. Replace
ExampleCertificate with a name for your uploaded certificate. If you want to tag the certificate,
replace the ExampleKey and ExampleValue tag key-value pair with your own values. Type the
command on one continuous line. The following example includes line breaks and extra spaces to make
it easier to read.

aws iam upload-server-certificate --server-certificate-name ExampleCertificate
 --certificate-body file://Certificate.pem
 --certificate-chain file://CertificateChain.pem
 --private-key file://PrivateKey.pem
 --tags '{"Key": "ExampleKey", "Value": "ExampleValue"}'

When the preceding command is successful, it returns metadata about the uploaded certificate,
including its Amazon Resource Name (ARN) (p. 714), its friendly name, its identifier (ID), its expiration
date, tags, and more.

Note
If you are uploading a server certificate to use with Amazon CloudFront, you must specify a path
using the --path option. The path must begin with /cloudfront and must include a trailing
slash (for example, /cloudfront/test/).

To use the AWS Tools for Windows PowerShell to upload a certificate, use Publish-IAMServerCertificate.

Retrieving a server certificate (AWS API)

To use the IAM API to retrieve a certificate, send a GetServerCertificate request. The following example
shows how to do this with the AWS CLI. Replace ExampleCertificate with the name of the certificate
to retrieve.

aws iam get-server-certificate --server-certificate-name ExampleCertificate

When the preceding command is successful, it returns the certificate, the certificate chain (if one was
uploaded), and metadata about the certificate.

Note
You cannot download or retrieve a private key from IAM after you upload it.

To use the AWS Tools for Windows PowerShell to retrieve a certificate, use Get-IAMServerCertificate.

Listing server certificates (AWS API)

To use the IAM API to list your uploaded server certificates, send a ListServerCertificates request. The
following example shows how to do this with the AWS CLI.

157

https://docs.aws.amazon.com/IAM/latest/APIReference/
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UploadServerCertificate.html
https://aws.amazon.com/cli/
https://docs.aws.amazon.com/powershell/latest/reference/Index.html?page=Publish-IAMServerCertificate.html&tocid=Publish-IAMServerCertificate
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetServerCertificate.html
https://docs.aws.amazon.com/powershell/latest/reference/Index.html?page=Get-IAMServerCertificate.html&tocid=Get-IAMServerCertificate
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListServerCertificates.html

AWS Identity and Access Management User Guide
Managing server certificates

aws iam list-server-certificates

When the preceding command is successful, it returns a list that contains metadata about each
certificate.

To use the AWS Tools for Windows PowerShell to list your uploaded server certificates, use Get-
IAMServerCertificates.

Tagging and Untagging Server Certificates (AWS API)
You can attach tags to your IAM resources to organize and control access to them. To use the IAM API to
tag an existing server certificate, send a TagServerCertificate request. The following example shows how
to do this with the AWS CLI.

aws iam tag-server-certificate --server-certificate-name ExampleCertificate
 --tags '{"Key": "ExampleKey", "Value": "ExampleValue}'

When the preceding command is successful, no output is returned.

To use the IAM API to untag a server certificate, send a UntagServerCertificate request. The following
example shows how to do this with the AWS CLI.

aws iam untag-server-certificate --server-certificate-name ExampleCertificate
 --tag-keys ExampleKeyName

When the preceding command is successful, no output is returned.

Renaming a server certificate or updating its path (AWS API)
To use the IAM API to rename a server certificate or update its path, send an UpdateServerCertificate
request. The following example shows how to do this with the AWS CLI.

To use the following example command, replace the old and new certificate names and the certificate
path, and type the command on one continuous line. The following example includes line breaks and
extra spaces to make it easier to read.

aws iam update-server-certificate --server-certificate-name ExampleCertificate
 --new-server-certificate-name CloudFrontCertificate
 --new-path /cloudfront/

When the preceding command is successful, it does not return any output.

To use the AWS Tools for Windows PowerShell to rename a server certificate or update its path, use
Update-IAMServerCertificate.

Deleting a server certificate (AWS API)
To use the IAM API to delete a server certificate, send a DeleteServerCertificate request. The following
example shows how to do this with the AWS CLI.

To use the following example command, replace ExampleCertificate with the name of the certificate
to delete.

aws iam delete-server-certificate --server-certificate-name ExampleCertificate

158

https://docs.aws.amazon.com/powershell/latest/reference/Index.html?page=Get-IAMServerCertificates.html&tocid=Get-IAMServerCertificates
https://docs.aws.amazon.com/powershell/latest/reference/Index.html?page=Get-IAMServerCertificates.html&tocid=Get-IAMServerCertificates
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagServerCertificate.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UntagServerCertificate.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateServerCertificate.html
https://docs.aws.amazon.com/powershell/latest/reference/Index.html?page=Update-IAMServerCertificate.html&tocid=Update-IAMServerCertificate
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteServerCertificate.html

AWS Identity and Access Management User Guide
Managing server certificates

When the preceding command is successful, it does not return any output.

To use the AWS Tools for Windows PowerShell to delete a server certificate, use Remove-
IAMServerCertificate.

Troubleshooting
Before you can upload a certificate to IAM, you must make sure that the certificate, private key, and
certificate chain are all PEM-encoded. You must also ensure that the private key is unencrypted. See the
following examples.

Example Example PEM-encoded certificate

-----BEGIN CERTIFICATE-----
Base64-encoded certificate
-----END CERTIFICATE-----

Example Example PEM-encoded, unencrypted private key

-----BEGIN RSA PRIVATE KEY-----
Base64-encoded private key
-----END RSA PRIVATE KEY-----

Example Example PEM-encoded certificate chain

A certificate chain contains one or more certificates. You can use a text editor, the copy command in
Windows, or the Linux cat command to concatenate your certificate files into a chain. When you include
multiple certificates, each certificate must certify the preceding certificate. You accomplish this by
concatenating the certificates, including the root CA certificate last.

The following example contains three certificates, but your certificate chain might contain more or fewer
certificates.

-----BEGIN CERTIFICATE-----
Base64-encoded certificate
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
Base64-encoded certificate
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
Base64-encoded certificate
-----END CERTIFICATE-----

If these items are not in the right format for uploading to IAM, you can use OpenSSL to convert them to
the right format.

To convert a certificate or certificate chain from DER to PEM

Use the OpenSSL x509 command, as in the following example. In the following example command,
replace Certificate.der with the name of the file that contains your DER-encoded certificate.
Replace Certificate.pem with the preferred name of the output file to contain the PEM-encoded
certificate.

openssl x509 -inform DER -in Certificate.der -outform PEM -out Certificate.pem

159

https://docs.aws.amazon.com/powershell/latest/reference/Index.html?page=Remove-IAMServerCertificate.html&tocid=Remove-IAMServerCertificate
https://docs.aws.amazon.com/powershell/latest/reference/Index.html?page=Remove-IAMServerCertificate.html&tocid=Remove-IAMServerCertificate
https://openssl.org/
https://openssl.org/docs/manmaster/man1/x509.html

AWS Identity and Access Management User Guide
User groups

To convert a private key from DER to PEM

Use the OpenSSL rsa command, as in the following example. In the following example command,
replace PrivateKey.der with the name of the file that contains your DER-encoded private key.
Replace PrivateKey.pem with the preferred name of the output file to contain the PEM-encoded
private key.

openssl rsa -inform DER -in PrivateKey.der -outform PEM -out PrivateKey.pem

To decrypt an encrypted private key (remove the password or passphrase)

Use the OpenSSL rsa command, as in the following example. To use the following example
command, replace EncryptedPrivateKey.pem with the name of the file that contains your
encrypted private key. Replace PrivateKey.pem with the preferred name of the output file to
contain the PEM-encoded unencrypted private key.

openssl rsa -in EncryptedPrivateKey.pem -out PrivateKey.pem

To convert a certificate bundle from PKCS#12 (PFX) to PEM

Use the OpenSSL pkcs12 command, as in the following example. In the following example
command, replace CertificateBundle.p12 with the name of the file that contains your
PKCS#12-encoded certificate bundle. Replace CertificateBundle.pem with the preferred name
of the output file to contain the PEM-encoded certificate bundle.

openssl pkcs12 -in CertificateBundle.p12 -out CertificateBundle.pem -nodes

To convert a certificate bundle from PKCS#7 to PEM

Use the OpenSSL pkcs7 command, as in the following example. In the following example command,
replace CertificateBundle.p7b with the name of the file that contains your PKCS#7-encoded
certificate bundle. Replace CertificateBundle.pem with the preferred name of the output file to
contain the PEM-encoded certificate bundle.

openssl pkcs7 -in CertificateBundle.p7b -print_certs -out CertificateBundle.pem

IAM user groups
An IAM user group (p. 160) is a collection of IAM users. User groups let you specify permissions for
multiple users, which can make it easier to manage the permissions for those users. For example,
you could have a user group called Admins and give that user group the types of permissions that
administrators typically need. Any user in that user group automatically has the permissions that are
assigned to the user group. If a new user joins your organization and needs administrator privileges,
you can assign the appropriate permissions by adding the user to that user group. Similarly, if a person
changes jobs in your organization, instead of editing that user's permissions, you can remove him or her
from the old user groups and add him or her to the appropriate new user groups.

A user group cannot be identified as a Principal in a resource-based policy. A user group is a way to
attach policies to multiple users at one time. When you attach an identity-based policy to a user group,

160

https://openssl.org/docs/manmaster/man1/rsa.html
https://openssl.org/docs/manmaster/man1/rsa.html
https://openssl.org/docs/manmaster/man1/pkcs12.html
https://openssl.org/docs/manmaster/man1/pkcs7.html

AWS Identity and Access Management User Guide
User groups

all of the users in the user group receive the permissions from the user group. For more information
about these policy types, see Identity-based policies and resource-based policies (p. 404).

Following are some important characteristics of user groups:

• A user group can contain many users, and a user can belong to multiple user groups.

• User groups can't be nested; they can contain only users, not other user groups.

• There is no default user group that automatically includes all users in the AWS account. If you want to
have a user group like that, you must create it and assign each new user to it.

• The number and size of IAM resources in an AWS account are limited. For more information, see IAM
and AWS STS quotas (p. 719).

The following diagram shows a simple example of a small company. The company owner creates an
Admins user group for users to create and manage other users as the company grows. The Admins user
group creates a Developers user group and a Test user group. Each of these user groups consists
of users (humans and applications) that interact with AWS (Jim, Brad, DevApp1, and so on). Each user
has an individual set of security credentials. In this example, each user belongs to a single user group.
However, users can belong to multiple user groups.

161

AWS Identity and Access Management User Guide
Creating user groups

Creating IAM user groups
To set up a user group, you need to create the group. Then give the group permissions based on the type
of work that you expect the users in the group to do. Finally, add users to the group.

For information about the permissions that you need in order to create a user group, see Permissions
required to access IAM resources (p. 546).

162

AWS Identity and Access Management User Guide
Managing user groups

To create an IAM user group and attach policies (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose User groups and then choose Create group.
3. For User group name, type the name of the group.

Note
The number and size of IAM resources in an AWS account are limited. For more information,
see IAM and AWS STS quotas (p. 719). Group names can be a combination of up to 128
letters, digits, and these characters: plus (+), equal (=), comma (,), period (.), at sign (@),
underscore (_), and hyphen (-). Names must be unique within an account. They are not
distinguished by case. For example, you cannot create groups named both ADMINS and
admins.

4. In the list of users, select the check box for each user that you want to add to the group.
5. In the list of policies, select the check box for each policy that you want to apply to all members of

the group.
6. Choose Create group.

For an example of how to set up an Administrators user group, see Creating your first IAM admin user
and user group (p. 19).

To create IAM user groups (AWS CLI or AWS API)

Use one of the following:

• AWS CLI: aws iam create-group
• AWS API: CreateGroup

Managing IAM user groups
Amazon Web Services offers multiple tools for managing IAM user groups. For information about the
permissions that you need in order to add and remove users in a user group, see Permissions required to
access IAM resources (p. 546).

Topics
• Listing IAM user groups (p. 163)
• Adding and removing users in an IAM user group (p. 164)
• Attaching a policy to an IAM user group (p. 165)
• Renaming an IAM user group (p. 166)
• Deleting an IAM user group (p. 166)

Listing IAM user groups
You can list all the user groups in your account, list the users in a user group, and list the user groups a
user belongs to. If you use the AWS CLI or AWS API, you can list all the user groups with a particular path
prefix.

To list all the user groups in your account

Do any of the following:

• AWS Management Console: In the navigation pane, choose User groups.

163

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/create-group.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateGroup.html
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Managing user groups

• AWS CLI: aws iam list-groups
• AWS API: ListGroups

To list the users in a specific user group

Do any of the following:

• AWS Management Console: In the navigation pane, choose User groups, choose the name of the
group, and then choose the Users tab.

• AWS CLI: aws iam get-group
• AWS API: GetGroup

To list all the user groups that a user is in

Do any of the following:

• AWS Management Console: In the navigation pane, choose Users, choose the user name, and then
choose the Groups tab.

• AWS CLI: aws iam list-groups-for-user
• AWS API: ListGroupsForUser

Adding and removing users in an IAM user group
Use user groups to apply the same permissions policies across multiple users at once. You can then
add users to or remove users from an IAM user group. This is useful as people enter and leave your
organization.

View policy access

Before you change the permissions for a policy, you should review its recent service-level activity. This is
important because you don't want to remove access from a principal (person or application) who is using
it. For more information about viewing last accessed information, see Refining permissions in AWS using
last accessed information (p. 502).

Add or remove a user in a user group (console)

You can use the AWS Management Console to add or remove a user from a user group.

To add a user to an IAM user group (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose User groups and then choose the name of the group.
3. Choose the Users tab and then choose Add users. Select the check box next to the users you want to

add.
4. Choose Add users.

To remove a user from an IAM group (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose User groups and then choose the name of the group.

164

https://docs.aws.amazon.com/cli/latest/reference/iam/list-groups.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListGroups.html
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/get-group.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetGroup.html
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/list-groups-for-user.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListGroupsForUser.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Managing user groups

3. Choose the Users tab. Select the check box next to the users you want to remove and then choose
Remove users.

Add or remove a user in a user group (AWS CLI)

You can use the AWS CLI to add or remove a user from a user group.

To add a user to an IAM user group (AWS CLI)

• Use the following command:

• aws iam add-user-to-group

To remove a user from an IAM user group (AWS CLI)

• Use the following command:

• aws iam remove-user-from-group

Add or remove a user in a user group (AWS API)

You can use the AWS API to add or remove a user in a user group.

To add a user to an IAM group (AWS API)

• Complete the following operation:

• AddUserToGroup

To remove a user from an IAM user group (AWS API)

• Complete the following operation:

• RemoveUserFromGroup

Attaching a policy to an IAM user group
You can attach an AWS managed policy (p. 390)—that is, a prewritten policy provided by AWS—
to a user group, as explained in the following steps. To attach a customer managed policy—that is, a
policy with custom permissions that you create—you must first create the policy. For information about
creating customer managed policies, see Creating IAM policies (p. 468).

For more information about permissions and policies, see Access management for AWS
resources (p. 380).

To attach a policy to a user group (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose User groups and then choose the name of the group.
3. Choose the Permissions tab.
4. Choose Add permissions and then choose Attach policy.
5. The current policies attached to the user group are displayed in the Current permissions policies

list. In the list of Other permissions policies, select the check box next to the names of the policies
to attach. You can use the search box to filter the list of policies by type and policy name.

165

https://docs.aws.amazon.com/cli/latest/reference/iam/add-user-to-group.html
https://docs.aws.amazon.com/cli/latest/reference/iam/remove-user-from-group.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AddUserToGroup.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_RemoveUserFromGroup.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Managing user groups

6. Choose Attach policies.

To attach a policy to a user group (AWS CLI or AWS API)

Do either of the following:

• AWS CLI: aws iam attach-group-policy
• AWS API: AttachGroupPolicy

Renaming an IAM user group
When you change a user group's name or path, the following happens:

• Any policies attached to the user group stay with the group under the new name.
• The user group retains all its users under the new name.
• The unique ID for the user group remains the same. For more information about unique IDs, see

Unique identifiers (p. 718).

IAM does not automatically update policies that refer to the user group as a resource to use the new
name. Therefore, you must be careful when you rename a user group. Before you rename your user
group, you must manually check all of your policies to find any policies where that user group is
mentioned by name. For example, let's say Bob is the manager of the testing part of the organization.
Bob has a policy attached to his IAM user entity that lets him add and remove users from the Test
user group. If an administrator changes the name of the user group (or changes the group path), the
administrator must also update the policy attached to Bob to use the new name or path. Otherwise Bob
won't be able to add and remove users from the user group.

To find policies that refer to a user group as a resource:

1. From the navigation pane of the IAM console, choose Policies.
2. Sort by the Type column to find your Customer managed custom policies.
3. Choose the policy name of the policy to edit.
4. Choose the Permissions tab, and then choose Policy summary.
5. Choose IAM from the list of services, if it exists.
6. Look for the name of your user group in the Resource column.
7. Choose Edit policy to change the name of your user group in the policy.

To change the name of an IAM user group

Do any of the following:

• AWS Management Console: In the navigation pane, choose User groups and then select the group
name. Choose Edit. Type the new user group name and then choose Save changes.

• AWS CLI: aws iam update-group
• AWS API: UpdateGroup

Deleting an IAM user group
When you delete a user group in the AWS Management Console, the console automatically removes
all group members, detaches all attached managed policies, and deletes all inline policies. However,
because IAM does not automatically delete policies that refer to the user group as a resource, you must

166

https://docs.aws.amazon.com/cli/latest/reference/iam/attach-group-policy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachGroupPolicy.html
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/update-group.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateGroup.html

AWS Identity and Access Management User Guide
Managing user groups

be careful when you delete a user group. Before you delete your user group, you must manually check all
of your policies to find any policies that mention the group by name. For example, if John is the manager
of the testing part of the organization. John has a policy attached to his IAM user entity that lets him
add and remove users from the Test user group. If an administrator deletes the group, the administrator
must also delete the policy attached to John.

To find policies that refer to a user group as a resource

1. From the navigation pane of the IAM console, choose Policies.
2. Sort by the Type column to find your Customer managed custom policies.
3. Choose the policy name of the policy to delete.
4. Choose the Permissions tab, and then choose Policy summary.
5. Choose IAM from the list of services, if it exists.
6. Look for the name of your user group in the Resource column.
7. Choose Delete policy to delete the policy.

In contrast, when you use the AWS CLI, Tools for Windows PowerShell, or AWS API to delete a user
group, you must first remove the users in the group. Then delete any inline policies embedded in the
user group. Next, detach any managed policies that are attached to the group. Only then can you delete
the user group itself.

Deleting an IAM user group (console)

You can delete an IAM user group from the AWS Management Console.

To delete an IAM user group (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose User groups.
3. In the list of user groups, select the check box next to the names of the user groups to delete. You

can use the search box to filter the list of user groups by type, permissions, and user group name.
4. Choose Delete.
5. In the confirmation box, if you want to delete a single user group, type the user group name and

choose Delete. If you want to delete multiple user groups, type the number of user groups to delete
followed by user groups and choose Delete. For example, if you delete three user groups, type 3
user groups.

Deleting an IAM user group (AWS CLI)

You can delete an IAM user group from the AWS CLI.

To delete an IAM user group (AWS CLI)

1. Remove all users from the user group.

• aws iam get-group (to get the list of users in the user group), and aws iam remove-user-from-
group (to remove a user from the user group)

2. Delete all inline policies embedded in the user group.

• aws iam list-group-policies (to get a list of the user group's inline policies), and aws iam delete-
group-policy (to delete the user group's inline policies)

3. Detach all managed policies attached to the user group.

167

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/get-group.html
https://docs.aws.amazon.com/cli/latest/reference/iam/remove-user-from-group.html
https://docs.aws.amazon.com/cli/latest/reference/iam/remove-user-from-group.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-group-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-group-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-group-policy.html

AWS Identity and Access Management User Guide
Roles

• aws iam list-attached-group-policies (to get a list of the managed policies attached to the user
group), and aws iam detach-group-policy (to detach a managed policy from the user group)

4. Delete the user group.

• aws iam delete-group

Deleting an IAM user group (AWS API)

You can use the AWS API to delete an IAM user group.

To delete an IAM user group (AWS API)

1. Remove all users from the user group.

• GetGroup (to get the list of users in the user group) and RemoveUserFromGroup (to remove a user
from the user group)

2. Delete all inline policies embedded in the user group.

• ListGroupPolicies (to get a list of the user group's inline policies) and DeleteGroupPolicy (to delete
the user group's inline policies)

3. Detach all managed policies attached to the user group.

• ListAttachedGroupPolicies (to get a list of the managed policies attached to the user group) and
DetachGroupPolicy (to detach a managed policy from the user group)

4. Delete the user group.

• DeleteGroup

IAM roles
An IAM role is an IAM identity that you can create in your account that has specific permissions. An IAM
role is similar to an IAM user, in that it is an AWS identity with permission policies that determine what
the identity can and cannot do in AWS. However, instead of being uniquely associated with one person,
a role is intended to be assumable by anyone who needs it. Also, a role does not have standard long-
term credentials such as a password or access keys associated with it. Instead, when you assume a role, it
provides you with temporary security credentials for your role session.

You can use roles to delegate access to users, applications, or services that don't normally have access to
your AWS resources. For example, you might want to grant users in your AWS account access to resources
they don't usually have, or grant users in one AWS account access to resources in another account. Or
you might want to allow a mobile app to use AWS resources, but not want to embed AWS keys within
the app (where they can be difficult to rotate and where users can potentially extract them). Sometimes
you want to give AWS access to users who already have identities defined outside of AWS, such as in your
corporate directory. Or, you might want to grant access to your account to third parties so that they can
perform an audit on your resources.

For these scenarios, you can delegate access to AWS resources using an IAM role. This section introduces
roles and the different ways you can use them, when and how to choose among approaches, and how to
create, manage, switch to (or assume), and delete roles.

Topics
• Roles terms and concepts (p. 169)
• Common scenarios for roles: Users, applications, and services (p. 171)
• Identity providers and federation (p. 177)

168

https://docs.aws.amazon.com/cli/latest/reference/iam/list-attached-group-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/detach-group-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-group.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetGroup.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_RemoveUserFromGroup.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListGroupPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteGroupPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedGroupPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DetachGroupPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteGroup.html

AWS Identity and Access Management User Guide
Terms and concepts

• Using service-linked roles (p. 219)
• Creating IAM roles (p. 227)
• Using IAM roles (p. 253)
• Managing IAM roles (p. 279)
• How IAM roles differ from resource-based policies (p. 293)

Roles terms and concepts
Here are some basic terms to help you get started with roles.

Role

An IAM identity that you can create in your account that has specific permissions. An IAM role has
some similarities to an IAM user. Roles and users are both AWS identities with permissions policies
that determine what the identity can and cannot do in AWS. However, instead of being uniquely
associated with one person, a role is intended to be assumable by anyone who needs it. Also, a role
does not have standard long-term credentials such as a password or access keys associated with it.
Instead, when you assume a role, it provides you with temporary security credentials for your role
session.

Roles can be used by the following:
• An IAM user in the same AWS account as the role
• An IAM user in a different AWS account than the role
• A web service offered by AWS such as Amazon Elastic Compute Cloud (Amazon EC2)
• An external user authenticated by an external identity provider (IdP) service that is compatible

with SAML 2.0 or OpenID Connect, or a custom-built identity broker.
AWS service role

A role that a service assumes to perform actions in your account on your behalf. When you set up
some AWS service environments, you must define a role for the service to assume. This service role
must include all the permissions required for the service to access the AWS resources that it needs.
Service roles vary from service to service, but many allow you to choose your permissions, as long
as you meet the documented requirements for that service. You can create, modify, and delete a
service role from within IAM.

AWS service role for an EC2 instance

A special type of service role that an application running on an Amazon EC2 instance can assume
to perform actions in your account. This role is assigned to the EC2 instance when it is launched.
Applications running on that instance can retrieve temporary security credentials and perform
actions that the role allows. For details about using a service role for an EC2 instance, see Using an
IAM role to grant permissions to applications running on Amazon EC2 instances (p. 270).

AWS service-linked role

A unique type of service role that is linked directly to an AWS service. Service-linked roles are
predefined by the service and include all the permissions that the service requires to call other AWS
services on your behalf. The linked service also defines how you create, modify, and delete a service-
linked role. A service might automatically create or delete the role. It might allow you to create,
modify, or delete the role as part of a wizard or process in the service. Or it might require that you
use IAM to create or delete the role. Regardless of the method, service-linked roles make setting up
a service easier because you don't have to manually add the necessary permissions.

Note
If you are already using a service when it begins supporting service-linked roles, you
might receive an email announcing a new role in your account. In this case, the service
automatically created the service-linked role in your account. You don't need to take any

169

AWS Identity and Access Management User Guide
Terms and concepts

action to support this role, and you should not manually delete it. For more information,
see A new role appeared in my AWS account (p. 700).

For information about which services support using service-linked roles, see AWS services that
work with IAM (p. 725) and look for the services that have Yes in the Service-Linked Role column.
Choose a Yes with a link to view the service-linked role documentation for that service. If the
service does not include documentation for creating, modifying, or deleting the service-linked role,
then you can use the IAM console, AWS CLI, or API. For more information, see Using service-linked
roles (p. 219).

Role chaining

Role chaining occurs when you use a role to assume a second role through the AWS CLI or API. For
example, assume that User1 has permission to assume RoleA and RoleB. Additionally, RoleA has
permission to assume RoleB. You can assume RoleA by using User1's long-term user credentials in
the AssumeRole API operation. This operation returns RoleA short-term credentials. To engage in
role chaining, you can use RoleA's short-term credentials to assume RoleB.

When you assume a role, you can pass a session tag and set the tag as transitive. Transitive session
tags are passed to all subsequent sessions in a role chain. To learn more about session tags, see
Passing session tags in AWS STS (p. 313).

Role chaining limits your AWS CLI or AWS API role session to a maximum of one hour. When you use
the AssumeRole API operation to assume a role, you can specify the duration of your role session
with the DurationSeconds parameter. You can specify a parameter value of up to 43200 seconds
(12 hours), depending on the maximum session duration setting (p. 254) for your role. However,
if you assume a role using role chaining and provide a DurationSeconds parameter value greater
than one hour, the operation fails.

AWS does not treat using roles to grant permissions to applications that run on EC2
instances (p. 270) as role chaining.

Delegation

The granting of permissions to someone to allow access to resources that you control. Delegation
involves setting up a trust between two accounts. The first is the account that owns the resource (the
trusting account). The second is the account that contains the users that need to access the resource
(the trusted account). The trusted and trusting accounts can be any of the following:
• The same account.
• Separate accounts that are both under your organization's control.
• Two accounts owned by different organizations.

To delegate permission to access a resource, you create an IAM role (p. 227) in the trusting account
that has two policies (p. 171) attached. The permissions policy grants the user of the role the
needed permissions to carry out the intended tasks on the resource. The trust policy specifies which
trusted account members are allowed to assume the role.

When you create a trust policy, you cannot specify a wildcard (*) as a principal. The trust policy is
attached to the role in the trusting account, and is one-half of the permissions. The other half is
a permissions policy attached to the user in the trusted account that allows that user to switch
to, or assume the role (p. 255). A user who assumes a role temporarily gives up his or her own
permissions and instead takes on the permissions of the role. When the user exits, or stops using the
role, the original user permissions are restored. An additional parameter called external ID (p. 231)
helps ensure secure use of roles between accounts that are not controlled by the same organization.

Federation

The creation of a trust relationship between an external identity provider and AWS. Users can sign
in to a web identity provider, such as Login with Amazon, Facebook, Google, or any IdP that is
compatible with OpenID Connect (OIDC). Users can also sign in to an enterprise identity system
that is compatible with Security Assertion Markup Language (SAML) 2.0, such as Microsoft Active

170

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

AWS Identity and Access Management User Guide
Common scenarios

Directory Federation Services. When you use OIDC and SAML 2.0 to configure a trust relationship
between these external identity providers and AWS, the user is assigned to an IAM role. The user also
receives temporary credentials that allow the user to access your AWS resources.

Federated user

Instead of creating an IAM user, you can use existing identities from AWS Directory Service, your
enterprise user directory, or a web identity provider. These are known as federated users. AWS
assigns a role to a federated user when access is requested through an identity provider (p. 177).
For more information about federated users, see Federated Users and Roles (p. 11) in the IAM User
Guide.

Trust policy

A JSON policy document (p. 797) in which you define the principals that you trust to assume the
role. A role trust policy is a required resource-based policy (p. 382) that is attached to a role in IAM.
The principals (p. 747) that you can specify in the trust policy include users, roles, accounts, and
services.

Permissions policy

A permissions document in JSON format in which you define what actions and resources the role can
use. The document is written according to the rules of the IAM policy language (p. 744).

Permissions boundary

An advanced feature in which you use policies to limit the maximum permissions that an identity-
based policy can grant to a role. You cannot apply a permissions boundary to a service-linked role.
For more information, see Permissions boundaries for IAM entities (p. 395).

Principal

An entity in AWS that can perform actions and access resources. A principal can be an AWS account
root user, an IAM user, or a role. You can grant permissions to access a resource in one of two ways:
• You can attach a permissions policy to a user (directly, or indirectly through a group) or to a role.
• For those services that support resource-based policies (p. 11), you can identify the principal in the
Principal element of a policy attached to the resource.

If you reference an AWS account as principal, it generally means any principal defined within that
account.

Note
You cannot use a wildcard (*) in the Principal element in a role's trust policy.

Role for cross-account access

A role that grants access to resources in one account to a trusted principal in a different account.
Roles are the primary way to grant cross-account access. However, some AWS services allow you to
attach a policy directly to a resource (instead of using a role as a proxy). These are called resource-
based policies, and you can use them to grant principals in another AWS account access to the
resource. Some of these resources include Amazon Simple Storage Service (S3) buckets, S3 Glacier
vaults, Amazon Simple Notification Service (SNS) topics, and Amazon Simple Queue Service (SQS)
queues. To learn which services support resource-based policies, see AWS services that work with
IAM (p. 725). For more information about resource-based policies, see How IAM roles differ from
resource-based policies (p. 293).

Common scenarios for roles: Users, applications, and
services
As with most AWS features, you generally have two ways to use a role: interactively in the IAM console,
or programmatically with the AWS CLI, Tools for Windows PowerShell, or API.

171

http://www.json.org

AWS Identity and Access Management User Guide
Common scenarios

• IAM users in your account using the IAM console can switch to a role to temporarily use the
permissions of the role in the console. The users give up their original permissions and take on the
permissions assigned to the role. When the users exit the role, their original permissions are restored.

• An application or a service offered by AWS (like Amazon EC2) can assume a role by requesting
temporary security credentials for a role with which to make programmatic requests to AWS. You use
a role this way so that you don't have to share or maintain long-term security credentials (for example,
by creating an IAM user) for each entity that requires access to a resource.

Note
This guide uses the phrases switch to a role and assume a role interchangeably.

The simplest way to use roles is to grant your IAM users permissions to switch to roles that you create
within your own or another AWS account. They can switch roles easily using the IAM console to use
permissions that you don't ordinarily want them to have, and then exit the role to surrender those
permissions. This can help prevent accidental access to or modification of sensitive resources.

For more complex uses of roles, such as granting access to applications and services, or federated
external users, you can call the AssumeRole API. This API call returns a set of temporary credentials that
the application can use in subsequent API calls. Actions attempted with the temporary credentials have
only the permissions granted by the associated role. An application doesn't have to "exit" the role the
way a user in the console does; rather the application simply stops using the temporary credentials and
resumes making calls with the original credentials.

Federated users sign in by using credentials from an identity provider (IdP). AWS then provides
temporary credentials to the trusted IdP to pass on to the user for including in subsequent AWS resource
requests. Those credentials provide the permissions granted to the assigned role.

This section provides overviews of the following scenarios:

• Provide access for an IAM user in one AWS account that you own to access resources in another
account that you own (p. 172)

• Provide access to IAM users in AWS accounts owned by third parties (p. 174)
• Provide access for services offered by AWS to AWS resources (p. 175)
• Provide access for externally authenticated users (identity federation) (p. 175)

Providing access to an IAM user in another AWS account that
you own
You can grant your IAM users permission to switch to roles within your AWS account or to roles defined
in other AWS accounts that you own.

Note
If you want to grant access to an account that you do not own or control, see Providing access to
AWS accounts owned by third parties (p. 174) later in this topic.

Imagine that you have Amazon EC2 instances that are critical to your organization. Instead of directly
granting your users permission to terminate the instances, you can create a role with those privileges.
Then allow administrators to switch to the role when they need to terminate an instance. Doing this adds
the following layers of protection to the instances:

• You must explicitly grant your users permission to assume the role.
• Your users must actively switch to the role using the AWS Management Console or assume the role

using the AWS CLI or AWS API.
• You can add multi-factor authentication (MFA) protection to the role so that only users who sign in

with an MFA device can assume the role. To learn how to configure a role so that users who assume

172

AWS Identity and Access Management User Guide
Common scenarios

the role must first be authenticated using multi-factor authentication (MFA), see Configuring MFA-
protected API access (p. 138).

We recommend using this approach to enforce the principle of least privilege. That means restricting
the use of elevated permissions to only those times when they are needed for specific tasks. With roles
you can help prevent accidental changes to sensitive environments, especially if you combine them with
auditing (p. 365) to help ensure that roles are only used when needed.

When you create a role for this purpose, you specify the accounts by ID whose users need access in the
Principal element of the role's trust policy. You can then grant specific users in those other accounts
permissions to switch to the role. To learn whether principals in accounts outside of your zone of trust
(trusted organization or account) have access to assume your roles, see What is IAM Access Analyzer?.

A user in one account can switch to a role in the same or a different account. While using the role, the
user can perform only the actions and access only the resources permitted by the role; their original user
permissions are suspended. When the user exits the role, the original user permissions are restored.

Example scenario using separate development and production accounts

Imagine that your organization has multiple AWS accounts to isolate a development environment from a
production environment. Users in the development account might occasionally need to access resources
in the production account. For example, you might need cross-account access when you are promoting
an update from the development environment to the production environment. Although you could
create separate identities (and passwords) for users who work in both accounts, managing credentials for
multiple accounts makes identity management difficult. In the following figure, all users are managed
in the development account, but some developers require limited access to the production account. The
development account has two groups: Testers and Developers, and each group has its own policy.

1. In the production account, an administrator uses IAM to create the UpdateApp role in that account.
In the role, the administrator defines a trust policy that specifies the development account as a
Principal, meaning that authorized users from the development account can use the UpdateApp
role. The administrator also defines a permissions policy for the role that specifies the read and write
permissions to the Amazon S3 bucket named productionapp.

The administrator then shares the appropriate information with anyone who needs to assume
the role. That information is the account number and name of the role (for AWS console users) or
the Amazon Resource Name (ARN) (for AWS CLI or AWS API access). The role ARN might look like

173

https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html

AWS Identity and Access Management User Guide
Common scenarios

arn:aws:iam::123456789012:role/UpdateApp, where the role is named UpdateApp and the
role was created in account number 123456789012.

Note
The administrator can optionally configure the role so that users who assume the role must
first be authenticated using multi-factor authentication (MFA). For more information, see
Configuring MFA-protected API access (p. 138).

2. In the development account, an administrator grants members of the Developers group permission to
switch to the role. This is done by granting the Developers group permission to call the AWS Security
Token Service (AWS STS) AssumeRole API for the UpdateApp role. Any IAM user that belongs to
the Developers group in the development account can now switch to the UpdateApp role in the
production account. Other users who are not in the developer group do not have permission to switch
to the role and therefore cannot access the S3 bucket in the production account.

3. The user requests switches to the role:

• AWS console: The user chooses the account name on the navigation bar and chooses Switch Role.
The user specifies the account ID (or alias) and role name. Alternatively, the user can click on a link
sent in email by the administrator. The link takes the user to the Switch Role page with the details
already filled in.

• AWS API/AWS CLI: A user in the Developers group of the development account calls the
AssumeRole function to obtain credentials for the UpdateApp role. The user specifies the ARN of
the UpdateApp role as part of the call. If a user in the Testers group makes the same request, the
request fails because Testers do not have permission to call AssumeRole for the UpdateApp role
ARN.

4. AWS STS returns temporary credentials:

• AWS console: AWS STS verifies the request with the role's trust policy to ensure that the request
is from a trusted entity (which it is: the development account). After verification, AWS STS returns
temporary security credentials to the AWS console.

• API/CLI: AWS STS verifies the request against the role's trust policy to ensure that the request is
from a trusted entity (which it is: the Development account). After verification, AWS STS returns
temporary security credentials to the application.

5. The temporary credentials allow access to the AWS resource:

• AWS console: The AWS console uses the temporary credentials on behalf of the user for all
subsequent console actions, in this case, to read and write to the productionapp bucket. The
console cannot access any other resource in the production account. When the user exits the role,
the user's permissions revert to the original permissions held before switching to the role.

• API/CLI: The application uses the temporary security credentials to update the productionapp
bucket. With the temporary security credentials, the application can only read from and write to
the productionapp bucket and cannot access any other resource in the Production account. The
application does not have to exit the role, but instead stops using the temporary credentials and
uses the original credentials in subsequent API calls.

More information

For more information, see the following:

• IAM tutorial: Delegate access across AWS accounts using IAM roles (p. 33)

Providing access to AWS accounts owned by third parties
When third parties require access to your organization's AWS resources, you can use roles to delegate
access to them. For example, a third party might provide a service for managing your AWS resources.
With IAM roles, you can grant these third parties access to your AWS resources without sharing your AWS
security credentials. Instead, the third party can access your AWS resources by assuming a role that you

174

https://docs.aws.amazon.com/STS/latest/UsingSTS/Welcome.html
https://docs.aws.amazon.com/STS/latest/UsingSTS/Welcome.html

AWS Identity and Access Management User Guide
Common scenarios

create in your AWS account. To learn whether principals in accounts outside of your zone of trust (trusted
organization or account) have access to assume your roles, see What is IAM Access Analyzer?.

Third parties must provide you with the following information for you to create a role that they can
assume:

• The third party's AWS account ID. You specify their AWS account ID as the principal when you define
the trust policy for the role.

• An external ID to uniquely associate with the role. The external ID can be any secret identifier that is
known by you and the third party. For example, you can use an invoice ID between you and the third
party, but do not use something that can be guessed, like the name or phone number of the third
party. You must specify this ID when you define the trust policy for the role. The third party must
provide this ID when they assume the role. For more information about the external ID, see How to use
an external ID when granting access to your AWS resources to a third party (p. 231).

• The permissions that the third party requires to work with your AWS resources. You must specify these
permissions when defining the role's permission policy. This policy defines what actions they can take
and what resources they can access.

After you create the role, you must provide the role's Amazon Resource Name (ARN) to the third party.
They require your role's ARN in order to assume the role.

For details about creating a role to delegate access to a third party, see How to use an external ID when
granting access to your AWS resources to a third party (p. 231).

Important
When you grant third parties access to your AWS resources, they can access any resource that
you specify in the policy. Their use of your resources is billed to you. Ensure that you limit their
use of your resources appropriately.

Providing access to an AWS service
Many AWS services require that you use roles to control what that service can access. A role that a
service assumes to perform actions on your behalf is called a service role (p. 169). When a role serves
a specialized purpose for a service, it can be categorized as a service role for EC2 instances (p. 169), or
a service-linked role (p. 169). See the AWS documentation for each service to see if it uses roles and to
learn how to assign a role for the service to use.

For details about creating a role to delegate access to a service offered by AWS, see Creating a role to
delegate permissions to an AWS service (p. 235).

Providing access to externally authenticated users (identity
federation)
Your users might already have identities outside of AWS, such as in your corporate directory. If those
users need to work with AWS resources (or work with applications that access those resources), then
those users also need AWS security credentials. You can use an IAM role to specify permissions for users
whose identity is federated from your organization or a third-party identity provider (IdP).

Federating users of a mobile or web-based app with Amazon Cognito

If you create a mobile or web-based app that accesses AWS resources, the app needs security credentials
in order to make programmatic requests to AWS. For most mobile application scenarios, we recommend
that you use Amazon Cognito. You can use this service with the AWS Mobile SDK for iOS and the AWS
Mobile SDK for Android and Fire OS to create unique identities for users and authenticate them for
secure access to your AWS resources. Amazon Cognito supports the same identity providers as those

175

https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.aws.amazon.com/
https://aws.amazon.com/cognito/
https://aws.amazon.com/sdkforios/
https://aws.amazon.com/sdkforandroid/
https://aws.amazon.com/sdkforandroid/

AWS Identity and Access Management User Guide
Common scenarios

listed in the next section, and it also supports developer authenticated identities and unauthenticated
(guest) access. Amazon Cognito also provides API operations for synchronizing user data so that it is
preserved as users move between devices. For more information, see Using Amazon Cognito for mobile
apps (p. 178).

Federating users with public identity service providers or OpenID Connect

Whenever possible, use Amazon Cognito for mobile and web-based application scenarios. Amazon
Cognito does most of the behind-the-scenes work with public identity provider services for you. It works
with the same third-party services and also supports anonymous sign-ins. However, for more advanced
scenarios, you can work directly with a third-party service like Login with Amazon, Facebook, Google, or
any IdP that is compatible with OpenID Connect (OIDC). For more information about using web identity
federation using one of these services, see About web identity federation (p. 178).

Federating users with SAML 2.0

If your organization already uses an identity provider software package that supports SAML 2.0 (Security
Assertion Markup Language 2.0), you can create trust between your organization as an identity provider
(IdP) and AWS as the service provider. You can then use SAML to provide your users with federated
single-sign on (SSO) to the AWS Management Console or federated access to call AWS API operations.
For example, if your company uses Microsoft Active Directory and Active Directory Federation Services,
then you can federate using SAML 2.0. For more information about federating users with SAML 2.0, see
About SAML 2.0-based federation (p. 183).

Federating users by creating a custom identity broker application

If your identity store is not compatible with SAML 2.0, then you can build a custom identity broker
application to perform a similar function. The broker application authenticates users, requests temporary
credentials for users from AWS, and then provides them to the user to access AWS resources.

For example, Example Corp. has many employees who need to run internal applications that access
the company's AWS resources. The employees already have identities in the company identity and
authentication system, and Example Corp. doesn't want to create a separate IAM user for each company
employee.

Bob is a developer at Example Corp. To enable Example Corp. internal applications to access the
company's AWS resources, Bob develops a custom identity broker application. The application verifies
that employees are signed into the existing Example Corp. identity and authentication system, which
might use LDAP, Active Directory, or another system. The identity broker application then obtains
temporary security credentials for the employees. This scenario is similar to the previous one (a mobile
app that uses a custom authentication system), except that the applications that need access to AWS
resources all run within the corporate network, and the company has an existing authentication system.

To get temporary security credentials, the identity broker application calls either AssumeRole or
GetFederationToken to obtain temporary security credentials, depending on how Bob wants to
manage the policies for users and when the temporary credentials should expire. (For more information
about the differences between these API operations, see Temporary security credentials in IAM (p. 322)
and Controlling permissions for temporary security credentials (p. 337).) The call returns temporary
security credentials consisting of an AWS access key ID, a secret access key, and a session token. The
identity broker application makes these temporary security credentials available to the internal company
application. The app can then use the temporary credentials to make calls to AWS directly. The app
caches the credentials until they expire, and then requests a new set of temporary credentials. The
following figure illustrates this scenario.

176

http://aws.amazon.com/blogs/mobile/amazon-cognito-announcing-developer-authenticated-identities

AWS Identity and Access Management User Guide
Identity providers and federation

This scenario has the following attributes:

• The identity broker application has permissions to access IAM's token service (STS) API to create
temporary security credentials.

• The identity broker application is able to verify that employees are authenticated within the existing
authentication system.

• Users are able to get a temporary URL that gives them access to the AWS Management Console (which
is referred to as single sign-on).

To see a sample application similar to the identity broker application that is described in this scenario,
go to Identity Federation Sample Application for an Active Directory Use Case at AWS Sample Code &
Libraries. For information about creating temporary security credentials, see Requesting temporary
security credentials (p. 324). For more information about federated users getting access to the
AWS Management Console, see Enabling SAML 2.0 federated users to access the AWS Management
Console (p. 209).

Identity providers and federation
If you already manage user identities outside of AWS, you can use IAM identity providers instead of
creating IAM users in your AWS account. With an identity provider (IdP), you can manage your user
identities outside of AWS and give these external user identities permissions to use AWS resources in
your account. This is useful if your organization already has its own identity system, such as a corporate
user directory. It is also useful if you are creating a mobile app or web application that requires access to
AWS resources.

When you use an IAM identity provider, you don't have to create custom sign-in code or manage your
own user identities. The IdP provides that for you. Your external users sign in through a well-known IdP,
such as Login with Amazon, Facebook, or Google. You can give those external identities permissions to
use AWS resources in your account. IAM identity providers help keep your AWS account secure because
you don't have to distribute or embed long-term security credentials, such as access keys, in your
application.

177

https://aws.amazon.com/code/1288653099190193

AWS Identity and Access Management User Guide
Identity providers and federation

To use an IdP, you create an IAM identity provider entity to establish a trust relationship between your
AWS account and the IdP. IAM supports IdPs that are compatible with OpenID Connect (OIDC) or SAML
2.0 (Security Assertion Markup Language 2.0). For more information about using one of these IdPs with
AWS, see the following sections:

• About web identity federation (p. 178)
• About SAML 2.0-based federation (p. 183)

For details about creating the IAM identity provider entity to establish a trust relationship between a
compatible IdP and AWS, see Creating IAM identity providers (p. 187)

About web identity federation
Imagine that you are creating a mobile app that accesses AWS resources, such as a game that runs on a
mobile device and stores player and score information using Amazon S3 and DynamoDB.

When you write such an app, you'll make requests to AWS services that must be signed with an AWS
access key. However, we strongly recommend that you do not embed or distribute long-term AWS
credentials with apps that a user downloads to a device, even in an encrypted store. Instead, build your
app so that it requests temporary AWS security credentials dynamically when needed using web identity
federation. The supplied temporary credentials map to an AWS role that has only the permissions needed
to perform the tasks required by the mobile app.

With web identity federation, you don't need to create custom sign-in code or manage your own user
identities. Instead, users of your app can sign in using a well-known external identity provider (IdP), such
as Login with Amazon, Facebook, Google, or any other OpenID Connect (OIDC)-compatible IdP. They can
receive an authentication token, and then exchange that token for temporary security credentials in AWS
that map to an IAM role with permissions to use the resources in your AWS account. Using an IdP helps
you keep your AWS account secure, because you don't have to embed and distribute long-term security
credentials with your application.

For most scenarios, we recommend that you use Amazon Cognito because it acts as an identity broker
and does much of the federation work for you. For details, see the following section, Using Amazon
Cognito for mobile apps (p. 178).

If you don't use Amazon Cognito, then you must write code that interacts with a web IdP, such as
Facebook, and then calls the AssumeRoleWithWebIdentity API to trade the authentication token you
get from those IdPs for AWS temporary security credentials. If you have already used this approach for
existing apps, you can continue to use it.

Topics
• Using Amazon Cognito for mobile apps (p. 178)
• Using web identity federation API operations for mobile apps (p. 180)
• Identifying users with web identity federation (p. 181)
• Additional resources for web identity federation (p. 183)

Using Amazon Cognito for mobile apps

The preferred way to use web identity federation is to use Amazon Cognito. For example, Adele the
developer is building a game for a mobile device where user data such as scores and profiles is stored
in Amazon S3 and Amazon DynamoDB. Adele could also store this data locally on the device and use
Amazon Cognito to keep it synchronized across devices. She knows that for security and maintenance
reasons, long-term AWS security credentials should not be distributed with the game. She also knows
that the game might have a large number of users. For all of these reasons, she does not want to create
new user identities in IAM for each player. Instead, she builds the game so that users can sign in using an
identity that they've already established with a well-known external identity provider (IdP), such as Login

178

http://openid.net/connect/
https://wiki.oasis-open.org/security
https://wiki.oasis-open.org/security
http://openid.net/connect/
https://aws.amazon.com/cognito/
https://aws.amazon.com/cognito/

AWS Identity and Access Management User Guide
Identity providers and federation

with Amazon, Facebook, Google, or any OpenID Connect (OIDC)-compatible IdP. Her game can take
advantage of the authentication mechanism from one of these providers to validate the user's identity.

To enable the mobile app to access her AWS resources, Adele first registers for a developer ID with her
chosen IdPs. She also configures the application with each of these providers. In her AWS account that
contains the Amazon S3 bucket and DynamoDB table for the game, Adele uses Amazon Cognito to
create IAM roles that precisely define permissions that the game needs. If she is using an OIDC IdP, she
also creates an IAM OIDC identity provider entity to establish trust between her AWS account and the
IdP.

In the app's code, Adele calls the sign-in interface for the IdP that she configured previously. The IdP
handles all the details of letting the user sign in, and the app gets an OAuth access token or OIDC ID
token from the provider. Adele's app can trade this authentication information for a set of temporary
security credentials that consist of an AWS access key ID, a secret access key, and a session token. The
app can then use these credentials to access web services offered by AWS. The app is limited to the
permissions that are defined in the role that it assumes.

The following figure shows a simplified flow for how this might work, using Login with Amazon as the
IdP. For Step 2, the app can also use Facebook, Google, or any OIDC-compatible IdP, but that's not shown
here.

1. A customer starts your app on a mobile device. The app asks the user to sign in.

2. The app uses Login with Amazon resources to accept the user's credentials.

3. The app uses Cognito API operations to exchange the Login with Amazon ID token for a Cognito
token.

4. The app requests temporary security credentials from AWS STS, passing the Cognito token.

5. The temporary security credentials can be used by the app to access any AWS resources required
by the app to operate. The role associated with the temporary security credentials and its assigned
policies determines what can be accessed.

Use the following process to configure your app to use Amazon Cognito to authenticate users and
give your app access to AWS resources. For specific steps to accomplish this scenario, consult the
documentation for Amazon Cognito.

179

AWS Identity and Access Management User Guide
Identity providers and federation

1. (Optional) Sign up as a developer with Login with Amazon, Facebook, Google, or any other OpenID
Connect (OIDC)–compatible IdP and configure one or more apps with the provider. This step is
optional because Amazon Cognito also supports unauthenticated (guest) access for your users.

2. Go to Amazon Cognito in the AWS Management Console. Use the Amazon Cognito wizard to create
an identity pool, which is a container that Amazon Cognito uses to keep end user identities organized
for your apps. You can share identity pools between apps. When you set up an identity pool, Amazon
Cognito creates one or two IAM roles (one for authenticated identities, and one for unauthenticated
"guest" identities) that define permissions for Amazon Cognito users.

3. Download and integrate the AWS SDK for iOS or the AWS SDK for Android with your app, and import
the files required to use Amazon Cognito.

4. Create an instance of the Amazon Cognito credentials provider, passing the identity pool ID, your AWS
account number, and the Amazon Resource Name (ARN) of the roles that you associated with the
identity pool. The Amazon Cognito wizard in the AWS Management Console provides sample code to
help you get started.

5. When your app accesses an AWS resource, pass the credentials provider instance to the client object,
which passes temporary security credentials to the client. The permissions for the credentials are
based on the role or roles that you defined earlier.

For more information, see the following:

• Amazon Cognito Identity in the AWS Mobile SDK for Android Developer Guide.
• Amazon Cognito Identity in the AWS Mobile SDK for iOS Developer Guide.

Using web identity federation API operations for mobile apps

For best results, use Amazon Cognito as your identity broker for almost all web identity federation
scenarios. Amazon Cognito is easy to use and provides additional capabilities like anonymous
(unauthenticated) access, and synchronizing user data across devices and providers. However,
if you have already created an app that uses web identity federation by manually calling the
AssumeRoleWithWebIdentity API, you can continue to use it and your apps will still work fine.

Note
To help understand how web identity federation works, you can use the Web Identity Federation
Playground. This interactive website lets you walk through the process of authenticating via
Login with Amazon, Facebook, or Google, getting temporary security credentials, and then using
those credentials to make a request to AWS.

The process for using web identity federation without Amazon Cognito follows this general outline:

1. Sign up as a developer with the external identity provider (IdP) and configure your app with the IdP,
who gives you a unique ID for your app. (Different IdPs use different terminology for this process. This
outline uses the term configure for the process of identifying your app with the IdP.) Each IdP gives
you an app ID that's unique to that IdP, so if you configure the same app with multiple IdPs, your app
will have multiple app IDs. You can configure multiple apps with each provider.

The following external links provide information about using some of the commonly used identity
providers (IdPs):
• Login with Amazon Developer Center
• Add Facebook Login to Your App or Website on the Facebook developers site.
• Using OAuth 2.0 for Login (OpenID Connect) on the Google developers site.

Important
If you are using an OIDC identity provider from Google, Facebook, or Amazon Cognito, don't
create a separate IAM identity provider in the AWS Management Console. These OIDC identity
providers are already built-in to AWS and are available for your use. Skip the following step
and move directly to creating new roles using your identity provider.

180

https://console.aws.amazon.com/cognito/home
https://docs.amplify.aws/sdk/q/platform/ios
https://docs.amplify.aws/sdk/q/platform/android
https://docs.aws.amazon.com/mobile/sdkforandroid/developerguide/cognito-auth.html
https://docs.aws.amazon.com/mobile/sdkforios/developerguide/cognito-auth.html
http://aws.amazon.com/blogs/aws/the-aws-web-identity-federation-playground/
http://aws.amazon.com/blogs/aws/the-aws-web-identity-federation-playground/
https://login.amazon.com/
https://developers.facebook.com/docs/facebook-login/v2.1
https://developers.google.com/accounts/docs/OAuth2Login

AWS Identity and Access Management User Guide
Identity providers and federation

2. If you use an IdP other than Google, Facebook or Amazon Cognito that is compatible with OIDC, then
create an IAM identity provider entity for it.

3. In IAM, create one or more roles (p. 241). For each role, define who can assume the role (the trust
policy) and what permissions the app's users are to have (the permissions policy). Typically, you create
one role for each IdP that an app supports. For example, you might create a role that is assumed by an
app when the user signs in through Login with Amazon, a second role for the same app where the user
signs in through Facebook, and a third role for the app where the user signs in through Google. For
the trust relationship, specify the IdP (like Amazon.com) as the Principal (the trusted entity), and
include a Condition that matches the IdP assigned app ID. Examples of roles for different providers
are described in Creating a role for a third-party Identity Provider (federation) (p. 241).

4. In your application, authenticate your users with the IdP. The specifics of how to do this vary both
according to which IdP you're using (Login with Amazon, Facebook, or Google) and on which platform
your app runs. For example, an Android app's method of authentication can differ from that of an iOS
app or a JavaScript-based web app.

Typically, if the user is not already signed in, the IdP takes care of displaying a sign-in page. After the
IdP authenticates the user, the IdP returns an authentication token with information about the user to
your app. The information included depends on what the IdP exposes and what information the user
is willing to share. You can use this information in your app.

5. In your app, make an unsigned call to the AssumeRoleWithWebIdentity action to request
temporary security credentials. In the request, you pass the IdP's authentication token and specify the
Amazon Resource Name (ARN) for the IAM role that you created for that IdP. AWS verifies that the
token is trusted and valid and if so, returns temporary security credentials to your app that have the
permissions for the role that you name in the request. The response also includes metadata about the
user from the IdP, such as the unique user ID that the IdP associates with the user.

6. Using the temporary security credentials from the AssumeRoleWithWebIdentity response,
your app makes signed requests to AWS API operations. The user ID information from the IdP can
distinguish users in your app—for example, you can put objects into Amazon S3 folders that include
the user ID as prefixes or suffixes. This lets you create access control policies that lock the folder so
only the user with that ID can access it. For more information, see Identifying users with web identity
federation (p. 181) later in this topic.

7. Your app should cache the temporary security credentials so that you do not have to get
new ones each time the app needs to make a request to AWS. By default, the credentials are
good for one hour. When the credentials expire (or before then), you make another call to
AssumeRoleWithWebIdentity to obtain a new set of temporary security credentials. Depending
on the IdP and how they manage their tokens, you might have to refresh the IdP's token before
you make a new call to AssumeRoleWithWebIdentity, since the IdP's tokens also usually expire
after a fixed time. If you use the AWS SDK for iOS or the AWS SDK for Android, you can use the
AmazonSTSCredentialsProvider action, which manages the IAM temporary credentials, including
refreshing them as required.

Identifying users with web identity federation

When you create access policies in IAM, it's often useful to be able to specify permissions based on
configured apps and on the ID of users who have authenticated using an external identity provider (IdP).
For example, your mobile app that's using web identity federation might keep information in Amazon S3
using a structure like this:

myBucket/app1/user1
myBucket/app1/user2
myBucket/app1/user3
...
myBucket/app2/user1
myBucket/app2/user2
myBucket/app2/user3

181

http://aws.amazon.com/blogs/mobile/using-the-amazoncredentialsprovider-protocol-in-the-aws-sdk-for-ios

AWS Identity and Access Management User Guide
Identity providers and federation

...

You might also want to additionally distinguish these paths by provider. In that case, the structure might
look like the following (only two providers are listed to save space):

myBucket/Amazon/app1/user1
myBucket/Amazon/app1/user2
myBucket/Amazon/app1/user3
...
myBucket/Amazon/app2/user1
myBucket/Amazon/app2/user2
myBucket/Amazon/app2/user3

myBucket/Facebook/app1/user1
myBucket/Facebook/app1/user2
myBucket/Facebook/app1/user3
...
myBucket/Facebook/app2/user1
myBucket/Facebook/app2/user2
myBucket/Facebook/app2/user3
...

For these structures, app1 and app2 represent different apps, such as different games, and each user of
the app has a distinct folder. The values for app1 and app2 might be friendly names that you assign (for
example, mynumbersgame) or they might be the app IDs that the providers assign when you configure
your app. If you decide to include provider names in the path, those can also be friendly names like
Cognito, Amazon, Facebook, and Google.

You can typically create the folders for app1 and app2 through the AWS Management Console,
since the application names are static values. That's true also if you include the provider name
in the path, since the provider name is also a static value. In contrast, the user-specific folders
(user1, user2, user3, etc.) have to be created at run time from the app, using the user ID that's
available in the SubjectFromWebIdentityToken value that is returned by the request to
AssumeRoleWithWebIdentity.

To write policies that allow exclusive access to resources for individual users, you can match the complete
folder name, including the app name and provider name, if you're using that. You can then include the
following provider-specific context keys that reference the user ID that the provider returns:

• cognito-identity.amazonaws.com:sub

• www.amazon.com:user_id

• graph.facebook.com:id

• accounts.google.com:sub

For OIDC providers, use the fully qualified URL of the OIDC provider with the subcontext key, like the
following example:

• server.example.com:sub

The following example shows a permission policy that grants access to a bucket in Amazon S3 only if the
prefix for the bucket matches the string:

myBucket/Amazon/mynumbersgame/user1

The example assumes that the user is signed in using Login with Amazon, and that the user is using an
app called mynumbersgame. The user's unique ID is presented as an attribute called user_id.

{

182

AWS Identity and Access Management User Guide
Identity providers and federation

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["s3:ListBucket"],
 "Resource": ["arn:aws:s3:::myBucket"],
 "Condition": {"StringLike": {"s3:prefix": ["Amazon/mynumbersgame/
${www.amazon.com:user_id}/*"]}}
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject"
],
 "Resource": [
 "arn:aws:s3:::myBucket/amazon/mynumbersgame/${www.amazon.com:user_id}",
 "arn:aws:s3:::myBucket/amazon/mynumbersgame/${www.amazon.com:user_id}/*"
]
 }
]
}

You would create similar policies for users who sign in using Amazon Cognito, Facebook, Google, or
another OpenID Connect–compatible IdP. Those policies would use a different provider name as part of
the path as well as different app IDs.

For more information about the web identity federation keys available for condition checks in policies,
see Available keys for AWS web identity federation (p. 833).

Additional resources for web identity federation

The following resources can help you learn more about web identity federation:

• Amazon Cognito Identity in the AWS Mobile SDK for Android Developer Guide and Amazon Cognito
Identity in the AWS Mobile SDK for iOS Developer Guide.

• The Web Identity Federation Playground is an interactive website that lets you walk through the
process of authenticating via Login with Amazon, Facebook, or Google, getting temporary security
credentials, and then using those credentials to make a request to AWS.

• The entry Web Identity Federation using the AWS SDK for .NET on the AWS .NET Development blog
walks through how to use web identity federation with Facebook and includes code snippets in C# that
show how to call AssumeRoleWithWebIdentity and how to use the temporary security credentials
from that API call to access an S3 bucket.

• The AWS SDK for iOS and the AWS SDK for Android contain sample apps. These apps include code that
shows how to invoke the identity providers and then how to use the information from these providers
to get and use temporary security credentials.

• The article Web Identity Federation with Mobile Applications discusses web identity federation and
shows an example of how to use web identity federation to get access to content in Amazon S3.

About SAML 2.0-based federation
AWS supports identity federation with SAML 2.0 (Security Assertion Markup Language 2.0), an open
standard that many identity providers (IdPs) use. This feature enables federated single sign-on (SSO),
so users can log into the AWS Management Console or call the AWS API operations without you having
to create an IAM user for everyone in your organization. By using SAML, you can simplify the process of
configuring federation with AWS, because you can use the IdP's service instead of writing custom identity
proxy code.

183

https://docs.aws.amazon.com/mobile/sdkforandroid/developerguide/cognito-auth.html
https://docs.aws.amazon.com/mobile/sdkforios/developerguide/cognito-auth.html
https://docs.aws.amazon.com/mobile/sdkforios/developerguide/cognito-auth.html
http://aws.amazon.com/blogs/aws/the-aws-web-identity-federation-playground/
http://aws.amazon.com/blogs/developer/web-identity-federation-using-the-aws-sdk-for-net/
https://aws.amazon.com/sdkforios/
https://aws.amazon.com/sdkforandroid/
http://aws.amazon.com/articles/4617974389850313
https://wiki.oasis-open.org/security
https://docs.aws.amazon.com/STS/latest/UsingSTS/CreatingFedTokens.html
https://docs.aws.amazon.com/STS/latest/UsingSTS/CreatingFedTokens.html

AWS Identity and Access Management User Guide
Identity providers and federation

IAM federation supports these use cases:

• Federated access to allow a user or application in your organization to call AWS API
operations (p. 184). You use a SAML assertion (as part of the authentication response) that is
generated in your organization to get temporary security credentials. This scenario is similar to
other federation scenarios that IAM supports, like those described in Requesting temporary security
credentials (p. 324) and About web identity federation (p. 178). However, SAML 2.0–based IdPs
in your organization handle many of the details at run time for performing authentication and
authorization checking. This is the scenario discussed in this topic.

• Web-based single sign-on (SSO) to the AWS Management Console from your
organization (p. 209). Users can sign in to a portal in your organization hosted by a SAML 2.0–
compatible IdP, select an option to go to AWS, and be redirected to the console without having to
provide additional sign-in information. You can use a third-party SAML IdP to establish SSO access
to the console or you can create a custom IdP to enable console access for your external users. For
more information about building a custom IdP, see Enabling custom identity broker access to the AWS
console (p. 212).

Using SAML-based federation for API access to AWS

Assume that you want to provide a way for employees to copy data from their computers to a backup
folder. You build an application that users can run on their computers. On the back end, the application
reads and writes objects in an S3 bucket. Users don't have direct access to AWS. Instead, the following
process is used:

1. A user in your organization uses a client app to request authentication from your organization's IdP.

2. The IdP authenticates the user against your organization's identity store.

3. The IdP constructs a SAML assertion with information about the user and sends the assertion to the
client app.

4. The client app calls the AWS STS AssumeRoleWithSAML API, passing the ARN of the SAML provider,
the ARN of the role to assume, and the SAML assertion from IdP.

5. The API response to the client app includes temporary security credentials.

6. The client app uses the temporary security credentials to call Amazon S3 API operations.

184

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithSAML.html

AWS Identity and Access Management User Guide
Identity providers and federation

Overview of configuring SAML 2.0-based federation

Before you can use SAML 2.0-based federation as described in the preceding scenario and diagram, you
must configure your organization's IdP and your AWS account to trust each other. The general process
for configuring this trust is described in the following steps. Inside your organization, you must have an
IdP that supports SAML 2.0 (p. 202), like Microsoft Active Directory Federation Service (AD FS, part of
Windows Server), Shibboleth, or another compatible SAML 2.0 provider.

To configure your organization's IdP and AWS to trust each other

1. You begin by registering AWS with your IdP. In your organization's IdP you register AWS as a service
provider (SP) by using the SAML metadata document that you get from the following URL:

https://signin.aws.amazon.com/static/saml-metadata.xml

2. Using your organization's IdP, you generate an equivalent metadata XML file that can describe
your IdP as an IAM identity provider in AWS. It must include the issuer name, a creation date, an
expiration date, and keys that AWS can use to validate authentication responses (assertions) from
your organization.

3. In the IAM console, you create a SAML identity provider entity. As part of this process, you upload
the SAML metadata document that was produced by the IdP in your organization in Step 2. For more
information, see Creating IAM SAML identity providers (p. 197).

4. In IAM, you create one or more IAM roles. In the role's trust policy, you set the SAML provider as
the principal, which establishes a trust relationship between your organization and AWS. The role's
permission policy establishes what users from your organization are allowed to do in AWS. For more
information, see Creating a role for a third-party Identity Provider (federation) (p. 241).

5. In your organization's IdP, you define assertions that map users or groups in your organization to
the IAM roles. Note that different users and groups in your organization might map to different IAM
roles. The exact steps for performing the mapping depend on what IdP you're using. In the earlier
scenario (p. 184) of an Amazon S3 folder for users, it's possible that all users will map to the same
role that provides Amazon S3 permissions. For more information, see Configuring SAML assertions
for the authentication response (p. 204).

If your IdP enables SSO to the AWS console, then you can configure the maximum duration of the
console sessions. For more information, see Enabling SAML 2.0 federated users to access the AWS
Management Console (p. 209).

Note
The AWS implementation of SAML 2.0 federation does not support encrypted SAML
assertions between the IAM identity provider and AWS. However, the traffic between the
customer's systems and AWS is transmitted over an encrypted (TLS) channel.

6. In the application that you're creating, you call the AWS Security Token Service
AssumeRoleWithSAML API, passing it the ARN of the SAML provider you created in Step 3, the ARN
of the role to assume that you created in Step 4, and the SAML assertion about the current user
that you get from your IdP. AWS makes sure that the request to assume the role comes from the IdP
referenced in the SAML provider.

For more information, see AssumeRoleWithSAML in the AWS Security Token Service API Reference.

7. If the request is successful, the API returns a set of temporary security credentials, which your
application can use to make signed requests to AWS. Your application has information about the
current user and can access user-specific folders in Amazon S3, as described in the previous scenario.

Overview of the role to allow SAML-federated access to your AWS resources

The role or roles that you create in IAM define what federated users from your organization are allowed
to do in AWS. When you create the trust policy for the role, you specify the SAML provider that you
created earlier as the Principal. You can additionally scope the trust policy with a Condition to allow

185

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithSAML.html

AWS Identity and Access Management User Guide
Identity providers and federation

only users that match certain SAML attributes to access the role. For example, you can specify that only
users whose SAML affiliation is staff (as asserted by https://openidp.feide.no) are allowed to access the
role, as illustrated by the following sample policy:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {"Federated": "arn:aws:iam::ACCOUNT-ID-WITHOUT-HYPHENS:saml-provider/
ExampleOrgSSOProvider"},
 "Action": "sts:AssumeRoleWithSAML",
 "Condition": {
 "StringEquals": {
 "saml:aud": "https://signin.aws.amazon.com/saml",
 "saml:iss": "https://openidp.feide.no"
 },
 "ForAllValues:StringLike": {"saml:edupersonaffiliation": ["staff"]}
 }
 }]
}

For more information about the SAML keys that you can check in a policy, see Available keys for SAML-
based AWS STS federation (p. 835).

For the permission policy in the role, you specify permissions as you would for any role. For example,
if users from your organization are allowed to administer Amazon Elastic Compute Cloud instances,
you must explicitly allow Amazon EC2 actions in the permissions policy, such as those in the
AmazonEC2FullAccess managed policy.

Uniquely identifying users in SAML-based federation

When you create access policies in IAM, it's often useful to be able to specify permissions based on the
identity of users. For example, for users who have been federated using SAML, an application might want
to keep information in Amazon S3 using a structure like this:

myBucket/app1/user1
myBucket/app1/user2
myBucket/app1/user3

You can create the bucket (myBucket) and folder (app1) through the Amazon S3 console or the AWS CLI,
since those are static values. However, the user-specific folders (user1, user2, user3, etc.) have to be
created at run time using code, since the value that identifies the user isn't known until the first time the
user signs in through the federation process.

To write policies that reference user-specific details as part of a resource name, the user identity has
to be available in SAML keys that can be used in policy conditions. The following keys are available for
SAML 2.0–based federation for use in IAM policies. You can use the values returned by the following keys
to create unique user identifiers for resources like Amazon S3 folders.

• saml:namequalifier. A hash value based on the concatenation of the Issuer response value
(saml:iss) and a string with the AWS account ID and the friendly name (the last part of the ARN)
of the SAML provider in IAM. The concatenation of the account ID and friendly name of the SAML
provider is available to IAM policies as the key saml:doc. The account ID and provider name must be
separated by a '/' as in "123456789012/provider_name". For more information, see the saml:doc key
at Available keys for SAML-based AWS STS federation (p. 835).

The combination of NameQualifier and Subject can be used to uniquely identify a federated
user. The following pseudocode shows how this value is calculated. In this pseudocode + indicates
concatenation, SHA1 represents a function that produces a message digest using SHA-1, and Base64
represents a function that produces Base-64 encoded version of the hash output.

186

AWS Identity and Access Management User Guide
Identity providers and federation

Base64 (SHA1 ("https://example.com/saml" + "123456789012" + "/
MySAMLIdP"))

For more information about the policy keys that are available for SAML-based federation, see Available
keys for SAML-based AWS STS federation (p. 835).

• saml:sub (string). This is the subject of the claim, which includes a value that
uniquely identifies an individual user within an organization (for example,
_cbb88bf52c2510eabe00c1642d4643f41430fe25e3).

• saml:sub_type (string). This key can be persistent, transient, or the full Format URI from the
Subject and NameID elements used in your SAML assertion. A value of persistent indicates that
the value in saml:sub is the same for a user across all sessions. If the value is transient, the user
has a different saml:sub value for each session. For information about the NameID element's Format
attribute, see Configuring SAML assertions for the authentication response (p. 204).

The following example shows a permission policy that uses the preceding keys to grant permissions to
a user-specific folder in Amazon S3. The policy assumes that the Amazon S3 objects are identified using
a prefix that includes both saml:namequalifier and saml:sub. Notice that the Condition element
includes a test to be sure that saml:sub_type is set to persistent. If it is set to transient, the
saml:sub value for the user can be different for each session, and the combination of values should not
be used to identify user-specific folders.

>{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject"
],
 "Resource": [
 "arn:aws:s3:::exampleorgBucket/backup/${saml:namequalifier}/${saml:sub}",
 "arn:aws:s3:::exampleorgBucket/backup/${saml:namequalifier}/${saml:sub}/*"
],
 "Condition": {"StringEquals": {"saml:sub_type": "persistent"}}
 }
}

For more information about mapping assertions from the IdP to policy keys, see Configuring SAML
assertions for the authentication response (p. 204).

Creating IAM identity providers
When you want to configure federation with an external identity provider (IdP) service, you create an
IAM identity provider to inform AWS about the IdP and its configuration. This establishes "trust" between
your AWS account and the IdP. The following topics include details about how to create an IAM identity
provider for each of the IdP types.

Topics
• Creating OpenID Connect (OIDC) identity providers (p. 187)
• Creating IAM SAML identity providers (p. 197)

Creating OpenID Connect (OIDC) identity providers

IAM OIDC identity providers are entities in IAM that describe an external identity provider (IdP) service
that supports the OpenID Connect (OIDC) standard, such as Google or Salesforce. You use an IAM OIDC

187

http://openid.net/connect/

AWS Identity and Access Management User Guide
Identity providers and federation

identity provider when you want to establish trust between an OIDC-compatible IdP and your AWS
account. This is useful when creating a mobile app or web application that requires access to AWS
resources, but you don't want to create custom sign-in code or manage your own user identities. For
more information about this scenario, see the section called “About web identity federation” (p. 178).

You can create and manage an IAM OIDC identity provider using the AWS Management Console, the AWS
Command Line Interface, the Tools for Windows PowerShell, or the IAM API.

After you create an IAM OIDC identity provider, you must create one or more IAM roles. A role is an
identity in AWS that doesn't have its own credentials (as a user does). But in this context, a role is
dynamically assigned to a federated user that is authenticated by your organization's IdP. The role
permits your organization's IdP to request temporary security credentials for access to AWS. The policies
assigned to the role determine what the federated users are allowed to do in AWS. To create a role for a
third-party identity provider, see Creating a role for a third-party Identity Provider (federation) (p. 241).

Topics

• Creating and managing an OIDC provider (console) (p. 188)

• Creating and managing an IAM OIDC identity provider (AWS CLI) (p. 191)

• Creating and managing an OIDC Identity Provider (AWS API) (p. 192)

• Obtaining the root CA thumbprint for an OpenID Connect Identity Provider (p. 194)

Creating and managing an OIDC provider (console)

Follow these instructions to create and manage an IAM OIDC identity provider in the AWS Management
Console.

Important
If you are using an OIDC identity provider from either Google, Facebook, or Amazon Cognito, do
not create a separate IAM identity provider using this procedure. These OIDC identity providers
are already built-in to AWS and are available for your use. Instead, follow the steps to create
new roles for your identity provider, see Creating a role for web identity or OpenID connect
federation (console) (p. 243).

To create an IAM OIDC identity provider (console)

1. Before you create an IAM OIDC identity provider, you must register your application with the IdP to
receive a client ID. The client ID (also known as audience) is a unique identifier for your app that is
issued to you when you register your app with the IdP. For more information about obtaining a client
ID, see the documentation for your IdP.

Note
AWS secures communication with some OIDC identity providers (IdPs) through our library
of trusted certificate authorities (CAs) instead of using a certificate thumbprint to verify
your IdP server certificate. These OIDC IdPs include Google, and those that use an Amazon
S3 bucket to host a JSON Web Key Set (JWKS) endpoint. In these cases, your legacy
thumbprint remains in your configuration, but is no longer used for validation.

2. Open the IAM console at https://console.aws.amazon.com/iam/.

3. In the navigation pane, choose Identity providers, and then choose Add provider.

4. For Configure provider, choose OpenID Connect.

5. For Provider URL, type the URL of the IdP. The URL must comply with these restrictions:

• The URL is case-sensitive.

• The URL must begin with https://.

• Within your AWS account, each IAM OIDC identity provider must use a unique URL.

188

https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Identity providers and federation

6. Choose Get thumbprint to verify the server certificate of your IdP. To learn how, see Obtaining the
root CA thumbprint for an OpenID Connect Identity Provider (p. 194).

7. For Audience, type the client ID of the application that you registered with the IdP and received in
Step 1, and that make requests to AWS. If you have additional client IDs (also known as audiences)
for this IdP, you can add them later on the provider detail page.

8. (Optional) For Add tags, you can add key–value pairs to help you identify and organize your IdPs.
You can also use tags to control access to AWS resources. To learn more about tagging IAM OIDC
identity providers, see Tagging OpenID Connect (OIDC) identity providers (p. 305). Choose Add
tag. Enter values for each tag key-value pair.

9. Verify the information that you have provided. When you are done choose Add provider.

10. Assign an IAM role to your identity provider to give external user identities managed by your identity
provider permissions to access AWS resources in your account. To learn more about creating roles for
identity federation, see Creating a role for a third-party Identity Provider (federation) (p. 241).

To add or remove a thumbprint for an IAM OIDC identity provider (console)

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Identity providers. Then choose the name of the IAM identity
provider that you want to update.

3. In the Thumbprints section, choose Manage. To enter a new thumbprint value, choose Add
thumbprint. To remove a thumbprint, choose Remove next to the thumbprint that you want to
remove.

Note
An IAM OIDC identity provider must have at least one and can have a maximum of five
thumbprints.

When you are done, choose Save changes.

To add an audience for an IAM OIDC identity provider (console)

1. In the navigation pane, choose Identity providers, then choose the name of the IAM identity
provider that you want to update.

2. In the Audiences section, choose Actions and select Add audience.

3. Type the client ID of the application that you registered with the IdP and received in Step 1, and that
will make requests to AWS. Then choose Add audiences.

Note
An IAM OIDC identity provider must have at least one and can have a maximum of 100
audiences.

When you are done, choose Add audiences.

To remove an audience for an IAM OIDC identity provider (console)

1. In the navigation pane, choose Identity providers, then choose the name of the IAM identity
provider that you want to update.

2. In the Audiences section, select the radio button next to the audience that you want to remove,
then select Actions.

3. Choose Remove audience. A new window opens.

4. If you remove an audience, identities federating with the audience cannot assume roles associated
with the audience. In the window, read the warning and confirm that you want to remove the
audience by typing the word remove in the field.

189

https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Identity providers and federation

5. Choose Remove to remove the audience.

To delete an IAM OIDC identity provider (console)

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Identity providers.

3. Select the check box next to the IAM identity provider that you want to delete. Choose Delete. A
new window opens.

4. Confirm that you want to delete the provider by typing the word delete in the field. Then, choose
Delete.

To add or remove a thumbprint for an IAM OIDC identity provider (console)

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Identity providers. Then choose the name of the IAM identity
provider that you want to update.

3. In the Thumbprints section, choose Manage. To enter a new thumbprint value, choose Add
thumbprint. To remove a thumbprint, choose Remove next to the thumbprint that you want to
remove.

Note
An IAM OIDC identity provider must have at least one and can have a maximum of five
thumbprints.

When you are done, choose Save changes.

To add an audience for an IAM OIDC identity provider (console)

1. In the navigation pane, choose Identity providers, then choose the name of the IAM identity
provider that you want to update.

2. In the Audiences section, choose Actions and select Add audience.

3. Type the client ID of the application that you registered with the IdP and received in Step 1, and that
will make requests to AWS. Then choose Add audiences.

Note
An IAM OIDC identity provider must have at least one and can have a maximum of 100
audiences.

To remove an audience for an IAM OIDC identity provider (console)

1. In the navigation pane, choose Identity providers, then choose the name of the IAM identity
provider that you want to update.

2. In the Audiences section, select the radio button next to the audience that you want to remove,
then select Actions.

3. Choose Remove audience. A new window opens.

4. If you remove an audience, identities federating with the audience cannot assume roles associated
with the audience. In the window, read the warning and confirm that you want to remove the
audience by typing the word remove in the field.

5. Choose Remove to remove the audience.

190

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Identity providers and federation

To delete an IAM OIDC identity provider (console)

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Identity providers.

3. Select the check box next to the IAM identity provider that you want to delete. A new window opens.

4. Confirm that you want to delete the provider by typing the word delete in the field. Then, choose
Delete.

Creating and managing an IAM OIDC identity provider (AWS CLI)

You can use the following AWS CLI commands to create and manage IAM OIDC identity providers.

To create an IAM OIDC identity provider (AWS CLI)

1. (Optional) To get a list of all the IAM OIDC identity providers in your AWS account, run the following
command:

• aws iam list-open-id-connect-providers

2. To create a new IAM OIDC identity provider, run the following command:

• aws iam create-open-id-connect-provider

To update the list of server certificate thumbprints for an existing IAM OIDC identity
provider (AWS CLI)

• To update the list of server certificate thumbprints for an IAM OIDC identity provider, run the
following command:

• aws iam update-open-id-connect-provider-thumbprint

To tag an existing IAM OIDC identity provider (AWS CLI)

• To tag an existing IAM OIDC identity provider, run the following command:

• aws iam tag-open-id-connect-provider

To list tags for an existing IAM OIDC identity provider (AWS CLI)

• To list tags for an existing IAM OIDC identity provider, run the following command:

• aws iam list-open-id-connect-provider-tags

To remove tags on an IAM OIDC identity provider (AWS CLI)

• To remove tags on an existing IAM OIDC identity provider, run the following command:

• aws iam untag-open-id-connect-provider

To tag an existing IAM OIDC identity provider (AWS CLI)

• To tag an existing IAM OIDC identity provider, run the following command:

• aws iam tag-open-id-connect-provider

191

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/list-open-id-connect-providers.html
https://docs.aws.amazon.com/cli/latest/reference/iam/create-open-id-connect-provider.html
https://docs.aws.amazon.com/cli/latest/reference/iam/update-open-id-connect-provider-thumbprint.html
https://docs.aws.amazon.com/cli/latest/reference/iam/tag-open-id-connect-provider.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-open-id-connect-provider-tags.html
https://docs.aws.amazon.com/cli/latest/reference/iam/untag-open-id-connect-provider.html
https://docs.aws.amazon.com/cli/latest/reference/iam/tag-open-id-connect-provider.html

AWS Identity and Access Management User Guide
Identity providers and federation

To list tags for an existing IAM OIDC identity provider (AWS CLI)

• To list tags for an existing IAM OIDC identity provider, run the following command:

• aws iam list-open-id-connect-provider-tags

To remove tags on an IAM OIDC identity provider (AWS CLI)

• To remove tags on an existing IAM OIDC identity provider, run the following command:

• aws iam untag-open-id-connect-provider

To add or remove a client ID from an existing IAM OIDC identity provider (AWS CLI)

1. (Optional) To get a list of all the IAM OIDC identity provider in your AWS account, run the following
command:

• aws iam list-open-id-connect-providers

2. (Optional) To get detailed information about an IAM OIDC identity provider, run the following
command:

• aws iam get-open-id-connect-provider

3. To add a new client ID to an existing IAM OIDC identity provider, run the following command:

• aws iam add-client-id-to-open-id-connect-provider

4. To remove a client from an existing IAM OIDC identity provider, run the following command:

• aws iam remove-client-id-from-open-id-connect-provider

To delete an IAM OIDC identity provider (AWS CLI)

1. (Optional) To get a list of all the IAM OIDC identity provider in your AWS account, run the following
command:

• aws iam list-open-id-connect-providers

2. (Optional) To get detailed information about an IAM OIDC identity provider, run the following
command:

• aws iam get-open-id-connect-provider

3. To delete an IAM OIDC identity provider, run the following command:

• aws iam delete-open-id-connect-provider

Creating and managing an OIDC Identity Provider (AWS API)

You can use the following IAM API commands to create and manage OIDC providers.

To create an IAM OIDC identity provider (AWS API)

1. (Optional) To get a list of all the IAM OIDC identity provider in your AWS account, call the following
operation:

• ListOpenIDConnectProviders

2. To create a new IAM OIDC identity provider, call the following operation:

192

https://docs.aws.amazon.com/cli/latest/reference/iam/list-open-id-connect-provider-tags.html
https://docs.aws.amazon.com/cli/latest/reference/iam/untag-open-id-connect-provider.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-open-id-connect-providers.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-open-id-connect-provider.html
https://docs.aws.amazon.com/cli/latest/reference/iam/add-client-id-to-open-id-connect-provider.html
https://docs.aws.amazon.com/cli/latest/reference/iam/remove-client-id-from-open-id-connect-provider.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-open-id-connect-providers.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-open-id-connect-provider.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-open-id-connect-provider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListOpenIDConnectProviders.html

AWS Identity and Access Management User Guide
Identity providers and federation

• CreateOpenIDConnectProvider

To update the list of server certificate thumbprints for an existing IAM OIDC identity
provider (AWS API)

• To update the list of server certificate thumbprints for an IAM OIDC identity provider, call the
following operation:

• UpdateOpenIDConnectProviderThumbprint

To tag an existing IAM OIDC identity provider (AWS API)

• To tag an existing IAM OIDC identity provider, call the following operation:

• TagOpenIDConnectProvider

To list tags for an existing IAM OIDC identity provider (AWS API)

• To list tags for an existing IAM OIDC identity provider, call the following operation:

• ListOpenIDConnectProviderTags

To remove tags on an existing IAM OIDC identity provider (AWS API)

• To remove tags on an existing IAM OIDC identity provider, call the following operation:

• UntagOpenIDConnectProvider

To tag an existing IAM OIDC identity provider (AWS API)

• To tag an existing IAM OIDC identity provider, call the following operation:

• TagOpenIDConnectProvider

To list tags for an existing IAM OIDC identity provider (AWS API)

• To list tags for an existing IAM OIDC identity provider, call the following operation:

• ListOpenIDConnectProviderTags

To remove tags on an existing IAM OIDC identity provider (AWS API)

• To remove tags on an existing IAM OIDC identity provider, call the following operation:

• UntagOpenIDConnectProvider

To add or remove a client ID from an existing IAM OIDC identity provider (AWS API)

1. (Optional) To get a list of all the IAM OIDC identity provider in your AWS account, call the following
operation:

• ListOpenIDConnectProviders

193

https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateOpenIDConnectProvider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateOpenIDConnectProviderThumbprint.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagOpenIDConnectProvider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListOpenIDConnectProviderTags.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UntagOpenIDConnectProvider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagOpenIDConnectProvider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListOpenIDConnectProviderTags.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UntagOpenIDConnectProvider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListOpenIDConnectProviders.html

AWS Identity and Access Management User Guide
Identity providers and federation

2. (Optional) To get detailed information about an IAM OIDC identity provider, call the following
operation:

• GetOpenIDConnectProvider

3. To add a new client ID to an existing IAM OIDC identity provider, call the following operation:

• AddClientIDToOpenIDConnectProvider

4. To remove a client ID from an existing IAM OIDC identity provider, call the following operation:

• RemoveClientIDFromOpenIDConnectProvider

To delete an IAM OIDC identity provider (AWS API)

1. (Optional) To get a list of all the IAM OIDC identity provider in your AWS account, call the following
operation:

• ListOpenIDConnectProviders

2. (Optional) To get detailed information about an IAM OIDC identity provider, call the following
operation:

• GetOpenIDConnectProvider

3. To delete an IAM OIDC identity provider, call the following operation:

• DeleteOpenIDConnectProvider

Obtaining the root CA thumbprint for an OpenID Connect Identity Provider

When you create an OpenID Connect (OIDC) identity provider (p. 187) in IAM, you must supply a
thumbprint. IAM requires the thumbprint for the root or intermediate certificate authority (CA) that
signed the certificate used by the external identity provider (IdP). The thumbprint is a signature for the
CA's certificate that was used to issue the certificate for the OIDC-compatible IdP. When you create an
IAM OIDC identity provider, you are trusting identities authenticated by that IdP to have access to your
AWS account. By supplying the CA's certificate thumbprint, you trust any certificate issued by that CA
with the same DNS name as the one registered. This eliminates the need to update trusts in each account
when you renew the IdP's signing certificate.

Important
In most cases, the federation server uses two different certificates. The first establishes an
HTTPS connection between the clients and the federation endpoint. This can be safely issued
by a public root CA, such as AWS Certificate Manager. The second is used to sign tokens. We
recommend that you issue this using a private CA.

You can create an IAM OIDC identity provider with the AWS Command Line Interface, the Tools for
Windows PowerShell, or the IAM API (p. 191). When you use these methods, you must obtain the
thumbprint manually and supply it to AWS. When you create an OIDC identity provider with the IAM
console (p. 187), the console attempts to fetch the thumbprint for you. We recommend that you
also obtain the thumbprint for your OIDC IdP manually and verify that the console fetched the correct
thumbprint.

You use a web browser and the OpenSSL command line tool to obtain the thumbprint for an OIDC
provider. For more information, see the following sections.

To obtain the thumbprint for an OIDC IdP

1. Before you can obtain the thumbprint for an OIDC IdP, you need to obtain the OpenSSL command
line tool. You use this tool to download the OIDC IdP certificate chain and produce a thumbprint of
the final certificate in the certificate chain. If you need to install and configure OpenSSL, follow the
instructions at Install OpenSSL (p. 196) and Configure OpenSSL (p. 197).

194

https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetOpenIDConnectProvider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AddClientIDToOpenIDConnectProvider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_RemoveClientIDFromOpenIDConnectProvider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListOpenIDConnectProviders.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetOpenIDConnectProvider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteOpenIDConnectProvider.html

AWS Identity and Access Management User Guide
Identity providers and federation

Note
AWS secures communication with some OIDC identity providers (IdPs) through our library
of trusted certificate authorities (CAs) instead of using a certificate thumbprint to verify
your IdP server certificate. These OIDC IdPs include Google, and those that use an Amazon
S3 bucket to host a JSON Web Key Set (JWKS) endpoint. In these cases, your legacy
thumbprint remains in your configuration, but is no longer used for validation.

2. Start with the OIDC IdP URL (for example, https://server.example.com), and then add
/.well-known/openid-configuration to form the URL for the IdP's configuration document,
such as the following:

https://server.example.com/.well-known/openid-configuration

Open this URL in a web browser, replacing server.example.com with your IdP server name.

3. In the displayed document, use your web browser Find feature to locate the text "jwks_uri".
Immediately following the text "jwks_uri", there is a colon (:) followed by a URL. Copy the fully
qualified domain name of the URL. Do not include https:// or any path that comes after the top-
level domain.

{
 "issuer": "https://accounts.example.com",
 "authorization_endpoint": "https://accounts.example.com/o/oauth2/v2/auth",
 "device_authorization_endpoint": "https://oauth2.exampleapis.com/device/code",
 "token_endpoint": "https://oauth2.exampleapis.com/token",
 "userinfo_endpoint": "https://openidconnect.exampleapis.com/v1/userinfo",
 "revocation_endpoint": "https://oauth2.exampleapis.com/revoke",
 "jwks_uri": "https://www.exampleapis.com/oauth2/v3/certs",
...

4. Use the OpenSSL command line tool to run the following command. Replace keys.example.com
with the domain name you obtained in Step 3.

openssl s_client -servername keys.example.com -showcerts -connect keys.example.com:443

5. In your command window, scroll up until you see a certificate similar to the following example. If
you see more than one certificate, find the last certificate displayed (at the end of the command
output). This contains the certificate of the root CA in the certificate authority chain.

-----BEGIN CERTIFICATE-----
 MIICiTCCAfICCQD6m7oRw0uXOjANBgkqhkiG9w0BAQUFADCBiDELMAkGA1UEBhMC
 VVMxCzAJBgNVBAgTAldBMRAwDgYDVQQHEwdTZWF0dGxlMQ8wDQYDVQQKEwZBbWF6
 b24xFDASBgNVBAsTC0lBTSBDb25zb2xlMRIwEAYDVQQDEwlUZXN0Q2lsYWMxHzAd
 BgkqhkiG9w0BCQEWEG5vb25lQGFtYXpvbi5jb20wHhcNMTEwNDI1MjA0NTIxWhcN
 MTIwNDI0MjA0NTIxWjCBiDELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAldBMRAwDgYD
 VQQHEwdTZWF0dGxlMQ8wDQYDVQQKEwZBbWF6b24xFDASBgNVBAsTC0lBTSBDb25z
 b2xlMRIwEAYDVQQDEwlUZXN0Q2lsYWMxHzAdBgkqhkiG9w0BCQEWEG5vb25lQGFt
 YXpvbi5jb20wgZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAMaK0dn+a4GmWIWJ
 21uUSfwfEvySWtC2XADZ4nB+BLYgVIk60CpiwsZ3G93vUEIO3IyNoH/f0wYK8m9T
 rDHudUZg3qX4waLG5M43q7Wgc/MbQITxOUSQv7c7ugFFDzQGBzZswY6786m86gpE
 Ibb3OhjZnzcvQAaRHhdlQWIMm2nrAgMBAAEwDQYJKoZIhvcNAQEFBQADgYEAtCu4
 nUhVVxYUntneD9+h8Mg9q6q+auNKyExzyLwaxlAoo7TJHidbtS4J5iNmZgXL0Fkb
 FFBjvSfpJIlJ00zbhNYS5f6GuoEDmFJl0ZxBHjJnyp378OD8uTs7fLvjx79LjSTb
 NYiytVbZPQUQ5Yaxu2jXnimvw3rrszlaEXAMPLE=
 -----END CERTIFICATE-----

Copy the certificate (including the -----BEGIN CERTIFICATE----- and -----END
CERTIFICATE----- lines) and paste it into a text file. Then save the file with the file name
certificate.crt.

195

AWS Identity and Access Management User Guide
Identity providers and federation

6. Use the OpenSSL command line tool to run the following command.

openssl x509 -in certificate.crt -fingerprint -noout

Your command window displays the certificate thumbprint, which looks similar to the following
example:

SHA1 Fingerprint=99:0F:41:93:97:2F:2B:EC:F1:2D:DE:DA:52:37:F9:C9:52:F2:0D:9E

Remove the colon characters (:) from this string to produce the final thumbprint, like this:

990F4193972F2BECF12DDEDA5237F9C952F20D9E

7. If you are creating the IAM OIDC identity provider with the AWS CLI, Tools for Windows PowerShell,
or the IAM API, supply this thumbprint when creating the provider.

If you are creating the IAM OIDC identity provider in the IAM console, compare this thumbprint to
the thumbprint shown on the console Verify Provider Information page when you create an OIDC
provider.

Important
If the thumbprint you obtained does not match the one you see in the console, you should
not create the OIDC provider in the console. Instead, you should wait a while and then try
again to create the OIDC provider, ensuring that the thumbprints match before you create
the provider. If the thumbprints still do not match after a second attempt, use the IAM
Forum to contact AWS.

Install OpenSSL

If you don't already have OpenSSL installed, follow the instructions in this section.

To install OpenSSL on Linux or Unix

1. Go to OpenSSL: Source, Tarballs (https://openssl.org/source/).
2. Download the latest source and build the package.

To install OpenSSL on Windows

1. Go to OpenSSL: Binary Distributions (https://wiki.openssl.org/index.php/Binaries) for a list of sites
from which you can install the Windows version.

2. Follow the instructions on your selected site to start the installation.
3. If you are asked to install the Microsoft Visual C++ 2008 Redistributables and it is not already

installed on your system, choose the download link appropriate for your environment. Follow the
instructions provided by the Microsoft Visual C++ 2008 Redistributable Setup Wizard.

Note
If you are not sure whether the Microsoft Visual C++ 2008 Redistributables is already
installed on your system, you can try installing OpenSSL first. The OpenSSL installer
displays an alert if the Microsoft Visual C++ 2008 Redistributables is not yet installed. Make
sure that you install the architecture (32-bit or 64-bit) that matches the version of OpenSSL
that you install.

4. After you have installed the Microsoft Visual C++ 2008 Redistributables, select the appropriate
version of the OpenSSL binaries for your environment and save the file locally. Start the OpenSSL
Setup Wizard.

5. Follow the instructions described in the OpenSSL Setup Wizard.

196

https://forums.aws.amazon.com/forum.jspa?forumID=76
https://forums.aws.amazon.com/forum.jspa?forumID=76
https://openssl.org/source/
https://wiki.openssl.org/index.php/Binaries

AWS Identity and Access Management User Guide
Identity providers and federation

Configure OpenSSL

Before you use OpenSSL commands, you must configure the operating system so that it has information
about the location where OpenSSL is installed.

To configure OpenSSL on Linux or Unix

1. At the command line, set the OpenSSL_HOME variable to the location of the OpenSSL installation:

$ export OpenSSL_HOME=path_to_your_OpenSSL_installation

2. Set the path to include the OpenSSL installation:

$ export PATH=$PATH:$OpenSSL_HOME/bin

Note
Any changes you make to environment variables with the export command are valid only
for the current session. You can make persistent changes to the environment variables by
setting them in your shell configuration file. For more information, see the documentation
for your operating system.

To configure OpenSSL on Windows

1. Open a Command Prompt window.

2. Set the OpenSSL_HOME variable to the location of the OpenSSL installation:

C:\> set OpenSSL_HOME=path_to_your_OpenSSL_installation

3. Set the OpenSSL_CONF variable to the location of the configuration file in your OpenSSL
installation:

C:\> set OpenSSL_CONF=path_to_your_OpenSSL_installation\bin\openssl.cfg

4. Set the path to include the OpenSSL installation:

C:\> set Path=%Path%;%OpenSSL_HOME%\bin

Note
Any changes you make to Windows environment variables in a Command Prompt window
are valid only for the current command line session. You can make persistent changes to the
environment variables by setting them as system properties. The exact procedures depend
on what version of Windows you're using. (For example, in Windows 7, open Control Panel,
System and Security, System. Then choose Advanced system settings, Advanced tab,
Environment Variables.) For more information, see the Windows documentation.

Creating IAM SAML identity providers

An IAM SAML 2.0 identity provider is an entity in IAM that describes an external identity provider (IdP)
service that supports the SAML 2.0 (Security Assertion Markup Language 2.0) standard. You use an IAM
identity provider when you want to establish trust between a SAML-compatible IdP such as Shibboleth
or Active Directory Federation Services and AWS, so that users in your organization can access AWS
resources. IAM SAML identity providers are used as principals in an IAM trust policy.

For more information about this scenario, see About SAML 2.0-based federation (p. 183).

197

https://wiki.oasis-open.org/security

AWS Identity and Access Management User Guide
Identity providers and federation

You can create and manage an IAM identity provider in the AWS Management Console or with AWS CLI,
Tools for Windows PowerShell, or AWS API calls.

After you create a SAML provider, you must create one or more IAM roles. A role is an identity in AWS
that doesn't have its own credentials (as a user does). But in this context, a role is dynamically assigned
to a federated user that is authenticated by your organization's IdP. The role permits your organization's
IdP to request temporary security credentials for access to AWS. The policies assigned to the role
determine what the federated users are allowed to do in AWS. To create a role for SAML federation, see
Creating a role for a third-party Identity Provider (federation) (p. 241).

Finally, after you create the role, you complete the SAML trust by configuring your IdP with information
about AWS and the roles that you want your federated users to use. This is referred to as configuring
relying party trust between your IdP and AWS. To configure relying party trust, see Configuring your
SAML 2.0 IdP with relying party trust and adding claims (p. 201).

Topics
• Creating and managing an IAM identity provider (console) (p. 198)
• Creating and managing an IAM SAML Identity Provider (AWS CLI) (p. 199)
• Creating and managing an IAM SAML identity provider (AWS API) (p. 200)
• Configuring your SAML 2.0 IdP with relying party trust and adding claims (p. 201)
• Integrating third-party SAML solution providers with AWS (p. 202)
• Configuring SAML assertions for the authentication response (p. 204)

Creating and managing an IAM identity provider (console)

You can use the AWS Management Console to create and delete IAM SAML identity providers.

To create an IAM SAML identity provider (console)

1. Before you can create an IAM SAML identity provider, you need the SAML metadata document
that you get from the IdP. This document includes the issuer's name, expiration information, and
keys that can be used to validate the SAML authentication response (assertions) that are received
from the IdP. To generate the metadata document, use the identity management software your
organization uses as its IdP. For instructions on how to configure many of the available IdPs to work
with AWS, including how to generate the required SAML metadata document, see Integrating third-
party SAML solution providers with AWS (p. 202).

Important
The metadata file must be encoded in UTF-8 format without a byte order mark (BOM). Also,
the X.509 certificate that is included as part of the SAML metadata document must use a
key size of at least 1024 bits. If the key size is smaller, the IdP creation fails with an "Unable
to parse metadata" error. To remove the BOM, you can encode the file as UTF-8 using a text
editing tool, such as Notepad++.

2. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

3. In the navigation pane, choose Identity providers and then choose Add provider.
4. For Configure provider, choose SAML.
5. Type a name for the identity provider.
6. For Metadata document, choose Choose file, specify the SAML metadata document that you

downloaded in Step 1.
7. (Optional) For Add tags you can add key–value pairs to help you identify and organize your IdPs. You

can also use tags to control access to AWS resources. To learn more about tagging SAML identity
providers, see Tagging IAM SAML identity providers (p. 306).

Choose Add tag. Enter values for each tag key-value pair.

198

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Identity providers and federation

8. Verify the information that you have provided. When you are done, choose Add provider.
9. Assign an IAM role to your identity provider to give external user identities managed by your identity

provider permissions to access AWS resources in your account. To learn more about creating roles for
identity federation, see Creating a role for a third-party Identity Provider (federation) (p. 241).

To delete a SAML provider (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Identity providers.
3. Select the radio button next to the identity provider that you want to delete.
4. Choose Delete. A new window opens.
5. Confirm that you want to delete the provider by typing the word delete in the field. Then, choose

Delete.

Creating and managing an IAM SAML Identity Provider (AWS CLI)

You can use the AWS CLI to create and manage SAML providers.

Before you can create an IAM identity provider, you need the SAML metadata document that you get
from the IdP. This document includes the issuer's name, expiration information, and keys that can
be used to validate the SAML authentication response (assertions) that are received from the IdP. To
generate the metadata document, use the identity management software your organization uses as its
IdP. For instructions on how to configure many of the available IdPs to work with AWS, including how to
generate the required SAML metadata document, see Integrating third-party SAML solution providers
with AWS (p. 202).

Important
The metadata file must be encoded in UTF-8 format without a byte order mark (BOM). Also,
the X.509 certificate that is included as part of the SAML metadata document must use a key
size of at least 1024 bits. If the key size is smaller, the IdP creation fails with an "Unable to parse
metadata" error. To remove the BOM, you can encode the file as UTF-8 using a text editing tool,
such as Notepad++.

To create an IAM identity provider and upload a metadata document (AWS CLI)

• Run this command: aws iam create-saml-provider

To upload a new metadata document for an IAM identity provider (AWS CLI)

• Run this command:aws iam update-saml-provider

To tag an existing IAM identity provider (AWS CLI)

• Run this command:aws iam tag-saml-provider

To list tags for existing IAM identity provider (AWS CLI)

• Run this command:aws iam list-saml-provider-tags

To remove tags on an existing IAM identity provider (AWS CLI)

• Run this command:aws iam untag-saml-provider

199

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/create-saml-provider.html
https://docs.aws.amazon.com/cli/latest/reference/iam/update-saml-provider.html
https://docs.aws.amazon.com/cli/latest/reference/iam/tag-saml-provider.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-saml-provider-tags.html
https://docs.aws.amazon.com/cli/latest/reference/iam/untag-saml-provider.html

AWS Identity and Access Management User Guide
Identity providers and federation

To tag an existing IAM identity provider (AWS CLI)

• Run this command:aws iam tag-saml-provider

To list tags for existing IAM identity provider (AWS CLI)

• Run this command:aws iam list-saml-provider-tags

To remove tags on an existing IAM identity provider (AWS CLI)

• Run this command:aws iam untag-saml-provider

To delete an IAM SAML identity provider (AWS CLI)

1. (Optional) To list information for all providers, such as the ARN, creation date, and expiration, run
the following command:

• aws iam list-saml-providers

2. (Optional) To get information about a specific provider, such as the ARN, creation date, and
expiration, run the following command:

• aws iam get-saml-provider

3. To delete an IAM identity provider, run the following command:

• aws iam delete-saml-provider

Creating and managing an IAM SAML identity provider (AWS API)

You can use the AWS API to create and manage SAML providers.

Before you can create an IAM identity provider, you need the SAML metadata document that you get
from the IdP. This document includes the issuer's name, expiration information, and keys that can
be used to validate the SAML authentication response (assertions) that are received from the IdP. To
generate the metadata document, use the identity management software your organization uses as its
IdP. For instructions on how to configure many of the available IdPs to work with AWS, including how to
generate the required SAML metadata document, see Integrating third-party SAML solution providers
with AWS (p. 202).

Important
The metadata file must be encoded in UTF-8 format without a byte order mark (BOM). Also,
the X.509 certificate that is included as part of the SAML metadata document must use a key
size of at least 1024 bits. If the key size is smaller, the IdP creation fails with an "Unable to parse
metadata" error. To remove the BOM, you can encode the file as UTF-8 using a text editing tool,
such as Notepad++.

To create an IAM identity provider and upload a metadata document (AWS API)

• Call this operation: CreateSAMLProvider

To upload a new metadata document for an IAM identity provider (AWS API)

• Call this operation: UpdateSAMLProvider

200

https://docs.aws.amazon.com/cli/latest/reference/iam/tag-saml-provider.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-saml-provider-tags.html
https://docs.aws.amazon.com/cli/latest/reference/iam/untag-saml-provider.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-saml-providers.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-saml-provider.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-saml-provider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateSAMLProvider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateSAMLProvider.html

AWS Identity and Access Management User Guide
Identity providers and federation

To tag an existing IAM identity provider (AWS API)

• Call this operation: TagSAMLProvider

To list tags for an existing IAM identity provider (AWS API)

• Call this operation: ListSAMLProviderTags

To remove tags on an existing IAM identity provider (AWS API)

• Call this operation: UntagSAMLProvider

To tag an existing IAM identity provider (AWS API)

• Call this operation: TagSAMLProvider

To list tags for an existing IAM identity provider (AWS API)

• Call this operation: ListSAMLProviderTags

To remove tags on an existing IAM identity provider (AWS API)

• Call this operation: UntagSAMLProvider

To delete an IAM identity provider (AWS API)

1. (Optional) To list information for all IdPs, such as the ARN, creation date, and expiration, call the
following operation:

• ListSAMLProviders

2. (Optional) To get information about a specific provider, such as the ARN, creation date, and
expiration, call the following operation:

• GetSAMLProvider

3. To delete an IdP, call the following operation:

• DeleteSAMLProvider

Configuring your SAML 2.0 IdP with relying party trust and adding claims

When you create an IAM identity provider and role for SAML access, you are telling AWS about the
external identity provider (IdP) and what its users are allowed to do. Your next step is to then tell the
IdP about AWS as a service provider. This is called adding relying party trust between your IdP and AWS.
The exact process for adding relying party trust depends on what IdP you're using. For details, see the
documentation for your identity management software.

Many IdPs allow you to specify a URL from which the IdP can read an XML document that contains
relying party information and certificates. For AWS, you can use https://signin.aws.amazon.com/
static/saml-metadata.xml

If you can't specify a URL directly, then download the XML document from the preceding URL and import
it into your IdP software.

201

https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagSAMLProvider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListSAMLProviderTags.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UntagSAMLProvider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagSAMLProvider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListSAMLProviderTags.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UntagSAMLProvider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListSAMLProviders.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetSAMLProvider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteSAMLProvider.html

AWS Identity and Access Management User Guide
Identity providers and federation

You also need to create appropriate claim rules in your IdP that specify AWS as a relying party. When
the IdP sends a SAML response to the AWS endpoint, it includes a SAML assertion that contains one or
more claims. A claim is information about the user and its groups. A claim rule maps that information
into SAML attributes. This lets you make sure that SAML authentication responses from your IdP contain
the necessary attributes that AWS uses in IAM policies to check permissions for federated users. For more
information, see the following topics:

• Overview of the role to allow SAML-federated access to your AWS resources (p. 185). This topic
discusses using SAML-specific keys in IAM policies and how to use them to restrict permissions for
SAML-federated users.

• Configuring SAML assertions for the authentication response (p. 204). This topic discusses how
to configure SAML claims that include information about the user. The claims are bundled into
a SAML assertion and included in the SAML response that is sent to AWS. You must ensure that
the information needed by AWS policies is included in the SAML assertion in a form that AWS can
recognize and use.

• Integrating third-party SAML solution providers with AWS (p. 202). This topic provides links to
documentation provided by third-party organizations about how to integrate identity solutions with
AWS.

Integrating third-party SAML solution providers with AWS

The following links help you configure third-party SAML 2.0 identity provider (IdP) solutions to work with
AWS federation.

Note
AWS Support engineers can assist customers who have business and enterprise support plans
with some integration tasks that involve third-party software. For a current list of supported
platforms and applications, see What third-party software is supported? in the AWS Support
FAQs.

Solution More information

Auth0 Integrate with Amazon Web services – This page on the Auth0
documentation website has links to resources that describe
how to set up single sign-on (SSO) with the AWS Management
Console and includes a JavaScript example. You can configure
Auth0 to pass session tags (p. 313). For more information,
see Auth0 Announces Partnership with AWS for IAM Session
Tags.

Centrify Configure Centrify and Use SAML for SSO to AWS – This page
on the Centrify website explains how to configure Centrify to
use SAML for SSO to AWS.

ForgeRock The ForgeRock Identity Platform integrates with AWS. You can
configure ForgeRock to pass session tags (p. 313). For more
information, see Attribute Based Access Control for Amazon
Web Services.

Google Workspace Amazon Web Services cloud application – This article on the
Google Workspace Admin Help site describes how to configure
Google Workspace as a SAML 2.0 IdP with AWS as the service
provider.

IBM You can configure IBM to pass session tags (p. 313). For
more information, see IBM Cloud Identity IDaaS one of first to
support AWS session tags.

202

https://aws.amazon.com/premiumsupport/faqs/#what3rdParty
https://auth0.com/docs/integrations/aws
https://auth0.com/blog/auth0-partners-with-aws-for-iam-session-tags/
https://auth0.com/blog/auth0-partners-with-aws-for-iam-session-tags/
https://docs.centrify.com/Content/Applications/AppsWeb/AmazonSAML.htm
https://backstage.forgerock.com/docs/am/6.5/saml2-guide/#saml2-create-hosted-idp
https://www.forgerock.com/blog/attribute-based-access-control-amazon-web-services
https://www.forgerock.com/blog/attribute-based-access-control-amazon-web-services
https://support.google.com/a/answer/6194963
https://community.ibm.com/community/user/security/blogs/adam-case/2019/11/25/ibm-cloud-identity-idaas-one-of-first-to-support-aws-session-tags
https://community.ibm.com/community/user/security/blogs/adam-case/2019/11/25/ibm-cloud-identity-idaas-one-of-first-to-support-aws-session-tags

AWS Identity and Access Management User Guide
Identity providers and federation

Solution More information

Matrix42 MyWorkspace Getting Started Guide – This guide describes
how to integrate AWS identity services with Matrix42
MyWorkspace.

Microsoft Active Directory Federation
Services (AD FS)

Enabling Federation to AWS Using Windows Active Directory,
AD FS, and SAML 2.0 – This post on the AWS Security Blog
shows how to set up AD FS on an EC2 instance and enable
SAML federation with AWS. You can configure AD FS to
pass session tags (p. 313). For more information, see Use
attribute-based access control with AD FS to simplify IAM
permissions management.

PowerShell Automation to Give AWS Console Access – This
post on Sivaprasad Padisetty's blog describes how to use
Windows PowerShell to automate the process of setting up
Active Directory and AD FS. It also covers enabling SAML
federation with AWS.

miniOrange SSO for AWS – This page on the miniOrange website describes
how to establish secure access to AWS for enterprises and full
control over access of AWS applications.

Okta Integrating the Amazon Web Services Command Line
Interface Using Okta – From this page on the Okta support
site you can learn how to configure Okta for use with AWS.
You can configure Okta to pass session tags (p. 313). For
more information, see Okta and AWS Partner to Simplify
Access Via Session Tags.

Okta How to Configure SAML 2.0 for AWS Single Sign-On – This
article on the Okta website describes how to set up and
enable SSO for AWS.

OneLogin From the OneLogin Knowledgebase, search for SAML AWS
for a list of articles that explain how to set up AWS SSO
functionality between OneLogin and AWS for a single-role
and multi-role scenarios. You can configure OneLogin to pass
session tags (p. 313). For more information, see OneLogin
and Session Tags: Attribute-Based Access Control for AWS
Resources.

Ping Identity PingFederate AWS Connector – View details about the
PingFederate AWS Connector, a quick connection template
to easily set up a single sign-on (SSO) and provisioning
connection. Read documentation and download the latest
PingFederate AWS Connector for integrations with AWS. You
can configure Ping Identity to pass session tags (p. 313). For
more information, see Announcing Ping Identity Support for
Attribute-Based Access Control in AWS.

RadiantLogic Radiant Logic Technology Partners – Radiant Logic's
RadiantOne Federated Identity Service integrates with AWS to
provide an identity hub for SAML-based SSO.

203

https://myworkspace.matrix42.com/documents/MyWorkspace-Getting-Started-with-AWS.pdf
http://aws.amazon.com/blogs/security/enabling-federation-to-aws-using-windows-active-directory-adfs-and-saml-2-0
http://aws.amazon.com/blogs/security/enabling-federation-to-aws-using-windows-active-directory-adfs-and-saml-2-0
https://aws.amazon.com/blogs/security/attribute-based-access-control-ad-fs-simplify-iam-permissions-management/
https://aws.amazon.com/blogs/security/attribute-based-access-control-ad-fs-simplify-iam-permissions-management/
https://aws.amazon.com/blogs/security/attribute-based-access-control-ad-fs-simplify-iam-permissions-management/
http://www.padisetty.com/2014/02/powershell-automation-to-give-aws.html
http://miniorange.com/amazon-web-services-%28aws%29-single-sign-on-%28sso%29
https://support.okta.com/help/Documentation/Knowledge_Article/Integrating-the-Amazon-Web-Services-Command-Line-Interface-Using-Okta
https://support.okta.com/help/Documentation/Knowledge_Article/Integrating-the-Amazon-Web-Services-Command-Line-Interface-Using-Okta
https://www.okta.com/blog/2019/11/okta-and-aws-partner-to-simplify-access-via-session-tags/
https://www.okta.com/blog/2019/11/okta-and-aws-partner-to-simplify-access-via-session-tags/
https://saml-doc.okta.com/SAML_Docs/How-to-Configure-SAML-2.0-for-AWS-Single-Sign-on.html
https://onelogin.service-now.com/support
https://www.onelogin.com/blog/aws-session-tags-integration
https://www.onelogin.com/blog/aws-session-tags-integration
https://www.onelogin.com/blog/aws-session-tags-integration
https://support.pingidentity.com/s/marketplace-integration-details?recordId=a7i1W0000004HBwQAM
https://support.pingidentity.com/s/document-item?bundleId=integrations&topicId=pon1571779451105.html
https://support.pingidentity.com/s/document-item?bundleId=integrations&topicId=pon1571779451105.html
http://www.radiantlogic.com/about/partners/technology-partners/

AWS Identity and Access Management User Guide
Identity providers and federation

Solution More information

RSA RSA Link is on online community that facilitates information
sharing and discussion. You can configure RSA to pass session
tags (p. 313). For more information, see Simplify Identity
Access and Assurance Decisions on AWS with RSA SecurID and
Session Tags.

Salesforce.com How to configure SSO from Salesforce to AWS – This how-to
article on the Salesforce.com developer site describes how to
set up an identity provider (IdP) in Salesforce and configure
AWS as a service provider.

SecureAuth AWS - SecureAuth SAML SSO – This article on the SecureAuth
website describes how to set up SAML integration with AWS
for a SecureAuth appliance.

Shibboleth How to Use Shibboleth for SSO to the AWS Management
Console – This entry on the AWS Security Blog provides
a step-by-step tutorial on how to set up Shibboleth and
configure it as an identity provider for AWS. You can configure
Shibboleth to pass session tags (p. 313).

For more details, see the IAM Partners page on the AWS website.

Configuring SAML assertions for the authentication response

In your organization, after a user's identity has been verified, the external identity provider (IdP) sends
an authentication response to the AWS SAML endpoint at https://signin.aws.amazon.com/saml.
This response is a POST request that includes a SAML token that adheres to the HTTP POST Binding for
SAML 2.0 standard and that contains the following elements, or claims. You configure these claims in
your SAML-compatible IdP. Refer to the documentation for your IdP for instructions on how to enter
these claims.

When the IdP sends the response containing the claims to AWS, many of the incoming claims map to
AWS context keys. These context keys can be checked in IAM policies using the Condition element. A
listing of the available mappings follows in the section Mapping SAML attributes to AWS trust policy
context keys (p. 207).

Subject and NameID

The following excerpt shows an example. Substitute your own values for the marked ones. There must
be exactly one SubjectConfirmation element with a SubjectConfirmationData element that
includes both the NotOnOrAfter attribute and a Recipient attribute. These attributes include a value
that must match the AWS endpoint (https://signin.aws.amazon.com/saml), as shown in the
following example. For information about the name identifier formats supported for single sign-on
interactions, see Oracle Sun OpenSSO Enterprise Administration Reference.

<Subject>
 <NameID Format="urn:oasis:names:tc:SAML:2.0:nameid-
format:persistent">_cbb88bf52c2510eabe00c1642d4643f41430fe25e3</NameID>
 <SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">
 <SubjectConfirmationData NotOnOrAfter="2013-11-05T02:06:42.876Z" Recipient="https://
signin.aws.amazon.com/saml"/>
 </SubjectConfirmation>
</Subject>

204

https://community.rsa.com/docs/DOC-101331
https://community.rsa.com/community/products/securid/blog/2019/11/25/simplify-identity-access-and-assurance-decisions-with-rsa-securid-and-session-tags-from-aws
https://community.rsa.com/community/products/securid/blog/2019/11/25/simplify-identity-access-and-assurance-decisions-with-rsa-securid-and-session-tags-from-aws
https://community.rsa.com/community/products/securid/blog/2019/11/25/simplify-identity-access-and-assurance-decisions-with-rsa-securid-and-session-tags-from-aws
https://developer.salesforce.com/page/Configuring-SAML-SSO-to-AWS
https://docs.secureauth.com/display/docs/Amazon+Web+Services+%28AWS%29+%28IdP-initiated%29+Integration+Guide
http://aws.amazon.com/blogs/security/how-to-use-shibboleth-for-single-sign-on-to-the-aws-management-console
http://aws.amazon.com/blogs/security/how-to-use-shibboleth-for-single-sign-on-to-the-aws-management-console
https://aws.amazon.com/iam/partners/
http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf
http://docs.oasis-open.org/security/saml/v2.0/saml-bindings-2.0-os.pdf
https://docs.oracle.com/cd/E19316-01/820-3886/ggwbz/index.html

AWS Identity and Access Management User Guide
Identity providers and federation

AudienceRestriction and Audience

For security reasons, AWS should be included as an audience in the SAML assertion your IdP sends to
AWS. For the value of the Audience element, specify either https://signin.aws.amazon.com/
saml or urn:amazon:webservices. The following sample XML snippets from SAML assertions show
how this key can be specified by the IdP. Include whichever sample applies to your use case.

<Conditions>
 <AudienceRestriction>
 <Audience>https://signin.aws.amazon.com/saml</Audience>
 </AudienceRestriction>
</Conditions>

<Conditions>
 <AudienceRestriction>
 <Audience>urn:amazon:webservices</Audience>
 </AudienceRestriction>
</Conditions>

Important
The SAML AudienceRestriction value in the SAML assertion from the IdP does not map to
the saml:aud context key that you can test in an IAM policy. Instead, the saml:aud context key
comes from the SAML recipient attribute because it is the SAML equivalent to the OIDC audience
field, for example, by accounts.google.com:aud.

SAML PrincipalTag Attribute

(Optional) You can use an Attribute element with the Name attribute set to https://
aws.amazon.com/SAML/Attributes/PrincipalTag:{TagKey}. This element allows you to pass
attributes as session tags in the SAML assertion. For more information about session tags, see Passing
session tags in AWS STS (p. 313).

To pass attributes as session tags, include the AttributeValue element that specifies the value of the
tag. For example, to pass the tag key-value pairs Project = Marketing and CostCenter = 12345, use
the following attribute. Include a separate Attribute element for each tag.

<Attribute Name="https://aws.amazon.com/SAML/Attributes/PrincipalTag:Project">
 <AttributeValue>Marketing</AttributeValue>
</Attribute>
<Attribute Name="https://aws.amazon.com/SAML/Attributes/PrincipalTag:CostCenter">
 <AttributeValue>12345</AttributeValue>
</Attribute>

To set the tags above as transitive, include another Attribute element with the Name attribute
set to https://aws.amazon.com/SAML/Attributes/TransitiveTagKeys. This is an optional
multivalued attribute that sets your session tags as transitive. Transitive tags persist when you use the
SAML session to assume another role in AWS. This is known as role chaining (p. 170). For example, to
set both the Principal and CostCenter tags as transitive, use the following attribute to specify the
keys.

<Attribute Name="https://aws.amazon.com/SAML/Attributes/TransitiveTagKeys">
 <AttributeValue>Project</AttributeValue>
 <AttributeValue>CostCenter</AttributeValue>
</Attribute>

SAML Role Attribute

You can use an Attribute element with the Name attribute set to https://aws.amazon.com/
SAML/Attributes/Role. This element contains one or more AttributeValue elements that list the

205

AWS Identity and Access Management User Guide
Identity providers and federation

IAM identity provider and role to which the user is mapped by your IdP. The IAM role and IAM identity
provider are specified as a comma-delimited pair of ARNs in the same format as the RoleArn and
PrincipalArn parameters that are passed to AssumeRoleWithSAML. This element must contain at
least one role-provider pair (AttributeValue element), and can contain multiple pairs. If the element
contains multiple pairs, then the user is asked to choose which role to assume when they use WebSSO to
sign into the AWS Management Console.

Important
The value of the Name attribute in the Attribute tag is case-sensitive. It must be set to
https://aws.amazon.com/SAML/Attributes/Role exactly.

<Attribute Name="https://aws.amazon.com/SAML/Attributes/Role">
 <AttributeValue>arn:aws:iam::account-number:role/role-name1,arn:aws:iam::account-
number:saml-provider/provider-name</AttributeValue>
 <AttributeValue>arn:aws:iam::account-number:role/role-name2,arn:aws:iam::account-
number:saml-provider/provider-name</AttributeValue>
 <AttributeValue>arn:aws:iam::account-number:role/role-name3,arn:aws:iam::account-
number:saml-provider/provider-name</AttributeValue>
</Attribute>

SAML RoleSessionName Attribute

You can use an Attribute element with the Name attribute set to https://aws.amazon.com/SAML/
Attributes/RoleSessionName. This element contains one AttributeValue element that provides
an identifier for the temporary credentials that are issued when the role is assumed. You can use this to
associate the temporary credentials with the user who is using your application. This element is used to
display user information in the AWS Management Console. The value in the AttributeValue element
must be between 2 and 64 characters long, can contain only alphanumeric characters, underscores, and
the following characters: . , + = @ - (hyphen). It cannot contain spaces. The value is typically a user ID
(johndoe) or an email address (johndoe@example.com). It should not be a value that includes a space,
like a user's display name (John Doe).

Important
The value of the Name attribute in the Attribute tag is case-sensitive. It must be set to
https://aws.amazon.com/SAML/Attributes/RoleSessionName exactly.

<Attribute Name="https://aws.amazon.com/SAML/Attributes/RoleSessionName">
 <AttributeValue>user-id-name</AttributeValue>
</Attribute>

SAML SessionDuration Attribute

(Optional) You can use an Attribute element with the Name attribute set to https://
aws.amazon.com/SAML/Attributes/SessionDuration". This element contains one
AttributeValue element that specifies how long the user can access the AWS Management Console
before having to request new temporary credentials. The value is an integer representing the number
of seconds for the session. The value can range from 900 seconds (15 minutes) to 43200 seconds (12
hours). If this attribute is not present, then the credential last for one hour (the default value of the
DurationSeconds parameter of the AssumeRoleWithSAML API).

To use this attribute, you must configure the SAML provider to provide single sign-on access
to the AWS Management Console through the console sign-in web endpoint at https://
signin.aws.amazon.com/saml. Note that this attribute extends sessions only to the AWS
Management Console. It cannot extend the lifetime of other credentials. However, if it is present in
an AssumeRoleWithSAML API call, it can be used to shorten the duration of the session. The default
lifetime of the credentials returned by the call is 60 minutes.

Note, too, that if a SessionNotOnOrAfter attribute is also defined, then the lesser value of the two
attributes, SessionDuration or SessionNotOnOrAfter, establishes the maximum duration of the
console session.

206

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithSAML.html

AWS Identity and Access Management User Guide
Identity providers and federation

When you enable console sessions with an extended duration the risk of compromise of the credentials
rises. To help you mitigate this risk, you can immediately disable the active console sessions for any role
by choosing Revoke Sessions on the Role Summary page in the IAM console. For more information, see
Revoking IAM role temporary security credentials (p. 277).

Important
The value of the Name attribute in the Attribute tag is case-sensitive. It must be set to
https://aws.amazon.com/SAML/Attributes/SessionDuration exactly.

<Attribute Name="https://aws.amazon.com/SAML/Attributes/SessionDuration">
 <AttributeValue>1800</AttributeValue>
</Attribute>

SAML SourceIdentity Attribute

(Optional) You can use an Attribute element with the Name attribute set to https://
aws.amazon.com/SAML/Attributes/SourceIdentity. This element contains one
AttributeValue element that provides an identifier for the person or application that is using an IAM
role. The value for source identity persists when you use the SAML session to assume another role in
AWS known as role chaining (p. 170). The value for source identity is present in the request for every
action taken during the role session. The value that is set cannot be changed during the role session.
Administrators can then use AWS CloudTrail logs to monitor and audit the source identity information to
determine who performed actions with shared roles.

The value in the AttributeValue element must be between 2 and 64 characters long, can contain
only alphanumeric characters, underscores, and the following characters: . , + = @ - (hyphen). It cannot
contain spaces. The value is typically an attribute that is associated with the user such as a user id
(johndoe) or an email address (johndoe@example.com). It should not be a value that includes a space,
like a user's display name (John Doe). For more information about using source identity, see Monitor
and control actions taken with assumed roles (p. 340).

Important
If your SAML assertion is configured to use the SourceIdentity (p. 207) attribute, then
your role trust policy must also include the sts:SetSourceIdentity action, otherwise the
assume role operation will fail. For more information about using source identity, see Monitor
and control actions taken with assumed roles (p. 340).

To pass a source identity attribute, include the AttributeValue element that specifies the value of the
source identity. For example, to pass the source identity DiegoRamirez use the following attribute.

<Attribute Name="https://aws.amazon.com/SAML/Attributes/SourceIdentity">
 <AttributeValue>DiegoRamirez</AttributeValue>

Mapping SAML attributes to AWS trust policy context keys

The tables in this section list commonly used SAML attributes and how they map to trust policy
condition context keys in AWS. You can use these keys to control access to a role. To do that, compare
the keys to the values that are included in the assertions that accompany a SAML access request.

Important
These keys are available only in IAM trust policies (policies that determine who can assume a
role) and are not applicable to permissions policies.

In the eduPerson and eduOrg attributes table, values are typed either as strings or as lists of strings.
For string values, you can test these values in IAM trust policies using StringEquals or StringLike
conditions. For values that contain a list of strings, you can use the ForAnyValue and ForAllValues
policy set operators (p. 769) to test the values in trust policies.

207

AWS Identity and Access Management User Guide
Identity providers and federation

Note
You should include only one claim per AWS context key. If you include more than one, only one
claim will be mapped.

eduPerson and eduOrg attributes

eduPerson or eduOrg attribute (Name key) Maps to this AWS context
key (FriendlyName key)

Type

urn:oid:1.3.6.1.4.1.5923.1.1.1.1 eduPersonAffiliation List of strings

urn:oid:1.3.6.1.4.1.5923.1.1.1.2 eduPersonNickname List of strings

urn:oid:1.3.6.1.4.1.5923.1.1.1.3 eduPersonOrgDN String

urn:oid:1.3.6.1.4.1.5923.1.1.1.4 eduPersonOrgUnitDN List of strings

urn:oid:1.3.6.1.4.1.5923.1.1.1.5 eduPersonPrimaryAffiliationString

urn:oid:1.3.6.1.4.1.5923.1.1.1.6 eduPersonPrincipalNameString

urn:oid:1.3.6.1.4.1.5923.1.1.1.7 eduPersonEntitlement List of strings

urn:oid:1.3.6.1.4.1.5923.1.1.1.8 eduPersonPrimaryOrgUnitDNString

urn:oid:1.3.6.1.4.1.5923.1.1.1.9 eduPersonScopedAffiliationList of strings

urn:oid:1.3.6.1.4.1.5923.1.1.1.10 eduPersonTargetedID List of strings

urn:oid:1.3.6.1.4.1.5923.1.1.1.11 eduPersonAssurance List of strings

urn:oid:1.3.6.1.4.1.5923.1.2.1.2 eduOrgHomePageURI List of strings

urn:oid:1.3.6.1.4.1.5923.1.2.1.3 eduOrgIdentityAuthNPolicyURIList of strings

urn:oid:1.3.6.1.4.1.5923.1.2.1.4 eduOrgLegalName List of strings

urn:oid:1.3.6.1.4.1.5923.1.2.1.5 eduOrgSuperiorURI List of strings

urn:oid:1.3.6.1.4.1.5923.1.2.1.6 eduOrgWhitePagesURI List of strings

urn:oid:2.5.4.3 cn List of strings

Active Directory attributes

AD attribute Maps to this AWS
context key

Type

http://schemas.xmlsoap.org/ws/2005/05/
identity/claims/name

name String

http://schemas.xmlsoap.org/claims/
CommonName

commonName String

http://schemas.xmlsoap.org/ws/2005/05/
identity/claims/givenname

givenName String

http://schemas.xmlsoap.org/ws/2005/05/
identity/claims/surname

surname String

208

AWS Identity and Access Management User Guide
Identity providers and federation

AD attribute Maps to this AWS
context key

Type

http://schemas.xmlsoap.org/ws/2005/05/
identity/claims/emailaddress

mail String

http://schemas.microsoft.com/ws/2008/06/
identity/claims/primarygroupsid

uid String

X.500 attributes

X.500 attribute Maps to this AWS context key Type

2.5.4.3 commonName String

2.5.4.4 surname String

2.4.5.42 givenName String

2.5.4.45 x500UniqueIdentifier String

0.9.2342.19200300100.1.1 uid String

0.9.2342.19200300100.1.3 mail String

0.9.2342.19200300.100.1.45 organizationStatus String

Enabling SAML 2.0 federated users to access the AWS
Management Console

You can use a role to configure your SAML 2.0-compliant identity provider (IdP) and AWS to permit your
federated users to access the AWS Management Console. The role grants the user permissions to carry
out tasks in the console. If you want to give SAML federated users other ways to access AWS, see one of
these topics:

• AWS CLI: Switching to an IAM role (AWS CLI) (p. 262)

• Tools for Windows PowerShell: Switching to an IAM role (Tools for Windows PowerShell) (p. 266)

• AWS API: Switching to an IAM role (AWS API) (p. 268)

Overview

The following diagram illustrates the flow for SAML-enabled single sign-on.

Note
This specific use of SAML differs from the more general one illustrated at About SAML 2.0-
based federation (p. 183) because this workflow opens the AWS Management Console on
behalf of the user. This requires the use of the AWS SSO endpoint instead of directly calling
the AssumeRoleWithSAML API. The endpoint calls the API for the user and returns a URL that
automatically redirects the user's browser to the AWS Management Console.

209

AWS Identity and Access Management User Guide
Identity providers and federation

The diagram illustrates the following steps:

1. The user browses to your organization's portal and selects the option to go to the AWS Management
Console. In your organization, the portal is typically a function of your IdP that handles the exchange
of trust between your organization and AWS. For example, in Active Directory Federation Services, the
portal URL is: https://ADFSServiceName/adfs/ls/IdpInitiatedSignOn.aspx

2. The portal verifies the user's identity in your organization.
3. The portal generates a SAML authentication response that includes assertions that identify the user

and include attributes about the user. You can also configure your IdP to include a SAML assertion
attribute called SessionDuration that specifies how long the console session is valid. You can also
configure the IdP to pass attributes as session tags (p. 313). The portal sends this response to the
client browser.

4. The client browser is redirected to the AWS single sign-on endpoint and posts the SAML assertion.
5. The endpoint requests temporary security credentials on behalf of the user and creates a console sign-

in URL that uses those credentials.
6. AWS sends the sign-in URL back to the client as a redirect.
7. The client browser is redirected to the AWS Management Console. If the SAML authentication

response includes attributes that map to multiple IAM roles, the user is first prompted to select the
role for accessing the console.

From the user's perspective, the process happens transparently: The user starts at your organization's
internal portal and ends up at the AWS Management Console, without ever having to supply any AWS
credentials.

Consult the following sections for an overview of how to configure this behavior along with links to
detailed steps.

Configure your network as a SAML provider for AWS

Inside your organization's network, you configure your identity store (such as Windows Active Directory)
to work with a SAML-based IdP like Windows Active Directory Federation Services, Shibboleth, etc.
Using your IdP, you generate a metadata document that describes your organization as an IdP and
includes authentication keys. You also configure your organization's portal to route user requests for
the AWS Management Console to the AWS SAML endpoint for authentication using SAML assertions.
How you configure your IdP to produce the metadata.xml file depends on your IdP. Refer to your
IdP's documentation for instructions, or see Integrating third-party SAML solution providers with
AWS (p. 202) for links to the web documentation for many of the SAML providers supported.

210

AWS Identity and Access Management User Guide
Identity providers and federation

Create a SAML provider in IAM

Next, you sign in to the AWS Management Console and go to the IAM console. There you create a new
SAML provider, which is an entity in IAM that holds information about your organization's IdP. As part of
this process, you upload the metadata document produced by the IdP software in your organization in
the previous section. For details, see Creating IAM SAML identity providers (p. 197).

Configure permissions in AWS for your federated users

The next step is to create an IAM role that establishes a trust relationship between IAM and your
organization's IdP. This role must identify your IdP as a principal (trusted entity) for purposes of
federation. The role also defines what users authenticated by your organization's IdP are allowed to do in
AWS. You can use the IAM console to create this role. When you create the trust policy that indicates who
can assume the role, you specify the SAML provider that you created earlier in IAM. You also specify one
or more SAML attributes that a user must match to be allowed to assume the role. For example, you can
specify that only users whose SAML eduPersonOrgDN value is ExampleOrg are allowed to sign in. The
role wizard automatically adds a condition to test the saml:aud attribute to make sure that the role is
assumed only for sign-in to the AWS Management Console. The trust policy for the role might look like
this:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Principal": {"Federated": "arn:aws:iam::ACCOUNT-ID-WITHOUT-HYPHENS:saml-provider/
ExampleOrgSSOProvider"},
 "Action": "sts:AssumeRoleWithSAML",
 "Condition": {"StringEquals": {
 "saml:edupersonorgdn": "ExampleOrg",
 "saml:aud": "https://signin.aws.amazon.com/saml"
 }}
 }]
}

For the permission policy (p. 381) in the role, you specify permissions as you would for any role, user,
or group. For example, if users from your organization are allowed to administer Amazon EC2 instances,
you explicitly allow Amazon EC2 actions in the permission policy. You can do this by assigning a managed
policy (p. 484), such as the Amazon EC2 Full Access managed policy.

For details about creating a role for a SAML IdP, see Creating a role for SAML 2.0 federation
(console) (p. 247).

Finish configuration and create SAML assertions

After you create the role, inform your SAML IdP about AWS as a service provider by installing the saml-
metadata.xml file found at https://signin.aws.amazon.com/static/saml-metadata.xml. How you install
that file depends on your IdP. Some providers give you the option to type the URL, whereupon the IdP
gets and installs the file for you. Others require you to download the file from the URL and then provide
it as a local file. Refer to your IdP documentation for details, or see Integrating third-party SAML solution
providers with AWS (p. 202) for links to the web documentation for many of the supported SAML
providers.

You also configure the information that you want the IdP to pass as SAML attributes to AWS as part of
the authentication response. Most of this information appears in AWS as condition context keys that you
can evaluate in your policies. These condition keys ensure that only authorized users in the right contexts
are granted permissions to access your AWS resources. You can specify time windows that restrict when
the console may be used. You can also specify the maximum time (up to 12 hours) that users can access
the console before having to refresh their credentials. For details, see Configuring SAML assertions for
the authentication response (p. 204).

211

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_iam-condition-keys.html#ck_edupersonorgdn
https://signin.aws.amazon.com/static/saml-metadata.xml

AWS Identity and Access Management User Guide
Identity providers and federation

Enabling custom identity broker access to the AWS console

You can write and run code to create a URL that lets users who sign in to your organization's network
securely access the AWS Management Console. The URL includes a sign-in token that you get from AWS
and that authenticates the user to AWS.

Note
If your organization uses an identity provider (IdP) that is compatible with SAML, you can set
up access to the console without writing code. This works with providers like Microsoft's Active
Directory Federation Services or open-source Shibboleth. For details, see Enabling SAML 2.0
federated users to access the AWS Management Console (p. 209).

To enable your organization's users to access the AWS Management Console, you can create a custom
identity broker that performs the following steps:

1. Verify that the user is authenticated by your local identity system.

2. Call the AWS Security Token Service (AWS STS) AssumeRole (recommended) or GetFederationToken
API operations to obtain temporary security credentials for the user. To learn about the different
methods that you can use to assume a role, see Using IAM roles (p. 253). To learn how to pass
optional session tags when you obtain your security credentials, see Passing session tags in AWS
STS (p. 313).

• If you use one of the AssumeRole* API operations to get the temporary security credentials for a
role, you can include the DurationSeconds parameter in your call. This parameter specifies the
duration of your role session, from 900 seconds (15 minutes) up to the maximum session duration
setting for the role. When you use DurationSeconds in an AssumeRole* operation, you must call
it as an IAM user with long-term credentials. Otherwise, the call to the federation endpoint in step 3
fails. To learn how to view or change the maximum value for a role, see View the maximum session
duration setting for a role (p. 254).

• If you use the GetFederationToken API operation to get the credentials, you can include the
DurationSeconds parameter in your call. This parameter specifies the duration of your role
session. The value can range from 900 seconds (15 minutes) to 129,600 seconds (36 hours). You can
make this API call only by using the long-term AWS security credentials of an IAM user. You can also
make these calls using AWS account root user credentials, but we do not recommend it. If you make
this call as the root user, the default session lasts for one hour. Or you can specify a session from
900 seconds (15 minutes) up to 3,600 seconds (one hour).

3. Call the AWS federation endpoint and supply the temporary security credentials to request a sign-in
token.

4. Construct a URL for the console that includes the token:

• If you use one of the AssumeRole* API operations in your URL, you can include the
SessionDuration HTTP parameter. This parameter specifies the duration of the console session,
from 900 seconds (15 minutes) to 43200 seconds (12 hours).

• If you use the GetFederationToken API operation in your URL, you can include the
DurationSeconds parameter. This parameter specifies the duration of the federated console
session. The value can range from 900 seconds (15 minutes) to 129,600 seconds (36 hours).

Note
Do not use the SessionDuration HTTP parameter if you got the temporary credentials
with GetFederationToken. Doing so will cause the operation to fail.

5. Give the URL to the user or invoke the URL on the user's behalf.

The URL that the federation endpoint provides is valid for 15 minutes after it is created. This differs from
the duration (in seconds) of the temporary security credential session that is associated with the URL.
Those credentials are valid for the duration you specified when you created them, starting from the time
they were created.

212

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html

AWS Identity and Access Management User Guide
Identity providers and federation

Important
The URL grants access to your AWS resources through the AWS Management Console if you
have enabled permissions in the associated temporary security credentials. For this reason, you
should treat the URL as a secret. We recommend returning the URL through a secure redirect,
for example, by using a 302 HTTP response status code over an SSL connection. For more
information about the 302 HTTP response status code, go to RFC 2616, section 10.3.3.

To view a sample application that shows you how you can implement a single sign-on solution, go to
AWS Management Console federation proxy sample use case in the AWS Sample Code & Libraries.

To complete these tasks, you can use the HTTPS Query API for AWS Identity and Access Management
(IAM) and the AWS Security Token Service (AWS STS). Or, you can use programming languages, such
as Java, Ruby, or C#, along with the appropriate AWS SDK. Each of these methods is described in the
following sections.

Topics

• Example code using IAM query API operations (p. 213)

• Example code using Python (p. 215)

• Example code using Java (p. 216)

• Example showing how to construct the URL (Ruby) (p. 218)

Example code using IAM query API operations

You can construct a URL that gives your federated users direct access to the AWS Management Console.
This task uses the IAM and AWS STS HTTPS Query API. For more information about making query
requests, see Making Query Requests.

Note
The following procedure contains examples of text strings. To enhance readability, line breaks
have been added to some of the longer examples. When you create these strings for your own
use, you should omit any line breaks.

To give a federated user access to your resources from the AWS Management Console

1. Authenticate the user in your identity and authorization system.

2. Obtain temporary security credentials for the user. The temporary credentials consist of an access
key ID, a secret access key, and a security token. For more information about creating temporary
credentials, see Temporary security credentials in IAM (p. 322).

To get temporary credentials, you call either the AWS STS AssumeRole API (recommended) or the
GetFederationToken API. For more information about the differences between these API operations,
see Understanding the API Options for Securely Delegating Access to Your AWS Account in the AWS
Security Blog.

Important
When you use the GetFederationToken API to create temporary security credentials, you
must specify the permissions that the credentials grant to the user who assumes the
role. For any of the API operations that begin with AssumeRole*, you use an IAM role to
assign permissions. For the other API operations, the mechanism varies with the API. For
more details, see Controlling permissions for temporary security credentials (p. 337).
Additionally, if you use the AssumeRole* API operations, you must call them as an IAM
user with long-term credentials. Otherwise, the call to the federation endpoint in step 3
fails.

3. After you obtain the temporary security credentials, build them into a JSON session string to
exchange them for a sign-in token. The following example shows how to encode the credentials. You

213

https://tools.ietf.org/html/rfc2616#section-10.3.3
https://aws.amazon.com/code/4001165270590826
https://docs.aws.amazon.com/IAM/latest/APIReference/
https://docs.aws.amazon.com/IAM/latest/APIReference/
https://docs.aws.amazon.com/STS/latest/APIReference/
https://aws.amazon.com/tools/
https://docs.aws.amazon.com/IAM/latest/UserGuide/IAM_UsingQueryAPI.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html
http://aws.amazon.com/blogs/security/understanding-the-api-options-for-securely-delegating-access-to-your-aws-account
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html

AWS Identity and Access Management User Guide
Identity providers and federation

replace the placeholder text with the appropriate values from the credentials that you receive in the
previous step.

{"sessionId":"*** temporary access key ID ***",
"sessionKey":"*** temporary secret access key ***",
"sessionToken":"*** security token ***"}

4. URL encode the session string from the previous step. Because the information that you are
encoding is sensitive, we recommend that you avoid using a web service for this encoding. Instead,
use a locally installed function or feature in your development toolkit to securely encode this
information. You can use the urllib.quote_plus function in Python, the URLEncoder.encode
function in Java, or the CGI.escape function in Ruby. See the examples later in this topic.

5. Send your request to the AWS federation endpoint at the following address:

https://signin.aws.amazon.com/federation

The request must include the Action and Session parameters, and (optionally) if you used an
AssumeRole* API operation, a SessionDuration HTTP parameter as shown in the following
example.

Action = getSigninToken
SessionDuration = time in seconds
Session = *** the URL encoded JSON string created in steps 3 & 4 ***

The SessionDuration HTTP parameter specifies the duration of the console session.
This is separate from the duration of the temporary credentials that you specify using the
DurationSeconds parameter. You can specify a SessionDuration maximum value of 43,200 (12
hours). If the SessionDuration parameter is missing, then the session defaults to the duration
of the credentials that you retrieved from AWS STS in step 2 (which defaults to one hour). See
the documentation for the AssumeRole API for details about how to specify a duration using the
DurationSeconds parameter. The ability to create a console session that is longer than one hour is
intrinsic to the getSigninToken operation of the federation endpoint.

Note
Do not use the SessionDuration HTTP parameter if you got the temporary credentials
with GetFederationToken. Doing so will cause the operation to fail.

When you enable console sessions with an extended duration, you increase the risk of credential
exposure. To help you mitigate this risk, you can immediately disable the active console sessions
for any role by choosing Revoke Sessions on the Role Summary IAM console page. For more
information, see Revoking IAM role temporary security credentials (p. 277).

The following is an example of what your request might look like. The lines are wrapped here for
readability, but you should submit it as a one-line string.

https://signin.aws.amazon.com/federation
?Action=getSigninToken
&SessionDuration=1800
&Session=%7B%22sessionId%22%3A+%22ASIAJUMHIZPTOKTBMK5A%22%2C+%22sessionKey%22
%3A+%22LSD7LWI%2FL%2FN%2BgYpan5QFz0XUpc8s7HYjRsgcsrsm%22%2C+%22sessionToken%2
2%3A+%22FQoDYXdzEBQaDLbj3VWv2u50NN%2F3yyLSASwYtWhPnGPMNmzZFfZsL0Qd3vtYHw5A5dW
AjOsrkdPkghomIe3mJip5%2F0djDBbo7SmO%2FENDEiCdpsQKodTpleKA8xQq0CwFg6a69xdEBQT8
FipATnLbKoyS4b%2FebhnsTUjZZQWp0wXXqFF7gSm%2FMe2tXe0jzsdP0O12obez9lijPSdF1k2b5
PfGhiuyAR9aD5%2BubM0pY86fKex1qsytjvyTbZ9nXe6DvxVDcnCOhOGETJ7XFkSFdH0v%2FYR25C
UAhJ3nXIkIbG7Ucv9cOEpCf%2Fg23ijRgILIBQ%3D%3D%22%7D

The response from the federation endpoint is a JSON document with a SigninToken value. It will
look similar to the following example.

214

https://en.wikipedia.org/wiki/Percent-encoding
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

AWS Identity and Access Management User Guide
Identity providers and federation

{"SigninToken":"*** the SigninToken string ***"}

6. Finally, create the URL that your federated users can use to access the AWS Management Console.
The URL is the same federation URL endpoint that you used in Step 5 (p. 214), plus the following
parameters:

?Action = login
&Issuer = *** the form-urlencoded URL for your internal sign-in page ***
&Destination = *** the form-urlencoded URL to the desired AWS console page ***
&SigninToken = *** the value of SigninToken received in the previous step ***

The following example shows what the final URL might look like. The URL is valid for 15 minutes
from the time it is created. The temporary security credentials and console session embedded within
the URL are valid for the duration you specify in the SessionDuration HTTP parameter when you
initially request them.

https://signin.aws.amazon.com/federation
?Action=login
&Issuer=https%3A%2F%2Fexample.com
&Destination=https%3A%2F%2Fconsole.aws.amazon.com%2F
&SigninToken=VCQgs5qZZt3Q6fn8Tr5EXAMPLEmLnwB7JjUc-SHwnUUWabcRdnWsi4DBn-dvC
CZ85wrD0nmldUcZEXAMPLE-vXYH4Q__mleuF_W2BE5HYexbe9y4Of-kje53SsjNNecATfjIzpW1
WibbnH6YcYRiBoffZBGExbEXAMPLE5aiKX4THWjQKC6gg6alHu6JFrnOJoK3dtP6I9a6hi6yPgm
iOkPZMmNGmhsvVxetKzr8mx3pxhHbMEXAMPLETv1pij0rok3IyCR2YVcIjqwfWv32HU2Xlj471u
3fU6uOfUComeKiqTGX974xzJOZbdmX_t_lLrhEXAMPLEDDIisSnyHGw2xaZZqudm4mo2uTDk9Pv
9l5K0ZCqIgEXAMPLEcA6tgLPykEWGUyH6BdSC6166n4M4JkXIQgac7_7821YqixsNxZ6rsrpzwf
nQoS14O7R0eJCCJ684EXAMPLEZRdBNnuLbUYpz2Iw3vIN0tQgOujwnwydPscM9F7foaEK3jwMkg
Apeb1-6L_OB12MZhuFxx55555EXAMPLEhyETEd4ZulKPdXHkgl6T9ZkIlHz2Uy1RUTUhhUxNtSQ
nWc5xkbBoEcXqpoSIeK7yhje9Vzhd61AEXAMPLElbWeouACEMG6-Vd3dAgFYd6i5FYoyFrZLWvm
0LSG7RyYKeYN5VIzUk3YWQpyjP0RiT5KUrsUi-NEXAMPLExMOMdoODBEgKQsk-iu2ozh6r8bxwC
RNhujg

Example code using Python

The following example shows how to use Python to programmatically construct a URL that gives
federated users direct access to the AWS Management Console. The example uses the AWS SDK for
Python (Boto3).

The code uses the AssumeRole API to obtain temporary security credentials.

import urllib, json, sys
import requests # 'pip install requests'
import boto3 # AWS SDK for Python (Boto3) 'pip install boto3'

Step 1: Authenticate user in your own identity system.

Step 2: Using the access keys for an IAM user in your AWS account,
call "AssumeRole" to get temporary access keys for the federated user

Note: Calls to AWS STS AssumeRole must be signed using the access key ID
and secret access key of an IAM user or using existing temporary credentials.
The credentials can be in EC2 instance metadata, in environment variables,
or in a configuration file, and will be discovered automatically by the
client('sts') function. For more information, see the Python SDK docs:
http://boto3.readthedocs.io/en/latest/reference/services/sts.html
http://boto3.readthedocs.io/en/latest/reference/services/sts.html#STS.Client.assume_role
sts_connection = boto3.client('sts')

assumed_role_object = sts_connection.assume_role(

215

https://aws.amazon.com/tools/
https://aws.amazon.com/tools/
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

AWS Identity and Access Management User Guide
Identity providers and federation

 RoleArn="arn:aws:iam::ACCOUNT-ID-WITHOUT-HYPHENS:role/ROLE-NAME",
 RoleSessionName="AssumeRoleSession",
)

Step 3: Format resulting temporary credentials into JSON
url_credentials = {}
url_credentials['sessionId'] = assumed_role_object.get('Credentials').get('AccessKeyId')
url_credentials['sessionKey'] =
 assumed_role_object.get('Credentials').get('SecretAccessKey')
url_credentials['sessionToken'] =
 assumed_role_object.get('Credentials').get('SessionToken')
json_string_with_temp_credentials = json.dumps(url_credentials)

Step 4. Make request to AWS federation endpoint to get sign-in token. Construct the
 parameter string with
the sign-in action request, a 12-hour session duration, and the JSON document with
 temporary credentials
as parameters.
request_parameters = "?Action=getSigninToken"
request_parameters += "&SessionDuration=43200"
if sys.version_info[0] < 3:
 def quote_plus_function(s):
 return urllib.quote_plus(s)
else:
 def quote_plus_function(s):
 return urllib.parse.quote_plus(s)
request_parameters += "&Session=" + quote_plus_function(json_string_with_temp_credentials)
request_url = "https://signin.aws.amazon.com/federation" + request_parameters
r = requests.get(request_url)
Returns a JSON document with a single element named SigninToken.
signin_token = json.loads(r.text)

Step 5: Create URL where users can use the sign-in token to sign in to
the console. This URL must be used within 15 minutes after the
sign-in token was issued.
request_parameters = "?Action=login"
request_parameters += "&Issuer=Example.org"
request_parameters += "&Destination=" + quote_plus_function("https://
console.aws.amazon.com/")
request_parameters += "&SigninToken=" + signin_token["SigninToken"]
request_url = "https://signin.aws.amazon.com/federation" + request_parameters

Send final URL to stdout
print (request_url)

Example code using Java

The following example shows how to use Java to programmatically construct a URL that gives federated
users direct access to the AWS Management Console. The following code snippet uses the AWS SDK for
Java.

import java.net.URLEncoder;
import java.net.URL;
import java.net.URLConnection;
import java.io.BufferedReader;
import java.io.InputStreamReader;
// Available at http://www.json.org/java/index.html
import org.json.JSONObject;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.services.securitytoken.AWSSecurityTokenServiceClient;
import com.amazonaws.services.securitytoken.model.Credentials;
import com.amazonaws.services.securitytoken.model.GetFederationTokenRequest;
import com.amazonaws.services.securitytoken.model.GetFederationTokenResult;

216

http://aws.amazon.com/documentation/sdkforjava/
http://aws.amazon.com/documentation/sdkforjava/

AWS Identity and Access Management User Guide
Identity providers and federation

/* Calls to AWS STS API operations must be signed using the access key ID
 and secret access key of an IAM user or using existing temporary
 credentials. The credentials should not be embedded in code. For
 this example, the code looks for the credentials in a
 standard configuration file.
*/
AWSCredentials credentials =
 new PropertiesCredentials(
 AwsConsoleApp.class.getResourceAsStream("AwsCredentials.properties"));

AWSSecurityTokenServiceClient stsClient =
 new AWSSecurityTokenServiceClient(credentials);

GetFederationTokenRequest getFederationTokenRequest =
 new GetFederationTokenRequest();
getFederationTokenRequest.setDurationSeconds(1800);
getFederationTokenRequest.setName("UserName");

// A sample policy for accessing Amazon Simple Notification Service (Amazon SNS) in the
 console.

String policy = "{\"Version\":\"2012-10-17\",\"Statement\":[{\"Action\":\"sns:*\"," +
 "\"Effect\":\"Allow\",\"Resource\":\"*\"}]}";

getFederationTokenRequest.setPolicy(policy);

GetFederationTokenResult federationTokenResult =
 stsClient.getFederationToken(getFederationTokenRequest);

Credentials federatedCredentials = federationTokenResult.getCredentials();

// The issuer parameter specifies your internal sign-in
// page, for example https://mysignin.internal.mycompany.com/.
// The console parameter specifies the URL to the destination console of the
// AWS Management Console. This example goes to Amazon SNS.
// The signin parameter is the URL to send the request to.

String issuerURL = "https://mysignin.internal.mycompany.com/";
String consoleURL = "https://console.aws.amazon.com/sns";
String signInURL = "https://signin.aws.amazon.com/federation";

// Create the sign-in token using temporary credentials,
// including the access key ID, secret access key, and security token.
String sessionJson = String.format(
 "{\"%1$s\":\"%2$s\",\"%3$s\":\"%4$s\",\"%5$s\":\"%6$s\"}",
 "sessionId", federatedCredentials.getAccessKeyId(),
 "sessionKey", federatedCredentials.getSecretAccessKey(),
 "sessionToken", federatedCredentials.getSessionToken());

// Construct the sign-in request with the request sign-in token action, a
// 12-hour console session duration, and the JSON document with temporary
// credentials as parameters.

String getSigninTokenURL = signInURL +
 "?Action=getSigninToken" +
 "&DurationSeconds=43200" +
 "&SessionType=json&Session=" +
 URLEncoder.encode(sessionJson,"UTF-8");

URL url = new URL(getSigninTokenURL);

// Send the request to the AWS federation endpoint to get the sign-in token
URLConnection conn = url.openConnection ();

217

AWS Identity and Access Management User Guide
Identity providers and federation

BufferedReader bufferReader = new BufferedReader(new
 InputStreamReader(conn.getInputStream()));
String returnContent = bufferReader.readLine();

String signinToken = new JSONObject(returnContent).getString("SigninToken");

String signinTokenParameter = "&SigninToken=" + URLEncoder.encode(signinToken,"UTF-8");

// The issuer parameter is optional, but recommended. Use it to direct users
// to your sign-in page when their session expires.

String issuerParameter = "&Issuer=" + URLEncoder.encode(issuerURL, "UTF-8");

// Finally, present the completed URL for the AWS console session to the user

String destinationParameter = "&Destination=" + URLEncoder.encode(consoleURL,"UTF-8");
String loginURL = signInURL + "?Action=login" +
 signinTokenParameter + issuerParameter + destinationParameter;

Example showing how to construct the URL (Ruby)

The following example shows how to use Ruby to programmatically construct a URL that gives federated
users direct access to the AWS Management Console. This code snippet uses the AWS SDK for Ruby.

require 'rubygems'
require 'json'
require 'open-uri'
require 'cgi'
require 'aws-sdk'

Create a new STS instance

Note: Calls to AWS STS API operations must be signed using an access key ID
and secret access key. The credentials can be in EC2 instance metadata
or in environment variables and will be automatically discovered by
the default credentials provider in the AWS Ruby SDK.
sts = Aws::STS::Client.new()

The following call creates a temporary session that returns
temporary security credentials and a session token.
The policy grants permissions to work
in the AWS SNS console.

session = sts.get_federation_token({
 duration_seconds: 1800,
 name: "UserName",
 policy: "{\"Version\":\"2012-10-17\",\"Statement\":{\"Effect\":\"Allow\",\"Action\":
\"sns:*\",\"Resource\":\"*\"}}",
})

The issuer value is the URL where users are directed (such as
to your internal sign-in page) when their session expires.
#
The console value specifies the URL to the destination console.
This example goes to the Amazon SNS console.
#
The sign-in value is the URL of the AWS STS federation endpoint.
issuer_url = "https://mysignin.internal.mycompany.com/"
console_url = "https://console.aws.amazon.com/sns"
signin_url = "https://signin.aws.amazon.com/federation"

Create a block of JSON that contains the temporary credentials
(including the access key ID, secret access key, and session token).
session_json = {

218

http://aws.amazon.com/documentation/sdkforruby/

AWS Identity and Access Management User Guide
Service-linked roles

 :sessionId => session.credentials[:access_key_id],
 :sessionKey => session.credentials[:secret_access_key],
 :sessionToken => session.credentials[:session_token]
}.to_json

Call the federation endpoint, passing the parameters
created earlier and the session information as a JSON block.
The request returns a sign-in token that's valid for 15 minutes.
Signing in to the console with the token creates a session
that is valid for 12 hours.
get_signin_token_url = signin_url +
 "?Action=getSigninToken" +
 "&SessionType=json&Session=" +
 CGI.escape(session_json)

returned_content = URI.parse(get_signin_token_url).read

Extract the sign-in token from the information returned
by the federation endpoint.
signin_token = JSON.parse(returned_content)['SigninToken']
signin_token_param = "&SigninToken=" + CGI.escape(signin_token)

Create the URL to give to the user, which includes the
sign-in token and the URL of the console to open.
The "issuer" parameter is optional but recommended.
issuer_param = "&Issuer=" + CGI.escape(issuer_url)
destination_param = "&Destination=" + CGI.escape(console_url)
login_url = signin_url + "?Action=login" + signin_token_param +
 issuer_param + destination_param

Using service-linked roles
A service-linked role is a unique type of IAM role that is linked directly to an AWS service. Service-
linked roles are predefined by the service and include all the permissions that the service requires to call
other AWS services on your behalf. The linked service also defines how you create, modify, and delete a
service-linked role. A service might automatically create or delete the role. It might allow you to create,
modify, or delete the role as part of a wizard or process in the service. Or it might require that you use
IAM to create or delete the role. Regardless of the method, service-linked roles make setting up a service
easier because you don't have to manually add the necessary permissions for the service to complete
actions on your behalf.

The linked service defines the permissions of its service-linked roles, and unless defined otherwise, only
that service can assume the roles. The defined permissions include the trust policy and the permissions
policy, and that permissions policy cannot be attached to any other IAM entity.

You can delete the roles only after first deleting their related resources. This protects your resources
because you can't inadvertently remove permission to access the resources.

Tip
For information about which services support using service-linked roles, see AWS services that
work with IAM (p. 725) and look for the services that have Yes in the Service-Linked Role
column. Choose a Yes with a link to view the service-linked role documentation for that service.

Service-linked role permissions
You must configure permissions for an IAM entity (user or role) to allow the user or role to create or edit
the service-linked role.

Note
The ARN for a service-linked role includes a service principal, which is indicated in the policies
below as SERVICE-NAME.amazonaws.com. Do not try to guess the service principal, because it

219

AWS Identity and Access Management User Guide
Service-linked roles

is case sensitive and the format can vary across AWS services. To view the service principal for a
service, see its service-linked role documentation.

To allow an IAM entity to create a specific service-linked role

Add the following policy to the IAM entity that needs to create the service-linked role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "arn:aws:iam::*:role/aws-service-role/SERVICE-
NAME.amazonaws.com/SERVICE-LINKED-ROLE-NAME-PREFIX*",
 "Condition": {"StringLike": {"iam:AWSServiceName": "SERVICE-
NAME.amazonaws.com"}}
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:AttachRolePolicy",
 "iam:PutRolePolicy"
],
 "Resource": "arn:aws:iam::*:role/aws-service-role/SERVICE-
NAME.amazonaws.com/SERVICE-LINKED-ROLE-NAME-PREFIX*"
 }
]
}

To allow an IAM entity to create any service-linked role

Add the following statement to the permissions policy for the IAM entity that needs to create a service-
linked role, or any service role that includes the needed policies. This policy statement does not allow the
IAM entity to attach a policy to the role.

{
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "arn:aws:iam::*:role/aws-service-role/*"
}

To allow an IAM entity to edit the description of any service roles

Add the following statement to the permissions policy for the IAM entity that needs to edit the
description of a service-linked role, or any service role.

{
 "Effect": "Allow",
 "Action": "iam:UpdateRoleDescription",
 "Resource": "arn:aws:iam::*:role/aws-service-role/*"
}

To allow an IAM entity to delete a specific service-linked role

Add the following statement to the permissions policy for the IAM entity that needs to delete the
service-linked role.

{
 "Effect": "Allow",

220

AWS Identity and Access Management User Guide
Service-linked roles

 "Action": [
 "iam:DeleteServiceLinkedRole",
 "iam:GetServiceLinkedRoleDeletionStatus"
],
 "Resource": "arn:aws:iam::*:role/aws-service-role/SERVICE-NAME.amazonaws.com/SERVICE-
LINKED-ROLE-NAME-PREFIX*"
}

To allow an IAM entity to delete any service-linked role

Add the following statement to the permissions policy for the IAM entity that needs to delete a service-
linked role, but not service role.

{
 "Effect": "Allow",
 "Action": [
 "iam:DeleteServiceLinkedRole",
 "iam:GetServiceLinkedRoleDeletionStatus"
],
 "Resource": "arn:aws:iam::*:role/aws-service-role/*"
}

To allow an IAM entity to pass an existing role to the service

Some AWS services allow you to pass an existing role to the service, instead of creating a new service-
linked role. To do this, a user must have permissions to pass the role to the service. Add the following
statement to the permissions policy for the IAM entity that needs to pass a role. This policy statement
also allows the entity to view a list of roles from which they can choose the role to pass. For more
information, see Granting a user permissions to pass a role to an AWS service (p. 257).

{
 "Effect": "Allow",
 "Action": [
 "iam:ListRoles",
 "iam:PassRole"
],
 "Resource": "arn:aws:iam::123456789012:role/my-role-for-XYZ"
}

Transferring service-linked role permissions

The permissions granted by a service-linked role are indirectly transferable to other users and roles.
When you allow a service to perform operations in other services, the originating service can use those
permissions in the future. If another user or role has permission to perform actions in the originating
service, the originating service can then assume the role and access resources in other services. This
means that the other user or role can indirectly access the other services.

For example, when you create an Amazon RDS DB instance, RDS creates the service-linked role for you.
This role allows RDS to call Amazon EC2, Amazon SNS, Amazon CloudWatch Logs, and Amazon Kinesis
on your behalf whenever you edit the DB instance. If you create a policy to allow users and roles in your
account or another account to have the same permissions to that Amazon RDS instance, then RDS can
still use that role make changes to EC2, SNS, CloudWatch Logs, and Kinesis on their behalf. The new user
or role can indirectly edit resources in those other services.

Creating a service-linked role
The method that you use to create a service-linked role depends on the service. In some cases, you don't
need to manually create a service-linked role. For example, when you complete a specific action (such as

221

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.IAM.ServiceLinkedRoles.html

AWS Identity and Access Management User Guide
Service-linked roles

creating a resource) in the service, the service might create the service-linked role for you. Or if you were
using a service before it began supporting service-linked roles, then the service might have automatically
created the role in your account. To learn more, see A new role appeared in my AWS account (p. 700).

In other cases, the service might support creating a service-linked role manually using the service
console, API, or CLI. For information about which services support using service-linked roles, see AWS
services that work with IAM (p. 725) and look for the services that have Yes in the Service-Linked Role
column. To learn whether the service supports creating the service-linked role, choose the Yes link to
view the service-linked role documentation for that service.

If the service does not support creating the role, then you can use IAM to create the service-linked role.

Important
Service-linked roles count toward your IAM roles in an AWS account limit, but if you have
reached your limit, you can still create service-linked roles in your account. Only service-linked
roles can exceed the limit.

Creating a service-linked role (console)

Before you create a service-linked role in IAM, find out whether the linked service automatically creates
service-linked roles, In addition, learn whether you can create the role from the service's console, API, or
CLI.

To create a service-linked role (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles. Then choose Create role.
3. Choose the AWS Service role type, and then choose the service that you want to allow to assume

this role.
4. Choose the use case for your service. If the specified service has only one use case, it is selected for

you. Use cases are defined by the service to include the trust policy required by the service. Then
choose Next: Permissions.

5. Choose one or more permissions policies to attach to the role. Depending on the use case that you
selected, the service might do any of the following:

• Define the permissions used by the role
• Allow you to choose from a limited set of permissions
• Allow you to choose from any permissions
• Allow you to select no policies at this time, create the policies later, and then attach them to the

role.

Select the box next to the policy that assigns the permissions that you want the role to have, and
then choose Next: Tags.

Note
The permissions that you specify are available to any entity that uses the role. By default, a
role has no permissions.

6. Choose Next: Review. You cannot attach tags to service-linked roles during creation. For more
information about using tags in IAM, see Tagging IAM resources (p. 296).

7. For Role name, the degree of role name customization is defined by the service. If the service
defines the role's name, then this option is not editable. In other cases, the service might define a
prefix for the role and allow you to type an optional suffix.

If possible, type a role name suffix to add to the default name. This suffix helps you identify
the purpose of this role. Role names must be unique within your AWS account. They are not

222

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-quotas.html#reference_iam-quotas-entities
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Service-linked roles

distinguished by case. For example, you cannot create roles named both <service-linked-role-
name>_SAMPLE and <service-linked-role-name>_sample. Because various entities might
reference the role, you cannot edit the name of the role after it has been created.

8. (Optional) For Role description, edit the description for the new service-linked role.
9. Review the role and then choose Create role.

Creating a service-linked role (AWS CLI)

Before creating a service-linked role in IAM, find out whether the linked service automatically creates
service-linked roles and whether you can create the role from the service's CLI. If the service CLI is not
supported, you can use IAM commands to create a service-linked role with the trust policy and inline
policies that the service needs to assume the role.

To create a service-linked role (AWS CLI)

Run the following command:

aws iam create-service-linked-role --aws-service-name SERVICE-NAME.amazonaws.com

Creating a service-linked role (AWS API)

Before creating a service-linked role in IAM, find out whether the linked service automatically creates
service-linked roles and whether you can create the role from the service's API. If the service API is
not supported, you can use the AWS API to create a service-linked role with the trust policy and inline
policies that the service needs to assume the role.

To create a service-linked role (AWS API)

Use the CreateServiceLinkedRole API call. In the request, specify a service name of
SERVICE_NAME_URL.amazonaws.com.

For example, to create the Lex Bots service-linked role, use lex.amazonaws.com.

Editing a service-linked role
The method that you use to edit a service-linked role depends on the service. Some services might allow
you to edit the permissions for a service-linked role from the service console, API, or CLI. However, after
you create a service-linked role, you cannot change the name of the role because various entities might
reference the role. You can edit the description of any role from the IAM console, API, or CLI.

For information about which services support using service-linked roles, see AWS services that work
with IAM (p. 725) and look for the services that have Yes in the Service-Linked Role column. To learn
whether the service supports editing the service-linked role, choose the Yes link to view the service-
linked role documentation for that service.

Editing a service-linked role description (console)

You can use the IAM console to edit the description of a service-linked role.

To edit the description of a service-linked role (console)

1. In the navigation pane of the IAM console, choose Roles.
2. Choose the name of the role to modify.
3. To the far right of Role description, choose Edit.
4. Type a new description in the box and choose Save.

223

https://docs.aws.amazon.com/cli/latest/reference/iam/create-service-linked-role.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateServiceLinkedRole.html

AWS Identity and Access Management User Guide
Service-linked roles

Editing a service-linked role description (AWS CLI)

You can use IAM commands from the AWS CLI to edit the description of a service-linked role.

To change the description of a service-linked role (AWS CLI)

1. (Optional) To view the current description for a role, run the following commands:

aws iam get-role --role-name ROLE-NAME

Use the role name, not the ARN, to refer to roles with the CLI commands. For example, if a role
has the following ARN: arn:aws:iam::123456789012:role/myrole, you refer to the role as
myrole.

2. To update a service-linked role's description, run the following command:

aws iam update-role --role-name ROLE-NAME --description OPTIONAL-DESCRIPTION

Editing a service-linked role description (AWS API)

You can use the AWS API to edit the description of a service-linked role.

To change the description of a service-linked role (AWS API)

1. (Optional) To view the current description for a role, call the following operation, and specify the
name of the role:

AWS API: GetRole
2. To update a role's description, call the following operation, and specify the name (and optional

description) of the role:

AWS API: UpdateRole

Deleting a service-linked role
The method that you use to create a service-linked role depends on the service. In some cases, you don't
need to manually delete a service-linked role. For example, when you complete a specific action (such as
removing a resource) in the service, the service might delete the service-linked role for you.

In other cases, the service might support deleting a service-linked role manually from the service
console, API, or AWS CLI.

For information about which services support using service-linked roles, see AWS services that work
with IAM (p. 725) and look for the services that have Yes in the Service-Linked Role column. To learn
whether the service supports deleting the service-linked role, choose the Yes link to view the service-
linked role documentation for that service.

If the service does not support deleting the role, then you can delete the service-linked role from the
IAM console, API, or AWS CLI. If you no longer need to use a feature or service that requires a service-
linked role, we recommend that you delete that role. That way you don't have an unused entity that is
not actively monitored or maintained. However, you must clean up your service-linked role before you
can delete it.

Cleaning up a service-linked role

Before you can use IAM to delete a service-linked role, you must first confirm that the role has no active
sessions and remove any resources used by the role.

224

https://docs.aws.amazon.com/cli/latest/reference/iam/get-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/update-role.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateRole.html

AWS Identity and Access Management User Guide
Service-linked roles

To check whether the service-linked role has an active session in the IAM console

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles. Then choose the name (not the check box)
of the service-linked role.

3. On the Summary page for the selected role, choose the Access Advisor tab.

4. On the Access Advisor tab, review recent activity for the service-linked role.

Note
If you are unsure whether the service is using the service-linked role, you can try to delete
the role. If the service is using the role, then the deletion fails and you can view the regions
where the role is being used. If the role is being used, then you must wait for the session to
end before you can delete the role. You cannot revoke the session for a service-linked role.

To remove resources used by a service-linked role

For information about which services support using service-linked roles, see AWS services that work
with IAM (p. 725) and look for the services that have Yes in the Service-Linked Role column. To learn
whether the service supports deleting the service-linked role, choose the Yes link to view the service-
linked role documentation for that service. See the documentation for that service to learn how to
remove resources used by your service-linked role.

Deleting a service-linked role (console)

You can use the IAM console to delete a service-linked role.

To delete a service-linked role (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles. Then select the check box next to the role
name that you want to delete, not the name or row itself.

3. For Role actions at the top of the page, choose Delete.

4. In the confirmation dialog box, review the last accessed information, which shows when each of the
selected roles last accessed an AWS service. This helps you to confirm whether the role is currently
active. If you want to proceed, choose Yes, Delete to submit the service-linked role for deletion.

5. Watch the IAM console notifications to monitor the progress of the service-linked role deletion.
Because the IAM service-linked role deletion is asynchronous, after you submit the role for deletion,
the deletion task can succeed or fail.

• If the task succeeds, then the role is removed from the list and a notification of success appears at
the top of the page.

• If the task fails, you can choose View details or View Resources from the notifications to learn
why the deletion failed. If the deletion fails because the role is using the service's resources, then
the notification includes a list of resources, if the service returns that information. You can then
clean up the resources (p. 224) and submit the deletion again.

Note
You might have to repeat this process several times, depending on the information that
the service returns. For example, your service-linked role might use six resources and your
service might return information about five of them. If you clean up the five resources
and submit the role for deletion again, the deletion fails and the service reports the one
remaining resource. A service might return all of the resources, a few of them, or it might
not report any resources.

225

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Service-linked roles

• If the task fails and the notification does not include a list of resources, then the service might not
return that information. To learn how to clean up the resources for that service, see AWS services
that work with IAM (p. 725). Find your service in the table, and choose the Yes link to view the
service-linked role documentation for that service.

Deleting a service-linked role (AWS CLI)

You can use IAM commands from the AWS CLI to delete a service-linked role.

To delete a service-linked role (AWS CLI)

1. If you know the name of the service-linked role that you want to delete, type the following
command to list the role in your account:

aws iam get-role --role-name role-name

Use the role name, not the ARN, to refer to roles with the CLI commands. For example, if a role
has the following ARN: arn:aws:iam::123456789012:role/myrole, you refer to the role as
myrole.

2. Because a service-linked role cannot be deleted if it is being used or has associated resources, you
must submit a deletion request. That request can be denied if these conditions are not met. You
must capture the deletion-task-id from the response to check the status of the deletion task.
Type the following command to submit a service-linked role deletion request:

aws iam delete-service-linked-role --role-name role-name

3. Type the following command to check the status of the deletion task:

aws iam get-service-linked-role-deletion-status --deletion-task-id deletion-task-id

The status of the deletion task can be NOT_STARTED, IN_PROGRESS, SUCCEEDED, or FAILED.
If the deletion fails, the call returns the reason that it failed so that you can troubleshoot. If the
deletion fails because the role is using the service's resources, then the notification includes a list of
resources, if the service returns that information. You can then clean up the resources (p. 224) and
submit the deletion again.

Note
You might have to repeat this process several times, depending on the information that
the service returns. For example, your service-linked role might use six resources and your
service might return information about five of them. If you clean up the five resources
and submit the role for deletion again, the deletion fails and the service reports the one
remaining resource. A service might return all of the resources, a few of them, or it might
not report any resources. To learn how to clean up the resources for a service that does not
report any resources, see AWS services that work with IAM (p. 725). Find your service in
the table, and choose the Yes link to view the service-linked role documentation for that
service.

Deleting a service-linked role (AWS API)

You can use the AWS API to delete a service-linked role.

To delete a service-linked role (AWS API)

1. To submit a deletion request for a service-linked role, call DeleteServiceLinkedRole. In the request,
specify a role name.

226

https://docs.aws.amazon.com/cli/latest/reference/iam/get-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-service-linked-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-service-linked-role-deletion-status.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteServiceLinkedRole.html

AWS Identity and Access Management User Guide
Creating roles

Because a service-linked role cannot be deleted if it is being used or has associated resources, you
must submit a deletion request. That request can be denied if these conditions are not met. You
must capture the DeletionTaskId from the response to check the status of the deletion task.

2. To check the status of the deletion, call GetServiceLinkedRoleDeletionStatus. In the request, specify
the DeletionTaskId.

The status of the deletion task can be NOT_STARTED, IN_PROGRESS, SUCCEEDED, or FAILED.
If the deletion fails, the call returns the reason that it failed so that you can troubleshoot. If the
deletion fails because the role is using the service's resources, then the notification includes a list of
resources, if the service returns that information. You can then clean up the resources (p. 224) and
submit the deletion again.

Note
You might have to repeat this process several times, depending on the information that
the service returns. For example, your service-linked role might use six resources and your
service might return information about five of them. If you clean up the five resources
and submit the role for deletion again, the deletion fails and the service reports the one
remaining resource. A service might return all of the resources, a few of them, or it might
not report any resources. To learn how to clean up the resources for a service that does not
report any resources, see AWS services that work with IAM (p. 725). Find your service in
the table, and choose the Yes link to view the service-linked role documentation for that
service.

Creating IAM roles
To create a role, you can use the AWS Management Console, the AWS CLI, the Tools for Windows
PowerShell, or the IAM API.

If you use the AWS Management Console, a wizard guides you through the steps for creating a role. The
wizard has slightly different steps depending on whether you're creating a role for an AWS service, for an
AWS account, or for a federated user.

Topics
• Creating a role to delegate permissions to an IAM user (p. 227)
• Creating a role to delegate permissions to an AWS service (p. 235)
• Creating a role for a third-party Identity Provider (federation) (p. 241)
• Examples of policies for delegating access (p. 249)

Creating a role to delegate permissions to an IAM user
You can use IAM roles to delegate access to your AWS resources. With IAM roles, you can establish trust
relationships between your trusting account and other AWS trusted accounts. The trusting account owns
the resource to be accessed and the trusted account contains the users who need access to the resource.
However, it is possible for another account to own a resource in your account. For example, the trusting
account might allow the trusted account to create new resources, such as creating new objects in an
Amazon S3 bucket. In that case, the account that creates the resource owns the resource and controls
who can access that resource.

After you create the trust relationship, an IAM user or an application from the trusted account can
use the AWS Security Token Service (AWS STS) AssumeRole API operation. This operation provides
temporary security credentials that enable access to AWS resources in your account.

The accounts can both be controlled by you, or the account with the users can be controlled by a third
party. If the other account with the users is an AWS account that you do not control, then you can use

227

https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetServiceLinkedRoleDeletionStatus.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

AWS Identity and Access Management User Guide
Creating roles

the externalId attribute. The external ID can be any word or number that is agreed upon between you
and the administrator of the third-party account. This option automatically adds a condition to the trust
policy that allows the user to assume the role only if the request includes the correct sts:ExternalID.
For more information, see How to use an external ID when granting access to your AWS resources to a
third party (p. 231).

For information about how to use roles to delegate permissions, see Roles terms and concepts (p. 169).
For information about using a service role to allow services to access resources in your account, see
Creating a role to delegate permissions to an AWS service (p. 235).

Creating an IAM role (console)

You can use the AWS Management Console to create a role that an IAM user can assume. For example,
assume that your organization has multiple AWS accounts to isolate a development environment from
a production environment. For a high-level description of the steps to set up and use a role that allows
users in the development account to access resources in the production account, see Example scenario
using separate development and production accounts (p. 173).

To create a role (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the console, choose Roles and then choose Create role.
3. Choose the Another AWS account role type.
4. For Account ID, type the AWS account ID to which you want to grant access to your resources.

The administrator of the specified account can grant permission to assume this role to any IAM
user in that account. To do this, the administrator attaches a policy to the user or a group that
grants permission for the sts:AssumeRole action. That policy must specify the role's ARN as the
Resource.

5. If you are granting permissions to users from an account that you do not control, and the users will
assume this role programmatically, then select Require external ID. The external ID can be any word
or number that is agreed upon between you and the administrator of the third-party account. This
option automatically adds a condition to the trust policy that allows the user to assume the role
only if the request includes the correct sts:ExternalID. For more information, see How to use an
external ID when granting access to your AWS resources to a third party (p. 231).

Important
Choosing this option restricts access to the role only through the AWS CLI, Tools for
Windows PowerShell, or the AWS API. This is because you cannot use the AWS console to
switch to a role that has an externalId condition in its trust policy. However, you can
create this kind of access programmatically by writing a script or an application using the
relevant SDK. For more information and a sample script, see How to Enable Cross-Account
Access to the AWS Management Console in the AWS Security Blog.

6. If you want to restrict the role to users who sign in with multi-factor authentication (MFA), select
Require MFA. This adds a condition to the role's trust policy that checks for an MFA sign-in. A user
who wants to assume the role must sign in with a temporary one-time password from a configured
MFA device. Users without MFA authentication cannot assume the role. For more information about
MFA, see Using multi-factor authentication (MFA) in AWS (p. 110)

7. Choose Next: Permissions.
8. IAM includes a list of the AWS managed and customer managed policies in your account. Select

the policy to use for the permissions policy or choose Create policy to open a new browser tab and
create a new policy from scratch. For more information, see step 4 in the procedure Creating IAM
policies (p. 469). After you create the policy, close that tab and return to your original tab. Select
the check box next to the permissions policies that you want anyone who assumes the role to have.
If you prefer, you can select no policies at this time, and then attach policies to the role later. By
default, a role has no permissions.

228

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
http://aws.amazon.com/blogs/security/how-to-enable-cross-account-access-to-the-aws-management-console
http://aws.amazon.com/blogs/security/how-to-enable-cross-account-access-to-the-aws-management-console

AWS Identity and Access Management User Guide
Creating roles

9. (Optional) Set a permissions boundary (p. 395). This is an advanced feature.

Open the Set permissions boundary section and choose Use a permissions boundary to control
the maximum role permissions. Select the policy to use for the permissions boundary.

10. Choose Next: Tags.

11. (Optional) Add metadata to the role by attaching tags as key–value pairs. For more information
about using tags in IAM, see Tagging IAM resources (p. 296).

12. Choose Next: Review.

13. For Role name, type a name for your role. Role names must be unique within your AWS account.
They are not distinguished by case. For example, you cannot create roles named both PRODROLE and
prodrole. Because other AWS resources might reference the role, you cannot edit the name of the
role after it has been created.

14. (Optional) For Role description, type a description for the new role.

15. Review the role and then choose Create role.

Important
Remember that this is only the first half of the configuration required. You must also give
individual users in the trusted account permissions to switch to the role in the console, or
assume the role programmatically. For more information about this step, see Granting a
user permissions to switch roles (p. 255).

Creating an IAM role (AWS CLI)

Creating a role from the AWS CLI involves multiple steps. When you use the console to create a role,
many of the steps are done for you, but with the AWS CLI you must explicitly perform each step yourself.
You must create the role and then assign a permissions policy to the role. Optionally, you can also set the
permissions boundary (p. 395) for your role.

To create a role for cross-account access (AWS CLI)

1. Create a role: aws iam create-role

2. Attach a managed permissions policy to the role: aws iam attach-role-policy

or

Create an inline permissions policy for the role: aws iam put-role-policy

3. (Optional) Add custom attributes to the role by attaching tags: aws iam tag-role

For more information, see Managing tags on IAM roles (AWS CLI or AWS API) (p. 302).

4. (Optional) Set the permissions boundary (p. 395) for the role: aws iam put-role-permissions-
boundary

A permissions boundary controls the maximum permissions that a role can have. Permissions
boundaries are an advanced AWS feature.

The following example shows the first two, and most common steps for creating a cross-account role in a
simple environment. This example allows any user in the 123456789012 account to assume the role and
view the example_bucket Amazon S3 bucket. This example also assumes that you are using a client
computer running Windows, and have already configured your command line interface with your account
credentials and Region. For more information, see Configuring the AWS Command Line Interface.

In this example, include the following trust policy in the first command when you create the role. This
trust policy allows users in the 123456789012 account to assume the role using the AssumeRole
operation, but only if the user provides MFA authentication using the SerialNumber and TokenCode

229

https://docs.aws.amazon.com/cli/latest/reference/iam/create-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/attach-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/put-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/tag-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/put-role-permissions-boundary.html
https://docs.aws.amazon.com/cli/latest/reference/iam/put-role-permissions-boundary.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

AWS Identity and Access Management User Guide
Creating roles

parameters. For more information about MFA, see Using multi-factor authentication (MFA) in
AWS (p. 110).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": { "AWS": "arn:aws:iam::123456789012:root" },
 "Action": "sts:AssumeRole",
 "Condition": { "Bool": { "aws:MultiFactorAuthPresent": "true" } }
 }
]
}

Important
If your Principal element contains the ARN for a specific IAM role or user, then that ARN is
transformed to a unique principal ID when the policy is saved. This helps mitigate the risk of
someone escalating their permissions by removing and recreating the role or user. You don't
normally see this ID in the console because there is also a reverse transformation back to the
ARN when the trust policy is displayed. However, if you delete the role or user, then the principal
ID appears in the console because AWS can no longer map it back to an ARN. Therefore, if you
delete and recreate a user or role referenced in a trust policy's Principal element, you must
edit the role to replace the ARN.

When you use the second command, you must attach an existing managed policy to the role. The
following permissions policy allows anyone who assumes the role to perform only the ListBucket
action on the example_bucket Amazon S3 bucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:::example_bucket"
 }
]
}

To create this Test-UserAccess-Role role, you must first save the previous trust policy with the
name trustpolicyforacct123456789012.json to the policies folder in your local C: drive. Then
save the previous permissions policy as a customer managed policy in your AWS account with the name
PolicyForRole. You can then use the following commands to create the role and attach the managed
policy.

Create the role and attach the trust policy file that allows users in the specified
 account to assume the role.
$ aws iam create-role --role-name Test-UserAccess-Role --assume-role-policy-document
 file://C:\policies\trustpolicyforacct123456789012.json

Attach the permissions policy (in this example a managed policy) to the role to specify
 what it is allowed to do.
$ aws iam attach-role-policy --role-name Test-UserAccess-Role --policy-arn
 arn:aws:iam::123456789012:role/PolicyForRole

Important
Remember that this is only the first half of the configuration required. You must also give
individual users in the trusted account permissions to switch to the role. For more information
about this step, see Granting a user permissions to switch roles (p. 255).

230

AWS Identity and Access Management User Guide
Creating roles

After you create the role and grant it permissions to perform AWS tasks or access AWS resources, any
users in the 123456789012 account can assume the role. For more information, see Switching to an IAM
role (AWS CLI) (p. 262).

Creating an IAM role (AWS API)

Creating a role from the AWS API involves multiple steps. When you use the console to create a role,
many of the steps are done for you, but with the API you must explicitly perform each step yourself. You
must create the role and then assign a permissions policy to the role. Optionally, you can also set the
permissions boundary (p. 395) for your role.

To create a role in code (AWS API)

1. Create a role: CreateRole

For the role's trust policy, you can specify a file location.

2. Attach a managed permission policy to the role: AttachRolePolicy

or

Create an inline permission policy for the role: PutRolePolicy

Important
Remember that this is only the first half of the configuration required. You must also
give individual users in the trusted account permissions to switch to the role. For more
information about this step, see Granting a user permissions to switch roles (p. 255).

3. (Optional) Add custom attributes to the user by attaching tags: TagRole

For more information, see Managing tags on IAM users (AWS CLI or AWS API) (p. 300).

4. (Optional) Set the permissions boundary (p. 395) for the role: PutRolePermissionsBoundary

A permissions boundary controls the maximum permissions that a role can have. Permissions
boundaries are an advanced AWS feature.

After you create the role and grant it permissions to perform AWS tasks or access AWS resources, you
must grant permissions to users in the account to allow them to assume the role. For more information
about assuming a role, see Switching to an IAM role (AWS API) (p. 268).

Creating an IAM role (AWS CloudFormation)

For information about creating an IAM role in AWS CloudFormation, see the resource and property
reference and examples in the AWS CloudFormation User Guide.

For more information about IAM templates in AWS CloudFormation, see AWS Identity and Access
Management template snippets in the AWS CloudFormation User Guide.

How to use an external ID when granting access to your AWS resources to a third
party

At times, you need to give a third party access to your AWS resources (delegate access). One important
aspect of this scenario is the External ID, optional information that you can use in an IAM role trust policy
to designate who can assume the role.

Important
AWS does not treat the external ID as a secret. After you create a secret like an access key pair
or a password in AWS, you cannot view them again. The external ID for a role can be seen by
anyone with permission to view the role.

231

https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutRolePermissionsBoundary.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-iam-role.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-iam-role.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-iam-role.html#aws-resource-iam-role--examples
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-iam.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/quickref-iam.html

AWS Identity and Access Management User Guide
Creating roles

In a multi-tenant environment where you support multiple customers with different AWS accounts, we
recommend using one external ID per AWS account. This ID should be a random string generated by the
third party.

To require that the third party provides an external ID when assuming a role, update the role's trust
policy with the external ID of your choice.

To provide an external ID when you assume a role, use the AWS CLI or AWS API to assume that role. For
more information, see the STS AssumeRole API operation, or the STS assume-role CLI operation.

For example, let's say that you decide to hire a third-party company called Example Corp to monitor
your AWS account and help optimize costs. In order to track your daily spending, Example Corp needs to
access your AWS resources. Example Corp also monitors many other AWS accounts for other customers.

Do not give Example Corp access to an IAM user and its long-term credentials in your AWS account.
Instead, use an IAM role and its temporary security credentials. An IAM role provides a mechanism to
allow a third party to access your AWS resources without needing to share long-term credentials (for
example, an IAM user's access key).

You can use an IAM role to establish a trusted relationship between your AWS account and the Example
Corp account. After this relationship is established, a member of the Example Corp account can call the
AWS Security Token Service AssumeRole API to obtain temporary security credentials. The Example Corp
members can then use the credentials to access AWS resources in your account.

Note
For more information about the AssumeRole and other AWS API operations that you can call to
obtain temporary security credentials, see Requesting temporary security credentials (p. 324).

Here's a more detailed breakdown of this scenario:

1. You hire Example Corp, so they create a unique customer identifier for you. They provide you with this
unique customer ID and their AWS account number. You need this information to create an IAM role in
the next step.

Note
Example Corp can use any string value they want for the ExternalId, as long as it is unique for
each customer. It can be a customer account number or even a random string of characters,
as long as no two customers have the same value. It is not intended to be a 'secret'. Example
Corp must provide the ExternalId value to each customer. What is crucial is that it must be
generated by Example Corp and not their customers.

2. You sign in to AWS and create an IAM role that gives Example Corp access to your resources. Like
any IAM role, the role has two policies, a permission policy and a trust policy. The role's trust policy
specifies who can assume the role. In our sample scenario, the policy specifies the AWS account
number of Example Corp as the Principal. This allows identities from that account to assume
the role. In addition, you add a Condition element to the trust policy. This Condition tests the
ExternalId context key to ensure that it matches the unique customer ID from Example Corp. For
example:

 "Principal": {"AWS": "Example Corp's AWS Account ID"},
 "Condition": {"StringEquals": {"sts:ExternalId": "Unique ID Assigned by Example
 Corp"}}

3. The permission policy for the role specifies what the role allows someone to do. For example, you
could specify that the role allows someone to manage only your Amazon EC2 and Amazon RDS
resources but not your IAM users or groups. In our sample scenario, you use the permission policy to
give Example Corp read-only access to all of the resources in your account.

4. After you create the role, you provide the Amazon Resource Name (ARN) of the role to Example Corp.
5. When Example Corp needs to access your AWS resources, someone from the company calls the AWS

sts:AssumeRole API. The call includes the ARN of the role to assume and the ExternalId parameter
that corresponds to their customer ID.

232

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#Condition

AWS Identity and Access Management User Guide
Creating roles

If the request comes from someone using Example Corp's AWS account, and if the role ARN and the
external ID are correct, the request succeeds. It then provides temporary security credentials that
Example Corp can use to access the AWS resources that your role allows.

In other words, when a role policy includes an external ID, anyone who wants to assume the role must be
a principal in the role and must include the correct external ID.

Why use an external ID?

In abstract terms, the external ID allows the user that is assuming the role to assert the circumstances in
which they are operating. It also provides a way for the account owner to permit the role to be assumed
only under specific circumstances. The primary function of the external ID is to address and prevent The
confused deputy problem (p. 233).

When should I use an external ID?

Use an external ID in the following situations:

• You are an AWS account owner and you have configured a role for a third party that accesses other
AWS accounts in addition to yours. You should ask the third party for an external ID that it includes
when it assumes your role. Then you check for that external ID in your role's trust policy. Doing so
ensures that the external party can assume your role only when it is acting on your behalf.

• You are in the position of assuming roles on behalf of different customers like Example Corp in our
previous scenario. You should assign a unique external ID to each customer and instruct them to add
the external ID to their role's trust policy. You must then ensure that you always include the correct
external ID in your requests to assume roles.

You probably already have a unique identifier for each of your customers, and this unique ID is
sufficient for use as an external ID. The external ID is not a special value that you need to create
explicitly, or track separately, just for this purpose.

You should always specify the external ID in your AssumeRole API calls. In addition when a customer
gives you a role ARN, test whether you can assume the role both with and without the correct external
ID. If you can assume the role without the correct external ID, don't store the customer's role ARN
in your system. Wait until your customer has updated the role trust policy to require the correct
external ID. In this way you help your customers to do the right thing, which helps to keep both of you
protected against the confused deputy problem.

The confused deputy problem

To continue the previous example (p. 231), Example Corp requires access to certain resources in your
AWS account. But in addition to you, Example Corp has other customers and needs a way to access each
customer's AWS resources. Instead of asking its customers for their AWS account access keys, which are
secrets that should never be shared, Example Corp requests a role ARN from each customer. But another
Example Corp customer might be able to guess or obtain your role ARN. That customer could then use
your role ARN to gain access to your AWS resources by way of Example Corp. This form of permission
escalation is known as the confused deputy problem.

The following diagram illustrates the confused deputy problem.

233

AWS Identity and Access Management User Guide
Creating roles

This scenario assumes the following:

• AWS1 is your AWS account.
• AWS1:ExampleRole is a role in your account. This role's trust policy trusts Example Corp by specifying

Example Corp's AWS account as the one that can assume the role.

Here's what happens:

1. When you start using Example Corp's service, you provide the ARN of AWS1:ExampleRole to Example
Corp.

2. Example Corp uses that role ARN to obtain temporary security credentials to access resources in your
AWS account. In this way, you are trusting Example Corp as a "deputy" that can act on your behalf.

3. Another AWS customer also starts using Example Corp's service, and this customer also provides
the ARN of AWS1:ExampleRole for Example Corp to use. Presumably the other customer learned or
guessed the AWS1:ExampleRole, which isn't a secret.

4. When the other customer asks Example Corp to access AWS resources in (what it claims to be) its
account, Example Corp uses AWS1:ExampleRole to access resources in your account.

This is how the other customer could gain unauthorized access to your resources. Because this other
customer was able to trick Example Corp into unwittingly acting on your resources, Example Corp is now
a "confused deputy."

How does an external ID prevent the confused deputy problem?

You address the confused deputy problem by including the ExternalId condition check in the role's
trust policy. The "deputy" company inserts a unique external ID value for each customer into the request
for AWS credentials. The external ID is a customer ID value that must be unique among Example Corp's
customers and is out of the control of Example Corp's customers. This is why you get it from Example
Corp and you don't come up with it on your own. This helps prevent one customer from successfully
impersonating another customer. Example Corp always inserts the customer's assigned external ID, so
you should never see a request coming from Example Corp with any external ID except your own.

In our scenario, imagine Example Corp's unique identifier for you is "12345," and its identifier for the
other customer is "67890." These identifiers are simplified for this scenario. Generally, these identifiers
are GUIDs. Assuming that these identifiers are unique among Example Corp's customers, they are
sensible values to use for the external ID.

Example Corp gives the external ID value of "12345" to you. You must then add a Condition element to
the role's trust policy that requires the sts:ExternalId value to be 12345, like this:

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Principal": {"AWS": "Example Corp's AWS Account ID"},
 "Condition": {"StringEquals": {"sts:ExternalId": "12345"}}
 }
}

The Condition element in this policy allows Example Corp to assume the role only when the AssumeRole
API call includes the external ID value of "12345". Example Corp makes sure that whenever it assumes a
role on behalf of a customer, it always includes that customer's external ID value in the AssumeRole call.
Even if another customer supplies Example Corp with your ARN, it cannot control the external ID that
Example Corp includes in its request to AWS. This helps prevent an unauthorized customer from gaining
access to your resources.

234

AWS Identity and Access Management User Guide
Creating roles

The following diagram illustrates this.

1. As before, when you start using Example Corp's service, you provide the ARN of AWS1:ExampleRole
to Example Corp.

2. When Example Corp uses that role ARN to assume the role AWS1:ExampleRole, Example Corp
includes your external ID ("12345") in the AssumeRole API call. The external ID matches the role's trust
policy, so the AssumeRole API call succeeds and Example Corp obtains temporary security credentials
to access resources in your AWS account.

3. Another AWS customer also starts using Example Corp's service, and as before, this customer also
provides the ARN of AWS1:ExampleRole for Example Corp to use.

4. But this time, when Example Corp attempts to assume the role AWS1:ExampleRole, it provides the
external ID associated with the other customer ("67890"). The other customer has no way to change
this. Example Corp does this because the request to use the role came from the other customer, so
"67890" indicates the circumstance in which Example Corp is acting. Because you added a condition
with your own external ID ("12345") to the trust policy of AWS1:ExampleRole, the AssumeRole API
call fails. The other customer is prevented from gaining unauthorized access to resources in your
account (indicated by the red "X" in the diagram).

The external ID helps prevent any other customer from tricking Example Corp into unwittingly accessing
your resources–it mitigates the confused deputy problem.

Creating a role to delegate permissions to an AWS service

Many AWS services require that you use roles to allow the service to access resources in other services
on your behalf. A role that a service assumes to perform actions on your behalf is called a service
role (p. 169). When a role serves a specialized purpose for a service, it is categorized as a service role
for EC2 instances (p. 169) (for example), or a service-linked role (p. 169). To see what services support
using service-linked roles, or whether a service supports any form of temporary credentials, see AWS
services that work with IAM (p. 725). To learn how an individual service uses roles, choose the service
name in the table to view the documentation for that service.

For information about how roles help you to delegate permissions, see Roles terms and
concepts (p. 169).

Service role permissions

You must configure permissions to allow an IAM entity (user or role) to create or edit a service role.

Note
The ARN for a service-linked role includes a service principal, which is indicated in the policies
below as SERVICE-NAME.amazonaws.com. Do not try to guess the service principal, because it
is case sensitive and the format can vary across AWS services. To view the service principal for a
service, see its service-linked role documentation.

To allow an IAM entity to create a specific service role

235

AWS Identity and Access Management User Guide
Creating roles

Add the following policy to the IAM entity that needs to create the service role. This policy allows you to
create a service role for the specified service and with a specific name. You can then attach managed or
inline policies to that role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:AttachRolePolicy",
 "iam:CreateRole",
 "iam:PutRolePolicy"
],
 "Resource": "arn:aws:iam::*:role/SERVICE-ROLE-NAME"
 }
]
}

To allow an IAM entity to create any service role

Add the following statement to the permissions policy for the IAM entity that needs to create a service
role. This statement allows you to create any service role for any service, and then attach managed or
inline policies to that role.

{
 "Effect": "Allow",
 "Action": [
 "iam:AttachRolePolicy",
 "iam:CreateRole",
 "iam:PutRolePolicy"
],
 "Resource": "*"
}

To allow an IAM entity to edit a service role

Add the following policy to the IAM entity that needs to edit the service role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EditSpecificServiceRole",
 "Effect": "Allow",
 "Action": [
 "iam:AttachRolePolicy",
 "iam:DeleteRolePolicy",
 "iam:DetachRolePolicy",
 "iam:GetRole",
 "iam:GetRolePolicy",
 "iam:ListAttachedRolePolicies",
 "iam:ListRolePolicies",
 "iam:PutRolePolicy",
 "iam:UpdateRole",
 "iam:UpdateRoleDescription"
],
 "Resource": "arn:aws:iam::*:role/SERVICE-ROLE-NAME"
 },
 {
 "Sid": "ViewRolesAndPolicies",

236

AWS Identity and Access Management User Guide
Creating roles

 "Effect": "Allow",
 "Action": [
 "iam:GetPolicy",
 "iam:ListRoles"
],
 "Resource": ""
 }
]
}

To allow an IAM entity to delete a specific service role

Add the following statement to the permissions policy for the IAM entity that needs to delete the
specified service role.

{
 "Effect": "Allow",
 "Action": "iam:DeleteRole",
 "Resource": "arn:aws:iam::*:role/SERVICE-ROLE-NAME"
}

To allow an IAM entity to delete any service role

Add the following statement to the permissions policy for the IAM entity that needs to delete a service
role.

{
 "Effect": "Allow",
 "Action": "iam:DeleteRole",
 "Resource": "*"
}

Creating a role for an AWS service (console)

You can use the AWS Management Console to create a role for a service. Because some services support
more than one service role, see the AWS documentation for your service to see which use case to choose.
You can learn how to assign the necessary trust and permissions policies to the role so that the service
can assume the role on your behalf. The steps that you can use to control the permissions for your role
can vary, depending on how the service defines the use cases, and whether or not you create a service-
linked role.

To create a role for an AWS service (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles, and then choose Create role.

3. For Select type of trusted entity, choose AWS service.

4. Choose the service that you want to allow to assume this role.

5. Choose the use case for your service. If the specified service has only one use case, it is selected for
you. Use cases are defined by the service to include the trust policy that the service requires. Then
choose Next: Permissions.

6. If possible, select the policy to use for the permissions policy or choose Create policy to open a new
browser tab and create a new policy from scratch. For more information, see step 4 in the procedure
Creating IAM policies (p. 469). After you create the policy, close that tab and return to your original
tab. Select the check box next to the permissions policies that you want the service to have.

237

https://docs.aws.amazon.com/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Creating roles

Depending on the use case that you selected, the service might allow you to do any of the following:

• Nothing, because the service defines the permissions for the role
• Allow you to choose from a limited set of permissions
• Allow you to choose from any permissions
• Allow you to select no policies at this time, create the policies later, and then attach them to the

role
7. (Optional) Set a permissions boundary (p. 395). This is an advanced feature that is available for

service roles, but not service-linked roles.

Open the Set permissions boundary section and choose Use a permissions boundary to control
the maximum role permissions. IAM includes a list of the AWS managed and customer managed
policies in your account. Select the policy to use for the permissions boundary or choose Create
policy to open a new browser tab and create a new policy from scratch. For more information, see
step 4 in the procedure Creating IAM policies (p. 469). After you create the policy, close that tab
and return to your original tab to select the policy to use for the permissions boundary.

8. Choose Next: Tags.
9. (Optional) Add metadata to the role by attaching tags as key–value pairs. For more information

about using tags in IAM, see Tagging IAM resources (p. 296).
10. Choose Next: Review.
11. For Role name, the degree of role name customization is defined by the service. If the service

defines the role's name, this option is not editable. In other cases, the service might define a prefix
for the role and allow you to type an optional suffix. Some services allow you to specify the entire
name of your role.

If possible, type a role name or role name suffix. Role names must be unique within your AWS
account. They are not distinguished by case. For example, you cannot create roles named both
PRODROLE and prodrole. Because other AWS resources might reference the role, you cannot edit
the name of the role after it has been created.

12. (Optional) For Role description, type a description for the new role.
13. Review the role and then choose Create role.

Creating a role for a service (AWS CLI)

Creating a role from the AWS CLI involves multiple steps. When you use the console to create a role,
many of the steps are done for you, but with the AWS CLI you must explicitly perform each step yourself.
You must create the role and then assign a permissions policy to the role. If the service you are working
with is Amazon EC2, then you must also create an instance profile and add the role to it. Optionally, you
can also set the permissions boundary (p. 395) for your role.

To create a role for an AWS service from the AWS CLI

1. The following create-role command creates a role named Test-Role and attaches a trust policy to
it:

aws iam create-role --role-name Test-Role --assume-role-policy-document
file://Test-Role-Trust-Policy.json

2. Attach a managed permissions policy to the role: aws iam attach-role-policy.

For example, the following attach-role-policy command attaches the AWS managed policy
named ReadOnlyAccess to the IAM role named ReadOnlyRole:

aws iam attach-role-policy --policy-arn arn:aws:iam::aws:policy/
ReadOnlyAccess --role-name ReadOnlyRole

238

https://docs.aws.amazon.com/cli/latest/reference/iam/create-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/attach-role-policy.html

AWS Identity and Access Management User Guide
Creating roles

or

Create an inline permissions policy for the role: aws iam put-role-policy

To add an inline permissions policy, see the following example:

aws iam put-role-policy --role-name Test-Role --policy-name ExamplePolicy --
policy-document file://AdminPolicy.json

3. (Optional) Add custom attributes to the role by attaching tags: aws iam tag-role

For more information, see Managing tags on IAM roles (AWS CLI or AWS API) (p. 302).

4. (Optional) Set the permissions boundary (p. 395) for the role: aws iam put-role-permissions-
boundary

A permissions boundary controls the maximum permissions that a role can have. Permissions
boundaries are an advanced AWS feature.

If you are going to use the role with Amazon EC2 or another AWS service that uses Amazon EC2, you
must store the role in an instance profile. An instance profile is a container for a role that can be attached
to an Amazon EC2 instance when launched. An instance profile can contain only one role, and that limit
cannot be increased. If you create the role using the AWS Management Console, the instance profile
is created for you with the same name as the role. For more information about instance profiles, see
Using instance profiles (p. 276). For information about how to launch an EC2 instance with a role, see
Controlling Access to Amazon EC2 Resources in the Amazon EC2 User Guide for Linux Instances.

To create an instance profile and store the role in it (AWS CLI)

1. Create an instance profile: aws iam create-instance-profile

2. Add the role to the instance profile: aws iam add-role-to-instance-profile

The AWS CLI example command set below demonstrates the first two steps for creating a role and
attaching permissions. It also shows the two steps for creating an instance profile and adding the role
to the profile. This example trust policy allows the Amazon EC2 service to assume the role and view
the example_bucket Amazon S3 bucket. The example also assumes that you are running on a client
computer running Windows and have already configured your command line interface with your account
credentials and Region. For more information, see Configuring the AWS Command Line Interface.

In this example, include the following trust policy in the first command when you create the role. This
trust policy allows the Amazon EC2 service to assume the role.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": {"Service": "ec2.amazonaws.com"},
 "Action": "sts:AssumeRole"
 }
}

When you use the second command, you must attach a permissions policy to the role. The following
example permissions policy allows the role to perform only the ListBucket action on the
example_bucket Amazon S3 bucket.

{
 "Version": "2012-10-17",

239

https://docs.aws.amazon.com/cli/latest/reference/iam/put-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/tag-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/put-role-permissions-boundary.html
https://docs.aws.amazon.com/cli/latest/reference/iam/put-role-permissions-boundary.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/UsingIAM.html#UsingIAMrolesWithAmazonEC2Instances
https://docs.aws.amazon.com/cli/latest/reference/iam/create-instance-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/add-role-to-instance-profile.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

AWS Identity and Access Management User Guide
Creating roles

 "Statement": {
 "Effect": "Allow",
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:::example_bucket"
 }
}

To create this Test-Role-for-EC2 role, you must first save the previous trust policy with
the name trustpolicyforec2.json and the previous permissions policy with the name
permissionspolicyforec2.json to the policies directory in your local C: drive. You can then use
the following commands to create the role, attach the policy, create the instance profile, and add the
role to the instance profile.

Create the role and attach the trust policy that allows EC2 to assume this role.
$ aws iam create-role --role-name Test-Role-for-EC2 --assume-role-policy-document file://C:
\policies\trustpolicyforec2.json

Embed the permissions policy (in this example an inline policy) to the role to specify
 what it is allowed to do.
$ aws iam put-role-policy --role-name Test-Role-for-EC2 --policy-name Permissions-Policy-
For-Ec2 --policy-document file://C:\policies\permissionspolicyforec2.json

Create the instance profile required by EC2 to contain the role
$ aws iam create-instance-profile --instance-profile-name EC2-ListBucket-S3

Finally, add the role to the instance profile
$ aws iam add-role-to-instance-profile --instance-profile-name EC2-ListBucket-S3 --role-
name Test-Role-for-EC2

When you launch the EC2 instance, specify the instance profile name in the Configure Instance Details
page if you use the AWS console. If you use the aws ec2 run-instances CLI command, specify the --
iam-instance-profile parameter.

Creating a role for a service (AWS API)

Creating a role from the AWS API involves multiple steps. When you use the console to create a role,
many of the steps are done for you, but with the API you must explicitly perform each step yourself. You
must create the role and then assign a permissions policy to the role. If the service you are working with
is Amazon EC2, then you must also create an instance profile and add the role to it. Optionally, you can
also set the permissions boundary (p. 395) for your role.

To create a role for an AWS service (AWS API)

1. Create a role: CreateRole

For the role's trust policy, you can specify a file location.

2. Attach a managed permissions policy to the role: AttachRolePolicy

or

Create an inline permissions policy for the role: PutRolePolicy

3. (Optional) Add custom attributes to the user by attaching tags: TagRole

For more information, see Managing tags on IAM users (AWS CLI or AWS API) (p. 300).

4. (Optional) Set the permissions boundary (p. 395) for the role: PutRolePermissionsBoundary

A permissions boundary controls the maximum permissions that a role can have. Permissions
boundaries are an advanced AWS feature.

240

https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutRolePermissionsBoundary.html

AWS Identity and Access Management User Guide
Creating roles

If you are going to use the role with Amazon EC2 or another AWS service that uses Amazon EC2, you
must store the role in an instance profile. An instance profile is a container for a role. Each instance
profile can contain only one role, and that limit cannot be increased. If you create the role in the AWS
Management Console, the instance profile is created for you with the same name as the role. For more
information about instance profiles, see Using instance profiles (p. 276). For information about how
to launch an Amazon EC2 instance with a role, see Controlling Access to Amazon EC2 Resources in the
Amazon EC2 User Guide for Linux Instances.

To create an instance profile and store the role in it (AWS API)

1. Create an instance profile: CreateInstanceProfile

2. Add the role to the instance profile: AddRoleToInstanceProfile

Creating a role for a third-party Identity Provider (federation)

You can use identity providers instead of creating IAM users in your AWS account. With an identity
provider (IdP), you can manage your user identities outside of AWS and give these external user identities
permissions to access AWS resources in your account. For more information about federation and
identity providers, see Identity providers and federation (p. 177).

Creating a role for federated users (console)

The procedures for creating a role for federated users depend on your choice of third-party providers:

• For Web Identity or OpenID Connect (OIDC), see Creating a role for web identity or OpenID connect
federation (console) (p. 243).

• For SAML 2.0, see Creating a role for SAML 2.0 federation (console) (p. 247).

Creating a role for federated access (AWS CLI)

The steps to create a role for the supported identity providers (OIDC or SAML) from the AWS CLI are
identical. The difference is in the contents of the trust policy that you create in the prerequisite steps.
Begin by following the steps in the Prerequisites section for the type of provider you are using:

• For an OIDC provider, see Prerequisites for creating a role for web identity or OIDC (p. 243).

• For a SAML provider, see Prerequisites for creating a role for SAML (p. 247).

Creating a role from the AWS CLI involves multiple steps. When you use the console to create a role,
many of the steps are done for you, but with the AWS CLI you must explicitly perform each step yourself.
You must create the role and then assign a permissions policy to the role. Optionally, you can also set the
permissions boundary (p. 395) for your role.

To create a role for identity federation (AWS CLI)

1. Create a role: aws iam create-role

2. Attach a permissions policy to the role: aws iam attach-role-policy

or

Create an inline permissions policy for the role: aws iam put-role-policy

3. (Optional) Add custom attributes to the role by attaching tags: aws iam tag-role

For more information, see Managing tags on IAM roles (AWS CLI or AWS API) (p. 302).

241

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/UsingIAM.html#UsingIAMrolesWithAmazonEC2Instances
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateInstanceProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AddRoleToInstanceProfile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/create-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/attach-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/put-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/tag-role.html

AWS Identity and Access Management User Guide
Creating roles

4. (Optional) Set the permissions boundary (p. 395) for the role: aws iam put-role-permissions-
boundary

A permissions boundary controls the maximum permissions that a role can have. Permissions
boundaries are an advanced AWS feature.

The following example shows the first two, and most common, steps for creating an identity provider
role in a simple environment. This example allows any user in the 123456789012 account to assume
the role and view the example_bucket Amazon S3 bucket. This example also assumes that you are
running the AWS CLI on a computer running Windows, and have already configured the AWS CLI with
your credentials. For more information, see Configuring the AWS Command Line Interface.

In this example, include the following trust policy in the first command when you create the role. This
trust policy allows users in the 123456789012 account to assume the role using the AssumeRole
operation, but only if the user provides MFA authentication using the SerialNumber and TokenCode
parameters. For more information about MFA, see Using multi-factor authentication (MFA) in
AWS (p. 110).

The following example trust policy is designed for a mobile app if the user signs in using Amazon
Cognito. In this example, us-east:12345678-ffff-ffff-ffff-123456 represents the identity pool
ID assigned by Amazon Cognito.

{
 "Version": "2012-10-17",
 "Statement": {
 "Sid": "RoleForCognito",
 "Effect": "Allow",
 "Principal": {"Federated": "cognito-identity.amazonaws.com"},
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {"StringEquals": {"cognito-identity.amazonaws.com:aud": "us-
east:12345678-ffff-ffff-ffff-123456"}}
 }
}

The following permissions policy allows anyone who assumes the role to perform only the ListBucket
action on the example_bucket Amazon S3 bucket.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:::example_bucket"
 }
}

To create this Test-Cognito-Role role, you must first save the previous trust policy with the name
trustpolicyforcognitofederation.json and the previous permissions policy with the name
permspolicyforcognitofederation.json to the policies folder in your local C: drive. You can
then use the following commands to create the role and attach the inline policy.

Create the role and attach the trust policy that enables users in an account to assume
 the role.
$ aws iam create-role --role-name Test-Cognito-Role --assume-role-policy-document file://C:
\policies\trustpolicyforcognitofederation.json

Attach the permissions policy to the role to specify what it is allowed to do.
aws iam put-role-policy --role-name Test-Cognito-Role --policy-name Perms-Policy-For-
CognitoFederation --policy-document file://C:\policies\permspolicyforcognitofederation.json

242

https://docs.aws.amazon.com/cli/latest/reference/iam/put-role-permissions-boundary.html
https://docs.aws.amazon.com/cli/latest/reference/iam/put-role-permissions-boundary.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html

AWS Identity and Access Management User Guide
Creating roles

Creating a role for federated access (AWS API)

The steps to create a role for the supported identity providers (OIDC or SAML) from the AWS CLI are
identical. The difference is in the contents of the trust policy that you create in the prerequisite steps.
Begin by following the steps in the Prerequisites section for the type of provider you are using:

• For an OIDC provider, see Prerequisites for creating a role for web identity or OIDC (p. 243).
• For a SAML provider, see Prerequisites for creating a role for SAML (p. 247).

To create a role for identity federation (AWS API)

1. Create a role: CreateRole
2. Attach a permissions policy to the role:AttachRolePolicy

or

Create an inline permissions policy for the role: PutRolePolicy
3. (Optional) Add custom attributes to the user by attaching tags: TagRole

For more information, see Managing tags on IAM users (AWS CLI or AWS API) (p. 300).
4. (Optional) Set the permissions boundary (p. 395) for the role: PutRolePermissionsBoundary

A permissions boundary controls the maximum permissions that a role can have. Permissions
boundaries are an advanced AWS feature.

Creating a role for web identity or OpenID connect federation (console)

You can use Web Identity or OpenID Connect Federation (OIDC) identity providers instead of creating
IAM users in your AWS account. With an identity provider (IdP), you can manage your user identities
outside of AWS and give these external user identities permissions to access AWS resources in your
account. For more information about federation and identity providers, see Identity providers and
federation (p. 177).

Prerequisites for creating a role for web identity or OIDC

Before you can create a role for web identity federation, you must first complete the following
prerequisite steps.

To prepare to create a role for web identity federation

1. Sign up as a developer with one or more IdPs. If you are creating an app that needs access to your
AWS resources, you also configure your app with the provider information. When you do, the
provider gives you an application or audience ID that's unique to your app. (Different providers
use different terminology for this process. This guide uses the term configure for the process of
identifying your app with the provider.) You can configure multiple apps with each provider, or
multiple providers with a single app. View information about using the identity providers:

• Login with Amazon Developer Center
• Add Facebook Login to Your App or Website on the Facebook developers site.
• Using OAuth 2.0 for Login (OpenID Connect) on the Google developers site.

2. After getting the required information from the identity provider, create an identity provider in IAM.
For more information, see Creating OpenID Connect (OIDC) identity providers (p. 187).

Important
If you are using an OIDC identity provider from Google, Facebook, or Amazon Cognito,
don't create a separate IAM identity provider in the AWS Management Console. These OIDC

243

https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutRolePermissionsBoundary.html
https://login.amazon.com/
https://developers.facebook.com/docs/facebook-login/v2.1
https://developers.google.com/accounts/docs/OAuth2Login

AWS Identity and Access Management User Guide
Creating roles

identity providers are already built-in to AWS and are available for your use. Skip this step
and move directly to creating new roles using your identity provider in the following step.

3. Prepare the policies for the role that the IdP-authenticated users will assume. As with any role, a role
for a mobile app includes two policies. One is the trust policy that specifies who can assume the role.
The other is the permissions policy that specifies the AWS actions and resources that the mobile app
is allowed or denied access to.

For web identity providers, we recommend that you use Amazon Cognito to manage identities. In
this case, use a trust policy similar to this example.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": {"Federated": "cognito-identity.amazonaws.com"},
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringEquals": {"cognito-identity.amazonaws.com:aud": "us-east-2:12345678-
abcd-abcd-abcd-123456"},
 "ForAnyValue:StringLike": {"cognito-identity.amazonaws.com:amr":
 "unauthenticated"}
 }
 }
}

Replace us-east-2:12345678-abcd-abcd-abcd-123456 with the identity pool ID that Amazon
Cognito assigned to you.

If you manually configure a web identity IdP, when you create the trust policy, you must use three
values that ensure that only your app can assume the role:

• For the Action element, use the sts:AssumeRoleWithWebIdentity action.

• For the Principal element, use the string {"Federated":providerUrl/providerArn}.

• For some common OpenID Connect (OIDC) IdPs, the providerUrl is a URL. The following
examples include methods to specify the principal for some common IdPs:

"Principal":{"Federated":"cognito-identity.amazonaws.com"}

"Principal":{"Federated":"www.amazon.com"}

"Principal":{"Federated":"graph.facebook.com"}

"Principal":{"Federated":"accounts.google.com"}

• For other OIDC providers, use the ARN of the OIDC identity provider that you created in Step 2,
such as the following example:

"Principal":{"Federated":"arn:aws:iam::123456789012:oidc-provider/
server.example.com"}

• For the Condition element, use a StringEquals condition to limit permissions. Test the
identity pool ID for Amazon Cognito) or the app ID for other providers. It should match the app
ID that you received when you configured the app with the IdP. This ensures that the request is
coming from your app. Create a condition element similar to the following examples, depending
on the IdP that you are using:

"Condition": {"StringEquals": {"cognito-identity.amazonaws.com:aud": "us-
east:12345678-ffff-ffff-ffff-123456"}}

244

https://aws.amazon.com/cognito/

AWS Identity and Access Management User Guide
Creating roles

"Condition": {"StringEquals": {"www.amazon.com:app_id":
"amzn1.application-oa2-123456"}}

"Condition": {"StringEquals": {"graph.facebook.com:app_id":
"111222333444555"}}

"Condition": {"StringEquals": {"accounts.google.com:aud":
"66677788899900pro0"}}

For OIDC providers, use the fully qualified URL of the OIDC IdP with the aud context key, such as
the following example:

"Condition": {"StringEquals": {"server.example.com:aud":
"appid_from_oidc_idp"}}

Notice that the values for the principal in the trust policy for the role are specific to an IdP. A role can
specify only one principal. Therefore, if the mobile app allows users to sign in from more than one
IdP, you must create a separate role for each IdP that you want to support. Therefore, you should
create separate trust policies for each IdP.

The following example trust policy is designed for a mobile app if the user signs in from Login with
Amazon. In the example, amzn1.application-oa2-123456 represents the app ID that Amazon
assigned when you configured the app using Login with Amazon.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "RoleForLoginWithAmazon",
 "Effect": "Allow",
 "Principal": {"Federated": "www.amazon.com"},
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {"StringEquals": {"www.amazon.com:app_id": "amzn1.application-
oa2-123456"}}
 }]
 }

The following example trust policy is designed for a mobile app if the user signs in from Facebook.
In this example, 111222333444555 represents the app ID assigned by Facebook.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "RoleForFacebook",
 "Effect": "Allow",
 "Principal": {"Federated": "graph.facebook.com"},
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {"StringEquals": {"graph.facebook.com:app_id":
 "111222333444555"}}
 }]
 }

The following example trust policy is designed for a mobile app if the user signs in from Google. In
this example, 666777888999000 represents the app ID assigned by Google.

{
 "Version": "2012-10-17",

245

AWS Identity and Access Management User Guide
Creating roles

 "Statement": [{
 "Sid": "RoleForGoogle",
 "Effect": "Allow",
 "Principal": {"Federated": "accounts.google.com"},
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {"StringEquals": {"accounts.google.com:aud": "666777888999000"}}
 }]
 }

The following example trust policy is designed for a mobile app if the user signs in using Amazon
Cognito. In this example, us-east:12345678-ffff-ffff-ffff-123456 represents the identity
pool ID assigned by Amazon Cognito.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "RoleForCognito",
 "Effect": "Allow",
 "Principal": {"Federated": "cognito-identity.amazonaws.com"},
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {"StringEquals": {"cognito-identity.amazonaws.com:aud": "us-
east:12345678-ffff-ffff-ffff-123456"}}
 }]
 }

Creating a role for web identity or OIDC

After you complete the prerequisites, you can create the role in IAM. The following procedure describes
how to create the role for web identity/OIDC federation in the AWS Management Console. To create
a role from the AWS CLI or AWS API, see the procedures at Creating a role for a third-party Identity
Provider (federation) (p. 241).

Important
If you are using Amazon Cognito, you should use the Amazon Cognito console to set up the
roles. Otherwise, use the IAM console to create a role for web identity federation.

To create an IAM role for web identity federation

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles and then choose Create role.
3. Choose the Web identity role type.
4. For Identity provider, choose the identity provider for your role:

• If you're creating a role for an individual web identity provider, choose Login with Amazon,
Facebook, or Google.

Note
You must create a separate role for each identity provider that you want to support.

• If you're creating an advanced scenario role for Amazon Cognito, choose Amazon Cognito.

Note
You need to manually create a role for use with Amazon Cognito only when you are
working on an advanced scenario. Otherwise, Amazon Cognito can create roles for you.
For more information about Amazon Cognito, see Amazon Cognito Identity in the AWS
Mobile SDK for iOS Developer Guide and Amazon Cognito Identity in the AWS Mobile SDK
for Android Developer Guide.

246

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/mobile/sdkforios/developerguide/cognito-auth.html
https://docs.aws.amazon.com/mobile/sdkforandroid/developerguide/cognito-auth.html

AWS Identity and Access Management User Guide
Creating roles

5. Type the identifier for your application. The label of the identifier changes depending on which
provider you choose:

• If you're creating a role for Login with Amazon, type the app ID into the Application ID box.

• If you're creating a role for Facebook, type the app ID into the Application ID box.

• If you're creating a role for Google, type the audience name into the Audience box.

• If you're creating a role for Amazon Cognito, type the ID of the identity pool that you have created
for your Amazon Cognito applications into the Identity Pool ID box.

6. (Optional) Click Add condition (optional) to create additional conditions that must be met before
users of your application can use the permissions that the role grants. For example, you can add a
condition that grants access to AWS resources only for a specific IAM user ID.

7. Review your web identity information and then choose Next: Permissions.

8. IAM includes a list of the AWS managed and customer managed policies in your account. Select
the policy to use for the permissions policy or choose Create policy to open a new browser tab
and create a new policy from scratch. For more information, see step 4 in the procedure Creating
IAM policies (p. 469). After you create the policy, close that tab and return to your original tab.
Select the check box next to the permissions policies that you want web identity users to have. If you
prefer, you can select no policies at this time, and then attach policies to the role later. By default, a
role has no permissions.

9. (Optional) Set a permissions boundary (p. 395). This is an advanced feature.

Open the Set permissions boundary section and choose Use a permissions boundary to control
the maximum role permissions. Select the policy to use for the permissions boundary.

10. Choose Next: Tags.

11. (Optional) Add metadata to the role by attaching tags as key–value pairs. For more information
about using tags in IAM, see Tagging IAM resources (p. 296).

12. Choose Next: Review.

13. For Role name, type a role name. Role names must be unique within your AWS account. They
are not distinguished by case. For example, you cannot create roles named both PRODROLE and
prodrole. Because other AWS resources might reference the role, you cannot edit the name of the
role after it has been created.

14. (Optional) For Role description, type a description for the new role.

15. Review the role and then choose Create role.

Creating a role for SAML 2.0 federation (console)

You can use SAML 2.0 federation instead of creating IAM users in your AWS account. With an identity
provider (IdP), you can manage your user identities outside of AWS and give these external user identities
permissions to access AWS resources in your account. For more information about federation and
identity providers, see Identity providers and federation (p. 177).

Prerequisites for creating a role for SAML

Before you can create a role for SAML 2.0 federation, you must first complete the following prerequisite
steps:

To prepare to create a role for SAML 2.0 federation

1. Before you create a role for SAML-based federation, you must create a SAML provider in IAM. For
more information, see Creating IAM SAML identity providers (p. 197).

2. Prepare the policies for the role that the SAML 2.0–authenticated users will assume. As with any
role, a role for the SAML federation includes two policies. One is the role trust policy that specifies

247

AWS Identity and Access Management User Guide
Creating roles

who can assume the role. The other is the IAM permissions policy that specifies the AWS actions and
resources that the federated user is allowed or denied access to.

When you create the trust policy for your role, you must use three values that ensure that the role
can be assumed only by your application:

• For the Action element, use the sts:AssumeRoleWithSAML action.

• For the Principal element, use the string {"Federated":ARNofIdentityProvider}.
Replace ARNofIdentityProvider with the ARN of the SAML identity provider (p. 183) that
you created in Step 1.

• For the Condition element, use a StringEquals condition to test that the saml:aud attribute
from the SAML response matches the SAML federation endpoint for AWS.

The following example trust policy is designed for a SAML federated user:

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "sts:AssumeRoleWithSAML",
 "Principal": {"Federated": "arn:aws:iam::ACCOUNT-ID-WITHOUT-HYPHENS:saml-
provider/PROVIDER-NAME"},
 "Condition": {"StringEquals": {"SAML:aud": "https://signin.aws.amazon.com/saml"}}
 }
 }

Replace the principal ARN with the actual ARN for the SAML provider that you created in IAM. It will
have your own account ID and provider name.

Creating a role for SAML

After you complete the prerequisite steps, you can create the role for SAML-based federation.

To create a role for SAML-based federation

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles and then choose Create role.

3. Choose the SAML 2.0 federation role type.

4. For SAML Provider, choose the provider for your role.

5. Choose the SAML 2.0 access level method.

• Choose Allow programmatic access only to create a role that can be assumed programmatically
from the AWS API or AWS CLI.

• Choose Allow programmatic and AWS Management Console access to create a role that can be
assumed programmatically and from the AWS Management Console.

The roles created by both are similar, but the role that can also be assumed from the console
includes a trust policy with a particular condition. That condition explicitly ensures that the
SAML audience (SAML:aud attribute) is set to the AWS sign-in endpoint for SAML (https://
signin.aws.amazon.com/saml).

6. If you're creating a role for programmatic access, choose an attribute from the Attribute list. Then in
the Value box, type a value to include in the role. This restricts role access to users from the identity
provider whose SAML authentication response (assertion) includes the attributes that you specify.

248

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Creating roles

You must specify at least one attribute to ensure that your role is limited to a subset of users at your
organization.

If you're creating a role for programmatic and console access, the SAML:aud attribute
is automatically added and set to the URL of the AWS SAML endpoint (https://
signin.aws.amazon.com/saml).

7. To add more attribute-related conditions to the trust policy, choose Add condition (optional), select
the additional condition, and specify a value.

Note
The list includes the most commonly used SAML attributes. IAM supports additional
attributes that you can use to create conditions. For a list of the supported attributes, see
Available Keys for SAML Federation. If you need a condition for a supported SAML attribute
that's not in the list, you can manually add that condition. To do that, edit the trust policy
after you create the role.

8. Review your SAML 2.0 trust information and then choose Next: Permissions.
9. IAM includes a list of the AWS managed and customer managed policies in your account. Select

the policy to use for the permissions policy or choose Create policy to open a new browser tab
and create a new policy from scratch. For more information, see step 4 in the procedure Creating
IAM policies (p. 469). After you create the policy, close that tab and return to your original tab.
Select the check box next to the permissions policies that you want web identity users to have. If you
prefer, you can select no policies at this time, and then attach policies to the role later. By default, a
role has no permissions.

10. (Optional) Set a permissions boundary (p. 395). This is an advanced feature.

Open the Set permissions boundary section and choose Use a permissions boundary to control
the maximum role permissions. Select the policy to use for the permissions boundary.

11. Choose Next: Tags.
12. (Optional) Add metadata to the role by attaching tags as key–value pairs. For more information

about using tags in IAM, see Tagging IAM resources (p. 296).
13. Choose Next: Review.
14. For Role name, type a role name. Role names must be unique within your AWS account. They

are not distinguished by case. For example, you cannot create roles named both PRODROLE and
prodrole. Because other AWS resources might reference the role, you cannot edit the name of the
role after it has been created.

15. (Optional) For Role description, type a description for the new role.
16. Review the role and then choose Create role.

After you create the role, you complete the SAML trust by configuring your identity provider software
with information about AWS. This information includes the roles that you want your federated users
to use. This is referred to as configuring the relying party trust between your IdP and AWS. For more
information, see Configuring your SAML 2.0 IdP with relying party trust and adding claims (p. 201).

Examples of policies for delegating access
The following examples show how you can allow or grant an AWS account access to the resources in
another AWS account. To learn how to create an IAM policy using these example JSON policy documents,
see the section called “Creating policies on the JSON tab” (p. 469).

Topics
• Using roles to delegate access to another AWS account's resources (p. 250)
• Using a policy to delegate access to services (p. 250)
• Using a resource-based policy to delegate access to an Amazon S3 bucket in another

account (p. 250)

249

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_iam-condition-keys.html#condition-keys-saml

AWS Identity and Access Management User Guide
Creating roles

• Using a resource-based policy to delegate access to an Amazon SQS queue in another
account (p. 251)

• Cannot delegate access when the account is denied access (p. 252)

Using roles to delegate access to another AWS account's resources

For a tutorial that shows how to use IAM roles to grant users in one account access to AWS resources that
are in another account, see IAM tutorial: Delegate access across AWS accounts using IAM roles (p. 33).

Important
You can include the ARN for a specific role or user in the Principal element of a role trust
policy. When you save the policy, AWS transforms the ARN to a unique principal ID. This
helps mitigate the risk of someone escalating their privileges by removing and recreating
the role or user. You don't normally see this ID in the console, because there is also a reverse
transformation back to the ARN when the trust policy is displayed. However, if you delete the
role or user, then the relationship is broken. The policy no longer applies, even if you recreate
the user or role because it does not match the principal ID stored in the trust policy. When this
happens, the principal ID shows up in the console because AWS can no longer map it back to
an ARN. The result is that if you delete and recreate a user or role referenced in a trust policy's
Principal element, you must edit the role to replace the ARN. It is transformed into the new
principal ID when you save the policy.

Using a policy to delegate access to services

The following example shows a policy that can be attached to a role. The policy enables two services,
Amazon EMR and AWS Data Pipeline, to assume the role. The services can then perform any tasks
granted by the permissions policy assigned to the role (not shown). To specify multiple service principals,
you do not specify two Service elements; you can have only one. Instead, you use an array of multiple
service principals as the value of a single Service element.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "elasticmapreduce.amazonaws.com",
 "datapipeline.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

Using a resource-based policy to delegate access to an Amazon S3 bucket in
another account

In this example, account A uses a resource-based policy (an Amazon S3 bucket policy) to grant account B
full access to account A's S3 bucket. Then account B creates an IAM user policy to delegate that access to
account A's bucket to one of the users in account B.

The S3 bucket policy in account A might look like the following policy. In this example, account A's S3
bucket is named mybucket, and account B's account number is 111122223333. It does not specify any
individual users or groups in account B, only the account itself.

{

250

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucketPolicies.html

AWS Identity and Access Management User Guide
Creating roles

 "Version": "2012-10-17",
 "Statement": {
 "Sid": "AccountBAccess1",
 "Effect": "Allow",
 "Principal": {"AWS": "111122223333"},
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::mybucket",
 "arn:aws:s3:::mybucket/*"
]
 }
}

Alternatively, account A can use Amazon S3 Access Control Lists (ACLs) to grant account B access to an
S3 bucket or a single object within a bucket. In that case, the only thing that changes is how account A
grants access to account B. Account B still uses a policy to delegate access to an IAM group in account
B, as described in the next part of this example. For more information about controlling access on S3
buckets and objects, go to Access Control in the Amazon Simple Storage Service Developer Guide.

The administrator of account B might create the following policy sample. The policy allows read access
to a group or user in account B. The preceding policy grants access to account B. However, individual
groups and users in account B cannot access the resource until a group or user policy explicitly grants
permissions to the resource. The permissions in this policy can only be a subset of those in the preceding
cross-account policy. Account B cannot grant more permissions to its groups and users than account A
granted to account B in the first policy. In this policy, the Action element is explicitly defined to allow
only List actions, and the Resource element of this policy matches the Resource for the bucket
policy implemented by account A.

To implement this policy account B uses IAM to attach it to the appropriate user (or group) in account B.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "s3:List*",
 "Resource": [
 "arn:aws:s3:::mybucket",
 "arn:aws:s3:::mybucket/*"
]
 }
}

Using a resource-based policy to delegate access to an Amazon SQS queue in
another account

In the following example, account A has an Amazon SQS queue that uses a resource-based policy
attached to the queue to grant queue access to account B. Then account B uses an IAM group policy to
delegate access to a group in account B.

The following example queue policy gives account B permission to perform the SendMessage and
ReceiveMessage actions on account A's queue named queue1, but only between noon and 3:00 p.m.
on November 30, 2014. Account B's account number is 1111-2222-3333. Account A uses Amazon SQS to
implement this policy.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": {"AWS": "111122223333"},

251

https://docs.aws.amazon.com/AmazonS3/latest/dev/S3_ACLs_UsingACLs.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingAuthAccess.html

AWS Identity and Access Management User Guide
Creating roles

 "Action": [
 "sqs:SendMessage",
 "sqs:ReceiveMessage"
],
 "Resource": ["arn:aws:sqs:*:123456789012:queue1"],
 "Condition": {
 "DateGreaterThan": {"aws:CurrentTime": "2014-11-30T12:00Z"},
 "DateLessThan": {"aws:CurrentTime": "2014-11-30T15:00Z"}
 }
 }
}

Account B's policy for delegating access to a group in account B might look like the following example.
Account B uses IAM to attach this policy to a group (or user).

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "sqs:*",
 "Resource": "arn:aws:sqs:*:123456789012:queue1"
 }
}

In the preceding IAM user policy example, account B uses a wildcard to grant its user access to all
Amazon SQS actions on account A's queue. However account B can delegate access only to the extent
that account B has been granted access. The account B group that has the second policy can access
the queue only between noon and 3:00 p.m. on November 30, 2014. The user can only perform the
SendMessage and ReceiveMessage actions, as defined in account A's Amazon SQS queue policy.

Cannot delegate access when the account is denied access

An AWS account cannot delegate access to another account's resources if the other account has explicitly
denied access to the user's parent account. The deny propagates to the users under that account whether
or not the users have existing policies granting them access.

For example, account A writes a bucket policy on account A's S3 bucket that explicitly denies account
B access to account A's bucket. But account B writes an IAM user policy that grants a user in account
B access to account A's bucket. The explicit deny applied to account A's S3 bucket propagates to the
users in account B. It overrides the IAM user policy granting access to the user in account B. (For detailed
information how permissions are evaluated, see Policy evaluation logic (p. 784).)

Account A's bucket policy might look like the following policy. In this example, account A's S3 bucket is
named mybucket, and account B's account number is 1111-2222-3333. Account A uses Amazon S3 to
implement this policy.

{
 "Version": "2012-10-17",
 "Statement": {
 "Sid": "AccountBDeny",
 "Effect": "Deny",
 "Principal": {"AWS": "111122223333"},
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::mybucket/*"
 }
}

This explicit deny overrides any policies in account B that provide permission to access the S3 bucket in
account A.

252

AWS Identity and Access Management User Guide
Using roles

Using IAM roles
Before an IAM user, application, or service can use a role that you created, you must grant permissions
to switch to the role. You can use any policy attached to one of an IAM user's groups or to the user itself
to grant the necessary permissions. This section describes how to grant users permission to use a role.
It also explains how the user can switch to a role from the AWS Management Console, the Tools for
Windows PowerShell, the AWS Command Line Interface (AWS CLI) and the AssumeRole API.

Important
When you create a role programmatically instead of in the IAM console, you have an option
to add a Path of up to 512 characters in addition to the RoleName, which can be up to 64
characters long. However, if you intend to use a role with the Switch Role feature in the AWS
Management Console, then the combined Path and RoleName cannot exceed 64 characters.

You can switch roles from the AWS Management Console. You can assume a role by calling an AWS CLI or
API operation or by using a custom URL. The method that you use determines who can assume the role
and how long the role session can last.

Comparing methods for using roles

Method of
assuming the role

Who can assume the role Method to
specify credential
lifetime

Credential
lifetime (min |
max | default)

AWS Management
Console

IAM user (by switching roles (p. 260)) Maximum session
duration on the
Role Summary
page

1h | Maximum
session duration
setting² | 1hr

assume-role CLI
or AssumeRole
API operation

IAM user or role¹ duration-
seconds CLI or
DurationSeconds
API parameter

15m | Maximum
session duration
setting² | 1hr

assume-role-
with-saml CLI or
AssumeRoleWithSAML
API operation

Any user authenticated using SAML duration-
seconds CLI or
DurationSeconds
API parameter

15m | Maximum
session duration
setting² | 1hr

assume-role-
with-web-
identity CLI or
AssumeRoleWithWebIdentity
API operation

Any user authenticated using a web
identity provider

duration-
seconds CLI or
DurationSeconds
API parameter

15m | Maximum
session duration
setting² | 1hr

Console
URL (p. 212)
constructed with
AssumeRole

IAM user or role SessionDuration
HTML parameter
in the URL

15m | 12hr | 1hr

Console
URL (p. 212)
constructed with
AssumeRoleWithSAML

Any user authenticated using SAML SessionDuration
HTML parameter
in the URL

15m | 12hr | 1hr

Console
URL (p. 212)
constructed with
AssumeRoleWithWebIdentity

Any user authenticated using a web
identity provider

SessionDuration
HTML parameter
in the URL

15m | 12hr | 1hr

253

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role-with-saml.html
https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role-with-saml.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithSAML.html
https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role-with-web-identity.html
https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role-with-web-identity.html
https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role-with-web-identity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html

AWS Identity and Access Management User Guide
Using roles

¹ Using the credentials for one role to assume a different role is called role chaining (p. 170). When you
use role chaining, your new credentials are limited to a maximum duration of one hour. When you use
roles to grant permissions to applications that run on EC2 instances (p. 270), those applications are not
subject to this limitation.

² This setting can have a value from 1 hour to 12 hours. For details about modifying the maximum
session duration setting, see Modifying a role (p. 279). This setting determines the maximum
session duration that you can request when you get the role credentials. For example, when you
use the AssumeRole* API operations to assume a role, you can specify a session length using the
DurationSeconds parameter. Use this parameter to specify the length of the role session from 900
seconds (15 minutes) up to the maximum session duration setting for the role. IAM users who switch
roles in the console are granted the maximum session duration, or the remaining time in the IAM user's
session, whichever is less. Assume that you set a maximum duration of 5 hours on a role. An IAM user
that has been signed into the console for 10 hours (out of the default maximum of 12) switches to the
role. The available role session duration is 2 hours. To learn how to view the maximum value for your
role, see View the maximum session duration setting for a role (p. 254) later in this page.

Note
The maximum session duration setting does not limit sessions that are assumed by AWS
services.

Topics

• View the maximum session duration setting for a role (p. 254)

• Granting a user permissions to switch roles (p. 255)

• Granting a user permissions to pass a role to an AWS service (p. 257)

• Switching to a role (console) (p. 260)

• Switching to an IAM role (AWS CLI) (p. 262)

• Switching to an IAM role (Tools for Windows PowerShell) (p. 266)

• Switching to an IAM role (AWS API) (p. 268)

• Using an IAM role to grant permissions to applications running on Amazon EC2 instances (p. 270)

• Revoking IAM role temporary security credentials (p. 277)

View the maximum session duration setting for a role

You can specify the maximum session duration for a role using the AWS Management Console or by
using the AWS CLI or AWS API. When you use an AWS CLI or API operation to assume a role, you can
specify a value for the DurationSeconds parameter. You can use this parameter to specify the duration
of the role session, from 900 seconds (15 minutes) up to the maximum session duration setting for the
role. Before you specify the parameter, you should view this setting for your role. If you specify a value
for the DurationSeconds parameter that is higher than the maximum setting, the operation fails.

To view a role's maximum session duration (console)

1. In the navigation pane of the IAM console, choose Roles.

2. Choose the name of the role that you want to view.

3. Next to Maximum session duration, view the maximum session length that is granted for the role.
This is the maximum session duration that you can specify in your AWS CLI, or API operation.

To view a role's maximum session duration setting (AWS CLI)

1. If you don't know the name of the role that you want to assume, run the following command to list
the roles in your account:

254

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

AWS Identity and Access Management User Guide
Using roles

• aws iam list-roles
2. To view the role's maximum session duration, run the following command. Then view the maximum

session duration parameter.

• aws iam get-role

To view a role's maximum session duration setting (AWS API)

1. If you don't know the name of the role that you want to assume, call the following operation to list
the roles in your account:

• ListRoles
2. To view the role's maximum session duration, run the following operation. Then view the maximum

session duration parameter.

• GetRole

Granting a user permissions to switch roles
When an administrator creates a role for cross-account access (p. 227) they establish trust between
the account that owns the role and the resources (trusting account) and the account that contains the
users (trusted account). To do this, the administrator of the trusting account specifies the trusted account
number as the Principal in the role's trust policy. That allows potentially any user in the trusted
account to assume the role. To complete the configuration, the administrator of the trusted account
must give specific groups or users in that account permission to switch to the role.

To grant a user permission to switch to a role, the administrator of the trusted account creates a new
policy for the user. Or the administrator might edit an existing policy to add the required elements.
The administrator can then send the users a link that takes the user to the Switch Role page with all
the details already filled in. Alternatively, the administrator can provide the user with the account ID
number or account alias that contains the role and the role name. The user then goes to the Switch Role
page and adds the details manually. For details on how a user switches roles, see Switching to a role
(console) (p. 260).

Note that you can switch roles only when you sign in as an IAM user. You cannot switch roles when you
sign in as the AWS account root user.

Important
You cannot switch roles in the AWS Management Console to a role that requires an
ExternalId (p. 231) value. You can switch to such a role only by calling the AssumeRole API that
supports the ExternalId parameter.

Notes

• This topic discusses policies for a user, because we are ultimately granting permissions to
a user to accomplish a task. However, it is best practice not to grant permissions directly to
an individual user (p. 559). For easier management, we recommend assigning policies and
granting permissions to IAM groups and then making the users members of the appropriate
groups.

• When you switch roles in the AWS Management Console, the console always uses your
original credentials to authorize the switch. This applies whether you sign in as an IAM user,
as a SAML-federated role, or as a web-identity federated role. For example, if you switch to
RoleA, it uses your original user or federated role credentials to determine if you are allowed
to assume RoleA. If you then try to switch to RoleB while you are using RoleA, your original
user or federated role credentials are used to authorize your attempt. The credentials for
RoleA are not used for this action.

255

https://docs.aws.amazon.com/cli/latest/reference/iam/list-roles.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-role.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListRoles.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetRole.html

AWS Identity and Access Management User Guide
Using roles

Topics
• Creating or editing the policy (p. 256)
• Providing information to the user (p. 256)

Creating or editing the policy

A policy that grants a user permission to assume a role must include a statement with the Allow effect
on the following:

• The sts:AssumeRole action
• The Amazon Resource Name (ARN) of the role in a Resource element

This is as shown in the following example. Users that get the policy (either through group membership or
directly attached) are allowed to switch to the specified role.

Note
If Resource is set to *, the user can assume any role in any account that trusts the user's
account. (In other words, the role's trust policy specifies the user's account as Principal). As
a best practice, we recommend that you follow the principle of least privilege and specify the
complete ARN for only the roles that the user needs.

The following example shows a policy that lets the user assume roles in only one account. In addition,
the policy uses a wildcard (*) to specify that the user can switch to a role only if the role name begins
with the letters Test.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::ACCOUNT-ID-WITHOUT-HYPHENS:role/Test*"
 }
}

Note
The permissions that the role grants to the user do not add to the permissions already granted
to the user. When a user switches to a role, the user temporarily gives up his or her original
permissions in exchange for those granted by the role. When the user exits the role, then the
original user permissions are automatically restored. For example, let's say the user's permissions
allow working with Amazon EC2 instances, but the role's permissions policy does not grant
those permissions. In that case, while using the role, the user cannot work with Amazon EC2
instances in the console. In addition, temporary credentials obtained via AssumeRole do not
work with Amazon EC2 instances programmatically.

Providing information to the user

After you create a role and grant your user permissions to switch to it, you must provide the user with
the following:

• The name of the role
• The ID or alias of the account that contains the role

You can make things easier for your users by sending them a link that is preconfigured with the account
ID and role name. You can see the role link on the final page of the Create Role wizard or in the Role
Summary page for any cross-account enabled role.

256

http://en.wikipedia.org/wiki/Principle_of_least_privilege

AWS Identity and Access Management User Guide
Using roles

You can also use the following format to manually construct the link. Substitute your account ID or alias
and the role name for the two parameters in the following example.

https://signin.aws.amazon.com/switchrole?
account=your_account_ID_or_alias&roleName=optional_path/role_name

We recommend that you direct your users to Switching to a role (console) (p. 260) to step them
through the process.

Considerations

• If you create the role programmatically, you can create the role with a path in addition to a name.
If you do so, you must provide the complete path and role name to your users so they can enter
it on the Switch Role page of the AWS Management Console. For example: division_abc/
subdivision_efg/role_XYZ.

• If you create the role programmatically, you can add a Path of up to 512 characters in addition to a
RoleName. The role name can be up to 64 characters long. However, to use a role with the Switch
Role feature in the AWS Management Console, the combined Path and RoleName cannot exceed 64
characters.

• For security purposes, you can review AWS CloudTrail logs (p. 369) to learn who performed an action
in AWS. You can use the sts:SourceIdentity condition key in the role trust policy to require users
to specify an identity when they assume a role. For example, you can require that IAM users specify
their own user name as their source identity. This can help you determine which user performed a
specific action in AWS. For more information, see sts:SourceIdentity (p. 841). You can also use
sts:RoleSessionName (p. 840) to require users to specify a session name when they assume a
role. This can help you differentiate between role sessions when a role is used by different principals.

Granting a user permissions to pass a role to an AWS service
To configure many AWS services, you must pass an IAM role to the service. This allows the service to later
assume the role and perform actions on your behalf. For most services, you only have to pass the role
to the service once during set-up, and not every time that the service assumes the role. For example,
assume that you have an application running on an Amazon EC2 instance. That application requires
temporary credentials for authentication, and permissions to authorize the application to perform
actions in AWS. When you set up the application, you must pass a role to EC2 to use with the instance
that provides those credentials. You define the permissions for the applications running on the instance
by attaching an IAM policy to the role. The application assumes the role every time it needs to perform
the actions that are allowed by the role.

To pass a role (and its permissions) to an AWS service, a user must have permissions to pass the role to
the service. This helps administrators ensure that only approved users can configure a service with a role
that grants permissions. To allow a user to pass a role to an AWS service, you must grant the PassRole
permission to the user's IAM user, role, or group.

Note
You cannot limit permissions to pass a role based on tags attached to that role using the
ResourceTag/key-name condition key. For more information, see Controlling access to AWS
resources (p. 417).

When you create a service-linked role, you must also have permission to pass that role to the service.
Some services automatically create a service-linked role in your account when you perform an action in
that service. For example, Amazon EC2 Auto Scaling creates the AWSServiceRoleForAutoScaling
service-linked role for you the first time that you create an Auto Scaling group. If you try to create an
Auto Scaling group without the PassRole permission, you receive an error. If you choose the default
role, the iam:PassRole permission may not be required. To learn which services support service-linked
roles, see AWS services that work with IAM (p. 725). To learn which services automatically create a

257

AWS Identity and Access Management User Guide
Using roles

service-linked role when you perform an action in that service, choose the Yes link and view the service-
linked role documentation for the service.

A user can pass a role ARN as a parameter in any API operation that uses the role to assign permissions
to the service. The service then checks whether that user has the iam:PassRole permission. To limit the
user to passing only approved roles, you can filter the iam:PassRole permission with the Resources
element of the IAM policy statement.

You can use the Condition element in a JSON policy to test the value of keys that are included in
the request context of all AWS requests. To learn more about using condition keys in a policy, see IAM
JSON policy elements: Condition (p. 758). The iam:PassedToService condition key can be used to
specify the service principal of the service to which a role can be passed. To learn more about using the
iam:PassedToService condition key in a policy, see iam:PassedToService (p. 831).

Example 1

Imagine that you want to grant a user the ability to pass any of an approved set of roles to the Amazon
EC2 service upon launching an instance. You need three elements:

• An IAM permissions policy attached to the role that determines what the role can do. Scope
permissions to only the actions that the role must perform, and to only the resources that the role
needs for those actions. You can use AWS managed or customer-created IAM permissions policy.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": ["A list of the permissions the role is allowed to use"],
 "Resource": ["A list of the resources the role is allowed to access"]
 }
}

• A trust policy for the role that allows the service to assume the role. For example, you could attach the
following trust policy to the role with the UpdateAssumeRolePolicy action. This trust policy allows
Amazon EC2 to use the role and the permissions attached to the role.

{
 "Version": "2012-10-17",
 "Statement": {
 "Sid": "TrustPolicyStatementThatAllowsEC2ServiceToAssumeTheAttachedRole",
 "Effect": "Allow",
 "Principal": { "Service": "ec2.amazonaws.com" },
 "Action": "sts:AssumeRole"
 }
}

• An IAM permissions policy attached to the IAM user that allows the user to pass only those roles that
are approved. iam:PassRole usually is accompanied by iam:GetRole so that the user can get the
details of the role to be passed. In this example, the user can pass only roles that exist in the specified
account with names that begin with EC2-roles-for-XYZ-:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "iam:GetRole",
 "iam:PassRole"
],
 "Resource": "arn:aws:iam::<account-id>:role/EC2-roles-for-XYZ-*"
 }]

258

AWS Identity and Access Management User Guide
Using roles

}

Now the user can start an Amazon EC2 instance with an assigned role. Applications running on the
instance can access temporary credentials for the role through the instance profile metadata. The
permissions policies attached to the role determine what the instance can do.

Example 2

Amazon Relational Database Service (Amazon RDS) supports a feature called Enhanced Monitoring. This
feature enables Amazon RDS to monitor a database instance using an agent. It also allows Amazon RDS
to log metrics to Amazon CloudWatch Logs. To enable this feature, you must create a service role to give
Amazon RDS permissions to monitor and write metrics to your logs.

To create a role for Amazon RDS enhanced monitoring

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Choose Roles, and then choose Create role.

3. Choose the AWS Service role type, and then choose the Amazon RDS Role for Enhanced
Monitoring service. Then choose Next: Permissions.

4. Choose the AmazonRDSEnhancedMonitoringRole, permissions policy.

5. Choose Next: Tags.

6. (Optional) Add metadata to the user by attaching tags as key-value pairs. For more information
about using tags in IAM, see Tagging IAM resources (p. 296).

7. Choose Next: Review.

8. For Role name, type a role name that helps you identify the purpose of this role. Role names must
be unique within your AWS account. They are not distinguished by case. For example, you cannot
create roles named both PRODROLE and prodrole. Because various entities might reference the
role, you cannot edit the name of the role after it has been created.

9. (Optional) For Role description, type a description for the new role.

10. Review the role and then choose Create role.

The role automatically gets a trust policy that grants the monitoring.rds.amazonaws.com service
permissions to assume the role. After it does, Amazon RDS can perform all of the actions that the
AmazonRDSEnhancedMonitoringRole policy allows.

The user that you want to enable Enhanced Monitoring needs a policy that includes a statement that
allows the user to pass the role, like the following. Use your account number and replace the role name
with the name you provided in step 8:

 {
 "Sid": "PolicyStatementToAllowUserToPassOneSpecificRole",
 "Effect": "Allow",
 "Action": ["iam:PassRole"],
 "Resource": "arn:aws:iam::<account-id>:role/RDS-Monitoring-Role"
 }

You can combine this statement with statements in another policy or put it in its own policy. To instead
specify that the user can pass any role that begins with RDS-, you can replace the role name in the
resource ARN with a wildcard, for example:

 "Resource": "arn:aws:iam::<account-id>:role/RDS-*"

259

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Using roles

Switching to a role (console)
A role specifies a set of permissions that you can use to access AWS resources that you need. In that
sense, it is similar to a user in AWS Identity and Access Management (IAM). When you sign in as a user,
you get a specific set of permissions. However, you don't sign in to a role, but once signed in you can
switch to a role. This temporarily sets aside your original user permissions and instead gives you the
permissions assigned to the role. The role can be in your own account or any other AWS account. For
more information about roles, their benefits, and how to create them, see IAM roles (p. 168), and
Creating IAM roles (p. 227).

Important
The permissions of your IAM user and any roles that you switch to are not cumulative. Only one
set of permissions is active at a time. When you switch to a role, you temporarily give up your
user permissions and work with the permissions that are assigned to the role. When you exit the
role, your user permissions are automatically restored.

When you switch roles in the AWS Management Console, the console always uses your original
credentials to authorize the switch. This applies whether you sign in as an IAM user, as a SAML-federated
role, or as a web-identity federated role. For example, if you switch to RoleA, IAM uses your original
user or federated role credentials to determine whether you are allowed to assume RoleA. If you then
switch to RoleB while you are using RoleA, AWS still uses your original user or federated role credentials
to authorize the switch, not the credentials for RoleA.

Things to know about switching roles in the console

This section provides additional information about using the IAM console to switch to a role.

Note
You cannot switch roles if you sign in as the AWS account root user. You can switch roles when
you sign in as an IAM user.

• If your administrator gives you a link, choose the link and then skip to step Step 5 in the following
procedure. The link takes you to the appropriate webpage and fills in the account ID (or alias) and the
role name.

• You can manually construct the link and then skip to step Step 5 in the following procedure. To
construct your link, use the following format:

https://signin.aws.amazon.com/switchrole?
account=account_id_number&roleName=role_name&displayName=text_to_display

Where you replace the following text:
• account_id_number – The 12-digit account identifier provided to you by your administrator.

Alternatively, your administrator might create an account alias so that the URL includes your account
name instead of an account ID. For more information, see Your AWS account ID and its alias (p. 66).

• role_name – The name of the role that you want to assume. You can get this from the end
of the role's ARN. For example, provide the TestRole role name from the following role ARN:
namearn:aws:iam::403299380220:role/TestRole.

• (Optional) text_to_display – The text that you want to appear on the navigation bar in place of
your user name when this role is active.

• You can manually switch roles using the information your administrator provides by using the
procedures that follow.

By default, when you switch roles, your AWS Management Console session lasts for 1 hour. IAM user
sessions are 12 hours by default. IAM users who switch roles in the console are granted the role
maximum session duration, or the remaining time in the IAM user's session, whichever is less. For
example, assume that a maximum session duration of 10 hours is set for a role. An IAM user has been
signed in to the console for 8 hours when they decide to switch to the role. There are 4 hours remaining

260

https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html

AWS Identity and Access Management User Guide
Using roles

in the IAM user session, so the allowed role session duration is 4 hours. The following table shows how to
determine the session duration for an IAM user when switching roles in the console.

IAM users console role session duration

IAM user session
time remaining
is…

Role session duration is…

Less than role
maximum session
duration

Time remaining in IAM user session

Greater than role
maximum session
duration

Maximum session duration value

Equal to role
maximum session
duration

Maximum session duration value
(approximate)

Note
Some AWS service consoles can autorenew your role session when it expires without you taking
any action. Some might prompt you to reload your browser page to reauthenticate your session.

To troubleshoot common issues that you might encounter when you assume a role, see I can't assume a
role (p. 699).

To switch to a role (console)

1. Sign in to the AWS Management Console as an IAM user and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the IAM console, choose your user name on the navigation bar in the upper right. It typically looks
like this: username@account_ID_number_or_alias.

3. Choose Switch Role. If this is the first time choosing this option, a page appears with more
information. After reading it, choose Switch Role. If you clear your browser cookies, this page can
appear again.

4. On the Switch Role page, type the account ID number or the account alias and the name of the role
that was provided by your administrator.

Note
If your administrator created the role with a path, such as division_abc/
subdivision_efg/roleToDoX, then you must type that complete path and name in the
Role box. If you type only the role name, or if the combined Path and RoleName exceed
64 characters, the role switch fails. This is a limit of the browser cookies that store the role
name. If this happens, contact your administrator and ask them to reduce the size of the
path and role name.

5. (Optional) Choose a Display name. Type text that you want to appear on the navigation bar in place
of your user name when this role is active. A name is suggested, based on the account and role
information, but you can change it to whatever has meaning for you. You can also select a color to
highlight the display name. The name and color can help remind you when this role is active, which
changes your permissions. For example, for a role that gives you access to the test environment, you
might specify a Display name of Test and select the green Color. For the role that gives you access
to production, you might specify a Display name of Production and select red as the Color.

6. Choose Switch Role. The display name and color replace your user name on the navigation bar, and
you can start using the permissions that the role grants you.

261

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Using roles

Tip
The last several roles that you used appear on the menu. The next time you need to switch to
one of those roles, you can simply choose the role you want. You only need to type the account
and role information manually if the role is not displayed on the menu.

To stop using a role (console)

1. In the IAM console, choose your role's Display name on the navigation bar in the upper right. It
typically looks like this: rolename@account_ID_number_or_alias.

2. Choose Back to username. The role and its permissions are deactivated, and the permissions
associated with your IAM user and groups are automatically restored.

For example, assume you are signed in to account number 123456789012 using the user name
RichardRoe. After you use the AdminRole role, you want to stop using the role and return to your
original permissions. To stop using a role, choose AdminRole @ 123456789012, and then choose
Back to RichardRoe.

Switching to an IAM role (AWS CLI)
A role specifies a set of permissions that you can use to access AWS resources that you need. In that
sense, it is similar to a user in AWS Identity and Access Management (IAM). When you sign in as a user,
you get a specific set of permissions. However, you don't sign in to a role, but after signing in as a
user, you can switch to a role. This temporarily sets aside your original user permissions and instead
gives you the permissions assigned to the role. The role can be in your own account or any other AWS
account. For more information about roles, their benefits, and how to create and configure them, see
IAM roles (p. 168), and Creating IAM roles (p. 227). To learn about the different methods that you can
use to assume a role, see Using IAM roles (p. 253).

Important
The permissions of your IAM user and any roles that you assume are not cumulative. Only one
set of permissions is active at a time. When you assume a role, you temporarily give up your
previous user or role permissions and work with the permissions that are assigned to the role.
When you exit the role, your user permissions are automatically restored.

262

https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html

AWS Identity and Access Management User Guide
Using roles

You can use a role to run an AWS CLI command when you are signed in as an IAM user. You can also use
a role to run an AWS CLI command when you are signed in as an externally authenticated user (p. 177)
(SAML (p. 183) or OIDC (p. 178)) that is already using a role. In addition, you can use a role to run an
AWS CLI command from within an Amazon EC2 instance that is attached to a role through its instance
profile. You cannot assume a role when you are signed in as the AWS account root user.

Role chaining (p. 170) – You can also use role chaining, which is using permissions from a role to access
a second role. When you switch roles in the console, you are not using role chaining. You are using the
permissions of your original user.

By default, your role session lasts for one hour. When you assume this role using the assume-role* CLI
operations, you can specify a value for the duration-seconds parameter. This value can range from
900 seconds (15 minutes) up to the maximum session duration setting for the role. To learn how to view
the maximum value for your role, see View the maximum session duration setting for a role (p. 254).

If you use role chaining, your session duration is limited to a maximum of one hour. If you then use the
duration-seconds parameter to provide a value greater than one hour, the operation fails.

Example scenario: Switch to a production role

Imagine that you are an IAM user for working in the development environment. In this scenario, you
occasionally need to work with the production environment at the command line with the AWS CLI.
You already have an access key credential set available to you. This can be the access key pair that is
assigned to your standard IAM user. Or, if you signed in as a federated user, it can be the access key pair
for the role that was initially assigned to you. If your current permissions grant you the ability to assume
a specific IAM role, then you can identify that role in a "profile" in the AWS CLI configuration files. That
command is then run with the permissions of the specified IAM role, not the original identity. Note that
when you specify that profile in an AWS CLI command, you are using the new role. In this situation, you
cannot make use of your original permissions in the development account at the same time. The reason
is that only one set of permissions can be in effect at a time.

Note
For security purposes, administrators can review AWS CloudTrail logs (p. 369) to learn
who performed an action in AWS. Your administrator might require that you specify a
source identity or a role session name when you assume the role. For more information, see
sts:SourceIdentity (p. 841) and sts:RoleSessionName (p. 840).

To switch to a production role (AWS CLI)

1. If you have never used the AWS CLI, then you must first configure your default CLI profile. Open a
command prompt and set up your AWS CLI installation to use the access key from your IAM user or
from your federated role. For more information, see Configuring the AWS Command Line Interface
in the AWS Command Line Interface User Guide.

Run the aws configure command as follows:

aws configure

When prompted, provide the following information:

AWS Access Key ID [None]: AKIAIOSFODNN7EXAMPLE
AWS Secret Access Key [None]: wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
Default region name [None]: us-east-2
Default output format [None]: json

2. Create a new profile for the role in the .aws/config file in Unix or Linux, or the C:\Users
\USERNAME\.aws\config file in Windows. The following example creates a profile called
prodaccess that switches to the role ProductionAccessRole in the 123456789012 account.

263

http://aws.amazon.com/cli/
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html#cli-quick-configuration
https://docs.aws.amazon.com/cli/latest/reference/configure/

AWS Identity and Access Management User Guide
Using roles

You get the role ARN from the account administrator who created the role. When this profile is
invoked, the AWS CLI uses the credentials of the source_profile to request credentials for the
role. Because of that, the identity referenced as the source_profile must have sts:AssumeRole
permissions to the role that is specified in the role_arn.

[profile prodaccess]
 role_arn = arn:aws:iam::123456789012:role/ProductionAccessRole
 source_profile = default

3. After you create the new profile, any AWS CLI command that specifies the parameter --
profile prodaccess runs under the permissions that are attached to the IAM role
ProductionAccessRole instead of the default user.

aws iam list-users --profile prodaccess

This command works if the permissions assigned to the ProductionAccessRole enable listing the
users in the current AWS account.

4. To return to the permissions granted by your original credentials, run commands without the --
profile parameter. The AWS CLI reverts to using the credentials in your default profile, which you
configured in Step 1.

For more information, see Assuming a Role in the AWS Command Line Interface User Guide.

Example scenario: Allow an instance profile role to switch to a role in another
account

Imagine that you are using two AWS accounts, and you want to allow an application running on an
Amazon EC2 instance to run AWS CLI commands in both accounts. Assume that the EC2 instance exists in
account 111111111111. That instance includes the abcd instance profile role that allows the application
to perform read-only Amazon S3 tasks on the my-bucket-1 bucket within the same 111111111111
account. However, the application must also be allowed to assume the efgh cross-account role to
perform tasks in account 222222222222. To do this, the abcd EC2 instance profile role must have the
following permissions policy:

Account 111111111111 abcd role permissions policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAccountLevelS3Actions",
 "Effect": "Allow",
 "Action": [
 "s3:ListAllMyBuckets",
 "s3:HeadBucket"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowListAndReadS3ActionOnMyBucket",
 "Effect": "Allow",
 "Action": [
 "s3:Get*",
 "s3:List*"
],
 "Resource": [
 "arn:aws:s3:::my-bucket-1/*",
 "arn:aws:s3:::my-bucket-1"
]

264

https://docs.aws.amazon.com/cli/latest/userguide/cli-roles.html
http://aws.amazon.com/cli/

AWS Identity and Access Management User Guide
Using roles

 },
 {
 "Sid": "AllowIPToAssumeCrossAccountRole",
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::222222222222:role/efgh"
 }
]
}

Assume that the efgh cross-account role allows read-only Amazon S3 tasks on the my-bucket-2
bucket within the same 222222222222 account. To do this, the efgh cross-account role must have the
following permissions policy:

Account 222222222222 efgh role permissions policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAccountLevelS3Actions",
 "Effect": "Allow",
 "Action": [
 "s3:ListAllMyBuckets",
 "s3:HeadBucket"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowListAndReadS3ActionOnMyBucket",
 "Effect": "Allow",
 "Action": [
 "s3:Get*",
 "s3:List*"
],
 "Resource": [
 "arn:aws:s3:::my-bucket-2/*",
 "arn:aws:s3:::my-bucket-2"
]
 }
]
}

The efgh role must allow the abcd instance profile role to assume it. To do this, the efgh role must
have the following trust policy:

Account 222222222222 efgh role trust policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "efghTrustPolicy",
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Principal": {"AWS": "arn:aws:iam::111111111111:role/abcd"}
 }
]
}

To then run AWS CLI commands in account 222222222222, you must update the CLI configuration file.
Identify the efgh role as the "profile" and the abcd EC2 instance profile role as the "credential source" in

265

AWS Identity and Access Management User Guide
Using roles

the AWS CLI configuration file. Then your CLI commands are run with the permissions of the efgh role,
not the original abcd role.

Note
For security purposes, you can use AWS CloudTrail to audit the use of roles in the account. To
differentiate between role sessions when a role is used by different principals in CloudTrail
logs, you can use the role session name. When the AWS CLI assumes a role on a user's
behalf as described in this topic, a role session name is automatically created as AWS-CLI-
session-nnnnnnnn. Here nnnnnnnn is an integer that represents the time in Unix epoch time
(the number of seconds since midnight UTC on January 1, 1970). For more information, see
CloudTrail Event Reference in the AWS CloudTrail User Guide.

To allow an EC2 instance profile role to switch to a cross-account role (AWS CLI)

1. You do not have to configure a default CLI profile. Instead, you can load credentials from the
EC2 instance profile metadata. Create a new profile for the role in the .aws/config file. The
following example creates an instancecrossaccount profile that switches to the role efgh in
the 222222222222 account. When this profile is invoked, the AWS CLI uses the credentials of the
EC2 instance profile metadata to request credentials for the role. Because of that, the EC2 instance
profile role must have sts:AssumeRole permissions to the role specified in the role_arn.

[profile instancecrossaccount]
role_arn = arn:aws:iam::222222222222:role/efgh
credential_source = Ec2InstanceMetadata

2. After you create the new profile, any AWS CLI command that specifies the parameter --profile
instancecrossaccount runs under the permissions that are attached to the efgh role in account
222222222222.

aws s3 ls my-bucket-2 --profile instancecrossaccount

This command works if the permissions that are assigned to the efgh role allow listing the users in
the current AWS account.

3. To return to the original EC2 instance profile permissions in account 111111111111, run the CLI
commands without the --profile parameter.

For more information, see Assuming a Role in the AWS Command Line Interface User Guide.

Switching to an IAM role (Tools for Windows PowerShell)

A role specifies a set of permissions that you can use to access AWS resources that you need. In that
sense, it is similar to a user in AWS Identity and Access Management (IAM). When you sign in as a
user, you get a specific set of permissions. However, you don't sign in to a role, but once signed in you
can switch to a role. This temporarily sets aside your original user permissions and instead gives you
the permissions assigned to the role. The role can be in your own account or any other AWS account.
For more information about roles, their benefits, and how to create and configure them, see IAM
roles (p. 168), and Creating IAM roles (p. 227).

Important
The permissions of your IAM user and any roles that you switch to are not cumulative. Only one
set of permissions is active at a time. When you switch to a role, you temporarily give up your
user permissions and work with the permissions that are assigned to the role. When you exit the
role, your user permissions are automatically restored.

This section describes how to switch roles when you work at the command line with the AWS Tools for
Windows PowerShell.

266

http://wikipedia.org/wiki/Unix_time
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/eventreference.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html

AWS Identity and Access Management User Guide
Using roles

Imagine that you have an account in the development environment and you occasionally need to work
with the production environment at the command line using the Tools for Windows PowerShell. You
already have one access key credential set available to you. These can be an access key pair assigned
to your standard IAM user. Or, if you signed-in as a federated user, they can be the access key pair for
the role initially assigned to you. You can use these credentials to run the Use-STSRole cmdlet that
passes the ARN of a new role as a parameter. The command returns temporary security credentials for
the requested role. You can then use those credentials in subsequent PowerShell commands with the
role's permissions to access resources in production. While you use the role, you cannot use your user
permissions in the Development account because only one set of permissions is in effect at a time.

Note
For security purposes, administrators can review AWS CloudTrail logs (p. 369) to learn
who performed an action in AWS. Your administrator might require that you specify a
source identity or a role session name when you assume the role. For more information, see
sts:SourceIdentity (p. 841) and sts:RoleSessionName (p. 840).

Note that all access keys and tokens are examples only and cannot be used as shown. Replace with the
appropriate values from your live environment.

To switch to a role (Tools for Windows PowerShell)

1. Open a PowerShell command prompt and configure the default profile to use the access key from
your current IAM user or from your federated role. If you have previously used the Tools for Windows
PowerShell, then this is likely already done. Note that you can switch roles only if you are signed in
as an IAM user, not the AWS account root user.

PS C:\> Set-AWSCredentials -AccessKey AKIAIOSFODNN7EXAMPLE -SecretKey wJalrXUtnFEMI/
K7MDENG/bPxRfiCYEXAMPLEKEY -StoreAs MyMainUserProfile
PS C:\> Initialize-AWSDefaults -ProfileName MyMainUserProfile -Region us-east-2

For more information, see Using AWS Credentials in the AWS Tools for Windows PowerShell User
Guide.

2. To retrieve credentials for the new role, run the following command to switch to the RoleName role
in the 123456789012 account. You get the role ARN from the account administrator who created
the role. The command requires that you provide a session name as well. You can choose any text
for that. The following command requests the credentials and then captures the Credentials
property object from the returned results object and stores it in the $Creds variable.

PS C:\> $Creds = (Use-STSRole -RoleArn "arn:aws:iam::123456789012:role/RoleName" -
RoleSessionName "MyRoleSessionName").Credentials

$Creds is an object that now contains the AccessKeyId, SecretAccessKey, and SessionToken
elements that you need in the following steps. The following sample commands illustrate typical
values:

PS C:\> $Creds.AccessKeyId
AKIAIOSFODNN7EXAMPLE

PS C:\> $Creds.SecretAccessKey
wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

PS C:\> $Creds.SessionToken
AQoDYXdzEGcaEXAMPLE2gsYULo+Im5ZEXAMPLEeYjs1M2FUIgIJx9tQqNMBEXAMPLECvSRyh0FW7jEXAMPLEW
+vE/7s1HRp
XviG7b+qYf4nD00EXAMPLEmj4wxS04L/uZEXAMPLECihzFB5lTYLto9dyBgSDyEXAMPLE9/
g7QRUhZp4bqbEXAMPLENwGPy
Oj59pFA4lNKCIkVgkREXAMPLEjlzxQ7y52gekeVEXAMPLEDiB9ST3UuysgsKdEXAMPLE1TVastU1A0SKFEXAMPLEiywCC/
C
s8EXAMPLEpZgOs+6hz4AP4KEXAMPLERbASP+4eZScEXAMPLEsnf87eNhyDHq6ikBQ==

267

http://aws.amazon.com/powershell/
https://docs.aws.amazon.com/powershell/latest/userguide/specifying-your-aws-credentials.html

AWS Identity and Access Management User Guide
Using roles

PS C:\> $Creds.Expiration
Thursday, June 18, 2018 2:28:31 PM

3. To use these credentials for any subsequent command, include them with the -Credentials
parameter. For example, the following command uses the credentials from the role and works only
if the role is granted the iam:ListRoles permission and can therefore run the Get-IAMRoles
cmdlet:

 PS C:\> get-iamroles -Credential $Creds

4. To return to your original credentials, simply stop using the -Credentials $Creds parameter and
allow PowerShell to revert to the credentials that are stored in the default profile.

Switching to an IAM role (AWS API)
A role specifies a set of permissions that you can use to access AWS resources. In that sense, it is similar
to an IAM user. A principal (person or application) assumes a role to receive temporary permissions to
carry out required tasks and interact with AWS resources. The role can be in your own account or any
other AWS account. For more information about roles, their benefits, and how to create and configure
them, see IAM roles (p. 168), and Creating IAM roles (p. 227). To learn about the different methods
that you can use to assume a role, see Using IAM roles (p. 253).

Important
The permissions of your IAM user and any roles that you assume are not cumulative. Only one
set of permissions is active at a time. When you assume a role, you temporarily give up your
previous user or role permissions and work with the permissions that are assigned to the role.
When you exit the role, your original permissions are automatically restored.

To assume a role, an application calls the AWS STS AssumeRole API operation and passes the ARN of
the role to use. The operation creates a new session with temporary credentials. This session has the
same permissions as the identity-based policies for that role.

When you call AssumeRole, you can optionally pass inline or managed session policies (p. 383).
Session policies are advanced policies that you pass as a parameter when you programmatically create a
temporary credential session for a role or federated user. You can pass a single JSON inline session policy
document using the Policy parameter. You can use the PolicyArns parameter to specify up to 10
managed session policies. The resulting session's permissions are the intersection of the entity's identity-
based policies and the session policies. Session policies are useful when you need to give the role's
temporary credentials to someone else. They can use the role's temporary credentials in subsequent
AWS API calls to access resources in the account that owns the role. You cannot use session policies to
grant more permissions than those allowed by the identity-based policy. To learn more about how AWS
determines the effective permissions of a role, see Policy evaluation logic (p. 784).

268

https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

AWS Identity and Access Management User Guide
Using roles

You can call AssumeRole when you are signed in as an IAM user, or as an externally authenticated
user (p. 177) (SAML (p. 183) or OIDC (p. 178)) already using a role. You can also use role
chaining (p. 170), which is using a role to assume a second role. You cannot assume a role when you are
signed in as the AWS account root user.

By default, your role session lasts for one hour. When you assume this role using the AWS STS
AssumeRole* API operations, you can specify a value for the DurationSeconds parameter. This value
can range from 900 seconds (15 minutes) up to the maximum session duration setting for the role. To
learn how to view the maximum value for your role, see View the maximum session duration setting for a
role (p. 254).

If you use role chaining, your session is limited to a maximum of one hour. If you then use the
DurationSeconds parameter to provide a value greater than one hour, the operation fails.

Note
For security purposes, administrators can review AWS CloudTrail logs (p. 369) to learn
who performed an action in AWS. Your administrator might require that you specify a
source identity or a role session name when you assume the role. For more information, see
sts:SourceIdentity (p. 841) and sts:RoleSessionName (p. 840).

The following example in Python using the Boto3 interface to AWS (AWS SDK for Python (Boto) V3)
shows how to call AssumeRole. It also shows how to use the temporary security credentials returned by
AssumeRole to list all Amazon S3 buckets in the account that owns the role.

import boto3

The calls to AWS STS AssumeRole must be signed with the access key ID
and secret access key of an existing IAM user or by using existing temporary
credentials such as those from another role. (You cannot call AssumeRole
with the access key for the root account.) The credentials can be in
environment variables or in a configuration file and will be discovered
automatically by the boto3.client() function. For more information, see the
Python SDK documentation:
http://boto3.readthedocs.io/en/latest/reference/services/sts.html#client

create an STS client object that represents a live connection to the
STS service
sts_client = boto3.client('sts')

Call the assume_role method of the STSConnection object and pass the role
ARN and a role session name.
assumed_role_object=sts_client.assume_role(
 RoleArn="arn:aws:iam::account-of-role-to-assume:role/name-of-role",
 RoleSessionName="AssumeRoleSession1"
)

From the response that contains the assumed role, get the temporary
credentials that can be used to make subsequent API calls
credentials=assumed_role_object['Credentials']

Use the temporary credentials that AssumeRole returns to make a
connection to Amazon S3
s3_resource=boto3.resource(
 's3',
 aws_access_key_id=credentials['AccessKeyId'],
 aws_secret_access_key=credentials['SecretAccessKey'],
 aws_session_token=credentials['SessionToken'],
)

Use the Amazon S3 resource object that is now configured with the
credentials to access your S3 buckets.
for bucket in s3_resource.buckets.all():
 print(bucket.name)

269

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://aws.amazon.com/tools/

AWS Identity and Access Management User Guide
Using roles

Using an IAM role to grant permissions to applications running
on Amazon EC2 instances

Applications that run on an EC2 instance must include AWS credentials in their AWS API requests. You
could have your developers store AWS credentials directly within the EC2 instance and allow applications
in that instance to use those credentials. But developers would then have to manage the credentials and
ensure that they securely pass the credentials to each instance and update each EC2 instance when it's
time to rotate the credentials. That's a lot of additional work.

Instead, you can and should use an IAM role to manage temporary credentials for applications that
run on an EC2 instance. When you use a role, you don't have to distribute long-term credentials (such
as a user name and password or access keys) to an EC2 instance. Instead, the role supplies temporary
permissions that applications can use when they make calls to other AWS resources. When you launch
an EC2 instance, you specify an IAM role to associate with the instance. Applications that run on the
instance can then use the role-supplied temporary credentials to sign API requests.

Using roles to grant permissions to applications that run on EC2 instances requires a bit of extra
configuration. An application running on an EC2 instance is abstracted from AWS by the virtualized
operating system. Because of this extra separation, an additional step is needed to assign an AWS role
and its associated permissions to an EC2 instance and make them available to its applications. This extra
step is the creation of an instance profile that is attached to the instance. The instance profile contains
the role and can provide the role's temporary credentials to an application that runs on the instance.
Those temporary credentials can then be used in the application's API calls to access resources and to
limit access to only those resources that the role specifies. Note that only one role can be assigned to an
EC2 instance at a time, and all applications on the instance share the same role and permissions.

Using roles in this way has several benefits. Because role credentials are temporary and rotated
automatically, you don't have to manage credentials, and you don't have to worry about long-term
security risks. In addition, if you use a single role for multiple instances, you can make a change to that
one role and the change is propagated automatically to all the instances.

Note
Although a role is usually assigned to an EC2 instance when you launch it, a role can also be
attached to an EC2 instance that is already running. To learn how to attach a role to a running
instance, see IAM Roles for Amazon EC2.

Topics

• How do roles for EC2 instances work? (p. 270)

• Permissions required for using roles with Amazon EC2 (p. 272)

• How do I get started? (p. 275)

• Related information (p. 275)

• Using instance profiles (p. 276)

How do roles for EC2 instances work?

In the following figure, a developer runs an application on an EC2 instance that requires access to
the S3 bucket named photos. An administrator creates the Get-pics service role and attaches the
role to the EC2 instance. The role includes a permissions policy that grants read-only access to the
specified S3 bucket. It also includes a trust policy that allows the EC2 instance to assume the role
and retrieve the temporary credentials. When the application runs on the instance, it can use the
role's temporary credentials to access the photos bucket. The administrator doesn't have to grant the
developer permission to access the photos bucket, and the developer never has to share or manage
credentials.

270

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2_instance-profiles.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html#attach-iam-role

AWS Identity and Access Management User Guide
Using roles

1. The administrator uses IAM to create the Get-pics role. In the role's trust policy, the administrator
specifies that only EC2 instances can assume the role. In the role's permission policy, the administrator
specifies read-only permissions for the photos bucket.

2. A developer launches an EC2 instance and assigns the Get-pics role to that instance.

Note
If you use the IAM console, the instance profile is managed for you and is mostly transparent
to you. However, if you use the AWS CLI or API to create and manage the role and EC2
instance, then you must create the instance profile and assign the role to it as separate steps.
Then, when you launch the instance, you must specify the instance profile name instead of
the role name.

3. When the application runs, it obtains temporary security credentials from Amazon EC2 instance
metadata, as described in Retrieving Security Credentials from Instance Metadata. These are
temporary security credentials (p. 322) that represent the role and are valid for a limited period of
time.

With some AWS SDKs, the developer can use a provider that manages the temporary security
credentials transparently. (The documentation for individual AWS SDKs describes the features
supported by that SDK for managing credentials.)

Alternatively, the application can get the temporary credentials directly from the instance metadata
of the EC2 instance. Credentials and related values are available from the iam/security-
credentials/role-name category (in this case, iam/security-credentials/Get-pics) of
the metadata. If the application gets the credentials from the instance metadata, it can cache the
credentials.

4. Using the retrieved temporary credentials, the application accesses the photo bucket. Because of the
policy attached to the Get-pics role, the application has read-only permissions.

The temporary security credentials that are available on the instance are automatically rotated before
they expire so that a valid set is always available. The application just needs to make sure that it gets
a new set of credentials from the instance metadata before the current ones expire. It is possible to
use the AWS SDK to manage credentials so the application does not need to include additional logic
to refresh the credentials. For example, instantiating clients with Instance Profile Credential Providers.
However, if the application gets temporary security credentials from the instance metadata and has
cached them, it should get a refreshed set of credentials every hour, or at least 15 minutes before
the current set expires. The expiration time is included in the information that is returned in the iam/
security-credentials/role-name category.

271

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-instance-metadata.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html#instance-metadata-security-credentials
http://aws.amazon.com/tools/

AWS Identity and Access Management User Guide
Using roles

Permissions required for using roles with Amazon EC2

To launch an instance with a role, the developer must have permission to launch EC2 instances and
permission to pass IAM roles.

The following sample policy allows users to use the AWS Management Console to launch an instance
with a role. The policy includes wildcards (*) to allow a user to pass any role and to perform all Amazon
EC2 actions. The ListInstanceProfiles action allows users to view all of the roles that are available
in the AWS account.

Example Example policy that grants a user permission to use the Amazon EC2 console to
launch an instance with any role

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "iam:PassRole",
 "iam:ListInstanceProfiles",
 "ec2:*"
],
 "Resource": "*"
 }]
}

Restricting which roles can be passed to EC2 instances (using PassRole)

You can use the PassRole permission to restrict which role a user can pass to an EC2 instance when
the user launches the instance. This helps prevent the user from running applications that have more
permissions than the user has been granted—that is, from being able to obtain elevated privileges. For
example, imagine that user Alice has permissions only to launch EC2 instances and to work with Amazon
S3 buckets, but the role she passes to an EC2 instance has permissions to work with IAM and Amazon
DynamoDB. In that case, Alice might be able to launch the instance, log into it, get temporary security
credentials, and then perform IAM or DynamoDB actions that she's not authorized for.

To restrict which roles a user can pass to an EC2 instance, you create a policy that allows the PassRole
action. You then attach the policy to the user (or to an IAM group that the user belongs to) who will
launch EC2 instances. In the Resource element of the policy, you list the role or roles that the user
is allowed to pass to EC2 instances. When the user launches an instance and associates a role with it,
Amazon EC2 checks whether the user is allowed to pass that role. Of course, you should also ensure that
the role that the user can pass does not include more permissions than the user is supposed to have.

Note
PassRole is not an API action in the same way that RunInstances or
ListInstanceProfiles is. Instead, it's a permission that AWS checks whenever a role ARN
is passed as a parameter to an API (or the console does this on the user's behalf). It helps an
administrator to control which roles can be passed by which users. In this case, it ensures that
the user is allowed to attach a specific role to an Amazon EC2 instance.

Example Example policy that grants a user permission to launch an EC2 instance with a
specific role

The following sample policy allows users to use the Amazon EC2 API to launch an instance with a role.
The Resource element specifies the Amazon Resource Name (ARN) of a role. By specifying the ARN,
the policy grants the user the permission to pass only the Get-pics role. If the user tries to specify a
different role when launching an instance, the action fails. The user does have permissions to run any
instance, regardless of whether they pass a role.

272

AWS Identity and Access Management User Guide
Using roles

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "ec2:RunInstances",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "arn:aws:iam::ACCOUNT-ID-WITHOUT-HYPHENS:role/Get-pics"
 }
]
}

Allowing an instance profile role to switch to a role in another account

You can allow an application running on an Amazon EC2 instance to run commands in another account.
To do this, you must allow the EC2 instance role in the first account to switch to a role in the second
account.

Imagine that you are using two AWS accounts and you want to allow an application running on an
Amazon EC2 instance to run AWS CLI commands in both accounts. Assume that the EC2 instance exists in
account 111111111111. That instance includes the abcd instance profile role that allows the application
to perform read-only Amazon S3 tasks on the my-bucket-1 bucket within the same 111111111111
account. However, the application must also be allowed to assume the efgh cross-account role to access
the my-bucket-2 Amazon S3 bucket in account 222222222222.

The abcd EC2 instance profile role must have the following permissions policy to allow the application
to access the my-bucket-1 Amazon S3 bucket:

Account 111111111111 abcd Role Permissions Policy

{
 "Version": "2012-10-17",

273

http://aws.amazon.com/cli/

AWS Identity and Access Management User Guide
Using roles

 "Statement": [
 {
 "Sid": "AllowAccountLevelS3Actions",
 "Effect": "Allow",
 "Action": [
 "s3:ListAllMyBuckets",
 "s3:HeadBucket"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowListAndReadS3ActionOnMyBucket",
 "Effect": "Allow",
 "Action": [
 "s3:Get*",
 "s3:List*"
],
 "Resource": [
 "arn:aws:s3:::my-bucket-1/*",
 "arn:aws:s3:::my-bucket-1"
]
 },
 {
 "Sid": "AllowIPToAssumeCrossAccountRole",
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::222222222222:role/efgh"
 }
]
}

The abcd role must trust the Amazon EC2 service to assume the role. To do this, the abcd role must
have the following trust policy:

Account 111111111111 abcd Role Trust Policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "abcdTrustPolicy",
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Principal": {"Service": "ec2.amazonaws.com"}
 }
]
}

Assume that the efgh cross-account role allows read-only Amazon S3 tasks on the my-bucket-2
bucket within the same 222222222222 account. To do this, the efgh cross-account role must have the
following permissions policy:

Account 222222222222 efgh Role Permissions Policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAccountLevelS3Actions",
 "Effect": "Allow",
 "Action": [
 "s3:ListAllMyBuckets",

274

AWS Identity and Access Management User Guide
Using roles

 "s3:HeadBucket"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowListAndReadS3ActionOnMyBucket",
 "Effect": "Allow",
 "Action": [
 "s3:Get*",
 "s3:List*"
],
 "Resource": [
 "arn:aws:s3:::my-bucket-2/*",
 "arn:aws:s3:::my-bucket-2"
]
 }
]
}

The efgh role must trust the abcd instance profile role to assume it. To do this, the efgh role must have
the following trust policy:

Account 222222222222 efgh Role Trust Policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "efghTrustPolicy",
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Principal": {"AWS": "arn:aws:iam::111111111111:role/abcd"}
 }
]
}

How do I get started?

To understand how roles work with EC2 instances, you need to use the IAM console to create a role,
launch an EC2 instance that uses that role, and then examine the running instance. You can examine the
instance metadata to see how the role's temporary credentials are made available to an instance. You
can also see how an application that runs on an instance can use the role. Use the following resources to
learn more.

•

• SDK walkthroughs. The AWS SDK documentation includes walkthroughs that show an application
running on an EC2 instance that uses temporary credentials for roles to read an Amazon S3 bucket.
Each of the following walkthroughs presents similar steps with a different programming language:

• Configure IAM Roles for Amazon EC2 with the SDK for Java in the AWS SDK for Java Developer Guide

• Launch an EC2 Instance using the SDK for .NET in the AWS SDK for .NET Developer Guide

• Creating an Amazon EC2 Instance with the SDK for Ruby in the AWS SDK for Ruby Developer Guide

Related information

For more information about creating roles or roles for EC2 instances, see the following information:

• For more information about using IAM roles with Amazon EC2 instances, go to the Amazon EC2 User
Guide for Linux Instances.

275

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AESDG-chapter-instancedata.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/java-dg-roles.html
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/run-instance.html
https://docs.aws.amazon.com/sdk-for-ruby/latest/developer-guide/ec2-example-create-instance.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html

AWS Identity and Access Management User Guide
Using roles

• To create a role, see Creating IAM roles (p. 227)

• For more information about using temporary security credentials, see Temporary security credentials
in IAM (p. 322).

• If you work with the IAM API or CLI, you must create and manage IAM instance profiles. For more
information about instance profiles, see Using instance profiles (p. 276).

• For more information about temporary security credentials for roles in the instance metadata, see
Retrieving Security Credentials from Instance Metadata in the Amazon EC2 User Guide for Linux
Instances.

Using instance profiles

Use an instance profile to pass an IAM role to an EC2 instance. For more information, see IAM roles for
Amazon EC2 in the Amazon EC2 User Guide for Linux Instances.

Managing instance profiles (console)

If you use the AWS Management Console to create a role for Amazon EC2, the console automatically
creates an instance profile and gives it the same name as the role. When you then use the Amazon EC2
console to launch an instance with an IAM role, you can select a role to associate with the instance. In the
console, the list that's displayed is actually a list of instance profile names. The console does not create
an instance profile for a role that is not associated with Amazon EC2.

You can use the AWS Management Console to delete IAM roles and instance profiles for Amazon EC2 if
the role and the instance profile have the same name. To learn more about deleting instance profiles, see
Deleting roles or instance profiles (p. 290).

Managing instance profiles (AWS CLI or AWS API)

If you manage your roles from the AWS CLI or the AWS API, you create roles and instance profiles as
separate actions. Because roles and instance profiles can have different names, you must know the
names of your instance profiles as well as the names of roles they contain. That way you can choose the
correct instance profile when you launch an EC2 instance.

You can attach tags to your IAM resources, including instance profiles, to identify, organize, and control
access to them. You can tag instance profiles only when you use the AWS CLI or AWS API.

Note
An instance profile can contain only one IAM role, although a role can be included in multiple
instance profiles. This limit of one role per instance profile cannot be increased. You can remove
the existing role and then add a different role to an instance profile. You must then wait for the
change to appear across all of AWS because of eventual consistency. To force the change, you
must disassociate the instance profile and then associate the instance profile, or you can stop
your instance and then restart it.

Managing instance profiles (AWS CLI)

You can use the following AWS CLI commands to work with instance profiles in an AWS account.

• Create an instance profile: aws iam create-instance-profile

• Tag an instance profile: aws iam tag-instance-profile

• List tags for an instance profile: aws iam list-instance-profile-tags

• Untag an instance profile: aws iam untag-instance-profile

• Add a role to an instance profile: aws iam add-role-to-instance-profile

• List instance profiles: aws iam list-instance-profiles, aws iam list-instance-
profiles-for-role

276

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html#instance-metadata-security-credentials
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://en.wikipedia.org/wiki/Eventual_consistency
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DisassociateIamInstanceProfile.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_AssociateIamInstanceProfile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/create-instance-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/tag-instance-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-instance-profile-tags.html
https://docs.aws.amazon.com/cli/latest/reference/iam/untag-instance-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/add-role-to-instance-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-instance-profiles.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-instance-profiles-for-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-instance-profiles-for-role.html

AWS Identity and Access Management User Guide
Using roles

• Get information about an instance profile: aws iam get-instance-profile
• Remove a role from an instance profile: aws iam remove-role-from-instance-profile
• Delete an instance profile: aws iam delete-instance-profile

You can also attach a role to an already running EC2 instance by using the following commands. For
more information, see IAM Roles for Amazon EC2.

• Attach an instance profile with a role to a stopped or running EC2 instance: aws ec2 associate-
iam-instance-profile

• Get information about an instance profile attached to an EC2 instance: aws ec2 describe-iam-
instance-profile-associations

• Detach an instance profile with a role from a stopped or running EC2 instance: aws ec2
disassociate-iam-instance-profile

Managing instance profiles (AWS API)

You can call the following AWS API operations to work with instance profiles in an AWS account.

• Create an instance profile: CreateInstanceProfile
• Tag an instance profile: TagInstanceProfile
• List tags on an instance profile: ListInstanceProfileTags
• Untag an instance profile: UntagInstanceProfile
• Add a role to an instance profile: AddRoleToInstanceProfile
• List instance profiles: ListInstanceProfiles, ListInstanceProfilesForRole
• Get information about an instance profile: GetInstanceProfile
• Remove a role from an instance profile: RemoveRoleFromInstanceProfile
• Delete an instance profile: DeleteInstanceProfile

You can also attach a role to an already running EC2 instance by calling the following operations. For
more information, see IAM Roles for Amazon EC2.

• Attach an instance profile with a role to a stopped or running EC2 instance:
AssociateIamInstanceProfile

• Get information about an instance profile attached to an EC2 instance:
DescribeIamInstanceProfileAssociations

• Detach an instance profile with a role from a stopped or running EC2 instance:
DisassociateIamInstanceProfile

Revoking IAM role temporary security credentials
Warning
If you follow the steps on this page, all users with current sessions created by assuming the role
are denied access to all AWS actions and resources. This can result in users losing unsaved work.

When you permit users to access the AWS Management Console with a long session duration time (such
as 12 hours), their temporary credentials do not expire as quickly. If users inadvertently expose their
credentials to an unauthorized third party, that party has access for the duration of the session. However,
you can immediately revoke all permissions to the role's credentials issued before a certain point in time
if you need to. All temporary credentials for that role issued before the specified time become invalid.
This forces all users to reauthenticate and request new credentials.

277

https://docs.aws.amazon.com/cli/latest/reference/iam/get-instance-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/remove-role-from-instance-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-instance-profile.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html#attach-iam-role
https://docs.aws.amazon.com/cli/latest/reference/ec2/associate-iam-instance-profile.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/associate-iam-instance-profile.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-iam-instance-profile-associations.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/describe-iam-instance-profile-associations.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/disassociate-iam-instance-profile.html
https://docs.aws.amazon.com/cli/latest/reference/ec2/disassociate-iam-instance-profile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateInstanceProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagInstanceProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagInstanceProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagInstanceProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AddRoleToInstanceProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListInstanceProfiles.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListInstanceProfilesForRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetInstanceProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_RemoveRoleFromInstanceProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteInstanceProfile.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html#attach-iam-role
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_AssociateIamInstanceProfile.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeIamInstanceProfileAssociations.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DisassociateIamInstanceProfile.html

AWS Identity and Access Management User Guide
Using roles

Note
You cannot revoke the session for a service-linked role (p. 169).

When you revoke permissions for a role using the procedure in this topic, AWS attaches a new inline
policy to the role that denies all permissions to all actions. It includes a condition that applies the
restrictions only if the user assumed the role before the point in time when you revoke the permissions. If
the user assumes the role after you revoked the permissions, then the deny policy does not apply to that
user.

Important
This deny policy applies to all users of the specified role, not just those with longer duration
console sessions.

Minimum permissions to revoke session permissions from a role

To successfully revoke session permissions from a role, you must have the PutRolePolicy permission
for the role. This allows you to attach the AWSRevokeOlderSessions inline policy to the role.

Revoking session permissions

You can revoke the session permissions from a role.

To immediately deny all permissions to any current user of role credentials

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles, and then choose the name (not the check box) of the role
whose permissions you want to revoke.

3. On the Summary page for the selected role, choose the Revoke sessions tab.

4. On the Revoke sessions tab, choose Revoke active sessions.

5. AWS asks you to confirm the action. Choose Revoke active sessions on the dialog box.

IAM immediately attaches a policy named AWSRevokeOlderSessions to the role. The policy
denies all access to users who assumed the role before the moment you chose Revoke active
sessions. Any user who assumes the role after you chose Revoke active sessions is not affected.

When you apply a new policy to a user or a resource, it may take a few minutes for policy updates to
take effect. To learn why changes are not always immediately visible, see Changes that I make are
not always immediately visible (p. 681).

Note
Don't worry about remembering to delete the policy. Any user who assumes the role after you
revoked sessions is not affected by the policy. If you choose to Revoke Sessions again later, then
the date/time stamp in the policy is refreshed and it again denies all permissions to any user
who assumed the role before the new specified time.

Valid users whose sessions are revoked in this way must acquire temporary credentials for a new session
to continue working. Note that the AWS CLI caches credentials until they expire. To force the CLI to
delete and refresh cached credentials that are no longer valid, run one of the following commands:

Linux, macOS, or Unix

$ rm -r ~/.aws/cli/cache

Windows

278

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Managing roles

C:\> del /s /q %UserProfile%\.aws\cli\cache

For more information, see Disabling permissions for temporary security credentials (p. 352).

Managing IAM roles
Occasionally you need to modify or delete the roles that you have created. To change a role, you can do
any of the following:

• Modify the policies that are associated with the role

• Change who can access the role

• Edit the permissions that the role grants to users

• Change the maximum session duration setting for roles that are assumed using the AWS Management
Console, AWS CLI or API

You can also delete roles that are no longer needed. You can manage your roles from the AWS
Management Console, the AWS CLI, and the API.

Topics

• Modifying a role (p. 279)

• Deleting roles or instance profiles (p. 290)

Modifying a role
You can use the AWS Management Console, the AWS CLI, or the IAM API to make changes to a role.

Topics

• View role access (p. 279)

• Generate a policy based on access information (p. 279)

• Modifying a role (console) (p. 280)

• Modifying a role (AWS CLI) (p. 283)

• Modifying a role (AWS API) (p. 286)

View role access

Before you change the permissions for a role, you should review its recent service-level activity. This is
important because you don't want to remove access from a principal (person or application) who is using
it. For more information about viewing last accessed information, see Refining permissions in AWS using
last accessed information (p. 502).

Generate a policy based on access information

You might sometimes grant permissions to an IAM entity (user or role) beyond what they require. To
help you refine the permissions that you grant, you can generate an IAM policy that is based on the
access activity for an entity. IAM Access Analyzer reviews your AWS CloudTrail logs and generates a policy
template that contains the permissions that have been used by the entity in your specified date range.
You can use the template to create a managed policy with fine-grained permissions and then attach
it to the IAM entity. That way, you grant only the permissions that the user or role needs to interact
with AWS resources for your specific use case. To learn more, see Generate policies based on access
activity (p. 475).

279

AWS Identity and Access Management User Guide
Managing roles

Modifying a role (console)

You can use the AWS Management Console to modify a role. To change the set of tags on a role, see
Managing tags on IAM roles (console) (p. 302).

Topics

• Modifying a role trust policy (console) (p. 280)

• Modifying a role permissions policy (console) (p. 281)

• Modifying a role description (console) (p. 282)

• Modifying a role maximum session duration (console) (p. 282)

• Modifying a role permissions boundary (console) (p. 283)

Modifying a role trust policy (console)

To change who can assume a role, you must modify the role's trust policy. You cannot modify the trust
policy for a service-linked role (p. 169).

Note
If a user is listed as the principal in a role's trust policy but cannot assume the role, check the
user's permissions boundary (p. 395). If a permissions boundary is set for the user, then it must
allow the sts:AssumeRole action.

To modify a role trust policy (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles.

3. In the list of roles in your account, choose the name of the role that you want to modify.

4. Choose the Trust relationships tab, and then choose Edit trust relationship.

5. Edit the trust policy as needed. To add additional principals that can assume the role, specify them
in the Principal element. For example, the following policy snippet shows how to reference two
AWS accounts in the Principal element:

"Principal": {
 "AWS": [
 "arn:aws:iam::111122223333:root",
 "arn:aws:iam::444455556666:root"
]
},

If you specify a principal in another account, adding an account to the trust policy of a role is only
half of establishing the cross-account trust relationship. By default, no users in the trusted accounts
can assume the role. The administrator for the newly trusted account must grant the users the
permission to assume the role. To do that, the administrator must create or edit a policy that is
attached to the user to allow the user access to the sts:AssumeRole action. For more information,
see the following procedure or Granting a user permissions to switch roles (p. 255).

The following policy snippet shows how to reference two AWS services in the Principal element:

"Principal": {
 "Service": [
 "opsworks.amazonaws.com",
 "ec2.amazonaws.com"
]

280

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Managing roles

},

6. When you are finished editing your trust policy, choose Update Trust Policy to save your changes.

For more information about policy structure and syntax, see Policies and permissions in
IAM (p. 381) and the IAM JSON policy elements reference (p. 744).

To allow users in a trusted external account to use the role (console)

For more information and detail about this procedure, see Granting a user permissions to switch
roles (p. 255).

1. Sign in to the trusted external AWS account.

2. Decide whether to attach the permissions to a user or to a group. In the navigation pane of the IAM
console, choose Users or Groups accordingly.

3. Choose the name of the user or group to which you want to grant access, and then choose the
Permissions tab.

4. Do one of the following:

• To edit a customer managed policy, choose the name of the policy, choose Edit policy, and then
choose the JSON tab. You cannot edit an AWS managed policy. AWS managed policies appear

with the AWS icon (). For more information about the difference between AWS managed
policies and customer managed policies, see Managed policies and inline policies (p. 389).

• To edit an inline policy, choose the arrow next to the name of the policy and choose Edit policy.

5. In the policy editor, add a new Statement element that specifies the following:

{
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::ACCOUNT-ID:role/ROLE-NAME"
}

Replace the ARN in the statement with the ARN of the role that the user can assume.

6. Follow the prompts on screen to finish editing the policy.

Modifying a role permissions policy (console)

To change the permissions allowed by the role, modify the role's permissions policy (or policies). You
cannot modify the permissions policy for a service-linked role (p. 169) in IAM. You might be able to
modify the permissions policy within the service that depends on the role. To check whether a service
supports this feature, see AWS services that work with IAM (p. 725) and look for the services that
have Yes in the Service-linked roles column. Choose a Yes with a link to view the service-linked role
documentation for that service.

To change the permissions allowed by a role (console)

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles.

3. Choose the name of the role that you want to modify, and then choose the Permissions tab.

4. Do one of the following:

• To edit an existing customer managed policy, choose the name of the policy and then choose Edit
policy.

281

https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Managing roles

Note
You cannot edit an AWS managed policy. AWS managed policy appear with the AWS icon

(). For more information about the difference between AWS managed policies and
customer managed policies, see Managed policies and inline policies (p. 389).

• To attach an existing managed policy to the role, choose Add permissions.

• To edit an existing inline policy, choose the arrow next to the name of the policy and choose Edit
Policy.

• To embed a new inline policy, choose Add inline policy.

Modifying a role description (console)

To change the description of the role, modify the description text.

To change the description of a role (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles.

3. Choose the name of the role to modify.

4. Next to Role description and on the far right, choose Edit.

5. Type a new description in the box and choose Save.

Modifying a role maximum session duration (console)

To specify the maximum session duration setting for roles that are assumed using the console, the AWS
CLI, or AWS API, modify the maximum session duration setting value. This setting can have a value from
1 hour to 12 hours. If you do not specify a value, the default maximum of 1 hour is applied. This setting
does not limit sessions assumed by AWS services.

To change the maximum session duration setting for roles that are assumed using the
console, AWS CLI, or AWS API (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles.

3. Choose the name of the role to modify.

4. Next to Maximum session duration, choose a value. Or choose Custom duration and type a value
(in seconds).

5. Choose Save.

Your changes don't take effect until the next time someone assumes this role. To learn how to
revoke existing sessions for this role, see Revoking IAM role temporary security credentials (p. 277).

In the AWS Management Console, IAM user sessions are 12 hours by default. IAM users who switch roles
in the console are granted the role maximum session duration, or the remaining time in the IAM user's
session, whichever is less.

Anyone who assumes the role from the AWS CLI or AWS API can request a longer session, up to this
maximum. The MaxSessionDuration setting determines the maximum duration of the role session
that can be requested.

282

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Managing roles

• To specify a session duration using the AWS CLI use the duration-seconds parameter. To learn
more, see Switching to an IAM role (AWS CLI) (p. 262).

• To specify a session duration using the AWS API, use the DurationSeconds parameter. To learn more,
see Switching to an IAM role (AWS API) (p. 268).

Modifying a role permissions boundary (console)

To change the maximum permissions allowed for a role, modify the role's permissions
boundary (p. 395).

To change the policy used to set the permissions boundary for a role

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles.
3. Choose the name of the role whose permissions boundary (p. 395) you want to change.
4. Choose the Permissions tab. If necessary, open the Permissions boundary section and then choose

Change boundary.
5. Select the policy that you want to use for the permissions boundary.
6. Choose Change boundary.

Your changes don't take effect until the next time someone assumes this role.

Modifying a role (AWS CLI)

You can use the AWS Command Line Interface to modify a role. To change the set of tags on a role, see
??? (p. 302).

Topics
• Modifying a role trust policy (AWS CLI) (p. 283)
• Modifying a role permissions policy (AWS CLI) (p. 285)
• Modifying a role description (AWS CLI) (p. 285)
• Modifying a role maximum session duration (AWS CLI) (p. 285)
• Modifying a role permissions boundary (AWS CLI) (p. 286)

Modifying a role trust policy (AWS CLI)

To change who can assume a role, you must modify the role's trust policy. You cannot modify the trust
policy for a service-linked role (p. 169).

Note
If a user is listed as the principal in a role's trust policy but cannot assume the role, check the
user's permissions boundary (p. 395). If a permissions boundary is set for the user, then it must
allow the sts:AssumeRole action.

To modify a role trust policy (AWS CLI)

1. (Optional) If you don't know the name of the role that you want to modify, run the following
command to list the roles in your account:

• aws iam list-roles
2. (Optional) To view the current trust policy for a role, run the following command:

• aws iam get-role

283

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/list-roles.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-role.html

AWS Identity and Access Management User Guide
Managing roles

3. To modify the trusted principals that can access the role, create a text file with the updated trust
policy. You can use any text editor to construct the policy.

For example, the following trust policy shows how to reference two AWS accounts in the Principal
element. This allows users within two separate AWS accounts to assume this role.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": {"AWS": [
 "arn:aws:iam::111122223333:root",
 "arn:aws:iam::444455556666:root"
]},
 "Action": "sts:AssumeRole"
 }
}

If you specify a principal in another account, adding an account to the trust policy of a role is only
half of establishing the cross-account trust relationship. By default, no users in the trusted accounts
can assume the role. The administrator for the newly trusted account must grant the users the
permission to assume the role. To do that, the administrator must create or edit a policy that is
attached to the user to allow the user access to the sts:AssumeRole action. For more information,
see the following procedure or Granting a user permissions to switch roles (p. 255).

4. To use the file that you just created to update the trust policy, run the following command:

• aws iam update-assume-role-policy

To allow users in a trusted external account to use the role (AWS CLI)

For more information and detail about this procedure, see Granting a user permissions to switch
roles (p. 255).

1. Create a JSON file that contains a permissions policy that grants permissions to assume the role. For
example, the following policy contains the minimum necessary permissions:

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::ACCOUNT-ID-THAT-CONTAINS-ROLE:role/ROLE-NAME"
 }
}

Replace the ARN in the statement with the ARN of the role that the user can assume.
2. Run the following command to upload the JSON file that contains the trust policy to IAM:

• aws iam create-policy

The output of this command includes the ARN of the policy. Make a note of this ARN because you
will need it in a later step.

3. Decide which user or group to attach the policy to. If you don't know the name of the intended user
or group, use one of the following commands to list the users or groups in your account:

• aws iam list-users
• aws iam list-groups

284

https://docs.aws.amazon.com/cli/latest/reference/iam/update-assume-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/create-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-users.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-groups.html

AWS Identity and Access Management User Guide
Managing roles

4. Use one of the following commands to attach the policy that you created in the previous step to the
user or group:

• aws iam attach-user-policy
• aws iam attach-group-policy

Modifying a role permissions policy (AWS CLI)

To change the permissions allowed by the role, modify the role's permissions policy (or policies). You
cannot modify the permissions policy for a service-linked role (p. 169) in IAM. You might be able to
modify the permissions policy within the service that depends on the role. To check whether a service
supports this feature, see AWS services that work with IAM (p. 725) and look for the services that
have Yes in the Service-linked roles column. Choose a Yes with a link to view the service-linked role
documentation for that service.

To change the permissions allowed by a role (AWS CLI)

1. (Optional) To view the current permissions associated with a role, run the following commands:

1. aws iam list-role-policies to list inline policies
2. aws iam list-attached-role-policies to list managed policies

2. The command to update permissions for the role differs depending on whether you are updating a
managed policy or an inline policy.

To update a managed policy, run the following command to create a new version of the managed
policy:

• aws iam create-policy-version

To update an inline policy, run the following command:

• aws iam put-role-policy

Modifying a role description (AWS CLI)

To change the description of the role, modify the description text.

To change the description of a role (AWS CLI)

1. (Optional) To view the current description for a role, run the following command:

• aws iam get-role
2. To update a role's description, run the following command with the description parameter:

• aws iam update-role

Modifying a role maximum session duration (AWS CLI)

To specify the maximum session duration setting for roles that are assumed using the AWS CLI or API,
modify the maximum session duration setting's value. This setting can have a value from 1 hour to 12
hours. If you do not specify a value, the default maximum of 1 hour is applied. This setting does not limit
sessions assumed by AWS services.

Note
Anyone who assumes the role from the AWS CLI or API can use the duration-seconds
CLI parameter or the DurationSeconds API parameter to request a longer session. The

285

https://docs.aws.amazon.com/cli/latest/reference/iam/attach-user-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/attach-group-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-role-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-attached-role-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/create-policy-version.html
https://docs.aws.amazon.com/cli/latest/reference/iam/put-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/update-role.html

AWS Identity and Access Management User Guide
Managing roles

MaxSessionDuration setting determines the maximum duration of the role session that can
be requested using the DurationSeconds parameter. If users don't specify a value for the
DurationSeconds parameter, their security credentials are valid for one hour.

To change the maximum session duration setting for roles that are assumed using the AWS
CLI (AWS CLI)

1. (Optional) To view the current maximum session duration setting for a role, run the following
command:

• aws iam get-role
2. To update a role's maximum session duration setting, run the following command with the max-

session-duration CLI parameter or the MaxSessionDuration API parameter:

• aws iam update-role

Your changes don't take effect until the next time someone assumes this role. To learn how to
revoke existing sessions for this role, see Revoking IAM role temporary security credentials (p. 277).

Modifying a role permissions boundary (AWS CLI)

To change the maximum permissions allowed for a role, modify the role's permissions
boundary (p. 395).

To change the managed policy used to set the permissions boundary for a role (AWS CLI)

1. (Optional) To view the current permissions boundary (p. 395) for a role, run the following
command:

• aws iam get-role
2. To use a different managed policy to update the permissions boundary for a role, run the following

command:

• aws iam put-role-permissions-boundary

A role can have only one managed policy set as a permissions boundary. If you change the
permissions boundary, you change the maximum permissions allowed for a role.

Modifying a role (AWS API)

You can use the AWS API to modify a role. To change the set of tags on a role, see Managing tags on IAM
roles (AWS CLI or AWS API) (p. 302).

Topics
• Modifying a role trust policy (AWS API) (p. 286)
• Modifying a role permissions policy (AWS API) (p. 288)
• Modifying a role description (AWS API) (p. 288)
• Modifying a role maximum session duration (AWS API) (p. 289)
• Modifying a role permissions boundary (AWS API) (p. 289)

Modifying a role trust policy (AWS API)

To change who can assume a role, you must modify the role's trust policy. You cannot modify the trust
policy for a service-linked role (p. 169).

286

https://docs.aws.amazon.com/cli/latest/reference/iam/get-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/update-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/put-role-permissions-boundary.html

AWS Identity and Access Management User Guide
Managing roles

Note
If a user is listed as the principal in a role's trust policy but cannot assume the role, check the
user's permissions boundary (p. 395). If a permissions boundary is set for the user, then it must
allow the sts:AssumeRole action.

To modify a role trust policy (AWS API)

1. (Optional) If you don't know the name of the role that you want to modify, call the following
operation to list the roles in your account:

• ListRoles
2. (Optional) To view the current trust policy for a role, call the following operation:

• GetRole
3. To modify the trusted principals that can access the role, create a text file with the updated trust

policy. You can use any text editor to construct the policy.

For example, the following trust policy shows how to reference two AWS accounts in the Principal
element. This allows users within two separate AWS accounts to assume this role.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": {"AWS": [
 "arn:aws:iam::111122223333:root",
 "arn:aws:iam::444455556666:root"
]},
 "Action": "sts:AssumeRole"
 }
}

If you specify a principal in another account, adding an account to the trust policy of a role is only
half of establishing the cross-account trust relationship. By default, no users in the trusted accounts
can assume the role. The administrator for the newly trusted account must grant the users the
permission to assume the role. To do that, the administrator must create or edit a policy that is
attached to the user to allow the user access to the sts:AssumeRole action. For more information,
see the following procedure or Granting a user permissions to switch roles (p. 255).

4. To use the file that you just created to update the trust policy, call the following operation:

• UpdateAssumeRolePolicy

To allow users in a trusted external account to use the role (AWS API)

For more information and detail about this procedure, see Granting a user permissions to switch
roles (p. 255).

1. Create a JSON file that contains a permissions policy that grants permissions to assume the role. For
example, the following policy contains the minimum necessary permissions:

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::ACCOUNT-ID-THAT-CONTAINS-ROLE:role/ROLE-NAME"
 }
}

287

https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListRoles.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateAssumeRolePolicy.html

AWS Identity and Access Management User Guide
Managing roles

Replace the ARN in the statement with the ARN of the role that the user can assume.
2. Call the following operation to upload the JSON file that contains the trust policy to IAM:

• CreatePolicy

The output of this operation includes the ARN of the policy. Make a note of this ARN because you
will need it in a later step.

3. Decide which user or group to attach the policy to. If you don't know the name of the intended user
or group, call one of the following operations to list the users or groups in your account:

• ListUsers
• ListGroups

4. Call one of the following operations to attach the policy that you created in the previous step to the
user or group:

• API: AttachUserPolicy
• AttachGroupPolicy

Modifying a role permissions policy (AWS API)

To change the permissions allowed by the role, modify the role's permissions policy (or policies). You
cannot modify the permissions policy for a service-linked role (p. 169) in IAM. You might be able to
modify the permissions policy within the service that depends on the role. To check whether a service
supports this feature, see AWS services that work with IAM (p. 725) and look for the services that
have Yes in the Service-linked roles column. Choose a Yes with a link to view the service-linked role
documentation for that service.

To change the permissions allowed by a role (AWS API)

1. (Optional) To view the current permissions associated with a role, call the following operations:

1. ListRolePolicies to list inline policies
2. ListAttachedRolePolicies to list managed policies

2. The operation to update permissions for the role differs depending on whether you are updating a
managed policy or an inline policy.

To update a managed policy, call the following operation to create a new version of the managed
policy:

• CreatePolicyVersion

To update an inline policy, call the following operation:

• PutRolePolicy

Modifying a role description (AWS API)

To change the description of the role, modify the description text.

To change the description of a role (AWS API)

1. (Optional) To view the current description for a role, call the following operation:

• GetRole

288

https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreatePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListUsers.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListGroups.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachUserPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachGroupPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListRolePolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedRolePolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreatePolicyVersion.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetRole.html

AWS Identity and Access Management User Guide
Managing roles

2. To update a role's description, call the following operation with the description parameter:

• UpdateRole

Modifying a role maximum session duration (AWS API)

To specify the maximum session duration setting for roles that are assumed using the AWS CLI or API,
modify the maximum session duration setting's value. This setting can have a value from 1 hour to 12
hours. If you do not specify a value, the default maximum of 1 hour is applied. This setting does not limit
sessions assumed by AWS services.

Note
Anyone who assumes the role from the AWS CLI or API can use the duration-seconds
CLI parameter or the DurationSeconds API parameter to request a longer session. The
MaxSessionDuration setting determines the maximum duration of the role session that can
be requested using the DurationSeconds parameter. If users don't specify a value for the
DurationSeconds parameter, their security credentials are valid for one hour.

To change the maximum session duration setting for roles that are assumed using the API
(AWS API)

1. (Optional) To view the current maximum session duration setting for a role, call the following
operation:

• GetRole

2. To update a role's maximum session duration setting, call the following operation with the max-
sessionduration CLI parameter or the MaxSessionDuration API parameter:

• UpdateRole

Your changes don't take effect until the next time someone assumes this role. To learn how to
revoke existing sessions for this role, see Revoking IAM role temporary security credentials (p. 277).

Modifying a role permissions boundary (AWS API)

To change the maximum permissions allowed for a role, modify the role's permissions
boundary (p. 395).

To change the managed policy used to set the permissions boundary for a role (AWS API)

1. (Optional) To view the current permissions boundary (p. 395) for a role, call the following
operation:

• GetRole

2. To use a different managed policy to update the permissions boundary for a role, call the following
operation:

• PutRolePermissionsBoundary

A role can have only one managed policy set as a permissions boundary. If you change the
permissions boundary, you change the maximum permissions allowed for a role.

289

https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutRolePermissionsBoundary.html

AWS Identity and Access Management User Guide
Managing roles

Deleting roles or instance profiles
If you no longer need a role, we recommend that you delete the role and its associated permissions. That
way you don't have an unused entity that is not actively monitored or maintained.

If the role was associated with an EC2 instance, you can also remove the role from the instance profile
and then delete the instance profile.

Warning
Make sure that you do not have any Amazon EC2 instances running with the role or instance
profile you are about to delete. Deleting a role or instance profile that is associated with a
running instance will break any applications that are running on the instance.

If you prefer not to permanently delete a role, you can disable a role. To do this, change the role policies
and then revoke all current sessions. For example, you could add a policy to the role that denied access
to all of AWS. You could also edit the trust policy to deny access to anyone attempting to assume
the role. For more information about revoking sessions, see Revoking IAM role temporary security
credentials (p. 277).

Topics

• View role access (p. 290)

• Deleting a service-linked role (p. 291)

• Deleting an IAM role (console) (p. 291)

• Deleting an IAM role (AWS CLI) (p. 292)

• Deleting an IAM role (AWS API) (p. 292)

• Related information (p. 293)

View role access

Before you delete a role, we recommend that you review when the role was last used. You can do this
using the AWS Management Console, the AWS CLI, or the AWS API.You should view this information
because you don't want to remove access from someone using the role.

The date of the role last activity might not match the last date reported in the Access Advisor tab. The
Access Advisor (p. 508) tab reports activity only for services allowed by the role permissions policies.
The date of the role last activity includes the last attempt to access any service in AWS.

Note
The tracking period for a rolelast activity and Access Advisor data is for the trailing 400 days.
This period can be shorter if your Region began supporting these features within the last
year. The role might have been used more than 400 days ago. For more information about the
tracking period, see Where AWS tracks last accessed information (p. 506).

To view when a role was last used (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles.

3. Find the row of the role with the activity you want to view. You can use the search field to narrow
the results. View the Last activity column to see the number of days since the role was last used. If
the role has not been used within the tracking period, then the table displays None.

4. Choose the name of the role to view more information. The role Summary page also includes Last
activity, which displays the last used date for the role . If the role has not been used within the last
400 days, then Last activity displays Not accessed in the tracking period.

290

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Managing roles

To view when a role was last used (AWS CLI)

aws iam get-role - Run this command to return information about a role, including the
RoleLastUsed object. This object contains the LastUsedDate and the Region in which the role was
last used. If RoleLastUsed is present but does not contain a value, then the role has not been used
within the tracking period.

To view when a role was last used (AWS API)

GetRole - Call this operation to return information about a role, including the RoleLastUsed
object. This object contains the LastUsedDate and the Region in which the role was last used. If
RoleLastUsed is present but does not contain a value, then the role has not been used within the
tracking period.

Deleting a service-linked role

If the role is a service-linked role (p. 169), review the documentation for the linked service to learn how
to delete the role. You can view the service-linked roles in your account by going to the IAM Roles page
in the console. Service-linked roles appear with (Service-linked role) in the Trusted entities column of
the table. A banner on the role Summary page also indicates that the role is a service-linked role.

If the service does not include documentation for deleting the service-linked role, you can use the
IAM console, AWS CLI, or API to delete the role. For more information, see Deleting a service-linked
role (p. 224).

Deleting an IAM role (console)

When you use the AWS Management Console to delete a role, IAM also automatically deletes the policies
associated with the role. It also deletes any Amazon EC2 instance profile that contains the role.

Important
In some cases, a role might be associated with an Amazon EC2 instance profile, and the role and
the instance profile might have the same name. In that case you can use the AWS Management
Console to delete the role and the instance profile. This linkage happens automatically for roles
and instance profiles that you create in the console. If you created the role from the AWS CLI,
Tools for Windows PowerShell, or the AWS API, then the role and the instance profile might
have different names. In that case you cannot use the console to delete them. Instead, you must
use the AWS CLI, Tools for Windows PowerShell, or AWS API to first remove the role from the
instance profile. You must then take a separate step to delete the role.

To delete a role (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles, and then select the check box next to the role name that you
want to delete.

3. At the top of the page, choose Delete.
4. In the confirmation dialog box, review the last accessed information, which shows when each of the

selected roles last accessed an AWS service. This helps you to confirm if the role is currently active. If
you want to proceed, enter the name of the role in the text input field and choose Delete. If you are
sure, you can proceed with the deletion even if the last accessed information is still loading.

Note
You cannot use the console to delete an instance profile unless it has the same name as the
role. The instance profile is deleted as part of the process of deleting a role as described in the
preceding procedure. To delete an instance profile without also deleting the role, you must use
the AWS CLI or AWS API. For more information, see the following sections.

291

https://docs.aws.amazon.com/cli/latest/reference/iam/get-role.html
https://docs.aws.amazon.com/IAM/latest/APIReference/GetRole.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Managing roles

Deleting an IAM role (AWS CLI)

When you use the AWS CLI to delete a role, you must first delete the policies associated with the role.
Also, if you want to delete the associated instance profile that contains the role, you must delete it
separately.

To delete a role (AWS CLI)

1. If you don't know the name of the role that you want to delete, enter the following command to list
the roles in your account:

aws iam list-roles

The list includes the Amazon Resource Name (ARN) of each role. Use the role name, not the
ARN, to refer to roles with the CLI commands. For example, if a role has the following ARN:
arn:aws:iam::123456789012:role/myrole, you refer to the role as myrole.

2. Remove the role from all instance profiles that the role is in.

a. To list all instance profiles that the role is associated with, enter the following command:

aws iam list-instance-profiles-for-role --role-name role-name

b. To remove the role from an instance profile, enter the following command for each instance
profile:

aws iam remove-role-from-instance-profile --instance-profile-name instance-profile-
name --role-name role-name

3. Delete all policies that are associated with the role.

a. To list all policies that are in the role, enter the following command:

aws iam list-role-policies --role-name role-name

b. To delete each policy from the role, enter the following command for each policy:

aws iam delete-role-policy --role-name role-name --policy-name policy-name

4. Enter the following command to delete the role:

aws iam delete-role --role-name role-name

5. If you do not plan to reuse the instance profiles that were associated with the role, you can enter the
following command to delete them:

aws iam delete-instance-profile --instance-profile-name instance-profile-name

Deleting an IAM role (AWS API)

When you use the IAM API to delete a role, you must first delete the policies associated with the role.
Also, if you want to delete the associated instance profile that contains the role, you must delete it
separately.

To delete a role (AWS API)

1. To list all instance profiles that a role is in, call ListInstanceProfilesForRole.

292

https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListInstanceProfilesForRole.html

AWS Identity and Access Management User Guide
Roles vs. resource-based policies

To remove the role from all instance profiles that the role is in, call RemoveRoleFromInstanceProfile.
You must pass the role name and instance profile name.

If you are not going to reuse an instance profile that was associated with the role, call
DeleteInstanceProfile to delete it.

2. To list all policies for a role, call ListRolePolicies.

To delete all policies that are associated with the role, call DeleteRolePolicy. You must pass the role
name and policy name.

3. Call DeleteRole to delete the role.

Related information

For general information about instance profiles, see Using instance profiles (p. 276).

For general information about service-linked roles, see Using service-linked roles (p. 219).

How IAM roles differ from resource-based policies
For some AWS services, you can grant cross-account access to your resources. To do this, you attach a
policy directly to the resource that you want to share, instead of using a role as a proxy. The resource
that you want to share must support resource-based policies (p. 404). Unlike an identity-based policy, a
resource-based policy specifies who (which principal) can access that resource.

Note
IAM roles and resource-based policies delegate access across accounts only within a single
partition. For example, assume that you have an account in US West (N. California) in the
standard aws partition. You also have an account in China (Beijing) in the aws-cn partition. You
can't use an Amazon S3 resource-based policy in your account in China (Beijing) to allow access
for users in your standard aws account.

Cross-account access with a resource-based policy has some advantages over cross-account access with
a role. With a resource that is accessed through a resource-based policy, the principal still works in the
trusted account and does not have to give up his or her permissions to receive the role permissions. In
other words, the principal continues to have access to resources in the trusted account at the same time
as he or she has access to the resource in the trusting account. This is useful for tasks such as copying
information to or from the shared resource in the other account. To learn whether principals in accounts
outside of your zone of trust (trusted organization or account) have access to assume your roles, see
What is IAM Access Analyzer?.

The principals that you can specify in a resource based policy include accounts, IAM users, federated
users, IAM roles, assumed-role sessions, or AWS services. For more information, see Specifying a
principal (p. 748).

The following list includes some of the AWS services that support resource-based policies. For a
complete list of the growing number of AWS services that support attaching permission policies to
resources instead of principals, see AWS services that work with IAM (p. 725) and look for the services
that have Yes in the Resource Based column.

• Amazon S3 buckets – The policy is attached to the bucket, but the policy controls access to both the
bucket and the objects in it. For more information, go to Access Control in the Amazon Simple Storage
Service Developer Guide.

In some cases, it may be best to use roles for cross-account access to Amazon S3. For more
information, see the example walkthroughs in the Amazon Simple Storage Service Developer Guide.

293

https://docs.aws.amazon.com/IAM/latest/APIReference/API_RemoveRoleFromInstanceProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteInstanceProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListRolePolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteRole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingAuthAccess.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/example-walkthroughs-managing-access.html

AWS Identity and Access Management User Guide
Roles vs. resource-based policies

• Amazon Simple Notification Service (Amazon SNS) topics – For more information, go to Managing
Access to Your Amazon SNS Topics in the Amazon Simple Notification Service Developer Guide.

• Amazon Simple Queue Service (Amazon SQS) queues – For more information, go to Appendix: The
Access Policy Language in the Amazon Simple Queue Service Developer Guide.

About delegating AWS permissions in a resource-based policy

If a resource grants permissions to principals in your account, you can then delegate those permissions
to specific IAM identities. Identities are users, groups of users, or roles in your account. You delegate
permissions by attaching a policy to the identity. You can grant up to the maximum permissions that are
allowed by the resource-owning account.

Assume that a resource-based policy allows all principals in your account full administrative access to a
resource. Then you can delegate full access, read-only access, or any other partial access to principals in
your AWS account. Alternatively, if the resource-based policy allows only list permissions, then you can
delegate only list access. If you try to delegate more permissions than your account has, your principals
will still have only list access. For information about attaching a policy to an IAM identity, see Managing
IAM policies (p. 468).

Note
IAM roles and resource-based policies delegate access across accounts only within a single
partition. For example, you can't add cross-account access between an account in the standard
aws partition and an account in the aws-cn partition.

For example, assume that you manage AccountA and AccountB. In AccountA, you have the Amazon
S3 bucket named BucketA. You attach a resource-based policy to BucketA that allows all principals
in AccountB full access to objects in your bucket. They can create, read, or delete any objects in that
bucket. In AccountB, you attach a policy to the IAM user named User2. That policy allows the user read-
only access to the objects in BucketA. That means that User2 can view the objects, but not create, edit,
or delete them.

294

https://docs.aws.amazon.com/sns/latest/dg/AccessPolicyLanguage.html
https://docs.aws.amazon.com/sns/latest/dg/AccessPolicyLanguage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/AccessPolicyLanguage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/AccessPolicyLanguage.html

AWS Identity and Access Management User Guide
Roles vs. resource-based policies

1. AccountA gives AccountB full access to BucketA by naming AccountB as a principal in the
resource-based policy. As a result, AccountB is authorized to perform any action on BucketA, and the
AccountB administrator can delegate access to its users in AccountB.

2. The AccountB root user has all of the permissions that are granted to the account. Therefore, the
root user has full access to BucketA.

3. The AccountB administrator does not give access to User1. By default, users do not have any
permissions except those that are explicitly granted. Therefore, User1 does not have access to
BucketA.

4. The AccountB administrator grants User2 read-only access to BucketA. User2 can view the objects
in the bucket. The maximum level of access that AccountB can delegate is the access level that is
granted to the account. In this case, the resource-based policy granted full access to AccountB, but
User2 is granted only read-only access.

IAM evaluates a principal's permissions at the time the principal makes a request. Therefore, if you use
wildcards (*) to give users full access to your resources, principals can access any resources that your AWS
account has access to. This is true even for resources you add or gain access to after creating the user's
policy.

In the preceding example, if AccountB had attached a policy to User2 that allowed full access to all
resources in all accounts, User2 would automatically have access to any resources that AccountB has
access to. This includes the BucketA access and access to any other resources granted by resource-based
policies in AccountA.

295

AWS Identity and Access Management User Guide
Tagging IAM resources

Important
Give access only to entities you trust, and give the minimum level of access necessary. Whenever
the trusted entity is another AWS account, that account can in turn delegate access to any of
its IAM users. The trusted AWS account can delegate access only to the extent that it has been
granted access; it cannot delegate more access than the account itself has been granted.

For information about permissions, policies, and the permission policy language that you use to write
policies, see Access management for AWS resources (p. 380).

Tagging IAM resources
A tag is a custom attribute label that you can assign to an AWS resource. Each tag has two parts:

• A tag key (for example, CostCenter, Environment, Project, or Purpose). Tag keys are case
sensitive.

• An optional field known as a tag value (for example, 111122223333, Production, or a team name).
Omitting the tag value is the same as using an empty string. Like tag keys, tag values are case
sensitive.

Together these are known as key-value pairs. For limits on the number of tags you can have on IAM
resources, see IAM and AWS STS quotas (p. 719).

Tags help you identify and organize your AWS resources. Many AWS services support tagging, so you can
assign the same tag to resources from different services to indicate that the resources are related. For
example, you can assign the same tag to an IAM role that you assign to an Amazon S3 bucket. For more
information about tagging strategies, see Tagging AWS Resources in the AWS General Reference Guide.

In addition to identifying, organizing, and tracking your IAM resources with tags, you can use tags in IAM
policies to help control who can view and interact with your resources. To learn more about using tags to
control access, see Controlling access to and for IAM users and roles using tags (p. 414).

You can also use tags in AWS STS to add custom attributes when you assume a role or federate a user.
For more information, see Passing session tags in AWS STS (p. 313).

Choose an AWS tag naming convention
When you begin attaching tags to your IAM resources, choose your tag naming convention carefully.
Apply the same convention to all of your AWS tags. This is especially important if you use tags in policies
to control access to AWS resources. If you already use tags in AWS, review your naming convention and
adjust it accordingly. To view tagging use cases and best practices, download the Tagging Best Practices
whitepaper.

Rules for tagging in IAM and AWS STS
A number of conventions govern the creation and application of tags in IAM and AWS STS.

Naming tags
Observe the following conventions when formulating a tag naming convention for IAM resources, AWS
STS assume-role sessions, and AWS STS federated user sessions:

Character requirements – Tag keys and values can include any combination of letters, numbers, spaces,
and _ . : / = + - @ symbols.

296

https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
https://d1.awsstatic.com/whitepapers/aws-tagging-best-practices.pdf

AWS Identity and Access Management User Guide
Rules for tagging in IAM and AWS STS

Case sensitivity – Case sensitivity for tag keys differs depending on the type of IAM resource that is
tagged. Tag key values for IAM users and roles are not case sensitive, but case is preserved. This means
that you cannot have separate Department and department tag keys. If you have tagged a user with
the Department=finance tag and you add the department=hr tag, it replaces the first tag. A second
tag is not added.

For other IAM resource types, tag key values are case sensitive. That means you can have separate
Costcenter and costcenter tag keys. For example, if you have tagged a customer managed policy
with the Costcenter = 1234 tag and you add the costcenter = 5678 tag, the policy will have both
the Costcenter and costcenter tag keys.

As a best practice, we recommend that you avoid using similar tags with inconsistent case treatment. We
recommend that you decide on strategy for capitalizing tags, and consistently implement that strategy
across all resource types. To learn more about best practices for tagging, see Tagging AWS Resourcesin
the AWS General Reference.

The following lists show the differences in case sensitivity for tag keys that are attached to IAM
resources.

Tag key values are not case sensitive:

• IAM roles
• IAM users

Tag key values are case sensitive:

• Customer managed policies
• Instance profiles
• OpenID Connect identity providers
• SAML identity providers
• Server certificates
• Virtual MFA devices

Additionally, the following rules apply:

• You cannot create a tag key or value that begins with the text aws:. This tag prefix is reserved for AWS
internal use.

• You can create a tag with an empty value such as phoneNumber = . You cannot create an empty tag
key.

• You cannot specify multiple values in a single tag, but you can create a custom multivalue structure in
the single value. For example, assume that the user Zhang works on the engineering team and the QA
team. If you attach the team = Engineering tag and then attach the team = QA tag, you change
the value of the tag from Engineering to QA. Instead, you can include multiple values in a single
tag with a custom separator. In this example, you could attach the team = Engineering:QA tag to
Zhang.

Note
To control access to engineers in this example using the team tag, you must create a
policy that allows for every configuration that might include Engineering, including
Engineering:QA. To learn more about using tags in policies, see Controlling access to and
for IAM users and roles using tags (p. 414).

Applying and editing tags
Observe the following conventions when attaching tags to IAM resources:

297

https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html

AWS Identity and Access Management User Guide
Tagging IAM users

• You can tag most IAM resources, but not groups, assumed roles, access reports, hardware-based, or
SMS MFA devices.

• You cannot use Tag Editor to tag IAM resources. Tag Editor does not support IAM tags. For information
about using Tag Editor with other services, see Working with Tag Editor in the AWS Resource Groups
User Guide.

• To tag an IAM resource, you must have specific permissions. To tag or untag resources, you must also
have permission to list tags. For more information, see the list of topics for each IAM resource at the
end of this page.

• The number and size of IAM resources in an AWS account are limited. For more information, see IAM
and AWS STS quotas (p. 719).

• You can apply the same tag to multiple IAM resources. For example, suppose you have a department
named AWS_Development with 12 members. You can have 12 users and a role with the tag key of
department and a value of awsDevelopment (department = awsDevelopment). You can also use
the same tag on resources in other services that support tagging (p. 725).

• IAM entities (users or roles) cannot have multiple instances of the same tag key. For example, if you
have a user with the tag key-value pair costCenter = 1234, you can then attach the tag key-value
pair costCenter = 5678. IAM updates the value of the costCenter tag to 5678.

• To edit a tag that is attached to an IAM entity (user or role), attach a tag with a new value to overwrite
the existing tag. For example, assume that you have a user with the tag key-value pair department
= Engineering. If you need to move the user to the QA department, then you can attach the
department = QA tag key-value pair to the user. This results in the Engineering value of the
department tag key being replaced with the QA value.

Topics
• Tagging IAM users (p. 298)
• Tagging IAM roles (p. 300)
• Tagging customer managed policies (p. 303)
• Tagging IAM identity providers (p. 304)
• Tagging instance profiles for Amazon EC2 roles (p. 308)
• Tagging server certificates (p. 310)
• Tagging virtual MFA devices (p. 312)
• Passing session tags in AWS STS (p. 313)

Tagging IAM users
You can use IAM tag key-value pairs to add custom attributes to an IAM user. For example, to add
location information to a user, you can add the tag key location and the tag value us_wa_seattle.
Or you could use three separate location tag key-value pairs: loc-country = us, loc-state = wa,
and loc-city = seattle. You can use tags to control a user's access to resources or to control what
tags can be attached to a user. To learn more about using tags to control access, see Controlling access to
and for IAM users and roles using tags (p. 414).

You can also use tags in AWS STS to add custom attributes when you assume a role or federate a user.
For more information, see Passing session tags in AWS STS (p. 313).

Permissions required for tagging IAM users
You must configure permissions to allow an IAM user to tag other users. You can specify one or all of the
following IAM tag actions in an IAM policy:

• iam:ListUserTags

298

https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/tag-editor.html

AWS Identity and Access Management User Guide
Tagging IAM users

• iam:TagUser

• iam:UntagUser

To allow an IAM user to add, list, or remove a tag for a specific user

Add the following statement to the permissions policy for the IAM user that needs to manage tags.
Use your account number and replace <username> with the name of the user whose tags need to be
managed. To learn how to create a policy using this example JSON policy document, see the section
called “Creating policies on the JSON tab” (p. 469).

{
 "Effect": "Allow",
 "Action": [
 "iam:ListUserTags",
 "iam:TagUser",
 "iam:UntagUser"
],
 "Resource": "arn:aws:iam:*:<account-number>:user/<username>"
}

To allow an IAM user to self-manage tags

Add the following statement to the permissions policy for users to allow users to manage their own
tags. To learn how to create a policy using this example JSON policy document, see the section called
“Creating policies on the JSON tab” (p. 469).

{
 "Effect": "Allow",
 "Action": [
 "iam:ListUserTags",
 "iam:TagUser",
 "iam:UntagUser"
],
 "Resource": "arn:aws:iam:*:user/${aws:username}"
}

To allow an IAM user to add a tag to a specific user

Add the following statement to the permissions policy for the IAM user that needs to add, but not
remove, tags for a specific user.

Note
The iam:TagUser action requires that you also include the iam:ListUserTags action.

To use this policy, replace <username> with the name of the user whose tags need to be managed. To
learn how to create a policy using this example JSON policy document, see the section called “Creating
policies on the JSON tab” (p. 469).

{
 "Effect": "Allow",
 "Action": [
 "iam:ListUserTags",
 "iam:TagUser"
],
 "Resource": "arn:aws:iam:*:<account-number>:user/<username>"
}

Alternatively, you can use an AWS managed policy such as IAMFullAccess to provide full access to IAM.

299

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/IAMFullAccess

AWS Identity and Access Management User Guide
Tagging IAM roles

Managing tags on IAM users (console)
You can manage tags for IAM users from the AWS Management Console.

To manage tags on users (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the console, choose Users and then choose the name of the user that you
want to edit.

3. Choose the Tags tab and then complete one of the following actions:

• Choose Add tags if the user does not yet have tags.
• Choose Edit tags to manage the existing set of tags.

4. Add or remove tags to complete the set of tags. Then choose Save changes.

Managing tags on IAM users (AWS CLI or AWS API)
You can list, attach, or remove tags for IAM users. You can use the AWS CLI or the AWS API to manage
tags for IAM users.

To list the tags currently attached to an IAM user (AWS CLI or AWS API)

• AWS CLI: aws iam list-user-tags
• AWS API: ListUserTags

To attach tags to an IAM user (AWS CLI or AWS API)

• AWS CLI: aws iam tag-user
• AWS API: TagUser

To remove tags from an IAM user (AWS CLI or AWS API)

• AWS CLI: aws iam untag-user
• AWS API: UntagUser

For information about attaching tags to resources for other AWS services, see the documentation for
those services.

For information about using tags to set more granular permissions with IAM permissions policies, see
IAM policy elements: Variables and tags (p. 776).

Tagging IAM roles
You can use IAM tag key-value pairs to add custom attributes to an IAM role. For example, to add
location information to a role, you can add the tag key location and the tag value us_wa_seattle. Or
you could use three separate location tag key-value pairs: loc-country = us, loc-state = wa, and
loc-city = seattle. You can use tags to control a role's access to resources or to control what tags
can be attached to a role. To learn more about using tags to control access, see Controlling access to and
for IAM users and roles using tags (p. 414).

You can also use tags in AWS STS to add custom attributes when you assume a role or federate a user.
For more information, see Passing session tags in AWS STS (p. 313).

300

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/list-user-tags.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListUserTags.html
https://docs.aws.amazon.com/cli/latest/reference/iam/tag-user.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagUser.html
https://docs.aws.amazon.com/cli/latest/reference/iam/untag-user.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UntagUser.html

AWS Identity and Access Management User Guide
Tagging IAM roles

Permissions required for tagging IAM roles
You must configure permissions to allow an IAM role to tag other entities (users or roles). You can specify
one or all of the following IAM tag actions in an IAM policy:

• iam:ListRoleTags

• iam:TagRole

• iam:UntagRole

• iam:ListUserTags

• iam:TagUser

• iam:UntagUser

To allow an IAM role to add, list, or remove a tag for a specific user

Add the following statement to the permissions policy for the IAM role that needs to manage tags.
Use your account number and replace <username> with the name of the user whose tags need to be
managed. To learn how to create a policy using this example JSON policy document, see the section
called “Creating policies on the JSON tab” (p. 469).

{
 "Effect": "Allow",
 "Action": [
 "iam:ListUserTags",
 "iam:TagUser",
 "iam:UntagUser"
],
 "Resource": "arn:aws:iam:*:<account-number>:user/<username>"
}

To allow an IAM role to add a tag to a specific user

Add the following statement to the permissions policy for the IAM role that needs to add, but not
remove, tags for a specific user.

Note
The iam:TagRole action requires that you also include the iam:ListRoleTags action.

To use this policy, replace <username> with the name of the user whose tags need to be managed. To
learn how to create a policy using this example JSON policy document, see the section called “Creating
policies on the JSON tab” (p. 469).

{
 "Effect": "Allow",
 "Action": [
 "iam:ListUserTags",
 "iam:TagUser"
],
 "Resource": "arn:aws:iam:*:<account-number>:user/<username>"
}

To allow an IAM role to add, list, or remove a tag for a specific role

Add the following statement to the permissions policy for the IAM role that needs to manage tags.
Replace <rolename> with the name of the role whose tags need to be managed. To learn how to create
a policy using this example JSON policy document, see the section called “Creating policies on the JSON
tab” (p. 469).

301

AWS Identity and Access Management User Guide
Tagging IAM roles

{
 "Effect": "Allow",
 "Action": [
 "iam:ListRoleTags",
 "iam:TagRole",
 "iam:UntagRole"
],
 "Resource": "arn:aws:iam:*:<account-number>:role/<rolename>"
}

Alternatively, you can use an AWS managed policy such as IAMFullAccess to provide full access to IAM.

Managing tags on IAM roles (console)
You can manage tags for IAM roles from the AWS Management Console.

To manage tags on roles (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the console, choose Roles and then choose the name of the role that you
want to edit.

3. Choose the Tags tab and then complete one of the following actions:

• Choose Add tags if the role does not yet have tags.
• Choose Edit tags to manage the existing set of tags.

4. Add or remove tags to complete the set of tags. Then choose Save changes.

Managing tags on IAM roles (AWS CLI or AWS API)
You can list, attach, or remove tags for IAM roles. You can use the AWS CLI or the AWS API to manage
tags for IAM roles.

To list the tags currently attached to an IAM role (AWS CLI or AWS API)

• AWS CLI: aws iam list-role-tags
• AWS API: ListRoleTags

To attach tags to an IAM role (AWS CLI or AWS API)

• AWS CLI: aws iam tag-role
• AWS API: TagRole

To remove tags from an IAM role (AWS CLI or AWS API)

• AWS CLI: aws iam untag-role
• AWS API: UntagRole

For information about attaching tags to resources for other AWS services, see the documentation for
those services.

For information about using tags to set more granular permissions with IAM permissions policies, see
IAM policy elements: Variables and tags (p. 776).

302

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/IAMFullAccess
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/list-role-tags.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListRoleTags.html
https://docs.aws.amazon.com/cli/latest/reference/iam/tag-role.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagRole.html
https://docs.aws.amazon.com/cli/latest/reference/iam/untag-role.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UntagRole.html

AWS Identity and Access Management User Guide
Tagging customer managed policies

Tagging customer managed policies
You can use IAM tag key-value pairs to add custom attributes to your customer managed policies. For
example, to tag a policy with department information, you can add the tag key Department and the tag
value eng. Or, you might want to tag policies to indicate that they are for a specific environment, such
as Environment = lab. You can use tags to control access to resources or to control what tags can be
attached to a resource. To learn more about using tags to control access, see Controlling access to and
for IAM users and roles using tags (p. 414).

You can also use tags in AWS STS to add custom attributes when you assume a role or federate a user.
For more information, see Passing session tags in AWS STS (p. 313).

Permissions required for tagging customer managed policies
You must configure permissions to allow an IAM entity (users or roles) to tag customer managed policies.
You can specify one or all of the following IAM tag actions in an IAM policy:

• iam:ListPolicyTags

• iam:TagPolicy

• iam:UntagPolicy

To allow an IAM entity (user or role) to add, list, or remove a tag for a customer managed policy

Add the following statement to the permissions policy for the IAM entity that needs to manage tags.
Use your account number and replace <policyname> with the name of the policy whose tags need to
be managed. To learn how to create a policy using this example JSON policy document, see the section
called “Creating policies on the JSON tab” (p. 469).

{
 "Effect": "Allow",
 "Action": [
 "iam:ListPolicyTags",
 "iam:TagPolicy",
 "iam:UntagPolicy"
],
 "Resource": "arn:aws:iam:*:<account-number>:policy/<policyname>"
}

To allow an IAM entity (user or role) to add a tag to a specific customer managed policy

Add the following statement to the permissions policy for the IAM entity that needs to add, but not
remove, tags for a specific policy.

Note
The iam:TagPolicy action requires that you also include the iam:ListPolicyTags action.

To use this policy, replace <policyname> with the name of the policy whose tags need to be managed.
To learn how to create a policy using this example JSON policy document, see the section called
“Creating policies on the JSON tab” (p. 469).

{
 "Effect": "Allow",
 "Action": [
 "iam:ListPolicyTags",
 "iam:TagPolicy"
],
 "Resource": "arn:aws:iam:*:<account-number>:policy/<policyname>"
}

303

AWS Identity and Access Management User Guide
Tagging IAM identity providers

Alternatively, you can use an AWS managed policy such as IAMFullAccess to provide full access to IAM.

Managing tags on IAM customer managed policies (console)
You can manage tags for IAM customer managed policies from the AWS Management Console.

To manage tags on customer managed policies (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the console, choose Policies and then choose the name of the customer
managed policy that you want to edit.

3. Choose the Tags tab and then complete one of the following actions:

• Choose Add tags if the policy does not yet have tags.
• Choose Edit tags to manage the existing set of tags.

4. Add or remove tags to complete the set of tags. Then choose Save changes.

Managing tags on IAM customer managed policies (AWS CLI or
AWS API)
You can list, attach, or remove tags for IAM customer managed policies. You can use the AWS CLI or the
AWS API to manage tags for IAM customer managed policies.

To list the tags currently attached to an IAM customer managed policy (AWS CLI or AWS API)

• AWS CLI: aws iam list-policy-tags
• AWS API: ListPolicyTags

To attach tags to an IAM customer managed policy(AWS CLI or AWS API)

• AWS CLI: aws iam tag-policy
• AWS API: TagPolicy

To remove tags from an IAM customer managed policy (AWS CLI or AWS API)

• AWS CLI: aws iam untag-policy
• AWS API: UntagPolicy

For information about attaching tags to resources for other AWS services, see the documentation for
those services.

For information about using tags to set more granular permissions with IAM permissions policies, see
IAM policy elements: Variables and tags (p. 776).

Tagging IAM identity providers
You can use IAM tag key-value pairs to add custom attributes to IAM identity providers (IdPs).

You can also use tags in AWS STS to add custom attributes when you assume a role or federate a user.
For more information, see Passing session tags in AWS STS (p. 313).

To learn about tagging IdPs in IAM, see the following sections:

304

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/IAMFullAccess
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/list-policy-tags.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListPolicyTags.html
https://docs.aws.amazon.com/cli/latest/reference/iam/tag-policy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagPolicy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/untag-policy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UntagPolicy.html

AWS Identity and Access Management User Guide
Tagging IAM identity providers

Topics
• Tagging OpenID Connect (OIDC) identity providers (p. 305)
• Tagging IAM SAML identity providers (p. 306)

Tagging OpenID Connect (OIDC) identity providers
You can use IAM tag key-values to add custom attributes to IAM OpenID Connect (OIDC) identity
providers. For example, to identify an OIDC identity provider, you can add the tag key google and the
tag value oidc. You can use tags to control access to resources or to control what tags can be attached
to an object. To learn more about using tags to control access, see Controlling access to and for IAM
users and roles using tags (p. 414).

Permissions required for tagging IAM OIDC identity providers

You must configure permissions to allow an IAM entity (user or role) to tag IAM OIDC identity providers.
You can specify one or all of the following IAM tag actions in an IAM policy:

• iam:ListOpenIDConnectProviderTags

• iam:TagOpenIDConnectProvider

• iam:UntagOpenIDConnectProvider

To allow an IAM entity (user or role) to add, list, or remove a tag for an IAM OIDC identity provider

Add the following statement to the permissions policy for the IAM entity that needs to manage tags. Use
your account number and replace <OIDCProviderName> with the name of the OIDC provider whose
tags need to be managed. To learn how to create a policy using this example JSON policy document, see
the section called “Creating policies on the JSON tab” (p. 469).

{
 "Effect": "Allow",
 "Action": [
 "iam:ListOpenIDConnectProviderTags",
 "iam:TagOpenIDConnectProvider",
 "iam:UntagOpenIDConnectProvider"
],
 "Resource": "arn:aws:iam:*:<account-number>:oidc-provider/<OIDCProviderName>"
}

To allow an IAM entity (user or role) to add a tag to a specific IAM OIDC identity provider

Add the following statement to the permissions policy for the IAM entity that needs to add, but not
remove, tags for a specific identity provider.

Note
The iam:TagOpenIDConnectProvider action requires that you also include the
iam:ListOpenIDConnectProviderTags action.

To use this policy, replace <OIDCProviderName> with the name of the OIDC provider whose tags
need to be managed. To learn how to create a policy using this example JSON policy document, see the
section called “Creating policies on the JSON tab” (p. 469).

{
 "Effect": "Allow",
 "Action": [
 "iam:ListOpenIDConnectProviderTags",
 "iam:TagOpenIDConnectProvider"
],
 "Resource": "arn:aws:iam:*:<account-number>:oidc-provider/<OIDCProviderName>"

305

AWS Identity and Access Management User Guide
Tagging IAM identity providers

}

Alternatively, you can use an AWS managed policy such as IAMFullAccess to provide full access to IAM.

Managing tags on IAM OIDC identity providers (console)

You can manage tags for IAM OIDC identity providers from the AWS Management Console.

Note
You can manage tags using the new Identity providers console experience only.

To manage tags on OIDC identity providers (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the console, choose Identity providers and then choose the name of the
identity provider that you want to edit.

3. In the Tags section, choose Manage tags and then complete one of the following actions:

• Choose Add tag if the OIDC identity provider does not yet have tags or to add a new tag.
• Edit existing tag keys and values.
• Choose Remove tag to remove a tag.

4. Then choose Save changes.

Managing tags on IAM OIDC identity providers (AWS CLI or AWS API)

You can list, attach, or remove tags for IAM OIDC identity providers. You can use the AWS CLI or the AWS
API to manage tags for IAM OIDC identity providers.

To list the tags currently attached to an IAM OIDC identity provider (AWS CLI or AWS API)

• AWS CLI: aws iam list-open-id-connect-provider-tags
• AWS API: ListOpenIDConnectProviderTags

To attach tags to an IAM OIDC identity provider (AWS CLI or AWS API)

• AWS CLI: aws iam tag-open-id-connect-provider
• AWS API: TagOpenIDConnectProvider

To remove tags from an IAM OIDC identity provider (AWS CLI or AWS API)

• AWS CLI: aws iam untag-open-id-connect-provider
• AWS API: UntagOpenIDConnectProvider

For information about attaching tags to resources for other AWS services, see the documentation for
those services.

For information about using tags to set more granular permissions with IAM permissions policies, see
IAM policy elements: Variables and tags (p. 776).

Tagging IAM SAML identity providers
You can use IAM tag key-value pairs to add custom attributes to SAML identity providers. For example,
to identify a provider, you can add the tag key okta and the tag value saml. You can use tags to control

306

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/IAMFullAccess
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/list-open-id-connect-provider-tags.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListOpenIDConnectProviderTags.html
https://docs.aws.amazon.com/cli/latest/reference/iam/tag-open-id-connect-provider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagOpenIDConnectProvider.html
https://docs.aws.amazon.com/cli/latest/reference/iam/untag-open-id-connect-provider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UntagOpenIDConnectProvider.html

AWS Identity and Access Management User Guide
Tagging IAM identity providers

access to resources or to control what tags can be attached to an object. To learn more about using tags
to control access, see Controlling access to and for IAM users and roles using tags (p. 414).

Permissions required for tagging SAML identity providers

You must configure permissions to allow an IAM entity (users or roles) to tag SAML 2.0–based Identity
Providers (IdPs). You can specify one or all of the following IAM tag actions in an IAM policy:

• iam:ListSAMLProviderTags

• iam:TagSAMLProvider

• iam:UntagSAMLProvider

To allow an IAM entity (user or role) to add, list, or remove a tag for a SAML identity provider

Add the following statement to the permissions policy for the IAM entity that needs to manage tags. Use
your account number and replace <SAMLProviderName> with the name of the SAML provider whose
tags need to be managed. To learn how to create a policy using this example JSON policy document, see
the section called “Creating policies on the JSON tab” (p. 469).

{
 "Effect": "Allow",
 "Action": [
 "iam:ListSAMLProviderTags",
 "iam:TagSAMLProvider",
 "iam:UntagSAMLProvider"
],
 "Resource": "arn:aws:iam:*:<account-number>:saml-provider/<SAMLProviderName>"
}

To allow an IAM entity (user or role) to add a tag to a specific SAML identity provider

Add the following statement to the permissions policy for the IAM entity that needs to add, but not
remove, tags for a specific SAML provider.

Note
The iam:TagSAMLProvider action requires that you also include the
iam:ListSAMLProviderTags action.

To use this policy, replace <SAMLProviderName> with the name of the SAML provider whose tags
need to be managed. To learn how to create a policy using this example JSON policy document, see the
section called “Creating policies on the JSON tab” (p. 469).

{
 "Effect": "Allow",
 "Action": [
 "iam:ListSAMLProviderTags",
 "iam:TagSAMLProvider"
],
 "Resource": "arn:aws:iam:*:<account-number>:saml-provider/<SAMLProviderName>"
}

Alternatively, you can use an AWS managed policy such as IAMFullAccess to provide full access to IAM.

Managing tags on IAM SAML identity providers (console)

You can manage tags for IAM SAML Identity Providers from the AWS Management Console.

Note
You can manage tags using the new Identity providers console experience only.

307

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/IAMFullAccess

AWS Identity and Access Management User Guide
Tagging instance profiles

To manage tags on SAML identity providers (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the console, choose Identity providers and then choose the name of the
SAML identity provider that you want to edit.

3. In the Tags section, choose Manage tags and then complete one of the following actions:

• Choose Add tag if the SAML identity provider does not yet have tags or to add a new tag.
• Edit existing tag keys and values.
• Choose Remove tag to remove a tag.

4. Add or remove tags to complete the set of tags. Then choose Save changes.

Managing tags on IAM SAML identity providers (AWS CLI or AWS API)

You can list, attach, or remove tags for IAM SAML identity providers. You can use the AWS CLI or the AWS
API to manage tags for IAM SAML identity providers.

To list the tags currently attached to an SAML identity provider (AWS CLI or AWS API)

• AWS CLI: aws iam list-saml-provider-tags
• AWS API: ListSAMLProviderTags

To attach tags to a SAML identity provider (AWS CLI or AWS API)

• AWS CLI: aws iam tag-saml-provider
• AWS API: TagSAMLProvider

To remove tags from a SAML identity provider (AWS CLI or AWS API)

• AWS CLI: aws iam untag-saml-provider
• AWS API: UntagSAMLProvider

For information about attaching tags to resources for other AWS services, see the documentation for
those services.

For information about using tags to set more granular permissions with IAM permissions policies, see
IAM policy elements: Variables and tags (p. 776).

Tagging instance profiles for Amazon EC2 roles
When you launch an Amazon EC2 instance, you specify an IAM role to associate with the instance. An
instance profile is a container for an IAM role that you can use to pass role information to an Amazon
EC2 instance when the instance starts. You can tag instance profiles when you use the AWS CLI or AWS
API.

You can use IAM tag key-value pairs to add custom attributes to an instance profile. For example, to
add department information to an instance profile, you can add the tag key access-team and the tag
value eng. Doing this gives principals with matching tags access to instance profiles with the same tag.
You could use multiple tag key-value pairs to specify a team and project: access-team = eng , and
project = peg. You can use tags to control a user's access to resources or to control what tags can be
attached to a user. To learn more about using tags to control access, see Controlling access to and for
IAM users and roles using tags (p. 414).

308

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/list-saml-provider-tags.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListSAMLProviderTags.html
https://docs.aws.amazon.com/cli/latest/reference/iam/tag-saml-provider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagSAMLProvider.html
https://docs.aws.amazon.com/cli/latest/reference/iam/untag-saml-provider.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UntagSAMLProvider.html

AWS Identity and Access Management User Guide
Tagging instance profiles

You can also use tags in AWS STS to add custom attributes when you assume a role or federate a user.
For more information, see Passing session tags in AWS STS (p. 313).

Permissions required for tagging instance profiles
You must configure permissions to allow an IAM entity (user or role) to tag instance profiles. You can
specify one or all of the following IAM tag actions in an IAM policy:

• iam:ListInstanceProfileTags

• iam:TagInstanceProfile

• iam:UntagInstanceProfile

To allow an IAM entity (user or role) to add, list, or remove a tag for an instance profile

Add the following statement to the permissions policy for the IAM entity that needs to manage tags.
Use your account number and replace <InstanceProfileName> with the name of the instance
profile whose tags need to be managed. To learn how to create a policy using this example JSON policy
document, see the section called “Creating policies on the JSON tab” (p. 469).

{
 "Effect": "Allow",
 "Action": [
 "iam:ListInstanceProfileTags",
 "iam:TagInstanceProfile",
 "iam:UntagInstanceProfile"
],
 "Resource": "arn:aws:iam:*:<account-number>:instance-profile/<InstanceProfileName>"
}

To allow an IAM entity (user or role) to add a tag to a specific instance profile

Add the following statement to the permissions policy for the IAM entity that needs to add, but not
remove, tags for a specific instance profile.

Note
The iam:TagInstanceProfile action requires that you also include the
iam:ListInstanceProfileTags action.

To use this policy, replace <InstanceProfileName> with the name of the instance profile whose tags
need to be managed. To learn how to create a policy using this example JSON policy document, see the
section called “Creating policies on the JSON tab” (p. 469).

{
 "Effect": "Allow",
 "Action": [
 "iam:ListInstanceProfileTags",
 "iam:TagInstanceProfile"
],
 "Resource": "arn:aws:iam:*:<account-number>:instance-profile/<InstanceProfileName>"
}

Alternatively, you can use an AWS managed policy such as IAMFullAccess to provide full access to IAM.

Managing tags on instance profiles (AWS CLI or AWS API)
You can list, attach, or remove tags for instance profiles. You can use the AWS CLI or the AWS API to
manage tags for instance profiles.

309

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/IAMFullAccess

AWS Identity and Access Management User Guide
Tagging server certificates

To list the tags currently attached to an instance profile (AWS CLI or AWS API)

• AWS CLI: aws iam list-instance-profile-tags
• AWS API: ListInstanceProfileTags

To attach tags to an instance profile (AWS CLI or AWS API)

• AWS CLI: aws iam tag-instance-profile
• AWS API: TagInstanceProfile

To remove tags from an instance profile (AWS CLI or AWS API)

• AWS CLI: aws iam untag-instance-profile
• AWS API: UntagInstanceProfile

For information about attaching tags to resources for other AWS services, see the documentation for
those services.

For information about using tags to set more granular permissions with IAM permissions policies, see
IAM policy elements: Variables and tags (p. 776).

Tagging server certificates
If you use IAM to manage SSL/TLS certificates, you can tag server certificates in IAM using the
AWS CLI or AWS API. For certificates in a Region supported by AWS Certificate Manager (ACM), we
recommend that you use ACM instead of IAM to provision, manage, and deploy your server certificates.
In unsupported Regions, you must use IAM as a certificate manager. To learn which Regions ACM
supports, see AWS Certificate Manager endpoints and quotas in the AWS General Reference.

You can use IAM tag key-value pairs to add custom attributes to a server certificate. For example, to add
information about the owner or administrator of a server certificate, add the tag key owner and the
tag value net-eng. Or you can specify a cost center by adding the tag key CostCenter and the tag
value 1234. You can use tags to control access to resources or to control what tags can be attached to
resources. To learn more about using tags to control access, see Controlling access to and for IAM users
and roles using tags (p. 414).

You can also use tags in AWS STS to add custom attributes when you assume a role or federate a user.
For more information, see Passing session tags in AWS STS (p. 313).

Permissions required for tagging server certificates
You must configure permissions to allow an IAM entity (user or role) to tag server certificates. You can
specify one or all of the following IAM tag actions in an IAM policy:

• iam:ListServerCertificateTags

• iam:TagServerCertificate

• iam:UntagServerCertificate

To allow an IAM entity (user or role) to add, list, or remove a tag for a server certificate

Add the following statement to the permissions policy for the IAM entity that needs to manage tags. Use
your account number and replace <CertificateName> with the name of the server certificate whose
tags need to be managed. To learn how to create a policy using this example JSON policy document, see
the section called “Creating policies on the JSON tab” (p. 469).

310

https://docs.aws.amazon.com/cli/latest/reference/iam/list-instance-profile-tags.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListInstanceProfileTags.html
https://docs.aws.amazon.com/cli/latest/reference/iam/tag-instance-profile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagInstanceProfile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/untag-instance-profile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UntagInstanceProfile.html
https://docs.aws.amazon.com/general/latest/gr/acm.html

AWS Identity and Access Management User Guide
Tagging server certificates

{
 "Effect": "Allow",
 "Action": [
 "iam:ListServerCertificateTags",
 "iam:TagServerCertificate",
 "iam:UntagServerCertificate"
],
 "Resource": "arn:aws:iam:*:<account-number>:server-certificate/<CertificateName>"
}

To allow an IAM entity (user or role) to add a tag to a specific server certificate

Add the following statement to the permissions policy for the IAM entity that needs to add, but not
remove, tags for a specific server certificate.

Note
The iam:TagServerCertificate action requires that you also include the
iam:ListServerCertificateTags action.

To use this policy, replace <CertificateName> with the name of the server certificate whose tags
need to be managed. To learn how to create a policy using this example JSON policy document, see the
section called “Creating policies on the JSON tab” (p. 469).

{
 "Effect": "Allow",
 "Action": [
 "iam:ListServerCertificateTags",
 "iam:TagServerCertificate"
],
 "Resource": "arn:aws:iam:*:<account-number>:server-certificate/<CertificateName>"
}

Alternatively, you can use an AWS managed policy such as IAMFullAccess to provide full access to IAM.

Managing tags on server certificates (AWS CLI or AWS API)
You can list, attach, or remove tags for server certificates. You can use the AWS CLI or the AWS API to
manage tags for server certificates.

To list the tags currently attached to a server certificate (AWS CLI or AWS API)

• AWS CLI: aws iam list-server-certificate-tags
• AWS API: ListServerCertificateTags

To attach tags to a server certificate(AWS CLI or AWS API)

• AWS CLI: aws iam tag-server-certificate
• AWS API: TagServerCertificate

To remove tags from a server certificate (AWS CLI or AWS API)

• AWS CLI: aws iam untag-server-certificate
• AWS API: UntagServerCertificate

For information about attaching tags to resources for other AWS services, see the documentation for
those services.

311

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/IAMFullAccess
https://docs.aws.amazon.com/cli/latest/reference/iam/list-server-certificate-tags.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListServerCertificateTags.html
https://docs.aws.amazon.com/cli/latest/reference/iam/tag-server-certificate.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagServerCertificate.html
https://docs.aws.amazon.com/cli/latest/reference/iam/untag-server-certificate.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UntagServerCertificate.html

AWS Identity and Access Management User Guide
Tagging virtual MFA devices

For information about using tags to set more granular permissions with IAM permissions policies, see
IAM policy elements: Variables and tags (p. 776).

Tagging virtual MFA devices
You can use IAM tag key-value pairs to add custom attributes to a virtual MFA device. For example, to
add cost center information for a user's virtual MFA device, you can add the tag key CostCenter and the
tag value 1234. You can use tags to control access to resources or to control what tags can be attached
to an object. To learn more about using tags to control access, see Controlling access to and for IAM
users and roles using tags (p. 414).

You can also use tags in AWS STS to add custom attributes when you assume a role or federate a user.
For more information, see Passing session tags in AWS STS (p. 313).

Permissions required for tagging virtual MFA devices
You must configure permissions to allow an IAM entity (user or role) to tag virtual MFA devices. You can
specify one or all of the following IAM tag actions in an IAM policy:

• iam:ListMFADeviceTags

• iam:TagMFADevice

• iam:UntagMFADevice

To allow an IAM entity (user or role) to add, list, or remove a tag for a virtual MFA device

Add the following statement to the permissions policy for the IAM entity that needs to manage tags. Use
your account number and replace <MFATokenID> with the name of the virtual MFA device whose tags
need to be managed. To learn how to create a policy using this example JSON policy document, see the
section called “Creating policies on the JSON tab” (p. 469).

{
 "Effect": "Allow",
 "Action": [
 "iam:ListMFADeviceTags",
 "iam:TagMFADevice",
 "iam:UntagMFADevice"
],
 "Resource": "arn:aws:iam:*:<account-number>:mfa/<MFATokenID>"
}

To allow an IAM entity (user or role) to add a tag to a specific virtual MFA device

Add the following statement to the permissions policy for the IAM entity that needs to add, but not
remove, tags for a specific MFA device.

Note
The iam:TagMFADevice action requires that you also include the iam:ListMFADeviceTags
action.

To use this policy, replace <MFATokenID> with the name of the virtual MFA device whose tags need to
be managed. To learn how to create a policy using this example JSON policy document, see the section
called “Creating policies on the JSON tab” (p. 469).

{
 "Effect": "Allow",
 "Action": [

312

AWS Identity and Access Management User Guide
Session tags

 "iam:ListMFADeviceTags",
 "iam:TagMFADevice"
],
 "Resource": "arn:aws:iam:*:<account-number>:mfa/<MFATokenID>"
}

Alternatively, you can use an AWS managed policy such as IAMFullAccess to provide full access to IAM.

Managing tags on virtual MFA devices (AWS CLI or AWS API)
You can list, attach, or remove tags for a virtual MFA device. You can use the AWS CLI or the AWS API to
manage tags for a virtual MFA device.

To list the tags currently attached to a virtual MFA device (AWS CLI or AWS API)

• AWS CLI: aws iam list-mfa-device-tags

• AWS API: ListMFADeviceTags

To attach tags to a virtual MFA device (AWS CLI or AWS API)

• AWS CLI: aws iam tag-mfa-device

• AWS API: TagMFADevice

To remove tags from a virtual MFA device (AWS CLI or AWS API)

• AWS CLI: aws iam untag-mfa-device

• AWS API: UntagMFADevice

For information about attaching tags to resources for other AWS services, see the documentation for
those services.

For information about using tags to set more granular permissions with IAM permissions policies, see
IAM policy elements: Variables and tags (p. 776).

Passing session tags in AWS STS
Session tags are key-value pair attributes that you pass when you assume an IAM role or federate a
user in AWS STS. You do this by making an AWS CLI or AWS API request through STS or through your
identity provider (IdP). When you use AWS STS to request temporary security credentials, you generate
a session. Sessions expire and have credentials, such as an access key pair and a session token. When
you use the session credentials to make a subsequent request, the request context (p. 759) includes
the aws:PrincipalTag (p. 821) context key. You can use the aws:PrincipalTag key in the
Condition element of your policies to allow or deny access based on those tags.

When you use temporary credentials to make a request, your principal might include a set of tags. These
tags come from the following sources:

1. Session tags – These tags were passed when you assumed the role or federated the user using
the AWS CLI or AWS API. For more information about these operations, see Session tagging
operations (p. 314) below.

2. Incoming transitive session tags – These tags were inherited from a previous session in a role chain.
For more information, see Chaining roles with session tags (p. 320) later in this topic.

3. IAM tags – These tags were attached to the IAM role that you assumed.

313

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/IAMFullAccess
https://docs.aws.amazon.com/cli/latest/reference/iam/list-mfa-device-tags.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListMFADeviceTags.html
https://docs.aws.amazon.com/cli/latest/reference/iam/tag-mfa-device.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_TagMFADevice.html
https://docs.aws.amazon.com/cli/latest/reference/iam/untag-mfa-device.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UntagMFADevice.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_Credentials.html

AWS Identity and Access Management User Guide
Session tags

Topics

• Session tagging operations (p. 314)

• Things to know about session tags (p. 315)

• Permissions required to add session tags (p. 315)

• Passing session tags using AssumeRole (p. 317)

• Passing session tags using AssumeRoleWithSAML (p. 318)

• Passing session tags using AssumeRoleWithWebIdentity (p. 319)

• Passing session tags using GetFederationToken (p. 319)

• Chaining roles with session tags (p. 320)

• Using session tags for ABAC (p. 321)

• Viewing session tags in CloudTrail (p. 321)

Session tagging operations
You can pass session tags using the following AWS CLI or AWS API operations in AWS STS. The AWS
Management Console Switch Role (p. 260) feature does not allow you to pass session tags.

You can also set the session tags as transitive. Transitive tags persist during role chaining. For more
information, see Chaining roles with session tags (p. 320).

Comparing methods for passing session tags

Method Who can assume the role Method to pass tags Method to set
transitive tags

assume-role CLI
or AssumeRole API
operation

IAM user or a session Tags API parameter
or --tags CLI
option

TransitiveTagKeys
API parameter or --
transitive-tag-
keys CLI option

assume-role-
with-saml CLI or
AssumeRoleWithSAML
API operation

Any user authenticated using
SAML identity provider

PrincipalTag
SAML attribute

TransitiveTagKeys
SAML Attribute

assume-role-
with-web-
identity CLI or
AssumeRoleWithWebIdentity
API operation

Any user authenticated using a
web identity provider

PrincipalTag web
identity token

TransitiveTagKeys
web identity token

get-federation-
token CLI or
GetFederationToken
API operation

IAM user or root user Tags API parameter
or --tags CLI
option

Not supported

Operations that support session tagging can fail if any of the following conditions are true:

• You pass more than 50 session tags.

• The plain text of your session tag keys exceeds 128 characters.

• The plain text of your session tag values exceeds 256 characters.

• The total size of the plain text of session policies exceeds 2048 characters.

314

https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role-with-saml.html
https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role-with-saml.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithSAML.html
https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role-with-web-identity.html
https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role-with-web-identity.html
https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role-with-web-identity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html
https://docs.aws.amazon.com/cli/latest/reference/sts/get-federation-token.html
https://docs.aws.amazon.com/cli/latest/reference/sts/get-federation-token.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html

AWS Identity and Access Management User Guide
Session tags

• The total packed size of the session policies and session tags combined is too large. If the operation
fails, the error message indicates by percentage how close the policies and tags combined are to the
upper size limit.

Things to know about session tags
Before you use session tags, review the following details about sessions and tags.

• When using session tags, trust policies for all roles connected to the identity provider (IdP) that is
passing tags must have the sts:TagSession (p. 315) permission. For roles that don't have this
permission in the trust policy, the AssumeRole operation will fail.

• Session tags are principal tags that you specify while requesting a session. The tags apply to requests
that you make using the session's credentials.

• Session tags are key-value pairs. For example, to add contact information to a session, you can add the
session tag key email and the tag value johndoe@example.com.

• Session tags must follow the rules for naming tags in IAM and AWS STS (p. 296). This topic includes
information about case sensitivity and restricted prefixes that apply to your session tags.

• New session tags override existing assumed role or federated user tags with the same tag key,
regardless of case.

• You cannot pass session tags using the AWS Management Console.
• Session tags are valid only for the current session.
• Session tags support role chaining (p. 170). By default, tags are not passed to subsequent role

sessions. However, you can set session tags as transitive. Transitive tags persist during role chaining.
For more information, see Chaining roles with session tags (p. 320).

• You can use session tags to control access to resources or to control what tags can be passed into a
subsequent session. For more information, see IAM tutorial: Use SAML session tags for ABAC (p. 56).

• You can view the principal tags for your session, including its session tags, in the AWS CloudTrail logs.
For more information, see Viewing session tags in CloudTrail (p. 321).

• You must pass a single value for each session tag. Multivalued session tags are not supported.
• You can pass a maximum of 50 session tags. The number and size of IAM resources in an AWS account

are limited. For more information, see IAM and AWS STS quotas (p. 719).
• An AWS conversion compresses the passed session policies and session tags combined into a packed

binary format that has a separate limit. If you exceed this limit, the AWS CLI or AWS API error message
indicates by percentage how close the policies and tags combined are to the upper size limit.

Permissions required to add session tags
In addition to the action that matches the API operation, you must have the following permissions-only
action in your policy:

sts:TagSession

Important
When using session tags, the role trust policies for all roles connected to an identity provider
(IdP) must have the sts:TagSession permission. The AssumeRole operation will fail for any
role connected to an IdP that is passing session tags without this permission. If you don't want
to update the role trust policy for each role, you can use a separate IdP instance for passing
session tags. Then add the sts:TagSession permission to only the roles that are connected to
the separate IdP.

You can use the sts:TagSession action with the following condition keys.

315

AWS Identity and Access Management User Guide
Session tags

• aws:PrincipalTag (p. 821) – Use this key to compare the tag that is attached to the principal
making the request with the tag that you specify in the policy. For example, you can allow a principal
to pass session tags only if the principal making the request has the specified tags.

• aws:RequestTag (p. 824) – Use this key to compare the tag key-value pair that was passed in the
request with the tag pair that you specify in the policy. For example, you can allow the principal to
pass the specified session tags, but only with the specified values.

• aws:ResourceTag (p. 824) – Use this key to compare the tag key-value pair that you specify in
the policy with the key-value pair that is attached to the resource. For example, you can allow the
principal to pass session tags only if the role they are assuming includes the specified tags.

• aws:TagKeys (p. 828) – Use this key to compare the tag keys in a request with the keys that
you specify in the policy. For example, you can allow the principal to pass only session tags with the
specified tag keys. This condition key limits the maximum set of session tags that can be passed.

• sts:TransitiveTagKeys (p. 842) - Use this key to compare the transitive session tag keys in the
request with those specified in the policy. For example, you can write a policy to allow a principal to set
only specific tags as transitive. Transitive tags persist during role chaining. For more information, see
Chaining roles with session tags (p. 320).

For example, the following role trust policy (p. 171) allows the test-session-tags user to assume
the role to which the policy is attached. When that user assumes the role, they must use the AWS CLI or
AWS API to pass the three required session tags and the required external ID (p. 231). Additionally, the
user can choose to set the Project and Department tags as transitive.

Example Example role trust policy for session tags

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowIamUserAssumeRole",
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Principal": {"AWS": "arn:aws:iam::123456789012:user/test-session-tags"},
 "Condition": {
 "StringLike": {
 "aws:RequestTag/Project": "*",
 "aws:RequestTag/CostCenter": "*",
 "aws:RequestTag/Department": "*"
 },
 "StringEquals": {"sts:ExternalId": "Example987"}
 }
 },
 {
 "Sid": "AllowPassSessionTagsAndTransitive",
 "Effect": "Allow",
 "Action": "sts:TagSession",
 "Principal": {"AWS": "arn:aws:iam::123456789012:user/test-session-tags"},
 "Condition": {
 "StringLike": {
 "aws:RequestTag/Project": "*",
 "aws:RequestTag/CostCenter": "*"
 },
 "StringEquals": {
 "aws:RequestTag/Department": [
 "Engineering",
 "Marketing"
]
 },
 "ForAllValues:StringEquals": {
 "sts:TransitiveTagKeys": [
 "Project",

316

AWS Identity and Access Management User Guide
Session tags

 "Department"
]
 }
 }
 }
]
}

What does this policy do?

• The AllowIamUserAssumeRole statement allows the test-session-tags user to assume the role
to which the policy is attached. When that user assumes the role, they must pass the required session
tags and external ID (p. 231).
• The first condition block of this statement requires the user to pass the Project, CostCenter, and
Department session tags. The tag values don't matter in this statement, so we used wildcards (*) for
the tag values. This block ensures that user passes at least these three session tags or the operation
will fail. The user can pass additional tags.

• The second condition block requires the user to pass an external ID (p. 231) with the value
Example987.

• The AllowPassSessionTagsAndTransitive statement allows the sts:TagSession permissions-
only action. This action must be allowed before the user can pass session tags. If your policy includes
the first statement without the second statement, the user can't assume the role.
• The first condition block of this statement allows the user to pass any value for the CostCenter

and Project session tags. You do this by using wildcards (*) for the tag value in the policy, which
requires that you use the StringLike (p. 761) condition operator.

• The second condition block allows the user to pass only the Engineering or Marketing value for
the Department session tag.

• The third condition block lists the maximum set of tags that can be set as transitive. The user can
choose to set a subset or no tags as transitive. But they cannot set additional tags as transitive. You
can require that they set at least one of the tags as transitive by adding another condition block that
includes "Null":{"sts:TransitiveTagKeys":"false"}.

Passing session tags using AssumeRole
The AssumeRole operation returns a set of temporary credentials that you can use to access AWS
resources. You can use IAM user or role credentials to call AssumeRole. To pass session tags while
assuming a role, use the --tags AWS CLI option or the Tags AWS API parameter.

To set tags as transitive, use the --transitive-tag-keys AWS CLI option or the
TransitiveTagKeys AWS API parameter. Transitive tags persist during role chaining. For more
information, see Chaining roles with session tags (p. 320).

The following example shows a sample request that uses AssumeRole. In this example, when you
assume the my-role-example role, you create a session named my-session. You add the session tag
key-value pairs Project = Automation, CostCenter = 12345, and Department = Engineering. You
also set the Project and Department tags as transitive by specifying their keys.

Example Example AssumeRole CLI request

aws sts assume-role \
--role-arn arn:aws:iam::123456789012:role/my-role-example \
--role-session-name my-session \
--tags Key=Project,Value=Automation Key=CostCenter,Value=12345
 Key=Department,Value=Engineering \
--transitive-tag-keys Project Department \
--external-id Example987

317

AWS Identity and Access Management User Guide
Session tags

Passing session tags using AssumeRoleWithSAML
The AssumeRoleWithSAML operation is authenticated using SAML-based federation. This operation
returns a set of temporary credentials that you can use to access AWS resources. For more information
about using SAML-based federation for AWS Management Console access, see Enabling SAML 2.0
federated users to access the AWS Management Console (p. 209). For details about AWS CLI or AWS API
access, see About SAML 2.0-based federation (p. 183). For a tutorial of setting up SAML federation for
your Active Directory users, see AWS Federated Authentication with Active Directory Federation Services
(ADFS) in the AWS Security Blog.

As an administrator, you can allow members of your company directory to federate into AWS using the
AWS STS AssumeRoleWithSAML operation. To do this, you must complete the following tasks:

1. Configure your network as a SAML provider for AWS (p. 202)
2. Create a SAML provider in IAM (p. 197)
3. Configure a role and its permissions in AWS for your federated users (p. 247)
4. Finish configuring the SAML IdP and create assertions for the SAML authentication response (p. 204)

AWS includes partners that have certified the end-to-end experience for session tags with their identity
solutions. To learn how to use these identity providers to configure session tags, see Integrating third-
party SAML solution providers with AWS (p. 202).

To pass SAML attributes as session tags, include the Attribute element with the Name attribute
set to https://aws.amazon.com/SAML/Attributes/PrincipalTag:{TagKey}. Use the
AttributeValue element to specify the value of the tag. Include a separate Attribute element for
each session tag.

For example, assume that you want to pass the following identity attributes as session tags:

• Project:Automation

• CostCenter:12345

• Department:Engineering

To pass these attributes, include the following elements in your SAML assertion.

Example Example snippet of a SAML assertion

<Attribute Name="https://aws.amazon.com/SAML/Attributes/PrincipalTag:Project">
 <AttributeValue>Automation</AttributeValue>
</Attribute>
<Attribute Name="https://aws.amazon.com/SAML/Attributes/PrincipalTag:CostCenter">
 <AttributeValue>12345</AttributeValue>
</Attribute>
<Attribute Name="https://aws.amazon.com/SAML/Attributes/PrincipalTag:Department">
 <AttributeValue>Engineering</AttributeValue>
</Attribute>

To set the tags above as transitive, include another Attribute element with the Name attribute set to
https://aws.amazon.com/SAML/Attributes/TransitiveTagKeys. Transitive tags persist during
role chaining. For more information, see Chaining roles with session tags (p. 320).

To set the Project and Department tags as transitive, use the following multivalued attribute.

Example Example snippet of a SAML assertion

<Attribute Name="https://aws.amazon.com/SAML/Attributes/TransitiveTagKeys">

318

http://aws.amazon.com/blogs/security/aws-federated-authentication-with-active-directory-federation-services-ad-fs/
http://aws.amazon.com/blogs/security/aws-federated-authentication-with-active-directory-federation-services-ad-fs/

AWS Identity and Access Management User Guide
Session tags

 <AttributeValue>Project</AttributeValue>
 <AttributeValue>Department</AttributeValue>
</Attribute>

Passing session tags using AssumeRoleWithWebIdentity
The AssumeRoleWithWebIdentity operation is authenticated using OpenID Connect (OIDC)-
compliant web identity federation. This operation returns a set of temporary credentials that you
can use to access AWS resources. For more information about using web identity federation for AWS
Management Console access, see About web identity federation (p. 178).

To pass session tags from OpenID Connect (OIDC), you must include the session tags in the JSON Web
Token (JWT). Include session tags in the https://aws.amazon.com/tags namespace in the token
when you submit the AssumeRoleWithWebIdentity request. To learn more about OIDC tokens and
claims, see Using Tokens with User Pools in the Amazon Cognito Developer Guide.

For example, the following decoded JWT is a token that is used to call AssumeRoleWithWebIdentity
with the Project, CostCenter, and Department session tags. The token also sets the Project and
CostCenter tags as transitive. Transitive tags persist during role chaining. For more information, see
Chaining roles with session tags (p. 320).

Example Example decoded JSON web token

{
 "sub": "johndoe",
 "aud": "ac_oic_client",
 "jti": "ZYUCeRMQVtqHypVPWAN3VB",
 "iss": "https://xyz.com",
 "iat": 1566583294,
 "exp": 1566583354,
 "auth_time": 1566583292,
 "https://aws.amazon.com/tags": {
 "principal_tags": {
 "Project": ["Automation"],
 "CostCenter": ["987654"],
 "Department": ["Engineering"]
 },
 "transitive_tag_keys": [
 "Project",
 "CostCenter"
]
 }
}

Passing session tags using GetFederationToken
The GetFederationToken lets you federate your user. This operation returns a set of temporary
credentials that you can use to access AWS resources. To add tags to your federated user session, use the
--tags AWS CLI option or the Tags AWS API parameter. You can't set session tags as transitive when
you use GetFederationToken. This is because you can't use the temporary credentials to assume a
role, which means that role chaining is not possible.

The following example shows a sample request using GetFederationToken. In this example, when you
request the token, you create a session named my-fed-user. You add the session tag key-value pairs
Project = Automation and Department = Engineering.

Example Example GetFederationToken CLI request

aws sts get-federation-token \

319

https://aws.amazon.com/
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html

AWS Identity and Access Management User Guide
Session tags

--name my-fed-user \
--tags key=Project,value=Automation key=Department,value=Engineering

When you use the temporary credentials that are returned by the GetFederationToken operation, the
session's principal tags include the user's tags and the passed session tags.

Chaining roles with session tags
You can assume one role and then use the temporary credentials to assume another role. You can
continue from session to session. This is called role chaining (p. 170). When you pass session tags
while assuming a role, you can set the keys as transitive. This ensures that those session tags pass
to subsequent sessions in a role chain. You cannot set role tags as transitive. To pass these tags to
subsequent sessions, specify them as session tags.

The following example will help you understand how session tags, transitive tags, and role tags are
passed into subsequent sessions in a role chain.

In the following example role chaining scenario, you use an IAM user's access keys in the AWS CLI to
assume a role named Role1. You then use the resulting session credentials to assume a second role
named Role2. You can then use the second session credentials to assume a third role named Role3.
These requests occur as three separate operations. Each role is already tagged in IAM. And during each
request, you pass additional session tags.

When you chain roles, you can ensure that tags from an earlier session persist to the later sessions. To
do this using the assume-role CLI command, you must pass the tag as a session tag and set the tag
as transitive. You pass the tag Star = 1 as a session tag. The tag Heart = 1 is attached to the role and
will apply as a principal tag when you use the session. However, you also want the Heart = 1 tag to
automatically pass to the second or third session. To do that, you manually include it as a session tag.
That way the resulting session's principal tags include these two tags, and they are set as transitive.

You perform this request using the following AWS CLI command:

Example Example AssumeRole CLI request

aws sts assume-role \
--role-arn arn:aws:iam::123456789012:role/Role1 \
--role-session-name Session1 \
--tags Key=Star,Value=1 Key=Heart,Value=1 \
--transitive-tag-keys Star Heart

You then use the credentials for that session to assume Role2. The tag Sun = 2 is attached to the second
role and will apply as a principal tag when you use the second session. The Heart and Star tags are
inherited from the transitive session tags in the first session. The second session's resulting principal tags
are Heart = 1, Star = 1, and Sun = 2. Heart and Star will continue to be transitive. The Sun tag that
was attached to Role2 is not marked as transitive because it is not a session tag. This tag will not be
inherited by future sessions.

You perform this second request using the following AWS CLI command:

Example Example AssumeRole CLI request

aws sts assume-role \
--role-arn arn:aws:iam::123456789012:role/Role2 \
--role-session-name Session2

You then use the second session credentials to assume Role3. The principal tags for the third session
come from any new session tags, the inherited transitive session tags, and the role tags. The Heart =

320

AWS Identity and Access Management User Guide
Session tags

1 and Star = 1 tags on the second session were inherited from the transitive session tag in the first
session. If you try to pass the Heart = 3 session tag, the operation will fail. The inherited Star = 1
session tag overrides the role's Star = 3 tag. The role's Lightning tag also applies to the third session,
and is not set as transitive.

You perform the third request using the following AWS CLI command:

Example Example AssumeRole CLI request

aws sts assume-role \
--role-arn arn:aws:iam::123456789012:role/Role3 \
--role-session-name Session3

Using session tags for ABAC
Attribute-based access control (ABAC) is an authorization strategy that defines permissions based on tag
attributes.

If your company uses an OIDC or SAML-based identity provider (IdP) to manage user identities, you can
configure your assertion to pass session tags to AWS. For example, with corporate user identities, when
your employees federate into AWS, their attributes are applied to their resulting principal in AWS. You
can then use ABAC to allow or deny permissions based on those attributes. For details, see IAM tutorial:
Use SAML session tags for ABAC (p. 56).

For more information about using AWS SSO with ABAC, see Attributes for access control in the AWS
Single Sign-On User Guide.

Viewing session tags in CloudTrail
You can use AWS CloudTrail to view the requests made to assume roles or federate users. The CloudTrail
log file includes information about the principal tags for the assumed-role or federated user session. For
more information, see Logging IAM and AWS STS API calls with AWS CloudTrail (p. 365).

For example, assume that you make an AWS STS AssumeRoleWithSAML request, pass session tags, and
set those tags as transitive. You can find the following information in your CloudTrail log.

Example Example AssumeRoleWithSAML CloudTrail log

 "requestParameters": {
 "sAMLAssertionID": "_c0046cEXAMPLEb9d4b8eEXAMPLE2619aEXAMPLE",
 "roleSessionName": "MyRoleSessionName",
 "principalTags": {
 "CostCenter": "987654",
 "Project": "Unicorn"
 },
 "transitiveTagKeys": [
 "CostCenter",
 "Project"
],
 "durationSeconds": 3600,
 "roleArn": "arn:aws:iam::123456789012:role/SAMLTestRoleShibboleth",
 "principalArn": "arn:aws:iam::123456789012:saml-provider/Shibboleth"
 },

You can view the following example CloudTrail logs to view events that use session tags.

• Example AWS STS role chaining API event in CloudTrail log file (p. 372)
• Example SAML AWS STS API event in CloudTrail log file (p. 375)

321

https://docs.aws.amazon.com/singlesignon/latest/userguide/attributesforaccesscontrol.html

AWS Identity and Access Management User Guide
Temporary security credentials

• Example web identity AWS STS API event in CloudTrail log file (p. 376)

Temporary security credentials in IAM
You can use the AWS Security Token Service (AWS STS) to create and provide trusted users with
temporary security credentials that can control access to your AWS resources. Temporary security
credentials work almost identically to the long-term access key credentials that your IAM users can use,
with the following differences:

• Temporary security credentials are short-term, as the name implies. They can be configured to last for
anywhere from a few minutes to several hours. After the credentials expire, AWS no longer recognizes
them or allows any kind of access from API requests made with them.

• Temporary security credentials are not stored with the user but are generated dynamically and
provided to the user when requested. When (or even before) the temporary security credentials expire,
the user can request new credentials, as long as the user requesting them still has permissions to do
so.

These differences lead to the following advantages for using temporary credentials:

• You do not have to distribute or embed long-term AWS security credentials with an application.

• You can provide access to your AWS resources to users without having to define an AWS identity for
them. Temporary credentials are the basis for roles and identity federation (p. 168).

• The temporary security credentials have a limited lifetime, so you do not have to rotate them or
explicitly revoke them when they're no longer needed. After temporary security credentials expire,
they cannot be reused. You can specify how long the credentials are valid, up to a maximum limit.

AWS STS and AWS regions
Temporary security credentials are generated by AWS STS. By default, AWS STS is a global service with
a single endpoint at https://sts.amazonaws.com. However, you can also choose to make AWS STS
API calls to endpoints in any other supported Region. This can reduce latency (server lag) by sending
the requests to servers in a Region that is geographically closer to you. No matter which Region your
credentials come from, they work globally. For more information, see Managing AWS STS in an AWS
Region (p. 356).

Common scenarios for temporary credentials
Temporary credentials are useful in scenarios that involve identity federation, delegation, cross-account
access, and IAM roles.

Identity federation
You can manage your user identities in an external system outside of AWS and grant users who sign in
from those systems access to perform AWS tasks and access your AWS resources. IAM supports two types
of identity federation. In both cases, the identities are stored outside of AWS. The distinction is where the
external system resides—in your data center or an external third party on the web. For more information
about external identity providers, see Identity providers and federation (p. 177).

• Enterprise identity federation – You can authenticate users in your organization's network, and then
provide those users access to AWS without creating new AWS identities for them and requiring them to
sign in with a separate user name and password. This is known as the single sign-on (SSO) approach to

322

AWS Identity and Access Management User Guide
Common scenarios for temporary credentials

temporary access. AWS STS supports open standards like Security Assertion Markup Language (SAML)
2.0, with which you can use Microsoft AD FS to leverage your Microsoft Active Directory. You can also
use SAML 2.0 to manage your own solution for federating user identities. For more information, see
About SAML 2.0-based federation (p. 183).
• Custom federation broker – You can use your organization's authentication system to grant access

to AWS resources. For an example scenario, see Enabling custom identity broker access to the AWS
console (p. 212).

• Federation using SAML 2.0 – You can use your organization's authentication system and SAML to
grant access to AWS resources. For more information and an example scenario, see About SAML 2.0-
based federation (p. 183).

• Web identity federation – You can let users sign in using a well-known third party identity provider
such as Login with Amazon, Facebook, Google, or any OpenID Connect (OIDC) 2.0 compatible provider.
You can exchange the credentials from that provider for temporary permissions to use resources
in your AWS account. This is known as the web identity federation approach to temporary access.
When you use web identity federation for your mobile or web application, you don't need to create
custom sign-in code or manage your own user identities. Using web identity federation helps you
keep your AWS account secure, because you don't have to distribute long-term security credentials,
such as IAM user access keys, with your application. For more information, see About web identity
federation (p. 178).

AWS STS web identity federation supports Login with Amazon, Facebook, Google, and any OpenID
Connect (OIDC)-compatible identity provider.

Note
For mobile applications, we recommend that you use Amazon Cognito. You can use this
service with the AWS Mobile SDK for iOS and the AWS Mobile SDK for Android and Fire
OS to create unique identities for users and authenticate them for secure access to your
AWS resources. Amazon Cognito supports the same identity providers as AWS STS, and also
supports unauthenticated (guest) access and lets you migrate user data when a user signs
in. Amazon Cognito also provides API operations for synchronizing user data so that it is
preserved as users move between devices. For more information, see the following:
• Amazon Cognito Identity in the AWS Mobile SDK for iOS Developer Guide
• Amazon Cognito Identity in the AWS Mobile SDK for Android Developer Guide

Roles for cross-account access
Many organizations maintain more than one AWS account. Using roles and cross-account access, you can
define user identities in one account, and use those identities to access AWS resources in other accounts
that belong to your organization. This is known as the delegation approach to temporary access. For
more information about creating cross-account roles, see Creating a role to delegate permissions to
an IAM user (p. 227). To learn whether principals in accounts outside of your zone of trust (trusted
organization or account) have access to assume your roles, see What is IAM Access Analyzer?.

Roles for Amazon EC2
If you run applications on Amazon EC2 instances and those applications need access to AWS resources,
you can provide temporary security credentials to your instances when you launch them. These
temporary security credentials are available to all applications that run on the instance, so you don't
need to store any long-term credentials on the instance. For more information, see Using an IAM role to
grant permissions to applications running on Amazon EC2 instances (p. 270).

Other AWS services
You can use temporary security credentials to access most AWS services. For a list of the services that
accept temporary security credentials, see AWS services that work with IAM (p. 725).

323

https://aws.amazon.com/sdkforios/
https://aws.amazon.com/sdkforandroid/
https://aws.amazon.com/sdkforandroid/
https://docs.aws.amazon.com/mobile/sdkforios/developerguide/cognito-auth.html
https://docs.aws.amazon.com/mobile/sdkforandroid/developerguide/cognito-auth.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html

AWS Identity and Access Management User Guide
Requesting temporary security credentials

Requesting temporary security credentials
To request temporary security credentials, you can use AWS Security Token Service (AWS STS) operations
in the AWS API. These include operations to create and provide trusted users with temporary security
credentials that can control access to your AWS resources. For more information about AWS STS, see
Temporary security credentials in IAM (p. 322). To learn about the different methods that you can use
to request temporary security credentials by assuming a role, see Using IAM roles (p. 253).

To call the API operations, you can use one of the AWS SDKs. The SDKs are available for a variety of
programming languages and environments, including Java, .NET, Python, Ruby, Android, and iOS. The
SDKs take care of tasks such as cryptographically signing your requests, retrying requests if necessary,
and handling error responses. You can also use the AWS STS Query API, which is described in the AWS
Security Token Service API Reference. Finally, two command line tools support the AWS STS commands:
the AWS Command Line Interface, and the AWS Tools for Windows PowerShell.

The AWS STS API operations create a new session with temporary security credentials that include an
access key pair and a session token. The access key pair consists of an access key ID and a secret key.
Users (or an application that the user runs) can use these credentials to access your resources. You can
create a role session and pass session policies and session tags programmatically using AWS STS API
operations. The resulting session's permissions are the intersection of the role's identity-based policies
and the session policies. For more information about session policies, see Session policies (p. 383). For
more information about session tags, see Passing session tags in AWS STS (p. 313).

Note
The size of the security token that AWS STS API operations return is not fixed. We strongly
recommend that you make no assumptions about the maximum size. The typical token size is
less than 4096 bytes, but that can vary.

Using AWS STS with AWS Regions
You can send AWS STS API calls either to a global endpoint or to one of the Regional endpoints. If you
choose an endpoint closer to you, you can reduce latency and improve the performance of your API
calls. You also can choose to direct your calls to an alternative Regional endpoint if you can no longer
communicate with the original endpoint. If you are using one of the various AWS SDKs, then use that
SDK's method to specify a Region before you make the API call. If you are manually constructing HTTP
API requests, then you must direct the request to the correct endpoint yourself. For more information,
see the AWS STS section of Regions and Endpoints and Managing AWS STS in an AWS Region (p. 356).

The following are the API operations that you can use to acquire temporary credentials for use in your
AWS environment and applications.

AssumeRole—cross-account delegation and federation through
a custom identity broker
The AssumeRole API operation is useful for allowing existing IAM users to access AWS resources that
they don't already have access to. For example, the user might need access to resources in another AWS
account. It is also useful as a means to temporarily gain privileged access—for example, to provide
multi-factor authentication (MFA). You must call this API using existing IAM user credentials. For more
information, see Creating a role to delegate permissions to an IAM user (p. 227) and Configuring MFA-
protected API access (p. 138).

This call must be made using valid AWS security credentials. When you make this call, you pass the
following information:

• The Amazon Resource Name (ARN) of the role that the app should assume.
• (Optional) Duration, which specifies the duration of the temporary security credentials. Use the
DurationSeconds parameter to specify the duration of the role session from 900 seconds (15

324

http://aws.amazon.com/tools/
https://docs.aws.amazon.com/STS/latest/APIReference/
https://docs.aws.amazon.com/STS/latest/APIReference/
https://aws.amazon.com/documentation/cli
https://aws.amazon.com/documentation/powershell
https://docs.aws.amazon.com/general/latest/gr/rande.html#sts_region
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

AWS Identity and Access Management User Guide
Requesting temporary security credentials

minutes) up to the maximum session duration setting for the role. To learn how to view the maximum
value for your role, see View the maximum session duration setting for a role (p. 254). If you do not
pass this parameter, the temporary credentials expire in one hour. The DurationSeconds parameter
from this API is separate from the SessionDuration HTTP parameter that you use to specify the
duration of a console session. Use the SessionDuration HTTP parameter in the request to the
federation endpoint for a console sign-in token. For more information, see Enabling custom identity
broker access to the AWS console (p. 212).

• Role session name. Use this string value to identify the session when a role is used by different
principals. For security purposes, administrators can view this field in AWS CloudTrail logs (p. 369)
to help identify who performed an action in AWS. Your administrator might require that you specify
your IAM user name as the session name when you assume the role. For more information, see
sts:RoleSessionName (p. 840).

• (Optional) Source identity. You can require users to specify a source identity when they assume a role.
After the source identity is set, the value cannot be changed. It is present in the request for all actions
that are taken during the role session. The source identity value persists across chained role (p. 170)
sessions. You can use source identity information in AWS CloudTrail logs to determine who took
actions with a role. For more information about using source identity, see Monitor and control actions
taken with assumed roles (p. 340).

• (Optional) Inline or managed session policies. These policies limit the permissions from the role's
identity-based policy that are assigned to the role session. The resulting session's permissions are the
intersection of the role's identity-based policies and the session policies. Session policies cannot be
used to grant more permissions than those allowed by the identity-based policy of the role that is
being assumed. For more information about role session permissions, see Session policies (p. 383).

• (Optional) Session tags. You can assume a role and then use the temporary credentials to make a
request. When you do, the session's principal tags include the role's tags and the passed session tags.
If you make this call using temporary credentials, the new session also inherits transitive session tags
from the calling session. For more information about session tags, see Passing session tags in AWS
STS (p. 313).

• (Optional) MFA information. If configured to use multi-factor authentication (MFA), then you include
the identifier for an MFA device and the one-time code provided by that device.

• (Optional) ExternalId value that can be used when delegating access to your account to a third
party. This value helps ensure that only the specified third party can access the role. For more
information, see How to use an external ID when granting access to your AWS resources to a third
party (p. 231).

The following example shows a sample request and response using AssumeRole. This example request
assumes the demo role for the specified duration with the included session policy (p. 383), session
tags (p. 313), external ID (p. 231), and source identity (p. 340). The resulting session is named
John-session.

Example Example request

https://sts.amazonaws.com/
?Version=2011-06-15
&Action=AssumeRole
&RoleSessionName=John-session
&RoleArn=arn:aws::iam::123456789012:role/demo
&Policy=%7B%22Version%22%3A%222012-10-17%22%2C%22Statement%22%3A%5B%7B%22Sid%22%3A
%20%22Stmt1%22%2C%22Effect%22%3A%20%22Allow%22%2C%22Action%22%3A%20%22s3%3A*%22%2C
%22Resource%22%3A%20%22*%22%7D%5D%7D
&DurationSeconds=1800
&Tags.member.1.Key=Project
&Tags.member.1.Value=Pegasus
&Tags.member.2.Key=Cost-Center
&Tags.member.2.Value=12345
&ExternalId=123ABC

325

AWS Identity and Access Management User Guide
Requesting temporary security credentials

&SourceIdentity=DevUser123
&AUTHPARAMS

The policy value shown in the preceding example is the URL-encoded version of the following policy:

{"Version":"2012-10-17","Statement":
[{"Sid":"Stmt1","Effect":"Allow","Action":"s3:*","Resource":"*"}]}

The AUTHPARAMS parameter in the example is a placeholder for your signature. A signature is the
authentication information that you must include with AWS HTTP API requests. We recommend using
the AWS SDKs to create API requests, and one benefit of doing so is that the SDKs handle request signing
for you. If you must create and sign API requests manually, see Signing AWS Requests By Using Signature
Version 4 in the Amazon Web Services General Reference to learn how to sign a request.

In addition to the temporary security credentials, the response includes the Amazon Resource Name
(ARN) for the federated user and the expiration time of the credentials.

Example Example response

<AssumeRoleResponse xmlns="https://sts.amazonaws.com/doc/2011-06-15/">
<AssumeRoleResult>
<SourceIdentity>DevUser123</SourceIdentity>
<Credentials>
 <SessionToken>
 AQoDYXdzEPT//////////wEXAMPLEtc764bNrC9SAPBSM22wDOk4x4HIZ8j4FZTwdQW
 LWsKWHGBuFqwAeMicRXmxfpSPfIeoIYRqTflfKD8YUuwthAx7mSEI/qkPpKPi/kMcGd
 QrmGdeehM4IC1NtBmUpp2wUE8phUZampKsburEDy0KPkyQDYwT7WZ0wq5VSXDvp75YU
 9HFvlRd8Tx6q6fE8YQcHNVXAkiY9q6d+xo0rKwT38xVqr7ZD0u0iPPkUL64lIZbqBAz
 +scqKmlzm8FDrypNC9Yjc8fPOLn9FX9KSYvKTr4rvx3iSIlTJabIQwj2ICCR/oLxBA==
 </SessionToken>
 <SecretAccessKey>
 wJalrXUtnFEMI/K7MDENG/bPxRfiCYzEXAMPLEKEY
 </SecretAccessKey>
 <Expiration>2019-07-15T23:28:33.359Z</Expiration>
 <AccessKeyId>AKIAIOSFODNN7EXAMPLE</AccessKeyId>
</Credentials>
<AssumedRoleUser>
 <Arn>arn:aws:sts::123456789012:assumed-role/demo/John</Arn>
 <AssumedRoleId>ARO123EXAMPLE123:John</AssumedRoleId>
</AssumedRoleUser>
<PackedPolicySize>8</PackedPolicySize>
</AssumeRoleResult>
<ResponseMetadata>
<RequestId>c6104cbe-af31-11e0-8154-cbc7ccf896c7</RequestId>
</ResponseMetadata>
</AssumeRoleResponse>

Note
An AWS conversion compresses the passed session policies and session tags into a packed binary
format that has a separate limit. Your request can fail for this limit even if your plaintext meets
the other requirements. The PackedPolicySize response element indicates by percentage
how close the policies and tags for your request are to the upper size limit.

AssumeRoleWithWebIdentity—federation through a web-based
identity provider
The AssumeRoleWithWebIdentity API operation returns a set of temporary security credentials
for federated users who are authenticated through a public identity provider. Examples of public

326

https://aws.amazon.com/tools/
https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html
https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html

AWS Identity and Access Management User Guide
Requesting temporary security credentials

identity providers include Login with Amazon, Facebook, Google, or any OpenID Connect (OIDC)-
compatible identity provider. This operation is useful for creating mobile applications or client-based
web applications that require access to AWS. Using this operation means that your users do not need
their own AWS or IAM identities. For more information, see About web identity federation (p. 178).

Instead of directly calling AssumeRoleWithWebIdentity, we recommend that you use Amazon
Cognito and the Amazon Cognito credentials provider with the AWS SDKs for mobile development. For
more information, see the following:

• Amazon Cognito Identity in the AWS Mobile SDK for Android Developer Guide
• Amazon Cognito Identity in the AWS Mobile SDK for iOS Developer Guide

If you are not using Amazon Cognito, you call the AssumeRoleWithWebIdentity action of AWS
STS. This is an unsigned call, meaning that the app does not need to have access to any AWS security
credentials to make the call. When you make this call, you pass the following information:

• The Amazon Resource Name (ARN) of the role that the app should assume. If your app supports
multiple ways for users to sign in, you must define multiple roles, one per identity provider. The call
to AssumeRoleWithWebIdentity should include the ARN of the role that is specific to the provider
through which the user signed in.

• The token that the app gets from the IdP after the app authenticates the user.
• You can configure your IdP to pass attributes into your token as session tags (p. 313).
• (Optional) Duration, which specifies the duration of the temporary security credentials. Use the
DurationSeconds parameter to specify the duration of the role session from 900 seconds (15
minutes) up to the maximum session duration setting for the role. To learn how to view the maximum
value for your role, see View the maximum session duration setting for a role (p. 254). If you do not
pass this parameter, the temporary credentials expire in one hour. The DurationSeconds parameter
from this API is separate from the SessionDuration HTTP parameter that you use to specify the
duration of a console session. Use the SessionDuration HTTP parameter in the request to the
federation endpoint for a console sign-in token. For more information, see Enabling custom identity
broker access to the AWS console (p. 212).

• Role session name. Use this string value to identify the session when a role is used by different
principals. For security purposes, administrators can view this field in AWS CloudTrail logs (p. 369)
to learn who performed an action in AWS. Your administrator might require that you provide
a specific value for the session name when you assume the role. For more information, see
sts:RoleSessionName (p. 840).

• (Optional) Source identity. You can require federated users to specify a source identity when they
assume a role. After the source identity is set, the value cannot be changed. It is present in the request
for all actions that are taken during the role session. The source identity value persists across chained
role (p. 170) sessions. You can use source identity information in AWS CloudTrail logs to determine
who took actions with a role. For more information about using source identity, see Monitor and
control actions taken with assumed roles (p. 340).

• (Optional) Inline or managed session policies. These policies limit the permissions from the role's
identity-based policy that are assigned to the role session. The resulting session's permissions are the
intersection of the role's identity-based policies and the session policies. Session policies cannot be
used to grant more permissions than those allowed by the identity-based policy of the role that is
being assumed. For more information about role session permissions, see Session policies (p. 383).

Note
A call to AssumeRoleWithWebIdentity is not signed (encrypted). Therefore, you should
only include optional session policies if the request is transmitted through a trusted
intermediary. In this case, someone could alter the policy to remove the restrictions.

When you call AssumeRoleWithWebIdentity, AWS verifies the authenticity of the token. For example,
depending on the provider, AWS might make a call to the provider and include the token that the

327

https://docs.aws.amazon.com/mobile/sdkforandroid/developerguide/cognito-auth.html
https://docs.aws.amazon.com/mobile/sdkforios/developerguide/cognito-auth.html

AWS Identity and Access Management User Guide
Requesting temporary security credentials

app has passed. Assuming that the identity provider validates the token, AWS returns the following
information to you:

• A set of temporary security credentials. These consist of an access key ID, a secret access key, and a
session token.

• The role ID and the ARN of the assumed role.
• A SubjectFromWebIdentityToken value that contains the unique user ID.

When you have the temporary security credentials, you can use them to make AWS API calls. This is the
same process as making an AWS API call with long-term security credentials. The difference is that you
must include the session token, which lets AWS verify that the temporary security credentials are valid.

Your app should cache the credentials. As noted, by default the credentials expire after an hour. If you
are not using the AmazonSTSCredentialsProvider operation in the AWS SDK, it's up to you and your app
to call AssumeRoleWithWebIdentity again. Call this operation to get a new set of temporary security
credentials before the old ones expire.

AssumeRoleWithSAML—federation through an enterprise
Identity Provider compatible with SAML 2.0
The AssumeRoleWithSAML API operation returns a set of temporary security credentials for federated
users who are authenticated by your organization's existing identity system. The users must also
use SAML 2.0 (Security Assertion Markup Language) to pass authentication and authorization
information to AWS. This API operation is useful in organizations that have integrated their identity
systems (such as Windows Active Directory or OpenLDAP) with software that can produce SAML
assertions. Such an integration provides information about user identity and permissions (such as
Active Directory Federation Services or Shibboleth). For more information, see About SAML 2.0-based
federation (p. 183).

This is an unsigned call, which means that the app does not need to have access to any AWS security
credentials in order to make the call. When you make this call, you pass the following information:

• The Amazon Resource Name (ARN) of the role that the app should assume.
• The ARN of the SAML provider created in IAM that describes the identity provider.
• The SAML assertion, encoded in base64, that was provided by the SAML identity provider in its

authentication response to the sign-in request from your app.
• You can configure your IdP to pass attributes into your SAML assertion as session tags (p. 313).
• (Optional) Duration, which specifies the duration of the temporary security credentials. Use the
DurationSeconds parameter to specify the duration of the role session from 900 seconds (15
minutes) up to the maximum session duration setting for the role. To learn how to view the maximum
value for your role, see View the maximum session duration setting for a role (p. 254). If you do not
pass this parameter, the temporary credentials expire in one hour. The DurationSeconds parameter
from this API is separate from the SessionDuration HTTP parameter that you use to specify the
duration of a console session. Use the SessionDuration HTTP parameter in the request to the
federation endpoint for a console sign-in token. For more information, see Enabling custom identity
broker access to the AWS console (p. 212).

• (Optional) Inline or managed session policies. These policies limit the permissions from the role's
identity-based policy that are assigned to the role session. The resulting session's permissions are the
intersection of the role's identity-based policies and the session policies. Session policies cannot be
used to grant more permissions than those allowed by the identity-based policy of the role that is
being assumed. For more information about role session permissions, see Session policies (p. 383).

• Role session name. Use this string value to identify the session when a role is used by different
principals. For security purposes, administrators can view this field in AWS CloudTrail logs (p. 369)
to learn who performed an action in AWS. Your administrator might require that you provide

328

http://aws.amazon.com/blogs/mobile/using-the-amazoncredentialsprovider-protocol-in-the-aws-sdk-for-ios/
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithSAML.html
https://www.oasis-open.org/standards#samlv2.0

AWS Identity and Access Management User Guide
Requesting temporary security credentials

a specific value for the session name when you assume the role. For more information, see
sts:RoleSessionName (p. 840).

• (Optional) Source identity. You can require federated users to specify a source identity when they
assume a role. After the source identity is set, the value cannot be changed. It is present in the request
for all actions that are taken during the role session. The source identity value persists across chained
role (p. 170) sessions. You can use source identity information in AWS CloudTrail logs to determine
who took actions with a role. For more information about using source identity, see Monitor and
control actions taken with assumed roles (p. 340).

When you call AssumeRoleWithSAML, AWS verifies the authenticity of the SAML assertion. Assuming
that the identity provider validates the assertion, AWS returns the following information to you:

• A set of temporary security credentials. These consist of an access key ID, a secret access key, and a
session token.

• The role ID and the ARN of the assumed role.
• An Audience value that contains the value of the Recipient attribute of the
SubjectConfirmationData element of the SAML assertion.

• An Issuer value that contains the value of the Issuer element of the SAML assertion.
• A NameQualifier element that contains a hash value built from the Issuer value, the AWS account

ID, and the friendly name of the SAML provider. When combined with the Subject element, they can
uniquely identify the federated user.

• A Subject element that contains the value of the NameID element in the Subject element of the
SAML assertion.

• A SubjectType element that indicates the format of the Subject element. The value can be
persistent, transient, or the full Format URI from the Subject and NameID elements used in
your SAML assertion. For information about the NameID element's Format attribute, see Configuring
SAML assertions for the authentication response (p. 204).

When you have the temporary security credentials, you can use them to make AWS API calls. This is the
same process as making an AWS API call with long-term security credentials. The difference is that you
must include the session token, which lets AWS verify that the temporary security credentials are valid.

Your app should cache the credentials. By default the credentials expire after an hour. If you are not
using the AmazonSTSCredentialsProvider action in the AWS SDK, it's up to you and your app to call
AssumeRoleWithSAML again. Call this operation to get a new set of temporary security credentials
before the old ones expire.

GetFederationToken—federation through a custom identity
broker
The GetFederationToken API operation returns a set of temporary security credentials for federated
users. This API differs from AssumeRole in that the default expiration period is substantially longer (12
hours instead of one hour). Additionally, you can use the DurationSeconds parameter to specify a
duration for the temporary security credentials to remain valid. The resulting credentials are valid for
the specified duration, between 900 seconds (15 minutes) to 129,600 seconds (36 hours).The longer
expiration period can help reduce the number of calls to AWS because you do not need to get new
credentials as often. For more information, see Requesting temporary security credentials (p. 324).

When you make this request, you use the credentials of a specific IAM user. The permissions for the
temporary security credentials are determined by the session policies that you pass when you call
GetFederationToken. The resulting session permissions are the intersection of the IAM user policies
and the session policies that you pass. Session policies cannot be used to grant more permissions than
those allowed by the identity-based policy of the IAM user that is requesting federation. For more
information about role session permissions, see Session policies (p. 383).

329

http://aws.amazon.com/blogs/mobile/using-the-amazoncredentialsprovider-protocol-in-the-aws-sdk-for-ios
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html

AWS Identity and Access Management User Guide
Requesting temporary security credentials

When you use the temporary credentials that are returned by the GetFederationToken operation, the
session's principal tags include the user's tags and the passed session tags. For more information about
session tags, see Passing session tags in AWS STS (p. 313).

The GetFederationToken call returns temporary security credentials that consist of the security
token, access key, secret key, and expiration. You can use GetFederationToken if you want to manage
permissions inside your organization (for example, using the proxy application to assign permissions).
To view a sample application that uses GetFederationToken, go to Identity Federation Sample
Application for an Active Directory Use Case in the AWS Sample Code & Libraries.

The following example shows a sample request and response that uses GetFederationToken. This
example request federates the calling user for the specified duration with the session policy (p. 383)
ARN and session tags (p. 313). The resulting session is named Jane-session.

Example Example request

https://sts.amazonaws.com/
?Version=2011-06-15
&Action=GetFederationToken
&Name=Jane-session
&PolicyArns.member.1.arn==arn%3Aaws%3Aiam%3A%3A123456789012%3Apolicy%2FRole1policy
&DurationSeconds=1800
&Tags.member.1.Key=Project
&Tags.member.1.Value=Pegasus
&Tags.member.2.Key=Cost-Center
&Tags.member.2.Value=12345
&AUTHPARAMS

The policy ARN shown in the preceding example includes the following URL-encoded ARN:

arn:aws:iam::123456789012:policy/Role1policy

Also, note that the &AUTHPARAMS parameter in the example is meant as a placeholder for the
authentication information. This is the signature, which you must include with AWS HTTP API requests.
We recommend using the AWS SDKs to create API requests, and one benefit of doing so is that the SDKs
handle request signing for you. If you must create and sign API requests manually, go to Signing AWS
Requests By Using Signature Version 4 in the Amazon Web Services General Reference to learn how to sign
a request.

In addition to the temporary security credentials, the response includes the Amazon Resource Name
(ARN) for the federated user and the expiration time of the credentials.

Example Example response

<GetFederationTokenResponse xmlns="https://sts.amazonaws.com/doc/2011-06-15/">
<GetFederationTokenResult>
<Credentials>
 <SessionToken>
 AQoDYXdzEPT//////////wEXAMPLEtc764bNrC9SAPBSM22wDOk4x4HIZ8j4FZTwdQW
 LWsKWHGBuFqwAeMicRXmxfpSPfIeoIYRqTflfKD8YUuwthAx7mSEI/qkPpKPi/kMcGd
 QrmGdeehM4IC1NtBmUpp2wUE8phUZampKsburEDy0KPkyQDYwT7WZ0wq5VSXDvp75YU
 9HFvlRd8Tx6q6fE8YQcHNVXAkiY9q6d+xo0rKwT38xVqr7ZD0u0iPPkUL64lIZbqBAz
 +scqKmlzm8FDrypNC9Yjc8fPOLn9FX9KSYvKTr4rvx3iSIlTJabIQwj2ICCEXAMPLE==
 </SessionToken>
 <SecretAccessKey>
 wJalrXUtnFEMI/K7MDENG/bPxRfiCYzEXAMPLEKEY
 </SecretAccessKey>
 <Expiration>2019-04-15T23:28:33.359Z</Expiration>
 <AccessKeyId>AKIAIOSFODNN7EXAMPLE;</AccessKeyId>
</Credentials>
<FederatedUser>

330

https://aws.amazon.com/code/1288653099190193
https://aws.amazon.com/code/1288653099190193
https://aws.amazon.com/tools/
https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html
https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html

AWS Identity and Access Management User Guide
Requesting temporary security credentials

 <Arn>arn:aws:sts::123456789012:federated-user/Jean</Arn>
 <FederatedUserId>123456789012:Jean</FederatedUserId>
</FederatedUser>
<PackedPolicySize>4</PackedPolicySize>
</GetFederationTokenResult>
<ResponseMetadata>
<RequestId>c6104cbe-af31-11e0-8154-cbc7ccf896c7</RequestId>
</ResponseMetadata>
</GetFederationTokenResponse>

Note
An AWS conversion compresses the passed session policies and session tags into a packed binary
format that has a separate limit. Your request can fail for this limit even if your plaintext meets
the other requirements. The PackedPolicySize response element indicates by percentage
how close the policies and tags for your request are to the upper size limit.

AWS recommends that you grant permissions at the resource level (for example, you attach a resource-
based policy to an Amazon S3 bucket), you can omit the Policy parameter. However, if you do not
include a policy for the federated user, the temporary security credentials will not grant any permissions.
In this case, you must use resource policies to grant the federated user access to your AWS resources.

For example, assume your AWS account number is 111122223333, and you have an Amazon S3 bucket
that you want to allow Susan to access. Susan's temporary security credentials don't include a policy for
the bucket. In that case, you would need to ensure that the bucket has a policy with an ARN that matches
Susan's ARN, such as arn:aws:sts::111122223333:federated-user/Susan.

GetSessionToken—temporary credentials for users in untrusted
environments
The GetSessionToken API operation returns a set of temporary security credentials to an existing IAM
user. This is useful for providing enhanced security, such as allowing AWS requests only when MFA is
enabled for the IAM user. Because the credentials are temporary, they provide enhanced security when
you have an IAM user who accesses your resources through a less secure environment. Examples of less
secure environments include a mobile device or web browser. For more information, see Requesting
temporary security credentials (p. 324) or GetSessionToken in the AWS Security Token Service API
Reference.

By default, temporary security credentials for an IAM user are valid for a maximum of 12 hours. But
you can request a duration as short as 15 minutes or as long as 36 hours using the DurationSeconds
parameter. For security reasons, a token for an AWS account root user is restricted to a duration of one
hour.

GetSessionToken returns temporary security credentials consisting of a security token, an access
key ID, and a secret access key. The following example shows a sample request and response using
GetSessionToken. The response also includes the expiration time of the temporary security
credentials.

Example Example request

https://sts.amazonaws.com/
?Version=2011-06-15
&Action=GetSessionToken
&DurationSeconds=1800
&AUTHPARAMS

The AUTHPARAMS parameter in the example is a placeholder for your signature. A signature is the
authentication information that you must include with AWS HTTP API requests. We recommend using
the AWS SDKs to create API requests, and one benefit of doing so is that the SDKs handle request

331

https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html
https://aws.amazon.com/tools/

AWS Identity and Access Management User Guide
Requesting temporary security credentials

signing for you. If you must create and sign API requests manually, go to Signing AWS Requests By Using
Signature Version 4 in the Amazon Web Services General Reference to learn how to sign a request.

Example Example response

<GetSessionTokenResponse xmlns="https://sts.amazonaws.com/doc/2011-06-15/">
<GetSessionTokenResult>
<Credentials>
 <SessionToken>
 AQoEXAMPLEH4aoAH0gNCAPyJxz4BlCFFxWNE1OPTgk5TthT+FvwqnKwRcOIfrRh3c/L
 To6UDdyJwOOvEVPvLXCrrrUtdnniCEXAMPLE/IvU1dYUg2RVAJBanLiHb4IgRmpRV3z
 rkuWJOgQs8IZZaIv2BXIa2R4OlgkBN9bkUDNCJiBeb/AXlzBBko7b15fjrBs2+cTQtp
 Z3CYWFXG8C5zqx37wnOE49mRl/+OtkIKGO7fAE
 </SessionToken>
 <SecretAccessKey>
 wJalrXUtnFEMI/K7MDENG/bPxRfiCYzEXAMPLEKEY
 </SecretAccessKey>
 <Expiration>2011-07-11T19:55:29.611Z</Expiration>
 <AccessKeyId>AKIAIOSFODNN7EXAMPLE</AccessKeyId>
</Credentials>
</GetSessionTokenResult>
<ResponseMetadata>
<RequestId>58c5dbae-abef-11e0-8cfe-09039844ac7d</RequestId>
</ResponseMetadata>
</GetSessionTokenResponse>

Optionally, the GetSessionToken request can include SerialNumber and TokenCode values for
AWS multi-factor authentication (MFA) verification. If the provided values are valid, AWS STS provides
temporary security credentials that include the state of MFA authentication. The temporary security
credentials can then be used to access the MFA-protected API operations or AWS websites for as long as
the MFA authentication is valid.

The following example shows a GetSessionToken request that includes an MFA verification code and
device serial number.

https://sts.amazonaws.com/
?Version=2011-06-15
&Action=GetSessionToken
&DurationSeconds=7200
&SerialNumber=YourMFADeviceSerialNumber
&TokenCode=123456
&AUTHPARAMS

Note
The call to AWS STS can be to the global endpoint or to any of the Regional endpoints that
you activate your AWS account. For more information, see the AWS STS section of Regions and
Endpoints.
The AUTHPARAMS parameter in the example is a placeholder for your signature. A signature
is the authentication information that you must include with AWS HTTP API requests. We
recommend using the AWS SDKs to create API requests, and one benefit of doing so is that
the SDKs handle request signing for you. If you must create and sign API requests manually,
see Signing AWS Requests By Using Signature Version 4 in the Amazon Web Services General
Reference to learn how to sign a request.

Comparing the AWS STS API operations
The following table compares features of the API operations in AWS STS that return temporary security
credentials. To learn about the different methods you can use to request temporary security credentials
by assuming a role, see Using IAM roles (p. 253). To learn about the different AWS STS API operations
that allow you to pass session tags, see Passing session tags in AWS STS (p. 313).

332

https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html
https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#sts_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#sts_region
https://aws.amazon.com/tools/
https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html

AWS Identity and Access Management User Guide
Requesting temporary security credentials

Comparing your API options

AWS STS
API

Who can call Credential
lifetime
(min |
max |
default)

MFA
support¹

Session
policy
support²

Restrictions on resulting
temporary credentials

AssumeRoleIAM user or IAM
role with existing
temporary security
credentials

15 m |
Maximum
session
duration
setting³ |
1 hr

Yes Yes Cannot call
GetFederationToken or
GetSessionToken.

AssumeRoleWithSAMLAny user; caller
must pass a SAML
authentication
response
that indicates
authentication from
a known identity
provider

15 m |
Maximum
session
duration
setting³ |
1 hr

No Yes Cannot call
GetFederationToken or
GetSessionToken.

AssumeRoleWithWebIdentityAny user; caller must
pass a web identity
token that indicates
authentication from
a known identity
provider

15 m |
Maximum
session
duration
setting³ |
1 hr

No Yes Cannot call
GetFederationToken or
GetSessionToken.

GetFederationTokenIAM user or AWS
account root user

IAM user:
15 m | 36
hr | 12 hr

Root
user: 15
m | 1 hr |
1 hr

No Yes Cannot call IAM operations using
the AWS CLI or AWS API.

Cannot call AWS STS operations
except GetCallerIdentity.⁴

SSO to console is allowed.⁵

GetSessionTokenIAM user or AWS
account root user

IAM user:
15 m | 36
hr | 12 hr

Root
user: 15
m | 1 hr |
1 hr

Yes No Cannot call IAM API operations
unless MFA information is
included with the request.

Cannot call AWS STS API
operations except AssumeRole
or GetCallerIdentity.

SSO to console is not allowed.⁶

¹ MFA support. You can include information about a multi-factor authentication (MFA) device when
you call the AssumeRole and GetSessionToken API operations. This ensures that the temporary security
credentials that result from the API call can be used only by users who are authenticated with an MFA
device. For more information, see Configuring MFA-protected API access (p. 138).

² Session policy support. Session policies are policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. This policy limits the
permissions from the role or user's identity-based policy that are assigned to the session. The resulting

333

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithSAML.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithWebIdentity.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html

AWS Identity and Access Management User Guide
Using temporary credentials with AWS resources

session's permissions are the intersection of the entity's identity-based policies and the session policies.
Session policies cannot be used to grant more permissions than those allowed by the identity-based
policy of the role that is being assumed. For more information about role session permissions, see
Session policies (p. 383).

³ Maximum session duration setting. Use the DurationSeconds parameter to specify the duration
of your role session from 900 seconds (15 minutes) up to the maximum session duration setting for the
role. To learn how to view the maximum value for your role, see View the maximum session duration
setting for a role (p. 254).

⁴ GetCallerIdentity. No permissions are required to perform this operation. If an administrator adds a
policy to your IAM user or role that explicitly denies access to the sts:GetCallerIdentity action, you
can still perform this operation. Permissions are not required because the same information is returned
when an IAM user or role is denied access. To view an example response, see I am not authorized to
perform: iam:DeleteVirtualMFADevice (p. 681).

⁵ Single sign-on (SSO) to the console. To support SSO, AWS lets you call a federation endpoint
(https://signin.aws.amazon.com/federation) and pass temporary security credentials. The
endpoint returns a token that you can use to construct a URL that signs a user directly into the console
without requiring a password. For more information, see Enabling SAML 2.0 federated users to access the
AWS Management Console (p. 209) and How to Enable Cross-Account Access to the AWS Management
Console in the AWS Security Blog.

⁶ After you retrieve your temporary credentials, you can't access the AWS Management Console by
passing the credentials to the federation single sign-on endpoint. For more information, see Enabling
custom identity broker access to the AWS console (p. 212).

Using temporary credentials with AWS resources
You can use temporary security credentials to make programmatic requests for AWS resources using the
AWS CLI or AWS API (using the AWS SDKs). The temporary credentials provide the same permissions that
you have with use long-term security credentials such as IAM user credentials. However, there are a few
differences:

• When you make a call using temporary security credentials, the call must include a session token,
which is returned along with those temporary credentials. AWS uses the session token to validate the
temporary security credentials.

• The temporary credentials expire after a specified interval. After the credentials expire, any calls that
you make with those credentials will fail, so you must get a new set of credentials.

• When you use temporary credentials to make a request, your principal might include a set of tags.
These tags come from session tags and tags that are attached to the role that you assume. For more
information about session tags, see Passing session tags in AWS STS (p. 313).

If you are using the AWS SDKs, the AWS Command Line Interface (AWS CLI), or the Tools for Windows
PowerShell, the way to get and use temporary security credentials differs with the context. If you are
running code, AWS CLI, or Tools for Windows PowerShell commands inside an EC2 instance, you can
take advantage of roles for Amazon EC2. Otherwise, you can call an AWS STS API to get the temporary
credentials, and then use them explicitly to make calls to AWS services.

Note
You can use AWS Security Token Service (AWS STS) to create and provide trusted users with
temporary security credentials that can control access to your AWS resources. For more
information about AWS STS, see Temporary security credentials in IAM (p. 322). AWS STS is a
global service that has a default endpoint at https://sts.amazonaws.com. This endpoint is
in the US East (Ohio) Region, although credentials that you get from this and other endpoints
are valid globally. These credentials work with services and resources in any Region. You can

334

http://aws.amazon.com/blogs/security/how-to-enable-cross-account-access-to-the-aws-management-console
http://aws.amazon.com/blogs/security/how-to-enable-cross-account-access-to-the-aws-management-console
https://aws.amazon.com/tools/
https://aws.amazon.com/tools
https://docs.aws.amazon.com/cli/latest/userguide/
https://aws.amazon.com/powershell
https://aws.amazon.com/powershell
https://docs.aws.amazon.com/STS/latest/APIReference/

AWS Identity and Access Management User Guide
Using temporary credentials with AWS resources

also choose to make AWS STS API calls to endpoints in any of the supported Regions. This can
reduce latency by making the requests from servers in a Region that is geographically closer
to you. No matter which Region your credentials come from, they work globally. For more
information, see Managing AWS STS in an AWS Region (p. 356).

Contents

• Using temporary credentials in Amazon EC2 instances (p. 335)

• Using temporary security credentials with the AWS SDKs (p. 335)

• Using temporary security credentials with the AWS CLI (p. 336)

• Using temporary security credentials with API operations (p. 336)

• More information (p. 337)

Using temporary credentials in Amazon EC2 instances
If you want to run AWS CLI commands or code inside an EC2 instance, the recommended way to get
credentials is to use roles for Amazon EC2. You create an IAM role that specifies the permissions that you
want to grant to applications that run on the EC2 instances. When you launch the instance, you associate
the role with the instance.

Applications, AWS CLI, and Tools for Windows PowerShell commands that run on the instance can then
get automatic temporary security credentials from the instance metadata. You do not have to explicitly
get the temporary security credentials. The AWS SDKs, AWS CLI, and Tools for Windows PowerShell
automatically get the credentials from the EC2 instance metadata service and use them. The temporary
credentials have the permissions that you define for the role that is associated with the instance.

For more information and for examples, see the following:

• Using IAM Roles to Grant Access to AWS Resources on Amazon Elastic Compute Cloud — AWS SDK for
Java

• Granting Access Using an IAM Role — AWS SDK for .NET

• Creating a Role — AWS SDK for Ruby

Using temporary security credentials with the AWS SDKs
To use temporary security credentials in code, you programmatically call an AWS STS API like
AssumeRole and extract the resulting credentials and session token. You then use those values as
credentials for subsequent calls to AWS. The following example shows pseudocode for how to use
temporary security credentials if you're using an AWS SDK:

assumeRoleResult = AssumeRole(role-arn);
tempCredentials = new SessionAWSCredentials(
 assumeRoleResult.AccessKeyId,
 assumeRoleResult.SecretAccessKey,
 assumeRoleResult.SessionToken);
s3Request = CreateAmazonS3Client(tempCredentials);

For an example written in Python (using the AWS SDK for Python (Boto)), see Switching to an IAM role
(AWS API) (p. 268). This example shows how to call AssumeRole to get temporary security credentials
and then use those credentials to make a call to Amazon S3.

For details about how to call AssumeRole, GetFederationToken, and other API operations, see the
AWS Security Token Service API Reference. For information on getting the temporary security credentials
and session token from the result, see the documentation for the SDK that you're working with. You can

335

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/java-dg-roles.html
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/net-dg-hosm.html
https://docs.aws.amazon.com/sdk-for-ruby/latest/developer-guide/iam-example-create-role.html
https://aws.amazon.com/sdk-for-python/
https://docs.aws.amazon.com/STS/latest/APIReference/

AWS Identity and Access Management User Guide
Using temporary credentials with AWS resources

find the documentation for all the AWS SDKs on the main AWS documentation page, in the SDKs and
Toolkits section.

You must make sure that you get a new set of credentials before the old ones expire. In some SDKs, you
can use a provider that manages the process of refreshing credentials for you; check the documentation
for the SDK you're using.

Using temporary security credentials with the AWS CLI
You can use temporary security credentials with the AWS CLI. This can be useful for testing policies.

Using the AWS CLI, you can call an AWS STS API like AssumeRole or GetFederationToken and then
capture the resulting output. The following example shows a call to AssumeRole that sends the output
to a file. In the example, the profile parameter is assumed to be a profile in the AWS CLI configuration
file. It is also assumed to reference credentials for an IAM user who has permissions to assume the role.

aws sts assume-role --role-arn arn:aws:iam::123456789012:role/role-name --role-session-name
 "RoleSession1" --profile IAM-user-name > assume-role-output.txt

When the command is finished, you can extract the access key ID, secret access key, and session token
from wherever you've routed it. You can do this either manually or by using a script. You can then assign
these values to environment variables.

When you run AWS CLI commands, the AWS CLI looks for credentials in a specific order—first in
environment variables and then in the configuration file. Therefore, after you've put the temporary
credentials into environment variables, the AWS CLI uses those credentials by default. (If you specify a
profile parameter in the command, the AWS CLI skips the environment variables. Instead, the AWS CLI
looks in the configuration file, which lets you override the credentials in the environment variables if you
need to.)

The following example shows how you might set the environment variables for temporary security
credentials and then call an AWS CLI command. Because no profile parameter is included in the AWS
CLI command, the AWS CLI looks for credentials first in environment variables and therefore uses the
temporary credentials.

Linux

$ export AWS_ACCESS_KEY_ID=ASIAIOSFODNN7EXAMPLE
$ export AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
$ export AWS_SESSION_TOKEN=AQoDYXdzEJr...<remainder of security token>
$ aws ec2 describe-instances --region us-west-1

Windows

C:\> SET AWS_ACCESS_KEY_ID=ASIAIOSFODNN7EXAMPLE
C:\> SET AWS_SECRET_ACCESS_KEY=wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
C:\> SET AWS_SESSION_TOKEN=AQoDYXdzEJr...<remainder of token>
C:\> aws ec2 describe-instances --region us-west-1

Using temporary security credentials with API operations
If you're making direct HTTPS API requests to AWS, you can sign those requests with the temporary
security credentials that you get from the AWS Security Token Service (AWS STS). To do this, you use
the access key ID and secret access key that you receive from AWS STS. You use the access key ID and
secret access key the same way you would use long-term credentials to sign a request. You also add to

336

http://aws.amazon.com/documentation
https://docs.aws.amazon.com/cli/latest/reference/
https://docs.aws.amazon.com/STS/latest/APIReference/

AWS Identity and Access Management User Guide
Controlling permissions for temporary security credentials

your API request the session token that you receive from AWS STS. You add the session token to an HTTP
header or to a query string parameter named X-Amz-Security-Token. You add the session token to
the HTTP header or the query string parameter, but not both. For more information about signing HTTPS
API requests, see Signing AWS API Requests in the AWS General Reference.

More information

For more information about using AWS STS with other AWS services, see the following links:

• Amazon S3. See Making Requests Using IAM User Temporary Credentials or Making Requests Using
Federated User Temporary Credentials in the Amazon Simple Storage Service Developer Guide .

• Amazon SNS. See Using Temporary Security Credentials in the Amazon Simple Notification Service
Developer Guide.

• Amazon SQS. See Using Temporary Security Credentials in the Amazon Simple Queue Service Developer
Guide.

• Amazon SimpleDB. See Using Temporary Security Credentials in the Amazon SimpleDB Developer
Guide.

Controlling permissions for temporary security
credentials
You can use AWS Security Token Service (AWS STS) to create and provide trusted users with temporary
security credentials that can control access to your AWS resources. For more information about
AWS STS, see Temporary security credentials in IAM (p. 322). After AWS STS issues temporary
security credentials, they are valid through the expiration period and cannot be revoked. However, the
permissions assigned to temporary security credentials are evaluated each time a request is made that
uses the credentials, so you can achieve the effect of revoking the credentials by changing their access
rights after they have been issued.

The following topics assume you have a working knowledge of AWS permissions and policies. For more
information on these topics, see Access management for AWS resources (p. 380).

Topics

• Permissions for AssumeRole, AssumeRoleWithSAML, and AssumeRoleWithWebIdentity (p. 337)

• Monitor and control actions taken with assumed roles (p. 340)

• Permissions for GetFederationToken (p. 347)

• Permissions for GetSessionToken (p. 350)

• Disabling permissions for temporary security credentials (p. 352)

• Granting permissions to create temporary security credentials (p. 354)

Permissions for AssumeRole, AssumeRoleWithSAML, and
AssumeRoleWithWebIdentity

The permissions policy of the role that is being assumed determines the permissions for the
temporary security credentials that are returned by AssumeRole, AssumeRoleWithSAML, and
AssumeRoleWithWebIdentity. You define these permissions when you create or update the role.

Optionally, you can pass inline or managed session policies (p. 383) as parameters of the AssumeRole,
AssumeRoleWithSAML, or AssumeRoleWithWebIdentity API operations. Session policies limit the

337

https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/AuthUsingTempSessionToken.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/AuthUsingTempFederationToken.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/AuthUsingTempFederationToken.html
https://docs.aws.amazon.com/sns/latest/dg/UsingIAMwithSNS.html#UsingTemporarySecurityCredentials_SNS
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/UsingIAM.html#UsingTemporarySecurityCredentials_SQS
https://docs.aws.amazon.com/AmazonSimpleDB/latest/DeveloperGuide/index.html?UsingTemporarySecurityCredentials_SDB.html

AWS Identity and Access Management User Guide
Controlling permissions for temporary security credentials

permissions for the role's temporary credential session. The resulting session's permissions are the
intersection of the role's identity-based policy and the session policies. You can use the role's temporary
credentials in subsequent AWS API calls to access resources in the account that owns the role. You cannot
use session policies to grant more permissions than those allowed by the identity-based policy of the
role that is being assumed. To learn more about how AWS determines the effective permissions of a role,
see Policy evaluation logic (p. 784).

The policies that are attached to the credentials that made the original call to AssumeRole are not
evaluated by AWS when making the "allow" or "deny" authorization decision. The user temporarily gives
up its original permissions in favor of the permissions assigned by the assumed role. In the case of the
AssumeRoleWithSAML and AssumeRoleWithWebIdentity API operations, there are no policies to
evaluate because the caller of the API is not an AWS identity.

Example: Assigning permissions using AssumeRole

You can use the AssumeRole API operation with different kinds of policies. Here are a few examples.

Role permissions policy

In this example, you call the AssumeRole API operation without specifying the session policy in the
optional Policy parameter. The permissions assigned to the temporary credentials are determined by
the permissions policy of the role being assumed. The following example permissions policy grants the
role permission to list all objects that are contained in an S3 bucket named productionapp. It also
allows the role to get, put, and delete objects within that bucket.

Example Example role permissions policy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:::productionapp"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject"
],
 "Resource": "arn:aws:s3:::productionapp/*"
 }
]
}

338

AWS Identity and Access Management User Guide
Controlling permissions for temporary security credentials

Session policy passed as a parameter

Imagine that you want to allow a user to assume the same role as in the previous example. But in this
case you want the role session to have permission only to get and put objects in the productionapp S3
bucket. You do not want to allow them to delete objects. One way to accomplish this is to create a new
role and specify the desired permissions in that role's permissions policy. Another way to accomplish this
is to call the AssumeRole API and include session policies in the optional Policy parameter as part of
the API operation. The resulting session's permissions are the intersection of the role's identity-based
policies and the session policies. Session policies cannot be used to grant more permissions than those
allowed by the identity-based policy of the role that is being assumed. For more information about role
session permissions, see Session policies (p. 383).

After you retrieve the new session's temporary credentials, you can pass them to the user that you want
to have those permissions.

For example, imagine that the following policy is passed as a parameter of the API call. The person using
the session has permissions to perform only these actions:

• List all objects in the productionapp bucket.

• Get and put objects in the productionapp bucket.

In the following session policy, the s3:DeleteObject permission is filtered out and the assumed
session is not granted the s3:DeleteObject permission. The policy sets the maximum permissions for
the role session so that it overrides any existing permissions policies on the role.

Example Example session policy passed with AssumeRole API call

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:::productionapp"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject"
],
 "Resource": "arn:aws:s3:::productionapp/*"
 }
]
}

Resource-based policy

Some AWS resources support resource-based policies, and these policies provide another mechanism
to define permissions that affect temporary security credentials. Only a few resources, like Amazon S3
buckets, Amazon SNS topics, and Amazon SQS queues support resource-based policies. The following
example expands on the previous examples, using an S3 bucket named productionapp. The following
policy is attached to the bucket.

When you attach the following resource-based policy to the productionapp bucket, all users are
denied permission to delete objects from the bucket. (See the Principal element in the policy.) This
includes all assumed role users, even though the role permissions policy grants the DeleteObject
permission. An explicit Deny statement always takes precedence over an Allow statement.

339

AWS Identity and Access Management User Guide
Controlling permissions for temporary security credentials

Example Example bucket policy

{
 "Version": "2012-10-17",
 "Statement": {
 "Principal": {"AWS": "*"},
 "Effect": "Deny",
 "Action": "s3:DeleteObject",
 "Resource": "arn:aws:s3:::productionapp/*"
 }
}

For more information about how multiple policy types are combined and evaluated by AWS, see Policy
evaluation logic (p. 784).

Monitor and control actions taken with assumed roles
An IAM role (p. 168) is an object in IAM that is assigned permissions (p. 381). When you assume that
role (p. 253) using an IAM identity or an identity from outside of AWS, you receive a session with the
permissions that are assigned to the role.

When you perform actions in AWS, the information about your session can be logged to AWS CloudTrail
for your account administrator (p. 19) to monitor. Administrators can configure roles to require identities
to pass a custom string that identifies the person or application that is performing actions in AWS. This
identity information is stored as the source identity in AWS CloudTrail. When the administrator reviews
activity in CloudTrail, they can view the source identity information to determine who or what performed
actions with assumed role sessions.

After a source identity is set, it is present in requests for any AWS action taken during the role session.
The value that is set persists when a role is used to assume another role through the AWS CLI or AWS
API, known as role chaining (p. 170). The value that is set cannot be changed during the role session.
Administrators can configure granular permissions based on the presence or value of the source identity
to further control AWS actions that are taken with shared roles. You can decide whether the source
identity attribute can be used, whether it is required, and what value can be used.

The way that you use source identity differs from role session name and session tags in an important
way. The source identity value can't be changed after it is set, and it persists for any additional actions
that are taken with the role session. Here's how you can use session tags and role session name:

• Session tags – You can pass session tags when you assume a role or federate a user. Session tags
are present when a role is assumed. You can define policies that use tag condition keys to grant
permissions to your principals based on their tags. Then you can use CloudTrail to view the requests
made to assume roles or federate users. To learn more about session tags, see Passing session tags in
AWS STS (p. 313).

• Role session name – You can use the sts:RoleSessionName condition key in a role trust policy to
require that your users provide a specific session name when they assume a role. Role session name
can be used to differentiate role sessions when a role is used by different principals. To learn more
about role session name, see sts:RoleSessionName (p. 840).

We recommend that you use source identity when you want to control the identity that assumes a role.
Source identity is also useful for mining CloudTrail logs to determine who used the role to perform
actions.

Topics
• Setting up to use source identity (p. 341)
• Things to know about source identity (p. 341)

340

AWS Identity and Access Management User Guide
Controlling permissions for temporary security credentials

• Permissions required to set source identity (p. 342)
• Specifying a source identity when assuming a role (p. 343)
• Using source identity with AssumeRole (p. 343)
• Using source identity with AssumeRoleWithSAML (p. 344)
• Using source identity with AssumeRoleWithWebIdentity (p. 344)
• Control access using source identity information (p. 345)
• Viewing source identity in CloudTrail (p. 346)

Setting up to use source identity

The way that you set up to use source identity depends on the method used when your roles are
assumed. For example, your IAM users might assume roles directly using the AssumeRole operation. If
you have enterprise identities, also known as workforce identities, they might access your AWS resources
using AssumeRoleWithSAML. If end users access your mobile or web applications, they might do so
using AssumeRoleWithWebIdentity. The following is a high-level workflow overview to help you
understand how you can set up to utilize source identity information in your existing environment.

1. Configure test users and roles – Using a preproduction environment, configure test users and roles
and configure their policies to allow setting a source identity.

If you use an identity provider (IdP) for your federated identities, configure your IdP to pass a user
attribute of your choice for source identity in the assertion or token.

2. Assume the role – Test assuming roles and passing a source identity with the users and roles that you
set up for testing.

3. Review CloudTrail – Review the source identity information for your test roles in your CloudTrail logs.
4. Train your users – After you've tested in your preproduction environment, ensure that your users

know how to pass in the source identity information, if necessary. Set a deadline for when you will
require your users to provide a source identity in your production environment.

5. Configure production policies – Configure your policies for your production environment, and then
add them to your production users and roles.

6. Monitor activity – Monitor your production role activity using CloudTrail logs.

Things to know about source identity

Keep the following in mind when working with source identity.

• Trust policies for all roles connected to an identity provider (IdP) must have the
sts:SetSourceIdentity permission. For roles that don't have this permission in the role
trust policy, the AssumeRole* operation will fail. If you don't want to update the role trust
policy for each role, you can use a separate IdP instance for passing source identity. Then add the
sts:SetSourceIdentity permission to only the roles that are connected to the separate IdP.

• When an identity sets a source identity, the sts:SourceIdentity key is present in the request. For
subsequent actions taken during the role session, the aws:SourceIdentity key is present in the
request. AWS doesn’t control the value of the source identity in either the sts:SourceIdentity or
aws:SourceIdentity keys. If you choose to require a source identity, you must choose an attribute
that you want your users or IdP to provide. For security purposes, you must ensure that you can control
how those values are provided.

• The value of source identity must be between 2 and 64 characters long, can contain only alphanumeric
characters, underscores, and the following characters: . , + = @ - (hyphen). You cannot use a value that
begins with the text aws:. This prefix is reserved for AWS internal use.

• The source identity information is not captured by CloudTrail when an AWS service or service-linked
role carries out an action on behalf of a federated or workforce identity.

341

AWS Identity and Access Management User Guide
Controlling permissions for temporary security credentials

Important
You cannot switch to a role in the AWS Management Console that requires a source identity to
be set when the role is assumed. To assume such a role, you can use the AWS CLI or AWS API to
call the AssumeRole operation and specify the source identity parameter.

Permissions required to set source identity

In addition to the action that matches the API operation, you must have the following permissions-only
action in your policy:

sts:SetSourceIdentity

• To specify a source identity, principals (IAM users and roles) must have permissions to
sts:SetSourceIdentity. As the administrator, you can configure this in the role trust policy and in
the principal’s permissions policy.

• When you assume a role with another role, called role chaining (p. 170), permissions for
sts:SetSourceIdentity are required in both the permissions policy of the principal who is
assuming the role and in the role trust policy of the target role. Otherwise, the assume role operation
will fail.

• When using source identity, the role trust policies for all roles connected to an IdP must have the
sts:SetSourceIdentity permission. The AssumeRole* operation will fail for any role connected
to an IdP without this permission. If you don't want to update the role trust policy for each role, you
can use a separate IdP instance for passing source identity and add the sts:SetSourceIdentity
permission to only the roles that are connected to the separate IdP.

• To set a source identity across account boundaries, you must include the sts:SetSourceIdentity
permission in two places. It must be in the permissions policy of the principal in the originating
account and in the role trust policy of the role in the target account. You might need to do this, for
example, when a role is used to assume a role in another account with role chaining (p. 170).

As the account administrator, imagine that you want to allow the IAM user DevUser in your account to
assume the Developer_Role in the same account. But you want to allow this action only if the user has
set the source identity to their IAM user name. You can attach the following policy to the IAM user.

Example Example identity-based policy attached to DevUser

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AssumeRole",
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::123456789012:role/Developer_Role"
 },
 {
 "Sid": "Set_AWSUserName_as_SourceIdentity",
 "Effect": "Allow",
 "Action": "sts:SetSourceIdentity",
 "Resource": "arn:aws:iam::123456789012:role/Developer_Role",
 "Condition": {
 "StringLike": {"sts:SourceIdentity": "${aws:username}"}
 }
 }
]
}

342

AWS Identity and Access Management User Guide
Controlling permissions for temporary security credentials

To enforce the acceptable source identity values, you can configure the following role trust policy.
The policy gives the IAM user DevUser permissions to assume the role and set a source identity. The
sts:SourceIdentity condition key defines the acceptable source identity value.

Example Example role trust policy for source identity

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowDevUserAssumeRole",
 "Effect": "Allow",
 "Principal": {"AWS": " arn:aws:iam::123456789012:user/DevUser"},
 "Action": [
 "sts:AssumeRole",
 "sts:SetSourceIdentity"
],
 "Condition": {
 "StringEquals": {"sts:SourceIdentity": "DevUser"}
 }
 }
]
}

Using the credentials for the IAM user DevUser, the user attempts to assume the DeveloperRole using
the following AWS CLI request.

Example Example AssumeRole CLI request

aws sts assume-role \
--role-arn arn:aws:iam::123456789012:role/Developer_Role \
--role-session-name Dev-project \
--source-identity DevUser \

When AWS evaluates the request, the request context contains the sts:SourceIdentity of DevUser.

Specifying a source identity when assuming a role

You can specify a source identity when you use one of the AWS STS AssumeRole* API operations
to get temporary security credentials for a role. The API operation that you use differs depending on
your use case. For example, if you use IAM roles to give IAM users access to AWS resources that they
don’t normally have access to, you might use the AssumeRole operation. If you use enterprise identity
federation to manage your workforce users, you might use the AssumeRoleWithSAML operation. If you
use web identity federation to allow end users to access your mobile or web applications, you might
use the AssumeRoleWithWebIdentity operation. The following sections explain how to use source
identity with each operation. To learn more about common scenarios for temporary credentials, see
Common scenarios for temporary credentials (p. 322).

Using source identity with AssumeRole

The AssumeRole operation returns a set of temporary credentials that you can use to access AWS
resources. You can use IAM user or role credentials to call AssumeRole. To pass source identity while
assuming a role, use the -–source-identity AWS CLI option or the SourceIdentity AWS API
parameter. The following example shows how to specify the source identity using the AWS CLI.

Example Example AssumeRole CLI request

aws sts assume-role \
--role-arn arn:aws:iam::123456789012:role/developer \

343

AWS Identity and Access Management User Guide
Controlling permissions for temporary security credentials

--role-session-name Audit \
--source-identity Admin \

Using source identity with AssumeRoleWithSAML

The principal calling the AssumeRoleWithSAML operation is authenticated using SAML-based
federation. This operation returns a set of temporary credentials that you can use to access AWS
resources. For more information about using SAML-based federation for AWS Management Console
access, see Enabling SAML 2.0 federated users to access the AWS Management Console (p. 209). For
details about AWS CLI or AWS API access, see About SAML 2.0-based federation (p. 183). For a tutorial
of setting up SAML federation for your Active Directory users, see AWS Federated Authentication with
Active Directory Federation Services (ADFS) in the AWS Security Blog.

As an administrator, you can allow members of your company directory to federate into AWS using the
AWS STS AssumeRoleWithSAML operation. To do this, you must complete the following tasks:

1. Configure a SAML provider in your organization (p. 202).
2. Create a SAML provider in IAM (p. 197).
3. Configure a role and its permissions in AWS for your federated users (p. 247).
4. Finish configuring the SAML IdP and create assertions for the SAML authentication response (p. 204).

To set a SAML attribute for source identity, include the Attribute element with the Name attribute set
to https://aws.amazon.com/SAML/Attributes/SourceIdentity. Use the AttributeValue
element to specify the value of the source identity. For example, assume that you want to pass the
following identity attribute as the source identity.

SourceIdentity:DiegoRamirez

To pass this attribute, include the following element in your SAML assertion.

Example Example snippet of a SAML assertion

<Attribute Name="https://aws.amazon.com/SAML/Attributes/SourceIdentity">
<AttributeValue>DiegoRamirez</AttributeValue>
</Attribute>

Using source identity with AssumeRoleWithWebIdentity

The principal calling the AssumeRoleWithWebIdentity operation is authenticated using OpenID
Connect (OIDC)-compliant web identity federation. This operation returns a set of temporary credentials
that you can use to access AWS resources. For more information about using web identity federation for
AWS Management Console access, see About web identity federation (p. 178).

To pass source identity from OpenID Connect (OIDC), you must include the source identity in the JSON
Web Token (JWT). Include source identity in the https://aws.amazon.com/source_identity
namespace in the token when you submit the AssumeRoleWithWebIdentity request. To learn more
about OIDC tokens and claims, see Using Tokens with User Pools in the Amazon Cognito Developer Guide.

For example, the following decoded JWT is a token that is used to call AssumeRoleWithWebIdentity
with the Admin source identity.

Example Example decoded JSON Web Token

{
 "sub": "johndoe",
 "aud": "ac_oic_client",
 "jti": "ZYUCeRMQVtqHypVPWAN3VB",

344

http://aws.amazon.com/blogs/security/aws-federated-authentication-with-active-directory-federation-services-ad-fs/
http://aws.amazon.com/blogs/security/aws-federated-authentication-with-active-directory-federation-services-ad-fs/
https://aws.amazon.com/
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html

AWS Identity and Access Management User Guide
Controlling permissions for temporary security credentials

 "iss": "https://xyz.com",
 "iat": 1566583294,
 "exp": 1566583354,
 "auth_time": 1566583292,
 "https://aws.amazon.com/source_identity":"Admin"
}

Control access using source identity information

When a source identity is initially set, the sts:SourceIdentity (p. 841) key is present in the request. After
a source identity is set, the aws:SourceIdentity (p. 826) key is present in all subsequent requests made
during the role session. As the administrator, you can write policies that grant conditional authorization
to perform AWS actions based on the existence or value of the source identity attribute.

Imagine that you want to require your developers to set a source identity to assume a critical role that
has permission to write to a production critical AWS resource. Also imagine that you grant AWS access
to your workforce identities using AssumeRoleWithSAML. You only want senior developers Saanvi and
Diego to have access to the role, so you create the following trust policy for the role.

Example Example role trust policy for source identity

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AssumeRoleAndSetSourceIdentity",
 "Effect": "Allow",
 "Principal": {
 "AWS": " arn:aws:iam::111111111111:role/CriticalRole"
 },
 "Action": [
 "sts:AssumeRoleWithSAML",
 "sts:SetSourceIdentity"
],
 "Condition": {
 "StringLike": {
 "sts:SourceIdentity": ["Saanvi", "Diego"]
 }
 }
 }
]
}

The trust policy contains a condition for sts:SourceIdentity that requires a source identity that is set
to Saanvi or Diego to assume the critical role.

Role chaining and cross-account requirements

Imagine that you want to allow users who have assumed CriticalRole to assume a CriticalRole_2
in another account. The role session credentials that were obtained to assume CriticalRole are
used to role chain (p. 170) to a second role, CriticalRole_2, in a different account. The role is
being assumed across an account boundary. Therefore, the sts:SetSourceIdentity permission
must be granted in both the permissions policy on CriticalRole and in the role trust policy on
CriticalRole_2.

Example Example permissions policy on CriticalRole

{
 "Version": "2012-10-17",
 "Statement": [
 {

345

AWS Identity and Access Management User Guide
Controlling permissions for temporary security credentials

 "Sid": "AssumeRoleAndSetSourceIdentity",
 "Effect": "Allow",
 "Action": [
 "sts:AssumeRole",
 "sts:SetSourceIdentity"
],
 "Resource": "arn:aws:iam::222222222222:role/CriticalRole_2"
 }
]
}

To secure setting source identity across the account boundary, the following role trust policy trusts only
the role principal for CriticalRole to set the source identity.

Example Example role trust policy on CriticalRole_2

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": " arn:aws:iam::111111111111:role/CriticalRole"
 },
 "Action": [
 "sts:AssumeRole",
 "sts:SetSourceIdentity"
],
 "Condition": {
 "StringLike": {
 "aws:SourceIdentity": ["Saanvi","Diego"]
 }
 }
 }
]
}

The user makes the following call using role session credentials obtained from assuming CriticalRole.
The source identity was set during the assumption of CriticalRole, so it does not need to be explicitly
set again. If the user attempts to set a source identity that is different from the value set when
CriticalRole was assumed, the assume role request will be denied.

Example Example AssumeRole CLI request

aws sts assume-role \
--role-arn arn:aws:iam::222222222222:role/CriticalRole_2 \
--role-session-name Audit \

When the calling principal assumes the role, the source identity in the request persists from the first
assumed role session. Therefore, both the aws:SourceIdentity and sts:SourceIdentity keys are
present in the request context.

Viewing source identity in CloudTrail

You can use CloudTrail to view the requests made to assume roles or federate users. You can also view
the role or user requests to take actions in AWS. The CloudTrail log file includes information about the
source identity set for the assumed-role or federated user session. For more information, see

For example, assume that a user makes an AWS STS AssumeRole request, and sets a source identity. You
can find the sourceIdentity information in the requestParameters key in your CloudTrail log.

346

AWS Identity and Access Management User Guide
Controlling permissions for temporary security credentials

Example Example requestParameters section in an AWS CloudTrail log

"eventVersion": "1.05",
 "userIdentity": {
 "type": "AWSAccount",
 "principalId": "AIDAJ45Q7YFFAREXAMPLE",
 "accountId": "123456789012"
 },
 "eventTime": "2020-04-02T18:20:53Z",
 "eventSource": "sts.amazonaws.com",
 "eventName": "AssumeRole",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "203.0.113.64",
 "userAgent": "aws-cli/1.16.96 Python/3.6.0 Windows/10 botocore/1.12.86",
 "requestParameters": {
 "roleArn": "arn:aws:iam::123456789012:role/Assumed_Role",
 "roleSessionName": "Test1",
 "sourceIdentity": "source-identity-value-set",
 },

If the user uses the assumed role session to perform an action, the source identity information is present
in the userIdentity key in the CloudTrail log.

Example Example userIdentity key in an AWS CloudTrail log

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROAJ45Q7YFFAREXAMPLE: Dev1",
 "arn": "arn: aws: sts: : 123456789012: assumed-role/DevRole/Dev1",
 "accountId": "123456789012",
 "accessKeyId": "ASIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROAJ45Q7YFFAREXAMPLE",
 "arn": "arn: aws: iam: : 123456789012: role/DevRole",
 "accountId": "123456789012",
 "userName": "DevRole"
 },
 "webIdFederationData": {},
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2021-02-21T23: 46: 28Z"
 },
 "sourceIdentity": "source-identity-value-present"
 }
 }
}

To see example AWS STS API events in CloudTrail logs, see Example IAM API events in CloudTrail
log (p. 370). For more details about the information contained in CloudTrail log files, see CloudTrail
Event Reference in the AWS CloudTrail User Guide.

Permissions for GetFederationToken
The GetFederationToken operation is called by an IAM user and returns temporary credentials for
that user. This operation federates the user. The permissions assigned a federated user are defined in one
of two places:

347

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/eventreference.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/eventreference.html

AWS Identity and Access Management User Guide
Controlling permissions for temporary security credentials

• The session policies passed as a parameter of the GetFederationToken API call. (This is most
common.)

• A resource-based policy that explicitly names the federated user in the Principal element of the
policy. (This is less common.)

Session policies are advanced policies that you pass as parameters when you programmatically create
a temporary session. When you create a federated user session and pass session policies, the resulting
session's permissions are the intersection of the IAM user's identity-based policy and the session policies.
You cannot use the session policy to grant more permissions than those allowed by the identity-based
policy of the user that is being federated.

In most cases if you do not pass a policy with the GetFederationToken API call, the resulting
temporary security credentials have no permissions. However, a resource-based policy can provide
additional permissions for the session. You can access a resource with a resource-based policy that
specifies your session as the allowed principal.

The following figures show a visual representation of how the policies interact to determine permissions
for the temporary security credentials returned by a call to GetFederationToken.

Example: Assigning permissions using GetFederationToken

You can use the GetFederationToken API action with different kinds of policies. Here are a few
examples.

Policy attached to the IAM user

In this example, you have a browser-based client application that relies on two backend web
services. One backend service is your own authentication server that uses your own identity system
to authenticate the client application. The other backend service is an AWS service that provides
some of the client application's functionality. The client application is authenticated by your server,
and your server creates or retrieves the appropriate permissions policy. Your server then calls the
GetFederationToken API to obtain temporary security credentials, and returns those credentials to
the client application. The client application can then make requests directly to the AWS service with
the temporary security credentials. This architecture allows the client application to make AWS requests
without embedding long-term AWS credentials.

Your authentication server calls the GetFederationToken API with the long-term security credentials
of an IAM user named token-app. But the long-term IAM user credentials remain on your server and
are never distributed to the client. The following example policy is attached to the token-app IAM user
and defines the broadest set of permissions that your federated users (clients) will need. Note that the
sts:GetFederationToken permission is required for your authentication service to obtain temporary
security credentials for the federated users.

Note
AWS provides a sample Java application to serve this purpose, which you can download here:
Token Vending Machine for Identity Registration - Sample Java Web Application.

348

https://aws.amazon.com/code/7351543942956566

AWS Identity and Access Management User Guide
Controlling permissions for temporary security credentials

Example Example policy attached to IAM user token-app that calls GetFederationToken

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "sts:GetFederationToken",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "dynamodb:ListTables",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "sqs:ReceiveMessage",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "s3:ListBucket",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "sns:ListSubscriptions",
 "Resource": "*"
 }
]
}

The preceding policy grants several permissions to the IAM user. However, this policy alone doesn't grant
any permissions to the federated user. If this IAM user calls GetFederationToken and does not pass a
policy as a parameter of the API call, the resulting federated user has no effective permissions.

Session policy passed as parameter

The most common way to ensure that the federated user is assigned appropriate permission is to pass
session policies in the GetFederationToken API call. Expanding on the previous example, imagine
that GetFederationToken is called with the credentials of the IAM user token-app. Then imagine
that the following session policy is passed as a parameter of the API call. The resulting federated
user has permission to list the contents of the Amazon S3 bucket named productionapp. The user
can't perform the Amazon S3 GetObject, PutObject, and DeleteObject actions on items in the
productionapp bucket.

The federated user is assigned these permissions because the permissions are the intersection of the IAM
user policies and the session policies that you pass.

The federated user could not perform actions in Amazon SNS, Amazon SQS, Amazon DynamoDB, or in
any S3 bucket except productionapp. These actions are denied even though those permissions are
granted to the IAM user that is associated with the GetFederationToken call.

Example Example session policy passed as parameter of GetFederationToken API call

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["s3:ListBucket"],

349

AWS Identity and Access Management User Guide
Controlling permissions for temporary security credentials

 "Resource": ["arn:aws:s3:::productionapp"]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject"
],
 "Resource": ["arn:aws:s3:::productionapp/*"]
 }
]
}

Resource-based policies

Some AWS resources support resource-based policies, and these policies provide another mechanism to
grant permissions directly to a federated user. Only some AWS services support resource-based policies.
For example, Amazon S3 has buckets, Amazon SNS has topics, and Amazon SQS has queues that you
can attach policies to. For a list of all services that support resource-based policies, see AWS services
that work with IAM (p. 725) and review the "Resource-based policies" column of the tables. You can
use resource-based policies to assign permissions directly to a federated user. Do this by specifying the
Amazon Resource Name (ARN) of the federated user in the Principal element of the resource-based
policy. The following example illustrates this and expands on the previous examples, using an S3 bucket
named productionapp.

The following resource-based policy is attached to the bucket. This bucket policy allows a federated
user named Carol to access the bucket. When the example policy described earlier is attached to the
token-app IAM user, the federated user named Carol has permission to perform the s3:GetObject,
s3:PutObject, and s3:DeleteObject actions on the bucket named productionapp. This is true
even when no session policy is passed as a parameter of the GetFederationToken API call. That's
because in this case the federated user named Carol has been explicitly granted permissions by the
following resource-based policy.

Remember, a federated user is granted permissions only when those permissions are explicitly granted
to both the IAM user and the federated user. Permissions can be granted to the federated user by the
session policy passed as a parameter of the GetFederationToken API call. They can also be granted by
a resource-based policy that explicitly names the federated user in the Principal element of the policy,
as in the following example.

Example Example bucket policy that allows access to federated user

{
 "Version": "2012-10-17",
 "Statement": {
 "Principal": {"AWS": "arn:aws:sts::ACCOUNT-ID-WITHOUT-HYPHENS:federated-user/Carol"},
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject"
],
 "Resource": ["arn:aws:s3:::productionapp/*"]
 }
}

Permissions for GetSessionToken
The primary occasion for calling the GetSessionToken API operation or the get-session-token CLI
command is when a user must be authenticated with multi-factor authentication (MFA). It is possible to

350

AWS Identity and Access Management User Guide
Controlling permissions for temporary security credentials

write a policy that allows certain actions only when those actions are requested by a user who has been
authenticated with MFA. In order to successfully pass the MFA authorization check, a user must first call
GetSessionToken and include the optional SerialNumber and TokenCode parameters. If the user is
successfully authenticated with an MFA device, the credentials returned by the GetSessionToken API
operation include the MFA context. This context indicates that the user is authenticated with MFA and is
authorized for API operations that require MFA authentication.

Permissions required for GetSessionToken

No permissions are required for a user to get a session token. The purpose of the GetSessionToken
operation is to authenticate the user using MFA. You cannot use policies to control authentication
operations.

To grant permissions to perform most AWS operations, you add the action with the same name to a
policy. For example, to create a user, you must use the CreateUser API operation, the create-user
CLI command, or the AWS Management Console. To perform these operations, you must have a policy
that allows you to access the CreateUser action.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:CreateUser",
 "Resource": "*"
 }
]
}

You can include the GetSessionToken action in your policies, but it has no effect on a user's ability to
perform the GetSessionToken operation.

Permissions granted by GetSessionToken

If GetSessionToken is called with the credentials of an IAM user, the temporary security credentials
have the same permissions as the IAM user. Similarly, if GetSessionToken is called with AWS account
root user credentials, the temporary security credentials have root user permissions.

Note
We recommend that you do not call GetSessionToken with root user credentials. Instead,
follow our best practices (p. 557) and create IAM users with the permissions they need. Then
use these IAM users for everyday interaction with AWS.

The temporary credentials that you get when you call GetSessionToken have the following capabilities
and limitations:

• You can use the credentials to access the AWS Management Console by passing the credentials to the
federation single sign-on endpoint at https://signin.aws.amazon.com/federation. For more
information, see Enabling custom identity broker access to the AWS console (p. 212).

• You cannot use the credentials to call IAM or AWS STS API operations. You can use them to call API
operations for other AWS services.

Compare this API operation and its limitations and capability with the other API operations that create
temporary security credentials at Comparing the AWS STS API operations (p. 332)

For more information about MFA-protected API access using GetSessionToken, see Configuring MFA-
protected API access (p. 138).

351

AWS Identity and Access Management User Guide
Controlling permissions for temporary security credentials

Disabling permissions for temporary security credentials
Temporary security credentials are valid until they expire, and they cannot be revoked. However, because
permissions are evaluated each time an AWS request is made using the credentials, you can achieve the
effect of revoking the credentials by changing the permissions for the credentials even after they have
been issued. If you remove all permissions from the temporary security credentials, subsequent AWS
requests that use those credentials will fail. The mechanisms for changing or removing the permissions
assigned to temporary security credentials are explained in the following sections.

Note
When you update existing policy permissions, or when you apply a new policy to a user or a
resource, it may take a few minutes for policy updates to take effect.

Topics
• Denying access to the creator of the temporary security credentials (p. 352)
• Denying access to temporary security credentials by name (p. 353)
• Denying access to temporary security credentials issued before a specific time (p. 354)

Denying access to the creator of the temporary security credentials

To change or remove the permissions assigned to temporary security credentials, you can change or
remove the permissions that are associated with the creator of the credentials. The creator of the
credentials is determined by the AWS STS API that was used to obtain the credentials. The mechanisms
for changing or removing the permissions associated with this creator are explained in the following
sections.

Denying access to credentials created by AssumeRole, AssumeRoleWithSAML, or
AssumeRoleWithWebIdentity

To change or remove the permissions assigned to the temporary security credentials obtained by
calling the AssumeRole, AssumeRoleWithSAML, or AssumeRoleWithWebIdentity API operations,
you edit or delete the role permission policy that defines the permissions for the assumed role. The
temporary security credentials obtained by assuming a role can never have more permissions than
those defined in the permissions policy of the assumed role, and the permissions assigned to temporary
security credentials are evaluated each time they are used to make an AWS request. When you edit
or delete the permission policy of a role, the changes affect the permissions of all temporary security
credentials associated with that role, including credentials that were issued before you changed the role's
permissions policy. You can immediately revoke all permissions to a session by following the steps at
Revoking IAM role temporary security credentials (p. 277).

For more information about editing a role permission policy, see Modifying a role (p. 279).

Denying access to credentials created by GetFederationToken or GetSessionToken

To change or remove the permissions assigned to the temporary security credentials obtained by
calling the GetFederationToken or GetSessionToken API operations, you edit or delete the
policies that are attached to the IAM user whose credentials were used to call GetFederationToken
or GetSessionToken. The temporary security credentials that were obtained by calling
GetFederationToken or GetSessionToken can never have more permissions than the IAM user
whose credentials were used to obtain them. In addition the permissions assigned to temporary security
credentials are evaluated each time they are used to make an AWS request. It is important to note that
when you edit or delete the permissions of an IAM user, the changes affect the IAM user as well as all
temporary security credentials created by that user.

Important
You cannot change the permissions for an AWS account root user. Likewise, you cannot
change the permissions for the temporary security credentials that were created by calling
GetFederationToken or GetSessionToken while signed in as the root user. For this reason,

352

AWS Identity and Access Management User Guide
Controlling permissions for temporary security credentials

we recommend that you do not call GetFederationToken or GetSessionToken as a root
user.

For information about how to change or remove the policies associated with the IAM user whose
credentials were used to call GetFederationToken or GetSessionToken, seeManaging IAM
policies (p. 468).

Denying access to temporary security credentials by name

You can deny access to temporary security credentials without affecting the permissions of the IAM user
or role that created the credentials. You do this by specifying the Amazon Resource Name (ARN) of the
temporary security credentials in the Principal element of a resource-based policy. (Only some AWS
services support resource-based policies.)

Denying access to federated users

For example, imagine you have an IAM user named token-app whose credentials are used to call
GetFederationToken. The GetFederationToken API call resulted in temporary security credentials
associated with a federated user named Bob (the federated user's name is taken from the Name
parameter of the API call). To deny federated user Bob's access to an S3 bucket called EXAMPLE-BUCKET,
you attach the following example bucket policy to EXAMPLE-BUCKET. It is important to note that
this affects the federated user's Amazon S3 permissions only—any other permissions granted to the
federated user remain intact.

{
 "Version": "2012-10-17",
 "Statement": {
 "Principal": {"AWS": "arn:aws:sts::ACCOUNT-ID-WITHOUT-HYPHENS:federated-user/Bob"},
 "Effect": "Deny",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::EXAMPLE-BUCKET"
 }
}

You can specify the ARN of the IAM user whose credentials were used to call GetFederationToken in
the Principal element of the bucket policy, instead of specifying the federated user. In that case, the
Principal element of the preceding policy would look like this:

"Principal": {"AWS": "arn:aws:iam::ACCOUNT-ID-WITHOUT-HYPHENS:user/token-app"}

It is important to note that specifying the ARN of IAM user token-app in the policy will result in denying
access to all federated users created by token-app, not only the federated user named Bob.

Denying access to assumed role users

It is also possible to specify the ARN of the temporary security credentials that were created by assuming
a role. The difference is the syntax used in the Principal element of the resource-based policy. For
example, a user assumes a role called Accounting-Role and specifies a RoleSessionName of Mary
(RoleSessionName is a parameter of the AssumeRole API call). To deny access to the temporary
security credentials that resulted from this API call, the Principal element of the resource-based policy
would look like this:

"Principal": {"AWS": "arn:aws:sts::ACCOUNT-ID-WITHOUT-HYPHENS:assumed-role/Accounting-Role/
Mary"}

You can also specify the ARN of the IAM role in the Principal element of a resourced-based policy, as
in the following example. In this case, the policy will result in denying access to all temporary security
credentials associated with the role named Accounting-Role.

353

AWS Identity and Access Management User Guide
Controlling permissions for temporary security credentials

"Principal": {"AWS": "arn:aws:iam::ACCOUNT-ID-WITHOUT-HYPHENS:role/Accounting-Role"}

Denying access to temporary security credentials issued before a specific time

It is possible to deny access only to temporary security credentials that were created before a specific
time and date. You do this by specifying a value for the aws:TokenIssueTime key in the Condition
element of a policy. The following policy shows an example. You attach a policy similar to the
following example to the IAM user that created the temporary security credentials. The policy denies
all permissions but only when the value of aws:TokenIssueTime is earlier than the specified date
and time. The value of aws:TokenIssueTime corresponds to the exact time at which the temporary
security credentials were created. The aws:TokenIssueTime value is only present in the context of
AWS requests that are signed with temporary security credentials, so the Deny statement in the policy
will not affect requests that are signed with the long-term credentials of the IAM user.

The following policy can also be attached to a role. In that case, the policy affects only the temporary
security credentials that were created by the role before the specified date and time. If the credentials
were created by the role after the specified date and time, the Condition element in the policy is
evaluated to false, so the Deny statement has no effect.

Example Example policy that denies all permissions to temporary credentials by issue time

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Deny",
 "Action": "*",
 "Resource": "*",
 "Condition": {"DateLessThan": {"aws:TokenIssueTime": "2014-05-07T23:47:00Z"}}
 }
}

Valid users whose sessions are revoked in this way must acquire temporary credentials for a new session
to continue working. Note that the AWS CLI caches credentials until they expire. To force the CLI to
delete and refresh cached credentials that are no longer valid, run one of the following commands:

Linux, MacOS, or Unix

$ rm -r ~/.aws/cli/cache

Windows

C:\> del /s /q %UserProfile%\.aws\cli\cache

Granting permissions to create temporary security credentials
By default, IAM users do not have permission to create temporary security credentials for federated
users and roles. You must use a policy to provide your users with these permissions. Although you can
grant permissions directly to a user, we strongly recommend that you grant permissions to a group. This
makes management of the permissions much easier. When someone no longer needs to perform the
tasks associated with the permissions, you simply remove them from the group. If someone else needs to
perform that task, add them to the group to grant the permissions.

To grant an IAM group permission to create temporary security credentials for federated users or roles,
you attach a policy that grants one or both of the following privileges:

• For federated users to access an IAM role, grant access to AWS STS AssumeRole.

354

AWS Identity and Access Management User Guide
Controlling permissions for temporary security credentials

• For federated users that don't need a role, grant access to AWS STS GetFederationToken.

For more information about the differences between the AssumeRole and GetFederationToken API
operations, see Requesting temporary security credentials (p. 324).

IAM users can also call GetSessionToken to create temporary security credentials. No permissions are
required for a user to call GetSessionToken. The purpose of this operation is to authenticate the user
using MFA. You cannot use policies to control authentication. This means that you cannot prevent IAM
users from calling GetSessionToken to create temporary credentials.

Example Example policy that grants permission to assume a role

The following example policy grants permission to call AssumeRole for the UpdateApp role in AWS
account 123123123123. When AssumeRole is used, the user (or application) that creates the security
credentials on behalf of a federated user cannot delegate any permissions that are not already specified
in the role permission policy.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::123123123123:role/UpdateAPP"
 }]
}

Example Example policy that grants permission to create temporary security credentials for
a federated user

The following example policy grants permission to access GetFederationToken.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "sts:GetFederationToken",
 "Resource": "*"
 }]
}

Important
When you give IAM users permission to create temporary security credentials for federated
users with GetFederationToken, be aware that this permits those users to delegate their
own permissions. For more information about delegating permissions across IAM users and
AWS accounts, see Examples of policies for delegating access (p. 249). For more information
about controlling permissions in temporary security credentials, see Controlling permissions for
temporary security credentials (p. 337).

Example Example policy that grants a user limited permission to create temporary security
credentials for federated users

When you let an IAM user call GetFederationToken, it is a best practice to restrict the permissions
that the IAM user can delegate. For example, the following policy shows how to let an IAM user create
temporary security credentials only for federated users whose names start with Manager.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",

355

https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html

AWS Identity and Access Management User Guide
Managing AWS STS in an AWS Region

 "Action": "sts:GetFederationToken",
 "Resource": ["arn:aws:sts::123456789012:federated-user/Manager*"]
 }]
}

Managing AWS STS in an AWS Region
By default, the AWS Security Token Service (AWS STS) is available as a global service, and all AWS STS
requests go to a single endpoint at https://sts.amazonaws.com. AWS recommends using Regional
AWS STS endpoints instead of the global endpoint to reduce latency, build in redundancy, and increase
session token validity.

• Reduce latency – By making your AWS STS calls to an endpoint that is geographically closer to your
services and applications, you can access AWS STS services with lower latency and better response
times.

• Build in redundancy – You can add code to your application that switches your AWS STS API calls to a
different Region. This ensures that if the first Region stops responding, your application continues to
operate. This redundancy is not automatic; you must build the functionality into your code.

• Increase session token validity – Session tokens from Regional AWS STS endpoints are valid in all
AWS Regions. Session tokens from the global STS endpoint are valid only in AWS Regions that are
enabled by default. If you intend to enable a new Region for your account, you can use session tokens
from Regional STS endpoints. If you choose to use the global endpoint, you must change the Region
compatibility of STS session tokens for the global endpoint. Doing so ensures that tokens are valid in
all AWS Regions.

Managing global endpoint session tokens
Most AWS Regions are enabled for operations in all AWS services by default. Those Regions are
automatically activated for use with AWS STS. Some Regions, such as Asia Pacific (Hong Kong), must be
manually enabled. To learn more about enabling and disabling AWS Regions, see Managing AWS Regions
in the AWS General Reference. When you enable these AWS Regions, they are automatically activated for
use with AWS STS. You cannot activate the STS endpoint for a Region that is disabled. Tokens that are
valid in all AWS Regions include more characters than tokens that are valid in Regions that are enabled
by default. Changing this setting might affect existing systems where you temporarily store tokens.

You can change this setting using the AWS Management Console, AWS CLI, or AWS API.

To change the Region compatibility of session tokens for the global endpoint (console)

1. Sign in as a root user or an IAM user with permissions to perform IAM administration tasks.
To change the compatibility of session tokens, you must have a policy that allows the
iam:SetSecurityTokenServicePreferences action.

2. Open the IAM console. In the navigation pane, choose Account settings.
3. If necessary, expand the Security Token Service (STS) section. In the first table next to Global

endpoint, the Region compatibility of session tokens column indicates Valid only in AWS
Regions enabled by default. Choose Change.

4. In the Change region compatibility of session tokens for global endpoint dialog box, select Valid
in all AWS Regions. Then choose Save changes.

Note
Tokens that are valid in all AWS Regions include more characters than tokens that are valid
in Regions that are enabled by default. Changing this setting might affect existing systems
where you temporarily store tokens.

To change the Region compatibility of session tokens for the global endpoint (AWS CLI)

356

https://docs.aws.amazon.com/general/latest/gr/rande-manage.html
https://console.aws.amazon.com/iam/home?#home

AWS Identity and Access Management User Guide
Managing AWS STS in an AWS Region

Set the security token version. Version 1 tokens are valid only in AWS Regions that are available by
default. These tokens do not work in manually enabled Regions, such as Asia Pacific (Hong Kong).
Version 2 tokens are valid in all Regions. However, version 2 tokens include more characters and might
affect systems where you temporarily store tokens.

• aws iam set-security-token-service-preferences

To change the Region compatibility of session tokens for the global endpoint (AWS API)

Set the security token version. Version 1 tokens are valid only in AWS Regions that are available by
default. These tokens do not work in manually enabled Regions, such as Asia Pacific (Hong Kong).
Version 2 tokens are valid in all Regions. However, version 2 tokens include more characters and might
affect systems where you temporarily store tokens.

• SetSecurityTokenServicePreferences

Activating and deactivating AWS STS in an AWS Region
When you activate STS endpoints for a Region, AWS STS can issue temporary credentials to users and
roles in your account that make an AWS STS request. Those credentials can then be used in any Region
that is enabled by default or is manually enabled. You must activate the Region in the account where the
temporary credentials are generated. It does not matter whether a user is signed into the same account
or a different account when they make the request.

For example, imagine a user in account A wants to send an sts:AssumeRole API request to the
STS Regional endpoint https://sts.us-west-2.amazonaws.com. The request is for temporary
credentials for the role named Developer in account B. Because the request is to create credentials for
an entity in account B, account B must activate the us-west-2 Region. Users from account A (or any
other account) can call the us-west-2 endpoint to request credentials for account B whether or not the
Region is activated in their accounts.

Note
Active Regions are available to everyone that uses temporary credentials in
that account. To control which IAM users or roles can access the Region, use the
aws:RequestedRegion (p. 823) condition key in your permissions policies.

To activate or deactivate AWS STS in a Region that is enabled by default (console)

1. Sign in as a root user or an IAM user with permissions to perform IAM administration tasks.
2. Open the IAM console and in the navigation pane choose Account settings.
3. If necessary, expand Security Token Service (STS), find the Region that you want to activate,

and then choose Activate or Deactivate. For Regions that must be enabled, we activate STS
automatically when you enable the Region. After you enable a Region, AWS STS is always active
for the Region and you cannot deactivate it. To learn how to enable a Region, see Managing AWS
Regions in the AWS General Reference.

Writing code to use AWS STS regions
After you activate a Region, you can direct AWS STS API calls to that Region. The following Java code
snippet demonstrates how to configure an AWSSecurityTokenService object to make requests to the
Europe (Ireland) (eu-west-1) Region.

EndpointConfiguration regionEndpointConfig = new EndpointConfiguration("https://sts.eu-
west-1.amazonaws.com", "eu-west-1");
AWSSecurityTokenService stsRegionalClient = AWSSecurityTokenServiceClientBuilder.standard()

357

https://docs.aws.amazon.com/cli/latest/reference/iam/set-security-token-service-preferences.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_SetSecurityTokenServicePreferences.html
https://console.aws.amazon.com/iam/home?#home
https://console.aws.amazon.com/iam/home?#account_settings
https://docs.aws.amazon.com/general/latest/gr/rande-manage.html
https://docs.aws.amazon.com/general/latest/gr/rande-manage.html

AWS Identity and Access Management User Guide
Managing AWS STS in an AWS Region

.withCredentials(credentials)

.withEndpointConfiguration(regionEndpointConfig)

.build();

AWS STS recommends that you make calls to a Regional endpoint. To learn how to manually enable a
Region, see Managing AWS Regions in the AWS General Reference.

In the example, the first line instantiates an EndpointConfiguration object called
regionEndpointConfig, passing the URL of the endpoint and the Region as the parameters.

For all other language and programming environment combinations, refer to the documentation for the
relevant SDK.

Regions and endpoints
The following table lists the Regions and their endpoints. It indicates which ones are activated by default
and which ones you can activate or deactivate.

Region name Endpoint Active by
default

Manually
activate/
deactivate

--Global-- sts.amazonaws.com Yes No

US East (Ohio) sts.us-east-2.amazonaws.com Yes Yes

US East (N. Virginia) sts.us-east-1.amazonaws.com Yes No

US West (N.
California)

sts.us-west-1.amazonaws.com Yes Yes

US West (Oregon) sts.us-west-2.amazonaws.com Yes Yes

Africa (Cape Town) sts.af-south-1.amazonaws.com No¹ No

Asia Pacific (Hong
Kong)

sts.ap-east-1.amazonaws.com No¹ No

Asia Pacific (Mumbai) sts.ap-south-1.amazonaws.com Yes Yes

Asia Pacific (Osaka) sts.ap-northeast-3.amazonaws.com Yes Yes

Asia Pacific (Seoul) sts.ap-northeast-2.amazonaws.com Yes Yes

Asia Pacific
(Singapore)

sts.ap-southeast-1.amazonaws.com Yes Yes

Asia Pacific (Sydney) sts.ap-southeast-2.amazonaws.com Yes Yes

Asia Pacific (Tokyo) sts.ap-northeast-1.amazonaws.com Yes Yes

Canada (Central) sts.ca-central-1.amazonaws.com Yes Yes

Europe (Frankfurt) sts.eu-central-1.amazonaws.com Yes Yes

Europe (Ireland) sts.eu-west-1.amazonaws.com Yes Yes

358

https://docs.aws.amazon.com/general/latest/gr/rande-manage.html
https://aws.amazon.com/tools/
https://aws.amazon.com/tools/

AWS Identity and Access Management User Guide
Using AWS STS interface VPC endpoints

Region name Endpoint Active by
default

Manually
activate/
deactivate

Europe (London) sts.eu-west-2.amazonaws.com Yes Yes

Europe (Milan) sts.eu-south-1.amazonaws.com No¹ No

Europe (Paris) sts.eu-west-3.amazonaws.com Yes Yes

Europe (Stockholm) sts.eu-north-1.amazonaws.com Yes Yes

Middle East (Bahrain) sts.me-south-1.amazonaws.com No¹ No

South America (São
Paulo)

sts.sa-east-1.amazonaws.com Yes Yes

¹You must enable the Region to use it. This automatically activates STS. You cannot manually activate or
deactivate STS in these Regions.

AWS CloudTrail and Regional endpoints
Calls to Regional endpoints, such as us-east-2.amazonaws.com, are logged in AWS CloudTrail the
same as any call to a Regional service. Calls to the global endpoint, sts.amazonaws.com, are logged
as calls to a global service. For more information, see Logging IAM and AWS STS API calls with AWS
CloudTrail (p. 365).

Using AWS STS interface VPC endpoints
If you use Amazon Virtual Private Cloud (Amazon VPC) to host your AWS resources, you can establish a
private connection between your VPC and AWS STS. You can use this connection to enable AWS STS to
communicate with your resources on your VPC without going through the public internet.

Amazon VPC is an AWS service that you can use to launch AWS resources in a virtual network that
you define. With a VPC, you have control over your network settings, such as the IP address range,
subnets, route tables, and network gateways. To connect your VPC to AWS STS, you define an interface
VPC endpoint for AWS STS. The endpoint provides reliable, scalable connectivity to AWS STS without
requiring an internet gateway, network address translation (NAT) instance, or VPN connection. For more
information, see What Is Amazon VPC? in the Amazon VPC User Guide.

Interface VPC endpoints are powered by AWS PrivateLink, an AWS technology that enables private
communication between AWS services using an elastic network interface with private IP addresses. For
more information, see AWS PrivateLink for AWS Services.

The following steps are for users of Amazon VPC. For more information, see Getting Started with
Amazon VPC in the Amazon VPC User Guide.

Availability
AWS STS currently supports VPC endpoints in the following Regions:

• US East (Ohio)
• US East (N. Virginia)
• US West (N. California)
• US West (Oregon)

359

https://docs.aws.amazon.com/general/latest/gr/rande-manage.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Introduction.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/userguide/GetStarted.html
https://docs.aws.amazon.com/vpc/latest/userguide/GetStarted.html

AWS Identity and Access Management User Guide
Using bearer tokens

• Africa (Cape Town)
• Asia Pacific (Hong Kong)
• Asia Pacific (Mumbai)
• Asia Pacific (Osaka)
• Asia Pacific (Seoul)
• Asia Pacific (Singapore)
• Asia Pacific (Sydney)
• Asia Pacific (Tokyo)
• Canada (Central)
• China (Beijing)
• China (Ningxia)
• Europe (Frankfurt)
• Europe (Ireland)
• Europe (London)
• Europe (Milan)
• Europe (Paris)
• Europe (Stockholm)
• Middle East (Bahrain)
• South America (São Paulo)
• AWS GovCloud (US-East)
• AWS GovCloud (US-West)

Create a VPC for AWS STS
To start using AWS STS with your VPC, create an interface VPC endpoint for AWS STS. For more
information, see Creating an Interface Endpoint in the Amazon VPC User Guide.

After you create the VPC endpoint, you must use the matching regional endpoint to send your AWS STS
requests. AWS STS recommends that you use both the setRegion and setEndpoint methods to make
calls to a Regional endpoint. You can use the setRegion method alone for manually enabled Regions,
such as Asia Pacific (Hong Kong). In this case, the calls are directed to the STS Regional endpoint. To
learn how to manually enable a Region, see Managing AWS Regions in the AWS General Reference. If you
use the setRegion method alone for Regions enabled by default, the calls are directed to the global
endpoint of https://sts.amazonaws.com.

When you use regional endpoints, AWS STS calls other AWS services using either public endpoints or
private interface VPC endpoints, whichever are in use. For example, assume that you have created an
interface VPC endpoint for AWS STS and have already requested temporary credentials from AWS STS
from resources that are located in your VPC. In that case, these credentials begin flowing through the
interface VPC endpoint by default. For more information about making Regional requests using AWS
STS, see Managing AWS STS in an AWS Region (p. 356).

Using bearer tokens
Some AWS services require that you have permission to get an AWS STS service bearer token before
you can access their resources programmatically. These services support a protocol that requires you to
use a bearer token instead of using a traditional Signature Version 4 signed request. When you perform
AWS CLI or AWS API operations that require bearer tokens, the AWS service requests a bearer token on
your behalf. The service provides you with the token, which you can then use to perform subsequent
operations in that service.

360

https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/general/latest/gr/rande-manage.html
https://sts.amazonaws.com
https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html

AWS Identity and Access Management User Guide
Sample applications that use temporary credentials

AWS STS service bearer tokens include information from your original principal authentication that
might affect your permissions. This information can include principal tags, session tags, and session
policies. The token's access key ID begins with the ABIA prefix. This helps you to identify operations that
were performed using service bearer tokens in your CloudTrail logs.

Important
The bearer token can be used only for calls to the service that generates it and in the Region
where it was generated. You can't use the bearer token to perform operations in other services
or Regions.

An example of a service that supports bearer tokens is AWS CodeArtifact. Before you can interact
with AWS CodeArtifact using a package manager such as NPM, Maven, or PIP, you must call the
aws codeartifact get-authorization-token operation. This operation returns a bearer
token that you can use to perform AWS CodeArtifact operations. Alternatively, you can use the aws
codeartifact login command that completes the same operation and then configures your client
automatically.

If you perform an action in an AWS service that generates a bearer token for you, you must have the
following permissions in your IAM policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowServiceBearerToken",
 "Effect": "Allow",
 "Action": "sts:GetServiceBearerToken",
 "Resource": "arn:aws:iam::111122223333:user/TestUser1"
 }
]
}

Sample applications that use temporary credentials
You can use AWS Security Token Service (AWS STS) to create and provide trusted users with temporary
security credentials that can control access to your AWS resources. For more information about AWS
STS, see Temporary security credentials in IAM (p. 322). To see how you can use AWS STS to manage
temporary security credentials, you can download the following sample applications that implement
complete example scenarios:

• Identity Federation Sample Application for an Active Directory Use Case. Demonstrates how to use
permissions that are tied to a user defined in Active Directory (.NET/C#) to issue temporary security
credentials for accessing Amazon S3 files and buckets.

• AWS Management Console Federation Proxy Sample Use Case. Demonstrates how to create a custom
federation proxy that enables single sign-on (SSO) so that existing Active Directory users can sign into
the AWS Management Console (.NET/C#).

• Integrate Shibboleth with AWS Identity and Access Management. Shows how to use Shibboleth and
SAML (p. 183) to provide users with single sign-on (SSO) access to the AWS Management Console.

Samples for web identity federation
The following sample applications illustrate how to use web identity federation with providers like Login
with Amazon, Amazon Cognito, Facebook, or Google. You can trade authentication from these providers
for temporary AWS security credentials to access AWS services.

• Amazon Cognito Tutorials – We recommend that you use Amazon Cognito with the AWS SDKs for
mobile development. Amazon Cognito is the simplest way to manage identity for mobile apps, and it

361

https://aws.amazon.com/code/1288653099190193
https://aws.amazon.com/code/4001165270590826
https://aws.amazon.com/code/8383453795065208
http://shibboleth.net/
https://docs.aws.amazon.com/cognito/latest/developerguide/tutorials.html

AWS Identity and Access Management User Guide
Additional resources for temporary credentials

provides additional features like synchronization and cross-device identity. For more information about
Amazon Cognito, see Amazon Cognito Identity in the AWS Mobile SDK for Android Developer Guide and
Authenticate Users with Amazon Cognito Identity in the AWS Mobile SDK for iOS Developer Guide.

• Web Identity Federation Playground. This website provides an interactive demonstration of web
identity federation (p. 178) and the AssumeRoleWithWebIdentity API.

Additional resources for temporary security
credentials
The following scenarios and applications can guide you in using temporary security credentials:

• About web identity federation (p. 178). This section discusses how to configure IAM roles when you
use web identity federation and the AssumeRoleWithWebIdentity API.

• Configuring MFA-protected API access (p. 138). This topic explains how to use roles to require multi-
factor authentication (MFA) to protect sensitive API actions in your account.

• Token Vending Machine for Identity Registration. This sample Java web application uses the
GetFederationToken API to serve temporary security credentials to remote clients.

For more information on policies and permissions in AWS see the following topics:

• Access management for AWS resources (p. 380)

• Policy evaluation logic (p. 784).

• Managing Access Permissions to Your Amazon S3 Resources in Amazon Simple Storage Service
Developer Guide.

• To learn whether principals in accounts outside of your zone of trust (trusted organization or account)
have access to assume your roles, see What is IAM Access Analyzer?.

AWS account root user
When you first create an Amazon Web Services (AWS) account, you begin with a single sign-in identity
that has complete access to all AWS services and resources in the account. This identity is called the AWS
account root user. You can sign in as the root user using the email address and password that you used to
create the account.

Important
We strongly recommend that you do not use the root user for your everyday tasks, even the
administrative ones. Instead, adhere to the best practice of using the root user only to create
your first IAM user (p. 558). Then securely lock away the root user credentials and use them to
perform only a few account and service management tasks. To view the tasks that require you
to sign in as the root user, see AWS Tasks That Require Root User. For a tutorial on how to set up
an administrator for daily use, see Creating your first IAM admin user and user group (p. 19).

You can create, rotate, disable, or delete access keys (access key IDs and secret access keys) for your AWS
account root user. You can also change your root user password. Anyone who has root user credentials
for your AWS account has unrestricted access to all the resources in your account, including billing
information.

When you create access keys, you create the access key ID and secret access key as a set. During access
key creation, AWS gives you one opportunity to view and download the secret access key part of the
access key. If you don't download it or if you lose it, you can delete the access key and then create a new
one. You can create root user access keys with the IAM console, AWS CLI, or AWS API.

362

https://docs.aws.amazon.com/mobile/sdkforandroid/developerguide/cognito-auth.html#d0e840
https://docs.aws.amazon.com/mobile/sdkforios/developerguide/cognito-auth.html#d0e664
http://aws.amazon.com/blogs/aws/the-aws-web-identity-federation-playground/
https://aws.amazon.com/code/7351543942956566
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://console.aws.amazon.com/iam/home?#

AWS Identity and Access Management User Guide
Create or delete an AWS account

A newly created access key has the status of active, which means that you can use the access key for CLI
and API calls. You are limited to two access keys for each IAM user, which is useful when you want to
rotate the access keys. You can also assign up to two access keys to the root user. When you disable an
access key, you can't use it for API calls, and inactive keys do count toward your limit. You can create or
delete an access key any time. However, when you delete an access key, it's gone forever and can't be
retrieved.

You can change the email address and password on the Security Credentials page. You can also choose
Forgot password? on the AWS sign-in page to reset your password.

Tasks

• Create or delete an AWS account (p. 363)

• Enable MFA on the AWS account root user (p. 363)

• Creating access keys for the root user (p. 363)

• Deleting access keys for the root user (p. 364)

• Changing the password for the root user (p. 365)

• Securing the credentials for the root user (p. 365)

• Transferring the root user owner (p. 365)

Create or delete an AWS account
For more information, see the following articles in the AWS Knowledge Center:

• How do I create and activate an AWS account?

• How do I close my AWS account?

Enable MFA on the AWS account root user
If you continue to use the root user credentials, we recommend that you follow the security best practice
to enable multi-factor authentication (MFA) for your account. Because your root user can perform
sensitive operations in your account, adding an additional layer of authentication helps you to better
secure your account. Multiple types of MFA are available. For more information about enabling MFA, see
the following:

• Enable a virtual MFA device for your AWS account root user (console) (p. 115)

• Enable a hardware MFA device for the AWS account root user (console) (p. 124)

Creating access keys for the root user
You can use the AWS Management Console or AWS programming tools to create access keys for the root
user.

To create an access key for the AWS account root user (console)

1. Sign in to the IAM console as the account owner by choosing Root user and entering your AWS
account email address. On the next page, enter your password.

Note
If you see three text boxes, then you previously signed in to the console with IAM user
credentials. Your browser might remember this preference and open this account-specific
sign-in page every time that you try to sign in. You cannot use the IAM user sign-in page to

363

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-quotas.html
https://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html#iam-user-access-keys
https://console.aws.amazon.com/iam/home?#security_credential
http://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
http://aws.amazon.com/premiumsupport/knowledge-center/close-aws-account/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html

AWS Identity and Access Management User Guide
Deleting access keys for the root user

sign in as the account owner. If you see the IAM user sign-in page, choose Sign in using root
user email near the bottom of the page. This returns you to the main sign-in page. From
there, you can sign in as the root user using your AWS account email address and password.

2. Choose your account name in the navigation bar, and then choose My Security Credentials.

3. If you see a warning about accessing the security credentials for your AWS account, choose Continue
to Security Credentials.

4. Expand the Access keys (access key ID and secret access key) section.

5. Choose Create New Access Key. If this feature is disabled, then you must delete one of the existing
access keys before you can create a new key. For more information, see IAM Entity Object Limits in
the IAM User Guide.

A warning explains that you have only this one opportunity to view or download the secret access
key. It cannot be retrieved later.

• If you choose Show Access Key, you can copy the access key ID and secret key from your browser
window and paste it somewhere else.

• If you choose Download Key File, you receive a file named rootkey.csv that contains the access
key ID and the secret key. Save the file somewhere safe.

6. When you no longer use the access key we recommend that you delete it (p. 564), or at least mark
it inactive by choosing Make Inactive so that it cannot be misused.

To create an access key for the root user (AWS CLI or AWS API)

Use one of the following:

• AWS CLI: aws iam create-access-key

• AWS API: CreateAccessKey

Deleting access keys for the root user
You can use the AWS Management Console to delete access keys for the root user.

1. Use your AWS account email address and password to sign in to the AWS Management Console as
the AWS account root user.

Note
If you see three text boxes, then you previously signed in to the console with IAM user
credentials. Your browser might remember this preference and open this account-specific
sign-in page every time that you try to sign in. You cannot use the IAM user sign-in page to
sign in as the account owner. If you see the IAM user sign-in page, choose Sign in using root
user email near the bottom of the page. This returns you to the main sign-in page. From
there, you can sign in as the root user using your AWS account email address and password.

2. Choose your account name in the navigation bar, and then choose My Security Credentials.

3. If you see a warning about accessing the security credentials for your AWS account, choose Continue
to Security Credentials.

4. Expand the Access keys (access key ID and secret access key) section.

5. Find the access key that you want to delete, and then, under the Actions column, choose Delete.

Note
You can mark an access key as inactive instead of deleting it. This enables you to resume
use of it in the future without having to change either the key ID or secret key. While it is
inactive, any attempts to use it in requests to the AWS API fail with the status of access
denied.

364

https://docs.aws.amazon.com/IAM/latest/UserGuide/console.html#user-sign-in-page
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-quotas.html#reference_iam-quotas-entities
https://docs.aws.amazon.com/cli/latest/reference/iam/create-access-key.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateAccessKey.html
https://console.aws.amazon.com/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/ console.html#user-sign-in-page

AWS Identity and Access Management User Guide
Changing the password for the root user

Changing the password for the root user
For information about changing the root user's password, see Changing the AWS account root user
password (p. 91). To change the root user, you must log in using the root user credentials. To view the
tasks that require you to sign in as the root user, see AWS Tasks that Require Root User

Securing the credentials for the root user
For more information about securing the credentials for the AWS account root user, see Lock away your
AWS account root user access keys (p. 558).

Transferring the root user owner
To transfer ownership of the root user, see How do I transfer my AWS account to another person or
business?.

Logging IAM and AWS STS API calls with AWS
CloudTrail

IAM and AWS STS are integrated with AWS CloudTrail, a service that provides a record of actions taken
by an IAM user or role. CloudTrail captures all API calls for IAM and AWS STS as events, including
calls from the console and from API calls. If you create a trail, you can enable continuous delivery of
CloudTrail events to an Amazon S3 bucket. If you don't configure a trail, you can still view the most
recent events in the CloudTrail console in Event history. You can use CloudTrail to get information about
the request that was made to IAM or AWS STS. For example, you can view the IP address from which the
request was made, who made the request, when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Topics
• IAM and AWS STS information in CloudTrail (p. 365)
• Logging IAM and AWS STS API requests (p. 366)
• Logging API requests to other AWS services (p. 366)
• Logging Regional sign-in events (p. 366)
• Logging user sign-in events (p. 368)
• Logging sign-in events for temporary credentials (p. 369)
• Example IAM API events in CloudTrail log (p. 370)
• Example AWS STS API events in CloudTrail log (p. 371)
• Example sign-in events in CloudTrail log (p. 377)

IAM and AWS STS information in CloudTrail
CloudTrail is enabled on your AWS account when you create the account. When activity occurs in IAM
or AWS STS, that activity is recorded in a CloudTrail event along with other AWS service events in Event
history. You can view, search, and download recent events in your AWS account. For more information,
see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for IAM and AWS STS, create a
trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when you create

365

https://docs.aws.amazon.com/general/latest/gr/aws_tasks-that-require-root.html
https://aws.amazon.com/premiumsupport/knowledge-center/transfer-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/transfer-aws-account/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html

AWS Identity and Access Management User Guide
Logging IAM and AWS STS API requests

a trail in the console, the trail applies to all Regions. The trail logs events from all Regions in the AWS
partition and delivers the log files to the Amazon S3 bucket that you specify. Additionally, you can
configure other AWS services to further analyze and act upon the event data collected in CloudTrail logs.
For more information, see:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from Multiple
Accounts

All IAM and AWS STS actions are logged by CloudTrail and are documented in the IAM API Reference and
the AWS Security Token Service API Reference.

Logging IAM and AWS STS API requests
CloudTrail logs all authenticated API requests (made with credentials) to IAM and AWS STS
API operations. CloudTrail also logs nonauthenticated requests to the AWS STS actions,
AssumeRoleWithSAML and AssumeRoleWithWebIdentity, and logs information provided by the
identity provider. You can use this information to map calls made by a federated user with an assumed
role back to the originating external federated caller. In the case of AssumeRole, you can map calls
back to the originating AWS service or to the account of the originating user. The userIdentity
section of the JSON data in the CloudTrail log entry contains the information that you need to map the
AssumeRole* request with a specific federated user. For more information, see CloudTrail userIdentity
Element in the AWS CloudTrail User Guide.

For example, calls to the IAM CreateUser, DeleteRole, ListGroups, and other API operations are all
logged by CloudTrail.

Examples for this type of log entry are presented later in this topic.

Important
If you activate AWS STS endpoints in Regions other than the default global endpoint, then you
must also turn on CloudTrail logging in those Regions. This is necessary to record any AWS STS
API calls that are made in those Regions. For more information, see Turning On CloudTrail in
Additional Regions in the AWS CloudTrail User Guide.

Logging API requests to other AWS services
Authenticated requests to other AWS service API operations are logged by CloudTrail, and these log
entries contain information about who generated the request.

For example, assume that you made a request to list Amazon EC2 instances or create an AWS
CodeDeploy deployment group. Details about the person or service that made the request are contained
in the log entry for that request. This information helps you determine whether the request was made by
the AWS account root user, an IAM user, a role, or another AWS service.

For more details about the user identity information in CloudTrail log entries, see userIdentity Element in
the AWS CloudTrail User Guide.

Logging Regional sign-in events
If you enable CloudTrail to log sign-in events to your logs, you need to be aware of how CloudTrail
chooses where to log the events.

366

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_Operations.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_regions_turn_on_ct.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregating_logs_regions_turn_on_ct.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/event_reference_user_identity.html

AWS Identity and Access Management User Guide
Logging Regional sign-in events

• If your users sign in directly to a console, they are redirected to either a global or a Regional
sign-in endpoint. The endpoint depends on whether the selected service console supports
Regions. For example, the main console home page supports Regions. If you sign in to https://
alias.signin.aws.amazon.com/console, you are redirected to a Regional sign-in endpoint such as
https://us-east-2.signin.aws.amazon.com. This redirection creates a Regional CloudTrail log entry in
the user's Region's log.

On the other hand, the Amazon S3 console does not support Regions, so if you sign in to https://
alias.signin.aws.amazon.com/console/s3, AWS redirects you to the global sign-in endpoint at https://
signin.aws.amazon.com. This redirection creates a global CloudTrail log entry.

• You can manually request a certain Regional sign-in endpoint by signing in to the Region-enabled
main console home page using a URL like https://alias.signin.aws.amazon.com/console?region=ap-
southeast-1. In this case, AWS redirects you to the ap-southeast-1 Regional sign-in endpoint and
results in a Regional CloudTrail log event.

Whether the sign-in event is considered Regional or global depends on the console the user signs into
and how the user constructs the sign-in URL.

• Is the service console Regionalized? If so, then the sign-in request is automatically redirected to a
Regional sign-in endpoint and the event is logged in that Region's CloudTrail log. For example, if you
sign in to https://alias.signin.aws.amazon.com/console, which is Regionalized, you are redirected
to a sign-in endpoint in your Region, such as https://us-east-2.signin.aws.amazon.com. The event is
logged in that Region's log.

However, some services are not Regionalized yet. For example, the Amazon S3 service is not currently
Regionalized. If you sign in to https://alias.signin.aws.amazon.com/console/s3, you are redirected to
the global sign-in endpoint at https://signin.aws.amazon.com. This redirection creates an event in your
global log.

• You can also manually request a specific Regional sign-in endpoint by using a URL such as
https://alias.signin.aws.amazon.com/console?region=ap-southeast-1. This URL redirects to the ap-
southeast-1 Regional sign-in endpoint. This redirection results in an event in the Regional log.

Preventing duplicate Regional log entries
CloudTrail creates separate trails in each Region. These trails include information for events that occur in
those Regions, plus global events and events that are not region-specific. Examples include IAM API calls,
AWS STS calls to the global endpoint, and AWS sign-in events. For example, assume that you have two
trails, each in a different Region. If you then create a new IAM user, the CreateUser event is added to
the log files in both Regions, creating a duplicate log entry.

AWS Security Token Service (STS) is a global service with a single global endpoint at https://
sts.amazonaws.com. Calls to this endpoint are logged as calls to a global service. However, because this
endpoint is physically located in the US East (N. Virginia) Region, your logs list us-east-1 as the event
Region. CloudTrail does not write these logs to the US East (Ohio) Region unless you choose to include
global service logs in that Region. AWS STS also allows calls to Regional endpoints, such as sts.eu-
central-1.amazonaws.com. CloudTrail writes calls to all Regional endpoints to their respective
Regions. For example, calls to sts.us-east-2.amazonaws.com are published to the US East (Ohio)
Region. Calls to sts.eu-central-1.amazonaws.com are published in the Europe (Frankfurt) Region
logs.

For more information about multiple Regions and AWS STS, see Managing AWS STS in an AWS
Region (p. 356).

The following table lists the Regions and how CloudTrail logs AWS STS requests in each Region. The
"Location" column indicates which logs CloudTrail writes to. "Global" means that the event is logged
in any Region for which you choose to include global service logs in that Region. "Region" means that

367

AWS Identity and Access Management User Guide
Logging user sign-in events

the event is logged only in the Region where the endpoint is located. The last column indicates how the
request's Region is identified in the log entry.

Region name Region
identity in

CloudTrail log

Endpoint Location of
CloudTrail logs

n/a - global us-east-1 sts.amazonaws.com Global

US East (Ohio) us-east-2 sts.us-east-2.amazonaws.com Region

US East (N. Virginia) us-east-1 sts.us-east-1.amazonaws.com Region

US West (N. California) us-west-1 sts.us-west-1.amazonaws.com Region

US West (Oregon) us-west-2 sts.us-west-2.amazonaws.com Region

Canada (Central) ca-central-1 sts.ca-central-1.amazonaws.com Region

Europe (Frankfurt) eu-central-1 sts.eu-central-1.amazonaws.com Region

Europe (Ireland) eu-west-1 sts.eu-west-1.amazonaws.com Region

Europe (London) eu-west-2 sts.eu-west-2.amazonaws.com Region

Asia Pacific (Tokyo) ap-northeast-1 sts.ap-
northeast-1.amazonaws.com

Region

Asia Pacific (Seoul) ap-northeast-2 sts.ap-
northeast-2.amazonaws.com

Region

Asia Pacific (Mumbai) ap-south-1 sts.ap-south-1.amazonaws.com Region

Asia Pacific (Singapore) ap-southeast-1 sts.ap-
southeast-1.amazonaws.com

Region

Asia Pacific (Sydney) ap-southeast-2 sts.ap-
southeast-2.amazonaws.com

Region

South America (São
Paulo)

sa-east-1 sts.sa-east-1.amazonaws.com Region

When you configure CloudTrail to aggregate trail information from multiple Regions in your account
into a single Amazon S3 bucket, IAM events are duplicated in the logs. In other words, the trail for each
Region writes the same IAM event to the aggregated log. To prevent this duplication, you can include
global events selectively. A typical approach is to enable global events in one trail. Then disable global
events in all other trails that write to the same Amazon S3 bucket. That way only one set of global
events is written.

For more information, see Aggregating Logs in the AWS CloudTrail User Guide.

Logging user sign-in events
CloudTrail logs sign-in events to the AWS Management Console, the AWS discussion forums, and AWS
Marketplace. CloudTrail logs successful and failed sign-in attempts for IAM users and federated users.

To view sample CloudTrail events for successful and unsuccessful root user sign-ins, see Example event
records for root users in the AWS CloudTrail User Guide.

368

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/aggregatinglogs.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-aws-console-sign-in-events.html#cloudtrail-event-reference-aws-console-sign-in-events-root
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-aws-console-sign-in-events.html#cloudtrail-event-reference-aws-console-sign-in-events-root

AWS Identity and Access Management User Guide
Logging sign-in events for temporary credentials

As a security best practice, AWS does not log the entered IAM user name text when the sign-
in failure is caused by an incorrect user name. The user name text is masked by the value
HIDDEN_DUE_TO_SECURITY_REASONS. For an example of this, see Example sign-in failure event caused
by incorrect user name (p. 378), later in this topic. The user name text is obscured because such failures
might be caused by user errors. Logging these errors could expose potentially sensitive information. For
example:

• You accidentally type your password in the user name box.

• You choose the link for one AWS account's sign-in page, but then type the account number for a
different one.

• You forget which account you are signing in to and accidentally type the account name of your
personal email account, your bank sign-in identifier, or some other private ID.

Logging sign-in events for temporary credentials
When a principal requests temporary credentials, the principal type determines how CloudTrail logs the
event. This can be complicated when a principal assumes a role in another account. There are multiple
API calls to perform operations related to role cross-account operations. First, the principal calls an AWS
STS API to retrieve the temporary credentials. That operation is logged in the calling account and the
account where the AWS STS operation is performed. Then the principal then uses the role to perform
other API calls in the assumed role's account.

You can use the sts:SourceIdentity condition key in the role trust policy to require users to
specify an identity when they assume a role. For example, you can require that IAM users specify
their own user name as their source identity. This can help you determine which user performed a
specific action in AWS. For more information, see sts:SourceIdentity (p. 841). You can also use
sts:RoleSessionName (p. 840) to require users to specify a session name when they assume a role.
This can help you differentiate between role sessions for a role that is used by different principals when
you review AWS CloudTrail logs.

The following table shows how CloudTrail logs different information for each of the API calls that
generate temporary credentials.

Principal type STS API User identity in
CloudTrail log for
caller's account

User identity in
CloudTrail log
for the assumed
role's account

User identity in
CloudTrail log
for the role's
subsequent API
calls

AWS account root
user credentials

GetSessionToken Root user identity Role owner
account is same as
calling account

Root user identity

IAM user GetSessionToken IAM user identity Role owner
account is same as
calling account

IAM user identity

IAM user GetFederationToken IAM user identity Role owner
account is same as
calling account

IAM user identity

IAM user AssumeRole IAM user identity Account number
and principal ID
(if a user), or AWS
service principal

Role identity only
(no user)

369

AWS Identity and Access Management User Guide
Example IAM API events in CloudTrail log

Principal type STS API User identity in
CloudTrail log for
caller's account

User identity in
CloudTrail log
for the assumed
role's account

User identity in
CloudTrail log
for the role's
subsequent API
calls

Externally
authenticated user

AssumeRoleWithSAMLn/a SAML user identity Role identity only
(no user)

Externally
authenticated user

AssumeRoleWithWebIdentityn/a OIDC/Web user
identity

Role identity only
(no user)

Example IAM API events in CloudTrail log
CloudTrail log files contain events that are formatted using JSON. An API event represents a single API
request and includes information about the principal, the requested action, any parameters, and the date
and time of the action.

Example IAM API event in CloudTrail log file

The following example shows a CloudTrail log entry for a request made for the IAM GetUserPolicy
action.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::444455556666:user/JaneDoe",
 "accountId": "444455556666",
 "accessKeyId": "AKIAI44QH8DHBEXAMPLE",
 "userName": "JaneDoe",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2014-07-15T21:39:40Z"
 }
 },
 "invokedBy": "signin.amazonaws.com"
 },
 "eventTime": "2014-07-15T21:40:14Z",
 "eventSource": "iam.amazonaws.com",
 "eventName": "GetUserPolicy",
 "awsRegion": "us-east-2",
 "sourceIPAddress": "signin.amazonaws.com",
 "userAgent": "signin.amazonaws.com",
 "requestParameters": {
 "userName": "JaneDoe",
 "policyName": "ReadOnlyAccess-JaneDoe-201407151307"
 },
 "responseElements": null,
 "requestID": "9EXAMPLE-0c68-11e4-a24e-d5e16EXAMPLE",
 "eventID": "cEXAMPLE-127e-4632-980d-505a4EXAMPLE"
}

From this event information, you can determine that the request was made to get a user policy
named ReadOnlyAccess-JaneDoe-201407151307 for user JaneDoe, as specified in the
requestParameters element. You can also see that the request was made by an IAM user named

370

AWS Identity and Access Management User Guide
Example AWS STS API events in CloudTrail log

JaneDoe on July 15, 2014 at 9:40 PM (UTC). In this case, the request originated in the AWS Management
Console, as you can tell from the userAgent element.

Example AWS STS API events in CloudTrail log
CloudTrail log files contain events that are formatted using JSON. An API event represents a single API
request and includes information about the principal, the requested action, any parameters, and the date
and time of the action.

Example cross-account AWS STS API events in CloudTrail log
files
The IAM user named JohnDoe in account 777788889999 calls the AWS STS AssumeRole action to
assume the role EC2-dev in account 111122223333. The account administrator requires users to set a
source identity equal to their user name when assuming the role. The user passes in the source identity
value of JohnDoe.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDAQRSTUVWXYZEXAMPLE",
 "arn": "arn:aws:iam::777788889999:user/JohnDoe",
 "accountId": "777788889999",
 "accessKeyId": "AKIAQRSTUVWXYZEXAMPLE",
 "userName": "JohnDoe"
 },
 "eventTime": "2014-07-18T15:07:39Z",
 "eventSource": "sts.amazonaws.com",
 "eventName": "AssumeRole",
 "awsRegion": "us-east-2",
 "sourceIPAddress": "192.0.2.101",
 "userAgent": "aws-cli/1.11.10 Python/2.7.8 Linux/3.2.45-0.6.wd.865.49.315.metal1.x86_64
 botocore/1.4.67",
 "requestParameters": {
 "roleArn": "arn:aws:iam::111122223333:role/EC2-dev",
 "roleSessionName": "JohnDoe-EC2-dev",
 "sourceIdentity": "JohnDoe",
 "serialNumber": "arn:aws:iam::777788889999:mfa"
 },
 "responseElements": {
 "credentials": {
 "sessionToken": "<encoded session token blob>",
 "accessKeyId": "AKIAQRSTUVWXYZEXAMPLE",
 "expiration": "Jul 18, 2014 4:07:39 PM"
 },
 "assumedRoleUser": {
 "assumedRoleId": "AIDAQRSTUVWXYZEXAMPLE:JohnDoe-EC2-dev",
 "arn": "arn:aws:sts::111122223333:assumed-role/EC2-dev/JohnDoe-EC2-dev"
 },
 "sourceIdentity": "JohnDoe"
 },
 "resources": [
 {
 "ARN": "arn:aws:iam::111122223333:role/EC2-dev",
 "accountId": "111122223333",
 "type": "AWS::IAM::Role"
 }
],
 "requestID": "4EXAMPLE-0e8d-11e4-96e4-e55c0EXAMPLE",
 "sharedEventID": "bEXAMPLE-efea-4a70-b951-19a88EXAMPLE",

371

AWS Identity and Access Management User Guide
Example AWS STS API events in CloudTrail log

 "eventID": "dEXAMPLE-ac7f-466c-a608-4ac8dEXAMPLE",
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

The second example shows the assumed role account's (111122223333) CloudTrail log entry for the
same request.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AWSAccount",
 "principalId": "AIDAQRSTUVWXYZEXAMPLE",
 "accountId": "777788889999"
 },
 "eventTime": "2014-07-18T15:07:39Z",
 "eventSource": "sts.amazonaws.com",
 "eventName": "AssumeRole",
 "awsRegion": "us-east-2",
 "sourceIPAddress": "192.0.2.101",
 "userAgent": "aws-cli/1.11.10 Python/2.7.8 Linux/3.2.45-0.6.wd.865.49.315.metal1.x86_64
 botocore/1.4.67",
 "requestParameters": {
 "roleArn": "arn:aws:iam:: 111122223333:role/EC2-dev",
 "roleSessionName": "JohnDoe-EC2-dev",
 "sourceIdentity": "JohnDoe",
 "serialNumber": "arn:aws:iam::777788889999:mfa"
 },
 "responseElements": {
 "credentials": {
 "sessionToken": "<encoded session token blob>",
 "accessKeyId": "AKIAQRSTUVWXYZEXAMPLE",
 "expiration": "Jul 18, 2014 4:07:39 PM"
 },
 "assumedRoleUser": {
 "assumedRoleId": "AIDAQRSTUVWXYZEXAMPLE:JohnDoe-EC2-dev",
 "arn": "arn:aws:sts::111122223333:assumed-role/EC2-dev/JohnDoe-EC2-dev"
 },
 "sourceIdentity": "JohnDoe"
 },
 "requestID": "4EXAMPLE-0e8d-11e4-96e4-e55c0EXAMPLE",
 "sharedEventID": "bEXAMPLE-efea-4a70-b951-19a88EXAMPLE",
 "eventID": "dEXAMPLE-ac7f-466c-a608-4ac8dEXAMPLE"
}

Example AWS STS role chaining API event in CloudTrail log file
The following example shows a CloudTrail log entry for a request made by John Doe in account
111111111111. John previously used his JohnDoe user to assume the JohnRole1 role. For this
request, he uses the credentials from that role to assume the JohnRole2 role. This is known as role
chaining (p. 170). The source identity that he set when he assumed the JohnDoe1 role persists in the
request to assume JohnRole2. If John tries to set a different source identity when assuming the role,
the request is denied. John passes two session tags (p. 313) into the request. He sets those two tags
as transitive. The request inherits the Department tag as transitive because John set it as transitive
when he assumed JohnRole1. For more information about source identity, see Monitor and control
actions taken with assumed roles (p. 340). For more information about transitive keys in role chains,
see Chaining roles with session tags (p. 320).

{
 "eventVersion": "1.05",
 "userIdentity": {

372

AWS Identity and Access Management User Guide
Example AWS STS API events in CloudTrail log

 "type": "AssumedRole",
 "principalId": "AROAIN5ATK5U7KEXAMPLE:JohnRole1",
 "arn": "arn:aws:sts::111111111111:assumed-role/JohnDoe/JohnRole1",
 "accountId": "111111111111",
 "accessKeyId": "AKIAI44QH8DHBEXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2019-10-02T21:50:54Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROAIN5ATK5U7KEXAMPLE",
 "arn": "arn:aws:iam::111111111111:role/JohnRole1",
 "accountId": "111111111111",
 "userName": "JohnDoe"
 },
 "sourceIdentity": "JohnDoe"
 }
 },
 "eventTime": "2019-10-02T22:12:29Z",
 "eventSource": "sts.amazonaws.com",
 "eventName": "AssumeRole",
 "awsRegion": "us-east-2",
 "sourceIPAddress": "123.145.67.89",
 "userAgent": "aws-cli/1.16.248 Python/3.4.7
 Linux/4.9.184-0.1.ac.235.83.329.metal1.x86_64 botocore/1.12.239",
 "requestParameters": {
 "incomingTransitiveTags": {
 "Department": "Engineering"
 },
 "tags": [
 {
 "value": "johndoe@example.com",
 "key": "Email"
 },
 {
 "value": "12345",
 "key": "CostCenter"
 }
],
 "roleArn": "arn:aws:iam::111111111111:role/JohnRole2",
 "roleSessionName": "Role2WithTags",
 "sourceIdentity": "JohnDoe",
 "transitiveTagKeys": [
 "Email",
 "CostCenter"
],
 "durationSeconds": 3600
 },
 "responseElements": {
 "credentials": {
 "accessKeyId": "ASIAWHOJDLGPOEXAMPLE",
 "expiration": "Oct 2, 2019 11:12:29 PM",
 "sessionToken": "AgoJb3JpZ2luX2VjEB4aCXVzLXdlc3QtMSJHMEXAMPLETOKEN
+//rJb8Lo30mFc5MlhFCEbubZvEj0wHB/mDMwIgSEe9gk/Zjr09tZV7F1HDTMhmEXAMPLETOKEN/iEJ/
rkqngII9///////////
ARABGgw0MjgzMDc4NjM5NjYiDLZjZFKwP4qxQG5sFCryASO4UPz5qE97wPPH1eLMvs7CgSDBSWfonmRTCfokm2FN1+hWUdQQH6adjbbrVLFL8c3jSsBhQ383AvxpwK5YRuDE1AI/
+C+WKFZb701eiv9J5La2EXAMPLETOKEN/c7S5Iro1WUJ0q3Cxuo/8HUoSxVhQHM7zF7mWWLhXLEQ52ivL
+F6q5dpXu4aTFedpMfnJa8JtkWwG9x1Axj0Ypy2ok8v5unpQGWych1vwdvj6ez1Dm8Xg1+qIzXILiEXAMPLETOKEN/
vQGqu8H+nxp3kabcrtOvTFTvxX6vsc8OGwUfHhzAfYGEXAMPLETOKEN/
L6v1yMM3B1OwFOrQBno1HEjf1oNI8RnQiMNFdUOtwYj7HUZIOCZmjfN8PPHq77N7GJl9lzvIZKQA0Owcjg
+mc78zHCj8y0siY8C96paEXAMPLETOKEN/
E3cpksxWdgs91HRzJWScjN2+r2LTGjYhyPqcmFzzo2mCE7mBNEXAMPLETOKEN/oJy
+2o83YNW5tOiDmczgDzJZ4UKR84yGYOMfSnF4XcEJrDgAJ3OJFwmTcTQICAlSwLEXAMPLETOKEN"
 },

373

AWS Identity and Access Management User Guide
Example AWS STS API events in CloudTrail log

 "assumedRoleUser": {
 "assumedRoleId": "AROAIFR7WHDTSOYQYHFUE:Role2WithTags",
 "arn": "arn:aws:sts::111111111111:assumed-role/test-role/Role2WithTags"
 },
 "sourceIdentity": "JohnDoe"
 },
 "requestID": "b96b0e4e-e561-11e9-8b3f-7b396EXAMPLE",
 "eventID": "1917948f-3042-46ec-98e2-62865EXAMPLE",
 "resources": [
 {
 "ARN": "arn:aws:iam::111111111111:role/JohnRole2",
 "accountId": "111111111111",
 "type": "AWS::IAM::Role"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111111111111"
}

Example AWS service AWS STS API event in CloudTrail log file
The following example shows a CloudTrail log entry for a request made by an AWS service calling
another service API using permissions from a service role. It shows the CloudTrail log entry for the
request made in account 777788889999.

{
 "eventVersion": "1.04",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AIDAQRSTUVWXYZEXAMPLE:devdsk",
 "arn": "arn:aws:sts::777788889999:assumed-role/AssumeNothing/devdsk",
 "accountId": "777788889999",
 "accessKeyId": "AKIAQRSTUVWXYZEXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2016-11-14T17:25:26Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AIDAQRSTUVWXYZEXAMPLE",
 "arn": "arn:aws:iam::777788889999:role/AssumeNothing",
 "accountId": "777788889999",
 "userName": "AssumeNothing"
 }
 }
 },
 "eventTime": "2016-11-14T17:25:45Z",
 "eventSource": "s3.amazonaws.com",
 "eventName": "DeleteBucket",
 "awsRegion": "us-east-2",
 "sourceIPAddress": "192.0.2.1",
 "userAgent": "[aws-cli/1.11.10 Python/2.7.8 Linux/3.2.45-0.6.wd.865.49.315.metal1.x86_64
 botocore/1.4.67]",
 "requestParameters": {
 "bucketName": "my-test-bucket-cross-account"
 },
 "responseElements": null,
 "requestID": "EXAMPLE463D56D4C",
 "eventID": "dEXAMPLE-265a-41e0-9352-4401bEXAMPLE",
 "eventType": "AwsApiCall",
 "recipientAccountId": "777788889999"
}

374

AWS Identity and Access Management User Guide
Example AWS STS API events in CloudTrail log

Example SAML AWS STS API event in CloudTrail log file
The following example shows a CloudTrail log entry for a request made for the AWS STS
AssumeRoleWithSAML action. The request includes the SAML attributes CostCenter and Project
that are passed through the SAML assertion as session tags (p. 313). Those tags are set as transitive
so that they persist in role chaining scenarios (p. 320). The request includes the SAML attribute
sourceIdentity, which is passed in the SAML assertion. If someone uses the resulting role session
credentials to assume another role, this source identity persists.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "SAMLUser",
 "principalId": "SampleUkh1i4+ExamplexL/jEvs=:SamlExample",
 "userName": "SamlExample",
 "identityProvider": "bdGOnTesti4+ExamplexL/jEvs="
 },
 "eventTime": "2019-11-01T19:14:36Z",
 "eventSource": "sts.amazonaws.com",
 "eventName": "AssumeRoleWithSAML",
 "awsRegion": "us-east-2",
 "sourceIPAddress": "192.0.2.101",
 "userAgent": "aws-cli/1.16.263 Python/3.4.7
 Linux/4.9.184-0.1.ac.235.83.329.metal1.x86_64 botocore/1.12.253",
 "requestParameters": {
 "sAMLAssertionID": "_c0046cEXAMPLEb9d4b8eEXAMPLE2619aEXAMPLE",
 "roleSessionName": "MyAssignedRoleSessionName",
 "sourceIdentity": "MySAMLUser",
 "principalTags": {
 "CostCenter": "987654",
 "Project": "Unicorn",
 "Department": "Engineering"
 },
 "transitiveTagKeys": [
 "CostCenter",
 "Project"
],
 "durationSeconds": 3600,
 "roleArn": "arn:aws:iam::444455556666:role/SAMLTestRoleShibboleth",
 "principalArn": "arn:aws:iam::444455556666:saml-provider/Shibboleth"
 },
 "responseElements": {
 "subjectType": "transient",
 "issuer": "https://server.example.com/idp/shibboleth",
 "sourceIdentity": "MySAMLUser"
 "credentials": {
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "expiration": "Mar 23, 2016 2:39:57 AM",
 "sessionToken": "<encoded session token blob>"
 },
 "nameQualifier": "bdGOnTesti4+ExamplexL/jEvs=",
 "assumedRoleUser": {
 "assumedRoleId": "AROAD35QRSTUVWEXAMPLE:MyAssignedRoleSessionName",
 "arn": "arn:aws:sts::444455556666:assumed-role/SAMLTestRoleShibboleth/
MyAssignedRoleSessionName"
 },
 "subject": "SamlExample",
 "audience": "https://signin.aws.amazon.com/saml"
 },
 "resources": [
 {
 "ARN": "arn:aws:iam::444455556666:role/SAMLTestRoleShibboleth",
 "accountId": "444455556666",
 "type": "AWS::IAM::Role"

375

AWS Identity and Access Management User Guide
Example AWS STS API events in CloudTrail log

 },
 {
 "ARN": "arn:aws:iam::444455556666:saml-provider/test-saml-provider",
 "accountId": "444455556666",
 "type": "AWS::IAM::SAMLProvider"
 }
],
 "requestID": "6EXAMPLE-e595-11e5-b2c7-c974fEXAMPLE",
 "eventID": "dEXAMPLE-265a-41e0-9352-4401bEXAMPLE",
 "eventType": "AwsApiCall",
 "recipientAccountId": "444455556666"
}

Example web identity AWS STS API event in CloudTrail log file
The following example shows a CloudTrail log entry for a request made for the AWS STS
AssumeRoleWithWebIdentity action. The request includes the attributes CostCenter and Project
that are passed through the identity provider token as session tags (p. 313). Those tags are set as
transitive so that they persist in role chaining (p. 320). The request includes the sourceIdentity
attribute from the identity provider token. If someone uses the resulting role session credentials to
assume another role, this source identity persists.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "WebIdentityUser",
 "principalId": "accounts.google.com:<id-of-application>.apps.googleusercontent.com:<id-
of-user>",
 "userName": "<id of user>",
 "identityProvider": "accounts.google.com"
 },
 "eventTime": "2016-03-23T01:39:51Z",
 "eventSource": "sts.amazonaws.com",
 "eventName": "AssumeRoleWithWebIdentity",
 "awsRegion": "us-east-2",
 "sourceIPAddress": "192.0.2.101",
 "userAgent": "aws-cli/1.3.23 Python/2.7.6 Linux/2.6.18-164.el5",
 "requestParameters": {
 "sourceIdentity": "MyWebIdentityUser",
 "durationSeconds": 3600,
 "roleArn": "arn:aws:iam::444455556666:role/FederatedWebIdentityRole",
 "roleSessionName": "MyAssignedRoleSessionName"
 "principalTags": {
 "CostCenter": "24680",
 "Project": "Pegasus"
 },
 "transitiveTagKeys": [
 "CostCenter",
 "Project"
],
 },
 "responseElements": {
 "provider": "accounts.google.com",
 "subjectFromWebIdentityToken": "<id of user>",
 "sourceIdentity": "MyWebIdentityUser",
 "audience": "<id of application>.apps.googleusercontent.com",
 "credentials": {
 "accessKeyId": "ASIACQRSTUVWRAOEXAMPLE",
 "expiration": "Mar 23, 2016 2:39:51 AM",
 "sessionToken": "<encoded session token blob>"
 },
 "assumedRoleUser": {
 "assumedRoleId": "AROACQRSTUVWRAOEXAMPLE:MyAssignedRoleSessionName",

376

AWS Identity and Access Management User Guide
Example sign-in events in CloudTrail log

 "arn": "arn:aws:sts::444455556666:assumed-role/FederatedWebIdentityRole/
MyAssignedRoleSessionName"
 }
 },
 "resources": [
 {
 "ARN": "arn:aws:iam::444455556666:role/FederatedWebIdentityRole",
 "accountId": "444455556666",
 "type": "AWS::IAM::Role"
 }
],
 "requestID": "6EXAMPLE-e595-11e5-b2c7-c974fEXAMPLE",
 "eventID": "bEXAMPLE-0b30-4246-b28c-e3da3EXAMPLE",
 "eventType": "AwsApiCall",
 "recipientAccountId": "444455556666"
}

Example sign-in events in CloudTrail log
CloudTrail log files contain events that are formatted using JSON. A sign-in event represents a single
sign-in request and includes information about the sign-in principal, the Region, and the date and time
of the action.

Example sign-in success event in CloudTrail log file
The following example shows a CloudTrail log entry for a successful sign-in event.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn":"arn:aws:iam::111122223333:user/JohnDoe",
 "accountId": "111122223333",
 "userName": "JohnDoe"
 },
 "eventTime": "2014-07-16T15:49:27Z",
 "eventSource": "signin.amazonaws.com",
 "eventName": "ConsoleLogin",
 "awsRegion": "us-east-2",
 "sourceIPAddress": "192.0.2.110",
 "userAgent": "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:24.0) Gecko/20100101 Firefox/24.0",
 "requestParameters": null,
 "responseElements": {
 "ConsoleLogin": "Success"
 },
 "additionalEventData": {
 "MobileVersion": "No",
 "LoginTo": "https://console.aws.amazon.com/s3/",
 "MFAUsed": "No"
 },
 "eventID": "3fcfb182-98f8-4744-bd45-10a395ab61cb"
}

For more details about the information contained in CloudTrail log files, see CloudTrail Event Reference
in the AWS CloudTrail User Guide.

Example sign-in failure event in CloudTrail log file
The following example shows a CloudTrail log entry for a failed sign-in event.

377

https://console.aws.amazon.com/s3/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/eventreference.html

AWS Identity and Access Management User Guide
Example sign-in events in CloudTrail log

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn":"arn:aws:iam::111122223333:user/JaneDoe",
 "accountId": "111122223333",
 "userName": "JaneDoe"
 },
 "eventTime": "2014-07-08T17:35:27Z",
 "eventSource": "signin.amazonaws.com",
 "eventName": "ConsoleLogin",
 "awsRegion": "us-east-2",
 "sourceIPAddress": "192.0.2.100",
 "userAgent": "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:24.0) Gecko/20100101 Firefox/24.0",
 "errorMessage": "Failed authentication",
 "requestParameters": null,
 "responseElements": {
 "ConsoleLogin": "Failure"
 },
 "additionalEventData": {
 "MobileVersion": "No",
 "LoginTo": "https://console.aws.amazon.com/sns",
 "MFAUsed": "No"
 },
 "eventID": "11ea990b-4678-4bcd-8fbe-62509088b7cf"
}

From this information, you can determine that the sign-in attempt was made by an IAM user named
JaneDoe, as shown in the userIdentity element. You can also see that the sign-in attempt failed, as
shown in the responseElements element. You can see that JaneDoe tried to sign in to the Amazon
SNS console at 5:35 PM (UTC) on July 8, 2014.

Example sign-in failure event caused by incorrect user name
The following example shows a CloudTrail log entry for an unsuccessful sign-in event
caused by the user entering an incorrect user name. AWS masks the userName text with
HIDDEN_DUE_TO_SECURITY_REASONS to help prevent exposing potentially sensitive information.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "accountId": "123456789012",
 "accessKeyId": "",
 "userName": "HIDDEN_DUE_TO_SECURITY_REASONS"
 },
 "eventTime": "2015-03-31T22:20:42Z",
 "eventSource": "signin.amazonaws.com",
 "eventName": "ConsoleLogin",
 "awsRegion": "us-east-2",
 "sourceIPAddress": "192.0.2.101",
 "userAgent": "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:24.0) Gecko/20100101 Firefox/24.0",
 "errorMessage": "No username found in supplied account",
 "requestParameters": null,
 "responseElements": {
 "ConsoleLogin": "Failure"
 },
 "additionalEventData": {
 "LoginTo": "https://console.aws.amazon.com/console/home?state=hashArgs
%23&isauthcode=true",
 "MobileVersion": "No",

378

AWS Identity and Access Management User Guide
Example sign-in events in CloudTrail log

 "MFAUsed": "No"
 },
 "eventID": "a7654656-0417-45c6-9386-ea8231385051",
 "eventType": "AwsConsoleSignin",
 "recipientAccountId": "123456789012"
}

379

AWS Identity and Access Management User Guide

Access management for AWS
resources

AWS Identity and Access Management (IAM) is a web service that helps you securely control access to
AWS resources. When a principal (p. 4) makes a request in AWS, the AWS enforcement code checks
whether the principal is authenticated (signed in) and authorized (has permissions). You manage access
in AWS by creating policies and attaching them to IAM identities or AWS resources. Policies are JSON
documents in AWS that, when attached to an identity or resource, define their permissions. For more
information about policy types and uses, see Policies and permissions in IAM (p. 381).

For details about the rest of the authentication and authorization process, see Understanding how IAM
works (p. 3).

During authorization, the AWS enforcement code uses values from the request context (p. 5) to check for
matching policies and determine whether to allow or deny the request.

AWS checks each policy that applies to the context of the request. If a single policy denies the request,
AWS denies the entire request and stops evaluating policies. This is called an explicit deny. Because

380

AWS Identity and Access Management User Guide
Access management resources

requests are denied by default, IAM authorizes your request only if every part of your request is allowed
by the applicable policies. The evaluation logic (p. 784) for a request within a single account follows
these rules:

• By default, all requests are implicitly denied. (Alternatively, by default, the AWS account root user has
full access.)

• An explicit allow in an identity-based or resource-based policy overrides this default.

• If a permissions boundary, Organizations SCP, or session policy is present, it might override the allow
with an implicit deny.

• An explicit deny in any policy overrides any allows.

After your request has been authenticated and authorized, AWS approves the request. If you need
to make a request in a different account, a policy in the other account must allow you to access the
resource. In addition, the IAM entity that you use to make the request must have an identity-based policy
that allows the request.

Access management resources
For more information about permissions and about creating policies, see the following resources:

The following entries in the AWS Security Blog cover common ways to write policies for access to
Amazon S3 buckets and objects.

• Writing IAM Policies: How to Grant Access to an Amazon S3 Bucket

• Writing IAM policies: Grant Access to User-Specific Folders in an Amazon S3 Bucket

• IAM Policies and Bucket Policies and ACLs! Oh My! (Controlling Access to S3 Resources)

• A Primer on RDS Resource-Level Permissions

• Demystifying EC2 Resource-Level Permissions

Policies and permissions in IAM
You manage access in AWS by creating policies and attaching them to IAM identities (users, groups of
users, or roles) or AWS resources. A policy is an object in AWS that, when associated with an identity
or resource, defines their permissions. AWS evaluates these policies when an IAM principal (user or
role) makes a request. Permissions in the policies determine whether the request is allowed or denied.
Most policies are stored in AWS as JSON documents. AWS supports six types of policies: identity-based
policies, resource-based policies, permissions boundaries, Organizations SCPs, ACLs, and session policies.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, if a policy allows the GetUser action, then a user with that policy can get user
information from the AWS Management Console, the AWS CLI, or the AWS API. When you create an IAM
user, you can choose to allow console or programmatic access. If console access is allowed, the IAM user
can sign in to the console using a user name and password. Or if programmatic access is allowed, the
user can use access keys to work with the CLI or API.

Policy types
The following policy types, listed in order from most frequently used to less frequently used, are
available for use in AWS. For more details, see the sections below for each policy type.

381

http://aws.amazon.com/blogs/security/writing-iam-policies-how-to-grant-access-to-an-amazon-s3-bucket/
http://aws.amazon.com/blogs/security/writing-iam-policies-grant-access-to-user-specific-folders-in-an-amazon-s3-bucket/
http://aws.amazon.com/blogs/security/iam-policies-and-bucket-policies-and-acls-oh-my-controlling-access-to-s3-resources/
http://aws.amazon.com/blogs/security/a-primer-on-rds-resource-level-permissions
http://aws.amazon.com/blogs/security/demystifying-ec2-resource-level-permissions/
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetUser.html

AWS Identity and Access Management User Guide
Policy types

• Identity-based policies (p. 382) – Attach managed and inline policies to IAM identities (users, groups
to which users belong, or roles). Identity-based policies grant permissions to an identity.

• Resource-based policies (p. 382) – Attach inline policies to resources. The most common examples
of resource-based policies are Amazon S3 bucket policies and IAM role trust policies. Resource-based
policies grant permissions to the principal that is specified in the policy. Principals can be in the same
account as the resource or in other accounts.

• Permissions boundaries (p. 383) – Use a managed policy as the permissions boundary for an IAM
entity (user or role). That policy defines the maximum permissions that the identity-based policies can
grant to an entity, but does not grant permissions. Permissions boundaries do not define the maximum
permissions that a resource-based policy can grant to an entity.

• Organizations SCPs (p. 383) – Use an AWS Organizations service control policy (SCP) to define the
maximum permissions for account members of an organization or organizational unit (OU). SCPs limit
permissions that identity-based policies or resource-based policies grant to entities (users or roles)
within the account, but do not grant permissions.

• Access control lists (ACLs) (p. 383) – Use ACLs to control which principals in other accounts can
access the resource to which the ACL is attached. ACLs are similar to resource-based policies, although
they are the only policy type that does not use the JSON policy document structure. ACLs are cross-
account permissions policies that grant permissions to the specified principal. ACLs cannot grant
permissions to entities within the same account.

• Session policies (p. 383) – Pass advanced session policies when you use the AWS CLI or AWS API to
assume a role or a federated user. Session policies limit the permissions that the role or user's identity-
based policies grant to the session. Session policies limit permissions for a created session, but do not
grant permissions. For more information, see Session Policies.

Identity-based policies
Identity-based policies are JSON permissions policy documents that control what actions an identity
(users, groups of users, and roles) can perform, on which resources, and under what conditions. Identity-
based policies can be further categorized:

• Managed policies – Standalone identity-based policies that you can attach to multiple users, groups,
and roles in your AWS account. There are two types of managed policies:

• AWS managed policies – Managed policies that are created and managed by AWS.

• Customer managed policies – Managed policies that you create and manage in your AWS account.
Customer managed policies provide more precise control over your policies than AWS managed
policies.

• Inline policies – Policies that you add directly to a single user, group, or role. Inline policies maintain a
strict one-to-one relationship between a policy and an identity. They are deleted when you delete the
identity.

To learn how to choose between managed and inline policies, see Choosing between managed policies
and inline policies (p. 393).

Resource-based policies
Resource-based policies are JSON policy documents that you attach to a resource such as an Amazon
S3 bucket. These policies grant the specified principal permission to perform specific actions on that
resource and defines under what conditions this applies. Resource-based policies are inline policies. There
are no managed resource-based policies.

To enable cross-account access, you can specify an entire account or IAM entities in another account
as the principal in a resource-based policy. Adding a cross-account principal to a resource-based policy
is only half of establishing the trust relationship. When the principal and the resource are in separate

382

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session

AWS Identity and Access Management User Guide
Policy types

AWS accounts, you must also use an identity-based policy to grant the principal access to the resource.
However, if a resource-based policy grants access to a principal in the same account, no additional
identity-based policy is required. For step-by step instructions for granting cross-service access, see IAM
tutorial: Delegate access across AWS accounts using IAM roles (p. 33).

The IAM service supports only one type of resource-based policy called a role trust policy, which is
attached to an IAM role. An IAM role is both an identity and a resource that supports resource-based
policies. For that reason, you must attach both a trust policy and an identity-based policy to an IAM role.
Trust policies define which principal entities (accounts, users, roles, and federated users) can assume the
role. To learn how IAM roles are different from other resource-based policies, see How IAM roles differ
from resource-based policies (p. 293).

To see which other services support resource-based policies, see AWS services that work with
IAM (p. 725). To learn more about resource-based policies, see Identity-based policies and resource-
based policies (p. 404). To learn whether principals in accounts outside of your zone of trust (trusted
organization or account) have access to assume your roles, see What is IAM Access Analyzer?.

IAM permissions boundaries
A permissions boundary is an advanced feature in which you set the maximum permissions that an
identity-based policy can grant to an IAM entity. When you set a permissions boundary for an entity,
the entity can perform only the actions that are allowed by both its identity-based policies and its
permissions boundaries. Resource-based policies that specify the user or role as the principal are not
limited by the permissions boundary. An explicit deny in any of these policies overrides the allow. For
more information about permissions boundaries, see Permissions boundaries for IAM entities (p. 395).

Service control policies (SCPs)
AWS Organizations is a service for grouping and centrally managing the AWS accounts that your business
owns. If you enable all features in an organization, then you can apply service control policies (SCPs)
to any or all of your accounts. SCPs are JSON policies that specify the maximum permissions for an
organization or organizational unit (OU). The SCP limits permissions for entities in member accounts,
including each AWS account root user. An explicit deny in any of these policies overrides the allow.

For more information about Organizations and SCPs, see How SCPs Work in the AWS Organizations User
Guide.

Access control lists (ACLs)
Access control lists (ACLs) are service policies that allow you to control which principals in another
account can access a resource. ACLs cannot be used to control access for a principal within the same
account. ACLs are similar to resource-based policies, although they are the only policy type that does not
use the JSON policy document format. Amazon S3, AWS WAF, and Amazon VPC are examples of services
that support ACLs. To learn more about ACLs, see Access Control List (ACL) Overview in the Amazon
Simple Storage Service Developer Guide.

Session policies
Session policies are advanced policies that you pass as a parameter when you programmatically create
a temporary session for a role or federated user. The permissions for a session are the intersection of
the identity-based policies for the IAM entity (user or role) used to create the session and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these policies
overrides the allow.

You can create role session and pass session policies programmatically using the AssumeRole,
AssumeRoleWithSAML, or AssumeRoleWithWebIdentity API operations. You can pass a single JSON

383

https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html

AWS Identity and Access Management User Guide
Policy types

inline session policy document using the Policy parameter. You can use the PolicyArns parameter
to specify up to 10 managed session policies. For more information about creating a role session, see
Requesting temporary security credentials (p. 324).

When you create a federated user session, you use an IAM user's access keys to programmatically call
the GetFederationToken API operation. You must also pass session policies. The resulting session's
permissions are the intersection of the IAM user's identity-based policy and the session policy. For more
information about creating a federated user session, see GetFederationToken—federation through a
custom identity broker (p. 329).

A resource-based policy can specify the ARN of the user or role as a principal. In that case, the
permissions from the resource-based policy are added to the role or user's identity-based policy before
the session is created. The session policy limits the total permissions granted by the resource-based
policy and the identity-based policy. The resulting session's permissions are the intersection of the
session policies and the resource-based policies plus the intersection of the session policies and identity-
based policies.

A resource-based policy can specify the ARN of the session as a principal. In that case, the permissions
from the resource-based policy are added after the session is created. The resource-based policy
permissions are not limited by the session policy. The resulting session has all the permissions of the
resource-based policy plus the intersection of the identity-based policy and the session policy.

384

https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html

AWS Identity and Access Management User Guide
Policy types

A permissions boundary can set the maximum permissions for a user or role that is used to create a
session. In that case, the resulting session's permissions are the intersection of the session policy, the
permissions boundary, and the identity-based policy. However, a permissions boundary does not limit
permissions granted by a resource-based policy that specifies the ARN of the resulting session.

385

AWS Identity and Access Management User Guide
Policies and the root user

Policies and the root user
The AWS account root user is affected by some policy types but not others. You cannot attach identity-
based policies to the root user, and you cannot set the permissions boundary for the root user. However,
you can specify the root user as the principal in a resource-based policy or an ACL. A root user is still the
member of an account. If that account is a member of an organization in AWS Organizations, the root
user is affected by any SCPs for the account.

Overview of JSON policies
Most policies are stored in AWS as JSON documents. Identity-based policies and policies used to set
permissions boundaries are JSON policy documents that you attach to a user or role. Resource-based
policies are JSON policy documents that you attach to a resource. SCPs are JSON policy documents
with restricted syntax that you attach to an AWS Organizations organizational unit (OU). ACLs are also
attached to a resource, but you must use a different syntax. Session policies are JSON policies that you
provide when you assume a role or federated user session.

It is not necessary for you to understand the JSON syntax. You can use the visual editor in the AWS
Management Console to create and edit customer managed policies without ever using JSON. However,
if you use inline policies for groups or complex policies, you must still create and edit those policies in
the JSON editor using the console. For more information about using the visual editor, see Creating IAM
policies (p. 468) and Editing IAM policies (p. 495).

When you create or edit a JSON policy, IAM can perform policy validation to help you create an effective
policy. IAM identifies JSON syntax errors, while IAM Access Analyzer provides additional policy checks
with recommendations to help you further refine your policies. To learn more about policy validation, see

386

AWS Identity and Access Management User Guide
Overview of JSON policies

Validating IAM policies (p. 474). To learn more about IAM Access Analyzer policy checks and actionable
recommendations, see IAM Access Analyzer policy validation.

JSON policy document structure
As illustrated in the following figure, a JSON policy document includes these elements:

• Optional policy-wide information at the top of the document

• One or more individual statements

Each statement includes information about a single permission. If a policy includes multiple statements,
AWS applies a logical OR across the statements when evaluating them. If multiple policies apply to a
request, AWS applies a logical OR across all of those policies when evaluating them.

The information in a statement is contained within a series of elements.

• Version – Specify the version of the policy language that you want to use. As a best practice, use the
latest 2012-10-17 version.

• Statement – Use this main policy element as a container for the following elements. You can include
more than one statement in a policy.

• Sid (Optional) – Include an optional statement ID to differentiate between your statements.

• Effect – Use Allow or Deny to indicate whether the policy allows or denies access.

• Principal (Required in only some circumstances) – If you create a resource-based policy, you must
indicate the account, user, role, or federated user to which you would like to allow or deny access. If
you are creating an IAM permissions policy to attach to a user or role, you cannot include this element.
The principal is implied as that user or role.

• Action – Include a list of actions that the policy allows or denies.

• Resource (Required in only some circumstances) – If you create an IAM permissions policy, you must
specify a list of resources to which the actions apply. If you create a resource-based policy, this element
is optional. If you do not include this element, then the resource to which the action applies is the
resource to which the policy is attached.

• Condition (Optional) – Specify the circumstances under which the policy grants permission.

387

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html

AWS Identity and Access Management User Guide
Overview of JSON policies

To learn about these and other more advanced policy elements, see IAM JSON policy elements
reference (p. 744).

Multiple statements and multiple policies
If you want to define more than one permission for an entity (user or role), you can use multiple
statements in a single policy. You can also attach multiple policies. If you try to define multiple
permissions in a single statement, your policy might not grant the access that you expect. As a best
practice, break up policies by resource type.

Because of the limited size of policies (p. 719), it might be necessary to use multiple policies for more
complex permissions. It's also a good idea to create functional groupings of permissions in a separate
customer managed policy. For example, Create one policy for IAM user management, one for self-
management, and another policy for S3 bucket management. Regardless of the combination of multiple
statements and multiple policies, AWS evaluates (p. 784) your policies the same way.

For example, the following policy has three statements, each of which defines a separate set of
permissions within a single account. The statements define the following:

• The first statement, with an Sid (Statement ID) of FirstStatement, lets the user with the attached
policy change their own password. The Resource element in this statement is "*" (which means "all
resources"). But in practice, the ChangePassword API operation (or equivalent change-password CLI
command) affects only the password for the user who makes the request.

• The second statement lets the user list all the Amazon S3 buckets in their AWS account. The
Resource element in this statement is "*" (which means "all resources"). But because policies
don't grant access to resources in other accounts, the user can list only the buckets in their own AWS
account.

• The third statement lets the user list and retrieve any object that is in a bucket named
confidential-data, but only when the user is authenticated with multi-factor authentication
(MFA). The Condition element in the policy enforces the MFA authentication.

When a policy statement contains a Condition element, the statement is only in effect when the
Condition element evaluates to true. In this case, the Condition evaluates to true when the user
is MFA-authenticated. If the user is not MFA-authenticated, this Condition evaluates to false. In
that case, the third statement in this policy does not apply and the user does not have access to the
confidential-data bucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "FirstStatement",
 "Effect": "Allow",
 "Action": ["iam:ChangePassword"],
 "Resource": "*"
 },
 {
 "Sid": "SecondStatement",
 "Effect": "Allow",
 "Action": "s3:ListAllMyBuckets",
 "Resource": "*"
 },
 {
 "Sid": "ThirdStatement",
 "Effect": "Allow",
 "Action": [
 "s3:List*",
 "s3:Get*"
],

388

AWS Identity and Access Management User Guide
Managed policies and inline policies

 "Resource": [
 "arn:aws:s3:::confidential-data",
 "arn:aws:s3:::confidential-data/*"
],
 "Condition": {"Bool": {"aws:MultiFactorAuthPresent": "true"}}
 }
]
}

Examples of JSON policy syntax
The following identity-based policy allows the implied principal to list a single Amazon S3 bucket named
example_bucket:

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:::example_bucket"
 }
}

The following resource-based policy can be attached to an Amazon S3 bucket. The policy allows
members of a specific AWS account to perform any Amazon S3 actions in the bucket named mybucket.
It allows any action that can be performed on a bucket or the objects within it. (Because the policy
grants trust only to the account, individual users in the account must still be granted permissions for the
specified Amazon S3 actions.)

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "1",
 "Effect": "Allow",
 "Principal": {"AWS": ["arn:aws:iam::ACCOUNT-ID-WITHOUT-HYPHENS:root"]},
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::mybucket",
 "arn:aws:s3:::mybucket/*"
]
 }]
}

To view example policies for common scenarios, see Example IAM identity-based policies (p. 418).

Managed policies and inline policies
When you need to set the permissions for an identity in IAM, you must decide whether to use an AWS
managed policy, a customer managed policy, or an inline policy. The following sections provide more
information about each of the types of identity-based policies and when to use them.

Topics
• AWS managed policies (p. 390)
• Customer managed policies (p. 391)
• Inline policies (p. 392)
• Choosing between managed policies and inline policies (p. 393)
• Deprecated AWS managed policies (p. 394)

389

AWS Identity and Access Management User Guide
Managed policies and inline policies

AWS managed policies

An AWS managed policy is a standalone policy that is created and administered by AWS. Standalone
policy means that the policy has its own Amazon Resource Name (ARN) that includes the policy name.
For example, arn:aws:iam::aws:policy/IAMReadOnlyAccess is an AWS managed policy. For more
information about ARNs, see IAM ARNs (p. 714).

AWS managed policies are designed to provide permissions for many common use cases. Full access
AWS managed policies such as AmazonDynamoDBFullAccess and IAMFullAccess define permissions
for service administrators by granting full access to a service. Power-user AWS managed policies
such as AWSCodeCommitPowerUser and AWSKeyManagementServicePowerUser are designed for
power users. Partial-access AWS managed policies such as AmazonMobileAnalyticsWriteOnlyAccess
and AmazonEC2ReadOnlyAccess provide specific levels of access to AWS services without allowing
permissions management (p. 531) access level permissions. AWS managed policies make it easier for
you to assign appropriate permissions to users, groups, and roles than if you had to write the policies
yourself.

One particularly useful category of AWS managed policies are those designed for job functions. These
policies align closely to commonly used job functions in the IT industry. The intent is to make granting
permissions for these common job functions easy. One key advantage of using job function policies is
that they are maintained and updated by AWS as new services and API operations are introduced. For
example, the AdministratorAccess job function provides full access and permissions delegation to every
service and resource in AWS. We recommend that this policy is used only for the account administrator.
For power users that require full access to every service except limited access to IAM and Organizations,
use the PowerUserAccess job function. For a list and descriptions of the job function policies, see AWS
managed policies for job functions (p. 802).

You cannot change the permissions defined in AWS managed policies. AWS occasionally updates the
permissions defined in an AWS managed policy. When AWS does this, the update affects all principal
entities (users, groups, and roles) that the policy is attached to. AWS is most likely to update an AWS
managed policy when a new AWS service is launched or new API calls become available for existing
services. For example, the AWS managed policy called ReadOnlyAccess provides read-only access to all
AWS services and resources. When AWS launches a new service, AWS updates the ReadOnlyAccess policy
to add read-only permissions for the new service. The updated permissions are applied to all principal
entities that the policy is attached to.

The following diagram illustrates AWS managed policies. The diagram shows three AWS managed
policies: AdministratorAccess, PowerUserAccess, and AWSCloudTrailReadOnlyAccess. Notice that
a single AWS managed policy can be attached to principal entities in different AWS accounts, and to
different principal entities in a single AWS account.

390

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonDynamoDBFullAccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/IAMFullAccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AWSCodeCommitPowerUser
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AWSKeyManagementServicePowerUser
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonMobileAnalyticsWriteOnlyAccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonEC2ReadOnlyAccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AdministratorAccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/PowerUserAccess

AWS Identity and Access Management User Guide
Managed policies and inline policies

Customer managed policies

You can create standalone policies that you administer in your own AWS account, which we refer to as
customer managed policies. You can then attach the policies to multiple principal entities in your AWS
account. When you attach a policy to a principal entity, you give the entity the permissions that are
defined in the policy.

A great way to create a customer managed policy is to start by copying an existing AWS managed policy.
That way you know that the policy is correct at the beginning and all you need to do is customize it to
your environment.

The following diagram illustrates customer managed policies. Each policy is an entity in IAM with its
own Amazon Resource Name (ARN) (p. 714) that includes the policy name. Notice that the same policy
can be attached to multiple principal entities—for example, the same DynamoDB-books-app policy is
attached to two different IAM roles.

391

AWS Identity and Access Management User Guide
Managed policies and inline policies

Inline policies

An inline policy is a policy that's embedded in an IAM identity (a user, group, or role). That is, the policy
is an inherent part of the identity. You can create a policy and embed it in an identity, either when you
create the identity or later.

The following diagram illustrates inline policies. Each policy is an inherent part of the user, group, or
role. Notice that two roles include the same policy (the DynamoDB-books-app policy), but they are not
sharing a single policy; each role has its own copy of the policy.

392

AWS Identity and Access Management User Guide
Managed policies and inline policies

Choosing between managed policies and inline policies

The different types of policies are for different use cases. In most cases, we recommend that you use
managed policies instead of inline policies.

Managed policies provide the following features:

393

AWS Identity and Access Management User Guide
Managed policies and inline policies

Reusability

A single managed policy can be attached to multiple principal entities (users, groups, and roles).
In effect, you can create a library of policies that define permissions that are useful for your AWS
account, and then attach these policies to principal entities as needed.

Central change management

When you change a managed policy, the change is applied to all principal entities that the policy
is attached to. For example, if you want to add permission for a new AWS API, you can update the
managed policy to add the permission. (If you're using an AWS managed policy, AWS updates to the
policy.) When the policy is updated, the changes are applied to all principal entities that the policy
is attached to. In contrast, to change an inline policy you must individually edit each identity that
contains the policy. For example, if a group and a role both contain the same inline policy, you must
individually edit both principal entities in order to change that policy.

Versioning and rolling back

When you change a customer managed policy, the changed policy doesn't overwrite the existing
policy. Instead, IAM creates a new version of the managed policy. IAM stores up to five versions of
your customer managed policies. You can use policy versions to revert a policy to an earlier version if
you need to.

A policy version is different from a Version policy element. The Version policy element is used
within a policy and defines the version of the policy language. To learn more about policy versions,
see the section called “Versioning IAM policies” (p. 492). To learn more about the Version policy
element see IAM JSON policy elements: Version (p. 745).

Delegating permissions management

You can allow users in your AWS account to attach and detach policies while maintaining control
over the permissions defined in those policies. In effect, you can designate some users as full
administrators—that is, administrators that can create, update, and delete policies. You can then
designate other users as limited administrators. That is, administrators that can attach policies to
other principal entities, but only the policies that you have allowed them to attach.

For more information about delegating permissions management, see Controlling access to
policies (p. 410).

Automatic updates for AWS managed policies

AWS maintains AWS managed policies and updates them when necessary (for example, to
add permissions for new AWS services), without you having to make changes. The updates are
automatically applied to the principal entities that you have attached the AWS managed policy to.

Using inline policies

Inline policies are useful if you want to maintain a strict one-to-one relationship between a policy and
the identity that it's applied to. For example, you want to be sure that the permissions in a policy are
not inadvertently assigned to an identity other than the one they're intended for. When you use an
inline policy, the permissions in the policy cannot be inadvertently attached to the wrong identity. In
addition, when you use the AWS Management Console to delete that identity, the policies embedded in
the identity are deleted as well. That's because they are part of the principal entity.

Deprecated AWS managed policies
To simplify the assignment of permissions, AWS provides managed policies (p. 389)—predefined
policies that are ready to be attached to your IAM users, groups, and roles.

Sometimes AWS needs to add a new permission to an existing policy, such as when a new service is
introduced. Adding a new permission to an existing policy does not disrupt or remove any feature or
ability.

394

AWS Identity and Access Management User Guide
Permissions boundaries

However, AWS might choose to create a new policy when the needed changes could impact customers if
they were applied to an existing policy. For example, removing permissions from an existing policy could
break the permissions of any IAM entity or application that depended upon it, potentially disrupting a
critical operation.

Therefore, when such a change is required, AWS creates a completely new policy with the required
changes and makes it available to customers. The old policy is then marked deprecated. A deprecated
managed policy appears with a warning icon next to it in the Policies list in the IAM console.

A deprecated policy has the following characteristics:

• It continues to work for all currently attached users, groups, and roles. Nothing breaks.
• It cannot be attached to any new users, groups, or roles. If you detach it from a current entity, you

cannot reattach it.
• After you detach it from all current entities, it is no longer visible and can no longer be used in any

way.

If any user, group, or role requires the policy, you must instead attach the new policy. When you receive
notice that a policy is deprecated, we recommend that you immediately plan to attach all users, groups,
and roles to the replacement policy and detach them from the deprecated policy. Continuing to use the
deprecated policy can carry risks that are mitigated only by switching to the replacement policy.

Permissions boundaries for IAM entities
AWS supports permissions boundaries for IAM entities (users or roles). A permissions boundary is an
advanced feature for using a managed policy to set the maximum permissions that an identity-based
policy can grant to an IAM entity. An entity's permissions boundary allows it to perform only the actions
that are allowed by both its identity-based policies and its permissions boundaries.

For more information about policy types, see Policy types (p. 381).

You can use an AWS managed policy or a customer managed policy to set the boundary for an IAM entity
(user or role). That policy limits the maximum permissions for the user or role.

For example, assume that the IAM user named ShirleyRodriguez should be allowed to manage only
Amazon S3, Amazon CloudWatch, and Amazon EC2. To enforce this rule, you can use the following policy
to set the permissions boundary for the ShirleyRodriguez user:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:*",
 "cloudwatch:*",
 "ec2:*"
],
 "Resource": "*"
 }
]
}

When you use a policy to set the permissions boundary for a user, it limits the user's permissions but
does not provide permissions on its own. In this example, the policy sets the maximum permissions of
ShirleyRodriguez as all operations in Amazon S3, CloudWatch, and Amazon EC2. Shirley can never
perform operations in any other service, including IAM, even if she has a permissions policy that allows it.
For example, you can add the following policy to the ShirleyRodriguez user:

395

AWS Identity and Access Management User Guide
Permissions boundaries

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "iam:CreateUser",
 "Resource": "*"
 }
}

This policy allows creating a user in IAM. If you attach this permissions policy to the ShirleyRodriguez
user, and Shirley tries to create a user, the operation fails. It fails because the permissions boundary does
not allow the iam:CreateUser operation. Given these two policies, Shirley does not have permission
to perform any operations in AWS. You must add a different permissions policy to allow actions in other
services, such as Amazon S3. Alternatively, you could update the permissions boundary to allow her to
create a user in IAM.

Evaluating effective permissions with boundaries
The permissions boundary for an IAM entity (user or role) sets the maximum permissions that the entity
can have. This can change the effective permissions for that user or role. The effective permissions for
an entity are the permissions that are granted by all the policies that affect the user or role. Within
an account, the permissions for an entity can be affected by identity-based policies, resource-based
policies, permissions boundaries, Organizations SCPs, or session policies. For more information about the
different types of policies, see Policies and permissions in IAM (p. 381).

If any one of these policy types explicitly denies access for an operation, then the request is denied.
The permissions granted to an entity by multiple permissions types are more complex. For more details
about how AWS evaluates policies, see Policy evaluation logic (p. 784).

Identity-based policies with boundaries – Identity-based policies are inline or managed policies that
are attached to a user, group of users, or role. Identity-based policies grant permission to the entity, and
permissions boundaries limit those permissions. The effective permissions are the intersection of both
policy types. An explicit deny in either of these policies overrides the allow.

Resource-based policies – Resource-based policies control how the specified principal can access the
resource to which the policy is attached.

Resource-based policies for IAM users

Within an account, an implicit deny in a permissions boundary does not limit the permissions
granted to an IAM user by a resource-based policy. Permissions boundaries reduce permissions that

396

AWS Identity and Access Management User Guide
Permissions boundaries

are granted to a user by identity-based policies. Resource-based policies can provide additional
permissions to the user.

Resource-based policies for IAM roles and federated users

Within an account, an implicit deny in a permissions boundary does limit the permissions granted
to the ARN of the underlying IAM role or IAM user by the resource-based policy. However, if the
resource-based policy grants permissions directly to the session principal (the assumed-role ARN or
federated user ARN), an implicit deny in the permissions boundary does not limit those permissions.
For more information about effective permissions for assumed-role sessions or federated user
sessions, see Session policies.

Organizations SCPs – SCPs are applied to an entire AWS account. They limit permissions for every
request made by a principal within the account. An IAM entity (user or role) can make a request that is
affected by an SCP, a permissions boundary, and an identity-based policy. In this case, the request is
allowed only if all three policy types allow it. The effective permissions are the intersection of all three
policy types. An explicit deny in any of these policies overrides the allow.

397

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session

AWS Identity and Access Management User Guide
Permissions boundaries

You can learn whether your account is a member of an organization in AWS Organizations. Organization
members might be affected by an SCP. To view this data using the AWS CLI command or AWS API
operation, you must have permissions for the organizations:DescribeOrganization action
for your Organizations entity. You must have additional permissions to perform the operation in the
Organizations console. To learn whether an SCP is denying access to a specific request, or to change your
effective permissions, contact your AWS Organizations administrator.

Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The permissions for a session
come from the IAM entity (user or role) used to create the session and from the session policy. The
entity's identity-based policy permissions are limited by the session policy and the permissions boundary.
The effective permissions for this set of policy types are the intersection of all three policy types. An
explicit deny in any of these policies overrides the allow. For more information about session policies, see
Session Policies.

398

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_org_details.html#orgs_view_account
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session

AWS Identity and Access Management User Guide
Permissions boundaries

Delegating responsibility to others using permissions
boundaries
You can use permissions boundaries to delegate permissions management tasks, such as user creation, to
IAM users in your account. This permits others to perform tasks on your behalf within a specific boundary
of permissions.

For example, assume that María is the administrator of the X-Company AWS account. She wants to
delegate user creation duties to Zhang. However, she must ensure that Zhang creates users that adhere
to the following company rules:

• Users cannot use IAM to create or manage users, groups, roles, or policies.
• Users are denied access to the Amazon S3 logs bucket and cannot access the
i-1234567890abcdef0 Amazon EC2 instance.

• Users cannot remove their own boundary policies.

To enforce these rules, María completes the following tasks, for which details are included below:

1. María creates the XCompanyBoundaries managed policy to use as a permissions boundary for all
new users in the account.

2. María creates the DelegatedUserBoundary managed policy and assigns it as the permissions
boundary for Zhang. Maria makes a note of her admin IAM user's ARN and uses it in the policy to
prevent Zhang from accessing it.

3. María creates the DelegatedUserPermissions managed policy and attaches it as a permissions
policy for Zhang.

399

AWS Identity and Access Management User Guide
Permissions boundaries

4. María tells Zhang about his new responsibilities and limitations.

Task 1: María must first create a managed policy to define the boundary for the new users. María will
allow Zhang to give users the permissions policies they need, but she wants those users to be restricted.
To do this, she creates the following customer managed policy with the name XCompanyBoundaries.
This policy does the following:

• Allows users full access to several services

• Allows limited self-managing access in the IAM console. This means they can change their
password after signing into the console. They can't set their initial password. To allow this, add the
"*LoginProfile" action to the AllowManageOwnPasswordAndAccessKeys statement.

• Denies users access to the Amazon S3 logs bucket or the i-1234567890abcdef0 Amazon EC2
instance

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ServiceBoundaries",
 "Effect": "Allow",
 "Action": [
 "s3:*",
 "cloudwatch:*",
 "ec2:*",
 "dynamodb:*"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowIAMConsoleForCredentials",
 "Effect": "Allow",
 "Action": [
 "iam:ListUsers",
 "iam:GetAccountPasswordPolicy"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowManageOwnPasswordAndAccessKeys",
 "Effect": "Allow",
 "Action": [
 "iam:*AccessKey*",
 "iam:ChangePassword",
 "iam:GetUser",
 "iam:*ServiceSpecificCredential*",
 "iam:*SigningCertificate*"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "DenyS3Logs",
 "Effect": "Deny",
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::logs",
 "arn:aws:s3:::logs/*"
]
 },
 {
 "Sid": "DenyEC2Production",
 "Effect": "Deny",

400

AWS Identity and Access Management User Guide
Permissions boundaries

 "Action": "ec2:*",
 "Resource": "arn:aws:ec2:*:*:instance/i-1234567890abcdef0"
 }
]
}

Each statement serves a different purpose:

1. The ServiceBoundaries statement of this policy allows full access to the specified AWS services.
This means that a new user's actions in these services are limited only by the permissions policies that
are attached to the user.

2. The AllowIAMConsoleForCredentials statement allows access to list all IAM users. This access
is necessary to navigate the Users page in the AWS Management Console. It also allows viewing the
password requirements for the account, which is necessary when changing your own password.

3. The AllowManageOwnPasswordAndAccessKeys statement allows the users manage only their own
console password and programmatic access keys. This is important if Zhang or another administrator
gives a new user a permissions policy with full IAM access. In that case, that user could then change
their own or other users' permissions. This statement prevents that from happening.

4. The DenyS3Logs statement explicitly denies access to the logs bucket.
5. The DenyEC2Production statement explicitly denies access to the i-1234567890abcdef0

instance.

Task 2: María wants to allow Zhang to create all X-Company users, but only with the
XCompanyBoundaries permissions boundary. She creates the following customer managed policy
named DelegatedUserBoundary. This policy defines the maximum permissions that Zhang can have.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CreateOrChangeOnlyWithBoundary",
 "Effect": "Allow",
 "Action": [
 "iam:CreateUser",
 "iam:DeleteUserPolicy",
 "iam:AttachUserPolicy",
 "iam:DetachUserPolicy",
 "iam:PutUserPermissionsBoundary",
 "iam:PutUserPolicy"
],
 "Resource": "*",
 "Condition": {"StringEquals":
 {"iam:PermissionsBoundary": "arn:aws:iam::123456789012:policy/
XCompanyBoundaries"}}
 },
 {
 "Sid": "CloudWatchAndOtherIAMTasks",
 "Effect": "Allow",
 "Action": [
 "cloudwatch:*",
 "iam:GetUser",
 "iam:ListUsers",
 "iam:DeleteUser",
 "iam:UpdateUser",
 "iam:CreateAccessKey",
 "iam:CreateLoginProfile",
 "iam:GetAccountPasswordPolicy",
 "iam:GetLoginProfile",
 "iam:ListGroups",
 "iam:ListGroupsForUser",

401

AWS Identity and Access Management User Guide
Permissions boundaries

 "iam:CreateGroup",
 "iam:GetGroup",
 "iam:DeleteGroup",
 "iam:UpdateGroup",
 "iam:CreatePolicy",
 "iam:DeletePolicy",
 "iam:DeletePolicyVersion",
 "iam:GetPolicy",
 "iam:GetPolicyVersion",
 "iam:GetUserPolicy",
 "iam:GetRolePolicy",
 "iam:ListPolicies",
 "iam:ListPolicyVersions",
 "iam:ListEntitiesForPolicy",
 "iam:ListUserPolicies",
 "iam:ListAttachedUserPolicies",
 "iam:ListRolePolicies",
 "iam:ListAttachedRolePolicies",
 "iam:SetDefaultPolicyVersion",
 "iam:SimulatePrincipalPolicy",
 "iam:SimulateCustomPolicy"
],
 "NotResource": "arn:aws:iam::123456789012:user/Maria"
 },
 {
 "Sid": "NoBoundaryPolicyEdit",
 "Effect": "Deny",
 "Action": [
 "iam:CreatePolicyVersion",
 "iam:DeletePolicy",
 "iam:DeletePolicyVersion",
 "iam:SetDefaultPolicyVersion"
],
 "Resource": [
 "arn:aws:iam::123456789012:policy/XCompanyBoundaries",
 "arn:aws:iam::123456789012:policy/DelegatedUserBoundary"
]
 },
 {
 "Sid": "NoBoundaryUserDelete",
 "Effect": "Deny",
 "Action": "iam:DeleteUserPermissionsBoundary",
 "Resource": "*"
 }
]
}

Each statement serves a different purpose:

1. The CreateOrChangeOnlyWithBoundary statement allows Zhang to create IAM users but only if he
uses the XCompanyBoundaries policy to set the permissions boundary. This statement also allows
him to set the permissions boundary for existing users but only using that same policy. Finally, this
statement allows Zhang to manage permissions policies for users with this permissions boundary set.

2. The CloudWatchAndOtherIAMTasks statement allows Zhang to complete other user, group, and
policy management tasks. He has permissions to reset passwords and create access keys for any IAM
user not listed in the condition key. This allows him to help users with sign-in issues.

3. The NoBoundaryPolicyEdit statement denies Zhang access to update the XCompanyBoundaries
policy. He is not allowed to change any policy that is used to set the permissions boundary for himself
or other users.

4. The NoBoundaryUserDelete statement denies Zhang access to delete the permissions boundary for
himself or other users.

402

AWS Identity and Access Management User Guide
Permissions boundaries

María then assigns the DelegatedUserBoundary policy as the permissions boundary (p. 89) for the
Zhang user.

Task 3: Because the permissions boundary limits the maximum permissions, but does not grant access
on its own, Maria must create a permissions policy for Zhang. She creates the following policy named
DelegatedUserPermissions. This policy defines the operations that Zhang can perform, within the
defined boundary.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "IAM",
 "Effect": "Allow",
 "Action": "iam:*",
 "Resource": "*"
 },
 {
 "Sid": "CloudWatchLimited",
 "Effect": "Allow",
 "Action": [
 "cloudwatch:GetDashboard",
 "cloudwatch:GetMetricData",
 "cloudwatch:ListDashboards",
 "cloudwatch:GetMetricStatistics",
 "cloudwatch:ListMetrics"
],
 "Resource": "*"
 },
 {
 "Sid": "S3BucketContents",
 "Effect": "Allow",
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:::ZhangBucket"
 }
]
}

Each statement serves a different purpose:

1. The IAM statement of the policy allows Zhang full access to IAM. However, because his permissions
boundary allows only some IAM operations, his effective IAM permissions are limited only by his
permissions boundary.

2. The CloudWatchLimited statement allows Zhang to perform five actions in CloudWatch. His
permissions boundary allows all actions in CloudWatch, so his effective CloudWatch permissions are
limited only by his permissions policy.

3. The S3BucketContents statement allows Zhang to list the ZhangBucket Amazon S3 bucket.
However, his permissions boundary does not allow any Amazon S3 action, so he cannot perform any
S3 operations, regardless of his permissions policy.

Note
Zhang's policies allow him to create a user that can then access Amazon S3 resources that he
can't access. By delegating these administrative actions, Maria effectively trusts Zhang with
access to Amazon S3.

María then attaches the DelegatedUserPermissions policy as the permissions policy for the Zhang
user.

403

AWS Identity and Access Management User Guide
Identity vs resource

Task 4: She gives Zhang instructions to create a new user. She tells him that he can create new users
with any permissions that they need, but he must assign them the XCompanyBoundaries policy as a
permissions boundary.

Zhang completes the following tasks:

1. Zhang creates a user (p. 76) with the AWS Management Console. He types the user name Nikhil
and enables console access for the user. He clears the checkbox next to Requires password reset,
because the policies above allow users to change their passwords only after they are signed in to the
IAM console.

2. On the Set permissions page, Zhang chooses the IAMFullAccess and AmazonS3ReadOnlyAccess
permissions policies that allow Nikhil to do his work.

3. Zhang skips the Set permissions boundary section, forgetting María's instructions.
4. Zhang reviews the user details and chooses Create user.

The operation fails and access is denied. Zhang's DelegatedUserBoundary permissions boundary
requires that any user he creates have the XCompanyBoundaries policy used as a permissions
boundary.

5. Zhang returns to the previous page. In the Set permissions boundary section, he chooses the
XCompanyBoundaries policy.

6. Zhang reviews the user details and chooses Create user.

The user is created.

When Nikhil signs in, he has access to IAM and Amazon S3, except those operations that are denied by
the permissions boundary. For example, he can change his own password in IAM but can't create another
user or edit his policies. Nikhil has read-only access to Amazon S3.

If someone adds a resource-based policy to the logs bucket that allows Nikhil to put an object in the
bucket, he still cannot access the bucket. The reason is that any actions on the logs bucket are explicitly
denied by his permissions boundary. An explicit deny in any policy type results in a request being denied.
However, if a resource-based policy attached to a Secrets Manager secret allows Nikhil to perform the
secretsmanager:GetSecretValue action, then Nikhil can retrieve and decrypt the secret. The reason
is that Secrets Manager operations are not explicitly denied by his permissions boundary, and implicit
denies in permissions boundaries do not limit resource-based policies.

Identity-based policies and resource-based policies
A policy is an object in AWS that, when associated with an identity or resource, defines their permissions.
When you create a permissions policy to restrict access to a resource, you can choose an identity-based
policy or a resource-based policy.

Identity-based policies are attached to an IAM user, group, or role. These policies let you specify what
that identity can do (its permissions). For example, you can attach the policy to the IAM user named
John, stating that he is allowed to perform the Amazon EC2 RunInstances action. The policy could
further state that John is allowed to get items from an Amazon DynamoDB table named MyCompany.
You can also allow John to manage his own IAM security credentials. Identity-based policies can be
managed or inline (p. 389).

Resource-based policies are attached to a resource. For example, you can attach resource-based
policies to Amazon S3 buckets, Amazon SQS queues, VPC endpoints, and AWS Key Management Service
encryption keys. For a list of services that support resource-based policies, see AWS services that work
with IAM (p. 725).

With resource-based policies, you can specify who has access to the resource and what actions they can
perform on it. To learn whether principals in accounts outside of your zone of trust (trusted organization

404

AWS Identity and Access Management User Guide
Identity vs resource

or account) have access to assume your roles, see What is IAM Access Analyzer?. Resource-based policies
are inline only, not managed.

Note
Resource-based policies differ from resource-level permissions. You can attach resource-based
policies directly to a resource, as described in this topic. Resource-level permissions refer to the
ability to use ARNs (p. 714) to specify individual resources in a policy. Resource-based policies
are supported only by some AWS services. For a list of which services support resource-based
policies and resource-level permissions, see AWS services that work with IAM (p. 725).

To learn how identity-based policies and resource-based policies interact within the same account, see
Evaluating policies within a single account (p. 785).

To learn how the policies interact across accounts, see Cross-account policy evaluation logic (p. 792).

To better understand these concepts, view the following figure. The administrator of the 123456789012
account attached identity-based policies to the JohnSmith, CarlosSalazar, and MaryMajor users.
Some of the actions in these policies can be performed on specific resources. For example, the user
JohnSmith can perform some actions on Resource X. This is a resource-level permission in an identity-
based policy. The administrator also added resource-based policies to Resource X, Resource Y, and
Resource Z. Resource-based policies allow you to specify who can access that resource. For example,
the resource-based policy on Resource X allows the JohnSmith and MaryMajor users list and read
access to the resource.

405

https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html

AWS Identity and Access Management User Guide
Controlling access using policies

The 123456789012 account example allows the following users to perform the listed actions:

• JohnSmith – John can perform list and read actions on Resource X. He is granted this permission by
the identity-based policy on his user and the resource-based policy on Resource X.

• CarlosSalazar – Carlos can perform list, read, and write actions on Resource Y, but is denied access
to Resource Z. The identity-based policy on Carlos allows him to perform list and read actions on
Resource Y. The Resource Y resource-based policy also allows him write permissions. However,
although his identity-based policy allows him access to Resource Z, the Resource Z resource-
based policy denies that access. An explicit Deny overrides an Allow and his access to Resource Z is
denied. For more information, see Policy evaluation logic (p. 784).

• MaryMajor – Mary can perform list, read, and write operations on Resource X, Resource Y, and
Resource Z. Her identity-based policy allows her more actions on more resources than the resource-
based policies, but none of them deny access.

• ZhangWei – Zhang has full access to Resource Z. Zhang has no identity-based policies, but the
Resource Z resource-based policy allows him full access to the resource. Zhang can also perform list
and read actions on Resource Y.

Identity-based policies and resource-based policies are both permissions policies and are evaluated
together. For a request to which only permissions policies apply, AWS first checks all policies for a
Deny. If one exists, then the request is denied. Then AWS checks for each Allow. If at least one policy
statement allows the action in the request, the request is allowed. It doesn't matter whether the Allow
is in the identity-based policy or the resource-based policy.

Important
This logic applies only when the request is made within a single AWS account. For requests
made from one account to another, the requester in Account A must have an identity-based
policy that allows them to make a request to the resource in Account B. Also, the resource-
based policy in Account B must allow the requester in Account A to access the resource.
There must be policies in both accounts that allow the operation, otherwise the request fails.
For more information about using resource-based policies for cross-account access, see How IAM
roles differ from resource-based policies (p. 293).

A user who has specific permissions might request a resource that also has a permissions policy attached
to it. In that case, AWS evaluates both sets of permissions when determining whether to grant access to
the resource. For information about how policies are evaluated, see Policy evaluation logic (p. 784).

Note
Amazon S3 supports identity-based policies and resource-based policies (referred to as bucket
policies). In addition, Amazon S3 supports a permission mechanism known as an access control
list (ACL) that is independent of IAM policies and permissions. You can use IAM policies in
combination with Amazon S3 ACLs. For more information, see Access Control in the Amazon
Simple Storage Service Developer Guide.

Controlling access to AWS resources using policies
You can use a policy to control access to resources within IAM or all of AWS.

To use a policy (p. 381) to control access in AWS, you must understand how AWS grants access. AWS
is composed of collections of resources. An IAM user is a resource. An Amazon S3 bucket is a resource.
When you use the AWS API, the AWS CLI, or the AWS Management Console to perform an operation
(such as creating a user), you send a request for that operation. Your request specifies an action, a
resource, a principal entity (user or role), a principal account, and any necessary request information. All
of this information provides context.

AWS then checks that you (the principal) are authenticated (signed in) and authorized (have permission)
to perform the specified action on the specified resource. During authorization, AWS checks all
the policies that apply to the context of your request. Most policies are stored in AWS as JSON

406

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingAuthAccess.html

AWS Identity and Access Management User Guide
Controlling access using policies

documents (p. 386) and specify the permissions for principal entities. For more information about
policy types and uses, see Policies and permissions in IAM (p. 381).

AWS authorizes the request only if each part of your request is allowed by the policies. To view a diagram
of this process, see Understanding how IAM works (p. 3). For details about how AWS determines whether
a request is allowed, see Policy evaluation logic (p. 784).

When you create an IAM policy, you can control access to the following:

• Principals (p. 407) – Control what the person making the request (the principal (p. 4)) is allowed to
do.

• IAM Identities (p. 408) – Control which IAM identities (user groups, users, and roles) can be accessed
and how.

• IAM Policies (p. 410) – Control who can create, edit, and delete customer managed policies, and who
can attach and detach all managed policies.

• AWS Resources (p. 413) – Control who has access to resources using an identity-based policy or a
resource-based policy.

• AWS Accounts (p. 414) – Control whether a request is allowed only for members of a specific
account.

Policies let you specify who has access to AWS resources, and what actions they can perform on those
resources. Every IAM user starts with no permissions. In other words, by default, users can do nothing,
not even view their own access keys. To give a user permission to do something, you can add the
permission to the user (that is, attach a policy to the user). Or you can add the user to a user group that
has the intended permission.

For example, you might grant a user permission to list his or her own access keys. You might also expand
that permission and also let each user create, update, and delete their own keys.

When you give permissions to a user group, all users in that user group get those permissions. For
example, you can give the Administrators user group permission to perform any of the IAM actions on
any of the AWS account resources. Another example: You can give the Managers user group permission
to describe the AWS account's Amazon EC2 instances.

For information about how to delegate basic permissions to your users, user groups, and roles, see
Permissions required to access IAM resources (p. 546). For additional examples of policies that illustrate
basic permissions, see Example policies for administering IAM resources (p. 550).

Controlling access for principals
You can use policies to control what the person making the request (the principal) is allowed to do. To do
this, you must attach an identity-based policy to that person's identity (user, user group, or role). You can
also use a permissions boundary (p. 395) to set the maximum permissions that an entity (user or role)
can have.

For example, assume that you want the user Zhang Wei to have full access to CloudWatch, Amazon
DynamoDB, Amazon EC2, and Amazon S3. You can create two different policies so that you can
later break them up if you need one set of permissions for a different user. Or you can put both the
permissions together in a single policy, and then attach that policy to the IAM user that is named Zhang
Wei. You could also attach a policy to a user group to which Zhang belongs, or a role that Zhang can
assume. As a result, when Zhang views the contents of an S3 bucket, his requests are allowed. If he tries
to create a new IAM user, his request is denied because he doesn't have permission.

You can use a permissions boundary on Zhang to make sure that he is never given access to the
CompanyConfidential S3 bucket. To do this, determine the maximum permissions that you want
Zhang to have. In this case, you control what he does using his permissions policies. Here, you only
care that he doesn't access the confidential bucket. So you use the following policy to define Zhang's

407

AWS Identity and Access Management User Guide
Controlling access using policies

boundary to allow all AWS actions for Amazon S3 and a few other services but deny access to the
CompanyConfidential S3 bucket. Because the permissions boundary does not allow any IAM actions,
it prevents Zhang from deleting his (or anyone's) boundary.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "SomeServices",
 "Effect": "Allow",
 "Action": [
 "cloudwatch:*",
 "dynamodb:*",
 "ec2:*",
 "s3:*"
],
 "Resource": "*"
 },
 {
 "Sid": "NoConfidentialBucket",
 "Effect": "Deny",
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::CompanyConfidential/*",
 "arn:aws:s3:::CompanyConfidential"
]
 }
]
}

When you assign a policy like this as a permissions boundary for a user, remember that it does not
grant any permissions. It sets the maximum permissions that an identity-based policy can grant to an
IAM entity. For more information about permissions boundaries, see Permissions boundaries for IAM
entities (p. 395).

For detailed information about the procedures mentioned previously, refer to these resources:

• To learn more about creating an IAM policy that you can attach to a principal, see Creating IAM
policies (p. 468).

• To learn how to attach an IAM policy to a principal, see Adding and removing IAM identity
permissions (p. 484).

• To see an example policy for granting full access to EC2, see Amazon EC2: Allows full EC2 access within
a specific Region, programmatically and in the console (p. 441).

• To allow read-only access to an S3 bucket, use the first two statements of the following example
policy: Amazon S3: Allows read and write access to objects in an S3 Bucket, programmatically and in
the console (p. 467).

• To see an example policy for allowing users to set or rotate their credentials, such as their console
password, their programmatic access keys, and their MFA devices, see AWS: Allows MFA-authenticated
IAM users to manage their own credentials on the My Security Credentials page (p. 422).

Controlling access to identities
You can use IAM policies to control what your users can do to an identity by creating a policy that you
attach to all users through a user group. To do this, create a policy that limits what can be done to an
identity, or who can access it.

For example, you can create a user group named AllUsers, and then attach that user group to all users.
When you create the user group, you might give all your users access to rotate their credentials as

408

AWS Identity and Access Management User Guide
Controlling access using policies

described in the previous section. You can then create a policy that denies access to change the user
group unless the user name is included in the condition of the policy. But that part of the policy only
denies access to anyone except those users listed. You also have to include permissions to allow all the
user group management actions for everyone in the user group. Finally, you attach this policy to the user
group so that it is applied to all users. As a result, when a user not specified in the policy tries to make
changes to the user group, the request is denied.

To create this policy with the visual editor

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Policies.

If this is your first time choosing Policies, the Welcome to Managed Policies page appears. Choose
Get Started.

3. Choose Create policy.

4. On the Visual editor tab, choose Choose a service to get started. Then choose IAM.

5. Choose Select actions and then type group in the search box. The visual editor shows all the IAM
actions that contain the word group. Select all of the check boxes.

6. Choose Resources to specify resources for your policy. Based on the actions you chose, you should
see group, group-path, and user resource types.

• group – Choose Add ARN. For Resource, select the check box next to Any. For Group Name With
Path, type the user group name AllUsers. Then choose Add.

• group-path – Select the check box next to Any.

• user – Select the check box next to Any.

One of the actions that you chose, ListGroups, does not support using specific resources. You
do not have to choose All resources for that action. When you save your policy or view the policy
on the JSON tab, you can see that IAM automatically creates a new permission block granting this
action permission on all resources.

7. To add another permission block, choose Add additional permissions.

8. Choose Choose a service and then choose IAM.

9. Choose Select actions and then choose Switch to deny permissions. When you do that, the entire
block is used to deny permissions.

10. Type group in the search box. The visual editor shows you all the IAM actions that contain the word
group. Select the check boxes next to the following actions:

• CreateGroup

• DeleteGroup

• RemoveUserFromGroup

• AttachGroupPolicy

• DeleteGroupPolicy

• DetachGroupPolicy

• PutGroupPolicy

• UpdateGroup

11. Choose Resources to specify the resources for your policy. Based on the actions that you chose, you
should see the group resource type. Choose Add ARN. For Resource, select the check box next to
Any. For Group Name With Path, type the user group name AllUsers. Then choose Add.

12. Choose Specify request conditions (optional) and then choose Add condition. Complete the form
with the following values:

409

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Controlling access using policies

• Key – Choose aws:username
• Qualifier – Choose Default
• Operator – Choose StringNotEquals
• Value – Type srodriguez and then choose Add another condition value. Type mjackson and

then choose Add another condition value. Type adesai and then choose Add.

This condition ensures that access will be denied to the specified user group management actions
when the user making the call is not included in the list. Because this explicitly denies permission,
it overrides the previous block that allowed those users to call the actions. Users on the list are
not denied access, and they are granted permission in the first permission block, so they can fully
manage the user group.

13. When you are finished, choose Review policy.

Note
You can switch between the Visual editor and JSON tabs any time. However, if you make
changes or choose Review policy in the Visual editor tab, IAM might restructure your policy
to optimize it for the visual editor. For more information, see Policy restructuring (p. 684).

14. On the Review policy page, for the Name, type LimitAllUserGroupManagement. For the
Description, type Allows all users read-only access to a specific user group,
and allows only specific users access to make changes to the user group.
Review the policy summary to make sure that you have granted the intended permissions. Then
choose Create policy to save your new policy.

15. Attach the policy to your user group. For more information, see Adding and removing IAM identity
permissions (p. 484).

Alternatively, you can create the same policy using this example JSON policy document. To view
this JSON policy, see IAM: Allows specific IAM users to manage a group programmatically and in the
console (p. 453). For detailed instructions for creating a policy using a JSON document, see the section
called “Creating policies on the JSON tab” (p. 469).

Controlling access to policies
You can control how your users can apply AWS managed policies. To do this, attach this policy to all your
users. Ideally, you can do this using a user group.

For example, you might create a policy that allows users to attach only the IAMUserChangePassword and
PowerUserAccess AWS managed policies to a new IAM user, user group, or role.

For customer managed policies, you can control who can create, update, and delete these policies. You
can control who can attach and detach policies to and from principal entities (user groups, users, and
roles). You can also control which policies a user can attach or detach, and to and from which entities.

For example, you can give permissions to an account administrator to create, update, and delete policies.
Then you give permissions to a team leader or other limited administrator to attach and detach these
policies to and from principal entities that the limited administrator manages.

For more information, refer to these resources:

• To learn more about creating an IAM policy that you can attach to a principal, see Creating IAM
policies (p. 468).

• To learn how to attach an IAM policy to a principal, see Adding and removing IAM identity
permissions (p. 484).

• To see an example policy for limiting the use of managed policies, see IAM: Limits managed policies
that can be applied to an IAM user, group, or role (p. 458).

410

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/job-function/IAMUserChangePassword
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/job-function/PowerUserAccess

AWS Identity and Access Management User Guide
Controlling access using policies

Controlling permissions for creating, updating, and deleting customer managed
policies

You can use IAM policies (p. 381) to control who is allowed to create, update, and delete customer
managed policies in your AWS account. The following list contains API operations that pertain directly to
creating, updating, and deleting policies or policy versions:

• CreatePolicy
• CreatePolicyVersion
• DeletePolicy
• DeletePolicyVersion
• SetDefaultPolicyVersion

The API operations in the preceding list correspond to actions that you can allow or deny—that is,
permissions that you can grant—using an IAM policy.

Consider the following example policy. It allows a user to create, update (that is, create a new policy
version), delete, and set a default version for all customer managed policies in the AWS account. The
example policy also allows the user to list policies and get policies. To learn how to create a policy using
this example JSON policy document, see the section called “Creating policies on the JSON tab” (p. 469).

Example Example policy that allows creating, updating, deleting, listing, getting, and setting
the default version for all policies

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "iam:CreatePolicy",
 "iam:CreatePolicyVersion",
 "iam:DeletePolicy",
 "iam:DeletePolicyVersion",
 "iam:GetPolicy",
 "iam:GetPolicyVersion",
 "iam:ListPolicies",
 "iam:ListPolicyVersions",
 "iam:SetDefaultPolicyVersion"
],
 "Resource": "*"
 }
}

You can create policies that limit the use of these API operations to affect only the managed policies
that you specify. For example, you might want to allow a user to set the default version and delete policy
versions, but only for specific customer managed policies. You do this by specifying the policy ARN in the
Resource element of the policy that grants these permissions.

The following example shows a policy that allows a user to delete policy versions and set the default
version. But these actions are only allowed for the customer managed policies that include the path /
TEAM-A/. The customer managed policy ARN is specified in the Resource element of the policy. (In this
example the ARN includes a path and a wildcard and thus matches all customer managed policies that
include the path /TEAM-A/). To learn how to create a policy using this example JSON policy document,
see the section called “Creating policies on the JSON tab” (p. 469).

For more information about using paths in the names of customer managed policies, see Friendly names
and paths (p. 713).

411

https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreatePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreatePolicyVersion.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeletePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeletePolicyVersion.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_SetDefaultPolicyVersion.html

AWS Identity and Access Management User Guide
Controlling access using policies

Example Example policy that allows deleting policy versions and setting the default version
for only specific policies

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "iam:DeletePolicyVersion",
 "iam:SetDefaultPolicyVersion"
],
 "Resource": "arn:aws:iam::ACCOUNT-ID-WITHOUT-HYPHENS:policy/TEAM-A/*"
 }
}

Controlling permissions for attaching and detaching managed policies

You can also use IAM policies to allow users to work with only specific managed policies. In effect, you
can control which permissions a user is allowed to grant to other principal entities.

The following list shows API operations that pertain directly to attaching and detaching managed
policies to and from principal entities:

• AttachGroupPolicy
• AttachRolePolicy
• AttachUserPolicy
• DetachGroupPolicy
• DetachRolePolicy
• DetachUserPolicy

You can create policies that limit the use of these API operations to affect only the specific managed
policies and/or principal entities that you specify. For example, you might want to allow a user to attach
managed policies, but only the managed policies that you specify. Or, you might want to allow a user to
attach managed policies, but only to the principal entities that you specify.

The following example policy allows a user to attach managed policies to only the user groups and roles
that include the path /TEAM-A/. The user group and role ARNs are specified in the Resource element
of the policy. (In this example the ARNs include a path and a wildcard character and thus match all user
groups and roles that include the path /TEAM-A/). To learn how to create a policy using this example
JSON policy document, see the section called “Creating policies on the JSON tab” (p. 469).

Example Example policy that allows attaching managed policies to only specific user groups
or roles

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "iam:AttachGroupPolicy",
 "iam:AttachRolePolicy"
],
 "Resource": [
 "arn:aws:iam::ACCOUNT-ID-WITHOUT-HYPHENS:group/TEAM-A/*",
 "arn:aws:iam::ACCOUNT-ID-WITHOUT-HYPHENS:role/TEAM-A/*"
]
 }

412

https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachGroupPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachUserPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DetachGroupPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DetachRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DetachUserPolicy.html

AWS Identity and Access Management User Guide
Controlling access using policies

}

You can further limit the actions in the preceding example to affect only specific policies. That is, you can
control which permissions a user is allowed to attach to other principal entities—by adding a condition
to the policy.

In the following example, the condition ensures that the AttachGroupPolicy and
AttachRolePolicy permissions are allowed only when the policy being attached matches one of the
specified policies. The condition uses the iam:PolicyARN condition key (p. 758) to determine which
policy or policies are allowed to be attached. The following example policy expands on the previous
example. It allows a user to attach only the managed policies that include the path /TEAM-A/ to only the
user groups and roles that include the path /TEAM-A/. To learn how to create a policy using this example
JSON policy document, see the section called “Creating policies on the JSON tab” (p. 469).

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "iam:AttachGroupPolicy",
 "iam:AttachRolePolicy"
],
 "Resource": [
 "arn:aws:iam::ACCOUNT-ID-WITHOUT-HYPHENS:group/TEAM-A/*",
 "arn:aws:iam::ACCOUNT-ID-WITHOUT-HYPHENS:role/TEAM-A/*"
],
 "Condition": {"ArnLike":
 {"iam:PolicyARN": "arn:aws:iam::ACCOUNT-ID-WITHOUT-HYPHENS:policy/TEAM-A/*"}
 }
 }
}

This policy uses the ArnLike condition operator because the ARN includes a wildcard character. For
a specific ARN, use the ArnEquals condition operator. For more information about ArnLike and
ArnEquals, see Amazon Resource Name (ARN) condition operators (p. 766) in the Condition Types
section of the Policy Element Reference.

For example, you can limit the use of actions to involve only the managed policies that you specify.
You do this by specifying the policy ARN in the Condition element of the policy that grants these
permissions. For example, to specify the ARN of a customer managed policy:

"Condition": {"ArnEquals":
 {"iam:PolicyARN": "arn:aws:iam::123456789012:policy/POLICY-NAME"}
}

You can also specify the ARN of an AWS managed policy in a policy's Condition element. The ARN of
an AWS managed policy uses the special alias aws in the policy ARN instead of an account ID, as in this
example:

"Condition": {"ArnEquals":
 {"iam:PolicyARN": "arn:aws:iam::aws:policy/AmazonEC2FullAccess"}
}

Controlling access to resources
You can control access to resources using an identity-based policy or a resource-based policy. In an
identity-based policy, you attach the policy to an identity and specify what resources that identity can
access. In a resource-based policy, you attach a policy to the resource that you want to control. In the

413

AWS Identity and Access Management User Guide
Control access to IAM users and roles using tags

policy, you specify which principals can access that resource. For more information about both types of
policies, see Identity-based policies and resource-based policies (p. 404).

For more information, refer to these resources:

• To learn more about creating an IAM policy that you can attach to a principal, see Creating IAM
policies (p. 468).

• To learn how to attach an IAM policy to a principal, see Adding and removing IAM identity
permissions (p. 484).

• Amazon S3 supports using resource-based policies on their buckets. For more information, see Bucket
Policy Examples.

Resource Creators Do Not Automatically Have Permissions

If you sign in using the AWS account root user credentials, you have permission to perform any action
on resources that belong to the account. However, this isn't true for IAM users. An IAM user might be
granted access to create a resource, but the user's permissions, even for that resource, are limited to
what's been explicitly granted. This means that just because you create a resource, such as an IAM role,
you do not automatically have permission to edit or delete that role. Additionally, your permission can
be revoked at any time by the account owner or by another user who has been granted access to manage
your permissions.

Controlling access to principals in a specific account
You can directly grant IAM users in your own account access to your resources. If users from another
account need access to your resources, you can create an IAM role. A role is an entity that includes
permissions but isn't associated with a specific user. Users from other accounts can then assume the role
and access resources according to the permissions you've assigned to the role. For more information, see
Providing access to an IAM user in another AWS account that you own (p. 172).

Note
Some services support resource-based policies as described in Identity-based policies and
resource-based policies (p. 404) (such as Amazon S3, Amazon SNS, and Amazon SQS). For
those services, an alternative to using roles is to attach a policy to the resource (bucket, topic, or
queue) that you want to share. The resource-based policy can specify the AWS account that has
permissions to access the resource.

Controlling access to and for IAM users and roles
using tags
Use the information in the following section to control who can access your IAM users and roles
and what resources your users and roles can access. For more general information and examples of
controlling access to other AWS resources, including other IAM resources, see Controlling access to AWS
resources using tags (p. 416).

Tags can be attached to the IAM resource, passed in the request, or attached to the principal that is
making the request. An IAM user or role can be both a resource and principal. For example, you can write
a policy that allows a user to list the groups for a user. This operation is allowed only if the user making
the request (the principal) has the same project=blue tag as the user they're trying to view. In this
example, the user can view the group membership for any user, including themselves, as long as they are
working on the same project.

To control access based on tags, you provide tag information in the condition element (p. 758) of a
policy. When you create an IAM policy, you can use IAM tags and the associated tag condition key to
control access to any of the following:

414

https://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html

AWS Identity and Access Management User Guide
Control access to IAM users and roles using tags

• Resource (p. 417) – Control access to user or role resources based on their tags. To do this, use the
aws:ResourceTag/key-name condition key to specify which tag key-value pair must be attached to
the resource. For more information, see Controlling access to AWS resources (p. 417).

• Request (p. 417) – Control what tags can be passed in an IAM request. To do this, use the
aws:RequestTag/key-name condition key to specify what tags can be added, changed, or removed
from an IAM user or role. This key is used the same way for IAM resources and other AWS resources.
For more information, see Controlling access during AWS requests (p. 417).

• Principal (p. 415) – Control what the person making the request (the principal) is allowed
to do based on the tags that are attached to that person's IAM user or role. To do this, use the
aws:PrincipalTag/key-name condition key to specify what tags must be attached to the IAM user or
role before the request is allowed.

• Any part of the authorization process (p. 415) – Use the aws:TagKeys condition key to control
whether specific tag keys can be used on a resource, in a request, or by a principal. In this case, the
key value does not matter. This key behaves similarly for IAM resources and other AWS resources.
However, when you tag a user in IAM, this also controls whether the principal can make the request to
any service. For more information, see Controlling access based on tag keys (p. 418).

You can create an IAM policy using the visual editor, using JSON, or by importing an existing managed
policy. For details, see Creating IAM policies (p. 468).

Controlling access for IAM principals
You can control what the principal is allowed to do based on the tags attached to that person's identity.

This example shows how you might create an IAM policy that allows any user in this account to view
the group membership for any user, including themselves, as long as they are working on the same
project. This operation is allowed only when the user's resource tag and the principal's tag have the same
value for the tag key project. To use this policy, replace the italicized placeholder text in the
example policy with your own information. Then, follow the directions in create a policy (p. 468) or edit
a policy (p. 495).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": "iam:ListGroupsForUser",
 "Resource": "arn:aws:iam::111222333444:user/*",
 "Condition": {
 "StringEquals": {"aws:ResourceTag/project": "${aws:PrincipalTag/project}"}
 }
 }]
}

Controlling access based on tag keys
You can use tags in your IAM policies to control whether specific tag keys can be used on a resource, in a
request, or by a principal.

This example shows how you might create an IAM policy that allows removing only the tag with the
temporary key from users. To use this policy, replace the italicized placeholder text in the
example policy with your own information. Then, follow the directions in create a policy (p. 468) or edit
a policy (p. 495).

{
 "Version": "2012-10-17",

415

AWS Identity and Access Management User Guide
Control access to AWS resources using tags

 "Statement": [{
 "Effect": "Allow",
 "Action": "iam:UntagUser",
 "Resource": "*",
 "Condition": {"ForAllValues:StringEquals": {"aws:TagKeys": ["temporary"]}}
 }]
}

Controlling access to AWS resources using tags
You can use tags to control access to your AWS resources that support tagging, including IAM resources.
You can tag IAM users and roles to control what they can access. To learn how to tag IAM users and roles,
see Tagging IAM resources (p. 296). Additionally, you can control access to the following IAM resources:
customer managed policies, IAM identity providers, instance profiles, server certificates, and virtual MFA
devices. To view a tutorial for creating and testing a policy that allows IAM roles with principal tags to
access resources with matching tags, see IAM tutorial: Define permissions to access AWS resources based
on tags (p. 44). Use the information in the following section to control access to other AWS resources,
including IAM resources, without tagging IAM users or roles.

Before you use tags to control access to your AWS resources, you must understand how AWS grants
access. AWS is composed of collections of resources. An Amazon EC2 instance is a resource. An Amazon
S3 bucket is a resource. You can use the AWS API, the AWS CLI, or the AWS Management Console to
perform an operation, such as creating a bucket in Amazon S3. When you do, you send a request for that
operation. Your request specifies an action, a resource, a principal entity (user or role), a principal account,
and any necessary request information. All of this information provides context.

AWS then checks that you (the principal entity) are authenticated (signed in) and authorized (have
permission) to perform the specified action on the specified resource. During authorization, AWS checks
all the policies that apply to the context of your request. Most policies are stored in AWS as JSON
documents (p. 386) and specify the permissions for principal entities. For more information about
policy types and uses, see Policies and permissions in IAM (p. 381).

AWS authorizes the request only if each part of your request is allowed by the policies. To view a diagram
and learn more about the IAM infrastructure, see Understanding how IAM works (p. 3). For details about
how IAM determines whether a request is allowed, see Policy evaluation logic (p. 784).

Tags can complicate this process because tags can be attached to the resource or passed in the request
to services that support tagging. To control access based on tags, you provide tag information in the
condition element (p. 758) of a policy. To learn whether an AWS service supports controlling access
using tags, see AWS services that work with IAM (p. 725) and look for the services that have Yes in the
Authorization based on tags column. Choose the name of the service to view the authorization and
access control documentation for that service.

You can then create an IAM policy that allows or denies access to a resource based on that resource's tag.
In that policy, you can use tag condition keys to control access to any of the following:

• Resource (p. 417) – Control access to AWS service resources based on the tags on those resources.
To do this, use the ResourceTag/key-name condition key to determine whether to allow access to the
resource based on the tags that are attached to the resource.

• Request (p. 417) – Control what tags can be passed in a request. To do this, use the
aws:RequestTag/key-name condition key to specify what tag key-value pairs can be passed in a
request to tag or untag an AWS resource.

• Any part of the authorization process (p. 418) – Use the aws:TagKeys condition key to control
whether specific tag keys can be used on a resource or in a request.

You can create an IAM policy visually, using JSON, or by importing an existing managed policy. For
details, see Creating IAM policies (p. 468).

416

AWS Identity and Access Management User Guide
Control access to AWS resources using tags

Controlling access to AWS resources
You can use conditions in your IAM policies to control access to AWS resources based on the tags on that
resource. You can do this using the global aws:ResourceTag/tag-key condition key, or a service-
specific key. Some services support only the service-specific version of this key and not the global
version.

Note
Do not use the ResourceTag condition key in a policy with the iam:PassRole action.
You cannot use the tag on an IAM role to control access to who can pass that role. For more
information about permissions required to pass a role to a service, see Granting a user
permissions to pass a role to an AWS service (p. 257).

This example shows how you might create an IAM policy that allows starting or stopping Amazon EC2
instances. These operations are allowed only if the instance tag Owner has the value of the user name.
This policy defines permissions for programmatic and console access.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:StartInstances",
 "ec2:StopInstances"
],
 "Resource": "arn:aws:ec2:*:*:instance/*",
 "Condition": {
 "StringEquals": {"aws:ResourceTag/Owner": "${aws:username}"}
 }
 },
 {
 "Effect": "Allow",
 "Action": "ec2:DescribeInstances",
 "Resource": "*"
 }
]
}

You can attach this policy to the IAM users in your account. If a user named richard-roe attempts to
start an Amazon EC2 instance, the instance must be tagged Owner=richard-roe or owner=richard-
roe. Otherwise he will be denied access. The tag key Owner matches both Owner and owner because
condition key names are not case-sensitive. For more information, see IAM JSON policy elements:
Condition (p. 758).

Controlling access during AWS requests
You can use conditions in your IAM policies to control what tag key-value pairs can be passed in a request
that tags an AWS resource.

This example shows how you might create an IAM policy that allows using the Amazon EC2 CreateTags
action to attach tags to an instance. You can attach tags only if the tag contains the environment
key and the preprod or production values. If you want, you can use the ForAllValues modifier
with the aws:TagKeys condition key to indicate that only the key environment is allowed in the
request. This stops users from including other keys, such as accidentally using Environment instead of
environment.

{
 "Version": "2012-10-17",

417

AWS Identity and Access Management User Guide
Example policies

 "Statement": {
 "Effect": "Allow",
 "Action": "ec2:CreateTags",
 "Resource": "arn:aws:ec2:*:*:instance/*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/environment": [
 "preprod",
 "production"
]
 },
 "ForAllValues:StringEquals": {"aws:TagKeys": "environment"}
 }
 }
}

Controlling access based on tag keys
You can use a condition in your IAM policies to control whether specific tag keys can be used on a
resource or in a request.

As a best practice, when you use policies to control access using tags, you should use the aws:TagKeys
condition key (p. 828). AWS services that support tags might allow you to create multiple tag key
names that differ only by case, such as tagging an Amazon EC2 instance with stack=production
and Stack=test. Key names are not case sensitive in policy conditions. This means that if you specify
"aws:ResourceTag/TagKey1": "Value1" in the condition element of your policy, then the
condition matches a resource tag key named either TagKey1 or tagkey1, but not both. To prevent
duplicate tags with a key that varies only by case, use the aws:TagKeys condition to define the tag keys
that your users can apply.

This example shows how you might create an IAM policy that allows creating and tagging a Secrets
Manager secret, but only with the tag keys environment or cost-center.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:CreateSecret",
 "secretsmanager:TagResource"
],
 "Resource": "*",
 "Condition": {
 "ForAllValues:StringEquals": {
 "aws:TagKeys": [
 "environment",
 "cost-center"
]
 }
 }
 }
}

Example IAM identity-based policies
A policy (p. 381) is an object in AWS that, when associated with an identity or resource, defines
their permissions. AWS evaluates these policies when an IAM principal (user or role) makes a request.
Permissions in the policies determine whether the request is allowed or denied. Most policies are
stored in AWS as JSON documents that are attached to an IAM identity (user, group of users, or role).

418

AWS Identity and Access Management User Guide
Example policies

Identity-based policies include AWS managed policies, customer managed policies, and inline policies.
To learn how to create an IAM policy using these example JSON policy documents, see the section called
“Creating policies on the JSON tab” (p. 469).

By default all requests are denied, so you must provide access to the services, actions, and resources that
you intend for the identity to access. If you also want to allow access to complete the specified actions in
the IAM console, you need to provide additional permissions.

The following library of policies can help you define permissions for your IAM identities. After you find
the policy that you need, choose view this policy to view the JSON for the policy. You can use the JSON
policy document as a template for your own policies.

Note
If you would like to submit a policy to be included in this reference guide, use the Feedback
button at the bottom of this page.

Example policies: AWS
• Allows access during a specific range of dates. (View this policy (p. 421).)

• Allows enabling and disabling AWS Regions. (View this policy (p. 422).)

• Allows MFA-authenticated users to manage their own credentials on the My Security Credentials
page. (View this policy (p. 422).)

• Allows specific access when using MFA during a specific range of dates. (View this policy (p. 425).)

• Allows users to manage their own credentials on the My Security Credentials page. (View this
policy (p. 426).)

• Allows users to manage their own MFA device on the My Security Credentials page. (View this
policy (p. 428).)

• Allows users to manage their own password on the My Security Credentials page. (View this
policy (p. 430).)

• Allows users to manage their own password, access keys, and SSH public keys on the My Security
Credentials page. (View this policy (p. 431).)

• Denies access to AWS based on the requested Region. View this policy (p. 432).

• Denies access to AWS based on the source IP address. (View this policy (p. 433).)

Example policies: AWS Data Pipeline
• Denies access to pipelines that a user did not create (View this policy (p. 434).)

Example policies: Amazon DynamoDB
• Allows access to a specific Amazon DynamoDB table (View this policy (p. 434).)

• Allows access to specific Amazon DynamoDB attributes (View this policy (p. 435).)

• Allows item-level access to Amazon DynamoDB based on an Amazon Cognito ID (View this
policy (p. 436).)

Example policies: Amazon EC2
• Allows an Amazon EC2 instance to attach or detach volumes (View this policy (p. 437).)

• Allows attaching or detaching Amazon EBS volumes to Amazon EC2 instances based on tags (View this
policy (p. 437).)

419

AWS Identity and Access Management User Guide
Example policies

• Allows launching Amazon EC2 instances in a specific subnet, programmatically and in the console
(View this policy (p. 438).)

• Allows managing Amazon EC2 security groups associated with a specific VPC, programmatically and in
the console (View this policy (p. 438).)

• Allows starting or stopping Amazon EC2 instances a user has tagged, programmatically and in the
console (View this policy (p. 439).)

• Allows starting or stopping Amazon EC2 instances based on resource and principal tags,
programmatically and in the console (View this policy (p. 440).)

• Allows starting or stopping Amazon EC2 instances when the resource and principal tags match (View
this policy (p. 440).)

• Allows full Amazon EC2 access within a specific Region, programmatically and in the console. (View
this policy (p. 441).)

• Allows starting or stopping a specific Amazon EC2 instance and modifying a specific security group,
programmatically and in the console (View this policy (p. 441).)

• Denies access to specific Amazon EC2 operations without MFA (View this policy (p. 442).)
• Limits terminating Amazon EC2 instances to a specific IP address range (View this policy (p. 443).)

Example policies: AWS Identity and Access Management (IAM)
• Allows access to the policy simulator API (View this policy (p. 444).)
• Allows access to the policy simulator console (View this policy (p. 444).)
• Allows assuming any roles that have a specific tag, programmatically and in the console (View this

policy (p. 445).)
• Allows and denies access to multiple services, programmatically and in the console (View this

policy (p. 445).)
• Allows adding a specific tag to an IAM user with a different specific tag, programmatically and in the

console (View this policy (p. 447).)
• Allows adding a specific tag to any IAM user or role, programmatically and in the console (View this

policy (p. 448).)
• Allows creating a new user only with specific tags (View this policy (p. 449).)
• Allows generating and retrieving IAM credential reports (View this policy (p. 449).)
• Allows managing a group's membership, programmatically and in the console (View this

policy (p. 450).)
• Allows managing a specific tag (View this policy (p. 451).)
• Allows passing an IAM role to a specific service (View this policy (p. 451).)
• Allows read-only access to the IAM console without reporting (View this policy (p. 452).)
• Allows read-only access to the IAM console (View this policy (p. 452).)
• Allows specific users to manage a group, programmatically and in the console (View this

policy (p. 453).)
• Allows setting the account password requirements, programmatically and in the console (View this

policy (p. 454).)
• Allows using the policy simulator API for users with a specific path (View this policy (p. 454).)
• Allows using the policy simulator console for users with a specific path (View this policy (p. 455).)
• Allows IAM users to self-manage an MFA device. (View this policy (p. 455).)
• Allows IAM users to rotate their own credentials, programmatically and in the console. (View this

policy (p. 457).)
• Allows viewing service last accessed information for an AWS Organizations policy in the IAM console.

(View this policy (p. 457).)

420

AWS Identity and Access Management User Guide
Example policies

• Limits managed policies that can be applied to an IAM user, group, or role (View this policy (p. 458).)

Example policies: AWS Lambda
• Allows an AWS Lambda function to access an Amazon DynamoDB table (View this policy (p. 458).)

Example policies: Amazon RDS
• Allows full Amazon RDS database access within a specific Region. (View this policy (p. 459).)

• Allows restoring Amazon RDS databases, programmatically and in the console (View this
policy (p. 460).)

• Allows tag owners full access to Amazon RDS resources that they have tagged (View this
policy (p. 460).)

Example policies: Amazon S3
• Allows an Amazon Cognito user to access objects in their own Amazon S3 bucket (View this

policy (p. 462).)

• Allows federated users to access their own home directory in Amazon S3, programmatically and in the
console (View this policy (p. 463).)

• Allows full S3 access, but explicitly denies access to the Production bucket if the administrator has not
signed in using MFA within the last thirty minutes (View this policy (p. 464).)

• Allows IAM users to access their own home directory in Amazon S3, programmatically and in the
console (View this policy (p. 465).)

• Allows a user to manage a single Amazon S3 bucket and denies every other AWS action and resource
(View this policy (p. 466).)

• Allows Read and Write access to a specific Amazon S3 bucket (View this policy (p. 466).)

• Allows Read and Write access to a specific Amazon S3 bucket, programmatically and in the console
(View this policy (p. 467).)

AWS: Allows access based on date and time
This example shows how you might create an IAM policy that allows access to actions based on date and
time. This policy restricts access to actions that occur between April 1, 2020 and June 30, 2020 (UTC),
inclusive. This policy grants the permissions necessary to complete this action from the AWS API or AWS
CLI only. To use this policy, replace the italicized placeholder text in the example policy with
your own information. Then, follow the directions in create a policy (p. 468) or edit a policy (p. 495).

To learn about using multiple conditions within the Condition block of an IAM policy, see Multiple
values in a condition (p. 760).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "service-prefix:action-name",
 "Resource": "*",
 "Condition": {
 "DateGreaterThan": {"aws:CurrentTime": "2020-04-01T00:00:00Z"},
 "DateLessThan": {"aws:CurrentTime": "2020-06-30T23:59:59Z"}

421

AWS Identity and Access Management User Guide
Example policies

 }
 }
]
}

AWS: Allows enabling and disabling AWS regions
This example shows how you might create an IAM policy that allows an administrator to enable
and disable the Asia Pacific (Hong Kong) Region (ap-east-1). This policy defines permissions for
programmatic and console access. This setting appears in the Account settings page in the AWS
Management Console. This page includes sensitive account-level information that should be viewed and
managed only by account administrators. To use this policy, replace the italicized placeholder
text in the example policy with your own information. Then, follow the directions in create a
policy (p. 468) or edit a policy (p. 495).

Important
You cannot enable or disable regions that are enabled by default. You can only include regions
that are disabled by default. For more information, see Managing AWS Regions in the AWS
General Reference.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "EnableDisableHongKong",
 "Effect": "Allow",
 "Action": [
 "account:EnableRegion",
 "account:DisableRegion"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {"account:TargetRegion": "ap-east-1"}
 }
 },
 {
 "Sid": "ViewConsole",
 "Effect": "Allow",
 "Action": [
 "aws-portal:ViewAccount",
 "account:ListRegions"
],
 "Resource": "*"
 }
]
}

AWS: Allows MFA-authenticated IAM users to manage their own
credentials on the My Security Credentials page
This example shows how you might create an IAM policy that allows IAM users that are authenticated
using multi-factor authentication (MFA) (p. 110) to manage their own credentials on the My Security
Credentials page. This AWS Management Console page displays account information such as the account
ID and canonical user ID. Users can also view and edit their own passwords, access keys, MFA devices,
X.509 certificates, and SSH keys and Git credentials. This example policy includes the permissions
required to view and edit all of the information on the page. It also requires the user to set up and
authenticate using MFA before performing any other operations in AWS. To allow users to manage their
own credentials without using MFA, see AWS: Allows IAM users to manage their own credentials on the
My Security Credentials page (p. 426).

422

https://docs.aws.amazon.com/general/latest/gr/rande-manage.html

AWS Identity and Access Management User Guide
Example policies

To learn how users can access the My Security Credentials page, see How IAM users change their own
password (console) (p. 101).

Note
This example policy does not allow users to reset a password while signing in for the first time.
AWS recommends that you do not grant permissions to new users until after they sign in. For
more information, see How do I securely create IAM users? (p. 682). This also prevents users
with an expired password from resetting their password before signing in. You can allow this
by adding iam:ChangePassword and iam:GetAccountPasswordPolicy to the statement
DenyAllExceptListedIfNoMFA. However, IAM does not recommend this. Allowing users to
change their password without MFA can be a security risk.

What does this policy do?

• The AllowViewAccountInfo statement allows the user to view account-level information. These
permissions must be in their own statement because they do not support or do not need to specify
a resource ARN. Instead the permissions specify "Resource" : "*". This statement includes the
following actions that allow the user to view specific information:

• GetAccountPasswordPolicy – View the account password requirements while changing their
own IAM user password.

• ListVirtualMFADevices – View details about a virtual MFA device that is enabled for the user.

• The AllowManageOwnPasswords statement allows the user to change their own password. This
statement also includes the GetUser action, which is required to view most of the information on the
My Security Credentials page.

• The AllowManageOwnAccessKeys statement allows the user to create, update, and delete their own
access keys.

• The AllowManageOwnSigningCertificates statement allows the user to upload, update, and
delete their own signing certificates.

• The AllowManageOwnSSHPublicKeys statement allows the user to upload, update, and delete their
own SSH public keys for CodeCommit.

• The AllowManageOwnGitCredentials statement allows the user to create, update, and delete their
own Git credentials for CodeCommit.

• The AllowManageOwnVirtualMFADevice statement allows the user to create and delete their own
virtual MFA device. The resource ARN in this statement allows access to only an MFA device that has
the same name as the currently signed-in user. Users can't create or delete any virtual MFA device
other than their own.

• The AllowManageOwnUserMFA statement allows the user to view or manage the virtual, U2F, or
hardware MFA device for their own user. The resource ARN in this statement allows access to only the
user's own IAM user. Users can't view or manage the MFA device for other users.

• The DenyAllExceptListedIfNoMFA statement denies access to every action in all AWS services,
except a few listed actions, but only if the user is not signed in with MFA. The statement uses a
combination of "Deny" and "NotAction" to explicitly deny access to every action that is not listed.
The items listed are not denied or allowed by this statement. However, the actions are allowed
by other statements in the policy. For more information about the logic for this statement, see
NotAction with Deny (p. 754). If the user is signed in with MFA, then the Condition test fails
and this statement does not deny any actions. In this case, other policies or statements for the user
determine the user's permissions.

This statement ensures that when the user is not signed in with MFA that they can perform only the
listed actions. In addition, they can perform the listed actions only if another statement or policy
allows access to those actions. This does not allow a user to create a password at sign-in, because
iam:ChangePassword action should not be allowed without MFA authorization.

The ...IfExists version of the Bool operator ensures that if the
aws:MultiFactorAuthPresent (p. 815) key is missing, the condition returns true. This means

423

AWS Identity and Access Management User Guide
Example policies

that a user accessing an API with long-term credentials, such as an access key, is denied access to the
non-IAM API operations.

This policy does not allow users to view the Users page in the IAM console or use that page
to access their own user information. To allow this, add the iam:ListUsers action to the
AllowViewAccountInfo statement and the DenyAllExceptListedIfNoMFA statement. It
also does not allow users to change their password on their own user page. To allow this, add
the iam:CreateLoginProfile, iam:DeleteLoginProfile, iam:GetLoginProfile, and
iam:UpdateLoginProfile actions to the AllowManageOwnPasswords statement. To also allow
a user to change their password from their own user page without signing in using MFA, add the
iam:CreateLoginProfile action to the DenyAllExceptListedIfNoMFA statement.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowViewAccountInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetAccountPasswordPolicy",

 "iam:ListVirtualMFADevices"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowManageOwnPasswords",
 "Effect": "Allow",
 "Action": [
 "iam:ChangePassword",
 "iam:GetUser"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 },
 {
 "Sid": "AllowManageOwnAccessKeys",
 "Effect": "Allow",
 "Action": [
 "iam:CreateAccessKey",
 "iam:DeleteAccessKey",
 "iam:ListAccessKeys",
 "iam:UpdateAccessKey"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 },
 {
 "Sid": "AllowManageOwnSigningCertificates",
 "Effect": "Allow",
 "Action": [
 "iam:DeleteSigningCertificate",
 "iam:ListSigningCertificates",
 "iam:UpdateSigningCertificate",
 "iam:UploadSigningCertificate"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 },
 {
 "Sid": "AllowManageOwnSSHPublicKeys",
 "Effect": "Allow",
 "Action": [
 "iam:DeleteSSHPublicKey",
 "iam:GetSSHPublicKey",
 "iam:ListSSHPublicKeys",

424

AWS Identity and Access Management User Guide
Example policies

 "iam:UpdateSSHPublicKey",
 "iam:UploadSSHPublicKey"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 },
 {
 "Sid": "AllowManageOwnGitCredentials",
 "Effect": "Allow",
 "Action": [
 "iam:CreateServiceSpecificCredential",
 "iam:DeleteServiceSpecificCredential",
 "iam:ListServiceSpecificCredentials",
 "iam:ResetServiceSpecificCredential",
 "iam:UpdateServiceSpecificCredential"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 },
 {
 "Sid": "AllowManageOwnVirtualMFADevice",
 "Effect": "Allow",
 "Action": [
 "iam:CreateVirtualMFADevice",
 "iam:DeleteVirtualMFADevice"
],
 "Resource": "arn:aws:iam::*:mfa/${aws:username}"
 },
 {
 "Sid": "AllowManageOwnUserMFA",
 "Effect": "Allow",
 "Action": [
 "iam:DeactivateMFADevice",
 "iam:EnableMFADevice",
 "iam:ListMFADevices",
 "iam:ResyncMFADevice"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 },
 {
 "Sid": "DenyAllExceptListedIfNoMFA",
 "Effect": "Deny",
 "NotAction": [
 "iam:CreateVirtualMFADevice",
 "iam:EnableMFADevice",
 "iam:GetUser",
 "iam:ListMFADevices",
 "iam:ListVirtualMFADevices",
 "iam:ResyncMFADevice",
 "sts:GetSessionToken"
],
 "Resource": "*",
 "Condition": {
 "BoolIfExists": {
 "aws:MultiFactorAuthPresent": "false"
 }
 }
 }
]
}

AWS: Allows specific access using MFA within specific dates
This example shows how you might create an IAM policy that uses multiple conditions, which are
evaluated using a logical AND. It allows full access to the service named SERVICE-NAME-1, and access
to the ACTION-NAME-A and ACTION-NAME-B actions in the service named SERVICE-NAME-2. These

425

AWS Identity and Access Management User Guide
Example policies

actions are allowed only when the user is authenticated using multifactor authentication (MFA). Access is
restricted to actions that occur between July 1, 2017 and December 31, 2017 (UTC), inclusive. This policy
grants the permissions necessary to complete this action from the AWS API or AWS CLI only. To use this
policy, replace the italicized placeholder text in the example policy with your own information.
Then, follow the directions in create a policy (p. 468) or edit a policy (p. 495).

To learn about using multiple conditions within the Condition block of an IAM policy, see Multiple
values in a condition (p. 760).

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "service-prefix-1:*",
 "service-prefix-2:action-name-a",
 "service-prefix-2:action-name-b"
],
 "Resource": "*",
 "Condition": {
 "Bool": {"aws:MultiFactorAuthPresent": true},
 "DateGreaterThan": {"aws:CurrentTime": "2017-07-01T00:00:00Z"},
 "DateLessThan": {"aws:CurrentTime": "2017-12-31T23:59:59Z"}
 }
 }
}

AWS: Allows IAM users to manage their own credentials on the
My Security Credentials page
This example shows how you might create an IAM policy that allows IAM users to manage all of their
own credentials on the My Security Credentials page. This AWS Management Console page displays
account information such as the account ID and canonical user ID. Users can also view and edit their own
passwords, access keys, X.509 certificates, SSH keys, and Git credentials. This example policy includes
the permissions required to view and edit all information on the page except the user's MFA device. To
allow users to manage their own credentials with MFA, see AWS: Allows MFA-authenticated IAM users to
manage their own credentials on the My Security Credentials page (p. 422).

To learn how users can access the My Security Credentials page, see How IAM users change their own
password (console) (p. 101).

What does this policy do?

• The AllowViewAccountInfo statement allows the user to view account-level information. These
permissions must be in their own statement because they do not support or do not need to specify
a resource ARN. Instead the permissions specify "Resource" : "*". This statement includes the
following actions that allow the user to view specific information:
• GetAccountPasswordPolicy – View the account password requirements while changing their

own IAM user password.
• GetAccountSummary – View the account ID and the account canonical user ID.

• The AllowManageOwnPasswords statement allows the user to change their own password. This
statement also includes the GetUser action, which is required to view most of the information on the
My Security Credentials page.

• The AllowManageOwnAccessKeys statement allows the user to create, update, and delete their own
access keys.

• The AllowManageOwnSigningCertificates statement allows the user to upload, update, and
delete their own signing certificates.

426

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html#FindingCanonicalId

AWS Identity and Access Management User Guide
Example policies

• The AllowManageOwnSSHPublicKeys statement allows the user to upload, update, and delete their
own SSH public keys for CodeCommit.

• The AllowManageOwnGitCredentials statement enables the user to create, update, and delete
their own Git credentials for CodeCommit.

This policy does not allow users to view or manage their own MFA devices. They also cannot view the
Users page in the IAM console or use that page to access their own user information. To allow this, add
the iam:ListUsers action to the AllowViewAccountInfo statement. It also does not allow users
to change their password on their own user page. To allow this, add the iam:CreateLoginProfile,
iam:DeleteLoginProfile, iam:GetLoginProfile, and iam:UpdateLoginProfile actions to the
AllowManageOwnPasswords statement.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowViewAccountInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetAccountPasswordPolicy",
 "iam:GetAccountSummary"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowManageOwnPasswords",
 "Effect": "Allow",
 "Action": [
 "iam:ChangePassword",
 "iam:GetUser"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 },
 {
 "Sid": "AllowManageOwnAccessKeys",
 "Effect": "Allow",
 "Action": [
 "iam:CreateAccessKey",
 "iam:DeleteAccessKey",
 "iam:ListAccessKeys",
 "iam:UpdateAccessKey"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 },
 {
 "Sid": "AllowManageOwnSigningCertificates",
 "Effect": "Allow",
 "Action": [
 "iam:DeleteSigningCertificate",
 "iam:ListSigningCertificates",
 "iam:UpdateSigningCertificate",
 "iam:UploadSigningCertificate"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 },
 {
 "Sid": "AllowManageOwnSSHPublicKeys",
 "Effect": "Allow",
 "Action": [
 "iam:DeleteSSHPublicKey",
 "iam:GetSSHPublicKey",
 "iam:ListSSHPublicKeys",

427

AWS Identity and Access Management User Guide
Example policies

 "iam:UpdateSSHPublicKey",
 "iam:UploadSSHPublicKey"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 },
 {
 "Sid": "AllowManageOwnGitCredentials",
 "Effect": "Allow",
 "Action": [
 "iam:CreateServiceSpecificCredential",
 "iam:DeleteServiceSpecificCredential",
 "iam:ListServiceSpecificCredentials",
 "iam:ResetServiceSpecificCredential",
 "iam:UpdateServiceSpecificCredential"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 }
]
}

AWS: Allows MFA-authenticated IAM users to manage their own
MFA device on the My Security Credentials page
This example shows how you might create an IAM policy that allows IAM users that are authenticated
through multi-factor authentication (MFA) (p. 110) to manage their own MFA device on the My Security
Credentials page. This AWS Management Console page displays account and user information, but the
user can only view and edit their own MFA device. To allow users to manage all of their own credentials
with MFA, see AWS: Allows MFA-authenticated IAM users to manage their own credentials on the My
Security Credentials page (p. 422).

Note
If an IAM user with this policy is not MFA-authenticated, this policy denies access to all AWS
actions except those necessary to authenticate using MFA. To use the AWS CLI and AWS API,
IAM users must first retrieve their MFA token using the AWS STS GetSessionToken operation
and then use that token to authenticate the desired operation. Other policies, such as resource-
based policies or other identity-based policies can allow actions in other services, This policy will
deny that access if the IAM user is not MFA-authenticated.

To learn how users can access the My Security Credentials page, see How IAM users change their own
password (console) (p. 101).

What does this policy do?

• The AllowViewAccountInfo statement allows the user to view details about a virtual MFA device
that is enabled for the user. This permission must be in its own statement because it does not support
specifying a resource ARN. Instead you must specify "Resource" : "*".

• The AllowManageOwnVirtualMFADevice statement allows the user to create and delete their own
virtual MFA device. The resource ARN in this statement allows access to only an MFA device that has
the same name as the currently signed-in user. Users can't create or delete any virtual MFA device
other than their own.

• The AllowManageOwnUserMFA statement allows the user to view or manage their own virtual, U2F,
or hardware MFA device. The resource ARN in this statement allows access to only the user's own IAM
user. Users can't view or manage the MFA device for other users.

• The DenyAllExceptListedIfNoMFA statement denies access to every action in all AWS services,
except a few listed actions, but only if the user is not signed in with MFA. The statement uses a
combination of "Deny" and "NotAction" to explicitly deny access to every action that is not listed.
The items listed are not denied or allowed by this statement. However, the actions are allowed
by other statements in the policy. For more information about the logic for this statement, see
NotAction with Deny (p. 754). If the user is signed in with MFA, then the Condition test fails

428

https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html

AWS Identity and Access Management User Guide
Example policies

and this statement does not deny any actions. In this case, other policies or statements for the user
determine the user's permissions.

This statement ensures that when the user is not signed in with MFA, they can perform only the listed
actions. In addition, they can perform the listed actions only if another statement or policy allows
access to those actions.

The ...IfExists version of the Bool operator ensures that if the aws:MultiFactorAuthPresent
key is missing, the condition returns true. This means that a user accessing an API operation with long-
term credentials, such as an access key, is denied access to the non-IAM API operations.

This policy does not allow users to view the Users page in the IAM console or use that page
to access their own user information. To allow this, add the iam:ListUsers action to the
AllowViewAccountInfo statement and the DenyAllExceptListedIfNoMFA statement.

Warning
Do not add permission to delete an MFA device without MFA authentication. Users with this
policy might attempt to assign themselves an MFA device and receive an error that they
are not authorized to perform iam:DeleteVirtualMFADevice. If this happens, do not
add that permission to the DenyAllExceptListedIfNoMFA statement. Users that are not
authenticated using MFA should never be allowed to delete their MFA device. Users might see
this error if they previously began assigning a virtual MFA device to their user and cancelled the
process. To resolve this issue, you or another administrator must delete the user's existing MFA
device using the AWS CLI or AWS API. For more information, see I am not authorized to perform:
iam:DeleteVirtualMFADevice (p. 681).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowViewAccountInfo",
 "Effect": "Allow",
 "Action": "iam:ListVirtualMFADevices",
 "Resource": "*"
 },
 {
 "Sid": "AllowManageOwnVirtualMFADevice",
 "Effect": "Allow",
 "Action": [
 "iam:CreateVirtualMFADevice",
 "iam:DeleteVirtualMFADevice"
],
 "Resource": "arn:aws:iam::*:mfa/${aws:username}"
 },
 {
 "Sid": "AllowManageOwnUserMFA",
 "Effect": "Allow",
 "Action": [
 "iam:DeactivateMFADevice",
 "iam:EnableMFADevice",
 "iam:GetUser",
 "iam:ListMFADevices",
 "iam:ResyncMFADevice"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 },
 {
 "Sid": "DenyAllExceptListedIfNoMFA",
 "Effect": "Deny",
 "NotAction": [
 "iam:CreateVirtualMFADevice",
 "iam:EnableMFADevice",

429

AWS Identity and Access Management User Guide
Example policies

 "iam:GetUser",
 "iam:ListMFADevices",
 "iam:ListVirtualMFADevices",
 "iam:ResyncMFADevice",
 "sts:GetSessionToken"
],
 "Resource": "*",
 "Condition": {
 "BoolIfExists": {"aws:MultiFactorAuthPresent": "false"}
 }
 }
]
}

AWS: Allows IAM users to change their own console password
on the My Security Credentials page
This example shows how you might create an IAM policy that allows IAM users to change their own AWS
Management Console password on the My Security Credentials page. This AWS Management Console
page displays account and user information, but the user can only access their own password. To allow
users to manage all of their own credentials with MFA, see AWS: Allows MFA-authenticated IAM users to
manage their own credentials on the My Security Credentials page (p. 422). To allow users to manage
their own credentials without using MFA, see AWS: Allows IAM users to manage their own credentials on
the My Security Credentials page (p. 426).

To learn how users can access the My Security Credentials page, see How IAM users change their own
password (console) (p. 101).

What does this policy do?

• The ViewAccountPasswordRequirements statement allows the user to view the account password
requirements while changing their own IAM user password.

• The ChangeOwnPassword statement allows the user to change their own password. This statement
also includes the GetUser action, which is required to view most of the information on the My
Security Credentials page.

This policy does not allow users to view the Users page in the IAM console or use that page
to access their own user information. To allow this, add the iam:ListUsers action to the
ViewAccountPasswordRequirements statement.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewAccountPasswordRequirements",
 "Effect": "Allow",
 "Action": "iam:GetAccountPasswordPolicy",
 "Resource": "*"
 },
 {
 "Sid": "ChangeOwnPassword",
 "Effect": "Allow",
 "Action": [
 "iam:GetUser",
 "iam:ChangePassword"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 }
]

430

AWS Identity and Access Management User Guide
Example policies

}

AWS: Allows IAM users to manage their own password, access
keys, and SSH public keys on the My Security Credentials page
This example shows how you might create an IAM policy that allows IAM users to manage their
own password, access keys, and X.509 certificates on the My Security Credentials page. This AWS
Management Console page displays account information such as the account ID and canonical user
ID. Users can also view and edit their own passwords, access keys, MFA devices, X.509 certificates, SSH
keys, and Git credentials. This example policy includes the permissions that are required to view and
edit only their password, access keys, and X.509 certificate. To allow users to manage all of their own
credentials with MFA, see AWS: Allows MFA-authenticated IAM users to manage their own credentials
on the My Security Credentials page (p. 422). To allow users to manage their own credentials without
using MFA, see AWS: Allows IAM users to manage their own credentials on the My Security Credentials
page (p. 426).

To learn how users can access the My Security Credentials page, see How IAM users change their own
password (console) (p. 101).

What does this policy do?

• The AllowViewAccountInfo statement allows the user to view account-level information. These
permissions must be in their own statement because they do not support or do not need to specify
a resource ARN. Instead the permissions specify "Resource" : "*". This statement includes the
following actions that allow the user to view specific information:
• GetAccountPasswordPolicy – View the account password requirements while changing their

own IAM user password.
• GetAccountSummary – View the account ID and the account canonical user ID.

• The AllowManageOwnPasswords statement allows the user to change their own password. This
statement also includes the GetUser action, which is required to view most of the information on the
My Security Credentials page.

• The AllowManageOwnAccessKeys statement allows the user to create, update, and delete their own
access keys.

• The AllowManageOwnSSHPublicKeys statement allows the user to upload, update, and delete their
own SSH public keys for CodeCommit.

This policy does not allow users to view or manage their own MFA devices. They also cannot view the
Users page in the IAM console or use that page to access their own user information. To allow this, add
the iam:ListUsers action to the AllowViewAccountInfo statement. It also does not allow users
to change their password on their own user page. To allow this, add the iam:CreateLoginProfile,
iam:DeleteLoginProfile, iam:GetLoginProfile, and iam:UpdateLoginProfile actions to the
AllowManageOwnPasswords statement.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowViewAccountInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetAccountPasswordPolicy",
 "iam:GetAccountSummary"
],
 "Resource": "*"
 },
 {

431

https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html#FindingCanonicalId

AWS Identity and Access Management User Guide
Example policies

 "Sid": "AllowManageOwnPasswords",
 "Effect": "Allow",
 "Action": [
 "iam:ChangePassword",
 "iam:GetUser"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 },
 {
 "Sid": "AllowManageOwnAccessKeys",
 "Effect": "Allow",
 "Action": [
 "iam:CreateAccessKey",
 "iam:DeleteAccessKey",
 "iam:ListAccessKeys",
 "iam:UpdateAccessKey"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 },
 {
 "Sid": "AllowManageOwnSSHPublicKeys",
 "Effect": "Allow",
 "Action": [
 "iam:DeleteSSHPublicKey",
 "iam:GetSSHPublicKey",
 "iam:ListSSHPublicKeys",
 "iam:UpdateSSHPublicKey",
 "iam:UploadSSHPublicKey"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 }
]
}

AWS: Denies access to AWS based on the requested Region
This example shows how you might create an IAM policy that denies access to any actions outside the
Regions specified using aws:RequestedRegion, except for actions in the services specified using
NotAction. This policy defines permissions for programmatic and console access. To use this policy,
replace the italicized placeholder text in the example policy with your own information. Then,
follow the directions in create a policy (p. 468) or edit a policy (p. 495).

This policy uses the NotAction element with the Deny effect, which explicitly denies access to all of
the actions not listed in the statement. Actions in the CloudFront, IAM, Route 53, and AWS Support
services should not be denied because these are popular AWS global services with a single endpoint that
is physically located in the us-east-1 Region. Because all requests to these services are made to the
us-east-1 Region, the requests would be denied without the NotAction element. Edit this element
to include actions for other AWS global services that you use, such as budgets, globalaccelerator,
importexport, organizations, or waf. Some other global services, such as AWS Chatbot and AWS
Device Farm, are global services with endpoints that are physically located in the us-west-2 region. To
learn about all of the services that have a single global endpoint, see AWS Regions and Endpoints in the
AWS General Reference. For more information about using the NotAction element with the Deny effect,
see IAM JSON policy elements: NotAction (p. 754).

Important
This policy does not allow any actions. Use this policy in combination with other policies that
allow specific actions.

{
 "Version": "2012-10-17",
 "Statement": [
 {

432

https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS Identity and Access Management User Guide
Example policies

 "Sid": "DenyAllOutsideRequestedRegions",
 "Effect": "Deny",
 "NotAction": [
 "cloudfront:*",
 "iam:*",
 "route53:*",
 "support:*"
],
 "Resource": "*",
 "Condition": {
 "StringNotEquals": {
 "aws:RequestedRegion": [
 "eu-central-1",
 "eu-west-1",
 "eu-west-2",
 "eu-west-3"
]
 }
 }
 }
]
}

AWS: Denies access to AWS based on the source IP
This example shows how you might create an IAM policy that denies access to all AWS actions in the
account when the request comes from principals outside the specified IP range. The policy is useful when
the IP addresses for your company are within the specified ranges. The policy does not deny requests
made by AWS services using the principal's credentials. This policy defines permissions for programmatic
and console access. To use this policy, replace the italicized placeholder text in the example
policy with your own information. Then, follow the directions in create a policy (p. 468) or edit a
policy (p. 495).

Be careful using negative conditions in the same policy statement as "Effect": "Deny". When you
do, the actions specified in the policy statement are explicitly denied in all conditions except for the ones
specified.

Additionally, this policy includes multiple condition keys (p. 769) that result in a logical AND. In this
policy, all AWS actions are denied when the source IP address is not in the specified range AND when an
AWS service does not make the call.

Important
This policy does not allow any actions. Use this policy in combination with other policies that
allow specific actions.

When other policies allow actions, principals can make requests from within the IP address range. An
AWS service can also make requests using the principal's credentials. When a principal makes a request
from outside the IP range, the request is denied. It is also denied if the principal performs an action that
triggers the service to use a service role or service-linked role to make a call on the principal's behalf.

For more information about using the aws:SourceIp and aws:ViaAWSService condition keys,
including information about when the aws:SourceIp key may not work in your policy, see AWS global
condition context keys (p. 812).

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Deny",
 "Action": "*",
 "Resource": "*",
 "Condition": {
 "NotIpAddress": {

433

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

AWS Identity and Access Management User Guide
Example policies

 "aws:SourceIp": [
 "192.0.2.0/24",
 "203.0.113.0/24"
]
 },
 "Bool": {"aws:ViaAWSService": "false"}
 }
 }
}

AWS Data Pipeline: Denies access to DataPipeline pipelines that
a user did not create
This example shows how you might create an IAM policy that denies access to pipelines that a user did
not create. If the value of the PipelineCreator field matches the IAM user name, then the specified
actions are not denied. This policy grants the permissions necessary to complete this action from the
AWS API or AWS CLI only.

Important
This policy does not allow any actions. Use this policy in combination with other policies that
allow specific actions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ExplicitDenyIfNotTheOwner",
 "Effect": "Deny",
 "Action": [
 "datapipeline:ActivatePipeline",
 "datapipeline:AddTags",
 "datapipeline:DeactivatePipeline",
 "datapipeline:DeletePipeline",
 "datapipeline:DescribeObjects",
 "datapipeline:EvaluateExpression",
 "datapipeline:GetPipelineDefinition",
 "datapipeline:PollForTask",
 "datapipeline:PutPipelineDefinition",
 "datapipeline:QueryObjects",
 "datapipeline:RemoveTags",
 "datapipeline:ReportTaskProgress",
 "datapipeline:ReportTaskRunnerHeartbeat",
 "datapipeline:SetStatus",
 "datapipeline:SetTaskStatus",
 "datapipeline:ValidatePipelineDefinition"
],
 "Resource": ["*"],
 "Condition": {
 "StringNotEquals": {"datapipeline:PipelineCreator": "${aws:userid}"}
 }
 }
]
}

Amazon DynamoDB: Allows access to a specific table
This example shows how you might create an IAM policy that allows full access to the MyTable
DynamoDB table. This policy grants the permissions necessary to complete this action from the AWS
API or AWS CLI only. To use this policy, replace the italicized placeholder text in the example
policy with your own information. Then, follow the directions in create a policy (p. 468) or edit a
policy (p. 495).

434

AWS Identity and Access Management User Guide
Example policies

Important
This policy allows all actions that can be performed on a DynamoDB table. To review these
actions, see DynamoDB API Permissions: Actions, Resources, and Conditions Reference in
the Amazon DynamoDB Developer Guide. You could provide the same permissions by listing
each individual action. However, if you use the wildcard (*) in the Action element, such as
"dynamodb:List*", then you don't have to update your policy if DynamoDB adds a new List
action.

This policy allows actions only on DynamoDB tables that exist with the specified name.
To allow your users Read access to everything in DynamoDB, you can also attach the
AmazonDynamoDBReadOnlyAccess AWS managed policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ListAndDescribe",
 "Effect": "Allow",
 "Action": [
 "dynamodb:List*",
 "dynamodb:DescribeReservedCapacity*",
 "dynamodb:DescribeLimits",
 "dynamodb:DescribeTimeToLive"
],
 "Resource": "*"
 },
 {
 "Sid": "SpecificTable",
 "Effect": "Allow",
 "Action": [
 "dynamodb:BatchGet*",
 "dynamodb:DescribeStream",
 "dynamodb:DescribeTable",
 "dynamodb:Get*",
 "dynamodb:Query",
 "dynamodb:Scan",
 "dynamodb:BatchWrite*",
 "dynamodb:CreateTable",
 "dynamodb:Delete*",
 "dynamodb:Update*",
 "dynamodb:PutItem"
],
 "Resource": "arn:aws:dynamodb:*:*:table/MyTable"
 }
]
}

Amazon DynamoDB: Allows access to specific attributes
This example shows how you might create an IAM policy that allows access to the specific DynamoDB
attributes. This policy grants the permissions necessary to complete this action from the AWS API or AWS
CLI only. To use this policy, replace the italicized placeholder text in the example policy with
your own information. Then, follow the directions in create a policy (p. 468) or edit a policy (p. 495).

The dynamodb:Select requirement prevents the API action from returning any attributes that aren't
allowed, such as from an index projection. To learn more about DynamoDB condition keys, see Specifying
Conditions: Using Condition Keys in the Amazon DynamoDB Developer Guide. To learn about using
multiple conditions or multiple condition keys within the Condition block of an IAM policy, see Multiple
values in a condition (p. 760).

{

435

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/api-permissions-reference.html
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonDynamoDBReadOnlyAccess
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/specifying-conditions.html#FGAC_DDB.ConditionKeys
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/specifying-conditions.html#FGAC_DDB.ConditionKeys

AWS Identity and Access Management User Guide
Example policies

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:BatchGetItem",
 "dynamodb:Query",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem",
 "dynamodb:BatchWriteItem"
],
 "Resource": ["arn:aws:dynamodb:*:*:table/table-name"],
 "Condition": {
 "ForAllValues:StringEquals": {
 "dynamodb:Attributes": [
 "column-name-1",
 "column-name-2",
 "column-name-3"
]
 },
 "StringEqualsIfExists": {"dynamodb:Select": "SPECIFIC_ATTRIBUTES"}
 }
 }
]
}

Amazon DynamoDB: Allows item-level access to DynamoDB
based on an Amazon Cognito ID
This example shows how you might create an IAM policy that allows item-level access to the MyTable
DynamoDB table based on an Amazon Cognito ID. This policy grants the permissions necessary to
complete this action from the AWS API or AWS CLI only. To use this policy, replace the italicized
placeholder text in the example policy with your own information. Then, follow the directions in
create a policy (p. 468) or edit a policy (p. 495).

To use this policy, you must structure your DynamoDB table so the Amazon Cognito user ID is the
partition key. For more information, see Creating a Table in the Amazon DynamoDB Developer Guide.

To learn more about DynamoDB condition keys, see Specifying Conditions: Using Condition Keys in the
Amazon DynamoDB Developer Guide.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:DeleteItem",
 "dynamodb:GetItem",
 "dynamodb:PutItem",
 "dynamodb:Query",
 "dynamodb:UpdateItem"
],
 "Resource": ["arn:aws:dynamodb:*:*:table/MyTable"],
 "Condition": {
 "ForAllValues:StringEquals": {
 "dynamodb:LeadingKeys": ["${cognito-identity.amazonaws.com:sub}"]
 }
 }
 }

436

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/WorkingWithTables.Basics.html#WorkingWithTables.Basics.CreateTable
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/specifying-conditions.html#FGAC_DDB.ConditionKeys

AWS Identity and Access Management User Guide
Example policies

]
}

Amazon EC2: Attach or detach volumes to an EC2 instance
This example shows how you might create an IAM policy that allows EBS volume owners to attach or
detach volumes to the specified EC2 instance. The instance is specified with an ARN in the Condition
element. This policy grants the permissions necessary to complete this action from the AWS API or AWS
CLI only. To use this policy, replace the italicized placeholder text in the example policy with
your own information. Then, follow the directions in create a policy (p. 468) or edit a policy (p. 495).

Amazon EC2 instances can run AWS commands with permissions granted by an AWS service role for an
EC2 instance (p. 169) that is attached to the instance profile. You can attach this policy to the role, or add
this statement to an existing policy. Only the instance identified by instance-id can attach or detach
volumes to instances in the account, including its own. Other statement elements that might exist in
a larger policy are not impacted by the restriction of this one statement. For more information about
creating IAM policies to control access to Amazon EC2 resources, see Controlling Access to Amazon EC2
Resources in the Amazon EC2 User Guide for Linux Instances.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:AttachVolume",
 "ec2:DetachVolume"
],
 "Resource": [
 "arn:aws:ec2:*:*:volume/*",
 "arn:aws:ec2:*:*:instance/*"
],
 "Condition": {
 "ArnEquals": {"ec2:SourceInstanceARN": "arn:aws:ec2:*:*:instance/instance-
id"}
 }
 }
]
}

Amazon EC2: Attach or detach Amazon EBS volumes to EC2
instances based on tags
This example shows how you might create an IAM policy that allows EBS volume owners to attach
or detach their EBS volumes defined using the tag VolumeUser to EC2 instances that are tagged
as development instances (Department=Dev). This policy grants the permissions necessary to
complete this action from the AWS API or AWS CLI only. To use this policy, replace the italicized
placeholder text in the example policy with your own information. Then, follow the directions in
create a policy (p. 468) or edit a policy (p. 495).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:AttachVolume",
 "ec2:DetachVolume"
],

437

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/UsingIAM.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/UsingIAM.html

AWS Identity and Access Management User Guide
Example policies

 "Resource": "arn:aws:ec2:*:*:instance/*",
 "Condition": {
 "StringEquals": {"aws:ResourceTag/Department": "Development"}
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:AttachVolume",
 "ec2:DetachVolume"
],
 "Resource": "arn:aws:ec2:*:*:volume/*",
 "Condition": {
 "StringEquals": {"aws:ResourceTag/VolumeUser": "${aws:username}"}
 }
 }
]
}

Amazon EC2: Allows launching EC2 instances in a specific
subnet, programmatically and in the console
This example shows how you might create an IAM policy that allows listing information for all
EC2 objects and launching EC2 instances in a specific subnet. This policy defines permissions for
programmatic and console access. To use this policy, replace the italicized placeholder text in
the example policy with your own information. Then, follow the directions in create a policy (p. 468) or
edit a policy (p. 495).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:Describe*",
 "ec2:GetConsole*"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "ec2:RunInstances",
 "Resource": [
 "arn:aws:ec2:*:*:subnet/subnet-subnet-id",
 "arn:aws:ec2:*:*:network-interface/*",
 "arn:aws:ec2:*:*:instance/*",
 "arn:aws:ec2:*:*:volume/*",
 "arn:aws:ec2:*::image/ami-*",
 "arn:aws:ec2:*:*:key-pair/*",
 "arn:aws:ec2:*:*:security-group/*"
]
 }
]
}

Amazon EC2: Allows managing EC2 security groups associated
with a specific VPC, programmatically and in the console
This example shows how you might create an IAM policy that allows managing Amazon EC2 security
groups associated with a specific virtual private cloud (VPC). This policy defines permissions for

438

AWS Identity and Access Management User Guide
Example policies

programmatic and console access. To use this policy, replace the italicized placeholder text in
the example policy with your own information. Then, follow the directions in create a policy (p. 468) or
edit a policy (p. 495).

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSecurityGroupRules",
 "ec2:DescribeTags"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:AuthorizeSecurityGroupIngress",
 "ec2:RevokeSecurityGroupIngress",
 "ec2:AuthorizeSecurityGroupEgress",
 "ec2:RevokeSecurityGroupEgress",
 "ec2:ModifySecurityGroupRules",
 "ec2:UpdateSecurityGroupRuleDescriptionsIngress",
 "ec2:UpdateSecurityGroupRuleDescriptionsEgress"
],
 "Resource": [
 "arn:aws:ec2:region:111122223333:security-group/*"
],
 "Condition": {
 "StringEquals": {
 "aws:Department": "Test"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:ModifySecurityGroupRules"
],
 "Resource": [
 "arn:aws:ec2:region:111122223333:security-group-rule/*"
]
 }
]
}

Amazon EC2: Allows starting or stopping EC2 instances a user
has tagged, programmatically and in the console
This example shows how you might create an IAM policy that allows an IAM user to start or stop EC2
instances, but only if the instance tag Owner has the value of that user's user name. This policy defines
permissions for programmatic and console access.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:StartInstances",
 "ec2:StopInstances"

439

AWS Identity and Access Management User Guide
Example policies

],
 "Resource": "arn:aws:ec2:*:*:instance/*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Owner": "${aws:username}"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "ec2:DescribeInstances",
 "Resource": "*"
 }
]
}

EC2: Start or stop instances based on tags
This example shows how you might create an IAM policy that allows starting or stopping instances with
the tag key–value pair Project = DataAnalytics, but only by principals with the tag key–value
pair Department = Data. This policy grants the permissions necessary to complete this action from
the AWS API or AWS CLI only. To use this policy, replace the italicized placeholder text in the
example policy with your own information. Then, follow the directions in create a policy (p. 468) or edit
a policy (p. 495).

The condition in the policy returns true if both parts of the condition are true. The instance must have
the Project=DataAnalytics tag. In addition, the IAM principal (user or role) making the request must
have the Department=Data tag.

Note
As a best practice, attach policies with the aws:PrincipalTag condition key to IAM groups, for
the case where some users might have the specified tag and some might not.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "StartStopIfTags",
 "Effect": "Allow",
 "Action": [
 "ec2:StartInstances",
 "ec2:StopInstances",
 "ec2:DescribeTags"
],
 "Resource": "arn:aws:ec2:region:account-id:instance/*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Project": "DataAnalytics",
 "aws:PrincipalTag/Department": "Data"
 }
 }
 }
]
}

EC2: Start or stop instances based on matching principal and
resource tags
This example shows how you might create an IAM policy that allows a principal to start or stop an
Amazon EC2 instance when the instance's resource tag and the principal's tag have the same value for

440

AWS Identity and Access Management User Guide
Example policies

the tag key CostCenter. This policy grants the permissions necessary to complete this action from
the AWS API or AWS CLI only. To use this policy, replace the italicized placeholder text in the
example policy with your own information. Then, follow the directions in create a policy (p. 468) or edit
a policy (p. 495).

Note
As a best practice, attach policies with the aws:PrincipalTag condition key to IAM groups, for
the case where some users might have the specified tag and some might not.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "ec2:startInstances",
 "ec2:stopInstances"
],
 "Resource": "*",
 "Condition": {"StringEquals":
 {"aws:ResourceTag/CostCenter": "${aws:PrincipalTag/CostCenter}"}}
 }
}

Amazon EC2: Allows full EC2 access within a specific Region,
programmatically and in the console
This example shows how you might create an IAM policy that allows full EC2 access within a specific
Region. This policy defines permissions for programmatic and console access. To use this policy, replace
the italicized placeholder text in the example policy with your own information. Then, follow
the directions in create a policy (p. 468) or edit a policy (p. 495). For a list of Region codes, see
Available Regions in the Amazon EC2 User Guide.

Alternatively, you can use the global condition key aws:RequestedRegion, which is supported by all
Amazon EC2 API actions. For more information, see Example: Restricting access to a specific Region in
the Amazon EC2 User Guide.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "ec2:*",
 "Resource": "*",
 "Effect": "Allow",
 "Condition": {
 "StringEquals": {
 "ec2:Region": "us-east-2"
 }
 }
 }
]
}

Amazon EC2: Allows starting or stopping an EC2 instance
and modifying a security group, programmatically and in the
console
This example shows how you might create an IAM policy that allows starting or stopping a specific EC2
instance and modifying a specific security group. This policy defines permissions for programmatic

441

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-available-regions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-requestedregion
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ExamplePolicies_EC2.html#iam-example-region

AWS Identity and Access Management User Guide
Example policies

and console access. To use this policy, replace the italicized placeholder text in the example
policy with your own information. Then, follow the directions in create a policy (p. 468) or edit a
policy (p. 495).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "ec2:DescribeInstances",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeSecurityGroupReferences",
 "ec2:DescribeStaleSecurityGroups"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Action": [
 "ec2:AuthorizeSecurityGroupEgress",
 "ec2:AuthorizeSecurityGroupIngress",
 "ec2:RevokeSecurityGroupEgress",
 "ec2:RevokeSecurityGroupIngress",
 "ec2:StartInstances",
 "ec2:StopInstances"
],
 "Resource": [
 "arn:aws:ec2:*:*:instance/i-instance-id",
 "arn:aws:ec2:*:*:security-group/sg-security-group-id"
],
 "Effect": "Allow"
 }
]
}

Amazon EC2: Requires MFA (GetSessionToken) for specific EC2
operations

This example shows how you might create an IAM policy that allows full access to all AWS API operations
in Amazon EC2. However, it explicitly denies access to StopInstances and TerminateInstances API
operations if the user is not authenticated using multi-factor authentication (MFA) (p. 110). To do this
programmatically, the user must include optional SerialNumber and TokenCode values while calling
the GetSessionToken operation. This operation returns temporary credentials that were authenticated
using MFA. To learn more about GetSessionToken, see GetSessionToken—temporary credentials for users
in untrusted environments (p. 331).

What does this policy do?

• The AllowAllActionsForEC2 statement allows all Amazon EC2 actions.

• The DenyStopAndTerminateWhenMFAIsNotPresent statement denies the StopInstances and
TerminateInstances actions when the MFA context is missing. This means that the actions are
denied when the multi-factor authentication context is missing (meaning MFA was not used). A deny
overrides the allow.

Note
The condition check for MultiFactorAuthPresent in the Deny statement should not be a
{"Bool":{"aws:MultiFactorAuthPresent":false}} because that key is not present
and cannot be evaluated when MFA is not used. So instead, use the BoolIfExists check to

442

https://docs.aws.amazon.com/STS/latest/APIReference/API_GetSessionToken.html

AWS Identity and Access Management User Guide
Example policies

see whether the key is present before checking the value. For more information, see ...IfExists
condition operators (p. 767).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAllActionsForEC2",
 "Effect": "Allow",
 "Action": "ec2:*",
 "Resource": "*"
 },
 {
 "Sid": "DenyStopAndTerminateWhenMFAIsNotPresent",
 "Effect": "Deny",
 "Action": [
 "ec2:StopInstances",
 "ec2:TerminateInstances"
],
 "Resource": "*",
 "Condition": {
 "BoolIfExists": {"aws:MultiFactorAuthPresent": false}
 }
 }
]
}

Amazon EC2: Limits terminating EC2 instances to an IP address
range
This example shows how you might create an IAM policy that limits EC2 instances by allowing the action,
but explicitly denying access when the request comes from outside the specified IP range. The policy is
useful when the IP addresses for your company are within the specified ranges. This policy grants the
permissions necessary to complete this action from the AWS API or AWS CLI only. To use this policy,
replace the italicized placeholder text in the example policy with your own information. Then,
follow the directions in create a policy (p. 468) or edit a policy (p. 495).

If this policy is used in combination with other policies that allow the ec2:TerminateInstances
action (such as the AmazonEC2FullAccess AWS managed policy), then access is denied. This is because an
explicit deny statement takes precedence over allow statements. For more information, see the section
called “Determining whether a request is allowed or denied within an account” (p. 787).

Important
The aws:SourceIp condition key denies access to an AWS service, such as AWS
CloudFormation, that makes calls on your behalf. For more information about using the
aws:SourceIp condition key, see AWS global condition context keys (p. 812).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["ec2:TerminateInstances"],
 "Resource": ["*"]
 },
 {
 "Effect": "Deny",
 "Action": ["ec2:TerminateInstances"],
 "Condition": {
 "NotIpAddress": {

443

https://aws-iam-console-beta-dev2.integ.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonEC2FullAccess

AWS Identity and Access Management User Guide
Example policies

 "aws:SourceIp": [
 "192.0.2.0/24",
 "203.0.113.0/24"
]
 }
 },
 "Resource": ["*"]
 }
]
}

IAM: Access the policy simulator API

This example shows how you might create an IAM policy that allows using the policy simulator API for
policies attached to a user, group, or role in the current AWS account. This policy also allows access to
simulate less sensitive policies passed to the API as strings. This policy grants the permissions necessary
to complete this action from the AWS API or AWS CLI only.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "iam:GetContextKeysForCustomPolicy",
 "iam:GetContextKeysForPrincipalPolicy",
 "iam:SimulateCustomPolicy",
 "iam:SimulatePrincipalPolicy"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

Note
To allow a user to access the policy simulator console to simulate policies attached to
a user, group, or role in the current AWS account, see IAM: Access the policy simulator
console (p. 444).

IAM: Access the policy simulator console

This example shows how you might create an IAM policy that allows using the policy simulator console
for policies attached to a user, group, or role in the current AWS account. This policy grants the
permissions necessary to complete this action from the AWS API or AWS CLI only.

You can access the IAM Policy Simulator console at: https://policysim.aws.amazon.com/

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "iam:GetGroup",
 "iam:GetGroupPolicy",
 "iam:GetPolicy",
 "iam:GetPolicyVersion",
 "iam:GetRole",
 "iam:GetRolePolicy",
 "iam:GetUser",

444

https://policysim.aws.amazon.com/

AWS Identity and Access Management User Guide
Example policies

 "iam:GetUserPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListAttachedRolePolicies",
 "iam:ListAttachedUserPolicies",
 "iam:ListGroups",
 "iam:ListGroupPolicies",
 "iam:ListGroupsForUser",
 "iam:ListRolePolicies",
 "iam:ListRoles",
 "iam:ListUserPolicies",
 "iam:ListUsers"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

IAM: Assume roles that have a specific tag
This example shows how you might create an IAM policy that allows an IAM user to assume roles with
the tag key-value pair Project = ExampleCorpABC. This policy grants the permissions necessary to
complete this action from the AWS API or AWS CLI only. To use this policy, replace the italicized
placeholder text in the example policy with your own information. Then, follow the directions in
create a policy (p. 468) or edit a policy (p. 495).

If a role with this tag exists in the same account as the user, then the user can assume that role. If a role
with this tag exists in an account other than the user's, it requires additional permissions. The cross-
account role's trust policy must also allow the user or all members of the user's account to assume the
role. For information about using roles for cross-account access, see Providing access to an IAM user in
another AWS account that you own (p. 172).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AssumeTaggedRole",
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "*",
 "Condition": {
 "StringEquals": {"iam:ResourceTag/Project": "ExampleCorpABC"}
 }
 }
]
}

IAM: Allows and denies access to multiple services
programmatically and in the console
This example shows how you might create an IAM policy that allows full access to several services and
limited self-managing access in IAM. It also denies access to the Amazon S3 logs bucket or the Amazon
EC2 i-1234567890abcdef0 instance. This policy defines permissions for programmatic and console
access. To use this policy, replace the italicized placeholder text in the example policy with your
own information. Then, follow the directions in create a policy (p. 468) or edit a policy (p. 495).

Warning
This policy allows full access to every action and resource in multiple services. This policy should
be applied only to trusted administrators.

445

AWS Identity and Access Management User Guide
Example policies

You can use this policy as a permissions boundary to define the maximum permissions that an identity-
based policy can grant to an IAM user. For more information, see Delegating responsibility to others
using permissions boundaries (p. 399). When the policy is used as a permissions boundary for a user,
the statements define the following boundaries:

• The AllowServices statement allows full access to the specified AWS services. This means that the
user's actions in these services are limited only by the permissions policies that are attached to the
user.

• The AllowIAMConsoleForCredentials statement allows access to list all IAM users. This access
is necessary to navigate the Users page in the AWS Management Console. It also allows viewing the
password requirements for the account, which is necessary for the user to change their own password.

• The AllowManageOwnPasswordAndAccessKeys statement allows the users manage only their own
console password and programmatic access keys. This is important because if another policy gives a
user full IAM access, that user could then change their own or other users' permissions. This statement
prevents that from happening.

• The DenyS3Logs statement explicitly denies access to the logs bucket. This policy enforces company
restrictions on the user.

• The DenyEC2Production statement explicitly denies access to the i-1234567890abcdef0 instance.

This policy does not allow access to other services or actions. When the policy is used as a permissions
boundary on a user, even if other policies attached to the user allow those actions, AWS denies the
request.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowServices",
 "Effect": "Allow",
 "Action": [
 "s3:*",
 "cloudwatch:*",
 "ec2:*"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowIAMConsoleForCredentials",
 "Effect": "Allow",
 "Action": [
 "iam:ListUsers",
 "iam:GetAccountPasswordPolicy"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowManageOwnPasswordAndAccessKeys",
 "Effect": "Allow",
 "Action": [
 "iam:*AccessKey*",
 "iam:ChangePassword",
 "iam:GetUser",
 "iam:*LoginProfile*"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "DenyS3Logs",
 "Effect": "Deny",
 "Action": "s3:*",

446

AWS Identity and Access Management User Guide
Example policies

 "Resource": [
 "arn:aws:s3:::logs",
 "arn:aws:s3:::logs/*"
]
 },
 {
 "Sid": "DenyEC2Production",
 "Effect": "Deny",
 "Action": "ec2:*",
 "Resource": "arn:aws:ec2:*:*:instance/i-1234567890abcdef0"
 }
]
}

IAM: Add a specific tag to a user with a specific tag
This example shows how you might create an IAM policy that allows adding the tag key Department
with the tag values Marketing, Development, or QualityAssurance to an IAM user. That user must
already include the tag key–value pair JobFunction = manager. You can use this policy to require that
a manager belong to only one of three departments. This policy defines permissions for programmatic
and console access. To use this policy, replace the italicized placeholder text in the example
policy with your own information. Then, follow the directions in create a policy (p. 468) or edit a
policy (p. 495).

The ListTagsForAllUsers statement allows the viewing of tags for all users in your account.

The first condition in the TagManagerWithSpecificDepartment statement uses the StringEquals
condition operator. The condition returns true if both parts of the condition are true. The user to be
tagged must already have the JobFunction=Manager tag. The request must include the Department
tag key with one of the listed tag values.

The second condition uses the ForAllValues:StringEquals condition operator. The condition
returns true if all of the tag keys in the request match the key in the policy. This means that the only
tag key in the request must be Department. For more information about using ForAllValues, see
Creating a condition with multiple keys or values (p. 769).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ListTagsForAllUsers",
 "Effect": "Allow",
 "Action": [
 "iam:ListUserTags",
 "iam:ListUsers"
],
 "Resource": "*"
 },
 {
 "Sid": "TagManagerWithSpecificDepartment",
 "Effect": "Allow",
 "Action": "iam:TagUser",
 "Resource": "*",
 "Condition": {"StringEquals": {
 "iam:ResourceTag/JobFunction": "Manager",
 "aws:RequestTag/Department": [
 "Marketing",
 "Development",
 "QualityAssurance"
]
 },

447

AWS Identity and Access Management User Guide
Example policies

 "ForAllValues:StringEquals": {"aws:TagKeys": "Department"}
 }
 }
]
}

IAM: Add a specific tag with specific values
This example shows how you might create an IAM policy that allows adding only the tag key
CostCenter and either the tag value A-123 or the tag value B-456 to any IAM user or role. You can use
this policy to limit tagging to a specific tag key and set of tag values. This policy defines permissions for
programmatic and console access. To use this policy, replace the italicized placeholder text in
the example policy with your own information. Then, follow the directions in create a policy (p. 468) or
edit a policy (p. 495).

The ConsoleDisplay statement allows the viewing of tags for all users and roles in your account.

The first condition in the AddTag statement uses the StringEquals condition operator. The condition
returns true if the request includes the CostCenter tag key with one of the listed tag values.

The second condition uses the ForAllValues:StringEquals condition operator. The condition
returns true if all of the tag keys in the request match the key in the policy. This means that the only
tag key in the request must be CostCenter. For more information about using ForAllValues, see
Creating a condition with multiple keys or values (p. 769).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ConsoleDisplay",
 "Effect": "Allow",
 "Action": [
 "iam:GetRole",
 "iam:GetUser",
 "iam:ListRoles",
 "iam:ListRoleTags",
 "iam:ListUsers",
 "iam:ListUserTags"
],
 "Resource": "*"
 },
 {
 "Sid": "AddTag",
 "Effect": "Allow",
 "Action": [
 "iam:TagUser",
 "iam:TagRole"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/CostCenter": [
 "A-123",
 "B-456"
]
 },
 "ForAllValues:StringEquals": {"aws:TagKeys": "CostCenter"}
 }
 }
]
}

448

AWS Identity and Access Management User Guide
Example policies

IAM: Create new users only with specific tags
This example shows how you might create an IAM policy that allows the creation of IAM users but only
with one or both of the Department and JobFunction tag keys. The Department tag key must have
either the Development or QualityAssurance tag value. The JobFunction tag key must have
the Employee tag value. You can use this policy to require that new users have a specific job function
and department. This policy grants the permissions necessary to complete this action from the AWS
API or AWS CLI only. To use this policy, replace the italicized placeholder text in the example
policy with your own information. Then, follow the directions in create a policy (p. 468) or edit a
policy (p. 495).

The first condition in the statement uses the StringEqualsIfExists condition operator. If a tag
with the Department or JobFunction key is present in the request, then the tag must have the
specified value. If neither key is present, then this condition is evaluated as true. The only way that the
condition evaluates as false is if one of the specified condition keys is present in the request, but has a
different value than those allowed. For more information about using IfExists, see ...IfExists condition
operators (p. 767).

The second condition uses the ForAllValues:StringEquals condition operator. The condition
returns true if there's a match between every one of the specified tag keys specified in the request,
and at least one value in the policy. This means that all of the tags in the request must be in this list.
However, the request can include only one of the tags in the list. For example, you can create an IAM
user with only the Department=QualityAssurance tag. However, you cannot create an IAM user
with the JobFunction=employee tag and the Project=core tag. For more information about using
ForAllValues, see Creating a condition with multiple keys or values (p. 769).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "TagUsersWithOnlyTheseTags",
 "Effect": "Allow",
 "Action": [
 "iam:CreateUser",
 "iam:TagUser"
],
 "Resource": "*",
 "Condition": {
 "StringEqualsIfExists": {
 "aws:RequestTag/Department": [
 "Development",
 "QualityAssurance"
],
 "aws:RequestTag/JobFunction": "Employee"
 },
 "ForAllValues:StringEquals": {
 "aws:TagKeys": [
 "Department",
 "JobFunction"
]
 }
 }
 }
]
}

IAM: Generate and retrieve IAM credential reports
This example shows how you might create an IAM policy that allows users to generate and download
a report that lists all IAM users in their AWS account. The report includes the status of the users'

449

AWS Identity and Access Management User Guide
Example policies

credentials, including passwords, access keys, MFA devices, and signing certificates. This policy grants the
permissions necessary to complete this action from the AWS API or AWS CLI only.

For more information about credential reports, see Getting credential reports for your AWS
account (p. 148).

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "iam:GenerateCredentialReport",
 "iam:GetCredentialReport"
],
 "Resource": "*"
 }
}

IAM: Allows managing a group's membership programmatically
and in the console
This example shows how you might create an IAM policy that allows updating the membership of the
group called MarketingTeam. This policy defines permissions for programmatic and console access.
To use this policy, replace the italicized placeholder text in the example policy with your own
information. Then, follow the directions in create a policy (p. 468) or edit a policy (p. 495).

What does this policy do?

• The ViewGroups statement allows the user to list all the users and groups in the AWS Management
Console. It also allows the user to view basic information about the users in the account. These
permissions must be in their own statement because they do not support or do not need to specify a
resource ARN. Instead the permissions specify "Resource" : "*".

• The ViewEditThisGroup statement allows the user to view information about the MarketingTeam
group, and to add and remove users from that group.

This policy does not allow the user to view or edit the permissions of the users or the MarketingTeam
group.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewGroups",
 "Effect": "Allow",
 "Action": [
 "iam:ListGroups",
 "iam:ListUsers",
 "iam:GetUser",
 "iam:ListGroupsForUser"
],
 "Resource": "*"
 },
 {
 "Sid": "ViewEditThisGroup",
 "Effect": "Allow",
 "Action": [
 "iam:AddUserToGroup",
 "iam:RemoveUserFromGroup",
 "iam:GetGroup"

450

AWS Identity and Access Management User Guide
Example policies

],
 "Resource": "arn:aws:iam::*:group/MarketingTeam"
 }
]
}

IAM: Manage a specific tag
This example shows how you might create an IAM policy that allows adding and removing the IAM tag
with the tag key Department from IAM entities (users and roles). This policy does not limit the value
of the Department tag. This policy grants the permissions necessary to complete this action from
the AWS API or AWS CLI only. To use this policy, replace the italicized placeholder text in the
example policy with your own information. Then, follow the directions in create a policy (p. 468) or edit
a policy (p. 495).

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "iam:TagUser",
 "iam:TagRole",
 "iam:UntagUser",
 "iam:UntagRole"

],
 "Resource": "*",
 "Condition": {"ForAllValues:StringEquals": {"aws:TagKeys": "Department"}}
 }
}

IAM: Pass an IAM role to a specific AWS service
This example shows how you might create an IAM policy that allows passing any IAM service role to the
Amazon CloudWatch service. This policy grants the permissions necessary to complete this action from
the AWS API or AWS CLI only. To use this policy, replace the italicized placeholder text in the
example policy with your own information. Then, follow the directions in create a policy (p. 468) or edit
a policy (p. 495).

A service role is an IAM role that specifies an AWS service as the principal that can assume the
role. This allows the service to assume the role and access resources in other services on your
behalf. To allow Amazon CloudWatch to assume the role that you pass, you must specify the
cloudwatch.amazonaws.com service principal as the principal in the trust policy of your role.
The service principal is defined by the service. To learn the service principal for a service, see the
documentation for that service. For some services, see AWS services that work with IAM (p. 725) and
look for the services that have Yes in the Service-Linked Role column. Choose a Yes with a link to view
the service-linked role documentation for that service. Search for amazonaws.com to view the service
principal.

To learn more about passing a service role to a service, see Granting a user permissions to pass a role to
an AWS service (p. 257).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",

451

AWS Identity and Access Management User Guide
Example policies

 "Resource": "*",
 "Condition": {
 "StringEquals": {"iam:PassedToService": "cloudwatch.amazonaws.com"}
 }
 }
]
}

IAM: Allows read-only access to the IAM console without
reporting
This example shows how you might create an IAM policy that allows IAM users to perform any IAM action
that begins with the string Get, List, or Generate. As users work with the console, the console makes
requests to IAM to list groups, users, roles, and policies, and to generate reports about those resources.

The asterisk acts as a wildcard. When you use iam:Get* in a policy, the resulting permissions include all
IAM actions that begin with Get, such as GetUser and GetRole. Wildcards are useful if new types of
entities are added to IAM in the future. In that case, the permissions granted by the policy automatically
allow the user to list and get the details about those new entities.

This policy cannot be used to generate reports or service last accessed details. For a different policy that
allows this, see IAM: Allows read-only access to the IAM console (p. 452).

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "iam:Get*",
 "iam:List*",
],
 "Resource": "*"
 }
}

IAM: Allows read-only access to the IAM console
This example shows how you might create an IAM policy that allows IAM users to perform any IAM action
that begins with the string Get, List, or Generate. As users work with the IAM console, the console
makes requests to list groups, users, roles, and policies, and to generate reports about those resources.

The asterisk acts as a wildcard. When you use iam:Get* in a policy, the resulting permissions include
all IAM actions that begin with Get, such as GetUser and GetRole. Using a wildcard is beneficial,
especially if new types of entities are added to IAM in the future. In that case, the permissions granted by
the policy automatically allow the user to list and get the details about those new entities.

Use this policy for console access that includes permissions to generate reports or service last accessed
details. For a different policy that does not allow generating actions, see IAM: Allows read-only access to
the IAM console without reporting (p. 452).

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "iam:Get*",
 "iam:List*",
 "iam:Generate*"

452

AWS Identity and Access Management User Guide
Example policies

],
 "Resource": "*"
 }
}

IAM: Allows specific IAM users to manage a group
programmatically and in the console
This example shows how you might create an IAM policy that allows specific IAM users to manage the
AllUsers group. This policy defines permissions for programmatic and console access. To use this
policy, replace the italicized placeholder text in the example policy with your own information.
Then, follow the directions in create a policy (p. 468) or edit a policy (p. 495).

What does this policy do?

• The AllowAllUsersToListAllGroups statement allows listing all groups. This is necessary for
console access. This permission must be in its own statement because it does not support a resource
ARN. Instead the permissions specify "Resource" : "*".

• The AllowAllUsersToViewAndManageThisGroup statement allows all group actions that can be
performed on the group resource type. It does not allow the ListGroupsForUser action, which can
be performed on a user resource type and not a group resource type. For more information about the
resource types that you can specify for an IAM action, see Actions, Resources, and Condition Keys for
AWS Identity and Access Management.

• The LimitGroupManagementAccessToSpecificUsers statement denies users with the specified
names access to write and permissions managment group actions. When a user specified in the policy
attempts to make changes to the group, this statement does not deny the request. That request is
allowed by the AllowAllUsersToViewAndManageThisGroup statement. If other users attempt to
perform these operations, the request is denied. You can view the IAM actions that are defined with
the Write or Permissions management access levels while creating this policy in the IAM console. To
do this, switch from the JSON tab to the Visual editor tab. For more information about access levels.
see Actions, Resources, and Condition Keys for AWS Identity and Access Management.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAllUsersToListAllGroups",
 "Effect": "Allow",
 "Action": "iam:ListGroups",
 "Resource": "*"
 },
 {
 "Sid": "AllowAllUsersToViewAndManageThisGroup",
 "Effect": "Allow",
 "Action": "iam:*Group*",
 "Resource": "arn:aws:iam::*:group/AllUsers"
 },
 {
 "Sid": "LimitGroupManagementAccessToSpecificUsers",
 "Effect": "Deny",
 "Action": [
 "iam:AddUserToGroup",
 "iam:CreateGroup",
 "iam:RemoveUserFromGroup",
 "iam:DeleteGroup",
 "iam:AttachGroupPolicy",
 "iam:UpdateGroup",
 "iam:DetachGroupPolicy",

453

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_identityandaccessmanagement.html#identityandaccessmanagement-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_identityandaccessmanagement.html#identityandaccessmanagement-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_identityandaccessmanagement.html#identityandaccessmanagement-actions-as-permissions

AWS Identity and Access Management User Guide
Example policies

 "iam:DeleteGroupPolicy",
 "iam:PutGroupPolicy"
],
 "Resource": "arn:aws:iam::*:group/AllUsers",
 "Condition": {
 "StringNotEquals": {
 "aws:username": [
 "srodriguez",
 "mjackson",
 "adesai"
]
 }
 }
 }
]
}

IAM: Allows setting the account password requirements
programmatically and in the console
This example shows how you might create an IAM policy that allows a user to view and update their
account's password requirements. The password requirements specify the complexity requirements and
mandatory rotation periods for the account members' passwords. This policy defines permissions for
programmatic and console access.

To learn how to set the account password requirements policy for your account, see Setting an account
password policy for IAM users (p. 92).

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "iam:GetAccountPasswordPolicy",
 "iam:UpdateAccountPasswordPolicy"
],
 "Resource": "*"
 }
}

IAM: Access the policy simulator API based on user path
This example shows how you might create an IAM policy that allows using the policy simulator API only
for those users that have the path Department/Development. This policy grants the permissions
necessary to complete this action from the AWS API or AWS CLI only. To use this policy, replace the
italicized placeholder text in the example policy with your own information. Then, follow the
directions in create a policy (p. 468) or edit a policy (p. 495).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "iam:GetContextKeysForPrincipalPolicy",
 "iam:SimulatePrincipalPolicy"
],
 "Effect": "Allow",
 "Resource": "arn:aws:iam::*:user/Department/Development/*"
 }

454

AWS Identity and Access Management User Guide
Example policies

]
}

Note
To create a policy that allows using the policy simulator console for those users that have the
path Department/Development, see IAM: Access the policy simulator console based on user
path (p. 455).

IAM: Access the policy simulator console based on user path

This example shows how you might create an IAM policy that allows using the policy simulator console
only for those users that have the path Department/Development. This policy grants the permissions
necessary to complete this action from the AWS API or AWS CLI only. To use this policy, replace the
italicized placeholder text in the example policy with your own information. Then, follow the
directions in create a policy (p. 468) or edit a policy (p. 495).

You can access the IAM Policy Simulator at: https://policysim.aws.amazon.com/

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "iam:GetPolicy",
 "iam:GetUserPolicy"
],
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Action": [
 "iam:GetUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListGroupsForUser",
 "iam:ListUserPolicies",
 "iam:ListUsers"
],
 "Effect": "Allow",
 "Resource": "arn:aws:iam::*:user/Department/Development/*"
 }
]
}

IAM: Allows IAM users to self-manage an MFA device

This example shows how you might create an IAM policy that allows IAM users to self-manage their
multi-factor authentication (MFA) (p. 110) device. This policy grants the permissions necessary to
complete this action from the AWS API or AWS CLI only.

Note
If you add these permissions for a user that is signed in to AWS, they might need to sign out and
back in to see these changes.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowListActions",
 "Effect": "Allow",

455

https://policysim.aws.amazon.com/

AWS Identity and Access Management User Guide
Example policies

 "Action": [
 "iam:ListUsers",
 "iam:ListVirtualMFADevices"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowIndividualUserToListOnlyTheirOwnMFA",
 "Effect": "Allow",
 "Action": [
 "iam:ListMFADevices"
],
 "Resource": [
 "arn:aws:iam::*:mfa/*",
 "arn:aws:iam::*:user/${aws:username}"
]
 },
 {
 "Sid": "AllowIndividualUserToManageTheirOwnMFA",
 "Effect": "Allow",
 "Action": [
 "iam:CreateVirtualMFADevice",
 "iam:DeleteVirtualMFADevice",
 "iam:EnableMFADevice",
 "iam:ResyncMFADevice"
],
 "Resource": [
 "arn:aws:iam::*:mfa/${aws:username}",
 "arn:aws:iam::*:user/${aws:username}"
]
 },
 {
 "Sid": "AllowIndividualUserToDeactivateOnlyTheirOwnMFAOnlyWhenUsingMFA",
 "Effect": "Allow",
 "Action": [
 "iam:DeactivateMFADevice"
],
 "Resource": [
 "arn:aws:iam::*:mfa/${aws:username}",
 "arn:aws:iam::*:user/${aws:username}"
],
 "Condition": {
 "Bool": {
 "aws:MultiFactorAuthPresent": "true"
 }
 }
 },
 {
 "Sid": "BlockMostAccessUnlessSignedInWithMFA",
 "Effect": "Deny",
 "NotAction": [
 "iam:CreateVirtualMFADevice",
 "iam:EnableMFADevice",
 "iam:ListMFADevices",
 "iam:ListUsers",
 "iam:ListVirtualMFADevices",
 "iam:ResyncMFADevice"
],
 "Resource": "*",
 "Condition": {
 "BoolIfExists": {
 "aws:MultiFactorAuthPresent": "false"
 }
 }
 }
]

456

AWS Identity and Access Management User Guide
Example policies

}

IAM: Allows IAM users to rotate their own credentials
programmatically and in the console
This example shows how you might create an IAM policy that allows IAM users to rotate their own access
keys, signing certificates, service specific credentials, and passwords. This policy defines permissions for
programmatic and console access.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:ListUsers",
 "iam:GetAccountPasswordPolicy"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:*AccessKey*",
 "iam:ChangePassword",
 "iam:GetUser",
 "iam:*ServiceSpecificCredential*",
 "iam:*SigningCertificate*"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 }
]
}

To learn how a user can change their own password in the console, see the section called “How an IAM
user changes their own password” (p. 100).

IAM: View service last accessed information for an Organizations
policy
This example shows how you might create an IAM policy that allows viewing service last accessed
information for a specific Organizations policy. This policy allows retrieving data for the service
control policy (SCP) with the p-policy123 ID. The person who generates and views the report must
be authenticated using AWS Organizations management account credentials. This policy allows
the requester to retrieve the data for any Organizations entity in their organization. This policy
defines permissions for programmatic and console access. To use this policy, replace the italicized
placeholder text in the example policy with your own information. Then, follow the directions in
create a policy (p. 468) or edit a policy (p. 495).

For important information about last accessed information, including permissions required,
troubleshooting, and supported Regions, see Refining permissions in AWS using last accessed
information (p. 502).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowOrgsReadOnlyAndIamGetReport",

457

AWS Identity and Access Management User Guide
Example policies

 "Effect": "Allow",
 "Action": [
 "iam:GetOrganizationsAccessReport",
 "organizations:Describe*",
 "organizations:List*"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowGenerateReportOnlyForThePolicy",
 "Effect": "Allow",
 "Action": "iam:GenerateOrganizationsAccessReport",
 "Resource": "*",
 "Condition": {
 "StringEquals": {"iam:OrganizationsPolicyId": "p-policy123"}
 }
 }
]
}

IAM: Limits managed policies that can be applied to an IAM user,
group, or role
This example shows how you might create an IAM policy that limits customer managed and AWS
managed policies that can be applied to an IAM user, group, or role. This policy grants the permissions
necessary to complete this action from the AWS API or AWS CLI only. To use this policy, replace the
italicized placeholder text in the example policy with your own information. Then, follow the
directions in create a policy (p. 468) or edit a policy (p. 495).

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "iam:AttachUserPolicy",
 "iam:DetachUserPolicy"
],
 "Resource": "*",
 "Condition": {
 "ArnEquals": {
 "iam:PolicyARN": [
 "arn:aws:iam::*:policy/policy-name-1",
 "arn:aws:iam::*:policy/policy-name-2"
]
 }
 }
 }
}

AWS Lambda: Allows a Lambda function to access an Amazon
DynamoDB table
This example shows how you might create an IAM policy that allows read and write access to a specific
Amazon DynamoDB table. The policy also allows writing log files to CloudWatch Logs. To use this policy,
replace the italicized placeholder text in the example policy with your own information. Then,
follow the directions in create a policy (p. 468) or edit a policy (p. 495).

To use this policy, attach the policy to a Lambda service role (p. 235). A service role is a role that you
create in your account to allow a service to perform actions on your behalf. That service role must

458

AWS Identity and Access Management User Guide
Example policies

include AWS Lambda as the principal in the trust policy. For details about how to use this policy, see How
to Create an AWS IAM Policy to Grant AWS Lambda Access to an Amazon DynamoDB Table in the AWS
Security Blog.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadWriteTable",
 "Effect": "Allow",
 "Action": [
 "dynamodb:BatchGetItem",
 "dynamodb:GetItem",
 "dynamodb:Query",
 "dynamodb:Scan",
 "dynamodb:BatchWriteItem",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem"
],
 "Resource": "arn:aws:dynamodb:*:*:table/SampleTable"
 },
 {
 "Sid": "GetStreamRecords",
 "Effect": "Allow",
 "Action": "dynamodb:GetRecords",
 "Resource": "arn:aws:dynamodb:*:*:table/SampleTable/stream/* "
 },
 {
 "Sid": "WriteLogStreamsAndGroups",
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "*"
 },
 {
 "Sid": "CreateLogGroup",
 "Effect": "Allow",
 "Action": "logs:CreateLogGroup",
 "Resource": "*"
 }
]
}

Amazon RDS: Allows full RDS database access within a specific
Region
This example shows how you might create an IAM policy that allows full RDS database access within
a specific Region. This policy grants the permissions necessary to complete this action from the AWS
API or AWS CLI only. To use this policy, replace the italicized placeholder text in the example
policy with your own information. Then, follow the directions in create a policy (p. 468) or edit a
policy (p. 495).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "rds:*",
 "Resource": ["arn:aws:rds:region:*:*"]

459

http://aws.amazon.com/blogs/security/how-to-create-an-aws-iam-policy-to-grant-aws-lambda-access-to-an-amazon-dynamodb-table/
http://aws.amazon.com/blogs/security/how-to-create-an-aws-iam-policy-to-grant-aws-lambda-access-to-an-amazon-dynamodb-table/

AWS Identity and Access Management User Guide
Example policies

 },
 {
 "Effect": "Allow",
 "Action": ["rds:Describe*"],
 "Resource": ["*"]
 }
]
}

Amazon RDS: Allows restoring RDS databases, programmatically
and in the console
This example shows how you might create an IAM policy that allows restoring RDS databases. This policy
defines permissions for programmatic and console access.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:Describe*",
 "rds:CreateDBParameterGroup",
 "rds:CreateDBSnapshot",
 "rds:DeleteDBSnapshot",
 "rds:Describe*",
 "rds:DownloadDBLogFilePortion",
 "rds:List*",
 "rds:ModifyDBInstance",
 "rds:ModifyDBParameterGroup",
 "rds:ModifyOptionGroup",
 "rds:RebootDBInstance",
 "rds:RestoreDBInstanceFromDBSnapshot",
 "rds:RestoreDBInstanceToPointInTime"
],
 "Resource": "*"
 }
]
}

Amazon RDS: Allows tag owners full access to RDS resources
that they have tagged
This example shows how you might create an IAM policy that allows tag owners full access to RDS
resources that they have tagged. This policy grants the permissions necessary to complete this action
from the AWS API or AWS CLI only.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "rds:Describe*",
 "rds:List*"
],
 "Effect": "Allow",
 "Resource": "*"
 },
 {
 "Action": [

460

AWS Identity and Access Management User Guide
Example policies

 "rds:DeleteDBInstance",
 "rds:RebootDBInstance",
 "rds:ModifyDBInstance"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringEqualsIgnoreCase": {"rds:db-tag/Owner": "${aws:username}"}
 }
 },
 {
 "Action": [
 "rds:ModifyOptionGroup",
 "rds:DeleteOptionGroup"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringEqualsIgnoreCase": {"rds:og-tag/Owner": "${aws:username}"}
 }
 },
 {
 "Action": [
 "rds:ModifyDBParameterGroup",
 "rds:ResetDBParameterGroup"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringEqualsIgnoreCase": {"rds:pg-tag/Owner": "${aws:username}"}
 }
 },
 {
 "Action": [
 "rds:AuthorizeDBSecurityGroupIngress",
 "rds:RevokeDBSecurityGroupIngress",
 "rds:DeleteDBSecurityGroup"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringEqualsIgnoreCase": {"rds:secgrp-tag/Owner": "${aws:username}"}
 }
 },
 {
 "Action": [
 "rds:DeleteDBSnapshot",
 "rds:RestoreDBInstanceFromDBSnapshot"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringEqualsIgnoreCase": {"rds:snapshot-tag/Owner": "${aws:username}"}
 }
 },
 {
 "Action": [
 "rds:ModifyDBSubnetGroup",
 "rds:DeleteDBSubnetGroup"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringEqualsIgnoreCase": {"rds:subgrp-tag/Owner": "${aws:username}"}
 }
 },

461

AWS Identity and Access Management User Guide
Example policies

 {
 "Action": [
 "rds:ModifyEventSubscription",
 "rds:AddSourceIdentifierToSubscription",
 "rds:RemoveSourceIdentifierFromSubscription",
 "rds:DeleteEventSubscription"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringEqualsIgnoreCase": {"rds:es-tag/Owner": "${aws:username}"}
 }
 }
]
}

Amazon S3: Allows Amazon Cognito users to access objects in
their bucket
This example shows how you might create an IAM policy that allows Amazon Cognito users to access
objects in a specific S3 bucket. This policy allows access only to objects with a name that includes
cognito, the name of the application, and the federated user's ID, represented by the ${cognito-
identity.amazonaws.com:sub} variable. This policy grants the permissions necessary to complete this
action from the AWS API or AWS CLI only. To use this policy, replace the italicized placeholder
text in the example policy with your own information. Then, follow the directions in create a
policy (p. 468) or edit a policy (p. 495).

Note
The 'sub' value used in the object key is not the user's sub value in the User Pool, it is the
identity id associated with the user in the Identity Pool.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ListYourObjects",
 "Effect": "Allow",
 "Action": "s3:ListBucket",
 "Resource": ["arn:aws:s3:::bucket-name"],
 "Condition": {
 "StringLike": {
 "s3:prefix": ["cognito/application-name/${cognito-
identity.amazonaws.com:sub}"]
 }
 }
 },
 {
 "Sid": "ReadWriteDeleteYourObjects",
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:PutObject",
 "s3:DeleteObject"
],
 "Resource": [
 "arn:aws:s3:::bucket-name/cognito/application-name/${cognito-
identity.amazonaws.com:sub}",
 "arn:aws:s3:::bucket-name/cognito/application-name/${cognito-
identity.amazonaws.com:sub}/*"
]
 }
]

462

AWS Identity and Access Management User Guide
Example policies

}

Amazon Cognito provides authentication, authorization, and user management for your web and mobile
apps. Your users can sign in directly with a user name and password, or through a third party such as
Facebook, Amazon, or Google.

The two main components of Amazon Cognito are user pools and identity pools. User pools are user
directories that provide sign-up and sign-in options for your app users. Identity pools enable you to
grant your users access to other AWS services. You can use identity pools and user pools separately or
together.

For more information about Amazon Cognito, see the following:

• Amazon Cognito Identity in the AWS Mobile SDK for Android Developer Guide
• Amazon Cognito Identity in the AWS Mobile SDK for iOS Developer Guide

Amazon S3: Allows federated users access to their S3 home
directory, programmatically and in the console
This example shows how you might create an IAM policy that allows federated users to access their own
home directory bucket object in S3. The home directory is a bucket that includes a home folder and
folders for individual federated users. This policy defines permissions for programmatic and console
access. To use this policy, replace the italicized placeholder text in the example policy with your
own information. Then, follow the directions in create a policy (p. 468) or edit a policy (p. 495).

The ${aws:userid} variable in this policy resolves to role-id:specified-name. The role-id
part of the federated user ID is a unique identifier assigned to the federated user's role during creation.
For more information, see Unique identifiers (p. 718). The specified-name is the RoleSessionName
parameter passed to the AssumeRoleWithWebIdentity request when the federated user assumed
their role.

You can view the role ID using the AWS CLI command aws iam get-role --role-name
specified-name. For example, imagine that you specify the friendly name John and the
CLI returns the role ID AROAXXT2NJT7D3SIQN7Z6. In this case, the federated user ID is
AROAXXT2NJT7D3SIQN7Z6:John. This policy then allows the federated user John to access the Amazon
S3 bucket with prefix AROAXXT2NJT7D3SIQN7Z6:John.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListAllMyBuckets",
 "s3:GetBucketLocation"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:::bucket-name",
 "Condition": {
 "StringLike": {
 "s3:prefix": [
 "",
 "home/",
 "home/${aws:userid}/*"

463

https://docs.aws.amazon.com/mobile/sdkforandroid/developerguide/cognito-auth.html
https://docs.aws.amazon.com/mobile/sdkforios/developerguide/cognito-auth.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AssumeRole.html#API_AssumeRoleWithWebIdentity_RequestParameters
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AssumeRole.html#API_AssumeRoleWithWebIdentity_RequestParameters

AWS Identity and Access Management User Guide
Example policies

]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::bucket-name/home/${aws:userid}",
 "arn:aws:s3:::bucket-name/home/${aws:userid}/*"
]
 }
]
}

Amazon S3: S3 Bucket access, but production bucket denied
without recent MFA
This example shows how you might create an IAM policy that allows an Amazon S3 administrator to
access any bucket, including updating, adding, and deleting objects. However, it explicitly denies access
to the Production bucket if the user has not signed in using multi-factor authentication (MFA) (p. 110)
within the last thirty minutes. This policy grants the permissions necessary to perform this action in the
console or programmatically using the AWS CLI or AWS API. To use this policy, replace the italicized
placeholder text in the example policy with your own information. Then, follow the directions in
create a policy (p. 468) or edit a policy (p. 495).

This policy never allows programmatic access to the Production bucket using long-term user
access keys. This is accomplished using the aws:MultiFactorAuthAge condition key with the
NumericGreaterThanIfExists condition operator. This policy condition returns true if MFA is not
present or if the age of the MFA is greater than 30 minutes. In those situations, access is denied. To
access the Production bucket programmatically, the S3 administrator must use temporary credentials
that were generated in the last 30 minutes using the GetSessionToken (p. 331) API operation.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ListAllS3Buckets",
 "Effect": "Allow",
 "Action": ["s3:ListAllMyBuckets"],
 "Resource": "arn:aws:s3:::*"
 },
 {
 "Sid": "AllowBucketLevelActions",
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket",
 "s3:GetBucketLocation"
],
 "Resource": "arn:aws:s3:::*"
 },
 {
 "Sid": "AllowBucketObjectActions",
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:PutObjectAcl",
 "s3:GetObject",
 "s3:GetObjectAcl",
 "s3:DeleteObject"
],

464

AWS Identity and Access Management User Guide
Example policies

 "Resource": "arn:aws:s3:::*/*"
 },
 {
 "Sid": "RequireMFAForProductionBucket",
 "Effect": "Deny",
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::Production/*",
 "arn:aws:s3:::Production"
],
 "Condition": {
 "NumericGreaterThanIfExists": {"aws:MultiFactorAuthAge": "1800"}
 }
 }
]
}

Amazon S3: Allows IAM users access to their S3 home directory,
programmatically and in the console
This example shows how you might create an IAM policy that allows IAM users to access their own home
directory bucket object in S3. The home directory is a bucket that includes a home folder and folders for
individual users. This policy defines permissions for programmatic and console access. To use this policy,
replace the italicized placeholder text in the example policy with your own information. Then,
follow the directions in create a policy (p. 468) or edit a policy (p. 495).

This policy will not work when using IAM roles because the aws:username variable is not available
when using IAM roles. For details about principal key values, see Principal key values (p. 781).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListAllMyBuckets",
 "s3:GetBucketLocation"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:::bucket-name",
 "Condition": {
 "StringLike": {
 "s3:prefix": [
 "",
 "home/",
 "home/${aws:username}/*"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::bucket-name/home/${aws:username}",
 "arn:aws:s3:::bucket-name/home/${aws:username}/*"
]
 }

465

AWS Identity and Access Management User Guide
Example policies

]
}

Amazon S3: Limits managing to a specific S3 Bucket
This example shows how you might create an IAM policy that limits managing an S3 bucket by
allowing all S3 actions on the specific bucket, but explicitly denying access to every AWS service
except Amazon S3. This policy also denies access to actions that can't be performed on an S3 bucket,
such as s3:ListAllMyBuckets or s3:GetObject. This policy grants the permissions necessary to
complete this action from the AWS API or AWS CLI only. To use this policy, replace the italicized
placeholder text in the example policy with your own information. Then, follow the directions in
create a policy (p. 468) or edit a policy (p. 495).

If this policy is used in combination with other policies (such as the AmazonS3FullAccess or
AmazonEC2FullAccess AWS managed policies) that allow actions denied by this policy, then access is
denied. This is because an explicit deny statement takes precedence over allow statements. For more
information, see the section called “Determining whether a request is allowed or denied within an
account” (p. 787).

Warning
NotAction (p. 754) and NotResource (p. 757) are advanced policy elements that must be
used with care. This policy denies access to every AWS service except Amazon S3. If you attach
this policy to a user, any other policies that grant permissions to other services are ignored and
access is denied.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::bucket-name",
 "arn:aws:s3:::bucket-name/*"
]
 },
 {
 "Effect": "Deny",
 "NotAction": "s3:*",
 "NotResource": [
 "arn:aws:s3:::bucket-name",
 "arn:aws:s3:::bucket-name/*"
]
 }
]
}

Amazon S3: Allows read and write access to objects in an S3
Bucket
This example shows how you might create an IAM policy that allows Read and Write access to objects
in a specific S3 bucket. This policy grants the permissions necessary to complete this action from the
AWS API or AWS CLI only. To use this policy, replace the italicized placeholder text in the
example policy with your own information. Then, follow the directions in create a policy (p. 468) or edit
a policy (p. 495).

The s3:*Object action uses a wildcard as part of the action name. The AllObjectActions statement
allows the GetObject, DeleteObject, PutObject, and any other Amazon S3 action that ends with
the word "Object".

466

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonS3FullAccess
https://aws-iam-console-beta-dev2.integ.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonEC2FullAccess

AWS Identity and Access Management User Guide
Example policies

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ListObjectsInBucket",
 "Effect": "Allow",
 "Action": ["s3:ListBucket"],
 "Resource": ["arn:aws:s3:::bucket-name"]
 },
 {
 "Sid": "AllObjectActions",
 "Effect": "Allow",
 "Action": "s3:*Object*",
 "Resource": ["arn:aws:s3:::bucket-name/*"]
 }
]
}

Note
To allow Read and Write access to an object in an Amazon S3 bucket and also include
additional permissions for console access, see Amazon S3: Allows read and write access to
objects in an S3 Bucket, programmatically and in the console (p. 467).

Amazon S3: Allows read and write access to objects in an S3
Bucket, programmatically and in the console
This example shows how you might create an IAM policy that allows Read and Write access to objects
in a specific S3 bucket. This policy defines permissions for programmatic and console access. To use this
policy, replace the italicized placeholder text in the example policy with your own information.
Then, follow the directions in create a policy (p. 468) or edit a policy (p. 495).

The s3:*Object action uses a wildcard as part of the action name. The AllObjectActions statement
allows the GetObject, DeleteObject, PutObject, and any other Amazon S3 action that ends with
the word "Object".

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ConsoleAccess",
 "Effect": "Allow",
 "Action": [
 "s3:GetAccountPublicAccessBlock",
 "s3:GetBucketAcl",
 "s3:GetBucketLocation",
 "s3:GetBucketPolicyStatus",
 "s3:GetBucketPublicAccessBlock",
 "s3:ListAllMyBuckets"
],
 "Resource": "*"
 },
 {
 "Sid": "ListObjectsInBucket",
 "Effect": "Allow",
 "Action": "s3:ListBucket",
 "Resource": ["arn:aws:s3:::bucket-name"]
 },
 {
 "Sid": "AllObjectActions",
 "Effect": "Allow",
 "Action": "s3:*Object",

467

AWS Identity and Access Management User Guide
Managing IAM policies

 "Resource": ["arn:aws:s3:::bucket-name/*"]
 }
]
}

Managing IAM policies
IAM gives you the tools to create and manage all types of IAM policies (managed policies and inline
policies). To add permissions to an IAM identity (IAM user, group, or role), you create a policy, validate the
policy, and then attach the policy to the identity. You can attach multiple policies to an identity, and each
policy can contain multiple permissions.

Consult these resources for details:

• For more information about the different types of IAM policies, see Policies and permissions in
IAM (p. 381).

• For general information about using policies within IAM, see Access management for AWS
resources (p. 380).

• For information about how permissions are evaluated when multiple policies are in effect for a given
IAM identity, see Policy evaluation logic (p. 784).

• The number and size of IAM resources in an AWS account are limited. For more information, see IAM
and AWS STS quotas (p. 719).

Topics
• Creating IAM policies (p. 468)
• Validating IAM policies (p. 474)
• Generate policies based on access activity (p. 475)
• Testing IAM policies with the IAM policy simulator (p. 475)
• Adding and removing IAM identity permissions (p. 484)
• Versioning IAM policies (p. 492)
• Editing IAM policies (p. 495)
• Deleting IAM policies (p. 499)
• Refining permissions in AWS using last accessed information (p. 502)

Creating IAM policies
A policy (p. 381) is an entity that, when attached to an identity or resource, defines their permissions.
You can use the AWS Management Console, AWS CLI, or AWS API to create customer managed policies in
IAM. Customer managed policies are standalone policies that you administer in your own AWS account.
You can then attach the policies to identities (users, groups, and roles) in your AWS account.

A policy that is attached to an identity in IAM is known as an identity-based policy. Identity-based policies
can include AWS managed policies, customer managed policies, and inline policies. AWS managed
policies are created and managed by AWS. You can use them, but you can't manage them. An inline
policy is one that you create and embed directly to an IAM group, user, or role. Inline policies can't be
reused on other identities or managed outside of the identity where it exists. For more information, see
Adding and removing IAM identity permissions (p. 484).

As a best practice, use customer managed policies instead of inline policies (p. 561). It's also best to
use customer managed policies instead of AWS managed policies. AWS managed policies usually provide

468

AWS Identity and Access Management User Guide
Creating IAM policies

broad administrative or read-only permissions. For greatest security, grant least privilege (p. 559),
which is granting only the permissions required to perform specific job tasks.

When you create or edit IAM policies, AWS can automatically perform policy validation to help
you create an effective policy with least privilege in mind. In the AWS Management Console, IAM
identifies JSON syntax errors, while IAM Access Analyzer provides additional policy checks with
recommendations to help you further refine your policies. To learn more about policy validation, see
Validating IAM policies (p. 474). To learn more about IAM Access Analyzer policy checks and actionable
recommendations, see IAM Access Analyzer policy validation.

You can use the AWS Management Console, AWS CLI, or AWS API to create customer managed policies in
IAM.

Creating IAM policies (console)
A policy (p. 381) is an entity that, when attached to an identity or resource, defines their permissions.
You can use the AWS Management Console to create customer managed policies in IAM. Customer
managed policies are standalone policies that you administer in your own AWS account. You can then
attach the policies to identities (users, groups, and roles) in your AWS account.

Topics

• Creating IAM policies (p. 469)

• Creating policies on the JSON tab (p. 469)

• Creating policies with the visual editor (p. 470)

• Importing existing managed policies (p. 472)

Creating IAM policies

You can create a customer managed policy in the AWS Management Console using one of the following
methods:

• JSON (p. 469) — Paste and customize a published example identity-based policy (p. 418).

• Visual editor (p. 470) — Construct a new policy from scratch in the visual editor. If you use the visual
editor, you do not have to understand JSON syntax.

• Import (p. 472) — Import and customize a managed policy from within your account. You can
import an AWS managed policy or a customer managed policy that you previously created.

The number and size of IAM resources in an AWS account are limited. For more information, see IAM and
AWS STS quotas (p. 719).

Creating policies on the JSON tab

You can type or paste policies in JSON by choosing the JSON tab. This method is useful for copying an
example policy (p. 418) to use in your account. Or, you can type your own JSON policy document in the
JSON editor. You can also use the JSON tab to toggle between the visual editor and JSON to compare
the views.

When you create or edit a policy in the JSON editor, IAM performs policy validation to help you create an
effective policy. IAM identifies JSON syntax errors, while IAM Access Analyzer provides additional policy
checks with actionable recommendations to help you further refine the policy.

A JSON policy (p. 381) document consists of one or more statements. Each statement should contain
all the actions that share the same effect (Allow or Deny) and support the same resources and
conditions. If one action requires you to specify all resources ("*") and another action supports the

469

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html

AWS Identity and Access Management User Guide
Creating IAM policies

Amazon Resource Name (ARN) of a specific resource, they must be in two separate JSON statements. For
details about ARN formats, see Amazon Resource Name (ARN) in the AWS General Reference Guide. For
general information about IAM policies, see Policies and permissions in IAM (p. 381). For information
about the IAM policy language, see IAM JSON policy reference (p. 744).

To use the JSON policy editor to create a policy

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Policies.

3. Choose Create policy.

4. Choose the JSON tab.

5. Type or paste a JSON policy document. For details about the IAM policy language, see IAM JSON
policy reference (p. 744).

6. Resolve any security warnings, errors, or general warnings generated during policy
validation (p. 474), and then choose Review policy.

Note
You can switch between the Visual editor and JSON tabs anytime. However, if you make
changes or choose Next: Tags in the Visual editor tab, IAM might restructure your policy to
optimize it for the visual editor. For more information, see Policy restructuring (p. 684).

7. When you are finished, choose Next: Tags.

(Optional) Add metadata to the policy by attaching tags as key-value pairs. For more information
about using tags in IAM, see Tagging IAM resources (p. 296).

8. On the Review policy page, type a Name and a Description (optional) for the policy that you are
creating. Review the policy Summary to see the permissions that are granted by your policy. Then
choose Create policy to save your work.

After you create a policy, you can attach it to your groups, users, or roles. For more information, see
Adding and removing IAM identity permissions (p. 484).

Creating policies with the visual editor

The visual editor in the IAM console guides you through creating a policy without having to write
JSON syntax. To view an example of using the visual editor to create a policy, see the section called
“Controlling access to identities” (p. 408).

To use the visual editor to create a policy

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Policies.

3. Choose Create policy.

4. On the Visual editor tab, choose Choose a service and then choose an AWS service. You can use
the search box at the top to limit the results in the list of services. You can choose only one service
within a visual editor permission block. To grant access to more than one service, add multiple
permission blocks by choosing Add additional permissions.

5. For Actions, choose the actions to add to the policy. You can choose actions in the following ways:

• Select the check box for all actions.

• Choose add actions to type the name of a specific action. You can use wildcards (*) to specify
multiple actions.

470

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Creating IAM policies

• Select one of the Access level groups to choose all actions for the access level (for example, Read,
Write, or List).

• Expand each of the Access level groups to choose individual actions.

By default, the policy that you are creating allows the actions that you choose. To deny the chosen
actions instead, choose Switch to deny permissions. Because IAM denies by default (p. 784),
we recommend as a security best practice that you allow permissions to only those actions and
resources that a user needs. You should create a JSON statement to deny permissions only if you
want to override a permission separately allowed by another statement or policy. We recommend
that you limit the number of deny permissions to a minimum because they can increase the
difficulty of troubleshooting permissions.

6. For Resources, if the service and actions that you selected in the previous steps do not support
choosing specific resources (p. 413), all resources are allowed and you cannot edit this section.

If you chose one or more actions that support resource-level permissions (p. 413), then the visual
editor lists those resources. You can then expand Resources to specify resources for your policy.

You can specify resources in the following ways:

• Choose Add ARN to specify resources by their Amazon Resource Names (ARN). You can use the
visual ARN editor or list ARNs manually. For more information about ARN syntax, see Amazon
Resource Name (ARN) in the AWS General Reference Guide. For information about using ARNs in
the Resource element of a policy, see IAM JSON policy elements: Resource (p. 755).

• Choose Any next to a resource to grant permissions to any resources of that type.

• Choose All resources to choose all resources for the service.

7. (Optional) Choose Specify request conditions (optional) to add conditions to the policy that you
are creating. Conditions limit a JSON policy statement's effect. For example, you can specify that
a user is allowed to perform the actions on the resources only when that user's request happens
within a certain time range. You can also use commonly used conditions to limit whether a user
must be authenticated using a multi-factor authentication (MFA) device. Or you can require that the
request originate from within a certain range of IP addresses. For lists of all of the context keys that
you can use in a policy condition, see Actions, Resources, and Condition Keys for AWS Services.

You can choose conditions in the following ways:

• Use check boxes to select commonly used conditions.

• Choose Add condition to specify other conditions. Choose the condition's Condition Key,
Qualifier, and Operator, and then type a Value. To add more than one value, choose Add new
value. You can consider the values as being connected by a logical "OR" operator. When you are
finished, choose Add.

To add more than one condition, choose Add condition again. Repeat as needed. Each condition
applies only to this one visual editor permission block. All the conditions must be true for the
permission block to be considered a match. In other words, consider the conditions to be connected
by a logical "AND" operator.

For more information about the Condition element, see IAM JSON policy elements:
Condition (p. 758) in the IAM JSON policy reference (p. 744).

8. To add more permission blocks, choose Add additional permissions. For each block, repeat steps 2
through 5.

Note
You can switch between the Visual editor and JSON tabs anytime. However, if you make
changes or choose Next: Tags in the Visual editor tab, IAM might restructure your policy to
optimize it for the visual editor. For more information, see Policy restructuring (p. 684).

471

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide
Creating IAM policies

9. When you are finished, choose Next: Tags.

(Optional) Add metadata to the policy by attaching tags as key-value pairs. For more information
about using tags in IAM, see Tagging IAM resources (p. 296).

10. When you are finished, choose Next: Review.

11. On the Review policy page, type a Name and a Description (optional) for the policy that you are
creating. Review the policy summary to make sure that you have granted the intended permissions,
and then choose Create policy to save your new policy.

After you create a policy, you can attach it to your groups, users, or roles. For more information, see
Adding and removing IAM identity permissions (p. 484).

Importing existing managed policies

An easy way to create a new policy is to import an existing managed policy within your account that has
at least some of the permissions that you need. You can then customize the policy to match it to your
new requirements.

You cannot import an inline policy. To learn about the difference between managed and inline policies,
see Managed policies and inline policies (p. 389).

To import an existing managed policy in the visual editor

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Policies.

3. Choose Create policy.

4. Choose the Visual editor tab, and then on the right side of the page, choose Import managed
policy.

5. In the Import managed policies window, choose the managed policies that most closely match the
policy that you want to include in your new policy. You can use the Filter menu or type in the search
box at the top to limit the results in the list of policies.

6. Choose Import.

The imported policies are added in new permission blocks at the bottom of your policy.

7. Use the Visual editor or choose JSON to customize your policy. Then choose Review policy.

Note
You can switch between the Visual editor and JSON tabs anytime. However, if you make
changes or choose Review policy in the Visual editor tab, IAM might restructure your policy
to optimize it for the visual editor. For more information, see Policy restructuring (p. 684).

8. On the Review page, type a Name and a Description (optional) for the policy that you are creating.
You cannot edit these settings later. Review the policy Summary and then choose Create policy to
save your work.

To import an existing managed policy in the JSON tab

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Policies.

3. Choose Create policy.

4. Choose the JSON tab, and then on the right side of the page, choose Import managed policy.

472

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Creating IAM policies

5. In the Import managed policies window, choose the managed policies that most closely match the
policy that you want to include in your new policy. You can use the Filter menu or type in the search
box at the top to limit the results in the list of policies.

6. Choose Import.

Statements from the imported policies are added to the bottom of your JSON policy.
7. Customize your policy in JSON. Resolve any security warnings, errors, or general warnings generated

during policy validation (p. 474), and then choose Review policy. Or, customize your policy in the
Visual editor. Then choose Review policy.

Note
You can switch between the Visual editor and JSON tabs anytime. However, if you make
changes or choose Review policy in the Visual editor tab, IAM might restructure your policy
to optimize it for the visual editor. For more information, see Policy restructuring (p. 684).

8. On the Review policy page, type a Name and a Description (optional) for the policy that you are
creating. You cannot edit these later. Review the policy Summary and then choose Create policy to
save your work.

After you create a policy, you can attach it to your groups, users, or roles. For more information, see
Adding and removing IAM identity permissions (p. 484).

Creating IAM policies (AWS CLI)
A policy (p. 381) is an entity that, when attached to an identity or resource, defines their permissions.
You can use the AWS CLI to create customer managed policies in IAM. Customer managed policies are
standalone policies that you administer in your own AWS account. As a best practice, we recommend
that you take the extra step to validate your policies (p. 474) and review and correct any errors or
recommendations. You can then attach the policies to identities (users, groups, and roles) in your AWS
account.

The number and size of IAM resources in an AWS account are limited. For more information, see IAM and
AWS STS quotas (p. 719).

Creating IAM policies (AWS CLI)

You can create an IAM customer managed policy or an inline policy using the AWS Command Line
Interface (AWS CLI).

To create a customer managed policy (AWS CLI)

Use the following command:

• create-policy

To create an inline policy for an IAM identity (group, user or role) (AWS CLI)

Use one of the following commands:

• put-group-policy
• put-role-policy
• put-user-policy

Note
You can't use IAM to embed an inline policy for a service-linked role (p. 169).

To validate a customer managed policy (AWS CLI)

473

https://docs.aws.amazon.com/cli/latest/reference/iam/create-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/put-group-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/put-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/put-user-policy.html

AWS Identity and Access Management User Guide
Validating policies

Use the following IAM Access Analyzer command:

• validate-policy

Creating IAM policies (AWS API)
A policy (p. 381) is an entity that, when attached to an identity or resource, defines their permissions.
You can use the AWS API to create customer managed policies in IAM. Customer managed policies are
standalone policies that you administer in your own AWS account. As a best practice, we recommend
that you take the extra step to validate your policies (p. 474) and review and correct any errors or
recommendations. You can then attach the policies to identities (users, groups, and roles) in your AWS
account.

The number and size of IAM resources in an AWS account are limited. For more information, see IAM and
AWS STS quotas (p. 719).

Creating IAM policies (AWS API)

You can create an IAM customer managed policy or an inline policy using the AWS API.

To create a customer managed policy (AWS API)

Call the following operation:

• CreatePolicy

To create an inline policy for an IAM identity (group, user, or role) (AWS API)

Call one of the following operations:

• PutGroupPolicy

• PutRolePolicy

• PutUserPolicy

Note
You can't use IAM to embed an inline policy for a service-linked role (p. 169).

To validate a customer managed policy (AWS API)

Call the following IAM Access Analyzer operation:

• ValidatePolicy

Validating IAM policies
A policy is a JSON document that uses the IAM policy grammar. When you attach a policy to an IAM
entity, such as a user, group, or role, it grants permissions to that entity.

When you create or edit IAM access control policies using the AWS Management Console, AWS
automatically examines them to ensure that they comply with the IAM policy grammar. If AWS
determines that a policy is not in compliance with the grammar, it prompts you to fix the policy.

IAM Access Analyzer provides additional policy checks with recommendations to help you further refine
the policy. To learn more about IAM Access Analyzer policy checks and actionable recommendations,

474

https://docs.aws.amazon.com/cli/latest/reference/accessanalyzer/validate-policy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreatePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutGroupPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutUserPolicy.html
https://docs.aws.amazon.com/access-analyzer/latest/APIReference/API_ValidatePolicy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/policies_overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/policies-grammar.html

AWS Identity and Access Management User Guide
Generating policies

see IAM Access Analyzer policy validation. To view a list of warnings, errors, and suggestions that are
returned by IAM Access Analyzer, see IAM Access Analyzer policy check reference.

Validation scope

AWS checks JSON policy syntax and grammar. It also verifies that your ARNs are formatted properly and
action names and condition keys are correct.

Accessing policy validation

Policies are validated automatically when you create a JSON policy or edit an existing policy in the
AWS Management Console. If the policy syntax is not valid, you receive a notification and must fix
the problem before you can continue. The findings from the IAM Access Analyzer policy validation
are automatically returned in the AWS Management Console if you have permissions for access-
analyzer:ValidatePolicy. You can also validate policies using the AWS API or AWS CLI.

Existing policies

You might have existing policies that are not valid because they were created or last saved before the
latest updates to the policy engine. As a best practice, we recommend that you open your existing
policies and review the policy validation results that are generated. You cannot edit and save existing
policies without fixing any policy syntax errors.

Generate policies based on access activity
As an administrator or developer, you might grant permissions to IAM entities (users or roles) beyond
what they require. IAM provides several options to help you refine the permissions that you grant. One
option is to generate an IAM policy that is based on access activity for an entity. IAM Access Analyzer
reviews your AWS CloudTrail logs and generates a policy template that contains the permissions that the
entity used in your specified date range. You can use the template to create a policy with fine-grained
permissions that grant only the permissions that are required to support your specific use case.

For example, imagine that you are a developer and your engineering team has been working on a project
to create a new application. To encourage experimentation and enable your team to move fast, you’ve
configured a role with broad permissions while the application is in development. Now the application is
ready for production. Before the application can launch in the production account, you want to identify
only the permissions that the role needs for the application to function. This helps you to adhere to the
best practice of granting least privilege (p. 559). You can generate a policy based on the access activity
of the role that you have been using for the application in the development account. You can further
refine the generated policy and then attach the policy to an entity in your production account.

To learn more about IAM Access Analyzer policy generation, see IAM Access Analyzer policy generation.

Testing IAM policies with the IAM policy simulator
For more information about how and why to use IAM policies, see Policies and permissions in
IAM (p. 381).

You can access the IAM Policy Simulator Console at: https://policysim.aws.amazon.com/

Getting Started with the IAM Policy Simulator

With the IAM policy simulator, you can test and troubleshoot identity-based policies, IAM permissions
boundaries, Organizations service control policies (SCPs), and resource-based policies. Here are some
common things you can do with the policy simulator:

• Test policies that are attached to IAM users, user groups, or roles in your AWS account. If more than
one policy is attached to the user, user group, or role, you can test all the policies, or select individual

475

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-generation.html
https://policysim.aws.amazon.com/
http://www.youtube.com/embed/1IIhVcXhvcE

AWS Identity and Access Management User Guide
Testing IAM policies

policies to test. You can test which actions are allowed or denied by the selected policies for specific
resources.

• Test and troubleshoot the effect of permissions boundaries (p. 395) on IAM entities. Note: you can
only simulate one permissions boundary at a time.

• Test policies that are attached to AWS resources, such as Amazon S3 buckets, Amazon SQS queues,
Amazon SNS topics, or Amazon S3 Glacier vaults.

• If your AWS account is a member of an organization in AWS Organizations, then you can test the
impact of service control policies (SCPs) on your IAM policies and resource policies.

• Test new policies that are not yet attached to a user, user group, or role by typing or copying them into
the simulator. These are used only in the simulation and are not saved. Note: you cannot type or copy
a resource-based policy into the simulator. To use a resource-based policy in the simulator, you must
include the resource in the simulation. You must also select the check box to include that resource's
policy in the simulation.

• Test the policies with selected services, actions, and resources. For example, you can test to ensure that
your policy allows an entity to perform the ListAllMyBuckets, CreateBucket, and DeleteBucket
actions in the Amazon S3 service on a specific bucket.

• Simulate real-world scenarios by providing context keys, such as an IP address or date, that are
included in Condition elements in the policies being tested.

• Identify which specific statement in a policy results in allowing or denying access to a particular
resource or action.

Topics
• How the IAM policy simulator works (p. 476)

• Permissions required for using the IAM policy simulator (p. 476)

• Using the IAM policy simulator (console) (p. 479)

• Using the IAM policy simulator (AWS CLI and AWS API) (p. 483)

How the IAM policy simulator works
The simulator evaluates the policies that you choose and determines the effective permissions for each
of the actions that you specify. The simulator uses the same policy evaluation engine that is used during
real requests to AWS services. But the simulator differs from the live AWS environment in the following
ways:

• The simulator does not make an actual AWS service request, so you can safely test requests that might
make unwanted changes to your live AWS environment.

• Because the simulator does not simulate running the selected actions, it cannot report any response to
the simulated request. The only result returned is whether the requested action would be allowed or
denied.

• If you edit a policy inside the simulator, these changes affect only the simulator. The corresponding
policy in your AWS account remains unchanged.

• You can't test AWS Organizations service control policies (SCPs) with global condition keys (p. 812).

Permissions required for using the IAM policy simulator
You can use the policy simulator console or the policy simulator API to test policies. By default, console
users can test policies that are not yet attached to a user, user group, or role by typing or copying those
policies into the simulator. These policies are used only in the simulation and do not disclose sensitive
information. API users must have permissions to test unattached policies. You can allow console or API
users to test policies that are attached to IAM users, user groups, or roles in your AWS account. To do

476

https://docs.aws.amazon.com/organizations/latest/userguide/

AWS Identity and Access Management User Guide
Testing IAM policies

so, you must provide permission to retrieve those policies. In order to test resource-based policies, users
must have permission to retrieve the resource's policy.

For examples of console and API policies that allow a user to simulate policies, see the section called
“Example policies: AWS Identity and Access Management (IAM)” (p. 420).

Permissions required for using the policy simulator console

You can allow users to test policies that are attached to IAM users, user groups, or roles in your AWS
account. To do so, you must provide your users with permissions to retrieve those policies. In order to
test resource-based policies, users must have permission to retrieve the resource's policy.

To view an example policy that allows using the policy simulator console for policies that are attached to
a user, user group, or role, see IAM: Access the policy simulator console (p. 444).

To view an example policy that allows using the policy simulator console only for those users with a
specific path, see IAM: Access the policy simulator console based on user path (p. 455).

To create a policy to allow using the policy simulator console for only one type of entity, use the
following procedures.

To allow console users to simulate policies for users

Include the following actions in your policy:

• iam:GetGroupPolicy

• iam:GetPolicy

• iam:GetPolicyVersion

• iam:GetUser

• iam:GetUserPolicy

• iam:ListAttachedUserPolicies

• iam:ListGroupsForUser

• iam:ListGroupPolicies

• iam:ListUserPolicies

• iam:ListUsers

To allow console users to simulate policies for user groups

Include the following actions in your policy:

• iam:GetGroup

• iam:GetGroupPolicy

• iam:GetPolicy

• iam:GetPolicyVersion

• iam:ListAttachedGroupPolicies

• iam:ListGroupPolicies

• iam:ListGroups

To allow console users to simulate policies for roles

Include the following actions in your policy:

• iam:GetPolicy

477

AWS Identity and Access Management User Guide
Testing IAM policies

• iam:GetPolicyVersion

• iam:GetRole

• iam:GetRolePolicy

• iam:ListAttachedRolePolicies

• iam:ListRolePolicies

• iam:ListRoles

To test resource-based policies, users must have permission to retrieve the resource's policy.

To allow console users to test resource-based policies in an Amazon S3 bucket

Include the following action in your policy:

• s3:GetBucketPolicy

For example, the following policy uses this action to allow console users to simulate a resource-based
policy in a specific Amazon S3 bucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:GetBucketPolicy",
 "Resource":"arn:aws:s3:::bucket-name/*"
 }
]
 }

Permissions required for using the policy simulator API

The policy simulator API operations GetContextKeyForCustomPolicy and SimulateCustomPolicy allow
you to test policies that are not yet attached to a user, user group, or role. To test such policies, you
pass the policies as strings to the API. These policies are used only in the simulation and do not disclose
sensitive information. You can also use the API to test policies that are attached to IAM users, user
groups, or roles in your AWS account. To do that, you must provide users with permissions to call
GetContextKeyForPrincipalPolicy and SimulatePrincipalPolicy.

To view an example policy that allows using the policy simulator API for attached and unattached
policies in the current AWS account, see IAM: Access the policy simulator API (p. 444).

To create a policy to allow using the policy simulator API for only one type of policy, use the following
procedures.

To allow API users to simulate policies passed directly to the API as strings

Include the following actions in your policy:

• iam:GetContextKeysForCustomPolicy

• iam:SimulateCustomPolicy

To allow API users to simulate policies attached to IAM users, user groups, roles, or resources

Include the following actions in your policy:

478

https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetContextKeyForCustomPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_SimulateCustomPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetContextKeyForPrincipalPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_SimulatePrincipalPolicy.html

AWS Identity and Access Management User Guide
Testing IAM policies

• iam:GetContextKeysForPrincipalPolicy

• iam:SimulatePrincipalPolicy

For example, to give a user named Bob permission to simulate a policy that is assigned to a user named
Alice, give Bob access to the following resource: arn:aws:iam::777788889999:user/alice.

To view an example policy that allows using the policy simulator API only for those users with a specific
path, see IAM: Access the policy simulator API based on user path (p. 454).

Using the IAM policy simulator (console)
By default, users can test policies that are not yet attached to a user, user group, or role by typing or
copying those policies into the policy simulator console. These policies are used only in the simulation
and do not disclose sensitive information.

To test a policy that is not attached to a user, user group, or role (console)

1. Open the IAM policy simulator console at: https://policysim.aws.amazon.com/.

2. In the Mode: menu at the top of the page, choose New Policy.

3. In the Policy Sandbox, choose Create New Policy.

4. Type or copy a policy into the simulator, and use the simulator as described in the following steps.

After you have permission to use the IAM Policy Simulator Console, you can use the simulator to test an
IAM user, user group, role, or resource policy.

To test a policy that is attached to a user, user group, or role (console)

1. Open the IAM policy simulator console at https://policysim.aws.amazon.com/.

Note
To sign in to the policy simulator as an IAM user, use your unique sign-in URL to sign in to
the AWS Management Console. Then go to https://policysim.aws.amazon.com/. For more
information about signing in as an IAM user, see How IAM users sign in to AWS (p. 81).

The simulator opens in Existing Policies mode and lists the IAM users in your account under Users,
Groups, and Roles.

2. Choose the option that is appropriate to your task:

To test this: Do this:

A policy attached to a
user

Choose Users in the Users, Groups, and Roles list. Then choose the user.

A policy attached to a
user group

Choose Groups in the Users, Groups, and Roles list. Then choose the
user group.

A policy attached to a
role

Choose Roles in the Users, Groups, and Roles list. Then choose the role.

A policy attached to a
resource

See Step 9.

A custom policy for
a user, user group, or
role

Choose Create New Policy. In the new Policies pane, type or paste a
policy and then choose Apply.

479

https://policysim.aws.amazon.com/
https://policysim.aws.amazon.com/
https://policysim.aws.amazon.com/

AWS Identity and Access Management User Guide
Testing IAM policies

Tip
To test a policy that is attached to user group, you can launch the IAM policy simulator
directly from the IAM console: In the navigation pane, choose User groups. Choose the
name of the group that you want to test a policy on, and then choose the Permissions tab.
Choose Simulate.
To test a customer managed policy that is attached to a user: In the navigation pane,
choose Users. Choose the name of the user that you want to test a policy on. Then choose
the Permissions tab and expand the policy that you want to test. On the far right, choose
Simulate policy. The IAM Policy Simulator opens in a new window and displays the
selected policy in the Policies pane.

3. (Optional) If your account is a member of an organization in AWS Organizations, then select the
check box next to AWS Organizations SCPs to include SCPs in your simulated evaluation. SCPs are
JSON policies that specify the maximum permissions for an organization or organizational unit (OU).
The SCP limits permissions for entities in member accounts. If an SCP blocks a service or action,
then no entity in that account can access that service nor perform that action. This is true even if
an administrator explicitly grants permissions to that service or action through an IAM or resource
policy.

If your account is not a member of an organization, then the check box does not appear.

4. (Optional) You can test a policy that is set as a permissions boundary (p. 395) for an IAM entity
(user or role), but not for user groups. If a permissions boundary policy is currently set for the entity,
it appears in the Policies pane. You can set only one permissions boundary for an entity. To test a
different permissions boundary, you can create a custom permissions boundary. To do this, choose
Create New Policy. A new Policies pane opens. In the menu, choose Custom IAM Permissions
Boundary Policy. Enter a name for the new policy and type or copy a policy into the space below.
Choose Apply to save the policy. Next, choose Back to return to the original Policies pane. Then
select the check box next to the permissions boundary you want to use for the simulation.

5. (Optional) You can test only a subset of policies attached to a user, user group, or role. To do so, in
the Policies pane clear the check box next to each policy that you want to exclude.

6. Under Policy Simulator, choose Select service and then choose the service to test. Then choose
Select actions and select one or more actions to test. Although the menus show the available
selections for only one service at a time, all the services and actions that you have selected appear in
Action Settings and Results.

7. (Optional) If any of the policies that you choose in Step 2 and Step 5 include conditions with AWS
global condition keys (p. 812), then supply values for those keys. You can do this by expanding the
Global Settings section and typing values for the key names displayed there.

Warning
If you leave the value for a condition key empty, then that key is ignored during the
simulation. In some cases, this results in an error, and the simulation fails to run. In
other cases, the simulation runs, but the results might not be reliable. In those cases, the
simulation does not match the real-world conditions that include a value for the condition
key or variable.

8. (Optional) Each selected action appears in the Action Settings and Results list with Not simulated
shown in the Permission column until you actually run the simulation. Before you run the
simulation, you can configure each action with a resource. To configure individual actions for a
specific scenario, choose the arrow to expand the action's row. If the action supports resource-level
permissions, you can type the Amazon Resource Name (ARN) (p. 714) of the specific resource
whose access you want to test. By default, each resource is set to a wildcard (*). You can also specify
a value for any condition context keys. As noted previously, keys with empty values are ignored,
which can cause simulation failures or unreliable results.

a. Choose the arrow next to the action name to expand each row and configure any additional
information required to accurately simulate the action in your scenario. If the action requires

480

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/organizations/latest/userguide/
reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide
Testing IAM policies

any resource-level permissions, you can type the Amazon Resource Name (ARN) (p. 714) of
the specific resource that you want to simulate access to. By default, each resource is set to a
wildcard (*).

b. If the action supports resource-level permissions but does not require them, then you can
choose Add Resource to select the resource type that you want to add to the simulation.

c. If any of the selected policies include a Condition element that references a context key for
this action's service, then that key name is displayed under the action. You can specify the value
to be used during the simulation of that action for the specified resource.

Actions that require different groups of resource types

Some actions require different resource types under different circumstances. Each group of resource
types is associated with a scenario. If one of these applies to your simulation, select it and the
simulator requires the resource types appropriate for that scenario. The following list shows each of
the supported scenario options and the resources that you must define to run the simulation.

Each of the following Amazon EC2 scenarios requires that you specify instance, image, and
security-group resources. If your scenario includes an EBS volume, then you must specify that
volume as a resource. If the Amazon EC2 scenario includes a virtual private cloud (VPC), then you
must supply the network-interface resource. If it includes an IP subnet, then you must specify
the subnet resource. For more information on the Amazon EC2 scenario options, see Supported
Platforms in the Amazon EC2 User Guide.

• EC2-Classic-InstanceStore

instance, image, security-group
• EC2-Classic-EBS

instance, image, security-group, volume
• EC2-VPC-InstanceStore

instance, image, security-group, network-interface
• EC2-VPC-InstanceStore-Subnet

instance, image, security-group, network-interface, subnet
• EC2-VPC-EBS

instance, image, security-group, network-interface, volume
• EC2-VPC-EBS-Subnet

instance, image, security-group, network-interface, subnet, volume
9. (Optional) If you want to include a resource-based policy in your simulation, then you must first

select the actions that you want to simulate on that resource in Step 6. Expand the rows for the
selected actions, and type the ARN of the resource with a policy that you want to simulate. Then
select Include Resource Policy next to the ARN text box. The IAM policy simulator currently
supports resource-based policies from only the following services: Amazon S3 (resource-based
policies only; ACLs are not currently supported), Amazon SQS, Amazon SNS, and unlocked S3 Glacier
vaults (locked vaults are not currently supported).

10. Choose Run Simulation in the upper-right corner.

The Permission column in each row of Action Settings and Results displays the result of the
simulation of that action on the specified resource.

11. Choose Run Simulation in the upper-right corner.

The Permission column in each row of Action Settings and Results displays the result of the
simulation of that action on the specified resource.

481

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-supported-platforms.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-supported-platforms.html

AWS Identity and Access Management User Guide
Testing IAM policies

12. To see which statement in a policy explicitly allowed or denied an action, choose the N matching
statement(s) link in the Permissions column to expand the row. Then choose the Show statement
link. The Policies pane shows the relevant policy with the statement that affected the simulation
result highlighted.

Note
If an action is implicitly denied—that is, if the action is denied only because it is not
explicitly allowed—the List and Show statement options are not displayed.

Troubleshooting IAM policy simulator console messages

The following table lists the informational and warning messages you might encounter when using the
IAM policy simulator. The table also provides steps you can take to resolve them.

Message Steps to resolve

This policy has been edited. Changes will not be
saved to your account.

No action required.

This message is informational. If you edit an
existing policy in the IAM policy simulator, your
change does not affect your AWS account. The
simulator allows you to make changes to policies
for testing purposes only.

Cannot get the resource policy. Reason: detailed
error message

The simulator is not able to access a requested
resource-based policy. Ensure that the specified
resource ARN is correct and that the user running
the simulation has permission to read the
resource's policy.

One or more policies require values in the
simulation settings. The simulation might fail
without these values.

This message appears if the policy you are testing
contains condition keys or variables but you have
not provided any values for these keys or variables
in Simulation Settings.

To dismiss this message, choose Simulation
Settings, Then enter a value for each condition
key or variable.

You have changed policies. These results are no
longer valid.

This message appears if you have changed the
selected policy while results are displayed in the
Results pane. Results shown in the Results pane
are not updated dynamically.

To dismiss this message, choose Run Simulation
again to display new simulation results based on
the changes made in the Policies pane.

The resource you typed for this simulation does
not match this service.

This message appears if you have typed an
Amazon Resource Name (ARN) in the Simulation
Settings pane that does not match the service
that you chose for the current simulation. For
example, this message appears if you specify an
ARN for an Amazon DynamoDB resource but you
chose Amazon Redshift as the service to simulate.

To dismiss this message, do one of the following:

482

AWS Identity and Access Management User Guide
Testing IAM policies

Message Steps to resolve

• Remove the ARN from the box in the
Simulation Settings pane.

• Choose the service that matches the ARN that
you specified in Simulation Settings.

This action belongs to a service that supports
special access control mechanisms in addition
to resource-based policies, such as Amazon S3
ACLs or S3 Glacier vault lock policies. The policy
simulator does not support these mechanisms,
so the results can differ from your production
environment.

No action required.

This message is informational. In the current
version, the simulator evaluates policies attached
to users and user groups, and can evaluate
resource-based policies for Amazon S3, Amazon
SQS, Amazon SNS, and S3 Glacier. The policy
simulator does not support all access control
mechanisms supported by other AWS services.

DynamoDB FGAC is currently not supported. No action required.

This informational message refers to fine-grained
access control. Fine-grained access control
is the ability to use IAM policy conditions to
determine who can access individual data items
and attributes in DynamoDB tables and indexes.
It also refers to the actions that can be performed
on these tables and indexes. The current version
of the IAM policy simulator does not support this
type of policy condition. For more information on
DynamoDB fine-grained access control, see Fine-
Grained Access Control for DynamoDB.

You have policies that do not comply with the
policy syntax. You can use policy validation to
review recommended updates to your policies.

This message appears at the top of the policy list
if you have policies that do not comply with the
IAM policy grammar. In order to simulate these
policies, review the policy validation options at
Validating IAM policies (p. 474) to identify and
fix these policies.

This policy must be updated to comply with the
latest policy syntax rules.

This message is displayed if you have policies
that do not comply with the IAM policy grammar.
In order to simulate these policies, review the
policy validation options at Validating IAM
policies (p. 474) to identify and fix these policies.

Using the IAM policy simulator (AWS CLI and AWS API)

Policy simulator commands typically require calling API operations to do two things:

1. Evaluate the policies and return the list of context keys that they reference. You need to know what
context keys are referenced so that you can supply values for them in the next step.

2. Simulate the policies, providing a list of actions, resources, and context keys that are used during the
simulation.

For security reasons, the API operations have been broken into two groups:

483

http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/FGAC_DDB.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/FGAC_DDB.html

AWS Identity and Access Management User Guide
Add or remove identity permissions

• API operations that simulate only policies that are passed directly to the API as strings. This set
includes GetContextKeysForCustomPolicy and SimulateCustomPolicy.

• API operations that simulate the policies that are attached to a specified IAM user, user group,
role, or resource. Because these API operations can reveal details of permissions assigned to other
IAM entities, you should consider restricting access to these API operations. This set includes
GetContextKeysForPrincipalPolicy and SimulatePrincipalPolicy. For more information about restricting
access to API operations, see Example policies: AWS Identity and Access Management (IAM) (p. 420).

In both cases, the API operations simulate the effect of one or more policies on a list of actions and
resources. Each action is paired with each resource and the simulation determines whether the policies
allow or deny that action for that resource. You can also provide values for any context keys that
your policies reference. You can get the list of context keys that the policies reference by first calling
GetContextKeysForCustomPolicy or GetContextKeysForPrincipalPolicy. If you don't provide
a value for a context key, the simulation still runs. But the results might not be reliable because the
simulator cannot include that context key in the evaluation.

To get the list of context keys (AWS CLI, AWS API)

Use the following to evaluate a list of policies and return a list of context keys that are used in the
policies.

• AWS CLI: aws iam get-context-keys-for-custom-policy and aws iam get-context-
keys-for-principal-policy

• AWS API: GetContextKeysForCustomPolicy and GetContextKeysForPrincipalPolicy

To simulate IAM policies (AWS CLI, AWS API)

Use the following to simulate IAM policies to determine a user's effective permissions.

• AWS CLI: aws iam simulate-custom-policy and aws iam simulate-principal-policy

• AWS API: SimulateCustomPolicy and SimulatePrincipalPolicy

Adding and removing IAM identity permissions
You use policies to define the permissions for an identity (user, user group, or role). You can add and
remove permissions by attaching and detaching IAM policies for an identity using the AWS Management
Console, the AWS Command Line Interface (AWS CLI), or the AWS API. You can also use policies to set
permissions boundaries (p. 395) for only entities (users or roles) using the same methods. Permissions
boundaries are an advanced AWS feature that control the maximum permissions that an entity can have.

Topics

• Terminology (p. 485)

• View identity activity (p. 485)

• Adding IAM identity permissions (console) (p. 485)

• Removing IAM identity permissions (console) (p. 487)

• Adding IAM policies (AWS CLI) (p. 488)

• Removing IAM policies (AWS CLI) (p. 489)

• Adding IAM policies (AWS API) (p. 490)

• Removing IAM policies (AWS API) (p. 491)

484

https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetContextKeysForCustomPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_SimulateCustomPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetContextKeysForPrincipalPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_SimulatePrincipalPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetContextKeysForCustomPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetContextKeysForPrincipalPolicy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-context-keys-for-custom-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-context-keys-for-principal-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-context-keys-for-principal-policy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetContextKeysForCustomPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetContextKeysForPrincipalPolicy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/simulate-custom-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/simulate-principal-policy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_SimulateCustomPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_SimulatePrincipalPolicy.html

AWS Identity and Access Management User Guide
Add or remove identity permissions

Terminology
When you associate permissions policies with identities (users, user groups, and roles), terminology and
procedures vary depending on whether you are working with a managed or inline policy:

• Attach – Used with managed policies. You attach a managed policy to an identity (a user, user group,
or role). Attaching a policy applies the permissions in the policy to the identity.

• Detach – Used with managed policies. You detach a managed policy from an IAM identity (a user, user
group, or role). Detaching a policy removes its permissions from the identity.

• Embed – Used with inline policies. You embed an inline policy in an identity (a user, user group, or
role). Embedding a policy applies the permissions in the policy to the identity. Because an inline policy
is stored in the identity, it is embedded rather than attached, though the results are similar.

Note
You can embed an inline policy for a service-linked role (p. 169) only in the service that
depends on the role. See the AWS documentation for your service to see whether it supports
this feature.

• Delete – Used with inline policies. You delete an inline policy from an IAM identity (a user, user group,
or role). Deleting a policy removes its permissions from the identity.

Note
You can delete an inline policy for a service-linked role (p. 169) only in the service that
depends on the role. See the AWS documentation for your service to see whether it supports
this feature.

You can use the console, AWS CLI, or AWS API to perform any of these actions.

More information

• For more information about the difference between managed and inline policies, see Managed policies
and inline policies (p. 389).

• For more information about permissions boundaries, see Permissions boundaries for IAM
entities (p. 395).

• For general information about IAM policies, see Policies and permissions in IAM (p. 381).
• For information about validating IAM policies, see Validating IAM policies (p. 474).
• The number and size of IAM resources in an AWS account are limited. For more information, see IAM

and AWS STS quotas (p. 719).

View identity activity
Before you change the permissions for an identity (user, user group, or role), you should review their
recent service-level activity. This is important because you don't want to remove access from a principal
(person or application) who is using it. For more information about viewing last accessed information,
see Refining permissions in AWS using last accessed information (p. 502).

Adding IAM identity permissions (console)
You can use the AWS Management Console to add permissions to an identity (user, user group, or
role). To do this, attach managed policies that control permissions, or specify a policy that serves as a
permissions boundary (p. 395). You can also embed an inline policy.

To use a managed policy as a permissions policy for an identity (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

485

https://docs.aws.amazon.com/
https://docs.aws.amazon.com/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Add or remove identity permissions

2. In the navigation pane, choose Policies.
3. In the list of policies, select the check box next to the name of the policy to attach. You can use the

search box to filter the list of policies.
4. Choose Actions, and then choose Attach.
5. Select one or more identities to attach the policy to. You can use the search box to filter the list of

principal entities. After selecting the identities, choose Attach policy.

To use a managed policy to set a permissions boundary (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.
3. In the list of policies, choose the name of the policy to set. You can use the search box to filter the

list of policies.
4. On the policy summary page, choose the Policy usage tab, and then, if necessary, open the

Permissions boundaries section and choose Set boundary.
5. Select one or more users or roles on which to use the policy for a permissions boundary. You can

use the search box to filter the list of principal entities. After selecting the principals, choose Set
boundaries.

To embed an inline policy for a user or role (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users or Roles.
3. In the list, choose the name of the user or role to embed a policy in.
4. Choose the Permissions tab.
5. Choose Add inline policy.

Note
You cannot embed an inline policy in a service-linked role (p. 169) in IAM. Because the linked
service defines whether you can modify the permissions of the role, you might be able to
add additional policies from the service console, API, or AWS CLI. To view the service-linked
role documentation for a service, see AWS services that work with IAM (p. 725) and choose
Yes in the Service-Linked Role column for your service.

6. Choose from the following methods to view the steps required to create your policy:

• Importing existing managed policies (p. 472) – You can import a managed policy within your
account and then edit the policy to customize it to your specific requirements. A managed policy
can be an AWS managed policy or a customer managed policy that you created previously.

• Creating policies with the visual editor (p. 470) – You can construct a new policy from scratch in
the visual editor. If you use the visual editor, you do not have to understand JSON syntax.

• Creating policies on the JSON tab (p. 469) – In the JSON tab, you can use JSON syntax to create
a policy. You can type a new JSON policy document or paste an example policy (p. 418).

7. After you create an inline policy, it is automatically embedded in your user or role.

To embed an inline policy for a user group (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

486

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Add or remove identity permissions

2. In the navigation pane, choose User groups.
3. In the list, choose the name of the user group to embed a policy in.
4. Choose the Permissions tab, choose Add permissions, and then choose Create inline policy.
5. Do one of the following:

• Choose the Visual editor tab to create the policy. For more information, see Creating policies with
the visual editor (p. 470).

• Choose the JSON tab to create the policy. For more information, see Creating policies on the JSON
tab (p. 469).

6. When you are satisfied with the policy, choose Create policy.

To change the permissions boundary for one or more entities (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.
3. In the list of policies, choose the name of the policy to set. You can use the search box to filter the

list of policies.
4. On the policy summary page, choose the Policy usage tab, and then, if necessary, open the

Permissions boundaries section. Select the check box next to the users or roles whose boundaries
you want to change and then choose Change boundary.

5. Select a new policy to use for a permissions boundary. You can use the search box to filter the list of
policies. After selecting the policy, choose Change boundary.

Removing IAM identity permissions (console)
You can use the AWS Management Console to remove permissions from an identity (user, user group, or
role). To do this, detach managed policies that control permissions, or remove a policy that serves as a
permissions boundary (p. 395). You can also delete an inline policy.

To detach a managed policy used as a permissions policy (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.
3. In the list of policies, select the check box next to the name of the policy to detach. You can use the

search box to filter the list of policies.
4. Choose Actions, and then choose Detach.
5. Select the identities to detach the policy from. You can use the search box to filter the list of

identities. After selecting the identities, choose Detach policy.

To remove a permissions boundary (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.
3. In the list of policies, choose the name of the policy to set. You can use the search box to filter the

list of policies.
4. On the policy summary page, choose the Policy usage tab, and then, if necessary, open the

Permissions boundaries section and choose Remove boundary.

487

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Add or remove identity permissions

5. Confirm that you want to remove the boundary and choose Remove.

To delete an inline policy (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose User groups, Users, or Roles.
3. In the list, choose the name of the user group, user, or role that has the policy you want to remove.
4. Choose the Permissions tab.
5. If in User groups, select the check box next to the policy and choose Remove. If in Users or Roles,

choose X.

Adding IAM policies (AWS CLI)
You can use the AWS CLI to add permissions to an identity (user, user group, or role). To do this,
attach managed policies that control permissions, or specify a policy that serves as a permissions
boundary (p. 395). You can also embed an inline policy.

To use a managed policy as a permissions policy for an entity (AWS CLI)

1. (Optional) To view information about a managed policy, run the following commands:

• To list managed policies: aws iam list-policies
• To retrieve detailed information about a managed policy: get-policy

2. To attach a managed policy to an identity (user, user group, or role), use one of the following
commands:

• aws iam attach-user-policy
• aws iam attach-group-policy
• aws iam attach-role-policy

To use a managed policy to set a permissions boundary (AWS CLI)

1. (Optional) To view information about a managed policy, run the following commands:

• To list managed policies: aws iam list-policies
• To retrieve detailed information about a managed policy: aws iam get-policy

2. To use a managed policy to set the permissions boundary for an entity (user or role), use one of the
following commands:

• aws iam put-user-permissions-boundary
• aws iam put-role-permissions-boundary

To embed an inline policy (AWS CLI)

To embed an inline policy to an identity (user, user group, or role that is not a service-linked role (p. 169)),
use one of the following commands:

• aws iam put-user-policy
• aws iam put-group-policy
• aws iam put-role-policy

488

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/list-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/attach-user-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/attach-group-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/attach-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/put-user-permissions-boundary.html
https://docs.aws.amazon.com/cli/latest/reference/iam/put-role-permissions-boundary.html
https://docs.aws.amazon.com/cli/latest/reference/iam/put-user-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/put-group-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/put-role-policy.html

AWS Identity and Access Management User Guide
Add or remove identity permissions

Removing IAM policies (AWS CLI)

You can use the AWS CLI to detach managed policies that control permissions, or remove a policy that
serves as a permissions boundary (p. 395). You can also delete an inline policy.

To detach a managed policy used as a permissions policy (AWS CLI)

1. (Optional) To view information about a policy, run the following commands:

• To list managed policies: aws iam list-policies

• To retrieve detailed information about a managed policy: aws iam get-policy

2. (Optional) To find out about the relationships between the policies and identities, run the following
commands:

• To list the identities (users, user groups, and roles) to which a managed policy is attached:

• aws iam list-entities-for-policy

• To list the managed policies attached to an identity (a user, user group, or role), use one of the
following commands:

• aws iam list-attached-user-policies

• aws iam list-attached-group-policies

• aws iam list-attached-role-policies

3. To detach a managed policy from an identity (user, user group, or role), use one of the following
commands:

• aws iam detach-user-policy

• aws iam detach-group-policy

• aws iam detach-role-policy

To remove a permissions boundary (AWS CLI)

1. (Optional) To view which managed policy is currently used to set the permissions boundary for a
user or role, run the following commands:

• aws iam get-user

• aws iam get-role

2. (Optional) To view the users or roles on which a managed policy is used for a permissions boundary,
run the following command:

• aws iam list-entities-for-policy

3. (Optional) To view information about a managed policy, run the following commands:

• To list managed policies: aws iam list-policies

• To retrieve detailed information about a managed policy: aws iam get-policy

4. To remove a permissions boundary from a user or role, use one of the following commands:

• aws iam delete-user-permissions-boundary

• aws iam delete-role-permissions-boundary

To delete an inline policy (AWS CLI)

1. (Optional) To list all inline policies that are attached to an identity (user, user group, role), use one of
the following commands:

489

https://docs.aws.amazon.com/cli/latest/reference/iam/list-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-entities-for-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-attached-user-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-attached-group-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-attached-role-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/detach-user-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/detach-group-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/detach-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-user.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-entities-for-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/detach-user-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-role-permissions-boundary.html

AWS Identity and Access Management User Guide
Add or remove identity permissions

• aws iam list-user-policies
• aws iam list-group-policies
• aws iam list-role-policies

2. (Optional) To retrieve an inline policy document that is embedded in an identity (user, user group, or
role), use one of the following commands:

• aws iam get-user-policy
• aws iam get-group-policy
• aws iam get-role-policy

3. To delete an inline policy from an identity (user, user group, or role that is not a service-linked
role (p. 169)), use one of the following commands:

• aws iam delete-user-policy
• aws iam delete-group-policy
• aws iam delete-role-policy

Adding IAM policies (AWS API)
You can use the AWS API to attach managed policies that control permissions or specify a policy that
serves as a permissions boundary (p. 395). You can also embed an inline policy.

To use a managed policy as a permissions policy for an entity (AWS API)

1. (Optional) To view information about a policy, call the following operations:

• To list managed policies: ListPolicies
• To retrieve detailed information about a managed policy: GetPolicy

2. To attach a managed policy to an identity (user, user group, or role), call one of the following
operations:

• AttachUserPolicy
• AttachGroupPolicy
• AttachRolePolicy

To use a managed policy to set a permissions boundary (AWS API)

1. (Optional) To view information about a managed policy, call the following operations:

• To list managed policies: ListPolicies
• To retrieve detailed information about a managed policy: GetPolicy

2. To use a managed policy to set the permissions boundary for an entity (user or role), call one of the
following operations:

• PutUserPermissionsBoundary
• PutRolePermissionsBoundary

To embed an inline policy (AWS API)

To embed an inline policy in an identity (user, user group, or role that is not a service-linked role (p. 169)),
call one of the following operations:

• PutUserPolicy

490

https://docs.aws.amazon.com/cli/latest/reference/iam/list-user-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-group-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-role-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-user-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-group-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-user-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-group-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-role-policy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachUserPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachGroupPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_AttachRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutUserPermissionsBoundary.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutRolePermissionsBoundary.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutUserPolicy.html

AWS Identity and Access Management User Guide
Add or remove identity permissions

• PutGroupPolicy

• PutRolePolicy

Removing IAM policies (AWS API)

You can use the AWS API to detach managed policies that control permissions or remove a policy that
serves as a permissions boundary (p. 395). You can also delete an inline policy.

To detach a managed policy used as a permissions policy (AWS API)

1. (Optional) To view information about a policy, call the following operations:

• To list managed policies: ListPolicies

• To retrieve detailed information about a managed policy: GetPolicy

2. (Optional) To find out about the relationships between the policies and identities, call the following
operations:

• To list the identities (users, user groups, and roles) to which a managed policy is attached:

• ListEntitiesForPolicy

• To list the managed policies attached to an identity (a user, user group, or role), call one of the
following operations:

• ListAttachedUserPolicies

• ListAttachedGroupPolicies

• ListAttachedRolePolicies

3. To detach a managed policy from an identity (user, user group, or role), call one of the following
operations:

• DetachUserPolicy

• DetachGroupPolicy

• DetachRolePolicy

To remove a permissions boundary (AWS API)

1. (Optional) To view which managed policy is currently used to set the permissions boundary for a
user or role, call the following operations:

• GetUser

• GetRole

2. (Optional) To view the users or roles on which a managed policy is used for a permissions boundary,
call the following operation:

• ListEntitiesForPolicy

3. (Optional) To view information about a managed policy, call the following operations:

• To list managed policies: ListPolicies

• To retrieve detailed information about a managed policy: GetPolicy

4. To remove a permissions boundary from a user or role, call one of the following operations:

• DeleteUserPermissionsBoundary

• DeleteRolePermissionsBoundary

491

https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutGroupPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_PutRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListEntitiesForPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedUserPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedGroupPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedRolePolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DetachUserPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DetachGroupPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DetachRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetUser.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListEntitiesForPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteUserPermissionsBoundary.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteRolePermissionsBoundary.html

AWS Identity and Access Management User Guide
Versioning IAM policies

To delete an inline policy (AWS API)

1. (Optional) To list all inline policies that are attached to an identity (user, user group, role), call one of
the following operations:

• ListUserPolicies

• ListGroupPolicies

• ListRolePolicies

2. (Optional) To retrieve an inline policy document that is embedded in an identity (user, user group, or
role), call one of the following operations:

• GetUserPolicy

• GetGroupPolicy

• GetRolePolicy

3. To delete an inline policy from an identity (user, user group, or role that is not a service-linked
role (p. 169)), call one of the following operations:

• DeleteUserPolicy

• DeleteGroupPolicy

• DeleteRolePolicy

Versioning IAM policies
When you make changes to an IAM customer managed policy, and when AWS makes changes to an AWS
managed policy, the changed policy doesn't overwrite the existing policy. Instead, IAM creates a new
version of the managed policy. IAM stores up to five versions of your customer managed policies. IAM
does not support versioning for inline policies.

The following diagram illustrates versioning for a customer managed policy. In this example, the versions
1-4 are saved. You can have up to five managed policy versions saved to IAM. When you edit a policy that
would create a sixth saved version, you can choose which older version should no longer be saved. You
can revert to any of the other four saved versions at any time.

A policy version is different from a Version policy element. The Version policy element is used within
a policy and defines the version of the policy language. To learn more about the Version policy element
see IAM JSON policy elements: Version (p. 745).

You can use versions to track changes to a managed policy. For example, you might make a change to a
managed policy and then discover that the change had unintended effects. In this case, you can roll back
to a previous version of the managed policy by setting the previous version as the default version.

The following sections explain how you can use versioning for managed policies.

Topics

492

https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListUserPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListGroupPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListRolePolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetUserPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetGroupPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteUserPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteGroupPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteRolePolicy.html

AWS Identity and Access Management User Guide
Versioning IAM policies

• Permissions for setting the default version of a policy (p. 493)

• Setting the default version of customer managed policies (p. 493)

• Using versions to roll back changes (p. 495)

• Version limits (p. 495)

Permissions for setting the default version of a policy

The permissions that are required to set the default version of a policy correspond to the AWS API
operations for the task. You can use the CreatePolicyVersion or SetDefaultPolicyVersion
API operations to set the default version of a policy. To allow someone to set the default policy
version of an existing policy, you can allow access to either the iam:CreatePolicyVersion
action or the iam:SetDefaultPolicyVersion action. The iam:CreatePolicyVersion
action allows them to create a new version of the policy and to set that version as the default. The
iam:SetDefaultPolicyVersion action allows them to set any existing version of the policy as the
default.

Important
Denying the iam:SetDefaultPolicyVersion action in a user's policy does not stop the user
from creating a new policy version and setting it as the default.

You can use the following policy to deny a user access to change an existing customer managed policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "iam:CreatePolicyVersion",
 "iam:SetDefaultPolicyVersion"
],
 "Resource": "arn:aws:iam::*:policy/POLICY-NAME"
 }
]
}

Setting the default version of customer managed policies

One of the versions of a managed policy is set as the default version. The policy's default version is the
operative version—that is, it's the version that is in effect for all of the principal entities (users, user
groups, and roles) that the managed policy is attached to.

When you create a customer managed policy, the policy begins with a single version identified as v1. For
managed policies with only a single version, that version is automatically set as the default. For customer
managed policies with more than one version, you choose which version to set as the default. For AWS
managed policies, the default version is set by AWS. The following diagrams illustrate this concept.

493

AWS Identity and Access Management User Guide
Versioning IAM policies

You can set the default version of a customer managed policy to apply that version to every IAM identity
(user, user group, and role) where the policy is attached. You cannot set the default version for an AWS
managed policy or an inline policy.

To set the default version of a customer managed policy (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. In the list of policies, choose the policy name of the policy to set the default version of. You can use
the search box to filter the list of policies.

4. Choose the Policy versions tab. Select the check box next to the version that you want to set as the
default version, and then choose Set as default.

To learn how to set the default version of a customer managed policy from the AWS Command Line
Interface or the AWS API, see Editing customer managed policies (AWS CLI) (p. 497).

494

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Editing IAM policies

Using versions to roll back changes
You can set the default version of a customer managed policy to roll back your changes. For example,
consider the following scenario:

You create a customer managed policy that allows users to administer a particular Amazon S3 bucket
using the AWS Management Console. Upon creation, your customer managed policy has only one
version, identified as v1, so that version is automatically set as the default. The policy works as intended.

Later, you update the policy to add permission to administer a second Amazon S3 bucket. IAM creates a
new version of the policy, identified as v2, that contains your changes. You set version v2 as the default,
and a short time later your users report that they lack permission to use the Amazon S3 console. In this
case, you can roll back to version v1 of the policy, which you know works as intended. To do this, you set
version v1 as the default version. Your users are now able to use the Amazon S3 console to administer
the original bucket.

Later, after you determine the error in version v2 of the policy, you update the policy again to add
permission to administer the second Amazon S3 bucket. IAM creates another new version of the policy,
identified as v3. You set version v3 as the default, and this version works as intended. At this point, you
delete version v2 of the policy.

Version limits
A managed policy can have up to five versions. If you need to make changes to a managed policy beyond
five versions from the AWS Command Line Interface, or the AWS API, you must first delete one or more
existing versions. If you use the AWS Management Console, you do not have to delete a version before
editing your policy. When you save a sixth version, a dialog box appears that prompts you to delete one
or more nondefault versions of your policy. You can view the JSON policy document for each version to
help you decide. For details about this dialog box, see the section called “Editing IAM policies” (p. 495).

You can delete any version of the managed policy that you want, except for the default version. When
you delete a version, the version identifiers for the remaining versions do not change. As a result, version
identifiers might not be sequential. For example, if you delete versions v2 and v4 of a managed policy
and add two new versions, the remaining version identifiers might be v1, v3, v5, v6, and v7.

Editing IAM policies
A policy (p. 381) is an entity that, when attached to an identity or resource, defines their permissions.
Policies are stored in AWS as JSON documents and are attached to principals as identity-based policies in
IAM. You can attach an identity-based policy to a principal (or identity), such as an IAM user group, user,
or role. Identity-based policies include AWS managed policies, customer managed policies, and inline
policies (p. 389). You can edit customer managed policies and inline policies in IAM. AWS managed
policies cannot be edited. The number and size of IAM resources in an AWS account are limited. For more
information, see IAM and AWS STS quotas (p. 719).

Topics
• View policy access (p. 495)
• Editing customer managed policies (console) (p. 496)
• Editing inline policies (console) (p. 497)
• Editing customer managed policies (AWS CLI) (p. 497)
• Editing customer managed policies (AWS API) (p. 498)

View policy access
Before you change the permissions for a policy, you should review its recent service-level activity. This is
important because you don't want to remove access from a principal (person or application) who is using

495

AWS Identity and Access Management User Guide
Editing IAM policies

it. For more information about viewing last accessed information, see Refining permissions in AWS using
last accessed information (p. 502).

Editing customer managed policies (console)
You can edit customer managed policies to change the permissions that are defined in the policy. A
customer managed policy can have up to five versions. This is important because if you make changes
to a managed policy beyond five versions, the AWS Management Console prompts you to decide which
version to delete. You can also change the default version or delete a version of a policy before you edit
it to avoid being prompted. To learn more about versions, see Versioning IAM policies (p. 492).

To edit a customer managed policy (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. In the list of policies, choose the policy name of the policy to edit. You can use the search box to
filter the list of policies.

4. Choose the Permissions tab, and then choose Edit policy.

5. Do one of the following:

• Choose the Visual editor tab to change your policy without understanding JSON syntax. You can
make changes to the service, actions, resources, or optional conditions for each permission block
in your policy. You can also import a policy to add additional permissions to the bottom of your
policy. When you are finished making changes, choose Review policy to continue.

• Choose the JSON tab to modify your policy by typing or pasting text in the JSON text box. You
can also import a policy to add additional permissions to the bottom of your policy. Resolve any
security warnings, errors, or general warnings generated during policy validation (p. 474), and
then choose Review policy.

Note
You can switch between the Visual editor and JSON tabs any time. However, if you
make changes or choose Review policy in the Visual editor tab, IAM might restructure
your policy to optimize it for the visual editor. For more information, see Policy
restructuring (p. 684).

6. On the Review page, review the policy Summary and then choose Save changes to save your work.

7. If the managed policy already has the maximum of five versions, choosing Save displays a dialog
box. To save your new version, you must remove at least one earlier version. You cannot delete the
default version. Choose from the following options:

• Remove oldest non-default policy version (version v# - created # days ago) – Use this option
to see which version will be deleted and when it was created. You can view the JSON policy
document for all nondefault versions by choosing the second option, Select versions to remove.

• Select versions to remove – Use this option to view the JSON policy document and choose one or
more versions to delete.

After choosing the versions to remove, choose Delete version and save to save your new policy
version.

To set the default version of a customer managed policy (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

496

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Editing IAM policies

3. In the list of policies, choose the policy name of the policy to set the default version of. You can use
the search box to filter the list of policies.

4. Choose the Policy versions tab. Select the check box next to the version that you want to set as the
default version, and then choose Set as default.

To delete a version of a customer managed policy (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. Choose the name of the customer managed policy that has a version you want to delete. You can
use the search box to filter the list of policies.

4. Choose the Policy versions tab. Select the check box next to the version that you want to delete.
Then choose Delete.

5. Confirm that you want to delete the version, and then choose Delete.

Editing inline policies (console)
You can edit an inline policy from the AWS Management Console.

To edit an inline policy for a user, user group, or role (console)

1. In the navigation pane, choose Users, User groups, or Roles.

2. Choose the name of the user, user group, or role with the policy that you want to modify. Then
choose the Permissions tab and expand the policy.

3. To edit an inline policy, choose Edit Policy.

4. Do one of the following:

• Choose the Visual editor tab to change your policy without understanding JSON syntax. You can
make changes to the service, actions, resources, or optional conditions for each permission block
in your policy. You can also import a policy to add additional permissions to the bottom of your
policy. When you are finished making changes, choose Review policy to continue.

• Choose the JSON tab to modify your policy by typing or pasting text in the JSON text box. You
can also import a policy to add additional permissions to the bottom of your policy. Resolve
any security warnings, errors, or general warnings generated during policy validation (p. 474),
and then choose Review policy. To save your changes without affecting the currently attached
entities, clear the check box for Save as default version.

Note
You can switch between the Visual editor and JSON tabs any time. However, if you make
changes or choose Review policy in the Visual editor tab, IAM might restructure your policy
to optimize it for the visual editor. For more information, see Policy restructuring (p. 684).

5. On the Review page, review the policy Summary and then choose Save changes to save your work.

Editing customer managed policies (AWS CLI)
You can edit a customer managed policy from the AWS Command Line Interface (AWS CLI).

Note
A managed policy can have up to five versions. If you need to make changes to a customer
managed policy beyond five versions, you must first delete one or more existing versions.

497

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Editing IAM policies

To edit a customer managed policy (AWS CLI)

1. (Optional) To view information about a policy, run the following commands:

• To list managed policies: list-policies
• To retrieve detailed information about a managed policy: get-policy

2. (Optional) To find out about the relationships between the policies and identities, run the following
commands:

• To list the identities (users, user groups, and roles) to which a managed policy is attached:
• list-entities-for-policy

• To list the managed policies attached to an identity (a user, user group, or role):
• list-attached-user-policies
• list-attached-group-policies
• list-attached-role-policies

3. To edit a customer managed policy, run the following command:

• create-policy-version
4. (Optional) To validate a customer managed policy, run the following IAM Access Analyzer command:

• validate-policy

To set the default version of a customer managed policy (AWS CLI)

1. (Optional) To list managed policies, run the following command:

• list-policies
2. To set the default version of a customer managed policy, run the following command:

• set-default-policy-version

To delete a version of a customer managed policy (AWS CLI)

1. (Optional) To list managed policies, run the following command:

• list-policies
2. To delete a customer managed policy, run the following command:

• delete-policy-version

Editing customer managed policies (AWS API)
You can edit a customer managed policy using the AWS API.

Note
A managed policy can have up to five versions. If you need to make changes to a customer
managed policy beyond five versions, you must first delete one or more existing versions.

To edit a customer managed policy (AWS API)

1. (Optional) To view information about a policy, call the following operations:

• To list managed policies: ListPolicies
• To retrieve detailed information about a managed policy: GetPolicy

498

https://docs.aws.amazon.com/cli/latest/reference/iam/list-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-entities-for-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-attached-user-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-attached-group-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-attached-role-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/create-policy-version.html
https://docs.aws.amazon.com/cli/latest/reference/accessanalyzer/validate-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/set-default-policy-version.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-policy-version.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetPolicy.html

AWS Identity and Access Management User Guide
Deleting IAM policies

2. (Optional) To find out about the relationships between the policies and identities, call the following
operations:

• To list the identities (users, user groups, and roles) to which a managed policy is attached:

• ListEntitiesForPolicy

• To list the managed policies attached to an identity (a user, user group, or role):

• ListAttachedUserPolicies

• ListAttachedGroupPolicies

• ListAttachedRolePolicies

3. To edit a customer managed policy, call the following operation:

• CreatePolicyVersion

4. (Optional) To validate a customer managed policy, call the following IAM Access Analyzer operation:

• ValidatePolicy

To set the default version of a customer managed policy (AWS API)

1. (Optional) To list managed policies, call the following operation:

• ListPolicies

2. To set the default version of a customer managed policy, call the following operation:

• SetDefaultPolicyVersion

To delete a version of a customer managed policy (AWS API)

1. (Optional) To list managed policies, call the following operation:

• ListPolicies

2. To delete a customer managed policy, call the following operation:

• DeletePolicyVersion

Deleting IAM policies
You can delete IAM policies using the AWS Management Console, the AWS Command Line Interface
(AWS CLI), or the IAM API.

For more information about the difference between managed and inline policies, see Managed policies
and inline policies (p. 389).

For general information about IAM policies, see Policies and permissions in IAM (p. 381).

The number and size of IAM resources in an AWS account are limited. For more information, see IAM and
AWS STS quotas (p. 719).

Topics

• View policy access (p. 500)

• Deleting IAM policies (console) (p. 500)

• Deleting IAM policies (AWS CLI) (p. 500)

• Deleting IAM policies (AWS API) (p. 501)

499

https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListEntitiesForPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedUserPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedGroupPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedRolePolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreatePolicyVersion.html
https://docs.aws.amazon.com/access-analyzer/latest/APIReference/API_ValidatePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_SetDefaultPolicyVersion.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeletePolicyVersion.html

AWS Identity and Access Management User Guide
Deleting IAM policies

View policy access
Before you delete a policy, you should review its recent service-level activity. This is important because
you don't want to remove access from a principal (person or application) who is using it. For more
information about viewing last accessed information, see Refining permissions in AWS using last
accessed information (p. 502).

Deleting IAM policies (console)
You can delete a customer managed policy to remove it from your AWS account. You cannot delete AWS
managed policies.

To delete a customer managed policy (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. Select the check box next to the customer managed policy to delete. You can use the search box to
filter the list of policies.

4. Choose Actions, and then choose Delete.

5. Confirm that you want to delete the policy, and then choose Delete.

To delete an inline policy for a user group, user, or role (console)

1. In the navigation pane, choose User groups, Users, or Roles.

2. Choose the name of the user group, user, or role with the policy that you want to delete. Then
choose the Permissions tab. If you chose Users or Roles, expand the policy.

3. To delete an inline policy in User groups, choose Delete. To delete an inline policy in Users or Roles,
choose X.

4. If you are deleting a single inline policy in User groups, type the name of the policy and choose
Delete. If you are deleting multiple inline policies in User groups, type the number of policies you
are deleting followed by inline policies and choose Delete. For example, if you are deleting
three inline policies, type 3 inline policies.

Deleting IAM policies (AWS CLI)
You can delete a customer managed policy from the AWS Command Line Interface.

To delete a customer managed policy (AWS CLI)

1. (Optional) To view information about a policy, run the following commands:

• To list managed policies: list-policies

• To retrieve detailed information about a managed policy: get-policy

2. (Optional) To find out about the relationships between the policies and identities, run the following
commands:

• To list the identities (users, user groups, and roles) to which a managed policy is attached, run the
following command:

• list-entities-for-policy

• To list the managed policies attached to an identity (a user, user group, or role), run one of the
following commands:

500

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/cli/latest/reference/iam/list-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-entities-for-policy.html

AWS Identity and Access Management User Guide
Deleting IAM policies

• list-attached-user-policies
• list-attached-group-policies
• list-attached-role-policies

3. To delete a customer managed policy, run the following command:

• delete-policy

To delete an inline policy (AWS CLI)

1. (Optional) To list all inline policies that are attached to an identity (user, user group, role), use one of
the following commands:

• aws iam list-user-policies
• aws iam list-group-policies
• aws iam list-role-policies

2. (Optional) To retrieve an inline policy document that is embedded in an identity (user, user group, or
role), use one of the following commands:

• aws iam get-user-policy
• aws iam get-group-policy
• aws iam get-role-policy

3. To delete an inline policy from an identity (user, user group, or role that is not a service-linked
role (p. 169)), use one of the following commands:

• aws iam delete-user-policy
• aws iam delete-group-policy
• aws iam delete-role-policy

Deleting IAM policies (AWS API)
You can delete a customer managed policy using the AWS API.

To delete a customer managed policy (AWS API)

1. (Optional) To view information about a policy, call the following operations:

• To list managed policies: ListPolicies
• To retrieve detailed information about a managed policy: GetPolicy

2. (Optional) To find out about the relationships between the policies and identities, call the following
operations:

• To list the identities (users, user groups, and roles) to which a managed policy is attached, call the
following operation:
• ListEntitiesForPolicy

• To list the managed policies attached to an identity (a user, user group, or role), call one of the
following operations:
• ListAttachedUserPolicies
• ListAttachedGroupPolicies
• ListAttachedRolePolicies

3. To delete a customer managed policy, call the following operation:

• DeletePolicy

501

https://docs.aws.amazon.com/cli/latest/reference/iam/list-attached-user-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-attached-group-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-attached-role-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-user-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-group-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-role-policies.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-user-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-group-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-user-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-group-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-role-policy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListEntitiesForPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedUserPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedGroupPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedRolePolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeletePolicy.html

AWS Identity and Access Management User Guide
Refining permissions using access information

To delete an inline policy (AWS API)

1. (Optional) To list all inline policies that are attached to an identity (user, user group, role), call one of
the following operations:

• ListUserPolicies
• ListGroupPolicies
• ListRolePolicies

2. (Optional) To retrieve an inline policy document that is embedded in an identity (user, user group, or
role), call one of the following operations:

• GetUserPolicy
• GetGroupPolicy
• GetRolePolicy

3. To delete an inline policy from an identity (user, user group, or role that is not a service-linked
role (p. 169)), call one of the following operations:

• DeleteUserPolicy
• DeleteGroupPolicy
• DeleteRolePolicy

Refining permissions in AWS using last accessed
information
As an administrator, you might grant permissions to entities (users or roles) beyond what they require.
IAM provides last accessed information to help you identify unused permissions so that you can
remove them. You can use last accessed information to refine your policies and allow access to only the
services and actions that your entities use. This helps you to better adhere to the best practice of least
privilege. (p. 559) You can view last accessed information for entities or policies that exist in IAM or
AWS Organizations.

Topics
• Last accessed information types for IAM (p. 502)
• Last accessed information for AWS Organizations (p. 503)
• Things to know about last accessed information (p. 503)
• Permissions required (p. 504)
• Troubleshooting activity for IAM and Organizations entities (p. 506)
• Where AWS tracks last accessed information (p. 506)
• Viewing last accessed information for IAM (p. 508)
• Viewing last accessed information for Organizations (p. 511)
• Example scenarios for using last accessed information (p. 515)

Last accessed information types for IAM
You can view two types of last accessed information for IAM entities: allowed AWS service information
and allowed action information. The information includes the date and time when the attempt was
made. Action last accessed information is available for Amazon EC2, IAM, Lambda, and Amazon S3
management actions. Management actions include creation, deletion, and modification actions. To learn
more about how to view last accessed information for IAM, see Viewing last accessed information for
IAM (p. 508).

502

https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListUserPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListGroupPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListRolePolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetUserPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetGroupPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetRolePolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteUserPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteGroupPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteRolePolicy.html

AWS Identity and Access Management User Guide
Refining permissions using access information

For example scenarios for using last accessed information to make decisions about the permissions that
you grant to your IAM entities, see Example scenarios for using last accessed information (p. 515).

To learn more about how the information for management actions is provided, see Things to know about
last accessed information (p. 503).

Last accessed information for AWS Organizations
If you sign in using management account credentials, you can view service last accessed information
for an AWS Organizations entity or policy in your organization. AWS Organizations entities include
the organization root, organizational units (OUs), or accounts. Last accessed information for AWS
Organizations includes information about services that are allowed by a service control policy (SCP).
The information indicates which principals in an organization or account last attempted to access the
service and when. To learn more about the report and how to view last accessed information for AWS
Organizations, see Viewing last accessed information for Organizations (p. 511).

For example scenarios for using last accessed information to make decisions about the permissions
that you grant to your Organizations entities, see Example scenarios for using last accessed
information (p. 515).

Things to know about last accessed information
Before you use last accessed information from a report to change the permissions for an IAM entity or
Organizations entity, review the following details about the information.

• Tracking period – Recent activity usually appears in the IAM console within four hours. The
tracking period for service information is the last 400 days. The tracking period for Amazon S3
actions information began on April, 12, 2020. The tracking period for Amazon EC2, IAM, and
Lambda actions began on April 7, 2021. For more information, see Where AWS tracks last accessed
information (p. 506).

• Attempts reported – The service last accessed data includes all attempts to access an AWS API, not
just the successful attempts. This includes all attempts that were made using the AWS Management
Console, the AWS API through any of the SDKs, or any of the command line tools. An unexpected entry
in the service last accessed data does not mean that your account has been compromised, because
the request might have been denied. Refer to your CloudTrail logs as the authoritative source for
information about all API calls and whether they were successful or denied access.

• PassRole – The iam:PassRole action is not tracked and is not included in IAM action last accessed
information.

• Action last accessed information – Action last accessed information is available for Amazon EC2,
IAM, Lambda, and Amazon S3 management actions accessed by IAM entities. IAM provides action
information for Amazon EC2, IAM, Lambda, and Amazon S3 management events that are logged by
CloudTrail. Sometimes, CloudTrail management events are also called control plane operations or
control plane events. Management events provide visibility into administrative operations that are
performed on resources in your AWS account. To learn more about management events in CloudTrail,
see Logging Management Events with Cloudtrail.

• Report owner – Only the principal that generates a report can view the report details. This means
that when you view the information in the AWS Management Console, you might have to wait for it
to generate and load. If you use the AWS CLI or AWS API to get report details, your credentials must
match the credentials of the principal that generated the report. If you use temporary credentials for
a role or federated user, you must generate and retrieve the report during the same session. For more
information about assumed-role session principals, see AWS JSON policy elements: Principal (p. 747).

• IAM entities – The information for IAM includes IAM entities (users or roles) in your account.
Information for Organizations includes principals (IAM users, IAM roles, or the AWS account root user)
in the specified Organizations entity. The information does not include unauthenticated attempts.

• IAM policy types – The information for IAM includes services that are allowed by an IAM entity's
policies. These are policies attached to a role or attached to a user directly or through a group.

503

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-management-events-with-cloudtrail.html

AWS Identity and Access Management User Guide
Refining permissions using access information

Access allowed by other policy types is not included in your report. The excluded policy types include
resource-based policies, access control lists, AWS Organizations SCPs, IAM permissions boundaries, and
session policies. Permissions that are provided by service-linked roles are defined by the service that
they are linked to and can't be modified in IAM. To learn more about service-linked roles, see Using
service-linked roles (p. 219) To learn how the different policy types are evaluated to allow or deny
access, see Policy evaluation logic (p. 784).

• Organizations policy types – The information for AWS Organizations includes only services that
are allowed by an Organizations entity's inherited service control policies (SCPs). SCPs are policies
attached to a root, OU, or account. Access allowed by other policy types is not included in your report.
The excluded policy types include identity-based policies, resource-based policies, access control lists,
IAM permissions boundaries, and session policies. To learn how the different policy types are evaluated
to allow or deny access, see Policy evaluation logic (p. 784).

• Specifying a policy ID – When you use the AWS CLI or AWS API to generate a report for
last accessed information in Organizations, you can optionally specify a policy ID. The
resulting report includes information for the services that are allowed by only that policy. The
information includes the most recent account activity in the specified Organizations entity or
the entity's children. For more information, see aws iam generate-organizations-access-report or
GenerateOrganizationsAccessReport.

• Organizations management account – You must sign in to your organization's management account
to view service last accessed information. You can choose to view information for the management
account using the IAM console, the AWS CLI, or the AWS API. The resulting report lists all AWS services,
because the management account is not limited by SCPs. If you specify a policy ID in the CLI or API,
the policy is ignored. For each service, the report includes information for only the management
account. However, reports for other Organizations entities do not return information for activity in the
management account.

• Organizations settings – An administrator must enable SCPs in your organization root before you can
generate data for Organizations.

Permissions required
To view the last accessed information in the AWS Management Console, you must have a policy that
grants the necessary permissions.

Permissions for IAM information

To use the IAM console to view the last accessed information for an IAM user, role, or policy, you must
have a policy that includes the following actions:

• iam:GenerateServiceLastAccessedDetails

• iam:Get*

• iam:List*

These permissions allow a user to see the following:

• Which users, groups, or roles are attached to a managed policy
• Which services a user or role can access
• The last time they accessed the service
• The last time they attempted to use a specific Amazon EC2, IAM, Lambda, or Amazon S3 action

To use the AWS CLI or AWS API to view last accessed information for IAM, you must have permissions
that match the operation you want to use:

• iam:GenerateServiceLastAccessedDetails

504

https://docs.aws.amazon.com/cli/latest/reference/iam/generate-organizations-access-report.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GenerateOrganizationsAccessReport.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies.html#enable_policies_on_root
https://docs.aws.amazon.com/general/latest/gr/glos-chap.html#managed_policy

AWS Identity and Access Management User Guide
Refining permissions using access information

• iam:GetServiceLastAccessedDetails

• iam:GetServiceLastAccessedDetailsWithEntities

• iam:ListPoliciesGrantingServiceAccess

This example shows how you might create an IAM policy that allows viewing IAM last accessed
information. Additionally, it allows read-only access to all of IAM. This policy defines permissions for
programmatic and console access.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "iam:GenerateServiceLastAccessedDetails",
 "iam:Get*",
 "iam:List*"
],
 "Resource": "*"
 }

Permissions for AWS Organizations information

To use the IAM console to view a report for the root, OU, or account entities in Organizations, you must
have a policy that includes the following actions:

• iam:GenerateOrganizationsAccessReport

• iam:GetOrganizationsAccessReport

• organizations:DescribeAccount

• organizations:DescribeOrganization

• organizations:DescribeOrganizationalUnit

• organizations:DescribePolicy

• organizations:ListChildren

• organizations:ListParents

• organizations:ListPoliciesForTarget

• organizations:ListRoots

• organizations:ListTargetsForPolicy

To use the AWS CLI or AWS API to view service last accessed information for Organizations, you must
have a policy that includes the following actions:

• iam:GenerateOrganizationsAccessReport

• iam:GetOrganizationsAccessReport

• organizations:DescribePolicy

• organizations:ListChildren

• organizations:ListParents

• organizations:ListPoliciesForTarget

• organizations:ListRoots

• organizations:ListTargetsForPolicy

This example shows how you might create an IAM policy that allows viewing service last accessed
information for Organizations. Additionally, it allows read-only access to all of Organizations. This policy
defines permissions for programmatic and console access.

505

AWS Identity and Access Management User Guide
Refining permissions using access information

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "iam:GenerateOrganizationsAccessReport",
 "iam:GetOrganizationsAccessReport",
 "organizations:Describe*",
 "organizations:List*"
],
 "Resource": "*"
 }
}

You can also use the iam:OrganizationsPolicyId (p. 831) condition key to allow generating a report only
for a specific Organizations policy. For an example policy, see IAM: View service last accessed information
for an Organizations policy (p. 457).

Troubleshooting activity for IAM and Organizations entities
In some cases, your AWS Management Console last accessed information table might be empty. Or
perhaps your AWS CLI or AWS API request returns an empty set of information or a null field. In these
cases, review the following issues:

• For action last accessed information, an action that you are expecting to see might not be returned
in the list. This can happen either because the IAM entity does not have permissions for the action, or
AWS does not yet track the action for last accessed information.

• For an IAM user, make sure that the user has at least one inline or managed policy attached, either
directly or through group memberships.

• For an IAM group, verify that the group has at least one inline or managed policy attached.
• For an IAM group, the report returns only the service last accessed information for members that used

the group's policies to access a service. To learn whether a member used other policies, review the last
accessed information for that user.

• For an IAM role, verify that the role has at least one inline or managed policy attached.
• For an IAM entity (user or role), review other policy types that might affect the permissions of that

entity. These include resource-based policies, access control lists, AWS Organizations policies, IAM
permissions boundaries, or session policies. For more information, see Policy types (p. 381) or
Evaluating policies within a single account (p. 785).

• For an IAM policy, make sure that the specified managed policy is attached to at least one user, group
with members, or role.

• For an Organizations entity (root, OU, or account), make sure that you are signed using Organizations
management account credentials.

• Verify that SCPs are enabled in your organization root.
• Action last accessed information is only available for some Amazon EC2, IAM, Lambda, and Amazon S3

actions.

When you make changes, wait at least four hours for activity to appear in your IAM console report. If you
use the AWS CLI or AWS API, you must generate a new report to view the updated information.

Where AWS tracks last accessed information
AWS collects last accessed information for the standard AWS Regions. When AWS adds additional
Regions, those Regions are added to the following table, including the date that AWS started tracking
information in each Region.

506

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies.html#enable_policies_on_root

AWS Identity and Access Management User Guide
Refining permissions using access information

• Service information – The tracking period for services is the last 400 days, or less if your Region began
supporting this feature within the last year.

• Actions information – The tracking period for Amazon S3 management actions began on April, 12,
2020. The tracking period for Amazon EC2, IAM, and Lambda management actions began on April
7, 2021. If the Region started supporting an action at a later date, then that date is also the action's
tracking start date for the Region.

Region name Region Tracking start date

US East (Ohio) us-east-2 October 27, 2017

US East (N. Virginia) us-east-1 October 1, 2015

US West (N. California) us-west-1 October 1, 2015

US West (Oregon) us-west-2 October 1, 2015

Asia Pacific (Hong Kong) ap-east-1 April 24, 2019

Asia Pacific (Mumbai) ap-south-1 June 27, 2016

Asia Pacific (Seoul) ap-northeast-2 January 6, 2016

Asia Pacific (Singapore) ap-southeast-1 October 1, 2015

Asia Pacific (Sydney) ap-southeast-2 October 1, 2015

Asia Pacific (Tokyo) ap-northeast-1 October 1, 2015

Canada (Central) ca-central-1 October 28, 2017

Europe (Frankfurt) eu-central-1 October 1, 2015

Europe (Stockholm) eu-north-1 December 12, 2018

Europe (Ireland) eu-west-1 October 1, 2015

Europe (London) eu-west-2 October 28, 2017

Europe (Milan) eu-south-1 April 28, 2020

Europe (Paris) eu-west-3 December 18, 2017

Middle East (Bahrain) me-south-1 July 29, 2019

Africa (Cape Town) af-south-1 April 22, 2020

South America (São Paulo) sa-east-1 December 11, 2015

If a Region is not listed in the previous table, then that Region does not yet provide last accessed
information.

An AWS Region is a collection of AWS resources in a geographic area. Regions are grouped into
partitions. The standard Regions are the Regions that belong to the aws partition. For more information
about the different partitions, see Amazon Resource Names (ARNs) Format in the AWS General
Reference. For more information about Regions, see About AWS Regions also in the AWS General
Reference.

507

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html#arns-syntax
https://docs.aws.amazon.com/general/latest/gr/rande-manage.html#region-what-is

AWS Identity and Access Management User Guide
Refining permissions using access information

Viewing last accessed information for IAM
You can view last accessed information for IAM using the AWS Management Console, AWS CLI, or AWS
API. Last accessed information includes information about some actions that were last accessed for
Amazon EC2, IAM, Lambda, and Amazon S3. For more information about last accessed information, see
Refining permissions in AWS using last accessed information (p. 502).

You can view information for each type of resource in IAM. In each case, the information includes allowed
services for the given reporting period:

• User – View the last time that the user tried to access each allowed service.
• User group – View information about the last time that a user group member attempted to access

each allowed service. This report also includes the total number of members that attempted access.
• Role – View the last time that someone used the role in an attempt to access each allowed service.
• Policy – View information about the last time that a user or role attempted to access each allowed

service. This report also includes the total number of entities that attempted access.

Note
Before you view the access information for a resource in IAM, make sure you understand the
reporting period, reported entities, and the evaluated policy types for your information. For
more details, see the section called “Things to know about last accessed information” (p. 503).

Viewing information for IAM (console)

You can view last accessed information for IAM on the Access Advisor tab in the IAM console.

To view information for IAM (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose either User groups, Users, Roles, or Policies.
3. Choose any user, user group, role, or policy name to open its Summary page and choose the Access

Advisor tab. View the following information, based on the resource that you chose:

• User group – View the list of services that user group members can access. You can also view
when a member last accessed the service, what user group policies they used, and which user
group member made the request. Choose the name of the policy to learn whether it is a managed
policy or an inline user group policy. Choose the name of the user group member to see all of the
members of the user group and when they last accessed the service.

• User – View the list of services that the user can access. You can also view when they last accessed
the service, and what policies they used. Choose the name of the policy to learn whether it is a
managed policy, an inline user policy, or an inline policy for the user group.

• Role – View the list of services that the role can access, when the role last accessed the service,
and what policies were used. Choose the name of the policy to learn whether it is a managed
policy or an inline role policy.

• Policy – View the list of services with allowed actions in the policy. You can also view when the
policy was last used to access the service, and which entity (user or role) used the policy. Choose
the name of the entity to learn which entities have this policy attached and when they last
accessed the service.

4. (Optional) In the Service column of the table, choose Amazon EC2, AWS Identity and Access
Management, AWS Lambda, or Amazon S3 to view a list of management actions that IAM entities
have attempted to access. You can view the AWS Region and a timestamp that shows when
someone last attempted to perform the action.

5. The Last accessed column is displayed for services and Amazon EC2, IAM, Lambda, and Amazon S3
management actions. Review the following possible results that are returned in this column. These

508

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Refining permissions using access information

results vary depending on whether a service or action is allowed, was accessed, and whether it is
tracked by AWS for last accessed information.

<number of> days ago

The number of days since the service or action was used in the tracking period. The tracking
period for services is for the last 400 days. The tracking period for Amazon S3 actions started on
April 12, 2020. The tracking period for Amazon EC2, IAM, and Lambda actions started on April 7,
2021. To learn more about the tracking start dates for each AWS Region, see Where AWS tracks
last accessed information (p. 506).

Not accessed in the tracking period

The tracked service or action has not been used by an entity in the tracking period.

It is possible for you to have permissions for an action that doesn't appear in the list. This can
happen if the tracking information for the action is not currently supported by AWS. You should
not make permissions decisions based solely on the absence of tracking information. Instead, we
recommend that you use this information to inform and support your overall strategy of granting
least privilege. Check your policies to confirm that the level of access is appropriate.

Viewing information for IAM (AWS CLI)

You can use the AWS CLI to retrieve information about the last time that an IAM resource was used to
attempt to access AWS services and Amazon S3, Amazon EC2, IAM, and Lambda actions. An IAM resource
can be a user, user group, role, or policy.

To view information for IAM (AWS CLI)

1. Generate a report. The request must include the ARN of the IAM resource (user, user group, role,
or policy) for which you want a report. You can specify the level of granularity that you want to
generate in the report to view access details for either services or both services and actions. The
request returns a job-id that you can then use in the get-service-last-accessed-details
and get-service-last-accessed-details-with-entities operations to monitor the job-
status until the job is complete.

• aws iam generate-service-last-accessed-details

2. Retrieve details about the report using the job-id parameter from the previous step.

• aws iam get-service-last-accessed-details

This operation returns the following information, based on the type of resource and level of
granularity that you requested in the generate-service-last-accessed-details operation:

• User – Returns a list of services that the specified user can access. For each service, the operation
returns the date and time of the user's last attempt and the ARN of the user.

• User group – Returns a list of services that members of the specified user group can access using
the policies attached to the user group. For each service, the operation returns the date and time
of the last attempt made by any user group member. It also returns the ARN of that user and
the total number of user group members that have attempted to access the service. Use the
GetServiceLastAccessedDetailsWithEntities operation to retrieve a list of all of the members.

• Role – Returns a list of services that the specified role can access. For each service, the operation
returns the date and time of the role's last attempt and the ARN of the role.

• Policy – Returns a list of services for which the specified policy allows access. For each service,
the operation returns the date and time that an entity (user or role) last attempted to access the

509

https://docs.aws.amazon.com/cli/latest/reference/iam/generate-service-last-accessed-details.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-service-last-accessed-details.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetServiceLastAccessedDetailsWithEntities.html

AWS Identity and Access Management User Guide
Refining permissions using access information

service using the policy. It also returns the ARN of that entity and the total number of entities that
attempted access.

3. Learn more about the entities that used user group or policy permissions in an attempt to access a
specific service. This operation returns a list of entities with each entity's ARN, ID, name, path, type
(user or role), and when they last attempted to access the service. You can also use this operation for
users and roles, but it only returns information about that entity.

• aws iam get-service-last-accessed-details-with-entities
4. Learn more about the identity-based policies that an identity (user, user group, or role) used in

an attempt to access a specific service. When you specify an identity and service, this operation
returns a list of permissions policies that the identity can use to access the specified service. This
operation gives the current state of policies and does not depend on the generated report. It
also does not return other policy types, such as resource-based policies, access control lists, AWS
Organizations policies, IAM permissions boundaries, or session policies. For more information, see
Policy types (p. 381) or Evaluating policies within a single account (p. 785).

• aws iam list-policies-granting-service-access

Viewing information for IAM (AWS API)

You can use the AWS API to retrieve information about the last time that an IAM resource was used to
attempt to access AWS services and Amazon S3, Amazon EC2, IAM, and Lambda actions. An IAM resource
can be a user, user group, role, or policy. You can specify the level of granularity to generate in the report
to view details for either services or both services and actions.

To view information for IAM (AWS API)

1. Generate a report. The request must include the ARN of the IAM resource (user, user group,
role, or policy) for which you want a report. It returns a JobId that you can then use in the
GetServiceLastAccessedDetails and GetServiceLastAccessedDetailsWithEntities
operations to monitor the JobStatus until the job is complete.

• GenerateServiceLastAccessedDetails
2. Retrieve details about the report using the JobId parameter from the previous step.

• GetServiceLastAccessedDetails

This operation returns the following information, based on the type of resource and level of
granularity that you requested in the GenerateServiceLastAccessedDetails operation:

• User – Returns a list of services that the specified user can access. For each service, the operation
returns the date and time of the user's last attempt and the ARN of the user.

• User group – Returns a list of services that members of the specified user group can access using
the policies attached to the user group. For each service, the operation returns the date and time
of the last attempt made by any user group member. It also returns the ARN of that user and
the total number of user group members that have attempted to access the service. Use the
GetServiceLastAccessedDetailsWithEntities operation to retrieve a list of all of the members.

• Role – Returns a list of services that the specified role can access. For each service, the operation
returns the date and time of the role's last attempt and the ARN of the role.

• Policy – Returns a list of services for which the specified policy allows access. For each service,
the operation returns the date and time that an entity (user or role) last attempted to access the
service using the policy. It also returns the ARN of that entity and the total number of entities that
attempted access.

3. Learn more about the entities that used user group or policy permissions in an attempt to access a
specific service. This operation returns a list of entities with each entity's ARN, ID, name, path, type

510

https://docs.aws.amazon.com/cli/latest/reference/iam/get-service-last-accessed-details-with-entities.html
https://docs.aws.amazon.com/cli/latest/reference/iam/list-policies-granting-service-access.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GenerateServiceLastAccessedDetails.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetServiceLastAccessedDetails.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetServiceLastAccessedDetailsWithEntities.html

AWS Identity and Access Management User Guide
Refining permissions using access information

(user or role), and when they last attempted to access the service. You can also use this operation for
users and roles, but it only returns information about that entity.

• GetServiceLastAccessedDetailsWithEntities

4. Learn more about the identity-based policies that an identity (user, user group, or role) used in
an attempt to access a specific service. When you specify an identity and service, this operation
returns a list of permissions policies that the identity can use to access the specified service. This
operation gives the current state of policies and does not depend on the generated report. It
also does not return other policy types, such as resource-based policies, access control lists, AWS
Organizations policies, IAM permissions boundaries, or session policies. For more information, see
Policy types (p. 381) or Evaluating policies within a single account (p. 785).

• ListPoliciesGrantingServiceAccess

Viewing last accessed information for Organizations

You can view service last accessed information for AWS Organizations using the IAM console, AWS CLI,
or AWS API. For important information about the data, permissions required, troubleshooting, and
supported Regions, see Refining permissions in AWS using last accessed information (p. 502).

When you sign in to the IAM console using AWS Organizations management account credentials, you can
view information for any entity in your organization. Organizations entities include the organization root,
organizational units (OUs), and accounts. You can also use the IAM console to view information for any
service control policies (SCPs) in your organization. IAM shows a list of services that are allowed by any
SCPs that apply to the entity. For each service, you can view the most recent account activity information
for the chosen Organizations entity or the entity's children.

When you use the AWS CLI or AWS API with management account credentials, you can generate a report
for any entities or policies in your organization. A programmatic report for an entity includes a list of
services that are allowed by any SCPs that apply to the entity. For each service, the report includes the
most recent activity for accounts in the specified Organizations entity or the entity's subtree.

When you generate a programmatic report for a policy, you must specify an Organizations entity.
This report includes a list of services that are allowed by the specified SCP. For each service,
it includes the most recent account activity in the entity or entity's children that are granted
permission by that policy. For more information, see aws iam generate-organizations-access-report or
GenerateOrganizationsAccessReport.

Before you view the report, make sure that you understand the management account requirements and
information, reporting period, reported entities, and the evaluated policy types. For more details, see the
section called “Things to know about last accessed information” (p. 503).

Understand the AWS Organizations entity path

When you use the AWS CLI or AWS API to generate an AWS Organizations access report, you must
specify an entity path. A path is a text representation of the structure of an Organizations entity.

You can build an entity path using the known structure of your organization. For example, assume that
you have the following organizational structure in AWS Organizations.

511

https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetServiceLastAccessedDetailsWithEntities.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListPoliciesGrantingServiceAccess.html
https://docs.aws.amazon.com/cli/latest/reference/iam/generate-organizations-access-report.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GenerateOrganizationsAccessReport.html

AWS Identity and Access Management User Guide
Refining permissions using access information

The path for the Dev Managers OU is built using the IDs of the organization, root, and all OUs in the
path down to and including the OU.

o-a1b2c3d4e5/r-f6g7h8i9j0example/ou-ghi0-awsccccc/ou-jkl0-awsddddd

The path for the account in the Production OU is built using the IDs of the organization, root, the OU,
and the account number.

o-a1b2c3d4e5/r-f6g7h8i9j0example/ou-abc0-awsaaaaa/111111111111

Note
Organization IDs are globally unique but OU IDs and root IDs are unique only within an
organization. This means that no two organizations share the same organization ID. However,
another organization might have an OU or root with the same ID as yours. We recommend that
you always include the organization ID when you specify an OU or root.

Viewing information for Organizations (console)

You can use the IAM console to view service last accessed information for your root, OU, account, or
policy.

To view information for the root (console)

1. Sign in to the AWS Management Console using Organizations management account credentials, and
open the IAM console at https://console.aws.amazon.com/iam/.

512

https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Refining permissions using access information

2. In the navigation pane below the Access reports section, choose Organization activity.

3. On the Organization activity page, choose Root.

4. On the Details and activity tab, view the Service access report section. The information includes a
list of services that are allowed by the policies that are attached directly to the root. The information
shows you from which account the service was last accessed and when. For more details about which
principal accessed the service, sign in as an administrator in that account and view the IAM service
last accessed information (p. 508).

5. Choose the Attached SCPs tab to view the list of the service control policies (SCPs) that are attached
to the root. IAM shows you the number of target entities to which each policy is attached. You can
use this information to decide which SCP to review.

6. Choose the name of an SCP to view all of the services that the policy allows. For each service, view
from which account the service was last accessed, and when.

7. Choose Edit in AWS Organizations to view additional details and edit the SCP in the Organizations
console. For more information, see Updating an SCP in the AWS Organizations User Guide.

To view information for an OU or account (console)

1. Sign in to the AWS Management Console using Organizations management account credentials, and
open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane below the Access reports section, choose Organization activity.

3. On the Organization activity page, expand the structure of your organization. Then choose the
name of the OU or any account that you want to view except the management account.

4. On the Details and activity tab, view the Service access report section. The information includes a
list of services that are allowed by the SCPs attached to the OU or account and all of its parents. The
information shows you from which account the service was last accessed and when. For more details
about which principal accessed the service, sign in as an administrator in that account and view the
IAM service last accessed information (p. 508).

5. Choose the Attached SCPs tab to view the list of the service control policies (SCPs) that are attached
directly to the OU or account. IAM shows you the number of target entities to which each policy is
attached. You can use this information to decide which SCP to review.

6. Choose the name of an SCP to view all of the services that the policy allows. For each service, view
from which account the service was last accessed, and when.

7. Choose Edit in AWS Organizations to view additional details and edit the SCP in the Organizations
console. For more information, see Updating an SCP in the AWS Organizations User Guide.

To view information for the management account (console)

1. Sign in to the AWS Management Console using Organizations management account credentials, and
open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane below the Access reports section, choose Organization activity.

3. On the Organization activity page, expand the structure of your organization and choose the name
your management account.

4. On the Details and activity tab, view the Service access report section. The information includes
a list of all AWS services. The management account is not limited by SCPs. The information shows
you whether the account last accessed the service and when. For more details about which principal
accessed the service, sign in as an administrator in that account and view the IAM service last
accessed information (p. 508).

5. Choose the Attached SCPs tab to confirm that there are no attached SCPs because the account is
the management account.

513

https://docs.aws.amazon.com/organizations/latest/userguide/create-policy.html#update_policy
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/organizations/latest/userguide/create-policy.html#update_policy
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Refining permissions using access information

To view information for a policy (console)

1. Sign in to the AWS Management Console using Organizations management account credentials, and
open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane below the Access reports section, choose Service control policies (SCPs).

3. On the Service control policies (SCPs) page, view a list of the policies in your organization. You can
view the number of target entities to which each policy is attached.

4. Choose the name of an SCP to view all of the services that the policy allows. For each service, view
from which account the service was last accessed, and when.

5. Choose Edit in AWS Organizations to view additional details and edit the SCP in the Organizations
console. For more information, see Updating an SCP in the AWS Organizations User Guide.

Viewing information for Organizations (AWS CLI)

You can use the AWS CLI to retrieve service last accessed information for your Organizations root, OU,
account, or policy.

To view Organizations service last accessed information (AWS CLI)

1. Use your Organizations management account credentials with the required IAM and Organizations
permissions, and confirm that SCPs are enabled for your root. For more information, see Things to
know about last accessed information (p. 503).

2. Generate a report. The request must include the path of the Organizations entity (root, OU, or
account) for which you want a report. You can optionally include an organization-policy-id
parameter to view a report for a specific policy. The command returns a job-id that you can then
use in the get-organizations-access-report command to monitor the job-status until the
job is complete.

• aws iam generate-organizations-access-report

3. Retrieve details about the report using the job-id parameter from the previous step.

• aws iam get-organizations-access-report

This command returns a list of services that entity members can access. For each service, the
command returns the date and time of an account member's last attempt and the entity path of
the account. It also returns the total number of services that are available to access and the number
of services that were not accessed. If you specified the optional organizations-policy-id
parameter, then the services that are available to access are those that are allowed by the specified
policy.

Viewing information for Organizations (AWS API)

You can use the AWS API to retrieve service last accessed information for your Organizations root, OU,
account, or policy.

To view Organizations service last accessed information (AWS API)

1. Use your Organizations management account credentials with the required IAM and Organizations
permissions, and confirm that SCPs are enabled for your root. For more information, see Things to
know about last accessed information (p. 503).

2. Generate a report. The request must include the path of the Organizations entity (root, OU, or
account) for which you want a report. You can optionally include an OrganizationsPolicyId
parameter to view a report for a specific policy. The operation returns a JobId that you can then

514

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/organizations/latest/userguide/create-policy.html#update_policy
https://docs.aws.amazon.com/cli/latest/reference/iam/generate-organizations-access-report.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-organizations-access-report.html

AWS Identity and Access Management User Guide
Refining permissions using access information

use in the GetOrganizationsAccessReport operation to monitor the JobStatus until the job is
complete.

• GenerateOrganizationsAccessReport

3. Retrieve details about the report using the JobId parameter from the previous step.

• GetOrganizationsAccessReport

This operation returns a list of services that entity members can access. For each service, the
operation returns the date and time of an account member's last attempt and the entity path of the
account. It also returns the total number of services that are available to access, and the number of
services that were not accessed. If you specified the optional OrganizationsPolicyId parameter,
then the services that are available to access are those that are allowed by the specified policy.

Example scenarios for using last accessed information
You can use last accessed information to make decisions about the permissions that you grant to your
IAM entities or AWS Organizations entities. For more information, see Refining permissions in AWS using
last accessed information (p. 502).

Note
Before you view the access information for an entity or policy in IAM or AWS Organizations,
make sure that you understand the reporting period, reported entities, and the evaluated policy
types for your data. For more details, see the section called “Things to know about last accessed
information” (p. 503).

It's up to you as an administrator to balance the accessibility and least privilege that's appropriate for
your company.

Using information to reduce permissions for an IAM group

You can use last accessed information to reduce IAM group permissions to include only those services
that your users need. This method is an important step in granting least privilege (p. 559) at a service
level.

For example, Paulo Santos is the administrator in charge of defining AWS user permissions for Example
Corp. This company just started using AWS, and the software development team has not yet defined
what AWS services they will use. Paulo wants to give the team permission to access only the services
they need, but since that is not yet defined, he temporarily gives them power-user permissions. Then he
uses last accessed information to reduce the group's permissions.

Paulo creates a managed policy named ExampleDevelopment using the following JSON text. He then
attaches it to a group named Development and adds all of the developers to the group.

Note
Paulo's power users might need iam:CreateServiceLinkedRole permissions to use some
services and features. He understands that adding this permission allows the users to create any
service-linked role. He accepts this risk for his power users.

{

 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "FullAccessToAllServicesExceptPeopleManagement",
 "Effect": "Allow",
 "NotAction": [

515

https://docs.aws.amazon.com/IAM/latest/APIReference/API_GenerateOrganizationsAccessReport.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetOrganizationsAccessReport.html

AWS Identity and Access Management User Guide
Refining permissions using access information

 "iam:*",
 "organizations:*"
],
 "Resource": "*"
 },
 {
 "Sid": "RequiredIamAndOrgsActions",
 "Effect": "Allow",
 "Action": [
 "iam:CreateServiceLinkedRole",
 "iam:ListRoles",
 "organizations:DescribeOrganization"
],
 "Resource": "*"
 }
]
}

Paulo decides to wait for 90 days before he views the last accessed information (p. 508) for the
Development group using the AWS Management Console. He views the list of services that the group
members accessed. He learns that the users accessed five services within the last week: AWS CloudTrail,
Amazon CloudWatch Logs, Amazon EC2, AWS KMS, and Amazon S3. They accessed a few other services
when they were first evaluating AWS, but not since then.

Paulo decides to reduce the policy permissions to include only those five services and the required IAM
and Organizations actions. He edits ExampleDevelopment policy using the following JSON text.

Note
Paulo's power users might need iam:CreateServiceLinkedRole permissions to use some
services and features. He understands that adding this permission allows the users to create any
service-linked role. He accepts this risk for his power users.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "FullAccessToListedServices",
 "Effect": "Allow",
 "Action": [
 "s3:*",
 "kms:*",
 "cloudtrail:*",
 "logs:*",
 "ec2:*"
],
 "Resource": "*"
 },
 {
 "Sid": "RequiredIamAndOrgsActions",
 "Effect": "Allow",
 "Action": [
 "iam:CreateServiceLinkedRole",
 "iam:ListRoles",
 "organizations:DescribeOrganization"
],
 "Resource": "*"
 }
]
}

To further reduce permissions, Paulo can view the account's events in AWS CloudTrail Event history.
There he can view detailed event information that he can use to reduce the policy's permissions to

516

AWS Identity and Access Management User Guide
Refining permissions using access information

include only the actions and resources that the developers need. For more information, see Viewing
CloudTrail Events in the CloudTrail Console in the AWS CloudTrail User Guide.

Using information to reduce permissions for an IAM user

You can use last accessed information to reduce the permissions for an individual IAM user.

For example, Martha Rivera is an IT administrator responsible for ensuring that people in her company
do not have excess AWS permissions. As part of a periodic security check, she reviews the permissions of
all IAM users. One of these users is an application developer named Nikhil Jayashankar, who previously
filled the role of a security engineer. Because of the change in job requirements, Nikhil is a member of
both the app-dev group and the security-team group. The app-dev group for his new job grants
permissions to multiple services including Amazon EC2, Amazon EBS, Auto Scaling, Amazon S3, Route
53, and Elastic Transcoder. The security-team group for his old job grants permissions to IAM and
CloudTrail.

As an administrator, Martha signs into the IAM console and chooses Users, chooses the name nikhilj,
and then chooses the Access Advisor tab.

Martha reviews the Last Accessed column and notices that Nikhil has not recently accessed IAM,
CloudTrail, Route 53, Amazon Elastic Transcoder, and a number of other AWS services. Nikhil has
accessed Amazon S3. Martha chooses S3 from the list of services and learns that Nikhil has performed
some S3 List actions in the last two weeks. Within her company, Martha confirms that Nikhil has no
business need to access IAM and CloudTrail anymore because he is no longer a member of the internal
security team.

Martha is now ready to act on the service and action last accessed information. However, unlike the
group in the previous example, an IAM user like nikhilj might be subject to multiple policies and be a
member of multiple groups. Martha must proceed with caution to avoid inadvertently disrupting access
for nikhilj or other group members. In addition to learning what access Nikhil should have, she must
determine how he is receiving these permissions.

Martha chooses the Permissions tab, where she views which policies are attached directly to nikhilj
and those attached from a group. She expands each policy and views the policy summary to learn which
policy allows access to the services that Nikhil is not using:

• IAM – The IAMFullAccess AWS managed policy is attached directly to nikhilj and attached to the
security-team group.

• CloudTrail – The AWSCloudTrailReadOnlyAccess AWS managed policy is attached to the
security-team group.

• Route 53 – The App-Dev-Route53 customer managed policy is attached to the app-dev group.
• Elastic Transcoder – The App-Dev-ElasticTranscoder customer managed policy is attached to the
app-dev group.

Martha decides to remove the IAMFullAccess AWS managed policy that is attached directly to
nikhilj. She also removes Nikhil's membership to the security-team group. These two actions
remove the unnecessary access to IAM and CloudTrail.

Nikhil's permissions to access to Route 53 and Elastic Transcoder are granted by the app-dev group.
Although Nikhil isn't using those services, other members of the group might be. Martha reviews the
last accessed information for the app-dev group and learns that several members recently accessed
Route 53 and Amazon S3. But no group members have accessed Elastic Transcoder in the last year. She
removes the App-Dev-ElasticTranscoder customer managed policy from the group.

Martha then reviews the last accessed information for the App-Dev-ElasticTranscoder customer
managed policy. She learns that the policy is not attached to any other IAM identities. She investigates
within her company to make sure that the policy will not be needed in the future, and then she deletes it.

517

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events-console.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events-console.html

AWS Identity and Access Management User Guide
Refining permissions using access information

Using information before deleting IAM resources

You can use last accessed information before you delete an IAM resource to make sure that a certain
amount of time has passed since someone last used the resource. This applies to users, groups, roles, and
policies. To learn more about these actions, see the following topics:

• Users – Deleting a user (p. 85)

• Groups – Deleting a group (p. 166)

• Roles – Deleting a role (p. 290)

• Policies – Deleting a managed policy (this also detaches the policy from identities) (p. 499)

Using information before editing IAM policies

You can review last accessed information for an IAM identity (user, group, or role), or for an IAM policy
before editing a policy that affects that resource. This is important because you don't want to remove
access for someone that is using it.

For example, Arnav Desai is a developer and AWS administrator for Example Corp. When his team started
using AWS, they gave all developers power-user access that allowed them full access to all services
except IAM and Organizations. As a first step towards granting least privilege (p. 559), Arnav wants to
use the AWS CLI to review the managed policies in his account.

To do this, Arnav first lists the customer managed permissions policies in his account that are attached to
an identity, using the following command:

aws iam list-policies --scope Local --only-attached --policy-usage-filter PermissionsPolicy

From the response, he captures the ARN for each policy. Arnav then generates a report for last accessed
information for each policy using the following command.

aws iam generate-service-last-accessed-details --arn arn:aws:iam::123456789012:policy/
ExamplePolicy1

From that response, he captures the ID of the generated report from the JobId field. Arnav then polls
the following command until the JobStatus field returns a value of COMPLETED or FAILED. If the job
failed, he captures the error.

aws iam get-service-last-accessed-details --job-id 98a765b4-3cde-2101-2345-example678f9

When the job has a status of COMPLETED, Arnav parses the contents of the JSON-formatted
ServicesLastAccessed array.

 "ServicesLastAccessed": [
 {
 "TotalAuthenticatedEntities": 1,
 "LastAuthenticated": 2018-11-01T21:24:33.222Z,
 "ServiceNamespace": "dynamodb",
 "LastAuthenticatedEntity": "arn:aws:iam::123456789012:user/IAMExampleUser",
 "ServiceName": "Amazon DynamoDB"
 },

 {
 "TotalAuthenticatedEntities": 0,
 "ServiceNamespace": "ec2",
 "ServiceName": "Amazon EC2"

518

AWS Identity and Access Management User Guide
Refining permissions using access information

 },

 {
 "TotalAuthenticatedEntities": 3,
 "LastAuthenticated": 2018-08-25T15:29:51.156Z,
 "ServiceNamespace": "s3",
 "LastAuthenticatedEntity": "arn:aws:iam::123456789012:role/IAMExampleRole",
 "ServiceName": "Amazon S3"
 }
]

From this information, Arnav learns that the ExamplePolicy1 policy allows access to three services,
Amazon DynamoDB, Amazon S3, and Amazon EC2. The IAM user named IAMExampleUser last
attempted to access DynamoDB on November 1, and someone used the IAMExampleRole role to
attempt to access Amazon S3 on August 25. There are also two more entities that attempted to access
Amazon S3 in the last year. However, nobody has attempted to access Amazon EC2 in the last year.

This means that Arnav can safely remove the Amazon EC2 actions from the policy. Arnav wants to review
the current JSON document for the policy. First, he must determine the version number of the policy
using the following command.

aws iam list-policy-versions --policy-arn arn:aws:iam::123456789012:policy/ExamplePolicy1

From the response, Arnav collects the current default version number from the Versions array. He then
uses that version number (v2) to request the JSON policy document using the following command.

aws iam get-policy-version --policy-arn arn:aws:iam::123456789012:policy/ExamplePolicy1 --
version-id v2

Arnav stores the JSON policy document returned in the Document field of the PolicyVersion array.
Within the policy document, Arnav searches for actions with in the ec2 namespace. If there are no
actions from other namespaces remaining in the policy, then he detaches the policy from the affected
identities (users, groups, and roles). He then deletes the policy. In this case, the policy does include
the Amazon DynamoDB and Amazon S3 services. So Arnav removes the Amazon EC2 actions from the
document and saves his changes. He then uses the following command to update the policy using the
new version of the document and to set that version as the default policy version.

aws iam create-policy-version --policy-arn arn:aws:iam::123456789012:policy/ExamplePolicy1
 --policy-document file://UpdatedPolicy.json --set-as-default

The ExamplePolicy1 policy is now updated to remove access to the unnecessary Amazon EC2 service.

Other IAM scenarios

Information about when an IAM resource (user, group, role, or policy) last attempted to access a service
can help you when you complete any of the following tasks:

• Policies – Editing an existing customer-managed or inline policy to remove permissions (p. 495)

• Policies – Converting an inline policy to a managed policy and then deleting it (p. 561)

• Policies – Adding an explicit deny to an existing policy (p. 791)

• Policies – Detaching a managed policy from an identity (user, group, or role) (p. 487)

• Entities – Set a permissions boundary to control the maximum permissions that an entity (user or role)
can have (p. 484)

• Groups – Removing users from a group (p. 164)

519

AWS Identity and Access Management User Guide
Understanding policies

Using information to refine permissions for an organizational unit

You can use last accessed information to refine the permissions for an organizational unit (OU) in AWS
Organizations.

For example, John Stiles is an AWS Organizations administrator. He is responsible for ensuring that
people in company AWS accounts do not have excess permissions. As part of a periodic security audit,
he reviews the permissions of his organization. His Development OU contains accounts that are often
used to test new AWS services. John decides to periodically review the report for services that have not
been accessed in more than 180 days. He then removes permissions for the OU members to access those
services.

John signs into the IAM console using his management account credentials. In the IAM console, he
locates the Organizations data for the Development OU. He reviews the Service access report table
and sees two AWS services that have not been accessed in more than his preferred period of 180 days.
He remembers adding permissions for the development teams to access Amazon Lex and AWS Database
Migration Service. John contacts the development teams and confirms that they no longer have a
business need to test these services.

John is now ready to act on the last accessed information. He chooses Edit in AWS Organizations and is
reminded that the SCP is attached to multiple entities. He chooses Continue. In AWS Organizations, he
reviews the targets to learn to which Organizations entities that the SCP is attached. All of entities are
within the Development OU.

John decides to deny access to the Amazon Lex and AWS Database Migration Service actions in the
NewServiceTest SCP. This action removes the unnecessary access to the services.

Understanding permissions granted by a policy
The IAM console includes policy summary tables that describe the access level, resources, and conditions
that are allowed or denied for each service in a policy. Policies are summarized in three tables: the
policy summary (p. 521), the service summary (p. 531), and the action summary (p. 536). The
policy summary table includes a list of services. Choose a service there to see the service summary. This
summary table includes a list of the actions and associated permissions for the chosen service. You can
choose an action from that table to view the action summary. This table includes a list of resources and
conditions for the chosen action.

520

AWS Identity and Access Management User Guide
Policy summary (list of services)

You can view policy summaries on the Users page or Roles page for all policies (managed and inline)
that are attached to that user. View summaries on the Policies page for all managed policies. Managed
policies include AWS managed policies, AWS managed job function policies, and customer managed
policies. You can view summaries for these policies on the Policies page regardless of whether they are
attached to a user or other IAM identity.

You can use the information in the policy summaries to understand the permissions that are allowed or
denied by your policy. Policy summaries can help you troubleshoot (p. 683) and fix policies that are not
providing the permissions that you expect.

Topics
• Policy summary (list of services) (p. 521)
• Service summary (list of actions) (p. 531)
• Action summary (list of resources) (p. 536)
• Examples of policy summaries (p. 539)

Policy summary (list of services)
Policies are summarized in three tables: the policy summary, the service summary (p. 531), and the
action summary (p. 536). The policy summary table includes a list of services and summaries of the
permissions that are defined by the chosen policy.

The policy summary table is grouped into one or more Uncategorized services, Explicit deny, and Allow
sections. If the policy includes a service that IAM does not recognize, then the service is included in the
Uncategorized services section of the table. If IAM recognizes the service, then it is included under the
Explicit deny or Allow sections of the table, depending on the effect of the policy (Deny or Allow).

Viewing policy summaries
You can view the summaries for any policies that are attached to a user on the Users page. You can view
the summaries for any policies that are attached to a role on the Roles page. You can view the policy
summary for managed policies on the Policies page. If your policy does not include a policy summary,
see Missing policy summary (p. 687) to learn why.

521

AWS Identity and Access Management User Guide
Policy summary (list of services)

To view the policy summary from the Policies page

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.
3. In the list of policies, choose the name of the policy that you want to view.
4. On the Summary page for the policy, view the Permissions tab to see the policy summary.

To view the summary for a policy attached to a user

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Choose Users from the navigation pane.
3. In the list of users, choose the name of the user whose policy you want to view.
4. On the Summary page for the user, view the Permissions tab to see the list of policies that are

attached to the user directly or from a group.
5. In the table of policies for the user, expand the row of the policy that you want to view.

To view the summary for a policy attached to a role

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles.
3. In the list of roles, choose the name of the role whose policy you want to view.
4. On the Summary page for the role, view the Permissions tab to see the list of policies that are

attached to the role.
5. In the table of policies for the role, expand the row of the policy that you want to view.

Editing policies to fix warnings
While viewing a policy summary, you might find a typo or notice that the policy does not provide the
permissions that you expected. You cannot edit a policy summary directly. However, you can edit a
customer managed policy using the visual policy editor, which catches many of the same errors and
warnings that the policy summary reports. You can then view the changes in the policy summary to
confirm that you fixed all of the issues. To learn how to edit an inline policy, see the section called
“Editing IAM policies” (p. 495). You cannot edit AWS managed policies.

To edit a policy for your policy summary using the Visual editor tab

1. Open the policy summary as explained in the previous procedures.
2. Choose Edit policy.

If you are on the Users page and choose to edit a customer managed policy that is attached to that
user, you are redirected to the Policies page. You can edit customer managed policies only on the
Policies page.

3. Choose the Visual editor tab to view the editable visual representation of your policy. IAM might
restructure your policy to optimize it for the visual editor and to make it easier for you to find
and fix any problems. The warnings and error messages on the page can guide you to fix any
issues with your policy. For more information about how IAM restructures policies, see Policy
restructuring (p. 684).

4. Edit your policy and choose Review policy to see your changes reflected in the policy summary. If
you still see a problem, choose Previous to return to the editing screen.

522

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Policy summary (list of services)

5. Choose Save to save your changes.

To edit a policy for your policy summary using the JSON tab

1. Open the policy summary as explained in the previous procedures.

2. Choose { } JSON and Policy summary to compare the policy summary to the JSON policy
document. You can use this information to determine which lines in the policy document you want
to change.

3. Choose Edit policy and then choose the JSON tab to edit the JSON policy document.

Note
You can switch between the Visual editor and JSON tabs any time. However, if you make
changes or choose Review policy in the Visual editor tab, IAM might restructure your policy
to optimize it for the visual editor. For more information, see Policy restructuring (p. 684).

If you are on the Users page and choose to edit a customer managed policy that is attached to that
user, you are redirected to the Policies page. You can edit customer managed policies only on the
Policies page.

4. Edit your policy. Resolve any security warnings, errors, or general warnings generated during policy
validation (p. 474), and then choose Review policy. If you still see a problem, choose Previous to
return to the editing screen.

5. Choose Save to save your changes.

Understanding the elements of a policy summary

In the following example of a user details page, the PolSumUser user has eight attached policies. The
SummaryAllElements policy is a managed policy (customer managed policy) that is attached directly to
the user. This policy is expanded to show the policy summary. To view the JSON policy document for this
policy, see the section called “SummaryAllElements JSON policy document” (p. 528).

523

AWS Identity and Access Management User Guide
Policy summary (list of services)

In the preceding image, the policy summary is visible from within the user details page:

1. The Permissions tab for a user includes the policies that are attached to the PolSumUser user.

2. The SummaryAllElements policy is one of several policies that are attached to the user. The policy is
expanded in order to view the policy summary.

3. If the policy does not grant permissions to all the actions, resources, and conditions defined in the
policy, then a warning or error banner appears at the top of the page. The policy summary then
includes details about the problem. To learn how policy summaries help you to understand and
troubleshoot the permissions that your policy grants, see the section called “My policy does not grant
the expected permissions” (p. 689).

4. Use the Policy summary and { } JSON buttons to toggle between the policy summary and the JSON
policy document.

5. Simulate policy opens the policy simulator for testing the policy.

6. Use the search box to reduce the list of services and easily find a specific service.

7. The expanded view shows additional details of the SummaryAllElements policy.

524

AWS Identity and Access Management User Guide
Policy summary (list of services)

The following policy summary table image shows the expanded SummaryAllElements policy on the
PolSumUser user details page.

In the preceding image, the policy summary is visible from within the user details page:

A. Service – This column lists the services that are defined within the policy and provides details for
each service. Each service name in the policy summary table is a link to the service summary table,
which is explained in Service summary (list of actions) (p. 531). In this example, permissions are
defined for the Amazon S3, Billing, and Amazon EC2 services. The policy also defines permissions for a
(misspelled) codedploy service, which IAM does not recognize.

B.
Unrecognized services – This policy includes an unrecognized service (in this case codedploy).
You can use this warning to check whether a service name might include a typo. If the service name
is correct, then the service might not support policy summaries, might be in preview, or might be
a custom service. To request policy summary support for a generally available (GA) service, see
Service does not support IAM policy summaries (p. 688). In this example, the policy includes an
unrecognized codedploy service that is missing an e. Because of this typo, the policy does not
provide the expected AWS CodeDeploy permissions. You can edit the policy (p. 522) to include the
accurate codedeploy service name; the service then appears in the policy summary.

C. For those services that IAM recognizes, it arranges services according to whether the policy allows
or explicitly denies the use of the service. In this example, the policy includes Allow and Deny
statements for the Amazon S3 service. Therefore the policy summary includes S3 within both the
Explicit deny and Allow sections.

D. Show remaining 100 – Choose this link to expand the table to include the services that are not
defined by the policy. These services are implicitly denied (or denied by default) within this policy.
However, a statement in another policy might still allow or explicitly deny using the service. The policy
summary summarizes the permissions of a single policy. To learn about how the AWS service decides
whether a given request should be allowed or denied, see Policy evaluation logic (p. 784).

E.
EC2 – This service includes an unrecognized action. IAM recognizes service names, actions, and
resource types for services that support policy summaries. When a service is recognized but contains
an action that is not recognized, IAM includes a warning next to that service. In this example, IAM can't
recognize at least one Amazon EC2 action. To learn more about unrecognized actions and to view the
unrecognized action in an S3 service summary, see Service summary (list of actions) (p. 531).

Note
IAM reviews service names, actions, and resource types for services that support policy
summaries. However, your policy summary might include a resource value or condition that
does not exist. Always test your policies with the policy simulator (p. 475).

F.
S3 – This service includes an unrecognized resource. IAM recognizes service names, actions, and
resource types for services that support policy summaries. When a service is recognized but contains

525

AWS Identity and Access Management User Guide
Policy summary (list of services)

a resource type that is not recognized, IAM includes a warning next to that service. In this example,
IAM can't recognize at least one Amazon S3 action. To learn more about unrecognized resources
and to view the unrecognized resource type in an S3 service summary, see Service summary (list of
actions) (p. 531).

G. Access level – This column tells whether the actions in each access level (List, Read, Write, and
Permissions management) have Full or Limited permissions defined in the policy. For additional
details and examples of the access level summary, see Understanding access level summaries within
policy summaries (p. 530).

• Full access – This entry indicates that the service has access to all actions within all four of the
access levels available for the service. In this example, because this row is in the Explicit deny
section of the table, all Amazon S3 actions are denied for the resources included in the policy.

• If the entry does not include Full access, then the service has access to some but not all of the
actions for the service. The access is then defined by following descriptions for each of the four
access level classifications (List, Read, Write, and Permissions management):

Full: The policy provides access to all actions within each access level classification listed. In this
example, the policy provides access to all of the Billing Read actions.

Limited: The policy provides access to one or more but not all actions within each access level
classification listed. In this example, the policy provides access to some of the Billing Write actions.

H. Resource – This column shows the resources that the policy specifies for each service.

• Multiple – The policy includes more than one but not all of the resources within the service. In this
example, access is explicitly denied to more than one Amazon S3 resource.

• All resources –- The policy is defined for all resources within the service. In this example, the policy
allows the listed actions to be performed on all Billing resources.

• Resource text – The policy includes one resource within the service. In this example, the
listed actions are allowed on only the developer_bucket Amazon S3 bucket resource.
Depending on the information that the service provides to IAM, you might see an ARN such as
arn:aws:s3:::developer_bucket/*, or you might see the defined resource type, such as
BucketName = developer_bucket.

Note
This column can include a resource from a different service. If the policy statement that
includes the resource does not include both actions and resources from the same service,
then your policy includes mismatched resources. IAM does not warn you about mismatched
resources when you create a policy, or when you view a policy in the policy summary. If this
column includes a mismatched resource, then you should review your policy for errors. To
better understand your policies, always test them with the policy simulator (p. 475).

I. Request condition – This column indicates whether the services or actions associated with the
resource are subject to conditions.

• None – The policy includes no conditions for the service. In this example no conditions are applied
to the denied actions in the Amazon S3 service.

• Condition text – The policy includes one condition for the service. In this example, the listed Billing
actions are allowed only if the IP address of the source matches 203.0.113.0/24.

• Multiple – The policy includes more than one condition for the service. In this example, access to
the listed Amazon S3 actions is allowed based on more than one condition. To view each of the
multiple conditions for the policy, choose { } JSON to view the policy document.

When a policy or an element within the policy does not grant permissions, IAM provides additional
warnings and information in the policy summary. The following policy summary table shows the
expanded Show remaining 100 services on the PolSumUser user details page with the possible
warnings.

526

AWS Identity and Access Management User Guide
Policy summary (list of services)

In the preceding image, you can see all services that include defined actions, resources, or conditions
with no permissions:

a. Resource warnings – For services that do not provide permissions for all of the included actions or
resources, you see one of the following warnings in the Resource column of the table:

•
 No resources are defined. – This means that the service has defined actions but no supported

resources are included in the policy.

•
 One or more actions do not have an applicable resource. – This means that the service has

defined actions, but that some of those actions don't have a supported resource.

•
 One or more resources do not have an applicable action. – This means that the service has

defined resources, but that some of those resources don't have a supporting action.

If a service includes both actions that do not have an applicable resource and resources that do not
have an applicable resource, then only the One or more resources do not have an applicable action.
warning is shown. This is because when you view the service summary for the service, resources that
do not apply to any action are not shown. For the ListAllMyBuckets action, this policy includes the
last warning because the action does not support resource-level permissions, and does not support
the s3:x-amz-acl condition key. If you fix either the resource problem or the condition problem, the
remaining issue appears in a detailed warning.

b. Request condition warnings – For services that do not provide permissions for all of the included
conditions, you see one of the following warnings in the Request condition column of the table:

•
 One or more actions do not have an applicable condition. – This means that the service has

defined actions, but that some of those actions don't have a supported condition.

•
 One or more conditions do not have an applicable action. – This means that the service has

defined conditions, but that some of those conditions don't have a supporting action.

527

AWS Identity and Access Management User Guide
Policy summary (list of services)

c.
Multiple | One or more actions do not have an applicable resource. – The Deny statement
for Amazon S3 includes more than one resource. It also includes more than one action, and
some actions support the resources and some do not. To view this policy, see the section called
“SummaryAllElements JSON policy document” (p. 528). In this case, the policy includes all Amazon
S3 actions, and only the actions that can be performed on a bucket or bucket object are denied.

d. The ellipses (…) indicate that all the services are included in the page, but we are showing only the
rows with information relevant to this policy. When you view this page in the AWS Management
Console, you see all the AWS services.

e. The background color in the table rows indicates services that do not grant any permissions. You
cannot get any additional information about these services in the policy summary. For services in
white rows, you can choose the name of the service to view the service summary (list of actions) page.
There you can learn more about the permissions granted for that service.

f.
 None - No actions are defined. – This means that the service is defined as a resource or condition,

but that no actions are included for the service, and therefore the service provides no permissions. In
this case, the policy includes a CodeBuild resource but no CodeBuild actions.

g.
 No resources are defined – The service has defined actions, but no supported resources are

included in the policy, and therefore the service provides no permissions. In this case, the policy
includes CodeCommit actions but no CodeCommit resources.

h.
BucketName = developer_bucket, ObjectPath = All | One or more resources do not have an
applicable action. – The service has a defined bucket object resource, and at least one more resource
that does not have a supporting action.

i.
s3:x-amz-acl = public-read | One or more conditions do not have an applicable action. – The
service has a defined s3:x-amz-acl condition key, and at least one more condition key that does not
have a supporting action.

SummaryAllElements JSON policy document
The SummaryAllElements policy is not intended for you to use to define permissions in your account.
Rather, it is included to demonstrate the errors and warnings that you might encounter while viewing a
policy summary.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "aws-portal:ViewBilling",
 "aws-portal:ViewPaymentMethods",
 "aws-portal:ModifyPaymentMethods",
 "aws-portal:ViewAccount",
 "aws-portal:ModifyAccount",
 "aws-portal:ViewUsage"
],
 "Resource": [
 "*"
],
 "Condition": {
 "IpAddress": {
 "aws:SourceIp": "203.0.113.0/24"
 }
 }
 },

528

AWS Identity and Access Management User Guide
Policy summary (list of services)

 {
 "Effect": "Deny",
 "Action": [
 "s3:*"
],
 "Resource": [
 "arn:aws:s3:::customer",
 "arn:aws:s3:::customer/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "ec2:GetConsoleScreenshots"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "codedploy:*",
 "codecommit:*"
],
 "Resource": [
 "arn:aws:codedeploy:us-west-2:123456789012:deploymentgroup:*",
 "arn:aws:codebuild:us-east-1:123456789012:project/my-demo-project"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListAllMyBuckets",
 "s3:GetObject",
 "s3:DeletObject",
 "s3:PutObject",
 "s3:PutObjectAcl"
],
 "Resource": [
 "arn:aws:s3:::developer_bucket",
 "arn:aws:s3:::developer_bucket/*",
 "arn:aws:autoscling:us-east-2:123456789012:autoscalgrp"
],
 "Condition": {
 "StringEquals": {
 "s3:x-amz-acl": [
 "public-read"
],
 "s3:prefix": [
 "custom",
 "other"
]
 }
 }
 }
]
}

529

AWS Identity and Access Management User Guide
Policy summary (list of services)

Understanding access level summaries within policy summaries

AWS access level summary

Policy summaries include an access level summary that describes the action permissions defined for each
service that is mentioned in the policy. To learn about policy summaries, see Understanding permissions
granted by a policy (p. 520). Access level summaries indicate whether the actions in each access level
(List, Read, Write, and Permissions management) have Full or Limited permissions defined in
the policy. To view the access level classification that is assigned to each action in a service, see Actions,
Resources, and Condition Keys for AWS Services.

The following example describes the access provided by a policy for the given services. For examples of
full JSON policy documents and their related summaries, see Examples of policy summaries (p. 539).

Service Access level This policy provides the following

IAM Full access Access to all actions within the IAM service.

CloudWatch Full: List Access to all CloudWatch actions in the List
access level, but no access to actions with the
Read, Write, or Permissions management
access level classification.

Data
Pipeline

Limited: List, Read Access to at least one but not all AWS Data
Pipeline actions in the List and Read access
level, but not the Write or Permissions
management actions.

EC2 Full: List, Read Limited: Write Access to all Amazon EC2 List and Read actions
and access to at least one but not all Amazon
EC2 Write actions, but no access to actions with
the Permissions management access level
classification.

S3 Limited: Read, Write, Permissions
management

Access to at least one but not all Amazon S3
Read, Write and Permissions management
actions.

CodeDeploy (empty) Unknown access, because IAM does not recognize
this service.

API
Gateway

None No access is defined in the policy.

CodeBuild
 No actions are defined.

No access because no actions are defined
for the service. To learn how to understand
and troubleshoot this issue, see the section
called “My policy does not grant the expected
permissions” (p. 689).

As previously mentioned (p. 526), Full access indicates that the policy provides access to all the actions
within the service. Policies that provide access to some but not all actions within a service are further
grouped according to the access level classification. This is indicated by one of the following access-level
groupings:

• Full: The policy provides access to all actions within the specified access level classification.

530

reference_policies_actions-resources-contextkeys.html
reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide
Service summary (list of actions)

• Limited: The policy provides access to one or more but not all actions within the specified access level
classification.

• None: The policy provides no access.

• (empty): IAM does not recognize this service. If the service name includes a typo, then the policy
provides no access to the service. If the service name is correct, then the service might not support
policy summaries or might be in preview. In this case, the policy might provide access, but that access
cannot be shown in the policy summary. To request policy summary support for a generally available
(GA) service, see Service does not support IAM policy summaries (p. 688).

Access level summaries that include limited (partial) access to actions are grouped using the AWS access
level classifications List, Read, Write, Permissions Management, or Tagging.

AWS access levels

AWS defines the following access level classifications for the actions in a service:

• List: Permission to list resources within the service to determine whether an object exists. Actions with
this level of access can list objects but cannot see the contents of a resource. For example, the Amazon
S3 action ListBucket has the List access level.

• Read: Permission to read but not edit the contents and attributes of resources in the service. For
example, the Amazon S3 actions GetObject and GetBucketLocation have the Read access level.

• Write: Permission to create, delete, or modify resources in the service. For example, the Amazon S3
actions CreateBucket, DeleteBucket and PutObject have the Write access level. Write actions
might also allow modifying a resource tag. However, an action that allows only changes to tags has the
Tagging access level.

• Permissions management: Permission to grant or modify resource permissions in the service. For
example, most IAM and AWS Organizations actions, as well as actions like the Amazon S3 actions
PutBucketPolicy and DeleteBucketPolicy have the Permissions management access level.

Tip
To improve the security of your AWS account, restrict or regularly monitor policies that
include the Permissions management access level classification.

• Tagging: Permission to perform actions that only change the state of resource tags. For example, the
IAM actions TagRole and UntagRole have the Tagging access level because they allow only tagging
or untagging a role. However, the CreateRole action allows tagging a role resource when you create
that role. Because the action does not only add a tag, it has the Write access level.

To view the access level classification for all of the actions in a service, see Actions, Resources, and
Condition Keys for AWS Services.

Service summary (list of actions)
Policies are summarized in three tables: the policy summary (p. 521), the service summary, and the
action summary (p. 536). The service summary table includes a list of the actions and summaries of the
permissions that are defined by the policy for the chosen service.

531

reference_policies_actions-resources-contextkeys.html
reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide
Service summary (list of actions)

You can view a service summary for each service listed in the policy summary that grants permissions.
The table is grouped into Uncategorized actions, Uncategorized resource types, and access level
sections. If the policy includes an action that IAM does not recognize, then the action is included in
the Uncategorized actions section of the table. If IAM recognizes the action, then it is included under
one of the access level (List, Read, Write and Permissions management) sections of the table. To view
the access level classification that is assigned to each action in a service, see Actions, Resources, and
Condition Keys for AWS Services.

Viewing service summaries
You can view the service summary for managed policies on the Policies page, or view service summaries
for inline and managed policies attached to a user or role through the Users page and Roles page.
However, if you choose a service name on the Users page or Roles page from a managed policy, you are
redirected to the Policies page. Service summaries for managed policies must be viewed on the Policies
page.

To view the service summary for a managed policy

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. In the list of policies, choose the name of the policy that you want to view.

4. On the Summary page for the policy, view the Permissions tab to see the policy summary.

5. In the policy summary list of services, choose the name of the service that you want to view.

To view the service summary for a policy attached to a user

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Users.

3. In the list of users, choose the name of the user whose policy you want to view.

4. On the Summary page for the user, view the Permissions tab to see the list of policies that are
attached to the user directly or from a group.

532

reference_policies_actions-resources-contextkeys.html
reference_policies_actions-resources-contextkeys.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Service summary (list of actions)

5. In the table of policies for the user, expand the row of the policy that you want to view.

6. In the policy summary list of services, choose the name of the service that you want to view.

Note
If the policy that you select is an inline policy that is attached directly to the user, then the
service summary table appears. If the policy is an inline policy attached from a group, then
you are taken to the JSON policy document for that group. If the policy is a managed policy,
then you are taken to the service summary for that policy on the Policies page.

To view the service summary for a policy attached to a role

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Choose Roles from the navigation pane.

3. In the list of roles, choose the name of the role whose policy you want to view.

4. On the Summary page for the role, view the Permissions tab to see the list of policies that are
attached to the role.

5. In the table of policies for the role, expand the row of the policy that you want to view.

6. In the policy summary list of services, choose the name of the service that you want to view.

Understanding the elements of a service summary

The example below is the service summary for Amazon S3 actions that are allowed from the
SummaryAllElements policy summary (see the section called “SummaryAllElements JSON policy
document” (p. 528)). The actions for this service are grouped by Uncategorized actions, Uncategorized
resource types, and access level. For example, two Write actions are defined out of the total 29 Write
actions available for the service.

533

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Service summary (list of actions)

The service summary page for a managed policy includes the following information:

1. If the policy does not grant permissions to all the actions, resources, and conditions defined for the
service in the policy, then a warning banner appears at the top of the page. The service summary
then includes details about the problem. To learn how policy summaries help you to understand and
troubleshoot the permissions that your policy grants, see the section called “My policy does not grant
the expected permissions” (p. 689).

2. Next to the Back link appears the name of the service (in this case S3). The service summary for this
service includes the list of allowed actions that are defined in the policy. If instead, the text (Explicitly
denied) appears next to the name of a service, then the actions listed in the service summary table are
explicitly denied.

3. Choose { } JSON to see additional details about the policy. You can do this to view all conditions that
are applied to the actions. (If you are viewing the service summary for an inline policy that is attached
directly to a user, you must close the service summary dialog box and return to the policy summary to
access the JSON policy document.)

4. To view the summary for a specific action, type keywords into the search box to reduce the list of
available actions.

5. Action (2 of 69 actions) – This column lists the actions that are defined within the policy and provides
the resources and conditions for each action. If the policy grants permissions to the action, then
the action name links to the action summary (p. 536) table. The count indicates the number of
recognized actions that provide permissions. The total is the number of known actions for the service.
In this example, 2 actions provide permissions out of 69 total known S3 actions.

6. Show/Hide remaining 67 – Choose this link to expand or hide the table to include actions that are
known but do not provide permissions for this service. Expanding the link also displays warnings for
any elements that do not provide permissions.

534

AWS Identity and Access Management User Guide
Service summary (list of actions)

7. Unrecognized resource types – This policy includes at least one unrecognized resource type within
the policy for this service. You can use this warning to check whether a resource type might include
a typo. If the resource type is correct, then the service might not fully support policy summaries,
might be in preview, or might be a custom service. To request policy summary support for a
specific resource type in a generally available (GA) service, see Service does not support IAM policy
summaries (p. 688). In this example, the autoscling service name is missing an a.

8. Unrecognized actions – This policy includes at least one unrecognized action within the policy for
this service. You can use this warning to check whether an action might include a typo. If the action
name is correct, then the service might not fully support policy summaries, might be in preview, or
might be a custom service. To request policy summary support for a specific action in a generally
available (GA) service, see Service does not support IAM policy summaries (p. 688). In this example,

the DeletObject action is missing an e.

Note
IAM reviews service names, actions, and resource types for services that support policy
summaries. However, your policy summary might include a resource value or condition that
does not exist. Always test your policies with the policy simulator (p. 475).

9. For those actions that IAM recognizes, the table groups these actions into at least one or up to four
sections, depending on the level of access that the policy allows or denies. The sections are List, Read,
Write, and Permissions management. You can also see the number of actions that are defined out of
the total number of actions available within each access level. To view the access level classification
that is assigned to each action in a service, see Actions, Resources, and Condition Keys for AWS
Services.

10.The ellipses (…) indicate that all the actions are included in the page, but we are showing only the
rows with information relevant to this policy. When you view this page in the AWS Management
Console, you see all the actions for your service.

11.(No access) – This policy includes an action that does not provide permissions.
12.Actions that provide permissions include a link to the action summary.
13.Resource – This column shows the resources that the policy defines for the service. IAM

does not check whether the resource applies to each action. In this example, actions in
the S3 service are allowed on only the developer_bucket Amazon S3 bucket resource.
Depending on the information that the service provides to IAM, you might see an ARN such as
arn:aws:s3:::developer_bucket/*, or you might see the defined resource type, such as
BucketName = developer_bucket.

Note
This column can include a resource from a different service. If the policy statement that
includes the resource does not include both actions and resources from the same service,
then your policy includes mismatched resources. IAM does not warn you about mismatched
resources when you create a policy, or when you view a policy in the service summary.
IAM also does not indicate whether the action applies to the resources, only whether the
service matches. If this column includes a mismatched resource, then you should review
your policy for errors. To better understand your policies, always test them with the policy
simulator (p. 475).

14.Resource warning – For actions with resources that do not provide full permissions, you see one of the
following warnings:
• This action does not support resource-level permissions. This requires a wildcard (*) for the

resource. – This means that the policy includes resource-level permissions but must include
"Resource": ["*"] to provide permissions for this action.

• This action does not have an applicable resource. – This means that the action is included in the
policy without a supported resource.

• This action does not have an applicable resource and condition. – This means that the action is
included in the policy without a supported resource and without a supported condition. In this case,
there is also condition included in the policy for this service, but there are no conditions that apply
to this action.

535

reference_policies_actions-resources-contextkeys.html
reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide
Action summary (list of resources)

For the ListAllMyBuckets action, this policy includes the last warning because the action does not
support resource-level permissions and does not support the s3:x-amz-acl condition key. If you
fix either the resource problem or the condition problem, the remaining issue appears in a detailed
warning.

15.Request condition – This column tells whether the actions associated with the resource are subject
to conditions. To learn more about those conditions, choose { } JSON to review the JSON policy
document.

16.Condition warning – For actions with conditions that do not provide full permissions, you see one of
the following warnings:
• <CONDITION_KEY> is not a supported condition key for this action. – This means that the policy

includes a condition key for the service that is not supported for this action.
• Multiple condition keys are not supported for this action. – This means that the policy includes

more than one condition keys for the service that are not supported for this action.

For GetObject, this policy includes the s3:x-amz-acl condition key, which will not work with this
action. Although the action supports the resource, the policy does not grant any permissions for this
action because the condition will never be true for this action.

Action summary (list of resources)
Policies are summarized in three tables: the policy summary (p. 521), the service summary (p. 531),
and the action summary. The action summary table includes a list of resources and the associated
conditions that apply to the chosen action.

To view an action summary for each action that grants permissions, choose the link in the service
summary. The action summary table includes details about the resource, including its Region and
Account. You can also view the conditions that apply to each resource. This shows you conditions that
apply to some resources but not others.

Viewing action summaries
You can view the action summary for any policy that is attached to a user on the Users page. You can
view the action summary for any policy that is attached to a role on the Roles page. You can view
the action summary for managed policies on the Policies page. However, if you try to view the action

536

AWS Identity and Access Management User Guide
Action summary (list of resources)

summary for a managed policy from the Users page or the Roles page, you are redirected to the Policies
page.

To view the action summary for a managed policy

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. In the list of policies, choose the name of the policy that you want to view.

4. On the Summary page for the policy, view the Permissions tab to see the policy summary.

5. In the policy summary list of services, choose the name of the service that you want to view.

6. In the service summary list of actions, choose the name of the action that you want to view.

To view the action summary for a policy attached to a user

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Choose Users from the navigation pane.

3. In the list of users, choose the name of the user whose policy you want to view.

4. On the Summary page for the user, view the Permissions tab to see the list of policies that are
attached to the user directly or from a group.

5. In the table of policies for the user, expand the row of the policy that you want to view.

6. In the policy summary list of services, choose the name of the service that you want to view.

Note
If the policy that you select is an inline policy that is attached directly to the user, then the
service summary table appears. If the policy is an inline policy attached from a group, then
you are taken to the JSON policy document for that group. If the policy is a managed policy,
then you are taken to the service summary for that policy on the Policies page.

7. In the service summary list of actions, choose the name of the action that you want to view.

To view the action summary for a policy attached to a role

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Roles.

3. In the list of roles, choose the name of the role whose policy you want to view.

4. On the Summary page for the role, view the Permissions tab to see the list of policies that are
attached to the role.

5. In the table of policies for the role, expand the row of the policy that you want to view.

6. In the policy summary list of services, choose the name of the service that you want to view.

7. In the service summary list of actions, choose the name of the action that you want to view.

Understanding the elements of an action summary

The example below is the action summary for the PutObject (Write) action from the Amazon S3 service
summary (see Service summary (list of actions) (p. 531)). For this action, the policy defines multiple
conditions on a single resource.

537

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Action summary (list of resources)

The action summary page includes the following information:

1. Next to the Back link appears the name of the service and action in the format service: action
(in this case S3: PutObject). The action summary for this service includes the list of resources that are
defined in the policy.

2. Choose { } JSON to see additional details about the policy, such as viewing the multiple conditions
that are applied to the actions. (If you are viewing the action summary for an inline policy that is
attached directly to a user, the steps differ. To access the JSON policy document in that case, you must
close the action summary dialog box and return to the policy summary.)

3. To view the summary for a specific resource, type keywords into the search box to reduce the list of
available resources.

4. Resource – This column lists the resources that the policy defines for the chosen service. In this
example, the PutObject action is allowed on all object paths, but on only the developer_bucket
Amazon S3 bucket resource. Depending on the information that the service provides to IAM, you
might see an ARN such as arn:aws:s3:::developer_bucket/*, or you might see the defined
resource type, such as BucketName = developer_bucket, ObjectPath = All.

5. Region – This column shows the Region in which the resource is defined. Resources can be defined for
all Regions, or a single Region. They cannot exist in more than one specific Region.

• All Regions – The actions that are associated with the resource apply to all Regions. In this example,
the action belongs to a global service, Amazon S3. Actions that belong to global services apply to
all Regions.

• Region text – The actions associated with the resource apply to one Region. For example, a policy
can specify the us-east-2 Region for a resource.

6. Account – This column indicates whether the services or actions associated with the resource apply to
a specific account. Resources can exist in all accounts or a single account. They cannot exist in more
than one specific account.

• All accounts – The actions that are associated with the resource apply to all accounts. In this
example, the action belongs to a global service, Amazon S3. Actions that belong to global services
apply to all accounts.

• This account – The actions that are associated with the resource apply only to the account that you
are currently logged in to.

• Account number – The actions that are associated with the resource apply to one account (one that
you are not currently logged in to). For example, if a policy specifies the 123456789012 account for
a resource, then the account number appears in the policy summary.

7. Request condition – This column shows whether the actions that are associated with the resource are
subject to conditions. This example includes the s3:x-amz-acl = public-read condition. To learn
more about those conditions, choose { } JSON to review the JSON policy document.

538

AWS Identity and Access Management User Guide
Example policy summaries

Examples of policy summaries
The following examples include JSON policies with their associated policy summaries (p. 521),
the service summaries (p. 531), and the action summaries (p. 536) to help you understand the
permissions given through a policy.

Policy 1: DenyCustomerBucket

This policy demonstrates an allow and a deny for the same service.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "FullAccess",
 "Effect": "Allow",
 "Action": ["s3:*"],
 "Resource": ["*"]
 },
 {
 "Sid": "DenyCustomerBucket",
 "Action": ["s3:*"],
 "Effect": "Deny",
 "Resource": ["arn:aws:s3:::customer", "arn:aws:s3:::customer/*"]
 }
]
}

DenyCustomerBucket Policy Summary:

DenyCustomerBucket S3 (Explicit deny) Service Summary:

539

AWS Identity and Access Management User Guide
Example policy summaries

GetObject (Read) Action Summary:

Policy 2: DynamoDbRowCognitoID

This policy provides row-level access to Amazon DynamoDB based on the user's Amazon Cognito ID.

540

AWS Identity and Access Management User Guide
Example policy summaries

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:DeleteItem",
 "dynamodb:GetItem",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem"
],
 "Resource": [
 "arn:aws:dynamodb:us-west-1:123456789012:table/myDynamoTable"
],
 "Condition": {
 "ForAllValues:StringEquals": {
 "dynamodb:LeadingKeys": [
 "${cognito-identity.amazonaws.com:sub}"
]
 }
 }
 }
]
}

DynamoDbRowCognitoID Policy Summary:

DynamoDbRowCognitoID DynamoDB (Allow) Service Summary:

GetItem (List) Action Summary:

541

AWS Identity and Access Management User Guide
Example policy summaries

Policy 3: MultipleResourceCondition

This policy includes multiple resources and conditions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:PutObjectAcl"
],
 "Resource": ["arn:aws:s3:::Apple_bucket/*"],
 "Condition": {"StringEquals": {"s3:x-amz-acl": ["public-read"]}}
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:PutObjectAcl"
],
 "Resource": ["arn:aws:s3:::Orange_bucket/*"],
 "Condition": {"StringEquals": {
 "s3:x-amz-acl": ["custom"],
 "s3:x-amz-grant-full-control": ["1234"]
 }}
 }
]
}

MultipleResourceCondition Policy Summary:

MultipleResourceCondition S3 (Allow) Service Summary:

PutObject (Write) Action Summary:

542

AWS Identity and Access Management User Guide
Example policy summaries

Policy 4: EC2_troubleshoot
The following policy allows users to get a screenshot of a running Amazon EC2 instance, which can help
with EC2 troubleshooting. This policy also permits viewing information about the items in the Amazon
S3 developer bucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:GetConsoleScreenshot"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::developer"
]
 }
]
}

EC2_Troubleshoot Policy Summary:

EC2_Troubleshoot S3 (Allow) Service Summary:

ListBucket (List) Action Summary:

Policy 5: Unrecognized_Service_Action
The following policy was intended to provide full access to DynamoDB, but that access fails because
dynamodb is misspelled as dynamobd. This policy was intended to allow access to some Amazon EC2
actions in the us-east-2 Region, but deny that access to the ap-northeast-2 Region. However,

543

AWS Identity and Access Management User Guide
Example policy summaries

access to reboot instances in the ap-northeast-2 Region is not explicitly denied because of the
unrecognized o in the middle of the RebootInstances action. This example shows how you can use
policy summaries to locate errors in your policies. To learn how to edit policies based on information in a
policy summary, see Editing policies to fix warnings (p. 522).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamobd:*"
],
 "Resource": [
 "*"
]
 },
 {
 "Action": [
 "ec2:RunInstances",
 "ec2:StartInstances",
 "ec2:StopInstances",
 "ec2:ReboootInstances"
],
 "Resource": "*",
 "Effect": "Deny",
 "Condition": {
 "StringEquals": {
 "ec2:Region": "ap-northeast-2"
 }
 }
 },
 {
 "Action": [
 "ec2:RunInstances",
 "ec2:StartInstances",
 "ec2:StopInstances",
 "ec2:RebootInstances"
],
 "Resource": "*",
 "Effect": "Allow",
 "Condition": {
 "StringEquals": {
 "ec2:Region": "us-east-2"
 }
 }
 }
]
}

Unrecognized_Service_Action Policy Summary:

544

AWS Identity and Access Management User Guide
Example policy summaries

Unrecognized_Service_Action EC2 (Explicit deny) Service Summary:

Unrecognized_Service_Action StartInstances (Write) Action Summary:

Policy 6: CodeBuild_CodeCommit_CodeDeploy

This policy provides access to specific CodeBuild, CodeCommit, and CodeDeploy resources. Because
these resources are specific to each service, they appear only with the matching service. If you include a
resource that does not match any services in the Action element, then the resource appears in all action
summaries.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1487980617000",
 "Effect": "Allow",
 "Action": [
 "codebuild:*",
 "codecommit:*",
 "codedeploy:*"
],
 "Resource": [
 "arn:aws:codebuild:us-east-2:123456789012:project/my-demo-project",
 "arn:aws:codecommit:us-east-2:123456789012:MyDemoRepo",
 "arn:aws:codedeploy:us-east-2:123456789012:application:WordPress_App",
 "arn:aws:codedeploy:us-east-2:123456789012:instance/AssetTag*"
]
 }
]
}

CodeBuild_CodeCommit_CodeDeploy Policy Summary:

545

AWS Identity and Access Management User Guide
Permissions required

CodeBuild_CodeCommit_CodeDeploy CodeBuild (Allow) Service Summary:

CodeBuild_CodeCommit_CodeDeploy StartBuild (Write) Action Summary:

Permissions required to access IAM resources
Resources are objects within a service. IAM resources include groups, users, roles, and policies. If you
are signed in with AWS account root user credentials, you have no restrictions on administering IAM

546

AWS Identity and Access Management User Guide
Permissions for administering IAM identities

credentials or IAM resources. However, IAM users must explicitly be given permissions to administer
credentials or IAM resources. You can do this by attaching an identity-based policy to the user.

Note
Throughout the AWS documentation, when we refer to an IAM policy without mentioning any of
the specific categories, we mean an identity-based, customer managed policy. For details about
policy categories, see the section called “Policies and permissions” (p. 381).

Permissions for administering IAM identities
The permissions that are required to administer IAM groups, users, roles, and credentials usually
correspond to the API actions for the task. For example, in order to create IAM users, you must have the
iam:CreateUser permission that has the corresponding API command: CreateUser. To allow an IAM
user to create other IAM users, you could attach an IAM policy like the following one to that user:

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "iam:CreateUser",
 "Resource": "*"
 }
}

In a policy, the value of the Resource element depends on the action and what resources the action
can affect. In the preceding example, the policy allows a user to create any user (* is a wildcard that
matches all strings). In contrast, a policy that allows users to change only their own access keys (API
actions CreateAccessKey and UpdateAccessKey) typically has a Resource element. In this case the
ARN includes a variable (${aws:username}) that resolves to the current user's name, as in the following
example:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ListUsersForConsole",
 "Effect": "Allow",
 "Action": "iam:ListUsers",
 "Resource": "arn:aws:iam::*:*"
 },
 {
 "Sid": "ViewAndUpdateAccessKeys",
 "Effect": "Allow",
 "Action": [
 "iam:UpdateAccessKey",
 "iam:CreateAccessKey",
 "iam:ListAccessKeys"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}"
 }
]
}

In the previous example, ${aws:username} is a variable that resolves to the user name of the current
user. For more information about policy variables, see IAM policy elements: Variables and tags (p. 776).

Using a wildcard character (*) in the action name often makes it easier to grant permissions for all
the actions related to a specific task. For example, to allow users to perform any IAM action, you can
use iam:* for the action. To allow users to perform any action related just to access keys, you can use
iam:*AccessKey* in the Action element of a policy statement. This gives the user permission to

547

https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateUser.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateAccessKey.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateAccessKey.html

AWS Identity and Access Management User Guide
Permissions for working in the AWS Management Console

perform the CreateAccessKey, DeleteAccessKey, GetAccessKeyLastUsed, ListAccessKeys,
and UpdateAccessKey actions. (If an action is added to IAM in the future that has "AccessKey" in the
name, using iam:*AccessKey* for the Action element will also give the user permission to that new
action.) The following example shows a policy that allows users to perform all actions pertaining to their
own access keys (replace ACCOUNT-ID-WITHOUT-HYPHENS with your AWS account ID):

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "iam:*AccessKey*",
 "Resource": "arn:aws:iam::ACCOUNT-ID-WITHOUT-HYPHENS:user/${aws:username}"
 }
}

Some tasks, such as deleting a group, involve multiple actions: You must first remove users from the
group, then detach or delete the group's policies, and then actually delete the group. If you want a user
to be able to delete a group, you must be sure to give the user permissions to perform all of the related
actions.

Permissions for working in the AWS Management
Console
The preceding examples show policies that allow a user to perform the actions with the AWS CLI or the
AWS SDKs.

As users work with the console, the console issues requests to IAM to list groups, users, roles, and
policies, and to get the policies associated with a group, user, or role. The console also issues requests
to get AWS account information and information about the principal. The principal is the user making
requests in the console.

In general, to perform an action, you must have only the matching action included in a policy. To create
a user, you need permission to call the CreateUser action. Often, when you use the console to perform
an action, you must have permissions to display, list, get, or otherwise view resources in the console. This
is necessary so that you can navigate through the console to make the specified action. For example,
if user Jorge wants to use the console to change his own access keys, he goes to the IAM console and
chooses Users. This action causes the console to make a ListUsers request. If Jorge doesn't have
permission for the iam:ListUsers action, the console is denied access when it tries to list users. As a
result, Jorge can't get to his own name and to his own access keys, even if he has permissions for the
CreateAccessKey and UpdateAccessKey actions.

If you want to give users permissions to administer groups, users, roles, policies, and credentials with the
AWS Management Console, you need to include permissions for the actions that the console performs.
For some examples of policies that you can use to grant a user for these permissions, see Example
policies for administering IAM resources (p. 550).

Granting permissions across AWS accounts
You can directly grant IAM users in your own account access to your resources. If users from another
account need access to your resources, you can create an IAM role, which is an entity that includes
permissions but that isn't associated with a specific user. Users from other accounts can then use the role
and access resources according to the permissions you've assigned to the role. For more information, see
Providing access to an IAM user in another AWS account that you own (p. 172).

Note
Some services support resource-based policies as described in Identity-based policies and
resource-based policies (p. 404) (such as Amazon S3, Amazon SNS, and Amazon SQS). For

548

https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateAccessKey.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteAccessKey.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetAccessKeyLastUsed.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAccessKeys.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateAccessKey.html
http://aws.amazon.com/cli/
http://aws.amazon.com/tools/
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListUsers.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateAccessKey.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateAccessKey.html

AWS Identity and Access Management User Guide
Permissions for one service to access another

those services, an alternative to using roles is to attach a policy to the resource (bucket, topic, or
queue) that you want to share. The resource-based policy can specify the AWS account that has
permissions to access the resource.

Permissions for one service to access another
Many AWS services access other AWS services. For example, several AWS services—including Amazon
EMR, Elastic Load Balancing, and Amazon EC2 Auto Scaling—manage Amazon EC2 instances. Other AWS
services make use of Amazon S3 buckets, Amazon SNS topics, Amazon SQS queues, and so on.

The scenario for managing permissions in these cases varies by service. Here are some examples of how
permissions are handled for different services:

• In Amazon EC2 Auto Scaling, users must have permission to use Auto Scaling, but don't need to be
explicitly granted permission to manage Amazon EC2 instances.

• In AWS Data Pipeline, an IAM role determines what a pipeline can do; users need permission to
assume the role. (For details, see Granting Permissions to Pipelines with IAM in the AWS Data Pipeline
Developer Guide.)

For details about how to configure permissions properly so that an AWS service is able to accomplish the
tasks you intend, refer to the documentation for the service you are calling. To learn how to create a role
for a service, see Creating a role to delegate permissions to an AWS service (p. 235).

Configuring a service with an IAM role to work on your behalf

When you want to configure an AWS service to work on your behalf, you typically provide the ARN for an
IAM role that defines what the service is allowed to do. AWS checks to ensure that you have permissions
to pass a role to a service. For more information, see Granting a user permissions to pass a role to an
AWS service (p. 257).

Required actions
Actions are the things that you can do to a resource, such as viewing, creating, editing, and deleting that
resource. Actions are defined by each AWS service.

To allow someone to perform an action, you must include the necessary actions in a policy that applies
to the calling identity or the affected resource. In general, to provide the permission required to perform
an action, you must include that action in your policy. For example, to create a user, you need add the
CreateUser action to your policy.

In some cases, an action might require that you include additional related actions in your policy. For
example, to provide permission for someone to create a directory in AWS Directory Service using the
ds:CreateDirectory operation, you must include the following actions in their policy:

• ds:CreateDirectory

• ec2:DescribeSubnets

• ec2:DescribeVpcs

• ec2:CreateSecurityGroup

• ec2:CreateNetworkInterface

• ec2:DescribeNetworkInterfaces

• ec2:AuthorizeSecurityGroupIngress

• ec2:AuthorizeSecurityGroupEgress

When you create or edit a policy using the visual editor, you receive warnings and prompts to help you
choose all of the required actions for your policy.

549

https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html

AWS Identity and Access Management User Guide
Example policies for IAM

For more information about the permissions required to create a directory in AWS Directory Service, see
Example 2: Allow a User to Create a Directory.

Example policies for administering IAM resources
Following are examples of IAM policies that allow users to perform tasks associated with managing IAM
users, groups, and credentials. This includes policies that permit users manage their own passwords,
access keys, and multi-factor authentication (MFA) devices.

For examples of policies that let users perform tasks with other AWS services, like Amazon S3, Amazon
EC2, and DynamoDB, see Example IAM identity-based policies (p. 418).

Topics
• Allow a user to list the account's groups, users, policies, and more for reporting purposes (p. 550)
• Allow a user to manage a group's membership (p. 550)
• Allow a user to manage IAM users (p. 550)
• Allow users to set account password policy (p. 551)
• Allow users to generate and retrieve IAM credential reports (p. 551)
• Allow all IAM actions (admin access) (p. 552)

Allow a user to list the account's groups, users, policies, and
more for reporting purposes
The following policy allows the user to call any IAM action that starts with the string Get or List,
and to generate reports. To view the example policy, see IAM: Allows read-only access to the IAM
console (p. 452).

Allow a user to manage a group's membership
The following policy allows the user to update the membership of the group called MarketingGroup. To
view the example policy, see IAM: Allows managing a group's membership programmatically and in the
console (p. 450).

Allow a user to manage IAM users
The following policy allows a user to perform all the tasks associated with managing IAM users but not
to perform actions on other entities, such as creating groups or policies. Allowed actions include these:

• Creating the user (the CreateUser action).
• Deleting the user. This task requires permissions to perform all of the following actions:
DeleteSigningCertificate, DeleteLoginProfile, RemoveUserFromGroup, and DeleteUser.

• Listing users in the account and in groups (the GetUser, ListUsers and ListGroupsForUser
actions).

• Listing and removing policies for the user (the ListUserPolicies, ListAttachedUserPolicies,
DetachUserPolicy, DeleteUserPolicy actions)

• Renaming or changing the path for the user (the UpdateUser action). The Resource element must
include an ARN that covers both the source path and the target path. For more information on paths,
see Friendly names and paths (p. 713).

{
 "Version": "2012-10-17",
 "Statement": [

550

https://docs.aws.amazon.com/directoryservice/latest/admin-guide/IAM_Auth_Access_IdentityBased.html#IAMPolicyExamples_DS_create_directory
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateUser.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteSigningCertificate.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteLoginProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_RemoveUserFromGroup.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteUser.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetUser.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListUsers.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListGroupsForUser.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListUserPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListAttachedUserPolicies.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DetachUserPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteUserPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_UpdateUser.html

AWS Identity and Access Management User Guide
Example policies for IAM

 {
 "Sid": "AllowUsersToPerformUserActions",
 "Effect": "Allow",
 "Action": [
 "iam:ListPolicies",
 "iam:GetPolicy",
 "iam:UpdateUser",
 "iam:AttachUserPolicy",
 "iam:ListEntitiesForPolicy",
 "iam:DeleteUserPolicy",
 "iam:DeleteUser",
 "iam:ListUserPolicies",
 "iam:CreateUser",
 "iam:RemoveUserFromGroup",
 "iam:AddUserToGroup",
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:PutUserPolicy",
 "iam:ListAttachedUserPolicies",
 "iam:ListUsers",
 "iam:GetUser",
 "iam:DetachUserPolicy"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowUsersToSeeStatsOnIAMConsoleDashboard",
 "Effect": "Allow",
 "Action": [
 "iam:GetAccount*",
 "iam:ListAccount*"
],
 "Resource": "*"
 }
]
}

A number of the permissions included in the preceding policy allow the user to perform tasks in the
AWS Management Console. Users who perform user-related tasks from the AWS CLI, the AWS SDKs, or
the IAM HTTP query API only might not need certain permissions. For example, if users already know
the ARN of policies to detach from a user, they do not need the iam:ListAttachedUserPolicies
permission. The exact list of permissions that a user requires depends on the tasks that the user must
perform while managing other users.

The following permissions in the policy allow access to user tasks via the AWS Management Console:

• iam:GetAccount*

• iam:ListAccount*

Allow users to set account password policy
You might give some users permissions to get and update your AWS account's password policy (p. 92). To
view the example policy, see IAM: Allows setting the account password requirements programmatically
and in the console (p. 454).

Allow users to generate and retrieve IAM credential reports
You can give users permission to generate and download a report that lists all users in your AWS account.
The report also lists the status of various user credentials, including passwords, access keys, MFA devices,
and signing certificates. For more information about credential reports, see Getting credential reports

551

http://aws.amazon.com/cli/
http://aws.amazon.com/tools/

AWS Identity and Access Management User Guide
Example policies for IAM

for your AWS account (p. 148). To view the example policy, see IAM: Generate and retrieve IAM credential
reports (p. 449).

Allow all IAM actions (admin access)
You might give some users administrative permissions to perform all actions in IAM, including managing
passwords, access keys, MFA devices, and user certificates. The following example policy grants these
permissions.

Warning
When you give a user full access to IAM, there is no limit to the permissions that user can grant
to him/herself or others. The user can create new IAM entities (users or roles) and grant those
entities full access to all resources in your AWS account. When you give a user full access to IAM,
you are effectively giving them full access to all resources in your AWS account. This includes
access to delete all resources. You should grant these permissions to only trusted administrators,
and you should enforce multi-factor authentication (MFA) for these administrators.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "iam:*",
 "Resource": "*"
 }
}

552

AWS Identity and Access Management User Guide
Data protection

Security in IAM and AWS STS
Cloud security at AWS is the highest priority. As an AWS customer, you benefit from data centers
and network architectures that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes this
as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS services in
the AWS Cloud. AWS also provides you with services that you can use securely. Third-party auditors
regularly test and verify the effectiveness of our security as part of the AWS Compliance Programs. To
learn about the compliance programs that apply to AWS Identity and Access Management (IAM), see
AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You are also
responsible for other factors including the sensitivity of your data, your company's requirements, and
applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when using AWS
Identity and Access Management (IAM) and AWS Security Token Service (AWS STS). The following topics
show you how to configure IAM and AWS STS to meet your security and compliance objectives. You also
learn how to use other AWS services that help you to monitor and secure your IAM resources.

Contents
• Data protection in AWS Identity and Access Management (p. 553)

• Logging and monitoring in AWS Identity and Access Management (p. 555)

• Compliance validation for AWS Identity and Access Management (p. 555)

• Resilience in AWS Identity and Access Management (p. 556)

• Infrastructure security in AWS Identity and Access Management (p. 556)

• Configuration and vulnerability analysis in AWS Identity and Access Management (p. 557)

• Security best practices and use cases in AWS Identity and Access Management (p. 557)

• AWS managed policies for AWS Identity and Access Management Access Analyzer (p. 567)

Data protection in AWS Identity and Access
Management

The AWS shared responsibility model applies to data protection in AWS Identity and Access
Management. As described in this model, AWS is responsible for protecting the global infrastructure
that runs all of the AWS Cloud. You are responsible for maintaining control over your content that is
hosted on this infrastructure. This content includes the security configuration and management tasks for
the AWS services that you use. For more information about data privacy, see the Data Privacy FAQ. For
information about data protection in Europe, see the AWS Shared Responsibility Model and GDPR blog
post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set up
individual user accounts with AWS Identity and Access Management (IAM). That way each user is given

553

http://aws.amazon.com/compliance/shared-responsibility-model/
http://aws.amazon.com/compliance/programs/
http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/shared-responsibility-model/
http://aws.amazon.com/compliance/data-privacy-faq
http://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/

AWS Identity and Access Management User Guide
Data encryption in IAM and AWS STS

only the permissions necessary to fulfill their job duties. We also recommend that you secure your data
in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We recommend TLS 1.2 or later.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing personal data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a command
line interface or an API, use a FIPS endpoint. For more information about the available FIPS endpoints,
see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form fields such as a Name field. This includes when you
work with IAM or other AWS services using the console, API, AWS CLI, or AWS SDKs. Any data that
you enter into tags or free-form fields used for names may be used for billing or diagnostic logs. If
you provide a URL to an external server, we strongly recommend that you do not include credentials
information in the URL to validate your request to that server.

Data encryption in IAM and AWS STS
Data encryption typically falls into two categories: encryption at rest and encryption in transit.

Encryption at rest

Data that is collected and stored by IAM is encrypted at rest.

• IAM – Data collected and stored within IAM includes IP addresses, customer account metadata,
and customer identifying data that includes passwords. Customer account metadata and customer
identifying data are encrypted at rest using AES 256 or is hashed using SHA 256.

• AWS STS – AWS STS does not collect customer content except for service logs that log successful,
erroneous, and faulty requests to the service.

Encryption in transit

Customer identifying data, including passwords, is encrypted in transit using TLS 1.1 and 1.2. All AWS
STS endpoints support HTTPS for encrypting data in transit. For a list of AWS STS endpoints, see Regions
and endpoints (p. 358).

Key management in IAM and AWS STS
You can't manage encryption keys using IAM or AWS STS. For more information about encryption keys,
see What is AWS KMS? in the AWS Key Management Service Developer Guide

Internetwork traffic privacy in IAM and AWS STS
Requests to IAM must be made using Transport Layer Security protocol (TLS). You can secure connections
to the AWS STS service by using VPC endpoints. To learn more, see Using AWS STS interface VPC
endpoints (p. 359).

554

http://aws.amazon.com/compliance/fips/
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

AWS Identity and Access Management User Guide
Logging and monitoring

Logging and monitoring in AWS Identity and
Access Management

Monitoring is an important part of maintaining the reliability, availability, and performance of AWS
Identity and Access Management (IAM), AWS Security Token Service (AWS STS) and your other AWS
solutions. AWS provides several tools for monitoring your AWS resources and responding to potential
incidents:

• AWS CloudTrail captures all API calls for IAM and AWS STS as events, including calls from the console
and API calls. To learn more about using CloudTrail with IAM and AWS STS, see Logging IAM and
AWS STS API calls with AWS CloudTrail (p. 365). For more information about CloudTrail, see the AWS
CloudTrail User Guide.

• AWS Identity and Access Management Access Analyzer helps you identify the resources in your
organization and accounts, such as Amazon S3 buckets or IAM roles, that are shared with an external
entity. This helps you identify unintended access to your resources and data, which is a security risk. To
learn more, see What is IAM Access Analyzer?

• Amazon CloudWatch monitors your AWS resources and the applications that you run on AWS in real
time. You can collect and track metrics, create customized dashboards, and set alarms that notify you
or take actions when a specified metric reaches a threshold that you specify. For example, you can have
CloudWatch track CPU usage or other metrics of your Amazon EC2 instances and automatically launch
new instances when needed. For more information, see the Amazon CloudWatch User Guide.

• Amazon CloudWatch Logs helps you monitor, store, and access your log files from Amazon EC2
instances, CloudTrail, and other sources. CloudWatch Logs can monitor information in the log files
and notify you when certain thresholds are met. You can also archive your log data in highly durable
storage. For more information, see the Amazon CloudWatch Logs User Guide.

For additional resources and security best practices for IAM, see Security best practices and use cases in
AWS Identity and Access Management (p. 557).

Compliance validation for AWS Identity and Access
Management

Third-party auditors assess the security and compliance of AWS Identity and Access Management (IAM)
as part of multiple AWS compliance programs. These include SOC, PCI, FedRAMP, ISO, and others.

To learn whether IAM or other AWS services are in scope of specific compliance programs, see AWS
Services in Scope by Compliance Program. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see Downloading
Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your data,
your company's compliance objectives, and applicable laws and regulations. AWS provides the following
resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying baseline environments on AWS that are security and
compliance focused.

• Architecting for HIPAA Security and Compliance Whitepaper – This whitepaper describes how
companies can use AWS to create HIPAA-compliant applications.

555

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
http://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://d0.awsstatic.com/whitepapers/compliance/AWS_HIPAA_Compliance_Whitepaper.pdf

AWS Identity and Access Management User Guide
Resilience

Note
Not all services are compliant with HIPAA.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your industry
and location.

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service assesses
how well your resource configurations comply with internal practices, industry guidelines, and
regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within AWS
that helps you check your compliance with security industry standards and best practices.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify how
you manage risk and compliance with regulations and industry standards.

Resilience in AWS Identity and Access Management
The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions provide
multiple physically separated and isolated Availability Zones, which are connected with low-latency,
high-throughput, and highly redundant networking. With Availability Zones, you can design and operate
applications and databases that automatically fail over between zones without interruption. Availability
Zones are more highly available, fault tolerant, and scalable than traditional single or multiple data
center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

AWS Identity and Access Management (IAM) and AWS Security Token Service (AWS STS) are available
globally. By default, AWS STS requests go to a single global endpoint. But you can choose to use a
Regional AWS STS endpoint to reduce latency or provide additional redundancy for your applications. To
learn more, see Managing AWS STS in an AWS Region (p. 356).

Infrastructure security in AWS Identity and Access
Management

As managed services, AWS Identity and Access Management (IAM) and AWS Security Token Service (AWS
STS) are protected by the AWS global network security procedures that are described in the Amazon Web
Services: Overview of Security Processes whitepaper.

You use AWS published API calls to access IAM through the network. Clients must support Transport
Layer Security (TLS) 1.0 or later. We recommend TLS 1.2 or later. Clients must also support cipher suites
with perfect forward secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE) or Elliptic Curve Ephemeral
Diffie-Hellman (ECDHE). Most modern systems such as Java 7 and later support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is associated
with an IAM principal. Or you can use AWS STS to generate temporary security credentials to sign
requests.

IAM can be accessed programmatically by using the IAM HTTPS API, which lets you issue HTTPS requests
directly to the service. The Query API returns sensitive information, including security credentials.
Therefore, you must use HTTPS with all API requests. When you use the HTTPS API, you must include
code to digitally sign requests using your credentials.

You can call these API operations from any network location, but IAM does support resource-based
access policies, which can include restrictions based on the source IP address. You can also use IAM

556

http://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
http://aws.amazon.com/about-aws/global-infrastructure/
https://docs.aws.amazon.com/whitepapers/latest/aws-overview-security-processes/aws-overview-security-processes.pdf
https://docs.aws.amazon.com/whitepapers/latest/aws-overview-security-processes/aws-overview-security-processes.pdf

AWS Identity and Access Management User Guide
Configuration and vulnerability analysis

policies to control access from specific Amazon Virtual Private Cloud (Amazon VPC) endpoints or specific
VPCs. Effectively, this isolates network access to a given IAM resource from only the specific VPC within
the AWS network.

Configuration and vulnerability analysis in AWS
Identity and Access Management

AWS handles basic security tasks like guest operating system (OS) and database patching, firewall
configuration, and disaster recovery. These procedures have been reviewed and certified by the
appropriate third parties. For more details, see the following resources:

• Shared Responsibility Model

• Amazon Web Services: Overview of Security Processes (whitepaper)

The following resources also address configuration and vulnerability analysis in AWS Identity and Access
Management (IAM):

• Compliance validation for AWS Identity and Access Management (p. 555)

• Security best practices and use cases in AWS Identity and Access Management (p. 557)

Security best practices and use cases in AWS
Identity and Access Management

AWS Identity and Access Management (IAM) provides a number of security features to consider as you
develop and implement your own security policies. The following best practices are general guidelines
and don't represent a complete security solution. Because these best practices might not be appropriate
or sufficient for your environment, treat them as helpful considerations rather than prescriptions.

To get the greatest benefits from IAM, take time to learn the recommended best practices. One way to
do this is to see how IAM is used in real-world scenarios to work with other AWS services.

Topics

• Security best practices in IAM (p. 557)

• Business use cases for IAM (p. 565)

Security best practices in IAM

To help secure your AWS resources, follow these recommendations for the AWS Identity and Access
Management (IAM) service.

Topics

• Lock away your AWS account root user access keys (p. 558)

• Create individual IAM users (p. 558)

• Use user groups to assign permissions to IAM users (p. 559)

557

http://aws.amazon.com/compliance/shared-responsibility-model/
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://twitter.com/AWSSecurityInfo

AWS Identity and Access Management User Guide
Security best practices

• Grant least privilege (p. 559)

• Get started using permissions with AWS managed policies (p. 560)

• Validate your policies (p. 561)

• Use customer managed policies instead of inline policies (p. 561)

• Use access levels to review IAM permissions (p. 562)

• Configure a strong password policy for your users (p. 562)

• Enable MFA (p. 562)

• Use roles for applications that run on Amazon EC2 instances (p. 563)

• Use roles to delegate permissions (p. 563)

• Do not share access keys (p. 563)

• Rotate credentials regularly (p. 563)

• Remove unnecessary credentials (p. 564)

• Use policy conditions for extra security (p. 564)

• Monitor activity in your AWS account (p. 564)

Lock away your AWS account root user access keys
You use an access key (an access key ID and secret access key) to make programmatic requests to AWS.
However, do not use your AWS account root user access key. The access key for your AWS account root
user gives full access to all your resources for all AWS services, including your billing information. You
cannot reduce the permissions associated with your AWS account root user access key.

Therefore, protect your root user access key like you would your credit card numbers or any other
sensitive secret. Here are some ways to do that:

• If you don't already have an access key for your AWS account root user, don't create one unless you
absolutely need to. Instead, use your account email address and password to sign in to the AWS
Management Console and create an IAM user for yourself (p. 19) that has administrative permissions.

• If you do have an access key for your AWS account root user, delete it. If you must keep it, rotate
(change) the access key regularly. To delete or rotate your root user access keys, go to the My Security
Credentials page in the AWS Management Console and sign in with your account's email address and
password. You can manage your access keys in the Access keys section. For more information about
rotating access keys, see Rotating access keys (p. 106).

• Never share your AWS account root user password or access keys with anyone. The remaining sections
of this document discuss various ways to avoid having to share your AWS account root user credentials
with other users. They also explain how to avoid having to embed them in an application.

• Use a strong password to help protect account-level access to the AWS Management Console. For
information about managing your AWS account root user password, see Changing the AWS account
root user password (p. 91).

• Enable AWS multi-factor authentication (MFA) on your AWS account root user account. For more
information, see Using multi-factor authentication (MFA) in AWS (p. 110).

Create individual IAM users
Don't use your AWS account root user credentials to access AWS, and don't give your credentials to
anyone else. Instead, create individual users for anyone who needs access to your AWS account. Create
an IAM user for yourself as well, give that user administrative permissions, and use that IAM user for
all your work. For information about how to do this, see Creating your first IAM admin user and user
group (p. 19).

558

https://console.aws.amazon.com/iam/home?#security_credential
https://console.aws.amazon.com/iam/home?#security_credential

AWS Identity and Access Management User Guide
Security best practices

By creating individual IAM users for people who access your account, you can give each IAM user a unique
set of security credentials. You can also grant different permissions to each IAM user. If necessary, you
can change or revoke an IAM user's permissions anytime. (If you give out your root user credentials, it can
be difficult to revoke them, and it is impossible to restrict their permissions.)

AWS recommends that you create new users without permissions and require them to change their
password immediately. After they sign in for the first time, you can add policies to the user. For more
information, see How do I securely create IAM users? (p. 682).

Note
Before you set permissions for individual IAM users, see the next point about user groups.

Use user groups to assign permissions to IAM users
Instead of defining permissions for individual IAM users, it's usually more convenient to create user
groups that relate to job functions (administrators, developers, accounting, etc.). Next, define the
relevant permissions for each user group. Finally, assign IAM users to those user groups. All the users in
an IAM user group inherit the permissions assigned to the user group. That way, you can make changes
for everyone in a user group in just one place. As people move around in your company, you can simply
change what IAM user group their IAM user belongs to.

For more information, see the following:

• Creating your first IAM admin user and user group (p. 19)

• Managing IAM user groups (p. 163)

Grant least privilege
When you create IAM policies, follow the standard security advice of granting least privilege, or granting
only the permissions required to perform a task. Determine what users (and roles) need to do and then
craft policies that allow them to perform only those tasks.

Start with a minimum set of permissions and grant additional permissions as necessary. Doing so is more
secure than starting with permissions that are too lenient and then trying to tighten them later.

As an alternative to least privilege, you can use AWS managed policies (p. 390) or policies with wildcard
* permissions to get started with policies. Consider the security risk of granting your principals more
permissions than they need to do their job. Monitor those principals to learn which permissions they are
using. Then write least privilege policies.

IAM provides several options to help you refine the permissions that you grant.

• Understand access level groupings – You can use access level groupings to understand the level of
access that a policy grants. Policy actions (p. 753) are classified as List, Read, Write, Permissions
management, or Tagging. For example, you can choose actions from the List and Read access levels
to grant read-only access to your users. To learn how to use policy summaries to understand access
level permissions, see Use access levels to review IAM permissions (p. 562).

• Validate your policies – You can perform policy validation using IAM Access Analyzer when you create
and edit JSON policies. We recommend that you review and validate all of your existing policies.
IAM Access Analyzer provides over 100 policy checks to validate your policies. It generates security
warnings when a statement in your policy allows access we consider overly permissive. You can use
the actionable recommendations that are provided through the security warnings as you work toward
granting least privilege. To learn more about policy checks provided by IAM Access Analyzer, see IAM
Access Analyzer policy validation.

• Generate a policy based on access activity – To help you refine the permissions that you grant, you
can generate an IAM policy that is based on the access activity for an IAM entity (user or role). IAM

559

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html

AWS Identity and Access Management User Guide
Security best practices

Access Analyzer reviews your AWS CloudTrail logs and generates a policy template that contains the
permissions that have been used by the entity in your specified time frame. You can use the template
to create a managed policy with fine-grained permissions and then attach it to the IAM entity. That
way, you grant only the permissions that the user or role needs to interact with AWS resources for your
specific use case. To learn more, see Generate policies based on access activity (p. 475).

• Use last accessed information – Another feature that can help with least privilege is last accessed
information. View this information on the Access Advisor tab on the IAM console details page for
an IAM user, group, role, or policy. Last accessed information also includes information about the
actions that were last accessed for some services, such as Amazon EC2, IAM, Lambda, and Amazon
S3. If you sign in using AWS Organizations management account credentials, you can view service
last accessed information in the AWS Organizations section of the IAM console. You can also use the
AWS CLI or AWS API to retrieve a report for last accessed information for entities or policies in IAM
or Organizations. You can use this information to identify unnecessary permissions so that you can
refine your IAM or Organizations policies to better adhere to the principle of least privilege. For more
information, see Refining permissions in AWS using last accessed information (p. 502).

• Review account events in AWS CloudTrail – To further reduce permissions, you can view your
account's events in AWS CloudTrail Event history. CloudTrail event logs include detailed event
information that you can use to reduce the policy's permissions. The logs include only the actions
and resources that your IAM entities need. For more information, see Viewing CloudTrail Events in the
CloudTrail Console in the AWS CloudTrail User Guide.

For more information, see the following:

• Access management for AWS resources (p. 380)

• Policy topics for individual services, which provide examples of how to write policies for service-
specific resources. Examples:

• Authentication and Access Control for Amazon DynamoDB in the Amazon DynamoDB Developer
Guide

• Using Bucket Policies and User Policies in the Amazon Simple Storage Service Developer Guide

• Access Control List (ACL) Overview in the Amazon Simple Storage Service Developer Guide

Get started using permissions with AWS managed policies
We recommend using policies that grant least privilege (p. 559), or granting only the permissions
required to perform a task. The most secure way to grant least privilege is to write a custom policy
with only the permissions needed by your team. You must create a process to allow your team to
request more permissions when necessary. It takes time and expertise to create IAM customer managed
policies (p. 469) that provide your team with only the permissions they need.

To get started adding permissions to your IAM identities (users, groups of users, and roles), you can use
AWS managed policies (p. 390). AWS managed policies cover common use cases and are available in
your AWS account. AWS managed policies don't grant least privilege permissions. You must consider the
security risk of granting your principals more permissions than they need to do their job.

You can attach AWS managed policies, including job functions, to any IAM identity. To switch to least
privilege permissions, you can run AWS Identity and Access Management Access Analyzer to monitor the
principals with AWS managed policies. After learning which permissions they are using, then you can
write a custom policy or generate a policy with only the required permissions for your team. This is less
secure, but provides more flexibility as you learn how your team is using AWS.

AWS managed policies are designed to provide permissions for many common use cases. For more
information about AWS managed policies that are designed for specific job functions, see AWS managed
policies for job functions (p. 802).

560

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events-console.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events-console.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/UsingIAMWithDDB.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-iam-policies.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html

AWS Identity and Access Management User Guide
Security best practices

Validate your policies

It is a best practice to validate the policies that you create. You can perform policy validation when you
create and edit JSON policies. IAM identifies any JSON syntax errors, while IAM Access Analyzer provides
over 100 policy checks and actionable recommendations to help you author secure and functional
policies. We recommend that you review and validate all of your existing policies. To learn more about
policy validation, see Validating IAM policies (p. 474). To learn more about policy checks provided by IAM
Access Analyzer, see IAM Access Analyzer policy validation.

Use customer managed policies instead of inline policies

For custom policies, we recommend that you use managed policies instead of inline policies. A key
advantage of using these policies is that you can view all of your managed policies in one place in the
console. You can also view this information with a single AWS CLI or AWS API operation. Inline policies
are policies that exist only on an IAM identity (user, user group, or role). Managed policies are separate
IAM resources that you can attach to multiple identities. For more information, see Managed policies and
inline policies (p. 389).

If you have inline policies in your account, you can convert them to managed policies. To do this, copy
the policy to a new managed policy. Next, attach the new policy to the identity that has the inline policy.
Then delete the inline policy. You can do this using the instructions below.

To convert an inline policy to a managed policy

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose User groups, Users, or Roles.

3. In the list, choose the name of the user group, user, or role that has the policy you want to remove.

4. Choose the Permissions tab.

5. For user groups, select the name of the inline policy that you want to remove. For users and roles,
choose Show n more, if necessary, and then choose the arrow next to the inline policy that you want
to remove.

6. Copy the JSON policy document for the policy.

7. In the navigation pane, choose Policies.

8. Choose Create policy and then choose the JSON tab.

9. Replace the existing text with your JSON policy text, and then choose Review policy.

10. Enter a name for your policy and choose Create policy.

11. In the navigation pane, choose User groups, Users, or Roles, and again choose the name of the user
group, user, or role that has the policy you want to remove.

12. For user groups, choose the Permissions tab. For users and roles, choose Add permissions.

13. For user groups, select the check box next to the name of your new policy, choose Add permissions,
and then choose Attach policy. For users or roles, choose Add permissions. On the next page,
choose Attach existing policies directly, select the check box next to the name of your new policy,
choose Next: Review, and then choose Add permissions.

You are returned to the Summary page for your user group, user, or role.

14. For user groups, select the check box next to the inline policy that you want to remove and choose
Remove. For users or roles, choose X next to the inline policy that you want to remove.

In some circumstances, we do recommend choosing inline policies over managed policies. For details, see
Choosing between managed policies and inline policies (p. 393).

561

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Security best practices

Use access levels to review IAM permissions

To improve the security of your AWS account, you should regularly review and monitor each of your IAM
policies. Make sure that your policies grant the least privilege (p. 559) that is needed to perform only
the necessary actions.

When you review a policy, you can view the policy summary (p. 520) that includes a summary of the
access level for each service within that policy. AWS categorizes each service action into one of five
access levels based on what each action does: List, Read, Write, Permissions management, or
Tagging. You can use these access levels to determine which actions to include in your policies.

For example, in the Amazon S3 service, you might want to allow a large group of users to access List
and Read actions. Such actions permit those users to list the buckets and get objects in Amazon S3.
However, you should allow only a small group of users to access the Amazon S3 Write actions to delete
buckets or put objects into an S3 bucket. Additionally, you should reduce permissions to allow only
administrators to access the Amazon S3 Permissions management actions. This ensures that only
a limited number of people can manage bucket policies in Amazon S3. This is especially important for
Permissions management actions in IAM and AWS Organizations services. Allowing Tagging actions
grants a user permission to perform actions that only modify tags for a resource. However, some Write
actions, such as CreateRole, allow tagging a resource when you create the resource or modify other
attributes for that resource. Therefore, denying access to Tagging actions does not prevent a user from
tagging resources. For details and examples of the access level classification, see Understanding access
level summaries within policy summaries (p. 530).

To view the access level classification that is assigned to each action in a service, see Actions, Resources,
and Condition Keys for AWS Services.

To see the access levels for a policy, you must first locate the policy's summary. The policy summary is
included on the Policies page for managed policies, and on the Users page for policies that are attached
to a user. For more information, see Policy summary (list of services) (p. 521).

Within a policy summary, the Access level column shows that the policy provides Full or Limited access
to one or more of the four AWS access levels for the service. Alternately, it might show that the policy
provides Full access to all the actions within the service. You can use the information within this Access
level column to understand the level of access that the policy provides. You can then take action to
make your AWS account more secure. For details and examples of the access level classification, see
Understanding access level summaries within policy summaries (p. 530).

Configure a strong password policy for your users

If you allow users to change their own passwords, create a custom password policy that requires them
to create strong passwords and rotate their passwords periodically. On the Account Settings page of
the IAM console, you can create a custom password policy for your account. You upgrade from the AWS
default password policy to define password requirements, such as minimum length, whether it requires
nonalphabetic characters, and how frequently it must be rotated. For more information, see Setting an
account password policy for IAM users (p. 92).

Enable MFA

For extra security, we recommend that you require multi-factor authentication (MFA) for all users in your
account. With MFA, users have a device that generates a response to an authentication challenge. Both
the user's credentials and the device-generated response are required to complete the sign-in process. If
a user's password or access keys are compromised, your account resources are still secure because of the
additional authentication requirement.

The response is generated in one of the following ways:

562

reference_policies_actions-resources-contextkeys.html
reference_policies_actions-resources-contextkeys.html
https://console.aws.amazon.com/iam/home?#account_settings

AWS Identity and Access Management User Guide
Security best practices

• Virtual and hardware MFA devices generate a code that you view on the app or device and then enter
on the sign-in screen.

• U2F security keys generate a response when you tap the device. The user does not manually enter a
code on the sign-in screen.

For privileged IAM users who are allowed to access sensitive resources or API operations, we recommend
using U2F or hardware MFA devices.

For more information about MFA, see Using multi-factor authentication (MFA) in AWS (p. 110).

To learn how to configure MFA-protected API access for access keys, see Configuring MFA-protected API
access (p. 138).

Use roles for applications that run on Amazon EC2 instances
Applications that run on an Amazon EC2 instance need credentials in order to access other AWS services.
To provide credentials to the application in a secure way, use IAM roles. A role is an entity that has its
own set of permissions, but that isn't a user or user group. Roles also don't have their own permanent
set of credentials the way IAM users do. In the case of Amazon EC2, IAM dynamically provides temporary
credentials to the EC2 instance, and these credentials are automatically rotated for you.

When you launch an EC2 instance, you can specify a role for the instance as a launch parameter.
Applications that run on the EC2 instance can use the role's credentials when they access AWS resources.
The role's permissions determine what the application is allowed to do.

For more information, see Using an IAM role to grant permissions to applications running on Amazon
EC2 instances (p. 270).

Use roles to delegate permissions
Don't share security credentials between accounts to allow users from another AWS account to access
resources in your AWS account. Instead, use IAM roles. You can define a role that specifies what
permissions the IAM users in the other account are allowed. You can also designate which AWS accounts
have the IAM users that are allowed to assume the role. To learn whether principals in accounts outside
of your zone of trust (trusted organization or account) have access to assume your roles, see What is IAM
Access Analyzer?.

For more information, see Roles terms and concepts (p. 169).

Do not share access keys
Access keys provide programmatic access to AWS. Do not embed access keys within unencrypted code or
share these security credentials between users in your AWS account. For applications that need access to
AWS, configure the program to retrieve temporary security credentials using an IAM role. To allow your
users individual programmatic access, create an IAM user with personal access keys.

For more information, see Switching to an IAM role (AWS API) (p. 268) and Managing access keys for IAM
users (p. 102).

Rotate credentials regularly
Change your own passwords and access keys regularly, and make sure that all IAM users in your account
do as well. That way, if a password or access key is compromised without your knowledge, you limit how
long the credentials can be used to access your resources. You can apply a custom password policy to
your account to require all your IAM users to rotate their AWS Management Console passwords. You can
also choose how often they must do so.

563

https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html

AWS Identity and Access Management User Guide
Security best practices

For more information about setting a custom password policy in your account, see Setting an account
password policy for IAM users (p. 92).

For more information about rotating access keys for IAM users, see Rotating access keys (p. 106).

Remove unnecessary credentials
Remove IAM user credentials (passwords and access keys) that are not needed. For example, if you
created an IAM user for an application that does not use the console, then the IAM user does not need a
password. Similarly, if a user only uses the console, remove their access keys. Passwords and access keys
that have not been used recently might be good candidates for removal. You can find unused passwords
or access keys using the console, using the CLI or API, or by downloading the credentials report.

For more information about finding IAM user credentials that have not been used recently, see Finding
unused credentials (p. 146).

For more information about deleting passwords for an IAM user, see Managing passwords for IAM
users (p. 95).

For more information about deactivating or deleting access keys for an IAM user, see Managing access
keys for IAM users (p. 102).

For more information about IAM credential reports, see Getting credential reports for your AWS
account (p. 148).

Use policy conditions for extra security
To the extent that it's practical, define the conditions under which your IAM policies allow access to
a resource. For example, you can write conditions to specify a range of allowable IP addresses that a
request must come from. You can also specify that a request is allowed only within a specified date
range or time range. You can also set conditions that require the use of SSL or MFA (multi-factor
authentication). For example, you can require that a user has authenticated with an MFA device in order
to be allowed to terminate an Amazon EC2 instance.

For more information, see IAM JSON policy elements: Condition (p. 758) in the IAM Policy Elements
Reference.

Monitor activity in your AWS account
You can use logging features in AWS to determine the actions users have taken in your account and the
resources that were used. The log files show the time and date of actions, the source IP for an action,
which actions failed due to inadequate permissions, and more.

Logging features are available in the following AWS services:

• Amazon CloudFront – Logs user requests that CloudFront receives. For more information, see Access
Logs in the Amazon CloudFront Developer Guide.

• AWS CloudTrail – Logs AWS API calls and related events made by or on behalf of an AWS account. For
more information, see the AWS CloudTrail User Guide.

• Amazon CloudWatch – Monitors your AWS Cloud resources and the applications you run on AWS. You
can set alarms in CloudWatch based on metrics that you define. For more information, see the Amazon
CloudWatch User Guide.

• AWS Config – Provides detailed historical information about the configuration of your AWS resources,
including your IAM users, user groups, roles, and policies. For example, you can use AWS Config
to determine the permissions that belonged to a user or user group at a specific time. For more
information, see the AWS Config Developer Guide.

564

https://aws.amazon.com/cloudfront/
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/AccessLogs.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/AccessLogs.html
https://aws.amazon.com/cloudtrail/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/
https://aws.amazon.com/config/
https://docs.aws.amazon.com/config/latest/developerguide/

AWS Identity and Access Management User Guide
Business use cases

• Amazon Simple Storage Service (Amazon S3) – Logs access requests to your Amazon S3 buckets. For
more information, see Server Access Logging in the Amazon Simple Storage Service Developer Guide.

Business use cases for IAM
A simple business use case for IAM can help you understand basic ways you might implement the service
to control the AWS access that your users have. The use case is described in general terms, without the
mechanics of how you'd use the IAM API to achieve the results you want.

This use case looks at two typical ways a fictional company called Example Corp might use IAM. The first
scenario considers Amazon Elastic Compute Cloud (Amazon EC2). The second considers Amazon Simple
Storage Service (Amazon S3).

For more information about using IAM with other services from AWS, see AWS services that work with
IAM (p. 725).

Topics
• Initial setup of example corp (p. 565)
• Use case for IAM with Amazon EC2 (p. 565)
• Use case for IAM with Amazon S3 (p. 566)

Initial setup of example corp
John is the founder of Example Corp. Upon starting the company, he creates his own AWS account
and uses AWS products by himself. Then he hires employees to work as developers, admins, testers,
managers, and system administrators.

John uses the AWS Management Console with the AWS account root user credentials to create
a user for himself called John, and a user group called Admins. He gives the Admins user group
permissions to perform all actions on all the AWS account's resources using the AWS managed policy
AdministratorAccess. Then he adds the John user to the Admins user group. For a step-by-step guide
to creating an Administrators user group and an IAM user for yourself, then adding your user to the
Administrators user group, see Creating your first IAM admin user and user group (p. 19).

At this point, John can stop using the root user's credentials to interact with AWS, and instead he begins
using only his user credentials.

John also creates a user group called AllUsers so that he can easily apply any account-wide permissions
to all users in the AWS account. He adds himself to the user group. He then creates a user group
called Developers, a user group called Testers, a user group called Managers, and a user group called
SysAdmins. He creates users for each of his employees, and puts the users in their respective user
groups. He also adds them all to the AllUsers user group. For information about creating user groups,
see Creating IAM user groups (p. 162). For information about creating users, see Creating an IAM user
in your AWS account (p. 75). For information about adding users to user groups, see Managing IAM user
groups (p. 163).

Use case for IAM with Amazon EC2
A company like Example Corp typically uses IAM to interact with services like Amazon EC2. To
understand this part of the use case, you need a basic understanding of Amazon EC2. For more
information about Amazon EC2, go to the Amazon EC2 User Guide for Linux Instances.

Amazon EC2 permissions for the user groups

To provide "perimeter" control, John attaches a policy to the AllUsers user group. This policy denies any
AWS request from a user if the originating IP address is outside Example Corp's corporate network.

565

https://aws.amazon.com/s3/
https://docs.aws.amazon.com/AmazonS3/latest/dev/ServerLogs.html
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AdministratorAccess
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/

AWS Identity and Access Management User Guide
Business use cases

At Example Corp, different user groups require different permissions:

• System administrators – Need permission to create and manage AMIs, instances, snapshots, volumes,
security groups, and so on. John attaches the AmazonEC2FullAccess AWS managed policy to the
SysAdmins user group that gives members of the group permission to use all the Amazon EC2 actions.

• Developers – Need the ability to work with instances only. John therefore creates and attaches a policy
to the Developers user group that allows developers to call DescribeInstances, RunInstances,
StopInstances, StartInstances, and TerminateInstances.

Note
Amazon EC2 uses SSH keys, Windows passwords, and security groups to control who has
access to the operating system of specific Amazon EC2 instances. There's no method in the
IAM system to allow or deny access to the operating system of a specific instance.

• Managers – Should not be able to perform any Amazon EC2 actions except listing the Amazon EC2
resources currently available. Therefore, John creates and attaches a policy to the Managers user group
that only lets them call Amazon EC2 "Describe" API operations.

For examples of what these policies might look like, see Example IAM identity-based policies (p. 418) and
Using AWS Identity and Access Management in the Amazon EC2 User Guide for Linux Instances.

User's job function change

At some point, one of the developers, Paulo, changes job functions and becomes a manager. John moves
Paulo from the Developers user group to the Managers user group. Now that he's in the Managers user
group, Paulo's ability to interact with Amazon EC2 instances is limited. He can't launch or start instances.
He also can't stop or terminate existing instances, even if he was the user who launched or started the
instance. He can list only the instances that Example Corp users have launched.

Use case for IAM with Amazon S3
Companies like Example Corp would also typically use IAM with Amazon S3. John has created an Amazon
S3 bucket for the company called aws-s3-bucket.

Creation of other users and user groups

As employees, Zhang and Mary each need to be able to create their own data in the company's bucket.
They also need to read and write shared data that all developers work on. To enable this, John logically
arranges the data in aws-s3-bucket using an Amazon S3 key prefix scheme as shown in the following
figure.

/aws-s3-bucket
 /home
 /zhang
 /mary
 /share
 /developers
 /managers

John divides the /aws-s3-bucket into a set of home directories for each employee, and a shared area
for groups of developers and managers.

Now John creates a set of policies to assign permissions to the users and user groups:

• Home directory access for Zhang – John attaches a policy to Zhang that lets him read, write, and list
any objects with the Amazon S3 key prefix /aws-s3-bucket/home/Zhang/

• Home directory access for Mary – John attaches a policy to Mary that lets her read, write, and list any
objects with the Amazon S3 key prefix /aws-s3-bucket/home/mary/

566

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/index.html?UsingIAM.html

AWS Identity and Access Management User Guide
AWS managed policies

• Shared directory access for the developers user group – John attaches a policy to the user group that
lets developers read, write, and list any objects in /aws-s3-bucket/share/developers/

• Shared directory access for the managers user group – John attaches a policy to the user group that
lets managers read, write, and list objects in /aws-s3-bucket/share/managers/

Note
Amazon S3 doesn't automatically give a user who creates a bucket or object permission to
perform other actions on that bucket or object. Therefore, in your IAM policies, you must
explicitly give users permission to use the Amazon S3 resources they create.

For examples of what these policies might look like, see Access Control in the Amazon Simple Storage
Service Developer Guide. For information on how policies are evaluated at runtime, see Policy evaluation
logic (p. 784).

User's job function change

At some point, one of the developers, Zhang, changes job functions and becomes a manager. We assume
that he no longer needs access to the documents in the share/developers directory. John, as an
admin, moves Zhang to the Managers user group and out of the Developers user group. With just that
simple reassignment, Zhang automatically gets all permissions granted to the Managers user group, but
can no longer access data in the share/developers directory.

Integration with a third-party business

Organizations often work with partner companies, consultants, and contractors. Example Corp has a
partner called the Widget Company, and a Widget Company employee named Shirley needs to put
data into a bucket for Example Corp's use. John creates a user group called WidgetCo and a user named
Shirley and adds Shirley to the WidgetCo user group. John also creates a special bucket called aws-s3-
bucket1 for Shirley to use.

John updates existing policies or adds new ones to accommodate the partner Widget Company. For
example, John can create a new policy that denies members of the WidgetCo user group the ability to
use any actions other than write. This policy would be necessary only if there's a broad policy that gives
all users access to a wide set of Amazon S3 actions.

AWS managed policies for AWS Identity and Access
Management Access Analyzer

To add permissions to users, groups, and roles, it is easier to use AWS managed policies than to write
policies yourself. It takes time and expertise to create IAM customer managed policies that provide your
team with only the permissions they need. To get started quickly, you can use our AWS managed policies.
These policies cover common use cases and are available in your AWS account. For more information
about AWS managed policies, see AWS managed policies in the IAM User Guide.

AWS services maintain and update AWS managed policies. You can't change the permissions in AWS
managed policies. Services occasionally add additional permissions to an AWS managed policy to
support new features. This type of update affects all identities (users, groups, and roles) where the policy
is attached. Services are most likely to update an AWS managed policy when a new feature is launched
or when new operations become available. Services do not remove permissions from an AWS managed
policy, so policy updates won't break your existing permissions.

567

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingAuthAccess.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

AWS Identity and Access Management User Guide
IAMAccessAnalyzerFullAccess

Additionally, AWS supports managed policies for job functions that span multiple services. For example,
the ReadOnlyAccess AWS managed policy provides read-only access to all AWS services and resources.
When a service launches a new feature, AWS adds read-only permissions for new operations and
resources. For a list and descriptions of job function policies, see AWS managed policies for job functions
in the IAM User Guide.

IAMAccessAnalyzerFullAccess
Use the IAMAccessAnalyzerFullAccess AWS managed policy to allow your administrators to access
IAM Access Analyzer.

Permissions groupings
This policy is grouped into statements based on the set of permissions provided.

• IAM Access Analyzer – Allows full administrative permissions to all resources in IAM Access Analyzer.
• Create service linked role – Allows the administrator to create a service-linked role, which allows IAM

Access Analyzer to analyze resources in other services on your behalf. This permission allows creating
the service-linked role only for use by IAM Access Analyzer.

• AWS Organizations – Allows administrators to use IAM Access Analyzer for an organization in AWS
Organizations. After enabling trusted access for IAM Access Analyzer in AWS Organizations, members
of the management account can view findings across their organization.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "access-analyzer:*"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "iam:AWSServiceName": "access-analyzer.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "organizations:DescribeAccount",
 "organizations:DescribeOrganization",
 "organizations:DescribeOrganizationalUnit",
 "organizations:ListAccounts",
 "organizations:ListAccountsForParent",
 "organizations:ListAWSServiceAccessForOrganization",
 "organizations:ListChildren",
 "organizations:ListDelegatedAdministrators",
 "organizations:ListOrganizationalUnitsForParent",
 "organizations:ListParents",

568

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-using-service-linked-roles.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_integrate_services.html

AWS Identity and Access Management User Guide
IAMAccessAnalyzerReadOnlyAccess

 "organizations:ListRoots"
],
 "Resource": "*"
 }
]
}

IAMAccessAnalyzerReadOnlyAccess
Use the IAMAccessAnalyzerReadOnlyAccess AWS managed policy to allow read-only access to IAM
Access Analyzer.

To also allow read-only access to IAM Access Analyzer for AWS Organizations, create
a customer managed policy that allows the Describe and List actions from the
IAMAccessAnalyzerFullAccess (p. 568) AWS managed policy.

Service-level permissions
This policy provides read-only access to IAM Access Analyzer. No other service permissions are included in
this policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "access-analyzer:Get*",
 "access-analyzer:List*",
 "access-analyzer:ValidatePolicy"
],
 "Resource": "*"
 }
]
}

AccessAnalyzerServiceRolePolicy
You can't attach AccessAnalyzerServiceRolePolicy to your IAM entities. This policy is attached to
a service-linked role that allows IAM Access Analyzer to perform actions on your behalf. For more
information, see Using service-linked roles for AWS IAM Access Analyzer (p. 579).

Service-level permissions
This policy allows access to IAM Access Analyzer to analyze resource metadata from multiple AWS
services. The policy also allows permissions to AWS Organizations and allows the creation of an analyzer
within the AWS organization as the zone of trust.

 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketPublicAccessBlock",
 "s3:GetBucketPolicyStatus",

569

AWS Identity and Access Management User Guide
Policy updates

 "s3:GetAccountPublicAccessBlock",
 "s3:ListAllMyBuckets",
 "s3:GetBucketAcl",
 "s3:GetBucketLocation",
 "s3:GetBucketPolicy",
 "s3:ListAccessPoints",
 "s3:GetAccessPoint",
 "s3:GetAccessPointPolicy",
 "s3:GetAccessPointPolicyStatus",
 "s3:DescribeMultiRegionAccessPointOperation",
 "s3:GetMultiRegionAccessPoint",
 "s3:GetMultiRegionAccessPointPolicy",
 "s3:GetMultiRegionAccessPointPolicyStatus",
 "s3:ListMultiRegionAccessPoints",
 "iam:GetRole",
 "iam:ListRoles",
 "kms:DescribeKey",
 "kms:GetKeyPolicy",
 "kms:ListGrants",
 "kms:ListKeyPolicies",
 "kms:ListKeys",
 "ec2:DescribeVpcs",
 "ec2:DescribeVpcEndpoints",
 "ec2:DescribeByoipCidrs",
 "ec2:DescribeAddresses",
 "lambda:ListFunctions",
 "lambda:GetPolicy",
 "lambda:ListLayers",
 "lambda:ListLayerVersions",
 "lambda:GetLayerVersionPolicy",
 "sqs:GetQueueAttributes",
 "sqs:ListQueues",
 "secretsmanager:DescribeSecret",
 "secretsmanager:GetResourcePolicy",
 "secretsmanager:ListSecrets",
 "organizations:ListAWSServiceAccessForOrganization",
 "organizations:ListDelegatedAdministrators",
 "organizations:ListRoots",
 "organizations:ListParents",
 "organizations:ListChildren",
 "organizations:ListOrganizationalUnitsForParent",
 "organizations:ListAccountsForParent",
 "organizations:ListAccounts",
 "organizations:DescribeAccount",
 "organizations:DescribeOrganization",
 "organizations:DescribeOrganizationalUnit"
],
 "Resource": "*"
 }
]
 }

IAM Access Analyzer updates to AWS managed
policies

View details about updates to AWS managed policies for IAM Access Analyzer since this service began
tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed on
the IAM Access Analyzer Document history page.

570

AWS Identity and Access Management User Guide
Policy updates

Change Description Date

AccessAnalyzerServiceRolePolicy
– Add permission for Amazon S3
multi-region access points

IAM Access Analyzer added new
Amazon S3 actions to analyze
metadata associated with multi-
region access points.

September 2, 2021

IAMAccessAnalyzerReadOnlyAccess (p. 569)
– Add permission to support
policy validation

IAM Access Analyzer added
a new action to grant
ValidatePolicy permissions
to allow you to use the policy
checks for validation.

This permission is required by
IAM Access Analyzer to perform
policy checks on your policies.
This action is associated to
the ValidatePolicy API
operation.

March 16, 2021

IAM Access Analyzer started
tracking changes

IAM Access Analyzer started
tracking changes for its AWS
managed policies.

March 1, 2021

571

https://console.aws.amazon.com/iam/home#policies/AccessAnalyzerServiceRolePolicy

AWS Identity and Access Management User Guide

Using AWS IAM Access Analyzer
AWS IAM Access Analyzer helps you identify the resources in your organization and accounts, such as
Amazon S3 buckets or IAM roles, shared with an external entity. This lets you identify unintended access
to your resources and data, which is a security risk. Access Analyzer identifies resources shared with
external principals by using logic-based reasoning to analyze the resource-based policies in your AWS
environment. For each instance of a resource shared outside of your account, Access Analyzer generates
a finding. Findings include information about the access and the external principal granted to it. You
can review findings to determine whether the access is intended and safe, or the access is unintended
and a security risk. In addition to helping you identify resources shared with an external entity, you can
use Access Analyzer findings to preview how your policy affects public and cross-account access to your
resource before deploying resource permissions.

Note
An external entity can be another AWS account, a root user, an IAM user or role, a federated
user, an AWS service, an anonymous user, or other entity that you can use to create a filter. For
more information, see AWS JSON Policy Elements: Principal.

When you enable Access Analyzer, you create an analyzer for your entire organization or your account.
The organization or account you choose is known as the zone of trust for the analyzer. The analyzer
monitors all of the supported resources (p. 573) within your zone of trust. Any access to resources by
principals within your zone of trust is considered trusted. Once enabled, Access Analyzer analyzes the
policies applied to all of the supported resources in your zone of trust. After the first analysis, Access
Analyzer analyzes these policies periodically. If you add a new policy , or change an existing policy, Access
Analyzer analyzes the new or updated policy within about 30 minutes.

When analyzing the policies, if Access Analyzer identifies one that grants access to an external principal
that isn't within your zone of trust, it generates a finding. Each finding includes details about the
resource, the external entity with access to it, and the permissions granted so that you can take
appropriate action. You can view the details included in the finding to determine whether the resource
access is intentional or a potential risk that you should resolve. When you add a policy to a resource, or
update an existing policy, Access Analyzer analyzes the policy. Access Analyzer also analyzes all resource-
based policies periodically.

On rare occasions under certain conditions, Access Analyzer does not receive notification of an added
or updated policy. Access Analyzer can take up to 6 hours to generate or resolve findings if you create
or delete a multi-region access point associated with an S3 bucket, or update the policy for the multi-
region access point. Also, if there is a delivery issue with AWS CloudTrail log delivery, the policy change
does not trigger a rescan of the resource reported in the finding. When this happens, Access Analyzer
analyzes the new or updated policy during the next periodic scan, which is within 24 hours. If you
want to confirm a change you make to a policy resolves an access issue reported in a finding, you can
rescan the resource reported in a finding by using the Rescan link in the Findings details page, or by
using the StartResourceScan operation of the Access Analyzer API. To learn more, see Resolving
findings (p. 586).

Important
Access Analyzer analyzes only policies applied to resources in the same AWS Region where it's
enabled. To monitor all resources in your AWS environment, you must create an analyzer to
enable Access Analyzer in each Region where you're using supported AWS resources.

Access Analyzer analyzes the following resource types:

• Amazon Simple Storage Service buckets (p. 573)
• AWS Identity and Access Management roles (p. 574)
• AWS Key Management Service keys (p. 574)
• AWS Lambda functions and layers (p. 575)

572

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/access-analyzer/latest/APIReference/API_StartResourceScan.html

AWS Identity and Access Management User Guide
Validating policies

• Amazon Simple Queue Service queues (p. 575)
• AWS Secrets Manager secrets (p. 575)

Validating policies
You can validate your policies using Access Analyzer policy checks. You can create or edit a policy using
the AWS CLI, AWS API, or JSON policy editor in the IAM console. Access Analyzer validates your policy
against IAM policy grammar (p. 797) and best practices (p. 557). You can view policy validation check
findings that include security warnings, errors, general warnings, and suggestions for your policy. These
findings provide actionable recommendations that help you author policies that are functional and
conform to security best practices. To learn more about validating policies using Access Analyzer, see
Access Analyzer policy validation (p. 587).

Generating policies
Access Analyzer analyzes your AWS CloudTrail logs to identify actions and services that have been used
by an IAM entity (user or role) within your specified date range. It then generates an IAM policy that
is based on that access activity. You can use the generated policy to refine an entity's permissions by
attaching it to an IAM user or role. To learn more about generating policies using Access Analyzer, see
IAM Access Analyzer policy generation (p. 648).

Access Analyzer resource types
Access Analyzer analyzes the resource-based policies that are applied to AWS resources in the Region
where you enabled Access Analyzer. Only resource-based policies are analyzed. Review the information
about each resource for details about how Access Analyzer generates findings for each resource type.

Supported resource types:
• Amazon Simple Storage Service buckets (p. 573)
• AWS Identity and Access Management roles (p. 574)
• AWS Key Management Service keys (p. 574)
• AWS Lambda functions and layers (p. 575)
• Amazon Simple Queue Service queues (p. 575)
• AWS Secrets Manager secrets (p. 575)

Amazon Simple Storage Service buckets
When Access Analyzer analyzes Amazon S3 buckets, it generates a finding when an Amazon S3 bucket
policy, ACL, or access point, including a multi-region access point, applied to a bucket grants access to
an external entity. An external entity is a principal or other entity you can use to create a filter (p. 584)
that isn't within your zone of trust. For example, if a bucket policy grants access to another account or
allows public access, Access Analyzer generates a finding. However, if you enable Block public access on
your bucket, you can block access at the account level or the bucket level.

Amazon S3 block public access settings override the bucket policies applied to the bucket. The settings
also override the access point policies applied to the bucket’s access points. Access Analyzer analyzes
block public access settings at the bucket level whenever a policy changes. However, it evaluates
the block public access settings at the account level only once every 6 hours. This means that Access
Analyzer might not generate or resolve a finding for public access to a bucket for up to 6 hours. For

573

https://docs.aws.amazon.com/AmazonS3/latest/dev/access-control-block-public-access.html

AWS Identity and Access Management User Guide
IAM roles

example, if you have a bucket policy that allows public access, Access Analyzer generates a finding for
that access. If you then enable block public access to block all public access to the bucket at the account
level, Access Analyzer doesn't resolve the finding for the bucket policy for up to 6 hours, even though all
public access to the bucket is blocked.

For a multi-region access point, Access Analyzer uses an established policy for generating findings.
Access Analyzer evaluates changes to multi-region access points once every 6 hours. This means Access
Analyzer doesn’t generate or resolve a finding for up to 6 hours, even if you create or delete a multi-
region access point, or update the policy for it.

AWS Identity and Access Management roles
For IAM roles, Access Analyzer analyzes trust policies. In a role trust policy, you define the principals that
you trust to assume the role. A role trust policy is a required resource-based policy that is attached to a
role in IAM. Access Analyzer generates findings for roles within the zone of trust that can be accessed by
an external entity that is outside your zone of trust.

Note
An IAM role is a global resource. If a role trust policy grants access to an external entity, Access
Analyzer generates a finding in each enabled Region.

AWS Key Management Service keys
For AWS KMS keys, Access Analyzer analyzes the key policies and grants applied to a key. Access Analyzer
generates a finding if a key policy or grant allows an external entity to access the key. For example,
if you use the kms:CallerAccount condition key in a policy statement to allow access to all users in a
specific AWS account, and you specify an account other than the current account (the zone of trust for
the current analyzer), Access Analyzer generates a finding. To learn more about KMS condition keys in
IAM policy statements, see AWS KMS Condition Keys.

When Access Analyzer analyzes a KMS key it reads key metadata, such as the key policy and list of grants.
If the key policy doesn't allow the Access Analyzer role to read the key metadata, an Access Denied error
finding is generated. For example, if the following example policy statement is the only policy applied to
a key, it results in an Access Denied error finding in Access Analyzer:

{
 "Sid": "Allow access for Key Administrators",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/Admin"
 },
 "Action": "kms:*",
 "Resource": "*"
}

Because this statement allows only the role named Admin from the AWS account 111122223333 to
access the key, an Access Denied error finding is generated because Access Analyzer isn't able to fully
analyze the key. An error finding is displayed in red text in the Findings table. The finding looks similar to
the following:

{
 "error": "ACCESS_DENIED",
 "id": "12345678-1234-abcd-dcba-111122223333",
 "analyzedAt": "2019-09-16T14:24:33.352Z",
 "resource": "arn:aws:kms:us-
west-2:1234567890:key/1a2b3c4d-5e6f-7a8b-9c0d-1a2b3c4d5e6f7g8a",
 "resourceType": "AWS::KMS::Key",
 "status": "ACTIVE",

574

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#term_trust-policy
https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-kms-caller-account
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awskeymanagementservice.html#awskeymanagementservice-policy-keys

AWS Identity and Access Management User Guide
Lambda functions

 "updatedAt": "2019-09-16T14:24:33.352Z"
}

When you create a KMS key, the permissions granted to access the key depend on how you create the
key. If you receive an Access Denied error finding for a key resource, apply the following policy statement
to the key resource to grant Access Analyzer permission to access the key.

{
 "Sid": "Allow Access Analyzer access to key metadata",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:root"
 },
 "Action": [
 "kms:DescribeKey",
 "kms:GetKeyPolicy",
 "kms:List*"
],
 "Resource": "*"
},

After you receive an Access Denied finding for a KMS key resource, and then resolve the finding by
updating the key policy, the finding is updated to a status of Resolved. If there are policy statements or
key grants that grant permission to the key to an external entity, you might see additional findings for
the key resource.

AWS Lambda functions and layers
For AWS Lambda functions, Access Analyzer analyzes policies, including condition statements in a policy,
that grant access to the function to an external entity. Access Analyzer also analyzes permissions granted
when using the AddPermission operation of the AWS Lambda API with an EventSourceToken.

Amazon Simple Queue Service queues
For Amazon SQS queues, Access Analyzer analyzes policies, including condition statements in a policy,
that allow an external entity access to a queue.

AWS Secrets Manager secrets
For AWS Secrets Manager secrets, Access Analyzer analyzes policies, including condition statements in a
policy, that allow an external entity to access a secret.

How Access Analyzer works
This topic describes the concepts and terms that are used in Access Analyzer to help you become familiar
with how Access Analyzer monitors access to your AWS resources.

AWS IAM Access Analyzer is built on Zelkova, which translates IAM policies into equivalent logical
statements, and runs a suite of general-purpose and specialized logical solvers (satisfiability modulo
theories) against the problem. Access Analyzer applies Zelkova repeatedly to a policy with increasingly
specific queries to characterize classes of behaviors the policy allows, based on the content of the policy.
To learn more about satisfiability modulo theories, see Satisfiability Modulo Theories.

Access Analyzer does not examine access logs to determine whether an external entity accessed a
resource within your zone of trust. It generates a finding when a resource-based policy allows access

575

https://docs.aws.amazon.com/lambda/latest/dg/API_AddPermission.html
https://aws.amazon.com/blogs/security/protect-sensitive-data-in-the-cloud-with-automated-reasoning-zelkova/
https://people.eecs.berkeley.edu/~sseshia/pubdir/SMT-BookChapter.pdf

AWS Identity and Access Management User Guide
Getting started

to a resource, even if the resource was not accessed by the external entity. Access Analyzer also does
not consider the state of any external accounts when making its determination. That is, if it indicates
that account 11112222333 can access your S3 bucket, it knows nothing about the state of users, roles,
service control policies (SCP), and other relevant configurations in that account. This is for customer
privacy – Access Analyzer doesn't consider who owns the other account. It is also for security – if the
account is not owned by the Access Analyzer customer, it is still important to know that an external
entity could gain access to their resources even if there are currently no principals in the account that
could access the resources.

Access Analyzer considers only certain IAM condition keys that external users cannot directly influence,
or that are otherwise impactful to authorization. For examples of condition keys Access Analyzer
considers, see Access Analyzer filter keys (p. 664).

Access Analyzer does not currently report findings from AWS service principals or internal service
accounts. In rare cases where Access Analyzer isn't able to fully determine whether a policy statement
grants access to an external entity, it errs on the side of declaring a false positive finding. Access Analyzer
is designed to provide a comprehensive view of the resource sharing in your account, and strives to
minimize false negatives.

Getting started with AWS IAM Access Analyzer
Use the information in this topic to learn about the requirements necessary to use and manage AWS IAM
Access Analyzer, and then how to enable Access Analyzer. To learn more about the service-linked role for
Access Analyzer, see Using service-linked roles for AWS IAM Access Analyzer (p. 579).

Permissions required to use Access Analyzer
To successfully configure and use Access Analyzer, the account you use must be granted the required
permissions.

AWS managed policies for Access Analyzer
AWS IAM Access Analyzer provides AWS managed policies to help you get started quickly.

• IAMAccessAnalyzerFullAccess - Allows full access to Access Analyzer for administrators. This policy also
allows creating the service-linked roles that are required to allow Access Analyzer to analyze resources
in your account or AWS organization.

• IAMAccessAnalyzerReadOnlyAccess - Allows read-only access to Access Analyzer. You must add
additional policies to your IAM identities (users, groups of users, or roles) to allow them to view

Resources defined by AWS IAM Access Analyzer
To view the resources defined by Access Analyzer, see Resource types defined by AWS IAM Access
Analyzer in the Service Authorization Reference.

Required Access Analyzer service permissions
Access Analyzer uses a service-linked role named AWSServiceRoleForAccessAnalyzer to grant the
service read-only access to analyze AWS resources with resource-based policies on your behalf. When you
create an analyzer with your account as the zone of trust, the service creates the role in your account.
When you create an analyzer with your organization as the zone of trust, the service creates a role in
each account that belongs to your organization. For more information, see Using service-linked roles for
AWS IAM Access Analyzer (p. 579).

576

https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiamaccessanalyzer.html#awsiamaccessanalyzer-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_awsiamaccessanalyzer.html#awsiamaccessanalyzer-resources-for-iam-policies

AWS Identity and Access Management User Guide
Enabling Access Analyzer

Note
Access Analyzer is Regional. You must enable Access Analyzer in each Region independently.

In some cases, after you enable Access Analyzer, the Findings page loads with no findings. This might
be due to a delay in the console for populating your findings. You need to manually refresh the browser
to view your findings. If you still don't see any findings, it's because you have no supported resources
in your account that can be accessed by an external entity. If a policy that grants access to an external
entity is applied to a resource, Access Analyzer generates a finding.

Note
It may take up to 30 minutes after a policy is modified for Access Analyzer to analyze the
resource and then either generate a new finding or update an existing finding for the access to
the resource.

Enabling Access Analyzer
To enable Access Analyzer in a Region, you must create an analyzer in that Region. You must create an
analyzer in each Region in which you want to monitor access to your resources.

To create an analyzer with the account as the zone of trust

1. Open the IAM console at https://console.aws.amazon.com/iam/.
2. Choose Access analyzer.
3. Choose Create analyzer.
4. On the Create analyzer page, confirm that the Region displayed is the Region where you want to

enable Access Analyzer.
5. Enter a name for the analyzer.
6. Choose the account as the zone of trust for the analyzer.

Note
If your account is not the AWS Organizations management account or delegated
administrator (p. 580) account, you can create only one analzyer with your account as the
zone of trust.

7. Optional. Add any tags that you want to apply to the analyzer.
8. Choose Create Analyzer.

When you create an analyzer to enable Access Analyzer, a service-linked role named
AWSServiceRoleForAccessAnalyzer is created in your account.

To create an analyzer with the organization as the zone of trust

1. Open the IAM console at https://console.aws.amazon.com/iam/.
2. Choose Access analyzer.
3. Choose Create analyzer.
4. On the Create analyzer page, confirm that the Region displayed is the Region where you want to

enable Access Analyzer.
5. Enter a name for the analyzer.
6. Choose your organization as the zone of trust for the analyzer.
7. Optional. Add any tags that you want to apply to the analyzer.
8. Choose Create Analyzer.

When you create an analyzer with the organization as the zone of trust, a service-linked role named
AWSServiceRoleForAccessAnalyzer is created in each account of your organization.

577

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Access Analyzer status

Access Analyzer status
To view the status of your analyzers, choose Analyzers. Analyzers created for an organization or account
can have the following status:

Status Description

Active The analyzer is actively monitoring resources
within its zone of trust. The analyzer actively
generates new findings and updates existing
findings.

Creating The creation of the analyzer is still in progress.
The analyzer becomes active once creation is
complete.

Disabled The analyzer is disabled due to an action taken
by the AWS Organizations administrator. For
example, removing the analyzer’s account as the
delegated administrator for IAM Access Analyzer.
When the analyzer is in a disabled state it does
not generate new findings or update existing
findings.

Failed The creation of the analyzer failed due to a
configuration issue. The analyzer won't generate
any findings. Delete the analyzer and create a new
analyzer.

Access Analyzer quotas
Access Analyzer has the following quotas:

Resource Default quota Maximum quota

Maximum analyzers with an
account zone of trust

1 1

Maximum analyzers with an
organization zone of trust

5 20*

Maximum archive rules per
analyzer

100

Each archive rule can have up to
20 values per criterion.

1,000*

Maximum number of access
previews per analyzer per hour

1,000 1,000

AWS CloudTrail log files
processed per policy generations

100,000 100,000

Concurrent policy generations 1 1

Policy generation AWS
CloudTrail data size

25 GB 25 GB

578

AWS Identity and Access Management User Guide
Using service-linked roles

Resource Default quota Maximum quota

Policy generation AWS
CloudTrail time range

90 days 90 days

Policy generations per day 5

Canceled policy generation
requests apply to the daily
quota.

5

* Some quotas are customer-configurable using Service Quotas.

Using service-linked roles for AWS IAM Access
Analyzer
AWS IAM Access Analyzer uses an IAM service-linked role. A service-linked role is a unique type of IAM
role linked directly to Access Analyzer. Service-linked roles are predefined by Access Analyzer and include
all the permissions that the feature requires to call other AWS services on your behalf.

A service-linked role makes setting up Access Analyzer easier because you don’t have to manually add
the necessary permissions. Access Analyzer defines the permissions of its service-linked roles, and unless
defined otherwise, only Access Analyzer can assume its roles. The defined permissions include the trust
policy and the permissions policy, and that permissions policy cannot be attached to any other IAM
entity.

For information about other services that support service-linked roles, see AWS Services That Work with
IAM and look for the services that have Yes in the Service-Linked Role column. Choose a Yes with a link
to view the service-linked role documentation for that service.

Service-linked role permissions for AWS IAM Access Analyzer
AWS IAM Access Analyzer uses the service-linked role named AWSServiceRoleForAccessAnalyzer – Allow
Access Analyzer to analyze resource metadata.

The AWSServiceRoleForAccessAnalyzer service-linked role trusts the following services to assume the
role:

• access-analyzer.amazonaws.com

The role permissions policy named AccessAnalyzerServiceRolePolicy (p. 569) allows Access
Analyzer to complete actions on specific resources.

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create, edit, or
delete a service-linked role. For more information, see Service-Linked Role Permissions in the IAM User
Guide.

Creating a service-linked role for Access Analyzer
You don't need to manually create a service-linked role. When you enable Access Analyzer in the AWS
Management Console or the AWS API, Access Analyzer creates the service-linked role for you. The same
service-linked role is used in all Regions in which you enable Access Analyzer.

Note
Access Analyzer is Regional. You must enable Access Analyzer in each Region independently.

If you delete this service-linked role, Access Analyzer recreates the role when you next create an analyzer.

579

https://docs.aws.amazon.com/servicequotas/latest/userguide/intro.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#service-linked-role-permissions

AWS Identity and Access Management User Guide
Settings

You can also use the IAM console to create a service-linked role with the Access Analyzer use case. In
the AWS CLI or the AWS API, create a service-linked role with the access-analyzer.amazonaws.com
service name. For more information, see Creating a Service-Linked Role in the IAM User Guide. If you
delete this service-linked role, you can use this same process to create the role again.

Editing a service-linked role for Access Analyzer
Access Analyzer does not allow you to edit the AWSServiceRoleForAccessAnalyzer service-linked
role. After you create a service-linked role, you cannot change the name of the role because various
entities might reference the role. However, you can edit the description of the role using IAM. For more
information, see Editing a Service-Linked Role in the IAM User Guide.

Deleting a service-linked role for Access Analyzer
If you no longer need to use a feature or service that requires a service-linked role, we recommend
that you delete that role. That way you don’t have an unused entity that isn't actively monitored or
maintained. However, you must clean up the resources for your service-linked role before you can
manually delete it.

Note
If Access Analyzer is using the role when you try to delete the resources, then the deletion might
fail. If that happens, wait for a few minutes and try the operation again.

To delete Access Analyzer resources used by the AWSServiceRoleForAccessAnalyzer

1. Open the IAM console at https://console.aws.amazon.com/iam/.
2. In the Access reports section, under Access analyzer, choose Analyzers.
3. Choose the check box on the top left above the list of analyzers in the Analyzers table to select all

analyzers.
4. Choose Delete.
5. To confirm that you want to delete the analyzers, enter delete, and then choose Delete.

To manually delete the service-linked role using IAM

Use the IAM console, the AWS CLI, or the AWS API to delete the AWSServiceRoleForAccessAnalyzer
service-linked role. For more information, see Deleting a Service-Linked Role in the IAM User Guide.

Supported Regions for Access Analyzer service-linked roles
Access Analyzer supports using service-linked roles in all of the Regions where the service is available.
For more information, see AWS Regions and Endpoints.

Settings for Access Analyzer
If you're configuring AWS IAM Access Analyzer in your AWS Organizations management account, you can
add a member account in the organization as the delegated administrator to manage Access Analyzer for
your organization. The delegated administrator has permissions to create and manage analyzers with the
organization as the zone of trust. Only the management account can add a delegated administrator.

Delegated administrator for Access Analyzer
The delegated administrator for Access Analyzer is a member account within the organization that
has permissions to create and manage analyzers with the organization as the zone of trust. Only the
management account can add, remove, or change a delegated administrator.

580

https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#create-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#edit-service-linked-role
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html#delete-service-linked-role
https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS Identity and Access Management User Guide
Access Analyzer findings

If you add a delegated administrator, you can later change to a different account for the delegated
administrator. When you do, the former delegated administrator account loses permission to all
analyzers with organization as the zone of trust that were created using that account. These analyzers
move to a disabled state and no longer generate new or update existing findings. The existing findings
for these analyzers are also no longer accessible. You can access them again in the future by configuring
the account as the delegated administrator. If you know that you won't use the same account as a
delegated administrator, consider deleting the analyzers before changing the delegated administrator.
This deletes all findings generated. When the new delegated administrator creates new analyzers, new
instances of the same findings are generated. You don't lose any findings, they just get generated for the
new analyzer in a different account. And you can continue to access findings for the organization using
the organization management account, which also has administrator permissions. The new delegated
administrator must create new analyzers for Access Analyzer to start monitoring resources in your
organization.

If the delegated administrator leaves the AWS organization, the delegated administration privileges are
removed from the account. All analyzers in the account with the organization as the zone of trust move
to a disabled state. The existing findings for these analyzers are also no longer accessible.

The first time that you configure analyzers in the management account, you can choose the option to
Add delegated administrator that is displayed on the Access Analyzer homepage in the IAM console.

To add a delegated administrator using the console

1. Log in to the AWS console using the management account for your organization.
2. Open the IAM console at https://console.aws.amazon.com/iam/.
3. Under Access Analyzer, choose Settings.
4. Choose Add delegated administrator.
5. Enter the account number of an organization member account to make the delegated administrator.

The account must be a member of your organization.
6. Choose Save changes.

To add a delegated administrator using the AWS CLI or the AWS SDKs

When you create an analyzer with organization as the zone of trust in a delegated administrator
account using the AWS CLI, AWS API (using the AWS SDKs) or AWS CloudFormation, you must use AWS
Organizations APIs to enable service access for Access Analyzer and register the member account as a
delegated administrator.

1. Enable trusted service access for Access Analyzer in AWS Organizations. See How to Enable or
Disable Trusted Access in the AWS Organizations User Guide.

2. Register a valid member account of your AWS organization as a delegated administrator using
the AWS Organizations RegisterDelegatedAdministrator API operation or the register-
delegated-administrator AWS CLI command.

After you change the delegated administrator, the new administrator must create analyzers to start
monitoring access to the resources in your organization.

Access Analyzer findings
Access Analyzer generates a finding for each instance of a resource-based policy that grants access to a
resource within your zone of trust to a principal that is not within your zone of trust. When you create
an analyzer, you choose an organization or AWS account to analyze. Any principal in the organization

581

https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_integrate_services.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_integrate_services.html
https://docs.aws.amazon.com/organizations/latest/APIReference/API_RegisterDelegatedAdministrator.html

AWS Identity and Access Management User Guide
Working with findings

or account that you choose for the analyzer is considered trusted. Because principals in the same
organization or account are trusted, the resources and principals within the organization or account
comprise the zone of trust for the analyzer. Any sharing that is within the zone of trust is considered safe,
so Access Analyzer does not generate a finding. For example, if you select an organization as the zone of
trust for an analyzer, all resources and principals in the organization are within the zone of trust. If you
grant permissions to an S3 bucket in one of your organization member accounts to a principal in another
organization member account, Access Analyzer does not generate a finding. But if you grant permission
to a principal in an account that is not a member of the organization, Access Analyzer generates a
finding.

Topics

• Working with findings (p. 582)

• Reviewing findings (p. 582)

• Filtering findings (p. 584)

• Archiving findings (p. 586)

• Resolving findings (p. 586)

Working with findings
Findings are generated only once for each instance of a resource that is shared outside of your zone
of trust. Each time a resource-based policy is modified, Access Analyzer analyzes the policy. If the
updated policy shares a resource that is already identified in a finding, but with different permissions or
conditions, a new finding is generated for that instance of the resource sharing. If the access in the first
finding is removed, that finding is updated to a status of Resolved.

The status of all findings remains Active until you archive them or remove the access that generated the
finding. When you remove the access, the finding status is updated to Resolved.

Note
It may take up to 30 minutes after a policy is modified for Access Analyzer to analyze the
resource and then update the finding.

You should review all of the findings in your account to determine whether the sharing is expected and
approved. If the sharing identified in the finding is expected, you can archive the finding. When you
archive a finding, the status is changed to Archived, and the finding is removed from the Active findings
list. The finding is not deleted. You can view your archived findings at any time. Work through all of the
findings in your account until you have zero active findings. After you get to zero findings, you know that
any new Active findings that are generated are from a recent change in your environment.

Reviewing findings
After you enable Access Analyzer (p. 577), the next step is to review any findings to determine whether
the access identified in the finding is intentional or unintentional. You can also review findings to
determine common findings for access that is intended, and then create an archive rule (p. 659) to
automatically archive those findings. You can also review archived and resolved findings.

To review findings

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Access analyzer.

Note
Findings are displayed only if you have permission to view findings for the analyzer.

582

https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Reviewing findings

All Active findings are displayed for the analyzer. To view other findings generated by the analyzer,
choose the appropriate tab:

• Choose Active to view all active findings that were generated by the analyzer.
• Choose Archived to view only findings generated by the analyzer that have been archived. To learn

more, see Archiving findings (p. 586).
• Choose Resolved to view only findings that were generated by the analyzer that have been resolved.

When you remediate the issue that generated the finding, the finding status is changed to Resolved.

Important
Resolved findings are deleted 90 days after the last update to the finding. Active and archived
findings are not deleted unless you delete the analyzer that generated them.

• Choose All to view all findings with any status that were generated by the analyzer.

The Findings page displays the following details about the shared resource and policy statement that
generated the finding:

Finding ID

The unique ID assigned to the finding. Choose the finding ID to display additional details about the
resource and policy statement that generated the finding.

Resource

The type and partial name of the resource that has a policy applied to it that grants access to an
external entity not within your zone of trust.

Resource owner account

This column is displayed only if you are using an organization as the zone of trust. The account in the
organization that owns the resource reported in the finding.

External principal

The principal, not within your zone of trust, that the analyzed policy grants access to. Valid values
include:
• AWS account – All principals in the listed AWS account with permissions from that account's

administrator can access the resource.
• Any principal – All principals in any AWS account that meet the conditions included in the

Conditions column have permission to access the resource. For example, if a VPC is listed, it means
that any principal in any account that has permission to access the listed VPC can access the
resource.

• Canonical user – All principals in the AWS account with the listed canonical user ID have
permission to access the resource.

• IAM role – The listed IAM role has permission to access the resource.
• IAM user – The listed IAM user has permission to access the resource.

Condition

The condition from the policy statement that grants the access. For example, if the Condition field
includes Source VPC, it means that the resource is shared with a principal that has access to the VPC
listed. Conditions can be global or service-specific. Global condition keys have the aws: prefix.

Shared through

The Shared through field indicates how the access that generated the finding is granted. Valid
values include:
• Bucket policy – The bucket policy attached to the Amazon S3 bucket.
• Access control list – The access control list (ACL) attached to the Amazon S3 bucket.

583

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

AWS Identity and Access Management User Guide
Filtering findings

• Access point – An access point or multi-region access point associated with the Amazon S3 bucket.
The ARN of the access point is displayed in the Findings details.

Access level

The level of access granted to the external entity by the actions in the resource-based policy. View
the details of the finding for more information. Access level values include the following:
• List – Permission to list resources within the service to determine whether an object exists. Actions

with this level of access can list objects but cannot see the contents of a resource.
• Read – Permission to read but not edit the contents and attributes of resources in the service.
• Write – Permission to create, delete, or modify resources in the service.
• Permissions – Permission to grant or modify resource permissions in the service.
• Tagging – Permission to perform actions that only change the state of resource tags.

Updated

A timestamp for the most recent update to the finding status, or the time and date the finding was
generated if no updates have been made.

Note
It may take up to 30 minutes after a policy is modified for Access Analyzer to again analyze
the resource and then update the finding.

Status

The status of the finding, one of Active, Archived, or Resolved.

Filtering findings
The default filtering for the page is to display all active findings. To view archived findings, choose the
Archived tab. When you first start using Access Analyzer, there are no archived findings.

Use filters to display only the findings for a specific resource, account, principal, or other value. To create
a filter, select the property to filter on, then choose a property value to filter on. For example, to create a
filter that displays only findings for a specific AWS account, choose AWS Account for the property, then
enter the account number for the AWS account that you want to view findings for. To create a filter that
displays only findings for resources that allow public access, you can choose the Public access property,
then choose Public access: true.

For a list of filter keys that you can use to create or update an archive rule, see Access Analyzer filter
keys (p. 664).

To filter the findings displayed

1. Choose the Filter active findings field.
2. Choose the property to use to filter the findings displayed.
3. Choose the value to match for the property. Only findings with that value in the finding are

displayed.

For example, if you choose Resource as the property, type part or all of the name of a bucket, then
press Enter. Only findings for the bucket that matches the filer criteria are displayed.

You can add additional properties to further filter the findings displayed. When you add additional
properties, only findings that match all conditions in the filter are displayed. Defining a filter to display
findings that match one property OR another property is not supported.

Some fields are displayed only when you are viewing findings for an analyzer with an organization as its
zone of trust.

584

AWS Identity and Access Management User Guide
Filtering findings

The following properties are available for defining filters:

• Public access – To filter by findings for resources that allow public access, filter by Public access then
choose Public access: true.

• Resource – To filter by resource, type all or part of the name of the resource.

• Resource Type – To filter by resource type, choose the type from the list displayed.

• AWS Account – Use this property to filter by AWS account that is granted access in the Principal
section of a policy statement. To filter by AWS account, type all or part of the 12-digit AWS account ID,
or all or part of the full account ARN of the external AWS user or role that has access to resources in
the current account.

• Canonical User – To filter by canonical user, type the canonical user ID as defined for S3 buckets. To
learn more, see AWS Account Identifiers.

• Federated User – To filter by federated user, type all or part of the ARN of the federated identity. To
learn more, see Identity Providers and Federation.

• Principal ARN – Use this property to filter on the ARN of the principal (IAM user, role, or group) used
in an aws:PrincipalArn condition key. To filter by Principal ARN, type all or part of the ARN of the IAM
user, role, or group from an external AWS account reported in a finding.

• Principal OrgID – To filter by Principal OrgID, type all or part of the organization ID associated with
the external principals that belong to the AWS organization specified as a condition in the finding. To
learn more, see AWS Global Condition Context Keys.

• Principal Org Paths – To filter by Principal Org Paths, type all or part of the ID for the AWS
organization or organizational unit (OU) that allows access to all external principals that are account
members of the specified organization or OU as a condition in the policy. To learn more, see AWS
Global Condition Context Keys.

• Source Account – To filter on source account, type all or part of the AWS account ID associated with
the resources, as used in some cross-service permissions in AWS.

• Source ARN – To filter by Source ARN, type all or part of the ARN specified as a condition in the
finding. To learn more, see To filter by Principal Org Paths, type all or part of the ID for the AWS
organization or organizational unit (OU) that allows access to all external principals that are account
members of the specified organization or OU as a condition in the policy. To learn more, see AWS
Global Condition Context Keys.

• Source IP – To filter by Source IP, type all or part of the IP address that allows external entities access
to resources in the current account when using the specified IP address. To learn more, see AWS Global
Condition Context Keys.

• Source VPC – To filter by Source VPC, type all or part of the VPC ID that allows external entities access
to resources in the current account when using the specified VPC. To learn more, see AWS Global
Condition Context Keys.

• Source VPCE – filter by Source VPCE, type all or part of the VPC endpoint ID that allows external
entities access to resources in the current account when using the specified VPC endpoint. To learn
more, see AWS Global Condition Context Keys.

• User ID – To filter by User ID, type all or part of the user ID of the IAM user from an external AWS
account who is allowed access to resource in the current account. To learn more, see AWS Global
Condition Context Keys.

• KMS Key ID – To filter by KMS Key ID, type all or part of the key ID for the KMS key specified as a
condition for KMS-encrypted S3 object access in your current account.

• Google Audience – To filter by Google Audience, type all or part of the Google application ID specified
as a condition for IAM role access in your current account. To learn more, see IAM and AWS STS
Condition Context Keys.

• Cognito Audience – To filter by Cognito Audience, type all or part of the Amazon Cognito identity pool
ID specified as a condition for IAM role access in your current account. To learn more, see IAM and AWS
STS Condition Context Keys.

585

https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_iam-condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_iam-condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_iam-condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_iam-condition-keys.html

AWS Identity and Access Management User Guide
Archiving findings

• Caller Account – The AWS account ID of the account that owns or contains the calling entity, such as
an IAM role, user, or account root user. This is used by services calling KMS. To filter by caller account,
type all or part of the AWS account ID.

• Facebook App ID – To filter by Facebook App ID, type all or part of the Facebook application ID (or
site ID) specified as a condition to allow Login with Facebook federation access to an IAM role in your
current account. To learn more, see IAM and AWS STS Condition Context Keys.

• Amazon App ID – To filter by Amazon App ID, type all or part of the Amazon application ID (or site ID)
specified as a condition to allow Login with Amazon federation access to an IAM role in your current
account. To learn more, see IAM and AWS STS Condition Context Keys.

• Lambda Event Source Token – To filter on Lambda Event Source Token passed in with Alexa
integrations, type all or part of the token string.

Archiving findings
When you get a finding for access to a resource that is intentional, such as an IAM role that is used by
multiple users for approved workflows, you can archive the finding. When you archive a finding it is
cleared from Active findings list, letting you focus on the findings you need to resolve. Archived findings
aren't deleted. You can filter the Findings page to display your archived findings, and unarchive them at
any time.

To archive findings from the Findings page

1. Select the check box next to one or more findings to archive.
2. Choose Archive.

A confirmation is displayed at the top of the screen.

To archive findings from the Findings Details page.

1. Choose the Finding ID for the finding to archive.

2. Choose Archive.

A confirmation is displayed at the top of the screen.

To unarchive findings, repeat the preceding steps, but choose Unarchive instead of Archive. When you
unarchive a finding, the status is set to Active.

Resolving findings
To resolve findings generated from access that you did not intend to allow, modify the policy statement
to remove the permissions that allow access to the identified resource. For example, for findings on S3
buckets, use the Amazon S3 console to configure the permissions on the bucket. For IAM roles, use the
IAM console to modify the trust policy for the listed IAM role. Use the console for the other supported
resources to modify the policy statements that resulted in a generated finding.

After you make a change to resolve a finding, such as modifying a policy applied to an IAM role, Access
Analyzer scans the resource again. If the resource is no longer shared outside of your zone of trust, the
status of the finding is changed to Resolved. The finding is no longer displayed in the Active findings
table, and instead is displayed in the Resolved findings table.

Note
This does not apply to Error findings. When Access Analyzer is not able to access a resource,
it generates an error finding. If you resolve the issue that prevented Access Analyzer from

586

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_iam-condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_iam-condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_modify.html#roles-managingrole_edit-trust-policy

AWS Identity and Access Management User Guide
Access Analyzer policy validation

accessing the resource, the error finding is removed completely rather than changing to a
resolved finding.

If the changes you made resulted in the resource being shared outside of your zone of trust, but in a
different way, such as with a different principal or for a different permission, Access Analyzer generates a
new Active finding.

Note
It may take up to 30 minutes after a policy is modified for Access Analyzer to again analyze
the resource and then update the finding. Resolved findings are deleted 90 days after the last
update to the finding status.

Access Analyzer policy validation
You can validate your policies using AWS IAM Access Analyzer policy checks. You can create or edit a
policy using the AWS CLI, AWS API, or JSON policy editor in the IAM console. Access Analyzer validates
your policy against IAM policy grammar (p. 797) and best practices (p. 557). You can view policy
validation check findings that include security warnings, errors, general warnings, and suggestions for
your policy. These findings provide actionable recommendations that help you author policies that are
functional and conform to security best practices. To view a list of the warnings, errors, and suggestions
that are returned by Access Analyzer, see Access Analyzer policy check reference (p. 588).

Validating policies in IAM (console)
You can view findings generated by the policy checks when you create or edit a managed policy in the
IAM console. You can also view these findings for inline user or role policies. Access Analyzer does not
generate these findings for inline group policies.

To view findings generated by policy checks for IAM JSON policies

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Begin creating or editing a policy using one of the following methods:

a. To create a new managed policy, go to the Policies page and create a new policy. For more
information, see Creating policies on the JSON tab (p. 469).

b. To view policy checks for an existing managed policy, go the Policies page, choose the name
of a policy, and then choose Edit policy. For more information, see Editing customer managed
policies (console) (p. 496).

c. To view policy checks for an inline policy on a user or role, go the Users or Roles page,
choose the name of a user or role, and choose Edit policy on the Permissions tab. For more
information, see Editing customer managed policies (console) (p. 496).

3. In the policy editor, choose the JSON tab.

4. In the policy validation pane below the policy, choose one or more of the following tabs. The tab
names also indicate the number of each finding type for your policy.

• Security – View warnings if your policy allows access that AWS considers a security risk because
the access is overly permissive.

• Errors – View errors if your policy includes lines that prevent the policy from functioning.

• General – View warnings if your policy doesn't conform to best practices, but the issues are not
security risks.

• Suggestions – View suggestions if AWS recommends improvements that don't impact the
permissions of the policy.

587

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Validating policies using Access
Analyzer (AWS CLI or AWS API)

5. Review the finding details provided by the Access Analyzer policy check. Each finding indicates the
location of the reported issue. To learn more about what causes the issue and how to resolve it,
choose the Learn more link next to the finding. You can also search for the policy check associated
with each finding in the Access Analyzer policy checks (p. 588) reference page.

6. Update your policy to resolve the findings.

Important
Test new or edited policies thoroughly before implementing them in your production
workflow.

7. When you are finished, choose Review policy. The Policy Validator (p. 474) reports any syntax errors
that are not reported by Access Analyzer.

Note
You can switch between the Visual editor and JSON tabs anytime. However, if you make
changes or choose Review policy in the Visual editor tab, IAM might restructure your policy
to optimize it for the visual editor. For more information, see Policy restructuring (p. 684).

8. On the Review policy page, type a Name and a Description (optional) for the policy that you are
creating. Review the policy Summary to see the permissions that are granted by your policy. Then
choose Create policy to save your work.

Validating policies using Access Analyzer (AWS CLI or
AWS API)
You can view findings generated by IAM Access Analyzer policy checks from the AWS Command Line
Interface (AWS CLI).

To view findings generated by Access Analyzer policy checks (AWS CLI or AWS API)

Use one of the following:

• AWS CLI: aws accessanalyzer validate-policy

• AWS API: ValidatePolicy

Access Analyzer policy check reference
You can validate your policies using AWS IAM Access Analyzer policy checks. You can create or edit a
policy using the AWS CLI, AWS API, or JSON policy editor in the IAM console. Access Analyzer validates
your policy against IAM policy grammar (p. 797) and best practices (p. 557). You can view policy
validation check findings that include security warnings, errors, general warnings, and suggestions for
your policy. These findings provide actionable recommendations that help you author policies that are
functional and conform to security best practices. To learn more about validating policies using Access
Analyzer, see Access Analyzer policy validation (p. 587).

Error – ARN account not allowed
In the AWS Management Console, the finding for this check includes the following message:

ARN account not allowed: The service does not support specifying an account ID in the
 resource ARN.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

588

https://docs.aws.amazon.com/cli/latest/reference/accessanalyzer/validate-policy.html
https://docs.aws.amazon.com/access-analyzer/latest/APIReference/API_ValidatePolicy.html

AWS Identity and Access Management User Guide
Policy check reference

"findingDetails": "The service does not support specifying an account ID in the resource
 ARN."

Resolving the error

Remove the account ID from the resource ARN. The resource ARNs for some AWS services do not support
specifying an account ID.

For example, Amazon S3 does not support an account ID as a namespace in bucket ARNs. An Amazon
S3 bucket name is globally unique, and the namespace is shared by all AWS accounts. To view all of
the resource types available in Amazon S3, see Resource types defined by Amazon S3 in the Service
Authorization Reference.

Related terms

• Policy resources (p. 755)
• Account Identifiers
• Resource ARNs (p. 714)
• AWS service resources with ARN formats

Error – ARN Region not allowed
In the AWS Management Console, the finding for this check includes the following message:

ARN Region not allowed: The service does not support specifying a Region in the resource
 ARN.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The service does not support specifying a Region in the resource ARN."

Resolving the error

Remove the Region from the resource ARN. The resource ARNs for some AWS services do not support
specifying a Region.

For example, IAM is a global service. The Region portion of an IAM resource ARN is always kept blank.
IAM resources are global, like an AWS account is today. For example, after you sign in as an IAM user, you
can access AWS services in any geographic region.

• Policy resources (p. 755)
• Resource ARNs (p. 714)
• AWS service resources with ARN formats

Error – Data type mismatch
In the AWS Management Console, the finding for this check includes the following message:

Data type mismatch: The text does not match the expected JSON data type.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

589

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazons3.html#amazons3-resources-for-iam-policies
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide
Policy check reference

"findingDetails": "The text does not match the expected JSON data type."

Resolving the error

Update the text to use the supported data type.

For example, the Version global condition key requires a String data type. If you provide a date or an
integer, the data type won't match.

Related terms

• Global condition keys (p. 812)
• IAM JSON policy elements: Condition operators (p. 760)

Error – Duplicate keys with different case
In the AWS Management Console, the finding for this check includes the following message:

Duplicate keys with different case: The condition key appears more than once with different
 capitalization in the same condition block. Remove the duplicate condition keys.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The condition key appears more than once with different capitalization
 in the same condition block. Remove the duplicate condition keys."

Resolving the error

Review the similar condition keys within the same condition block and use the same capitalization for all
instances.

A condition block is the text within the Condition element of a policy statement. Condition key names
are not case-sensitive. The case-sensitivity of condition key values depends on the condition operator
that you use. For more information about case-sensitivity in condition keys, see IAM JSON policy
elements: Condition (p. 758).

Related terms

• Conditions (p. 758)
• Condition block (p. 760)
• Global condition keys (p. 812)
• AWS service condition keys

Error – Invalid action
In the AWS Management Console, the finding for this check includes the following message:

Invalid action: The action does not exist. Did you mean ?

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

590

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide
Policy check reference

"findingDetails": "The action does not exist. Did you mean ?"

Resolving the error

The action that you specified is not valid. This can happen if you mis-type the service prefix or the action
name. For some common issues, the policy check returns a suggested action.

Related terms

• Policy actions (p. 753)
• AWS service actions

AWS managed policies with this error

AWS managed policies (p. 390) enable you to get started with AWS by assigning permissions based on
general AWS use cases.

The following AWS managed policies include invalid actions in their policy statements. Invalid actions do
not affect the permissions granted by the policy. When using an AWS managed policy as a reference to
create your managed policy, AWS recommends that you remove invalid actions from your policy.

• AmazonEMRFullAccessPolicy_v2
• CloudWatchSyntheticsFullAccess

Error – Invalid ARN account
In the AWS Management Console, the finding for this check includes the following message:

Invalid ARN account: The resource ARN account ID is not valid. Provide a 12-digit account
 ID.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The resource ARN account ID is not valid. Provide a 12-digit account
 ID."

Resolving the error

Update the account ID in the resource ARN. Account IDs are 12-digit integers. To learn how to view your
account ID, see Finding your AWS account ID.

Related terms

• Policy resources (p. 755)
• Account Identifiers
• Resource ARNs (p. 714)
• AWS service resources with ARN formats

Error – Invalid ARN prefix
In the AWS Management Console, the finding for this check includes the following message:

591

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AmazonEMRFullAccessPolicy_v2
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/CloudWatchSyntheticsFullAccess
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html#FindingYourAccountIdentifiers
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide
Policy check reference

Invalid ARN prefix: Add the required prefix (arn) to the resource ARN.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Add the required prefix (arn) to the resource ARN."

Resolving the error

AWS resource ARNs must include the required arn: prefix.

Related terms

• Policy resources (p. 755)

• Resource ARNs (p. 714)

• AWS service resources with ARN formats

Error – Invalid ARN Region

In the AWS Management Console, the finding for this check includes the following message:

Invalid ARN Region: The Region is not valid for this resource. Update the resource ARN to
 include a supported Region.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The Region is not valid for this resource. Update the resource ARN to
 include a supported Region."

Resolving the error

The resource type is not supported in the specified Region. For a table of AWS services supported in each
Region, see the Region table.

Related terms

• Policy resources (p. 755)

• Resource ARNs (p. 714)

• Region names and codes

Error – Invalid ARN resource

In the AWS Management Console, the finding for this check includes the following message:

Invalid ARN resource: Resource ARN does not match the expected ARN format. Update the
 resource portion of the ARN.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

592

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://docs.aws.amazon.com/general/latest/gr/rande.html#region-names-codes

AWS Identity and Access Management User Guide
Policy check reference

"findingDetails": "Resource ARN does not match the expected ARN format. Update the resource
 portion of the ARN."

Resolving the error

The resource ARN must match the specifications for known resource types. To view the expected ARN
format for a service, see Actions, resources, and condition keys for AWS services. Choose the name of the
service to view its resource types and ARN formats.

Related terms

• Policy resources (p. 755)
• Resource ARNs (p. 714)
• AWS service resources with ARN formats

Error – Invalid ARN service case
In the AWS Management Console, the finding for this check includes the following message:

Invalid ARN service case: Update the service name in the resource ARN to use all lowercase
 letters.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Update the service name in the resource ARN to use all lowercase
 letters."

Resolving the error

The service in the resource ARN must match the specifications (including capitalization) for service
prefixes. To view the prefix for a service, see Actions, resources, and condition keys for AWS services.
Choose the name of the service and locate its prefix in the first sentence.

Related terms

• Policy resources (p. 755)
• Resource ARNs (p. 714)
• AWS service resources with ARN formats

Error – Invalid condition data type
In the AWS Management Console, the finding for this check includes the following message:

Invalid condition data type: The condition value data types do not match. Use condition
 values of the same JSON data type.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The condition value data types do not match. Use condition values of the
 same JSON data type."

593

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide
Policy check reference

Resolving the error

The value in the condition key-value pair must match the data type of the condition key and condition
operator. To view the condition key data type for a service, see Actions, resources, and condition keys for
AWS services. Choose the name of the service to view the condition keys for that service.

For example, the CurrentTime (p. 815) global condition key supports the Date condition operator. If
you provide a string or an integer for the value in the condition block, the data type won't match.

Related terms

• Conditions (p. 758)
• Condition block (p. 760)
• IAM JSON policy elements: Condition operators (p. 760)
• Global condition keys (p. 812)
• AWS service condition keys

Error – Invalid condition key format
In the AWS Management Console, the finding for this check includes the following message:

Invalid condition key format: The condition key format is not valid. Use the format
 service:keyname.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The condition key format is not valid. Use the format service:keyname."

Resolving the error

The key in the condition key-value pair must match the specifications for the service. To view the
condition keys for a service, see Actions, resources, and condition keys for AWS services. Choose the
name of the service to view the condition keys for that service.

Related terms

• Conditions (p. 758)
• Global condition keys (p. 812)
• AWS service condition keys

Error – Invalid condition multiple Boolean
In the AWS Management Console, the finding for this check includes the following message:

Invalid condition multiple Boolean: The condition key does not support multiple Boolean
 values. Use a single Boolean value.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The condition key does not support multiple Boolean values. Use a single
 Boolean value."

594

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide
Policy check reference

Resolving the error

The key in the condition key-value pair expects a single Boolean value. When you provide multiple
Boolean values, the condition match might not return the results that you expect.

To view the condition keys for a service, see Actions, resources, and condition keys for AWS services.
Choose the name of the service to view the condition keys for that service.

• Conditions (p. 758)

• Global condition keys (p. 812)

• AWS service condition keys

Error – Invalid condition operator
In the AWS Management Console, the finding for this check includes the following message:

Invalid condition operator: The condition operator is not valid. Use a valid condition
 operator.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The condition operator is not valid. Use a valid condition operator."

Resolving the error

Update the condition to use a supported condition operator.

Related terms

• IAM JSON policy elements: Condition operators (p. 760)

• Condition element (p. 758)

• Overview of JSON policies (p. 386)

Error – Invalid effect
In the AWS Management Console, the finding for this check includes the following message:

Invalid effect: The effect is not valid. Use Allow or Deny.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The effect is not valid. Use Allow or Deny."

Resolving the error

Update the Effect element to use a valid effect. Valid values for Effect are Allow and Deny.

Related terms

• Effect element (p. 747)

595

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide
Policy check reference

• Overview of JSON policies (p. 386)

Error – Invalid global condition key
In the AWS Management Console, the finding for this check includes the following message:

Invalid global condition key: The condition key does not exist. Use a valid condition key.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The condition key does not exist. Use a valid condition key."

Resolving the error

Update the condition key in the condition key-value pair to use a supported global condition key.

Global condition keys are condition keys with an aws: prefix. AWS services can support global condition
keys or provide service-specific keys that include their service prefix. For example, IAM condition keys
include the iam: prefix. For more information, see Actions, Resources, and Condition Keys for AWS
Services and choose the service whose keys you want to view.

Related terms

• Global condition keys (p. 812)

Error – Invalid partition
In the AWS Management Console, the finding for this check includes the following message:

Invalid partition: The resource ARN for the service does not support the partition. Use the
 supported values:

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The resource ARN for the service does not support the partition. Use the
 supported values:"

Resolving the error

Update the resource ARN to include a supported partition. If you included a supported partition, then
the service or resource might not support the partition that you included.

A partition is a group of AWS Regions. Each AWS account is scoped to one partition. In Classic Regions,
use the aws partition. In China Regions, use aws-cn.

Related terms

• Amazon Resource Names (ARNs) - Partitions

Error – Invalid policy element
In the AWS Management Console, the finding for this check includes the following message:

596

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

AWS Identity and Access Management User Guide
Policy check reference

Invalid policy element: The policy element is not valid.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The policy element is not valid."

Resolving the error

Update the policy to include only supported JSON policy elements.

Related terms

• JSON policy elements (p. 744)

Error – Invalid principal format
In the AWS Management Console, the finding for this check includes the following message:

Invalid principal format: The Principal element contents are not valid. Specify a key-value
 pair in the Principal element.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The Principal element contents are not valid. Specify a key-value pair
 in the Principal element."

Resolving the error

Update the principal to use a supported key-value pair format.

You can specify a principal in a resource-based policy, but not an identity-based policy.

For example, to define access for everyone in an AWS account, use the following principal in your policy:

"Principal": { "AWS": "123456789012" }

Related terms

• JSON policy elements: Principal (p. 747)

• Identity-based policies and resource-based policies (p. 404)

Error – Invalid principal key
In the AWS Management Console, the finding for this check includes the following message:

Invalid principal key: The principal key is not valid.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

597

AWS Identity and Access Management User Guide
Policy check reference

"findingDetails": "The principal key is not valid."

Resolving the error

Update the key in the principal key-value pair to use a supported principal key. The following are
supported principal keys:

• AWS
• CanonicalUser
• Federated
• Service

Related terms

• Principal element (p. 747)

Error – Invalid Region
In the AWS Management Console, the finding for this check includes the following message:

Invalid Region: The Region is not valid. Update the condition value to a suported Region.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The Region is not valid. Update the condition value to a suported
 Region."

Resolving the error

Update the value of the condition key-value pair to include a supported Region. For a table of AWS
services supported in each Region, see the Region table.

Related terms

• Policy resources (p. 755)
• Resource ARNs (p. 714)
• Region names and codes

Error – Invalid service
In the AWS Management Console, the finding for this check includes the following message:

Invalid service: The service does not exist. Use a valid service name.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The service does not exist. Use a valid service name."

Resolving the error

598

https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://docs.aws.amazon.com/general/latest/gr/rande.html#region-names-codes

AWS Identity and Access Management User Guide
Policy check reference

The service prefix in the action or condition key must match the specifications (including capitalization)
for service prefixes. To view the prefix for a service, see Actions, resources, and condition keys for AWS
services. Choose the name of the service and locate its prefix in the first sentence.

Related terms

• Known services and their actions, resources, and condition keys

Error – Invalid service condition key
In the AWS Management Console, the finding for this check includes the following message:

Invalid service condition key: The condition key does not exist in the service. Use a valid
 condition key.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The condition key does not exist in the service. Use a valid condition
 key."

Resolving the error

Update the key in the condition key-value pair to use a known condition key for the service. Global
condition key names begin with the aws prefix. AWS services can provide service-specific keys that
include their service prefix. To view the prefix for a service, see Actions, resources, and condition keys for
AWS services.

Related terms

• Global condition keys (p. 812)
• Known services and their actions, resources, and condition keys

Error – Invalid service in action
In the AWS Management Console, the finding for this check includes the following message:

Invalid service in action: The service specified in the action does not exist. Did you
 mean ?

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The service specified in the action does not exist. Did you mean ?"

Resolving the error

The service prefix in the action must match the specifications (including capitalization) for service
prefixes. To view the prefix for a service, see Actions, resources, and condition keys for AWS services.
Choose the name of the service and locate its prefix in the first sentence.

Related terms

• Action element (p. 753)

599

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide
Policy check reference

• Known services and their actions

Error – Invalid service principal format
In the AWS Management Console, the finding for this check includes the following message:

Invalid service principal format: The service principal does not match the expected format.
 Use the format.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The service principal does not match the expected format. Use the
 format."

Resolving the error

The value in the condition key-value pair must match a defined service principal format.

A service principal is an identifier that is used to grant permissions to a service. You can specify a service
principal in the value for some global condition keys and service-specific keys. The service principal is
defined by each service.

The identifier for a service principal includes the service name, and is usually in the following format:

service-name.amazonaws.com

Some service-specific keys may use a different format for service principals. For example, the
kms:ViaService condition key requires the following format for service principals:

service-name.AWS_region.amazonaws.com

Related terms

• Service principals
• AWS global condition keys (p. 812)
• kms:ViaService condition key

Error – Invalid variable for operator
In the AWS Management Console, the finding for this check includes the following message:

Invalid variable for operator: Policy variables can only be used with String and ARN
 operators.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Policy variables can only be used with String and ARN operators."

Resolving the error

You can use policy variables in the Resource element and in string comparisons in
the Condition element. Conditions support variables when you use string operators or ARN

600

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html#principal-services
https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-kms-via-service

AWS Identity and Access Management User Guide
Policy check reference

operators. String operators include StringEquals, StringLike, and StringNotLike. ARN
operators include ArnEquals and ArnLike. You can't use a policy variable with other operators, such
as Numeric, Date, Boolean, Binary, IP Address, or Null operators.

Related terms

• Using policy variables in the Condition element (p. 779)
• Condition element (p. 758)

Error – Invalid version
In the AWS Management Console, the finding for this check includes the following message:

Invalid version: The version is not valid. Use one of the following versions:

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The version is not valid. Use one of the following versions:"

Resolving the error

The Version policy element specifies the language syntax rules that AWS uses to process a
policy. To use all of the available policy features, include the latest Version element before
the Statement element in all of your policies.

"Version": "2012-10-17"

Related terms

• Version element (p. 745)

Error – Json syntax error
In the AWS Management Console, the finding for this check includes the following message:

Json syntax error: Fix the JSON syntax error at index line column.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Fix the JSON syntax error at index line column."

Resolving the error

Your policy includes a syntax error. Check your JSON syntax.

Related terms

• JSON validator
• IAM JSON policy elements reference (p. 744)
• Overview of JSON policies (p. 386)

601

https://jsonlint.com/

AWS Identity and Access Management User Guide
Policy check reference

Error – Json syntax error
In the AWS Management Console, the finding for this check includes the following message:

Json syntax error: Fix the JSON syntax error.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Fix the JSON syntax error."

Resolving the error

Your policy includes a syntax error. Check your JSON syntax.

Related terms

• JSON validator
• IAM JSON policy elements reference (p. 744)
• Overview of JSON policies (p. 386)

Error – Missing action
In the AWS Management Console, the finding for this check includes the following message:

Missing action: Add an Action or NotAction element to the policy statement.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Add an Action or NotAction element to the policy statement."

Resolving the error

AWS JSON policies must include an Action or NotAction element.

Related terms

• Action element (p. 753)
• NotAction element (p. 754)
• Overview of JSON policies (p. 386)

Error – Missing ARN field
In the AWS Management Console, the finding for this check includes the following message:

Missing ARN field: Resource ARNs must include at least fields in the following structure:
 arn:partition:service:region:account:resource

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

602

https://jsonlint.com/

AWS Identity and Access Management User Guide
Policy check reference

"findingDetails": "Resource ARNs must include at least fields in the following structure:
 arn:partition:service:region:account:resource"

Resolving the error

All of the fields in the resource ARN must match the specifications for a known resource type. To view
the expected ARN format for a service, see Actions, resources, and condition keys for AWS services.
Choose the name of the service to view its resource types and ARN formats.

Related terms

• Policy resources (p. 755)

• Resource ARNs (p. 714)

• AWS service resources with ARN formats

Error – Missing ARN Region
In the AWS Management Console, the finding for this check includes the following message:

Missing ARN Region: Add a Region to the resource ARN.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Add a Region to the resource ARN."

Resolving the error

The resource ARNs for most AWS services require that you specify a Region. For a table of AWS services
supported in each Region, see the Region table.

Related terms

• Policy resources (p. 755)

• Resource ARNs (p. 714)

• Region names and codes

Error – Missing effect
In the AWS Management Console, the finding for this check includes the following message:

Missing effect: Add an Effect element to the policy statement with a value of Allow or
 Deny.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Add an Effect element to the policy statement with a value of Allow or
 Deny."

Resolving the error

603

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://docs.aws.amazon.com/general/latest/gr/rande.html#region-names-codes

AWS Identity and Access Management User Guide
Policy check reference

AWS JSON policies must include an Effect element with a value of Allow and Deny.

Related terms

• Effect element (p. 747)
• Overview of JSON policies (p. 386)

Error – Missing principal
In the AWS Management Console, the finding for this check includes the following message:

Missing principal: Add a Principal element to the policy statement.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Add a Principal element to the policy statement."

Resolving the error

Resource-based policies must include a Principal element.

For example, to define access for everyone in an AWS account, use the following principal in your policy:

"Principal": { "AWS": "123456789012" }

Related terms

• Principal element (p. 747)
• Identity-based policies and resource-based policies (p. 404)

Error – Missing qualifier
In the AWS Management Console, the finding for this check includes the following message:

Missing qualifier: The request context key has multiple values. Use the ForAllValues or
 ForAnyValue condition key qualifiers in your policy.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The request context key has multiple values. Use the ForAllValues or
 ForAnyValue condition key qualifiers in your policy."

Resolving the error

In the Condition element, you build expressions in which you use condition operators like equal or less
than to compare a condition in the policy against keys and values in the request context. For requests
that include multiple values for a single condition key, you must enclose the conditions within brackets
like an array ("Key2":["Value2A", "Value2B"]). You must also use the ForAllValues or ForAnyValue set
operators with the StringLike condition operator. These qualifiers add set-operation functionality to
the condition operator so that you can test multiple request values against multiple condition values.

604

AWS Identity and Access Management User Guide
Policy check reference

Related terms

• Using multiple condition keys and values (p. 770)
• Condition element (p. 758)

AWS managed policies with this error

AWS managed policies (p. 390) enable you to get started with AWS by assigning permissions based on
general AWS use cases.

The following AWS managed policies include a missing qualifier for condition keys in their policy
statements. When using the AWS managed policy as a reference to create your customer managed
policy, AWS recommends that you add the ForAllValues or ForAnyValue condition key qualifiers to
your Condition element.

• AWSGlueConsoleSageMakerNotebookFullAccess

Error – Missing resource
In the AWS Management Console, the finding for this check includes the following message:

Missing resource: Add a Resource or NotResource element to the policy statement.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Add a Resource or NotResource element to the policy statement."

Resolving the error

Identity-based policies must include a Resource or NotResource element.

Related terms

• Resource element (p. 755)
• NotResource element (p. 757)
• Identity-based policies and resource-based policies (p. 404)
• Overview of JSON policies (p. 386)

Error – Missing statement
In the AWS Management Console, the finding for this check includes the following message:

Missing statement: Add a statement to the policy

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Add a statement to the policy"

Resolving the error

605

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AWSGlueConsoleSageMakerNotebookFullAccess

AWS Identity and Access Management User Guide
Policy check reference

A JSON policy must include a statement.

Related terms

• JSON policy elements (p. 744)

Error – Missing tag key in condition
In the AWS Management Console, the finding for this check includes the following message:

Missing tag key in condition: The condition key must include a tag key to control access
 based on tags. Use the format tag-key and specify a key name for tag-key.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The condition key must include a tag key to control access based on
 tags. Use the format tag-key and specify a key name for tag-key."

Resolving the error

To control access based on tags, you provide tag information in the condition element (p. 758) of a
policy.

For example, to control access to AWS resources, you include the aws:ResourceTag condition key. This
key requires the format aws:ResourceTag/tag-key. To specify the tag key owner and the tag value
JaneDoe in a condition, use the following format.

"Condition": {
 "StringEquals": {"aws:ResourceTag/owner": "JaneDoe"}
}

Related terms

• Controlling access using tags (p. 414)
• Conditions (p. 758)
• Global condition keys (p. 812)
• AWS service condition keys

Error – Null with if exists
In the AWS Management Console, the finding for this check includes the following message:

Null with if exists: The Null condition operator cannot be used with the IfExists suffix.
 Update the operator or the suffix.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The Null condition operator cannot be used with the IfExists suffix.
 Update the operator or the suffix."

Resolving the error

606

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html#access_tags_control-resources
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide
Policy check reference

You can add IfExists to the end of any condition operator name except the Null condition operator.
Use a Null condition operator to check if a condition key is present at the time of authorization. Use
...ifExists to say "If the policy key is present in the context of the request, process the key as
specified in the policy. If the key is not present, evaluate the condition element as true."

Related terms

• ...IfExists condition operators (p. 767)
• Null condition operator (p. 768)
• Condition element (p. 758)

Error – SCP syntax error action wildcard
In the AWS Management Console, the finding for this check includes the following message:

SCP syntax error action wildcard: SCP actions can include wildcards (*) only at the end of
 a string. Update.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "SCP actions can include wildcards (*) only at the end of a string.
 Update."

Resolving the error

AWS Organizations service control policies (SCPs) support specifying values in the Action or
NotAction elements. However, these values can include wildcards (*) only at the end of the string. This
means that you can specify iam:Get* but not iam:*role.

To specify multiple actions, AWS recommends that you list them individually.

Related terms

• SCP Action and NotAction elements
• Strategies for using SCPs
• AWS Organizations service control policies
• IAM JSON policy elements: Action (p. 753)

Error – SCP syntax error allow condition
In the AWS Management Console, the finding for this check includes the following message:

SCP syntax error allow condition: SCPs do not support the Condition element with effect
 Allow. Update the element Condition or the effect.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "SCPs do not support the Condition element with effect Allow. Update the
 element Condition or the effect."

Resolving the error

607

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_syntax.html#scp-syntax-action
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_strategies.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html

AWS Identity and Access Management User Guide
Policy check reference

AWS Organizations service control policies (SCPs) support specifying values in the Condition element
only when you use "Effect": "Deny".

To allow only a single action, you can deny access to everything except the condition that you specify
using the ...NotEquals version of a condition operator. This negates the comparison made by the
operator.

Related terms

• SCP Condition element
• Strategies for using SCPs
• AWS Organizations service control policies
• Example policy: Denies access to AWS based on the requested Region (p. 432)
• IAM JSON policy elements: Condition operators (p. 760)
• IAM JSON policy elements: Condition (p. 758)

Error – SCP syntax error allow NotAction
In the AWS Management Console, the finding for this check includes the following message:

SCP syntax error allow NotAction: SCPs do not support NotAction with effect Allow. Update
 the element NotAction or the effect.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "SCPs do not support NotAction with effect Allow. Update the element
 NotAction or the effect."

Resolving the error

AWS Organizations service control policies (SCPs) do not support using the NotAction element with
"Effect": "Allow".

You must rewrite the logic to allow a list of actions, or to deny every action that is not listed.

Related terms

• SCP Action and NotAction elements
• Strategies for using SCPs
• AWS Organizations service control policies
• IAM JSON policy elements: Action (p. 753)

Error – SCP syntax error allow resource
In the AWS Management Console, the finding for this check includes the following message:

SCP syntax error allow resource: SCPs do not support Resource with effect Allow. Update the
 element Resource or the effect.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

608

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_syntax.html#scp-syntax-condition
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_strategies.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_syntax.html#scp-syntax-action
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_strategies.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html

AWS Identity and Access Management User Guide
Policy check reference

"findingDetails": "SCPs do not support Resource with effect Allow. Update the element
 Resource or the effect."

Resolving the error

AWS Organizations service control policies (SCPs) support specifying values in the Resource element
only when you use "Effect": "Deny".

You must rewrite the logic to allow all resources, or to deny every resource that is listed.

Related terms

• SCP Resource element
• Strategies for using SCPs
• AWS Organizations service control policies
• IAM JSON policy elements: Resource (p. 755)

Error – SCP syntax error NotResource
In the AWS Management Console, the finding for this check includes the following message:

SCP syntax error NotResource: SCPs do not support the NotResource element. Update the
 policy to use Resource instead.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "SCPs do not support the NotResource element. Update the policy to use
 Resource instead."

Resolving the error

AWS Organizations service control policies (SCPs) do not support the NotResource element.

You must rewrite the logic to allow all resources, or to deny every resource that is listed.

Related terms

• SCP Resource element
• Strategies for using SCPs
• AWS Organizations service control policies
• IAM JSON policy elements: Resource (p. 755)

Error – SCP syntax error principal
In the AWS Management Console, the finding for this check includes the following message:

SCP syntax error principal: SCPs do not support specifying principals. Remove the Principal
 or NotPrincipal element.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

609

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_syntax.html#scp-syntax-resource
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_strategies.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_syntax.html#scp-syntax-resource
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_strategies.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html

AWS Identity and Access Management User Guide
Policy check reference

"findingDetails": "SCPs do not support specifying principals. Remove the Principal or
 NotPrincipal element."

Resolving the error

AWS Organizations service control policies (SCPs) do not support the Principal or NotPrincipal
elements.

You can specify the Amazon Resource Name (ARN) using the aws:PrincipalArn global condition key
in the Condition element.

Related terms

• SCP syntax
• Global condition keys for principals (p. 817)

Error – Unique Sids required
In the AWS Management Console, the finding for this check includes the following message:

Unique Sids required: Duplicate statement IDs are not supported for this policy type.
 Update the Sid value.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Duplicate statement IDs are not supported for this policy type. Update
 the Sid value."

Resolving the error

For some policy types, statement IDs must be unique. The Sid (statement ID) element allows you to
enter an optional identifier that you provide for the policy statement. You can assign a statement ID
value to each statement in a statement array using the SID element. In services that let you specify an ID
element, such as SQS and SNS, the Sid value is just a sub-ID of the policy document's ID. For example, in
IAM, the Sid value must be unique within a JSON policy.

Related terms

• IAM JSON policy elements: Sid (p. 747)

Error – Unsupported element combination
In the AWS Management Console, the finding for this check includes the following message:

Unsupported element combination: The policy elements and can not be used in the same
 statement. Remove one of these elements.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The policy elements and can not be used in the same statement. Remove
 one of these elements."

610

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_syntax.html

AWS Identity and Access Management User Guide
Policy check reference

Resolving the error

Some combinations of JSON policy elements can't be used together. For example, you cannot use both
Action and NotAction in the same policy statement. Other pairs that are mutually exclusive include
Principal/NotPrincipal and Resource/NotResource.

Related terms

• IAM JSON policy elements reference (p. 744)
• Overview of JSON policies (p. 386)

Error – Unsupported global condition key
In the AWS Management Console, the finding for this check includes the following message:

Unsupported global condition key: The condition key aws:ARN is not supported. Use
 aws:PrincipalArn or aws:SourceArn instead.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The condition key aws:ARN is not supported. Use aws:PrincipalArn or
 aws:SourceArn instead."

Resolving the error

AWS does not support using the specified global condition key. Depending on your use case, you can use
the aws:PrincipalArn or aws:SourceArn global condition keys. For example, instead of aws:ARN,
use the aws:PrincipalArn to compare the Amazon Resource Name (ARN) of the principal that made
the request with the ARN that you specify in the policy. Alternatively, use the aws:SourceArn global
condition key to compare the Amazon Resource Name (ARN) of the resource making a service-to-service
request with the ARN that you specify in the policy.

Related terms

• AWS global condition context keys (p. 812)

Error – Unsupported principal
In the AWS Management Console, the finding for this check includes the following message:

Unsupported principal: The policy type does not support the Principal element. Remove the
 Principal element.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The policy type does not support the Principal element. Remove the
 Principal element."

Resolving the error

The Principal element specifies the principal that is allowed or denied access to a resource. You
cannot use the Principal element in an IAM identity-based policy. You can use it in the trust policies

611

AWS Identity and Access Management User Guide
Policy check reference

for IAM roles and in resource-based policies. Resource-based policies are policies that you embed directly
in a resource. For example, you can embed policies in an Amazon S3 bucket or an AWS KMS key.

Related terms

• AWS JSON policy elements: Principal (p. 747)
• How IAM roles differ from resource-based policies (p. 293)

Error – Unsupported Sid
In the AWS Management Console, the finding for this check includes the following message:

Unsupported Sid: Update the characters in the Sid element to use one of the following
 character types: [a-z, A-Z, 0-9]

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Update the characters in the Sid element to use one of the following
 character types: [a-z, A-Z, 0-9]"

Resolving the error

The Sid element supports uppercase letters, lowercase letters, and numbers.

Related terms

• IAM JSON policy elements: Sid (p. 747)

Error – Unsupported wildcard in principal
In the AWS Management Console, the finding for this check includes the following message:

Unsupported wildcard in principal: Wildcards (*, ?) are not supported with the principal
 key. Replace the wildcard with a valid principal value.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Wildcards (*, ?) are not supported with the principal key. Replace the
 wildcard with a valid principal value."

Resolving the error

The Principal element structure supports using a key-value pair. The principal value specified in the
policy includes a wildcard (*). You can't include a wildcard with the principal key that you specified. For
example, when you specify users in a Principal element, you cannot use a wildcard to mean "all users".
You must name a specific user or users. Similarly, when you specify an assumed-role session, you cannot
use a wildcard to mean "all sessions". You must name a specific session. You also cannot use a wildcard to
match part of a name or an ARN.

To resolve this finding, remove the wildcard and provide a more specific principal.

Related terms

612

AWS Identity and Access Management User Guide
Policy check reference

• AWS JSON policy elements: Principal (p. 747)

Error – Missing brace in variable
In the AWS Management Console, the finding for this check includes the following message:

Missing brace in variable: The policy variable is missing a closing curly brace. Add }
 after the variable text.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The policy variable is missing a closing curly brace. Add } after the
 variable text."

Resolving the error

Policy variable structure supports using a $ prefix followed by a pair of curly braces ({ }). Inside the
${ } characters, include the name of the value from the request that you want to use in the policy.

To resolve this finding, add the missing brace to make sure the full opening and closing set of braces is
present.

Related terms

• IAM policy elements: Variables (p. 776)

Error – Unsupported symbol in variable
In the AWS Management Console, the finding for this check includes the following message:

Unsupported symbol in variable: The symbol is not supported within the policy variable
 text. Remove the symbol.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The symbol is not supported within the policy variable text. Remove the
 symbol."

Resolving the error

Policy variable structure supports using a $ prefix followed by a pair of curly braces ({ }). Inside the
${ } characters, include the name of the value from the request that you want to use in the policy.

To resolve this finding, remove the unsupported symbol.

Related terms

• IAM policy elements: Variables (p. 776)

Error – Unsupported symbol in variable
In the AWS Management Console, the finding for this check includes the following message:

613

AWS Identity and Access Management User Guide
Policy check reference

Unsupported symbol in variable: The symbol is not supported within the policy variable. Use
 instead.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The symbol is not supported within the policy variable. Use instead."

Resolving the error

Policy variable structure supports using a $ prefix followed by a pair of curly braces ({ }). Inside the
${ } characters, include the name of the value from the request that you want to use in the policy.

To resolve this finding, remove the unsupported symbol.

Related terms

• IAM policy elements: Variables (p. 776)

Error – Missing quote in variable
In the AWS Management Console, the finding for this check includes the following message:

Missing quote in variable: The policy variable default value must begin and end with a
 single quote. Add the missing quote.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The policy variable default value must begin and end with a single
 quote. Add the missing quote."

Resolving the error

When you add a variable to your policy, you can specify a default value for the variable. For example,
anonymous users won't populate the ${aws:userid} variable. You can set the default to "anonymous"
for those users. To add a default to a variable, surround the default value with single quotes (' '), and
separate the variable text and the default value with a comma and space (,).

Condition: StringEquals: "aws:Resource": "arn:aws:s3:::/bucket/${aws:userid, 'anonymous'}"

Related terms

• IAM policy elements: Variables (p. 776)

Error – Unsupported space in variable
In the AWS Management Console, the finding for this check includes the following message:

Unsupported space in variable: A space is not supported within the policy variable text.
 Remove the space.

614

AWS Identity and Access Management User Guide
Policy check reference

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "A space is not supported within the policy variable text. Remove the
 space."

Resolving the error

Policy variable structure supports using a $ prefix followed by a pair of curly braces ({ }). Inside the
${ } characters, include the name of the value from the request that you want to use in the policy.
Although you can include a space when you specify a default variable, you cannot include a space in the
variable name.

Related terms

• IAM policy elements: Variables (p. 776)

Error – Empty variable
In the AWS Management Console, the finding for this check includes the following message:

Empty variable: Empty policy variable. Remove the variable structure or provide a variable
 within the structure.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Empty policy variable. Remove the variable structure or provide a
 variable within the structure."

Resolving the error

Policy variable structure supports using a $ prefix followed by a pair of curly braces ({ }). Inside the
${ } characters, include the name of the value from the request that you want to use in the policy.

Related terms

• IAM policy elements: Variables (p. 776)

Error – Variable unsupported in element
In the AWS Management Console, the finding for this check includes the following message:

Variable unsupported in element: Policy variables are supported in the Resource and
 Condition elements. Remove the policy variable from this element.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Policy variables are supported in the Resource and Condition elements.
 Remove the policy variable from this element."

Resolving the error

615

AWS Identity and Access Management User Guide
Policy check reference

You can use policy variables in the Resource element and in string comparisons in the Condition
element.

Related terms

• IAM policy elements: Variables (p. 776)

Error – Variable unsupported in version
In the AWS Management Console, the finding for this check includes the following message:

Variable unsupported in version: To include variables in your policy, use the policy
 version 2012-10-17 or later.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "To include variables in your policy, use the policy version 2012-10-17
 or later."

Resolving the error

To use policy variables, you must include the Version element and set it to a version that supports
policy variables. Variables were introduced in version 2012-10-17. Earlier versions of the policy
language don't support policy variables. If you don't set the Version to 2012-10-17 or later, variables
like ${aws:username} are treated as literal strings in the policy.

A Version policy element is different from a policy version. The Version policy element is used within
a policy and defines the version of the policy language. A policy version, is created when you change a
customer managed policy in IAM. The changed policy doesn't overwrite the existing policy. Instead, IAM
creates a new version of the managed policy.

Related terms

• IAM policy elements: Variables (p. 776)

• IAM JSON policy elements: Version (p. 745)

Error – Private IP address
In the AWS Management Console, the finding for this check includes the following message:

Private IP address: aws:SourceIp works only for public IP address ranges. The values for
 condition key aws:SourceIp include only private IP addresses and will not have the desired
 effect. Update the value to include only public IP addresses.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "aws:SourceIp works only for public IP address ranges. The values for
 condition key aws:SourceIp include only private IP addresses and will not have the desired
 effect. Update the value to include only public IP addresses."

Resolving the error

616

AWS Identity and Access Management User Guide
Policy check reference

The global condition key aws:SourceIp works only for public IP address ranges. You receive this error
when your policy allows only private IP addresses. In this case, the condition would never match.

• aws:SourceIp global condition key (p. 826)
• IAM JSON policy elements: Condition (p. 758)

Error – Private NotIpAddress
In the AWS Management Console, the finding for this check includes the following message:

Private NotIpAddress: The values for condition key aws:SourceIp include only private IP
 addresses and has no effect. aws:SourceIp works only for public IP address ranges. Update
 the value to include only public IP addresses.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The values for condition key aws:SourceIp include only private IP
 addresses and has no effect. aws:SourceIp works only for public IP address ranges. Update
 the value to include only public IP addresses."

Resolving the error

The global condition key aws:SourceIp works only for public IP address ranges. You receive this error
when you use the NotIpAddress condition operator and list only private IP addresses. In this case, the
condition would always match and would be ineffective.

• aws:SourceIp global condition key (p. 826)
• IAM JSON policy elements: Condition (p. 758)

Error – Policy size exceeds SCP quota
In the AWS Management Console, the finding for this check includes the following message:

Policy size exceeds SCP quota: The characters in the service control policy (SCP) exceed
 the character maximum for SCPs. We recommend that you use multiple granular policies.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The characters in the service control policy (SCP) exceed the character
 maximum for SCPs. We recommend that you use multiple granular policies."

Resolving the error

AWS Organizations service control policies (SCPs) support specifying values in the Action or
NotAction elements. However, these values can include wildcards (*) only at the end of the string. This
means that you can specify iam:Get* but not iam:*role.

To specify multiple actions, AWS recommends that you list them individually.

Related terms

• Quotas for AWS Organizations
• AWS Organizations service control policies

617

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_reference_limits.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html

AWS Identity and Access Management User Guide
Policy check reference

General Warning – Create SLR with NotResource
In the AWS Management Console, the finding for this check includes the following message:

Create SLR with NotResource: Using the iam:CreateServiceLinkedRole action with NotResource
 can allow creation of unintended service-linked roles for multiple resources. We recommend
 that you specify resource ARNs instead.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using the iam:CreateServiceLinkedRole action with NotResource can allow
 creation of unintended service-linked roles for multiple resources. We recommend that you
 specify resource ARNs instead."

Resolving the general warning

The action iam:CreateServiceLinkedRole grants permission to create an IAM role that allows
an AWS service to perform actions on your behalf. Using iam:CreateServiceLinkedRole in a
policy with the NotResource element can allow creating unintended service-linked roles for multiple
resources. AWS recommends that you specify allowed ARNs in the Resource element instead.

• CreateServiceLinkedRole operation
• IAM JSON policy elements: NotResource (p. 757)
• IAM JSON policy elements: Resource (p. 755)

General Warning – Create SLR with star in action and
NotResource
In the AWS Management Console, the finding for this check includes the following message:

Create SLR with star in action and NotResource: Using an action with a wildcard(*) and
 NotResource can allow creation of unintended service-linked roles because it can allow
 iam:CreateServiceLinkedRole permissions on multiple resources. We recommend that you
 specify resource ARNs instead.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using an action with a wildcard(*) and NotResource can allow creation
 of unintended service-linked roles because it can allow iam:CreateServiceLinkedRole
 permissions on multiple resources. We recommend that you specify resource ARNs instead."

Resolving the general warning

The action iam:CreateServiceLinkedRole grants permission to create an IAM role that allows
an AWS service to perform actions on your behalf. Policies with a wildcard (*) in the Action and that
include the NotResource element can allow creation of unintended service-linked roles for multiple
resources. AWS recommends that you specify allowed ARNs in the Resource element instead.

• CreateServiceLinkedRole operation
• IAM JSON policy elements: NotResource (p. 757)
• IAM JSON policy elements: Resource (p. 755)

618

https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateServiceLinkedRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateServiceLinkedRole.html

AWS Identity and Access Management User Guide
Policy check reference

General Warning – Create SLR with NotAction and NotResource
In the AWS Management Console, the finding for this check includes the following message:

Create SLR with NotAction and NotResource: Using NotAction with NotResource can allow
 creation of unintended service-linked roles because it allows iam:CreateServiceLinkedRole
 permissions on multiple resources. We recommend that you specify resource ARNs instead.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using NotAction with NotResource can allow creation of unintended
 service-linked roles because it allows iam:CreateServiceLinkedRole permissions on multiple
 resources. We recommend that you specify resource ARNs instead."

Resolving the general warning

The action iam:CreateServiceLinkedRole grants permission to create an IAM role that allows an
AWS service to perform actions on your behalf. Using the NotAction element with the NotResource
element can allow creating unintended service-linked roles for multiple resources. AWS recommends
that you rewrite the policy to allow iam:CreateServiceLinkedRole on a limited list of ARNs in the
Resource element instead. You can also add iam:CreateServiceLinkedRole to the NotAction
element.

• CreateServiceLinkedRole operation
• IAM JSON policy elements: NotAction (p. 754)
• IAM JSON policy elements: Action (p. 753)
• IAM JSON policy elements: NotResource (p. 757)
• IAM JSON policy elements: Resource (p. 755)

General Warning – Create SLR with star in resource
In the AWS Management Console, the finding for this check includes the following message:

Create SLR with star in resource: Using the iam:CreateServiceLinkedRole action with
 wildcards (*) in the resource can allow creation of unintended service-linked roles. We
 recommend that you specify resource ARNs instead.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using the iam:CreateServiceLinkedRole action with wildcards (*) in the
 resource can allow creation of unintended service-linked roles. We recommend that you
 specify resource ARNs instead."

Resolving the general warning

The action iam:CreateServiceLinkedRole grants permission to create an IAM role that allows an
AWS service to perform actions on your behalf. Using iam:CreateServiceLinkedRole in a policy
with a wildcard (*) in the Resource element can allow creating unintended service-linked roles for
multiple resources. AWS recommends that you specify allowed ARNs in the Resource element instead.

• CreateServiceLinkedRole operation
• IAM JSON policy elements: Resource (p. 755)

619

https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateServiceLinkedRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateServiceLinkedRole.html

AWS Identity and Access Management User Guide
Policy check reference

AWS managed policies with this general warning

AWS managed policies (p. 390) enable you to get started with AWS by assigning permissions based on
general AWS use cases.

Some of those use cases are for power users within your account. The following AWS managed policies
provide power user access and grant permissions to create service-linked roles (p. 219) for any AWS
service. AWS recommends that you attach the following AWS managed policies to only IAM identities
that you consider power users.

• PowerUserAccess
• AlexaForBusinessFullAccess
• AWSOrganizationsServiceTrustPolicy – This AWS managed policy provides permissions for use by the

AWS Organizations service-linked role. This role allows Organizations to create additional service-
linked roles for other services in your AWS organization.

General Warning – Create SLR with star in action and resource
In the AWS Management Console, the finding for this check includes the following message:

Create SLR with star in action and resource: Using wildcards (*) in the action and
 the resource can allow creation of unintended service-linked roles because it allows
 iam:CreateServiceLinkedRole permissions on all resources. We recommend that you specify
 resource ARNs instead.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using wildcards (*) in the action and the resource can allow creation of
 unintended service-linked roles because it allows iam:CreateServiceLinkedRole permissions
 on all resources. We recommend that you specify resource ARNs instead."

Resolving the general warning

The action iam:CreateServiceLinkedRole grants permission to create an IAM role that allows
an AWS service to perform actions on your behalf. Policies with a wildcard (*) in the Action and
Resource elements can allow creating unintended service-linked roles for multiple resources. This
allows creating a service-linked role when you specify "Action": "*", "Action": "iam:*", or
"Action": "iam:Create*". AWS recommends that you specify allowed ARNs in the Resource
element instead.

• CreateServiceLinkedRole operation
• IAM JSON policy elements: Action (p. 753)
• IAM JSON policy elements: Resource (p. 755)

AWS managed policies with this general warning

AWS managed policies (p. 390) enable you to get started with AWS by assigning permissions based on
general AWS use cases.

Some of those use cases are for administrators within your account. The following AWS managed policies
provide administrator access and grant permissions to create service-linked roles (p. 219) for any AWS
service. AWS recommends that you attach the following AWS managed policies to only the IAM identities
that you consider administrators.

620

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/PowerUserAccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AlexaForBusinessFullAccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AWSOrganizationsServiceTrustPolicy
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateServiceLinkedRole.html

AWS Identity and Access Management User Guide
Policy check reference

• AdministratorAccess
• IAMFullAccess

General Warning – Create SLR with star in resource and
NotAction
In the AWS Management Console, the finding for this check includes the following message:

Create SLR with star in resource and NotAction: Using a resource with wildcards (*)
 and NotAction can allow creation of unintended service-linked roles because it allows
 iam:CreateServiceLinkedRole permissions on all resources. We recommend that you specify
 resource ARNs instead.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using a resource with wildcards (*) and NotAction can allow creation of
 unintended service-linked roles because it allows iam:CreateServiceLinkedRole permissions
 on all resources. We recommend that you specify resource ARNs instead."

Resolving the general warning

The action iam:CreateServiceLinkedRole grants permission to create an IAM role that allows an
AWS service to perform actions on your behalf. Using the NotAction element in a policy with a wildcard
(*) in the Resource element can allow creating unintended service-linked roles for multiple resources.
AWS recommends that you specify allowed ARNs in the Resource element instead. You can also add
iam:CreateServiceLinkedRole to the NotAction element.

• CreateServiceLinkedRole operation
• IAM JSON policy elements: NotAction (p. 754)
• IAM JSON policy elements: Action (p. 753)
• IAM JSON policy elements: Resource (p. 755)

General Warning – Deprecated global condition key
In the AWS Management Console, the finding for this check includes the following message:

Deprecated global condition key: We recommend that you update aws:ARN to use the newer
 condition keys aws:PrincipalArn or aws:SourceArn.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "We recommend that you update aws:ARN to use the newer condition keys
 aws:PrincipalArn or aws:SourceArn."

Resolving the general warning

The policy includes a deprecated global condition key. Update the condition key in the condition key-
value pair to use a supported global condition key.

• Global condition keys (p. 812)

621

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AdministratorAccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/IAMFullAccess
https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateServiceLinkedRole.html

AWS Identity and Access Management User Guide
Policy check reference

General Warning – Invalid date value
In the AWS Management Console, the finding for this check includes the following message:

Invalid date value: The date might not resolve as expected. We recommend that you use the
 YYYY-MM-DD format.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The date might not resolve as expected. We recommend that you use the
 YYYY-MM-DD format."

Resolving the general warning

Unix Epoch time describes a point in time that has elapsed since January 1, 1970, minus leap seconds.
Epoch time might not resolve to the precise time that you expect. AWS recommends that you use
the W3C standard for date and time formats. For example, you could specify a complete date, such
as YYYY-MM-DD (1997-07-16), or you could also append the time to the second, such as YYYY-MM-
DDThh:mm:ssTZD (1997-07-16T19:20:30+01:00).

• W3C Date and Time Formats
• IAM JSON policy elements: Version (p. 745)
• aws:CurrentTime global condition key (p. 815)

General Warning – Invalid role reference
In the AWS Management Console, the finding for this check includes the following message:

Invalid role reference: The Principal element includes the IAM role ID. We recommend that
 you use a role ARN instead.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The Principal element includes the IAM role ID. We recommend that you
 use a role ARN instead."

Resolving the general warning

AWS recommends that you specify the Amazon Resource Name (ARN) for an IAM role instead of its
principal ID. When IAM saves the policy, it will transform the ARN into the principal ID for the existing
role. AWS includes a safety precaution. If someone deletes and recreates the role, it will have a new ID,
and the policy won't match the new role's ID.

• Specifying a principal: IAM roles (p. 750)
• IAM ARNs (p. 714)
• IAM unique IDs (p. 718)

General Warning – Invalid user reference
In the AWS Management Console, the finding for this check includes the following message:

622

https://www.w3.org/TR/NOTE-datetime

AWS Identity and Access Management User Guide
Policy check reference

Invalid user reference: The Principal element includes the IAM user ID. We recommend that
 you use a user ARN instead.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The Principal element includes the IAM user ID. We recommend that you
 use a user ARN instead."

Resolving the general warning

AWS recommends that you specify the Amazon Resource Name (ARN) for an IAM user instead of its
principal ID. When IAM saves the policy, it will transform the ARN into the principal ID for the existing
user. AWS includes a safety precaution. If someone deletes and recreates the user, it will have a new ID,
and the policy won't match the new user's ID.

• Specifying a principal: IAM users (p. 749)

• IAM ARNs (p. 714)

• IAM unique IDs (p. 718)

General Warning – Missing version
In the AWS Management Console, the finding for this check includes the following message:

Missing version: We recommend that you specify the Version element to help you with
 debugging permission issues.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "We recommend that you specify the Version element to help you with
 debugging permission issues."

Resolving the general warning

AWS recommends that you include the optional Version parameter in your policy. If you do not include
a Version element, the value defaults to 2012-10-17, but newer features, such as policy variables,
will not work with your policy. For example, variables such as ${aws:username} aren't recognized as
variables and are instead treated as literal strings in the policy.

• IAM JSON policy elements: Version (p. 745)

General Warning – Unique Sids recommended
In the AWS Management Console, the finding for this check includes the following message:

Unique Sids recommended: We recommend that you use statement IDs that are unique to your
 policy. Update the Sid value.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

623

AWS Identity and Access Management User Guide
Policy check reference

"findingDetails": "We recommend that you use statement IDs that are unique to your policy.
 Update the Sid value."

Resolving the general warning

AWS recommends that you use unique statement IDs. The Sid (statement ID) element allows you to
enter an optional identifier that you provide for the policy statement. You can assign a statement ID
value to each statement in a statement array using the SID element.

Related terms

• IAM JSON policy elements: Sid (p. 747)

General Warning – Wildcard without like operator
In the AWS Management Console, the finding for this check includes the following message:

Wildcard without like operator: Your condition value includes a * or ? character. If you
 meant to use a wildcard (*, ?), update the condition operator to include Like.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Your condition value includes a * or ? character. If you meant to use a
 wildcard (*, ?), update the condition operator to include Like."

Resolving the general warning

The Condition element structure requires that you use a condition operator and a key-value pair. When
you specify a condition value that uses a wildcard (*, ?), you must use the Like version of the condition
operator. For example, instead of the StringEquals string condition operator, use StringLike.

"Condition": {"StringLike": {"aws:PrincipalTag/job-category": "admin-*"}}

• IAM JSON policy elements: Condition operators (p. 760)
• IAM JSON policy elements: Condition (p. 758)

AWS managed policies with this general warning

AWS managed policies (p. 390) enable you to get started with AWS by assigning permissions based on
general AWS use cases.

The following AWS managed policies include wildcards in their condition value without a condition
operator that includes Like for pattern-matching. When using the AWS managed policy as a reference
to create your customer managed policy, AWS recommends that you use a condition operator that
supports pattern-matching with wildcards (*, ?), such as StringLike.

• AWSGlueConsoleSageMakerNotebookFullAccess

General Warning – Policy size exceeds identity policy quota
In the AWS Management Console, the finding for this check includes the following message:

624

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AWSGlueConsoleSageMakerNotebookFullAccess

AWS Identity and Access Management User Guide
Policy check reference

Policy size exceeds identity policy quota: The characters in the identity policy, excluding
 whitespace, exceed the character maximum for inline and managed policies. We recommend
 that you use multiple granular policies.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The characters in the identity policy, excluding whitespace, exceed the
 character maximum for inline and managed policies. We recommend that you use multiple
 granular policies."

Resolving the general warning

You can attach up to 10 managed policies to an IAM identity (user, group of users, or role). However, the
size of each managed policy cannot exceed the default quota of 6,144 characters. IAM does not count
white space when calculating the size of a policy against this quota. Quotas, also referred to as limits in
AWS, are the maximum values for the resources, actions, and items in your AWS account.

Additionally, you can add as many inline policies as you want to an IAM identity. However, the sum size of
all inline policies per identity cannot exceed the specified quota.

If your policy is larger than the quota, you can organize your policy into multiple statements and group
the statements into multiple policies.

Related terms

• IAM and AWS STS character quotas (p. 719)
• Multiple statements and multiple policies (p. 388)
• IAM customer managed policies (p. 391)
• Overview of JSON policies (p. 386)
• IAM JSON policy grammar (p. 797)

AWS managed policies with this general warning

AWS managed policies (p. 390) enable you to get started with AWS by assigning permissions based on
general AWS use cases.

The following AWS managed policies grant permissions to actions across many AWS services and exceed
the maximum policy size. When using the AWS managed policy as a reference to create your managed
policy, you must split the policy into multiple policies.

• ReadOnlyAccess
• AWSSupportServiceRolePolicy

General Warning – Type mismatch
In the AWS Management Console, the finding for this check includes the following message:

Type mismatch: Use the operator type instead of operator for the condition key.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Use the operator type instead of operator for the condition key."

625

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/ReadOnlyAccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AWSSupportServiceRolePolicy

AWS Identity and Access Management User Guide
Policy check reference

Resolving the general warning

Update the text to use the supported condition operator data type.

For example, the aws:MultiFactorAuthPresent global condition key requires a condition operator
with the Boolean data type. If you provide a date or an integer, the data type won't match.

Related terms

• Global condition keys (p. 812)

• IAM JSON policy elements: Condition operators (p. 760)

General Warning – Type mismatch Boolean
In the AWS Management Console, the finding for this check includes the following message:

Type mismatch Boolean: Add a valid Boolean value (true or false) for the condition
 operator.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Add a valid Boolean value (true or false) for the condition operator."

Resolving the general warning

Update the text to use a Boolean condition operator data type, such as true or false.

For example, the aws:MultiFactorAuthPresent global condition key requires a condition operator
with the Boolean data type. If you provide a date or an integer, the data type won't match.

Related terms

• Boolean condition operators (p. 764)

• IAM JSON policy elements: Condition operators (p. 760)

General Warning – Type mismatch date
In the AWS Management Console, the finding for this check includes the following message:

Type mismatch date: The date condition operator is used with an invalid value. Specify a
 valid date using YYYY-MM-DD or other ISO 8601 date/time format.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The date condition operator is used with an invalid value. Specify a
 valid date using YYYY-MM-DD or other ISO 8601 date/time format."

Resolving the general warning

Update the text to use the date condition operator data type, in a YYYY-MM-DD or other ISO 8601 date
time format.

626

AWS Identity and Access Management User Guide
Policy check reference

Related terms

• Date condition operators (p. 763)
• IAM JSON policy elements: Condition operators (p. 760)

General Warning – Type mismatch IP range
In the AWS Management Console, the finding for this check includes the following message:

Type mismatch IP range: The condition operator is used with an invalid IP range value.
 Specify the IP range in standard CIDR format.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The condition operator is used with an invalid IP range value. Specify
 the IP range in standard CIDR format."

Resolving the general warning

Update the text to use the IP address condition operator data type, in a CIDR format.

Related terms

• IP address condition operators (p. 765)
• IAM JSON policy elements: Condition operators (p. 760)

General Warning – Type mismatch number
In the AWS Management Console, the finding for this check includes the following message:

Type mismatch number: Add a valid numeric value for the condition operator.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Add a valid numeric value for the condition operator."

Resolving the general warning

Update the text to use the numeric condition operator data type.

Related terms

• Numeric condition operators (p. 763)
• IAM JSON policy elements: Condition operators (p. 760)

General Warning – Type mismatch string
In the AWS Management Console, the finding for this check includes the following message:

Type mismatch string: Add a valid base64-encoded string value for the condition operator.

627

AWS Identity and Access Management User Guide
Policy check reference

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Add a valid base64-encoded string value for the condition operator."

Resolving the general warning

Update the text to use the string condition operator data type.

Related terms

• String condition operators (p. 761)

• IAM JSON policy elements: Condition operators (p. 760)

Security Warning – Allow with NotPrincipal
In the AWS Management Console, the finding for this check includes the following message:

Allow with NotPrincipal: Using Allow with NotPrincipal can be overly permissive. We
 recommend that you use Principal instead.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using Allow with NotPrincipal can be overly permissive. We recommend
 that you use Principal instead."

Resolving the security warning

Using "Effect": "Allow" with the NotPrincipal can be overly permissive. For example, this can
grant permissions to anonymous principals. AWS recommends that you specify principals that need
access using the Principal element. Alternatively, you can allow broad access and then add another
statement that uses the NotPrincipal element with “Effect”: “Deny”.

• AWS JSON policy elements: Principal (p. 747)

• AWS JSON policy elements: NotPrincipal (p. 751)

Security Warning – Deny NotAction with unsupported tag
condition key for service
In the AWS Management Console, the finding for this check includes the following message:

Deny NotAction with unsupported tag condition key for service: Using the effect Deny with
 NotAction and the tag condition key can be overly permissive because some service actions
 are not denied by this statement. This is because the condition key doesn't apply to some
 service actions. We recommend that you use Action instead of NotAction.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using the effect Deny with NotAction and the tag condition key can be
 overly permissive because some service actions are not denied by this statement. This is

628

AWS Identity and Access Management User Guide
Policy check reference

 because the condition key doesn't apply to some service actions. We recommend that you use
 Action instead of NotAction."

Resolving the security warning

Using tag condition keys in the Condition element of a policy with the element NotAction and
"Effect": "Deny" can be overly permissive. The condition is ignored for service actions that don’t
support the condition key. AWS recommends that you rewrite the logic to deny a list of actions.

If you use the aws:ResourceTag condition key with NotAction, any new or existing service actions
that don’t support the key are not denied. AWS recommends that you explicitly list the actions that you
want to deny. IAM Access Analyzer returns a separate finding for listed actions that don’t support the
aws:ResourceTag condition key. For more information, see Security Warning – Deny with unsupported
tag condition key for service (p. 629).

When a service supports the aws:ResourceTag condition key, you can use tags to control access to
that service’s resources. This is known as attribute-based access control (ABAC) (p. 12). Services that
don’t support these keys require you to control access to resources using resource-based access control
(RBAC) (p. 12).

Related terms

• Global condition keys (p. 812)
• Comparing ABAC to RBAC (p. 12)
• IAM JSON policy elements: Condition operators (p. 760)
• Condition element (p. 758)
• Overview of JSON policies (p. 386)

Security Warning – Deny with unsupported tag condition key for
service
In the AWS Management Console, the finding for this check includes the following message:

Deny with unsupported tag condition key for service: Using the effect Deny with the
 tag condition key and actions for services with the following prefixes can be overly
 permissive:. Actions for the listed services are not denied by this statement. We
 recommend that you move these actions to a different statement without this condition key.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using the effect Deny with the tag condition key and actions for
 services with the following prefixes can be overly permissive:. Actions for the listed
 services are not denied by this statement. We recommend that you move these actions to a
 different statement without this condition key."

Resolving the security warning

Using unsupported tag condition keys in the Condition element of a policy with "Effect": "Deny"
can be overly permissive, because the condition is ignored for that service. AWS recommends that you
remove the service actions that don’t support the condition key and create another statement to deny
access to specific resources for those actions.

If you use the aws:ResourceTag condition key and it’s not supported by a service action, then the key
is not included in the request context. In this case, the condition in the Deny statement always returns
false and the action is never denied. This happens even if the resource is tagged correctly.

629

AWS Identity and Access Management User Guide
Policy check reference

When a service supports the aws:ResourceTag condition key, you can use tags to control access to
that service’s resources. This is known as attribute-based access control (ABAC) (p. 12). Services that
don’t support these keys require you to control access to resources using resource-based access control
(RBAC) (p. 12).

Note
Some services allow support for the aws:ResourceTag condition key for a subset of their
resources and actions. IAM Access Analyzer returns findings for the service actions that are not
supported. For example, Amazon S3 supports aws:ResourceTag for a subset of its resources.
To view all of the resource types available in Amazon S3 that support the aws:ResourceTag
condition key, see Resource types defined by Amazon S3 in the Service Authorization Reference.

For example, assume that you want to deny access to untag delete specific resources that are tagged
with the key-value pair status=Confidential. Also assume that AWS Lambda allows you to tag and
untag resources, but doesn’t support the aws:ResourceTag condition key. To deny the delete actions
for AWS App Mesh and AWS Backup if this tag is present, use the aws:ResourceTag condition key. For
Lambda, use a resource naming convention that includes the "Confidential" prefix. Then include a
separate statement that prevents deleting resources with that naming convention.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "DenyDeleteSupported",
 "Effect": "Deny",
 "Action": [
 "appmesh:DeleteMesh",
 "backup:DeleteBackupPlan"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/status": "Confidential"
 }
 }
 },
 {
 "Sid": "DenyDeleteUnsupported",
 "Effect": "Deny",
 "Action": "lambda:DeleteFunction",
 "Resource": "arn:aws:lambda:*:403299380220:function:Confidential*"
 }
]
}

Warning
Do not use the …IfExists (p. 767) version of the condition operator as a workaround for
this finding. This means "Deny the action if the key is present in the request context and
the values match. Otherwise, deny the action." In the previous example, including the
lambda:DeleteFunction action in the DenyDeleteSupported statement with the
StringEqualsIfExists operator always denies the action. For that action, the key is not
present in the context, and every attempt to delete that resource type is denied, regardless of
whether the resource is tagged.

Related terms

• Global condition keys (p. 812)
• Comparing ABAC to RBAC (p. 12)
• IAM JSON policy elements: Condition operators (p. 760)
• Condition element (p. 758)

630

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazons3.html#amazons3-resources-for-iam-policies

AWS Identity and Access Management User Guide
Policy check reference

• Overview of JSON policies (p. 386)

Security Warning – ForAllValues with single valued key
In the AWS Management Console, the finding for this check includes the following message:

ForAllValues with single valued key: Using ForAllValues qualifier with the single-valued
 condition key can be overly permissive. We recommend that you remove ForAllValues:.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using ForAllValues qualifier with the single-valued condition key can be
 overly permissive. We recommend that you remove ForAllValues:."

Resolving the security warning

AWS recommends that you use the ForAllValues only with multivalued conditions. The
ForAllValues set operator tests whether the value of every member of the request set is a subset of
the condition key set. The condition returns true if every key value in the request matches at least one
value in the policy. It also returns true if there are no keys in the request, or if the key values resolve to a
null data set, such as an empty string.

• Using multiple keys and values (p. 770)

Security Warning – Missing paired condition keys
In the AWS Management Console, the finding for this check includes the following message:

Missing paired condition keys: Using the condition key can be overly permissive without
 also using the following condition keys:. Condition keys like this one are more secure
 when paired with a related key. We recommend that you add the related condition keys to
 the same condition block.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using the condition key can be overly permissive without also using the
 following condition keys:. Condition keys like this one are more secure when paired with
 a related key. We recommend that you add the related condition keys to the same condition
 block."

Resolving the security warning

Some condition keys are more secure when paired with other related condition keys. AWS recommends
that you include the related condition keys in the same condition block as the existing condition key. This
makes the permissions granted through the policy more secure.

For example, you can use the aws:VpcSourceIp condition key to compare the IP address from which a
request was made with the IP address that you specify in the policy. AWS recommends that you add the
related aws:SourceVPC condition key. This checks whether the request comes from the VPC that you
specify in the policy and the IP address that you specify.

Related terms

631

AWS Identity and Access Management User Guide
Policy check reference

• aws:VpcSourceIp global condition key (p. 829)

• aws:SourceVPC global condition key (p. 827)

• Global condition keys (p. 812)

• Condition element (p. 758)

• Overview of JSON policies (p. 386)

Security Warning – Pass role with NotResource
In the AWS Management Console, the finding for this check includes the following message:

Pass role with NotResource: Using the iam:PassRole action with NotResource can be overly
 permissive because it can allow iam:PassRole permissions on multiple resources. We
 recommend that you specify resource ARNs instead.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using the iam:PassRole action with NotResource can be overly permissive
 because it can allow iam:PassRole permissions on multiple resources. We recommend that you
 specify resource ARNs instead."

Resolving the security warning

To configure many AWS services, you must pass an IAM role to the service. To allow this you must grant
the iam:PassRole permission to an identity (user, group of users, or role). Using iam:PassRole in
a policy with the NotResource element can allow your principals to access more services or features
than you intended. AWS recommends that you specify allowed ARNs in the Resource element instead.
Additionally, you can reduce permissions to a single service by using the iam:PassedToService
condition key.

• Passing a role to a service (p. 257)

• iam:PassedToService (p. 831)

• IAM JSON policy elements: NotResource (p. 757)

• IAM JSON policy elements: Resource (p. 755)

Security Warning – Pass role with star in action and NotResource
In the AWS Management Console, the finding for this check includes the following message:

Pass role with star in action and NotResource: Using an action with a wildcard (*) and
 NotResource can be overly permissive because it can allow iam:PassRole permissions on
 multiple resources. We recommend that you specify resource ARNs instead.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using an action with a wildcard (*) and NotResource can be overly
 permissive because it can allow iam:PassRole permissions on multiple resources. We
 recommend that you specify resource ARNs instead."

Resolving the security warning

632

AWS Identity and Access Management User Guide
Policy check reference

To configure many AWS services, you must pass an IAM role to the service. To allow this you must grant
the iam:PassRole permission to an identity (user, group of users, or role). Policies with a wildcard
(*) in the Action and that include the NotResource element can allow your principals to access
more services or features than you intended. AWS recommends that you specify allowed ARNs in the
Resource element instead. Additionally, you can reduce permissions to a single service by using the
iam:PassedToService condition key.

• Passing a role to a service (p. 257)

• iam:PassedToService (p. 831)

• IAM JSON policy elements: NotResource (p. 757)

• IAM JSON policy elements: Resource (p. 755)

Security Warning – Pass role with NotAction and NotResource
In the AWS Management Console, the finding for this check includes the following message:

Pass role with NotAction and NotResource: Using NotAction with NotResource can be overly
 permissive because it can allow iam:PassRole permissions on multiple resources.. We
 recommend that you specify resource ARNs instead.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using NotAction with NotResource can be overly permissive because it
 can allow iam:PassRole permissions on multiple resources.. We recommend that you specify
 resource ARNs instead."

Resolving the security warning

To configure many AWS services, you must pass an IAM role to the service. To allow this you must grant
the iam:PassRole permission to an identity (user, group of users, or role). Using the NotAction
element and listing some resources in the NotResource element can allow your principals to access
more services or features than you intended. AWS recommends that you specify allowed ARNs in the
Resource element instead. Additionally, you can reduce permissions to a single service by using the
iam:PassedToService condition key.

• Passing a role to a service (p. 257)

• iam:PassedToService (p. 831)

• IAM JSON policy elements: NotAction (p. 754)

• IAM JSON policy elements: Action (p. 753)

• IAM JSON policy elements: NotResource (p. 757)

• IAM JSON policy elements: Resource (p. 755)

Security Warning – Pass role with star in resource
In the AWS Management Console, the finding for this check includes the following message:

Pass role with star in resource: Using the iam:PassRole action with wildcards (*) in the
 resource can be overly permissive because it allows iam:PassRole permissions on multiple
 resources. We recommend that you specify resource ARNs or add the iam:PassedToService
 condition key to your statement.

633

AWS Identity and Access Management User Guide
Policy check reference

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using the iam:PassRole action with wildcards (*) in the resource can be
 overly permissive because it allows iam:PassRole permissions on multiple resources. We
 recommend that you specify resource ARNs or add the iam:PassedToService condition key to
 your statement."

Resolving the security warning

To configure many AWS services, you must pass an IAM role to the service. To allow this you must
grant the iam:PassRole permission to an identity (user, group of users, or role). Policies that allow
iam:PassRole and that include a wildcard (*) in the Resource element can allow your principals to
access more services or features than you intended. AWS recommends that you specify allowed ARNs in
the Resource element instead. Additionally, you can reduce permissions to a single service by using the
iam:PassedToService condition key.

Some AWS services include their service namespace in the name of their role. This policy check takes
these conventions into account while analyzing the policy to generate findings. For example, the
following resource ARN might not generate a finding:

arn:aws:iam::*:role/Service*

• Passing a role to a service (p. 257)

• iam:PassedToService (p. 831)

• IAM JSON policy elements: Resource (p. 755)

AWS managed policies with this security warning

AWS managed policies (p. 390) enable you to get started with AWS by assigning permissions based on
general AWS use cases.

One of those use cases is for administrators within your account. The following AWS managed
policies provide administrator access and grant permissions to pass any IAM role to any service. AWS
recommends that you attach the following AWS managed policies only to IAM identities that you
consider administrators.

• AdministratorAccess-Amplify

The following AWS managed policies include permissions to iam:PassRole with a wildcard (*) in the
resource and are on a deprecation path (p. 394). For each of these policies, we updated the permission
guidance, such as recommending a new AWS managed policy that supports the use case. To view
alternatives to these policies, see the guides for each service (p. 725).

• AWSElasticBeanstalkFullAccess

• AWSElasticBeanstalkService

• AWSLambdaFullAccess

• AWSLambdaReadOnlyAccess

• AWSOpsWorksFullAccess

• AWSOpsWorksRole

• AWSDataPipelineRole

• AmazonDynamoDBFullAccesswithDataPipeline

634

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/AdministratorAccess-Amplify

AWS Identity and Access Management User Guide
Policy check reference

• AmazonElasticMapReduceFullAccess

• AmazonDynamoDBFullAccesswithDataPipeline

• AmazonEC2ContainerServiceFullAccess

The following AWS managed policies provide permissions for only service-linked roles (p. 219), which
allow AWS services to perform actions on your behalf. You cannot attach these policies to your IAM
identities.

• AWSServiceRoleForAmazonEKSNodegroup

Security Warning – Pass role with star in action and resource
In the AWS Management Console, the finding for this check includes the following message:

Pass role with star in action and resource: Using wildcards (*) in the action and the
 resource can be overly permissive because it allows iam:PassRole permissions on all
 resources. We recommend that you specify resource ARNs or add the iam:PassedToService
 condition key to your statement.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using wildcards (*) in the action and the resource can be overly
 permissive because it allows iam:PassRole permissions on all resources. We recommend that
 you specify resource ARNs or add the iam:PassedToService condition key to your statement."

Resolving the security warning

To configure many AWS services, you must pass an IAM role to the service. To allow this you must grant
the iam:PassRole permission to an identity (user, group of users, or role). Policies with a wildcard (*)
in the Action and Resource elements can allow your principals to access more services or features
than you intended. AWS recommends that you specify allowed ARNs in the Resource element instead.
Additionally, you can reduce permissions to a single service by using the iam:PassedToService
condition key.

• Passing a role to a service (p. 257)

• iam:PassedToService (p. 831)

• IAM JSON policy elements: Action (p. 753)

• IAM JSON policy elements: Resource (p. 755)

AWS managed policies with this security warning

AWS managed policies (p. 390) enable you to get started with AWS by assigning permissions based on
general AWS use cases.

Some of those use cases are for administrators within your account. The following AWS managed policies
provide administrator access and grant permissions to pass any IAM role to any AWS service. AWS
recommends that you attach the following AWS managed policies to only the IAM identities that you
consider administrators.

• AdministratorAccess

• IAMFullAccess

635

https://console.aws.amazon.com/iam/home#/policies/arn:aws:iam::aws:policy/aws-service-role/AWSServiceRoleForAmazonEKSNodegroup
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AdministratorAccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/IAMFullAccess

AWS Identity and Access Management User Guide
Policy check reference

Security Warning – Pass role with star in resource and NotAction
In the AWS Management Console, the finding for this check includes the following message:

Pass role with star in resource and NotAction: Using a resource with wildcards (*) and
 NotAction can be overly permissive because it allows iam:PassRole permissions on all
 resources. We recommend that you specify resource ARNs or add the iam:PassedToService
 condition key to your statement.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using a resource with wildcards (*) and NotAction can be overly
 permissive because it allows iam:PassRole permissions on all resources. We recommend that
 you specify resource ARNs or add the iam:PassedToService condition key to your statement."

Resolving the security warning

To configure many AWS services, you must pass an IAM role to the service. To allow this you must grant
the iam:PassRole permission to an identity (user, group of users, or role). Using the NotAction
element in a policy with a wildcard (*) in the Resource element can allow your principals to access
more services or features than you intended. AWS recommends that you specify allowed ARNs in the
Resource element instead. Additionally, you can reduce permissions to a single service by using the
iam:PassedToService condition key.

• Passing a role to a service (p. 257)

• iam:PassedToService (p. 831)

• IAM JSON policy elements: NotAction (p. 754)

• IAM JSON policy elements: Action (p. 753)

• IAM JSON policy elements: Resource (p. 755)

Suggestion – Allow NotAction with unsupported tag condition
key for service
In the AWS Management Console, the finding for this check includes the following message:

Allow NotAction with unsupported tag condition key for service: Using the effect Allow with
 NotAction and the tag condition key allows only service actions that support the condition
 key. The condition key doesn't apply to some service actions. We recommend that you use
 Action instead of NotAction.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using the effect Allow with NotAction and the tag condition key allows
 only service actions that support the condition key. The condition key doesn't apply to
 some service actions. We recommend that you use Action instead of NotAction."

Resolving the suggestion

Using unsupported tag condition keys in the Condition element of a policy with the element
NotAction and "Effect": "Allow" does not affect the permissions granted by the policy. The

636

AWS Identity and Access Management User Guide
Policy check reference

condition is ignored for service actions that don’t support the condition key. AWS recommends that you
rewrite the logic to allow a list of actions.

If you use the aws:ResourceTag condition key with NotAction, any new or existing service actions
that don’t support the key are not allowed. AWS recommends that you explicitly list the actions that you
want to allow. IAM Access Analyzer returns a separate finding for listed actions that don’t support the
aws:ResourceTag condition key. For more information, see Suggestion – Allow with unsupported tag
condition key for service (p. 637).

When a service supports the aws:ResourceTag condition key, you can use tags to control access to
that service’s resources. This is known as attribute-based access control (ABAC) (p. 12). Services that
don’t support these keys require you to control access to resources using resource-based access control
(RBAC) (p. 12).

Related terms

• Global condition keys (p. 812)
• Comparing ABAC to RBAC (p. 12)
• IAM JSON policy elements: Condition operators (p. 760)
• Condition element (p. 758)
• Overview of JSON policies (p. 386)

Suggestion – Allow with unsupported tag condition key for
service
In the AWS Management Console, the finding for this check includes the following message:

Allow with unsupported tag condition key for service: Using the effect Allow with the tag
 condition key and actions for services with the following prefixes does not affect the
 policy:. Actions for the listed service are not allowed by this statement. We recommend
 that you move these actions to a different statement without this condition key.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Using the effect Allow with the tag condition key and actions for
 services with the following prefixes does not affect the policy:. Actions for the listed
 service are not allowed by this statement. We recommend that you move these actions to a
 different statement without this condition key."

Resolving the suggestion

Using unsupported tag condition keys in the Condition element of a policy with "Effect": "Allow"
does not affect the permissions granted by the policy, because the condition is ignored for that service
action. AWS recommends that you remove the actions for services that don’t support the condition key
and create another statement to allow access to specific resources in that service.

If you use the aws:ResourceTag condition key and it’s not supported by a service action, then the key
is not included in the request context. In this case, the condition in the Allow statement always returns
false and the action is never allowed. This happens even if the resource is tagged correctly.

When a service supports the aws:ResourceTag condition key, you can use tags to control access to
that service’s resources. This is known as attribute-based access control (ABAC) (p. 12). Services that
don’t support these keys require you to control access to resources using resource-based access control
(RBAC) (p. 12).

637

AWS Identity and Access Management User Guide
Policy check reference

Note
Some services allow support for the aws:ResourceTag condition key for a subset of their
resources and actions. IAM Access Analyzer returns findings for the service actions that are not
supported. For example, Amazon S3 supports aws:ResourceTag for a subset of its resources.
To view all of the resource types available in Amazon S3 that support the aws:ResourceTag
condition key, see Resource types defined by Amazon S3 in the Service Authorization Reference.

For example, assume that you want to allow team members to view details for specific resources that
are tagged with the key-value pair team=BumbleBee. Also assume that AWS Lambda allows you to tag
resources, but doesn’t support the aws:ResourceTag condition key. To deny the delete actions for AWS
App Mesh and AWS Backup if this tag is present, use the aws:ResourceTag condition key. For Lambda,
use a resource naming convention that includes the team name as a prefix. Then include a separate
statement that prevents viewing resources with that naming convention.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowViewSupported",
 "Effect": "Allow",
 "Action": [
 "appmesh:DescribeMesh",
 "backup:GetBackupPlan"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/status": "New"
 }
 }
 },
 {
 "Sid": "AllowViewUnsupported",
 "Effect": "Allow",
 "Action": "lambda:GetFunction",
 "Resource": "arn:aws:lambda:*:403299380220:function:New*"
 }
]
}

Warning
Do not use the Not version of the condition operator (p. 760) with "Effect": "Allow"
as a workaround for this finding. These condition operators provide negated matching. This
means that after the condition is evaluated, the result is negated. In the previous example,
including the lambda:GetFunction action in the AllowViewSupported statement with the
StringNotEquals operator always allows the action, regardless of whether the resource is
tagged.
Do not use the …IfExists (p. 767) version of the condition operator as a workaround
for this finding. This means "Allow the action if the key is present in the request context
and the values match. Otherwise, allow the action." In the previous example, including
the lambda:GetFunction action in the AllowViewSupported statement with the
StringEqualsIfExists operator always allows the action. For that action, the key is not
present in the context, and every attempt to view that resource type is allowed, regardless of
whether the resource is tagged.

Related terms

• Global condition keys (p. 812)
• IAM JSON policy elements: Condition operators (p. 760)
• Condition element (p. 758)

638

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazons3.html#amazons3-resources-for-iam-policies

AWS Identity and Access Management User Guide
Policy check reference

• Overview of JSON policies (p. 386)

Suggestion – Empty array action
In the AWS Management Console, the finding for this check includes the following message:

Empty array action: This statement includes no actions and does not affect the policy.
 Specify actions.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "This statement includes no actions and does not affect the policy.
 Specify actions."

Resolving the suggestion

Statements must include either an Action or NotAction element that includes a set of actions. When
the element is empty, the policy statement provides no permissions. Specify actions in the Action
element.

• IAM JSON policy elements: Action (p. 753)

Suggestion – Empty array condition
In the AWS Management Console, the finding for this check includes the following message:

Empty array condition: There are no values for the condition key and it does not affect the
 policy. Specify conditions.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "There are no values for the condition key and it does not affect the
 policy. Specify conditions."

Resolving the suggestion

The optional Condition element structure requires that you use a condition operator and a key-value
pair. When the condition value is empty, the condition returns true and the policy statement provides
no permissions. Specify a condition value.

• IAM JSON policy elements: Condition (p. 758)

Suggestion – Empty array condition ForAllValues
In the AWS Management Console, the finding for this check includes the following message:

Empty array condition ForAllValues: The ForAllValues prefix with an empty condition key
 matches only if the key is missing from the request context. To determine if the request
 context is empty, we recommend that you use the Null condition operator with the value of
 true instead.

639

AWS Identity and Access Management User Guide
Policy check reference

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The ForAllValues prefix with an empty condition key matches only if the
 key is missing from the request context. To determine if the request context is empty, we
 recommend that you use the Null condition operator with the value of true instead."

Resolving the suggestion

The Condition element structure requires that you use a condition operator and a key-value pair. The
ForAllValues set operator tests whether the value of every member of the request set is a subset of
the condition key set.

When you use ForAllValues with an empty condition key, the condition matches only if there are no
keys in the request. AWS recommends that if you want to test whether a request context is empty, use
the Null condition operator instead.

• Using multiple keys and values (p. 770)
• Null condition operator (p. 768)
• IAM JSON policy elements: Condition (p. 758)

Suggestion – Empty array condition ForAnyValue
In the AWS Management Console, the finding for this check includes the following message:

Empty array condition ForAnyValue: The ForAnyValue prefix with an empty condition key never
 matches the request context and it does not affect the policy. Specify conditions.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The ForAnyValue prefix with an empty condition key never matches the
 request context and it does not affect the policy. Specify conditions."

Resolving the suggestion

The Condition element structure requires that you use a condition operator and a key-value pair. The
ForAnyValues set operator tests whether at least one member of the set of request values matches at
least one member of the set of condition key values.

When you use ForAnyValues with an empty condition key, the condition never matches. This means
that the statement has no effect on the policy. AWS recommends that you rewrite the condition.

• Using multiple keys and values (p. 770)
• IAM JSON policy elements: Condition (p. 758)

Suggestion – Empty array condition IfExists
In the AWS Management Console, the finding for this check includes the following message:

Empty array condition IfExists: The IfExists suffix with an empty condition key matches
 only if the key is missing from the request context. To determine if the request context
 is empty, we recommend that you use the Null condition operator with the value of true
 instead.

640

AWS Identity and Access Management User Guide
Policy check reference

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The IfExists suffix with an empty condition key matches only if the
 key is missing from the request context. To determine if the request context is empty, we
 recommend that you use the Null condition operator with the value of true instead."

Resolving the suggestion

The ...IfExists suffix edits a condition operator. It means that if the policy key is present in the
context of the request, process the key as specified in the policy. If the key is not present, evaluate the
condition element as true.

When you use ...IfExists with an empty condition key, the condition matches only if there are no
keys in the request. AWS recommends that if you want to test whether a request context is empty, use
the Null condition operator instead.

• ...IfExists condition operators (p. 767)
• IAM JSON policy elements: Condition (p. 758)

Suggestion – Empty array principal
In the AWS Management Console, the finding for this check includes the following message:

Empty array principal: This statement includes no principals and does not affect the
 policy. Specify principals.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "This statement includes no principals and does not affect the policy.
 Specify principals."

Resolving the suggestion

You must use the Principal or NotPrincipal element in the trust policies for IAM roles and in
resource-based policies. Resource-based policies are policies that you embed directly in a resource.

When you provide an empty array in a statement's Principal element, the statement has no effect on
the policy. AWS recommends that you specify the principals that should have access to the resource.

• IAM JSON policy elements: Principal (p. 747)
• IAM JSON policy elements: NotPrincipal (p. 751)

Suggestion – Empty array resource
In the AWS Management Console, the finding for this check includes the following message:

Empty array resource: This statement includes no resources and does not affect the policy.
 Specify resources.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

641

AWS Identity and Access Management User Guide
Policy check reference

"findingDetails": "This statement includes no resources and does not affect the policy.
 Specify resources."

Resolving the suggestion

Statements must include either a Resource or a NotResource element.

When you provide an empty array in a statement's resource element, the statement has no effect on the
policy. AWS recommends that you specify Amazon Resource Names (ARNs) for resources.

• IAM JSON policy elements: Resource (p. 755)
• IAM JSON policy elements: NotResource (p. 757)

Suggestion – Empty object condition
In the AWS Management Console, the finding for this check includes the following message:

Empty object condition: This condition block is empty and it does not affect the policy.
 Specify conditions.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "This condition block is empty and it does not affect the policy. Specify
 conditions."

Resolving the suggestion

The Condition element structure requires that you use a condition operator and a key-value pair.

When you provide an empty object in a statement's condition element, the statement has no effect on
the policy. Remove the optional element or specify conditions.

• IAM JSON policy elements: Condition (p. 758)

Suggestion – Empty object principal
In the AWS Management Console, the finding for this check includes the following message:

Empty object principal: This statement includes no principals and does not affect the
 policy. Specify principals.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "This statement includes no principals and does not affect the policy.
 Specify principals."

Resolving the suggestion

You must use the Principal or NotPrincipal element in the trust policies for IAM roles and in
resource-based policies. Resource-based policies are policies that you embed directly in a resource.

When you provide an empty object in a statement's Principal element, the statement has no effect on
the policy. AWS recommends that you specify the principals that should have access to the resource.

642

AWS Identity and Access Management User Guide
Policy check reference

• IAM JSON policy elements: Principal (p. 747)
• IAM JSON policy elements: NotPrincipal (p. 751)

Suggestion – Empty Sid value
In the AWS Management Console, the finding for this check includes the following message:

Empty Sid value: Add a value to the empty string in the Sid element.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Add a value to the empty string in the Sid element."

Resolving the suggestion

The optional Sid (statement ID) element allows you to enter an identifier that you provide for the policy
statement. You can assign an Sid value to each statement in a statement array. If you choose to use the
Sid element, you must provide a string value.

Related terms

• IAM JSON policy elements: Sid (p. 747)

Suggestion – Improve IP range
In the AWS Management Console, the finding for this check includes the following message:

Improve IP range: The non-zero bits in the IP address after the masked bits are ignored.
 Replace address with.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The non-zero bits in the IP address after the masked bits are ignored.
 Replace address with."

Resolving the suggestion

IP address conditions must be in the standard CIDR format, such as 203.0.113.0/24 or
2001:DB8:1234:5678::/64. When you include non-zero bits after the masked bits, they are not
considered for the condition. AWS recommends that you use the new address included in the message.

• IP address condition operators (p. 765)
• IAM JSON policy elements: Condition (p. 758)

Suggestion – Null with qualifier
In the AWS Management Console, the finding for this check includes the following message:

Null with qualifier: Avoid using the Null condition operator with the ForAllValues or
 ForAnyValue qualifiers because they always return a true or false respectively.

643

AWS Identity and Access Management User Guide
Policy check reference

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Avoid using the Null condition operator with the ForAllValues or
 ForAnyValue qualifiers because they always return a true or false respectively."

Resolving the suggestion

In the Condition element, you build expressions in which you use condition operators like
equal or less than to compare a condition in the policy against keys and values in the request
context. For requests that include multiple values for a single condition key, you must use the
ForAllValues or ForAnyValue set operators.

When you use the Null condition operator with ForAllValues, the statement always returns true.
When you use the Null condition operator with ForAnyValue, the statement always returns false.
AWS recommends that you use the StringLike condition operator with these set operators.

Related terms

• Using multiple condition keys and values (p. 770)
• Null condition operator (p. 768)
• Condition element (p. 758)

Suggestion – Private IP address subset
In the AWS Management Console, the finding for this check includes the following message:

Private IP address subset: The values for condition key aws:SourceIp include a mix of
 private and public IP addresses. The private addresses will not have the desired effect.
 aws:SourceIp works only for public IP address ranges. To define permissions for private IP
 ranges, use aws:VpcSourceIp.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The values for condition key aws:SourceIp include a mix of private and
 public IP addresses. The private addresses will not have the desired effect. aws:SourceIp
 works only for public IP address ranges. To define permissions for private IP ranges, use
 aws:VpcSourceIp."

Resolving the suggestion

The global condition key aws:SourceIp works only for public IP address ranges.

When your Condition element includes a mix of private and public IP addresses, the statement might
not have the desired effect. You can specify private IP addresses using aws:VpcSourceIP.

Note
The global condition key aws:VpcSourceIP matches only if the request originates from the
specified IP address and it goes through a VPC endpoint.

• aws:SourceIp global condition key (p. 826)
• aws:VpcSourceIp global condition key (p. 829)
• IP address condition operators (p. 765)
• IAM JSON policy elements: Condition (p. 758)

644

AWS Identity and Access Management User Guide
Policy check reference

Suggestion – Private NotIpAddress subset
In the AWS Management Console, the finding for this check includes the following message:

Private NotIpAddress subset: The values for condition key aws:SourceIp include a mix
 of private and public IP addresses. The private addresses have no effect. aws:SourceIp
 works only for public IP address ranges. To define permissions for private IP ranges, use
 aws:VpcSourceIp.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The values for condition key aws:SourceIp include a mix of private
 and public IP addresses. The private addresses have no effect. aws:SourceIp works
 only for public IP address ranges. To define permissions for private IP ranges, use
 aws:VpcSourceIp."

Resolving the suggestion

The global condition key aws:SourceIp works only for public IP address ranges.

When your Condition element includes the NotIpAddress condition operator and a mix of private
and public IP addresses, the statement might not have the desired effect. Every public IP addresses that
is not specified in the policy will match. No private IP addresses will match. To achieve this effect, you
can use NotIpAddress with aws:VpcSourceIP and specify the private IP addresses that should not
match.

• aws:SourceIp global condition key (p. 826)
• aws:VpcSourceIp global condition key (p. 829)
• IP address condition operators (p. 765)
• IAM JSON policy elements: Condition (p. 758)

Suggestion – Redundant action
In the AWS Management Console, the finding for this check includes the following message:

Redundant action: The action(s) are redundant because they provide similar permissions.
 Update the policy to remove the redundant action such as:.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The action(s) are redundant because they provide similar permissions.
 Update the policy to remove the redundant action such as:."

Resolving the suggestion

When you use wildcards (*) in the Action element, you can include redundant permissions. AWS
recommends that you review your policy and include only the permissions that you need. This can help
you remove redundant actions.

For example, the following actions include the iam:GetCredentialReport action twice.

645

AWS Identity and Access Management User Guide
Policy check reference

 "Action": [
 "iam:Get*",
 "iam:List*",
 "iam:GetCredentialReport"
],

In this example, permissions are defined for every IAM action that begins with Get or List. When IAM
adds additional get or list operations, this policy will allow them. You might want to allow all of these
read-only actions. The iam:GetCredentialReport action is already included as part of iam:Get*. To
remove the duplicate permissions, you could remove iam:GetCredentialReport.

You receive a finding for this policy check when all of the contents of an action are redundant. In this
example, if the element included iam:*CredentialReport, it is not considered redundant. That
includes iam:GetCredentialReport, which is redundant, and iam:GenerateCredentialReport,
which is not. Removing either iam:Get* or iam:*CredentialReport would change the policy's
permissions.

• IAM JSON policy elements: Action (p. 753)

AWS managed policies with this suggestion

AWS managed policies (p. 390) enable you to get started with AWS by assigning permissions based on
general AWS use cases.

Redundant actions do not affect the permissions granted by the policy. When using an AWS managed
policy as a reference to create your customer managed policy, AWS recommends that you remove
redundant actions from your policy.

Suggestion – Redundant condition value num
In the AWS Management Console, the finding for this check includes the following message:

Redundant condition value num: Multiple values in are redundant. Replace with the greatest/
least single value for.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Multiple values in are redundant. Replace with the greatest/least single
 value for."

Resolving the suggestion

When you use numeric condition operators for similar values in a condition key, you can create an
overlap that results in redundant permissions.

For example, the following Condition element includes multiple aws:MultiFactorAuthAge
conditions that have an age overlap of 1200 seconds.

 "Condition": {
 "NumericLessThan": {
 "aws:MultiFactorAuthAge": [
 "2700",
 "3600"
]
 }

646

AWS Identity and Access Management User Guide
Policy check reference

 }

In this example, the permissions are defined if multi-factor authentication (MFA) was completed less
than 3600 seconds (1 hour) ago. You could remove the redundant 2700 value.

• Numeric condition operators (p. 763)
• IAM JSON policy elements: Condition (p. 758)

Suggestion – Redundant resource
In the AWS Management Console, the finding for this check includes the following message:

Redundant resource: "The resource ARN(s) are redundant because they reference the same
 resource. Review the use of wildcards (*)

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": ""The resource ARN(s) are redundant because they reference the same
 resource. Review the use of wildcards (*)"

Resolving the suggestion

When you use wildcards (*) in Amazon Resource Names (ARNs), you can create redundant resource
permissions.

For example, the following Resource element includes multiple ARNs with redundant permissions.

 "Resource": [
 "arn:aws:iam::111122223333:role/jane-admin",
 "arn:aws:iam::111122223333:role/jane-s3only",
 "arn:aws:iam::111122223333:role/jane*"
],

In this example, the permissions are defined for any role with a name starting with jane. You
could remove the redundant jane-admin and jane-s3only ARNs without changing the resulting
permissions. This does make the policy dynamic. It will define permissions for any future roles that begin
with jane. If the intention of the policy is to allow access to a static number of roles, then remove the
last ARN and list only the ARNs that should be defined.

• IAM JSON policy elements: Resource (p. 755)

AWS managed policies with this suggestion

AWS managed policies (p. 390) enable you to get started with AWS by assigning permissions based on
general AWS use cases.

Redundant resources do not affect the permissions granted by the policy. When using an AWS managed
policy as a reference to create your customer managed policy, AWS recommends that you remove
redundant resources from your policy.

Suggestion – Redundant statement
In the AWS Management Console, the finding for this check includes the following message:

647

AWS Identity and Access Management User Guide
Access Analyzer policy generation

Redundant statement: The statements are redundant because they provide identical
 permissions. Update the policy to remove the redundant statement.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "The statements are redundant because they provide identical permissions.
 Update the policy to remove the redundant statement."

Resolving the suggestion

The Statement element is the main element for a policy. This element is required. The Statement
element can contain a single statement or an array of individual statements.

When you include the same statement more than once in a long policy, the statements are is redundant.
You can remove one of the statements without affecting the permissions granted by the policy. When
someone edits a policy, they might change one of the statements without updating the duplicate. This
might result in more permissions than intended.

• IAM JSON policy elements: Statement (p. 746)

Suggestion – Wildcard in service name
In the AWS Management Console, the finding for this check includes the following message:

Wildcard in service name: Avoid using wildcards (*, ?) in the service name because it might
 grant unintended access to other AWS services with similar names.

In programmatic calls to the AWS CLI or AWS API, the finding for this check includes the following
message:

"findingDetails": "Avoid using wildcards (*, ?) in the service name because it might grant
 unintended access to other AWS services with similar names."

Resolving the suggestion

When you include the name of an AWS service in a policy, AWS recommends that you do not include
wildcards (*, ?). This might add permissions for future services that you do not intend. For example, there
are more than a dozen AWS services with the word *code* in their name.

 "Resource": "arn:aws:*code*::111122223333:*"

• IAM JSON policy elements: Resource (p. 755)

IAM Access Analyzer policy generation
As an administrator or developer, you might grant permissions to IAM entities (users or roles) beyond
what they require. IAM provides several options to help you refine the permissions that you grant. One
option is to generate an IAM policy that is based on access activity for an entity. IAM Access Analyzer
reviews your AWS CloudTrail logs and generates a policy template that contains the permissions that the

648

AWS Identity and Access Management User Guide
How policy generation works

entity used in your specified date range. You can use the template to create a policy with fine-grained
permissions that grant only the permissions that are required to support your specific use case.

Topics
• How policy generation works (p. 649)
• Service and action-level information (p. 649)
• Things to know about generating policies (p. 651)
• Permissions required to generate a policy (p. 651)
• Generate a policy based on CloudTrail activity (console) (p. 653)
• Generate a policy using AWS CloudTrail data in another account (p. 656)
• Generate a policy based on CloudTrail activity (AWS CLI) (p. 658)
• Generate a policy based on CloudTrail activity (AWS API) (p. 658)

How policy generation works
IAM Access Analyzer analyzes your CloudTrail events to identify actions and services that have been used
by an IAM entity (user or role). It then generates an IAM policy that is based on that activity. You can
refine an entity's permissions when you replace a broad permissions policy attached to the entity with
the generated policy. The following is a high-level overview of the policy generation process.

• Set up for policy template generation – You specify a time period of up to 90 days for IAM Access
Analyzer to analyze your historical AWS CloudTrail events. You must specify an existing service role
or create a new one. The service role gives IAM Access Analyzer access to your CloudTrail trail and
service last accessed information to identify the services and actions that were used. You must specify
the CloudTrail trail that is logging events for the account before you can generate a policy. For more
information about IAM Access Analyzer quotas for CloudTrail data, see IAM Access Analyzer quotas.

• Generate policy – IAM Access Analyzer generates a policy based on the access activity in your
CloudTrail events.

• Review and customize policy – After the policy is generated, you can review the services and actions
that were used by the entity during the specified date range. You can further customize the policy by
adding or removing permissions, specifying resources, and adding conditions to the policy template.

• Create and attach policy – You have the option to save the generated policy by creating a managed
policy. You can attach the policy that you create to the user or role whose activity was used to
generate the policy.

Service and action-level information
When IAM Access Analyzer generates an IAM policy, information is returned to help you to further
customize the policy. Two categories of information can be returned when a policy is generated:

• Policy with action-level information – For some AWS services, such as Amazon EC2, IAM Access
Analyzer can identify the actions found in your CloudTrail events and lists the actions used in the
generated policy. For some services, we prompt you to add actions for the services to the generated
policy.

• Policy with service-level information – IAM Access Analyzer uses last accessed information to create
a policy template with all of the recently used services. When using the AWS Management Console, we
prompt you to review the services and add actions to complete the policy.

IAM Access Analyzer generates policies with action-level information for the following AWS services.
For a list of actions in each service, see Actions, Resources, and Condition Keys for AWS Services in the
Service Authorization Reference.

649

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-getting-started.html#access-analyzer-quotas
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_access-advisor.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide
Service and action-level information

Supported services for action-level information

• IAM Access Analyzer
• AWS Amplify
• Amazon AppIntegrations
• Amazon AppFlow
• AWS Application Cost Profiler
• Amazon Athena
• AWS Batch
• Amazon Braket
• Amazon CloudWatch
• Amazon CloudWatch Logs
• Amazon CloudWatch Synthetics
• Amazon CodeGuru Profiler
• Amazon Cognito Identity
• Amazon Cognito Sync
• Amazon Cognito user pools
• AWS Cost and Usage Report
• Amazon DevOps Guru
• Device Advisor
• AWS Directory Service
• Amazon Elastic Block Store
• Amazon EC2
• Amazon Elastic Container Registry
• Amazon ECS
• Elastic Load Balancing
• Amazon EventBridge Schemas
• Fleet Hub for AWS IoT Device Management
• AWS Ground Station
• Amazon GuardDuty
• IAM
• Amazon Interactive Video Service
• AWS KMS
• Amazon Kinesis Data Firehose
• AWS Lambda
• Amazon MQ
• Amazon Managed Blockchain
• Amazon Managed Streaming for Apache Kafka
• Amazon Nimble Studio
• AWS OpsWorks
• AWS Outposts
• Amazon RDS Performance Insights
• Amazon RDS
• AWS RAM
• AWS Resource Groups
• Resource Groups Tagging API

650

AWS Identity and Access Management User Guide
Things to know

• Savings Plans
• AWS Secrets Manager
• AWS Security Hub
• AWS Security Token Service
• AWS Server Migration Service
• Service Quotas
• AWS Signer
• Amazon Simple Email Service
• Amazon S3
• AWS Systems Manager
• Amazon Textract
• Amazon Translate
• AWS Well-Architected Tool
• Amazon WorkLink

Things to know about generating policies
Before you generate a policy, review the following important details.

• Enable a CloudTrail trail – You must have a CloudTrail trail enabled for your account to generate a
policy based on access activity. When you create a CloudTrail trail, CloudTrail sends events related to
your trail to an Amazon S3 bucket that you specify. To learn how create a CloudTrail trail, see Creating
a trail for your AWS account in the AWS CloudTrail User Guide.

• Data events not available – IAM Access Analyzer does not identify action-level activity for data events,
such as Amazon S3 data events, in generated policies.

• PassRole – The iam:PassRole action is not tracked by CloudTrail and is not included in generated
policies.

• Reduce policy generation time – To generate a policy faster, reduce the date range that you specify
during setup for policy generation.

• Use CloudTrail for auditing – Do not use policy generation for auditing purposes; use CloudTrail
instead. For more information about using CloudTrail see, Logging IAM and AWS STS API calls with
AWS CloudTrail.

• One policy IAM console – You can have one generated policy at a time in the IAM console.
• Generated policy availability IAM console – You can review a generated policy in the IAM console for

up to 7 days after it is generated. After 7 days, you must generate a new policy.
• Policy generation quotas – For additional information about IAM Access Analyzer policy generation

quotas, see IAM Access Analyzer quotas.

Permissions required to generate a policy
The permissions that you need to generate a policy for the first time differ from those that you need to
generate a policy for subsequent uses.

First-time setup

When you generate a policy for the first time, you must choose a suitable existing service role in your
account or create a new service role. The service role gives IAM Access Analyzer access to CloudTrail
and service last accessed information in your account. Only administrators should have the permissions
necessary to create and configure roles. Therefore, we recommend that an administrator creates the

651

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/cloudtrail-integration.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/cloudtrail-integration.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-getting-started.html#access-analyzer-quotas
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-role

AWS Identity and Access Management User Guide
Permissions required

service role during the first-time setup. To learn more about the permissions required to create service
roles, see Creating a role to delegate permissions to an AWS service.

Permissions required for service role

When you create a service role, you configure two policies for the role. You attach an IAM permissions
policy to the role that specifies what the role can do. You also attach a role trust policy to the role that
specifies the principal who can use the role.

The first example policy shows the permissions policy for the service role that is required to generate a
policy. The second example policy shows the role trust policy that is required for the service role. You can
use these policies to help you create a service role when you use the AWS API or AWS CLI to generate a
policy. When you use the IAM console to create a service role as part of the policy generation process, we
generate these policies for you.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "cloudtrail:GetTrail",
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:GenerateServiceLastAccessedDetails",
 "iam:GetServiceLastAccessedDetails"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET",
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET/*"
]
 }
]
}

The following example policy shows the role trust policy with the permissions that allows IAM Access
Analyzer to assume the role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "access-analyzer.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Subsequent uses

652

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS Identity and Access Management User Guide
Generate a policy based on CloudTrail activity (console)

To generate policies in the AWS Management Console, an IAM user must have a permissions policy
that allows them to pass the service role that is used for policy generation to IAM Access Analyzer.
iam:PassRole is usually accompanied by iam:GetRole so that the user can get the details of the role
to be passed. In this example, the user can pass only roles that exist in the specified account with names
that begin with AccessAnalyzerMonitorServiceRole*. To learn more about passing IAM roles to
AWS services, see Granting a user permissions to pass a role to an AWS service.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowUserToPassRole",
 "Effect": "Allow",
 "Action": [
 "iam:GetRole",
 "iam:PassRole"
],
 "Resource": "arn:aws:iam::123456789012:role/service-role/
AccessAnalyzerMonitorServiceRole*"
 }
]
}

You must also have the following IAM Access Analyzer permissions to generate policies in the AWS
Management Console, AWS API, or AWS CLI as shown in the following policy statement.

{
 "Sid": "AllowUserToGeneratePolicy",
 "Effect": "Allow",
 "Action": [
 "access-analyzer:ListPolicyGenerations",
 "access-analyzer:StartPolicyGeneration",
 "access-analyzer:GetGeneratedPolicy",
 "access-analyzer:CancelPolicyGeneration"
],
 "Resource": "*"
 }
]
}

For both first-time and subsequent uses

When you use the AWS Management Console to generate a policy, you must have
cloudtrail:ListTrails permission to list the CloudTrail trails in your account as shown in the
following policy statement.

 {
 "Sid": "AllowUserToListTrails",
 "Effect": "Allow",
 "Action": [
 "CloudTrail:ListTrails"
],
 "Resource": "*"
 }

Generate a policy based on CloudTrail activity
(console)
You can generate a policy for an IAM user or role.

653

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_passrole.html

AWS Identity and Access Management User Guide
Generate a policy based on CloudTrail activity (console)

Step 1: Generate a policy based on CloudTrail activity

The following procedure explains how to generate a policy for a role using the AWS Management
Console.

Generate a policy for an IAM role

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane on the left, choose Roles.

Note
The steps to generate a policy based on activity for an IAM user are almost identical. To do
this, choose Users instead of Roles.

3. In the list of roles in your account, choose the name of the role whose activity you want to use to
generate a policy.

4. On the Permissions tab, in the Generate policy based on CloudTrail events section, choose
Generate policy.

5. On the Generate policy page, specify the time period that you want IAM Access Analyzer to analyze
your CloudTrail events for actions taken with the role. You can choose a range of up to 90 days. We
recommend that you choose the shortest time period possible to reduce the policy generation time.

6. In the CloudTrail access section, choose a suitable existing role or create a new role if a suitable
role does not exist. The role gives IAM Access Analyzer permissions to access your CloudTrail data
on your behalf to review access activity to identify the services and actions that have been used.
To learn more about the permissions required for this role, see Permissions required to generate a
policy (p. 651).

7. In the CloudTrail trail to be analyzed section, specify the CloudTrail trail that logs events for the
account.

If you choose a CloudTrail trail that stores logs in a different account, an information box about
cross-account access is displayed. Cross-account access requires additional set up. To learn more, see
Choose a role for cross-account access later in this topic.

8. Choose Generate policy.

9. While policy generation is in progress, you are returned to the Roles Summary page on the
Permissions tab. Wait until the status in the Policy request details section displays Success, and
then choose View generated policy. You can view the generated policy for up to seven days. If you
generate another policy, the existing policy is replaced with the new one that you generate.

Step 2: Review permissions and add actions for services used

Review the services and actions that IAM Access Analyzer identified that the role used. You can add
actions for any services that were used to the generated policy template.

1. Review the following sections:

• On the Review permissions page, review the list of Actions included in the generated policy. The
list displays the services and actions that IAM Access Analyzer identified were used by the role in
the specified date range.

• The Services used section displays additional services that IAM Access Analyzer identified that
were used by the role in the specified date range. Information about which actions were used
might not be available for the services listed in this section. Use the menus for each service listed
to manually choose the actions that you want to include in the policy.

2. When you are done adding actions, choose Next.

654

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Generate a policy based on CloudTrail activity (console)

Step 3: Further customize the generated policy
You can further customize the policy by adding or removing permissions or specifying resources.

To customize the generated policy

1. Update the policy template. The policy template contains resource ARN placeholders for actions
that support resource-level permissions, as shown in the following image. Resource-level permissions
refers to the ability to specify which resources users are allowed to perform actions on. We
recommend that you use ARNs to specify your individual resources in the policy for actions that
support resource-level permissions. You can replace the placeholder resource ARNs with valid
resource ARNs for your use case.

If an action does not support resource-level permissions, you must use a wildcard (*) to specify
that all resources can be affected by the action. To learn which AWS services support resource-level
permissions, see AWS services that work with IAM. For a list of actions in each service, and to learn
which actions support resource-level permissions, see Actions, Resources, and Condition Keys for
AWS Services.

2. (Optional) Add, modify, or remove JSON policy statements in the template. To learn more about
writing JSON policies, see Creating IAM policies (console).

3. When you are done customizing the policy template, you have the following options:

• (Optional) You can copy the JSON in the template to use separately outside of the Generated
policy page. For example, if you want to use the JSON to create a policy in a different account. If
the policy in your template exceeds the 6,144 character limit for JSON policies, the policy is split
into multiple policies.

• Choose Next to review and create a managed policy in the same account.

Step 4: Review and create a managed policy
If you have permissions to create and attach IAM policies, you can create a managed policy from the
policy that was generated. You can then attach the policy to a user or role in your account.

To review and create a policy

1. On the Review and create managed policy page, enter a Name and Description (optional) for the
policy that you are creating.

655

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_identifiers.html#identifiers-arns
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html

AWS Identity and Access Management User Guide
Generate a policy using AWS

CloudTrail data in another account

2. (Optional) In the Summary section, you can review the permissions that will be included in the
policy.

3. (Optional) Add metadata to the policy by attaching tags as key-value pairs. For more information
about using tags in IAM, see Tagging IAM resources.

4. When you are finished, do one of the following:

• You can attach the new policy directly to the role that was used to generate the policy. To do this,
near the bottom of the page, select the check box next to the Attach policy to YourRoleName.
Then choose Create and attach policy.

• Otherwise, choose Create policy. You can find the policy that you created in the list of policies in
the Policies navigation pane of the IAM console.

5. You can attach the policy that you created to an entity in your account. After you attach the policy,
you can remove any other overly broad policies that might be attached to the entity. To learn how to
attach a managed policy, see Adding IAM identity permissions (console).

Generate a policy using AWS CloudTrail data in
another account
You might create CloudTrail trails that store data in central accounts to streamline governing activities.
For example, you can use AWS Organizations to create a trail that logs all events for all of the AWS
accounts in that organization. The trail belongs to a central account. If you want to generate a policy for
a user or role in an account that is different from the account where your CloudTrail log data is stored,
you must grant cross-account access. To do this, you need both a role and a bucket policy that grant IAM
Access Analyzer permissions to your CloudTrail logs. For more information about creating Organizations
trails, see Creating a trail for an organization.

In this example, assume that you want to generate a policy for a user or role in account A. The CloudTrail
trail in account A stores CloudTrail logs in a bucket in account B. Before you can generate a policy, you
must make the following updates:

1. Choose an existing role, or create a new service role that grants IAM Access Analyzer access to the
bucket in account B (where your CloudTrail logs are stored).

2. Update your Amazon S3 bucket object ownership and bucket permissions policy in account B to allow
IAM Access Analyzer to access objects in the bucket.

Step 1: Choose or create a role for cross-account access

• On the Generate policy screen, the option to Use an existing role is pre-selected for you if a role
with the required permissions exists in your account. Otherwise, choose Create and use a new
service role. The new role is used to grant IAM Access Analyzer access to your CloudTrail logs in
account B.

Step 2: Update your Amazon S3 bucket configuration in account B

1. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

2. In the Buckets list, choose the name of the bucket where your CloudTrail trail logs are stored.
3. Choose the Permissions tab and find the Object ownership section.

Object ownership is an Amazon S3 bucket setting that you can use to control ownership of new
objects that are uploaded to your buckets. By default, when other AWS accounts upload objects to
your bucket, the objects are owned by the uploading account. To generate a policy, all of the objects
in the bucket must be owned by the bucket owner.

656

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#add-policies-console
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/creating-trail-organization.html
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

AWS Identity and Access Management User Guide
Generate a policy using AWS

CloudTrail data in another account

Choose Edit and change the object ownership to Bucket owner preferred.

To learn more about object ownership in Amazon S3, see Controlling ownership of uploaded objects
using S3 Object Ownership in the Amazon S3 User Guide.

Important
To successfully generate a policy, the objects in the bucket must be owned by the bucket
owner. You can only generate a policy for the time period after the object ownership
change was made.

4. Add permissions to your Amazon S3 bucket policy in account B to allow access for the role in
account A.

The following example policy allows ListBucket and GetObject for the bucket named DOC-
EXAMPLE-BUCKET. It allows access if the role accessing the bucket belongs to an account in your
organization and has a name that starts with AccessAnalyzerMonitorServiceRole. Using
aws:PrincipalArn as a Condition in the Resource element ensures that the role can only
access activity for the account if it belongs to account A. You can replace DOC-EXAMPLE-BUCKET
with your bucket name and organization-id with your organization ID.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "PolicyGenerationBucketPolicy",
 "Effect": "Allow",
 "Principal": {
 "AWS": "*"
 },
 "Action": [
 "s3:GetObject",
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET",
 "arn:aws:s3:::DOC-EXAMPLE-BUCKET/AWSLogs/organization-id/
${aws:PrincipalAccount}/*"
],
 "Condition": {
 "StringEquals": {
 "aws:PrincipalOrgID": "organization-id"
 },
 "StringLike": {
 "aws:PrincipalArn": "arn:aws:iam::${aws:PrincipalAccount}:role/service-role/
AccessAnalyzerMonitorServiceRole*"
 }
 }
 }
]
}

5. If you encrypt your logs using AWS KMS, update your AWS KMS key policy to grant IAM
Access Analyzer access to use your key, as shown in the following policy example. Replace
CROSS_ACCOUNT_ORG_TRAIL_FULL_ARN with the ARN for your trail and organization-id with
your organization ID.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {

657

https://docs.aws.amazon.com/AmazonS3/latest/userguide/about-object-ownership.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/about-object-ownership.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-principalarn

AWS Identity and Access Management User Guide
Generate a policy based on CloudTrail activity (AWS CLI)

 "AWS": "*"
 },
 "Action": "kms:Decrypt",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:EncryptionContext:aws:cloudtrail:arn":
 "CROSS_ACCOUNT_ORG_TRAIL_FULL_ARN",
 "aws:PrincipalOrgID": "organization-id"
 },
 "StringLike": {
 "kms:ViaService": "s3.*.amazonaws.com",
 "aws:PrincipalArn": "arn:aws:iam::${aws:PrincipalAccount}:role/service-role/
AccessAnalyzerMonitorServiceRole*"
 }
 }
 }
]
}

Generate a policy based on CloudTrail activity (AWS
CLI)
You can use the following commands to generate a policy using the AWS CLI.

To generate a policy

• aws accessanalyzer start-policy-generation

To view a generated policy

• aws accessanalyzer get-generated-policy

To cancel a policy generation request

• aws accessanalyzer cancel-policy-generation

To view a list of policy generation requests

• aws accessanalyzer list-policy-generations

Generate a policy based on CloudTrail activity (AWS
API)
You can use the following operations to generate a policy using the AWS API.

To generate a policy

• StartPolicyGeneration

To view a generated policy

• GetGeneratedPolicy

658

https://docs.aws.amazon.com/cli/latest/reference/accessanalyzer/start-policy-generation.html
https://docs.aws.amazon.com/cli/latest/reference/accessanalyzer/get-generated-policy.html
https://docs.aws.amazon.com/cli/latest/reference/accessanalyzer/cancel-policy-generation.html
https://docs.aws.amazon.com/cli/latest/reference/accessanalyzer/list-policy-generations.html
https://docs.aws.amazon.com/access-analyzer/latest/APIReference/API_StartPolicyGeneration.html
https://docs.aws.amazon.com/access-analyzer/latest/APIReference/API_GetGeneratedPolicy.html

AWS Identity and Access Management User Guide
Archive rules

To cancel a policy generation request

• CancelPolicyGeneration

To view a list of policy generation requests

• ListPolicyGenerations

Archive rules
Archive rules automatically archive new findings that meet the criteria you define when you create the
rule. You can also apply archive rules retroactively to archive existing findings that meet the archive rule
criteria. For example, you can create an archive rule to automatically archive any findings for a specific
S3 bucket that you regularly grant access to. Or if you grant access to multiple resources to a specific
principal, you can create a rule that automatically archives any new finding generated for access granted
to that principal. This lets you focus only on active findings that may indicate a security risk.

Use the information provided in the finding details to identify the specific resource and external entity
to use when creating or editing a rule. When you create an archive rule, only new findings that match the
rule criteria are automatically archived. Existing findings are not automatically archived. When you create
a rule, you can include up to 20 values per criterion in the rule. For a list of filter keys that you can use to
create or update an archive rule, see Access Analyzer filter keys (p. 664).

Note
When you create or edit an archive rule, Access Analyzer does not validate the values you
include in the filter for the rule. For example, if you add a rule to match an AWS Account, Access
Analyzer accepts any value in the field, even if it is not a valid AWS account number.

To create an archive rule

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. Choose Access analyzer, then choose Archive rules.

3. Choose Create archive rule.

4. Enter a name for the rule if you want to change the default name.

5. In the Rule section, under Criteria, select a property to match for the rule.

6. Choose an operator for the property value, such as contains.

The operators available depend on the property you choose.

7. Optionally, add additional values for the property, or add additional criteria for the rule. To ensure
your rule won’t archive new findings for public access, you can also include the criterion Public
access and set it to false.

To add another value for a criterion, choose Add another value. To add another criterion for the
rule, choose the Add button.

8. When you finish adding criteria and values, choose Create rule to apply the rule to new findings
only. Choose Create and archive active findings to archive new and existing findings based on the
rule criteria. In the Results section, you can review the list of active findings the archive rule applies
to.

For example, to create a rule that automatically archives any findings for S3 buckets: choose Resource
type, and then choose is for the operator. Next choose S3 bucket from the Select resource type list, and
then choose Add.

659

https://docs.aws.amazon.com/access-analyzer/latest/APIReference/API_CancelPolicyGeneration.html
https://docs.aws.amazon.com/access-analyzer/latest/APIReference/API_ListPolicyGenerations.html
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Preview access

Continue to define criteria to customize the rule as appropriate for your environment, and then
choose Create archive rule.

If you are create a new rule and add multiple criteria, you can remove a single criterion from the rule
by choosing Remove this criterion. You can remove a value added for a criterion by choosing Remove
value.

To edit an archive rule

1. Choose name of the rule to edit in the Name.

You can edit only one archive rule at a time.

2. Add new or remove the existing criteria and values for each criterion. To ensure your rule won’t
archive new findings for public access, you can also include the criterion Public access and set it to
false.

3. Choose Save changes to apply the rule to new findings only. Choose Save and archive active
findings to archive new and existing findings based on the rule criteria.

To delete an archive rule

1. Select the check box for the rules to delete.

You can delete one, many, or all rules at the same time.

2. Choose Delete.

3. Type delete in the Delete archive rule confirmation dialog, and then choose Delete.

The rules are deleted only from the analyzer in the current Region. You must delete archive rules
separately for each analyzer that you created in other Regions.

Preview access
In addition to helping you identify resources that are shared with an external entity, AWS IAM Access
Analyzer also enables you to preview Access Analyzer findings before deploying resource permissions so
you can validate that your policy changes grant only intended public and cross-account access to your
resource. This helps you start with intended external access to your resources.

You can preview and validate public and cross-account access to your Amazon S3 buckets in the Amazon
S3 console. You can also use Access Analyzer APIs to preview public and cross-account access for your
Amazon S3 buckets, AWS KMS keys, IAM roles, Amazon SQS queues and Secrets Manager secrets by
providing proposed permissions for your resource.

Topics

• Previewing access in Amazon S3 console (p. 660)

• Previewing access with Access Analyzer APIs (p. 661)

Previewing access in Amazon S3 console
After you complete your bucket policy in the Amazon S3 console you have the option to preview public
and cross-account access to your Amazon S3 bucket. You can validate that your policy changes grant
only intended external access before you choose Save changes. This optional step enables you to
preview AWS IAM Access Analyzer findings for your bucket. You can validate whether the policy change

660

https://aws.amazon.com/s3/
https://aws.amazon.com/s3/

AWS Identity and Access Management User Guide
Previewing access with Access Analyzer APIs

introduces new findings or resolves existing findings for external access. You can skip this validation step
and save your Amazon S3 bucket policy at any time.

To preview external access to your bucket, you must have an active account analyzer in your bucket’s
region with the account as the zone of trust. You must also have the permissions required to use Access
Analyzer and preview access. For more information on enabling Access Analyzer and permissions
required, see Enabling Access Analyzer (p. 577).

To preview access to your Amazon S3 bucket when you create or edit your bucket policy

1. Once you finish creating or editing your bucket policy, ensure your policy is a valid Amazon S3
bucket policy. The policy ARN must match the bucket ARN and the policy elements must be valid.

2. Below the policy, under Preview external access, choose an active account analyzer, then choose
Preview. A preview of Access Analyzer findings is generated for your bucket. The preview analyzes
the displayed Amazon S3 bucket policy, together with the existing bucket permissions. This includes
the bucket and account BPA settings, bucket ACL, the Amazon S3 access points and multi-region
access points attached to the bucket, and their policies and BPA settings.

3. When the access preview completes, a preview of Access Analyzer findings is displayed. Each finding
reports an instance of a principal outside of the account with access to your bucket after you save
the policy. You can validate access to your bucket by reviewing each finding. The finding header
provides a summary of the access and you can expand the finding to review the finding details.
Finding badges provide context on how saving the bucket policy would change access to the bucket.
For example, they help you validate whether the policy change introduces new findings or resolves
existing findings for external access:

a. New – indicates a finding for new external access that the policy would introduce.

b. Resolved – indicates a finding for existing external access that the policy would remove.

c. Archived – indicates a finding for new external access that would be automatically archived,
based on the archive rules for the analyzer that define when findings should be marked as
intended.

d. Existing – indicates an existing finding for external access that would remain unchanged.

e. Public – if a finding is for public access to the resource, it will have a Public badge, in addition to
one of the badges above.

4. If you identify external access you do not intend to introduce or remove, you can revise the policy
and then choose Preview again until you have achieved the external access you intend. If you have
a finding labeled Public, we recommend you revise the policy to remove public access before you
choose Save changes. Previewing access is an optional step and you can choose Save changes at any
time.

Previewing access with Access Analyzer APIs
You can use Access Analyzer APIs to preview public and cross-account access for your Amazon S3
buckets, AWS KMS keys, IAM roles, Amazon SQS queues and Secrets Manager secrets. You can preview
access by providing proposed permissions for an existing resource you own or a new resource you want
to deploy.

To preview external access to your resource, you must have an active account analyzer for the account
and region of the resource. You must also have the permissions required to use Access Analyzer and
preview access. For more information on enabling Access Analyzer and permissions required, see
Enabling Access Analyzer (p. 577).

To preview access for a resource, you can use the CreateAccessPreview operation and provide
the analyzer ARN and the access control configuration for the resource. The service returns the
unique ID for the access preview, which you can use to check the status of the access preview

661

https://docs.aws.amazon.com/AmazonS3/latest/userguide/access-policy-language-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-findings-view.html
https://docs.aws.amazon.com/access-analyzer/latest/APIReference/Welcome.html

AWS Identity and Access Management User Guide
Previewing access with Access Analyzer APIs

with the GetAccessPreview operation. When the status is Completed, you can use the
ListAccessPreviewFindings operation to retrieve the findings generated for the access preview. The
GetAccessPreview and ListAccessPreviewFindings operations will retrieve access previews and
findings created within about 24 hours.

Each finding retrieved contains finding details describing the access. A preview status of the finding
describing whether the finding would be Active, Archived, or Resolved after permissions
deployment, and a changeType. The changeType provides context on how the access preview finding
compares to existing access identified in Access Analyzer:

• New – the finding is for newly introduced access.

• Unchanged – the preview finding is an existing finding that would remain unchanged.

• Changed – the preview finding is an existing finding with a change in status.

The status and the changeType help you understand how the resource configuration would change
existing resource access. If the changeType is Unchanged or Changed, the finding will also contain the
existing ID and status of the finding in Access Analyzer. For example, a Changed finding with preview
status Resolved and existing status Active indicates the existing Active finding for the resource
would become Resolved as a result of the proposed permissions change.

You can use the ListAccessPreviews operation to retrieve a list of access previews for the specified
analyzer. This operation will retrieve information on access preview created within about one hour.

In general, if the access preview is for an existing resource and you leave a configuration option
unspecified, the access preview will use the existing resource configuration by default. If the access
preview is for a new resource and you leave a configuration option unspecified, the access preview will
use the default value depending on the resource type. For configuration cases for each resource type, see
below.

Preview access to your Amazon S3 bucket

To create an access preview for a new Amazon S3 bucket or an existing Amazon S3 bucket that you own,
you can propose a bucket configuration by specifying the Amazon S3 bucket policy, bucket ACLs, bucket
BPA settings, and Amazon S3 access points, including multi-region access points, attached to the bucket.

Note
Before attempting to create an access preview for a new bucket, we recommend you call the
Amazon S3 HeadBucket operation to check whether the named bucket already exists. This
operation is useful to determine if a bucket exists and you have permission to access it.

Bucket policy – If the configuration is for an existing Amazon S3 bucket and you do not specify the
Amazon S3 bucket policy, the access preview uses the existing policy attached to the bucket. If the access
preview is for a new resource and you do not specify the Amazon S3 bucket policy, the access preview
assumes a bucket without a policy. To propose deletion of an existing bucket policy, you can specify an
empty string. For more information about supported bucket policy limits, see Bucket policy examples.

Bucket ACL grants – You can propose up to 100 ACL grants per bucket. If the proposed grant
configuration is for an existing bucket, the access preview uses the proposed list of grant configurations
in place of the existing grants. Otherwise, the access preview uses the existing grants for the bucket.

Bucket access points – The analysis supports up to 100 access points,including multi-region access
points, per bucket, including up to ten new access points you can propose per bucket. If the proposed
Amazon S3 access point configuration is for an existing bucket, the access preview uses the proposed
access point configuration in place of the existing access points. To propose an access point without a
policy, you can provide an empty string as the access point policy. For more information about access
point policy limits, see Access points restrictions and limitations.

662

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-findings-view.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_HeadBucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/access-points-restrictions-limitations.html

AWS Identity and Access Management User Guide
Previewing access with Access Analyzer APIs

Block public access configuration – If the proposed configuration is for an existing Amazon S3 bucket
and you do not specify the configuration, the access preview uses the existing setting. If the proposed
configuration is for a new bucket and you do not specify the bucket BPA configuration, the access
preview uses false. If the proposed configuration is for a new access point or multi-region access point,
and you do not specify the access point BPA configuration, the access preview uses true.

Preview access to your AWS KMS key
To create an access preview for a new AWS KMS key or an existing AWS KMS key that you own, you
can propose a AWS KMS key configuration by specifying the key policy and the AWS KMS grant
configuration.

AWS KMS key policy – If the configuration is for an existing key and you do not specify the key policy,
the access preview uses the existing policy for the key. If the access preview is for a new resource and
you do not specify the key policy, then the access preview uses the default key policy. The proposed key
policy cannot be an empty string.

AWS KMS grants – The analysis supports up to 100 KMS grants per configuration*.* If the proposed
grant configuration is for an existing key, the access preview uses the proposed list of grant
configurations in place of the existing grants. Otherwise, the access preview uses the existing grants for
the key.

Preview access to your IAM role
To create an access preview for a new IAM role or an existing IAM role that you own, you can propose an
IAM role configuration by specifying the trust policy.

Role trust policy – If the configuration is for a new IAM role, you must specify the trust policy. If the
configuration is for an existing IAM role that you own and you do not propose the trust policy, the access
preview uses the existing trust policy for the role. The proposed trust policy cannot be an empty string.

Preview access to your Amazon SQS queue
To create an access preview for a new Amazon SQS queue or an existing Amazon SQS queue that you
own, you can propose an Amazon SQS queue configuration by specifying the Amazon SQS policy for the
queue.

Amazon SQS queue policy – If the configuration is for an existing Amazon SQS queue and you do not
specify the Amazon SQS policy, the access preview uses the existing Amazon SQS policy for the queue. If
the access preview is for a new resource and you do not specify the policy, the access preview assumes an
Amazon SQS queue without a policy. To propose deletion of an existing Amazon SQS queue policy, you
can specify an empty string for the Amazon SQS policy.

Preview access to your Secrets Manager secret
To create an access preview for a new Secrets Manager secret or an existing Secrets Manager secret that
you own, you can propose a Secrets Manager secret configuration by specifying the secret policy and
optional AWS KMS encryption key.

Secret policy – If the configuration is for an existing secret and you do not specify the secret policy, the
access preview uses the existing policy for the secret. If the access preview is for a new resource and you
do not specify the policy, the access preview assumes a secret without a policy. To propose deletion of an
existing policy, you can specify an empty string.

AWS KMS encryption key – If the proposed configuration is for a new secret and you do not specify
the AWS KMS key ID, the access preview uses the default KMS key of the AWS account. If you specify an
empty string for the AWS KMS key ID, the access preview uses the default KMS key of the AWS account.

663

AWS Identity and Access Management User Guide
Access Analyzer reference

Reference information for AWS IAM Access
Analyzer

Use the topics in this section to find detailed reference material for various aspects of AWS IAM Access
Analyzer.

Topics

• Access Analyzer filter keys (p. 664)

Access Analyzer filter keys
You can use the filter keys below to define an archive rule CreateArchiveRule, update an archive
rule UpdateArchiveRule, retrieve a list of findings ListFindings, or retrieve a list of access preview
findings for a resource ListAccessPreviewFindings. There is no difference between using IAM API
and AWS CloudFormation for configuring archive rules.

Criterion Description Type Archive rule List findings List access
preview
findings

resource The ARN uniquely
identifying the resource
that the external principal
has access to. To learn
more, see Amazon resource
names (ARNs).

String Yes Yes Yes

resourceType

AWS::IAM::Role
|
AWS::KMS::Key
|
AWS::Lambda::Function
|
AWS::Lambda::LayerVersion
|
AWS::S3::Bucket
|
AWS::SQS::Queue
|
AWS::SecretsManager::Secret

The type of resource that
the external principal has
access to.

String Yes Yes Yes

resourceOwnerAccountThe 12 digit AWS account
ID that owns the resource.
To learn more, see AWS
account identifiers.

String Yes Yes Yes

isPublic Indicates whether the
finding reports a resource
that has a policy that
allows public access.

Boolean Yes Yes Yes

664

https://docs.aws.amazon.com/access-analyzer/latest/APIReference/API_CreateArchiveRule.html
https://docs.aws.amazon.com/access-analyzer/latest/APIReference/API_UpdateArchiveRule.html
https://docs.aws.amazon.com/access-analyzer/latest/APIReference/API_ListFindings.html
https://docs.aws.amazon.com/access-analyzer/latest/APIReference/API_ListAccessPreviewFindings.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html

AWS Identity and Access Management User Guide
Access Analyzer filter keys

Criterion Description Type Archive rule List findings List access
preview
findings

status

ACTIVE |
ARCHIVED |
RESOLVED

The current status of the
finding.

String No Yes Yes

error Indicates the error reported
for the finding. String Yes Yes Yes

principal.AWS The ARN of of the account
granted access to the
resource in the Principal
field of the finding. To learn
more, see AWS account
identifiers.

String Yes Yes Yes

principal.FederatedThe ARN of the federated
identity that has access to
the resource in the finding.
To learn more, see Identity
providers and federation

String Yes Yes Yes

condition.aws:PrincipalArnThe ARN of the principal
(IAM user, role, or group)
indicated as the condition
for resource access. To
learn more, see AWS global
condition context keys.

String Yes Yes Yes

condition.aws:PrincipalOrgIDThe organization identifier
of the principal indicated as
the condition for resource
access. To learn more,
see AWS global condition
context keys.

String Yes Yes Yes

condition.aws:PrincipalOrgPathsThe organization or
organizational unit (OU) ID
indicated as the condition
for resource access. To
learn more, see AWS global
condition context keys.

String Yes Yes Yes

condition.aws:SourceIpThe IP address that allows
the principal access to the
resource when using the
specified IP address. To
learn more, see AWS global
condition context keys.

IP address Yes Yes Yes

665

https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

AWS Identity and Access Management User Guide
Access Analyzer filter keys

Criterion Description Type Archive rule List findings List access
preview
findings

condition.aws:SourceVpcThe VPC ID that allows
the principal access to the
resource when using the
specified VPC. To learn
more, see AWS global
condition context keys.

String Yes Yes Yes

condition.aws:UserIdThe user ID of the IAM user
from an external account
indicated as the condition
for access to the resource.
To learn more, see AWS
global condition context
keys.

String Yes Yes Yes

condition.cognito-
identity.amazonaws.com:aud

The Amazon Cognito
identity pool ID specified
as a condition for IAM role
access in the finding. To
learn more, see IAM and
AWS STS condition context
keys.

String Yes Yes Yes

condition.graph.facebook.com:app_idThe Facebook application
ID (or site ID) specified as
a condition to allow Login
with Facebook federation
access to the IAM role in
the finding. To learn more,
see IAM and AWS STS
condition context keys.

String Yes Yes Yes

condition.accounts.google.com:audThe Google application ID
specified as a condition for
access to the IAM role. To
learn more, see IAM and
AWS STS condition context
keys.

String Yes Yes Yes

condition.kms:CallerAccountThe AWS account ID that
owns the calling entity
(IAM user, role or account
root user) used by services
calling AWS KMS. To learn
more, see Condition keys
for AWS Key Management
Service.

String Yes Yes Yes

condition.www.amazon.com:app_idThe Amazon application
ID (or site ID) specified as
a condition to allow Login
with Amazon federation
access to the role. To learn
more, see

String Yes Yes Yes

666

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awskeymanagementservice.html#awskeymanagementservice-policy-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awskeymanagementservice.html#awskeymanagementservice-policy-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awskeymanagementservice.html#awskeymanagementservice-policy-keys

AWS Identity and Access Management User Guide
Monitoring with EventBridge

Criterion Description Type Archive rule List findings List access
preview
findings

id The ID of the finding. String No Yes Yes

changeType Provides context on how
the access preview finding
compares to existing
access identified in Access
Analyzer.

String No No Yes

existingFindingIdThe existing ID of the
finding in Access Analyzer,
provided only for existing
findings in the access
preview.

String No No Yes

existingFindingStatusThe existing status of the
finding, provided only for
existing findings in the
access preview.

String No No Yes

Monitoring AWS IAM Access Analyzer with Amazon
EventBridge

Use the information in this topic to learn how to monitor Access Analyzer findings and access previews
with Amazon EventBridge. EventBridge is the new version of Amazon CloudWatch Events.

Findings events
Access Analyzer sends an event to EventBridge for each generated finding, for a change to the status of
an existing finding, and when a finding is deleted. To receive findings and notifications about findings,
you must create an event rule in Amazon EventBridge. When you create an event rule, you can also
specify a target action to trigger based on the rule. For example, you could create an event rule that
triggers an Amazon SNS topic when an event for a new finding is received from Access Analyzer.

Access preview events
Access Analyzer sends an event to EventBridge for each access preview and change to its status. This
includes an event when the access preview is first created (status Creating), when the access preview
is complete (status Completed), or when the access preview creation failed (status Failed). To receive
notifications about access previews, you must create an event rule in EventBridge. When you create an
event rule, you can specify a target action to trigger based on the rule. For example, you could create an
event rule that triggers an Amazon SNS topic when an event for a completed access preview is received
from Access Analyzer.

Event notification frequency
Access Analyzer sends events for new findings and findings with status updates to EventBridge within
about an hour from when the event occurs in your account. Access Analyzer also sends events to
EventBridge when a resolved finding is deleted because the retention period has expired. For findings

667

AWS Identity and Access Management User Guide
Example findings events

that are deleted because the analyzer that generated them is deleted, the event is sent to EventBridge
approximately 24 hours after the analyzer was deleted. When a finding is deleted, the finding status
is not changed. Instead, the isDeleted attribute is set to true. Access Analyzer also sends events for
newly created access previews and access preview status changes to EventBridge.

Example findings events
The following is an example Access Analyzer event sent to EventBridge. The id listed is the ID for the
event in EventBridge. To learn more, see Events and Event Patterns in EventBridge.

In the detail object, the values for the accountId and region attributes refer to the account and
region reported in the finding. The isDeleted attribute indicates whether the event was from the
finding being deleted. The id is the finding ID. The resources array is a singleton with the ARN of the
analyzer that generated the finding.

{
 "account": "111122223333",
 "detail": {
 "accountId": "111122223333",
 "action": [
 "s3:GetObject"
],
 "analyzedAt": "2019-11-21T01:22:22Z",
 "condition": {},
 "createdAt": "2019-11-20T04:58:50Z",
 "id": "22222222-dcba-4444-dcba-333333333333",
 "isDeleted": false,
 "isPublic": false,
 "principal": {
 "AWS": "999988887777"
 },
 "region": "us-west-2",
 "resource": "arn:aws:s3:::my-bucket",
 "resourceType": "AWS::S3::Bucket",
 "status": "ACTIVE",
 "updatedAt": "2019-11-21T01:14:07Z",
 "version": "1.0"
 },
 "detail-type": "Access Analyzer Finding",
 "id": "11111111-2222-4444-aaaa-333333333333",
 "region": "us-west-2",
 "resources": [
 "arn:aws:access-analyzer:us-west-2:111122223333:analyzer/MyAnalyzer"
],
 "source": "aws.access-analyzer",
 "time": "2019-11-21T01:22:33Z",
 "version": "0"
}

Access Analyzer also sends events to EventBridge for error findings. An error finding is a finding
generated when Access Analyzer can't analyze the resource. Events for error findings include an error
attribute as shown in the following example.

{
 "account": "111122223333",
 "detail": {
 "accountId": "111122223333",
 "analyzedAt": "2019-11-21T01:22:22Z",
 "createdAt": "2019-11-20T04:58:50Z",
 "error": "ACCESS_DENIED",

668

https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-and-event-patterns.html

AWS Identity and Access Management User Guide
Example access preview events

 "id": "22222222-dcba-4444-dcba-333333333333",
 "isDeleted": false,
 "region": "us-west-2",
 "resource": "arn:aws:s3:::my-bucket",
 "resourceType": "AWS::S3::Bucket",
 "status": "ACTIVE",
 "updatedAt": "2019-11-21T01:14:07Z",
 "version": "1.0"
 },
 "detail-type": "Access Analyzer Finding",
 "id": "11111111-2222-4444-aaaa-333333333333",
 "region": "us-west-2",
 "resources": [
 "arn:aws:access-analyzer:us-west-2:111122223333:analyzer/MyAnalyzer"
],
 "source": "aws.access-analyzer",
 "time": "2019-11-21T01:22:33Z",
 "version": "0"
}

Example access preview events
The following example shows data for the first event that is sent to EventBridge when you create
an access preview. The resources array is a singleton with the ARN of the analyzer that the
access preview is associated with. In the detail object, the id refers to the access preview ID and
configuredResources refers to the resource for which the access preview was created. The status
is Creating and refers to the access preview status. The previousStatus is not specified because the
access preview was just created.

{
 "account": "111122223333",
 "detail": {
 "accessPreviewId": "aaaabbbb-cccc-dddd-eeee-ffffaaaabbbb",
 "configuredResources": [
 "arn:aws:s3:::example-bucket"
],
 "createdAt": "2020-02-20T00:00:00.00Z",
 "region": "us-west-2",
 "status": "CREATING",
 "version": "1.0"
 },
 "detail-type": "Access Preview State Change",
 "id": "aaaabbbb-2222-3333-4444-555566667777",
 "region": "us-west-2",
 "resources": [
 "arn:aws:access-analyzer:us-west-2:111122223333:analyzer/MyAnalyzer"
],
 "source": "aws.access-analyzer",
 "time": "2020-02-20T00:00:00.00Z",
 "version": "0"
}

The following example shows data for an event that is sent to EventBridge for an access preview with a
status change from Creating to Completed. In the detail object, the id refers to the access preview
ID. The status and previousStatus refer to the access preview status, where the previous status was
Creating and the current status is Completed.

{
 "account": "111122223333",
 "detail": {
 "accessPreviewId": "aaaabbbb-cccc-dddd-eeee-ffffaaaabbbb",

669

AWS Identity and Access Management User Guide
Creating an event rule using the console

 "configuredResources": [
 "arn:aws:s3:::example-bucket"
],
 "createdAt": "2020-02-20T00:00:00.000Z",
 "previousStatus": "CREATING",
 "region": "us-west-2",
 "status": "COMPLETED",
 "version": "1.0"
 },
 "detail-type": "Access Preview State Change",
 "id": "11112222-3333-4444-5555-666677778888",
 "region": "us-west-2",
 "resources": [
 "arn:aws:access-analyzer:us-west-2:111122223333:analyzer/MyAnalyzer"
],
 "source": "aws.access-analyzer",
 "time": "2020-02-20T00:00:00.00Z",
 "version": "0"
}

The following example shows data for an event that is sent to EventBridge for an access preview with
a status change from Creating to Failed. In the detail object, the id refers to the access preview
ID. The status and previousStatus refer to the access preview status, where the previous status
was Creating and the current status is Failed. The statusReason field provides the reason code
indicating that the access preview failed due to an invalid resource configuration.

{
 "account": "111122223333",
 "detail": {
 "accessPreviewId": "aaaabbbb-cccc-dddd-eeee-ffffaaaabbbb",
 "configuredResources": [
 "arn:aws:s3:::example-bucket"
],
 "createdAt": "2020-02-20T00:00:00.00Z",
 "previousStatus": "CREATING",
 "region": "us-west-2",
 "status": "FAILED",
 "statusReason": {
 "code": "INVALID_CONFIGURATION"
 },
 "version": "1.0"
 },
 "detail-type": "Access Preview State Change",
 "id": "99998888-7777-6666-5555-444433332222",
 "region": "us-west-2",
 "resources": [
 "arn:aws:access-analyzer:us-west-2:111122223333:analyzer/MyAnalyzer"
],
 "source": "aws.access-analyzer",
 "time": "2020-02-20T00:00:00.00Z",
 "version": "0"
}

Creating an event rule using the console
The following procedure describes how to create an event rule using the console.

Open the Amazon EventBridge console at https://console.aws.amazon.com/events/.

1. Choose Create rule.

2. Enter a Name and, optionally, a Description.

670

https://console.aws.amazon.com/events/

AWS Identity and Access Management User Guide
Creating an event rule using the console

3. Under Define pattern choose Event pattern, then choose Custom pattern.
4. Copy the following findings event example and then paste it into the Event pattern box.

{
 "source": [
 "aws.access-analyzer"
],
 "detail-type": [
 "Access Analyzer Finding"
]
}

Or copy the following access preview event example and then paste it into the Event pattern box.

{
 "source": [
 "aws.access-analyzer"
],
 "detail-type": [
 "Access Preview State Change"
]
}

5. Choose Save.
6. Under Select targets, choose a Target action for the rule, such as an Amazon SNS topic or AWS

Lambda function.
7. Choose the specific SNS topic or Lambda function to use when the target is triggered.

The target is triggered when an event is received that matches the event pattern defined in the rule.
8. Choose Save to create the rule.

To learn more about creating rules, see Creating an EventBridge Rule That Triggers on an Event from an
AWS Resource.

Creating an event rule using the CLI
1. Use the following to create a rule for Amazon EventBridge using the AWS CLI. Replace the rule name

TestRule with the name for your rule.

aws events put-rule --name TestRule --event-pattern "{\"source\":[\"aws.access-analyzer
\"]}"

2. You can customize the rule to trigger target actions only for a subset of generated findings, such
as findings with specific attributes. The following example demonstrates how to create a rule that
triggers a target action only for findings with a status of Active.

aws events put-rule --name TestRule --event-pattern "{\"source\":[\"aws.access-analyzer
\"],\"detail-type\":[\"Access Analyzer Finding\"],\"detail\":{\"status\":[\"ACTIVE
\"]}}"

The following example demonstrates how to create a rule that triggers a target action only for
access previews with a status from Creating to Completed.

aws events put-rule --name TestRule --event-pattern "{\"source\":[\"aws.access-
analyzer\"],\"detail-type\":[\"Access Preview State Change\"],\"detail\":{\"status\":
[\"COMPLETED\"]}}"

671

https://docs.aws.amazon.com/eventbridge/latest/userguide/create-eventbridge-rule.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/create-eventbridge-rule.html

AWS Identity and Access Management User Guide
Security Hub integration

3. To define a Lambda function as a target for the rule you created, use the following example
command. Replace the Region and the function name in the ARN as appropriate for your
environment.

aws events put-targets --rule TestRule --targets Id=1,Arn=arn:aws:lambda:us-
east-1:111122223333:function:MyFunction

4. Add the permissions required to invoke the rule target. The following example demonstrates how to
grant permissions to a Lambda function, following the preceding examples.

aws lambda add-permission --function-name MyFunction --statement-id 1 --action
 'lambda:InvokeFunction' --principal events.amazonaws.com

Integration with AWS Security Hub
AWS Security Hub provides you with a comprehensive view of your security state in AWS and helps you
to check your environment against security industry standards and best practices. Security Hub collects
security data from across AWS accounts, services, and supported third-party partner products and helps
you to analyze your security trends and identify the highest priority security issues.

The IAM Access Analyzer integration with Security Hub enables you to send findings from Access
Analyzer to Security Hub. Security Hub can then include those findings in its analysis of your security
posture.

Contents

• How Access Analyzer sends findings to Security Hub (p. 672)

• Types of findings that Access Analyzer sends (p. 673)

• Latency for sending findings (p. 673)

• Retrying when Security Hub is not available (p. 673)

• Updating existing findings in Security Hub (p. 673)

• Viewing Access Analyzer findings in Security Hub (p. 673)

• Interpreting Access Analyzer finding names in Security Hub (p. 673)

• Typical finding from Access Analyzer (p. 674)

• Enabling and configuring the integration (p. 675)

• How to stop sending findings (p. 675)

How Access Analyzer sends findings to Security Hub
In Security Hub, security issues are tracked as findings. Some findings come from issues that are detected
by other AWS services or by third-party partners. Security Hub also has a set of rules that it uses to
detect security issues and generate findings.

Security Hub provides tools to manage findings from across all of these sources. You can view and filter
lists of findings and view details for a finding. See Viewing findings in the AWS Security Hub User Guide.
You can also track the status of an investigation into a finding. See Taking action on findings in the AWS
Security Hub User Guide.

All findings in Security Hub use a standard JSON format called the AWS Security Finding Format (ASFF).
The ASFF includes details about the source of the issue, the affected resources, and the current status of
the finding. See AWS Security Finding Format (ASFF) in the AWS Security Hub User Guide.

672

https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-findings-viewing.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-findings-taking-action.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-findings-format.html

AWS Identity and Access Management User Guide
Viewing Access Analyzer findings in Security Hub

IAM Access Analyzer is one of the AWS services that sends findings to Security Hub. Access Analyzer
generates a finding when it detects a policy statement that allows an external principal access to a
supported resource (p. 573) in your organization or account. Access Analyzer groups all of its findings
for a resource and sends a single finding to Security Hub.

Types of findings that Access Analyzer sends

Access Analyzer sends the findings to Security Hub using the AWS Security Finding Format (ASFF). In
ASFF, the Types field provides the finding type. Findings from Access Analyzer can have the following
values for Types.

• Effects/Data Exposure/External Access Granted

• Software and Configuration Checks/AWS Security Best Practices/External Access Granted

Latency for sending findings

When Access Analyzer creates a new finding, it is usually sent to Security Hub within 30 minutes. Rarely,
and under certain conditions, Access Analyzer is not notified that a policy was added or updated. For
example, a change to Amazon S3 account-level block public access settings can take up to 12 hours. Also,
if there is a delivery issue with AWS CloudTrail log delivery, the policy change does not trigger a rescan
of the resource that was reported in the finding. When this happens, Access Analyzer analyzes the new or
updated policy during the next periodic scan, which is within 24 hours.

Retrying when Security Hub is not available

If Security Hub is not available, Access Analyzer retries sending the findings on a periodic basis.

Updating existing findings in Security Hub

After it sends a finding to Security Hub, IAM Access Analyzer sends updates to reflect additional
observations of the finding activity to Security Hub. The updates are reflected within the same finding.

The finding for a resource in Security Hub is active if at least one of the findings for the resource in
Access Analyzer is active. If all findings in Access Analyzer for a resource are archived or resolved, then
the Security Hub finding is archived.

The Security Hub finding is updated when you change the policy access between public and cross-
account access. This update can include changes to the type, title, description, and severity of the
finding.

Viewing Access Analyzer findings in Security Hub
To view your Access Analyzer findings in Security Hub, choose See findings in the AWS: IAM Access
Analyzer section of the summary page. Alternatively, you can choose Findings from the navigation
panel. You can then filter the findings to display only IAM Access Analyzer findings by choosing the
Product name: field with a value of IAM Access Analyzer.

Interpreting Access Analyzer finding names in Security Hub

IAM Access Analyzer sends the findings to Security Hub using the AWS Security Finding Format (ASFF).
In ASFF, the Types field provides the finding type. ASFF types use a different naming scheme than IAM
Access Analyzer. The following table includes details about all of the ASFF types associated with IAM
Access Analyzer findings as they appear in Security Hub.

673

https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-findings-format.html

AWS Identity and Access Management User Guide
Typical finding from Access Analyzer

ASFF finding type Security Hub finding title Description

Effects/Data Exposure/External
Access Granted

<resource ARN> allows public
access

A resource-based policy
attached to the resource allows
public access on the resource to
all external principals.

Software and Configuration
Checks/AWS Security Best
Practices/External Access
Granted

<resource ARN> allows cross-
account access

A resource-based policy
attached to the resource allows
cross-account access to external
principals outside the zone of
trust for the analyzer.

Typical finding from Access Analyzer
Access Analyzer sends findings to Security Hub using the AWS Security Finding Format (ASFF).

Here is an example of a typical finding from Access Analyzer.

{
 "SchemaVersion": "2018-10-08",
 "Id": "arn:aws:access-analyzer:us-west-2:111122223333:analyzer/my-analyzer/
arn:aws:s3:::my-bucket",
 "ProductArn": "arn:aws:securityhub:us-west-2::product/aws/access-analyzer",
 "GeneratorId": "aws/access-analyzer",
 "AwsAccountId": "111122223333",
 "Types": ["Software and Configuration Checks/AWS Security Best Practices/External
 Access Granted"],
 "CreatedAt": "2020-11-10T16:17:47Z",
 "UpdatedAt": "2020-11-10T16:43:49Z",
 "Severity": {
 "Product": 1,
 "Label": "LOW",
 "Normalized": 1
 },
 "Title": "AwsS3Bucket/arn:aws:s3:::my-bucket/ allows cross-account access",
 "Description": "AWS::S3::Bucket/arn:aws:s3:::my-bucket/ allows cross-account access
 from AWS 444455556666",
 "Remediation": {
 "Recommendation": {"Text": "If the access isn't intended, it indicates a potential
 security risk. Use the console for the resource to modify or remove the policy that grants
 the unintended access. You can use the Rescan button on the Finding details page in the
 Access Analyzer console to confirm whether the change removed the access. If the access is
 removed, the status changes to Resolved."}
 },
 "SourceUrl": "https://console.aws.amazon.com/access-analyzer/home?region=us-west-2#/
findings/details/dad90d5d-63b4-6575-b0fa-ef9c556ge798",
 "Resources": [
 {
 "Type": "AwsS3Bucket",
 "Id": "arn:aws:s3:::my-bucket",
 "Details": {
 "Other": {
 "External Principal Type": "AWS",
 "Condition": "none",
 "Action Granted": "s3:GetObject,s3:GetObjectVersion",
 "External Principal": "444455556666"
 }
 }
 }

674

https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-findings-format.html

AWS Identity and Access Management User Guide
Enabling and configuring the integration

],
 "WorkflowState": "NEW",
 "Workflow": {"Status": "NEW"},
 "RecordState": "ACTIVE"
}

Enabling and configuring the integration
To use the integration with Security Hub, you must enable Security Hub. For information on how to
enable Security Hub, see Setting up Security Hub in the AWS Security Hub User Guide.

When you enable both Access Analyzer and Security Hub, the integration is enabled automatically.
Access Analyzer immediately begins to send findings to Security Hub.

How to stop sending findings
To stop sending findings to Security Hub, you can use either the Security Hub console or the API.

See Disabling and enabling the flow of findings from an integration (console) or Disabling the flow of
findings from an integration (Security Hub API, AWS CLI) in the AWS Security Hub User Guide.

Logging Access Analyzer API calls with AWS
CloudTrail

Access Analyzer is integrated with AWS CloudTrail, a service that provides a record of actions taken by
a user, role, or an AWS service in Access Analyzer. CloudTrail captures all API calls for Access Analyzer as
events. The calls captured include calls from the Access Analyzer console and code calls to the Access
Analyzer API operations.

If you create a trail, you can enable continuous delivery of CloudTrail events to an Amazon S3 bucket,
including events for Access Analyzer. If you don't configure a trail, you can still view the most recent
events in the CloudTrail console in Event history.

Using the information collected by CloudTrail, you can determine the request that was made to Access
Analyzer, the IP address from which the request was made, who made the request, when it was made,
and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Access Analyzer information in CloudTrail
CloudTrail is enabled on your AWS account when you create the account. When activity occurs in Access
Analyzer, that activity is recorded in a CloudTrail event along with other AWS service events in Event
history. You can view, search, and download recent events in your AWS account. For more information,
see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for Access Analyzer, create a
trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when you create
a trail in the console, the trail applies to all AWS Regions. The trail logs events from all Regions in the
AWS partition and delivers the log files to the Amazon S3 bucket that you specify. Additionally, you can
configure other AWS services to further analyze and act upon the event data collected in CloudTrail logs.
For more information, see the following:

• Overview for Creating a Trail

675

https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-settingup.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-integrations-managing.html#securityhub-integration-findings-flow-console
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-integrations-managing.html#securityhub-integration-findings-flow-disable-api
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-integrations-managing.html#securityhub-integration-findings-flow-disable-api
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html

AWS Identity and Access Management User Guide
Understanding Access Analyzer log file entries

• CloudTrail Supported Services and Integrations
• Configuring Amazon SNS Notifications for CloudTrail
• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from Multiple

Accounts

All Access Analyzer actions are logged by CloudTrail and are documented in the IAM Access Analyzer
API Reference. For example, calls to the CreateAnalyzer, CreateArchiveRule and ListFindings
actions generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or AWS Identity and Access Management (IAM) user
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.
• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity Element.

Understanding Access Analyzer log file entries
A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that you
specify. CloudTrail log files contain one or more log entries. An event represents a single request from
any source and includes information about the requested action, the date and time of the action, request
parameters, and so on. CloudTrail log files aren't an ordered stack trace of the public API calls, so they
don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the CreateAnalyzer operation
made by a user named "Alice" on "June 14, 2018".

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "accessKeyId": "AKIAI44QH8DHBEXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2018-06-14T22:54:20Z"
 },
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AIDACKCEVSQ6C2EXAMPLE",
 "arn": "arn:aws:iam::111122223333:user/Alice",
 "accountId": "111122223333",
 "userName": "Alice"
 }
 }
 },
 "eventTime": "2018-06-14T22:57:36Z",
 "eventSource": "access-analyzer.amazonaws.com",
 "eventName": "CreateAnalyzer",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "198.51.100.179",
 "userAgent": "aws-cli/1.16.205 Python/2.7.16 Darwin/17.7.0 botocore/1.12.195",

676

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/access-analyzer/latest/APIReference/
https://docs.aws.amazon.com/access-analyzer/latest/APIReference/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

AWS Identity and Access Management User Guide
Understanding Access Analyzer log file entries

 "requestParameters": {
 "analyzerName": "test",
 "type": "ACCOUNT",
 "clientToken": "11111111-abcd-2222-abcd-222222222222"
 },
 "responseElements": {
 "arn": "arn:aws:access-analyzer:us-west-2:111122223333:analyzer/test"
 },
 "requestID": "22222222-dcba-4444-dcba-333333333333",
 "eventID": "33333333-bcde-5555-bcde-444444444444",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

677

AWS Identity and Access Management User Guide
General issues

Troubleshooting IAM
If you encounter access-denied issues or similar difficulties when working with AWS Identity and Access
Management (IAM), consult the topics in this section.

Topics

• Troubleshooting general IAM issues (p. 678)

• Troubleshooting IAM policies (p. 683)

• Troubleshooting U2F security keys (p. 697)

• Troubleshooting IAM roles (p. 698)

• Troubleshooting IAM and Amazon EC2 (p. 704)

• Troubleshooting IAM and Amazon S3 (p. 707)

• Troubleshooting SAML 2.0 federation with AWS (p. 707)

Troubleshooting general IAM issues
Use the information here to help you diagnose and fix access-denied or other common issues when you
work with AWS Identity and Access Management (IAM).

Issues

• I can't sign in to my AWS account (p. 678)

• I lost my access keys (p. 678)

• I get "access denied" when I make a request to an AWS service (p. 679)

• I get "access denied" when I make a request with temporary security credentials (p. 680)

• Policy variables aren't working (p. 681)

• Changes that I make are not always immediately visible (p. 681)

• I am not authorized to perform: iam:DeleteVirtualMFADevice (p. 681)

• How do I securely create IAM users? (p. 682)

I can't sign in to my AWS account
Verify that you have the correct credentials and that you are using the correct method to sign in. For
more information, see Troubleshooting AWS sign-in or account issues (p. 68).

I lost my access keys
Access keys consist of two parts:

• The access key identifier. This is not a secret, and can be seen in the IAM console wherever access keys
are listed, such as on the user summary page.

• The secret access key. This is provided when you initially create the access key pair. Just like a
password, it cannot be retrieved later. If you lost your secret access key, then you must create a new

678

AWS Identity and Access Management User Guide
I get "access denied" when I make

a request to an AWS service

access key pair. If you already have the maximum number of access keys (p. 720), you must delete an
existing pair before you can create another.

For more information, see Resetting lost or forgotten passwords or access keys for AWS (p. 109).

I get "access denied" when I make a request to an
AWS service
• Check if the error message includes the type of policy responsible for denying access. For example, if

the error mentions that access is denied due to a Service Control Policy (SCP), then you can focus on
troubleshooting SCP issues. When you know the policy type, you can also check for a deny statement
or a missing allow on the specific action in policies of that policy type. If the error message doesn't
mention the policy type responsible for denying access, use the rest of the guidelines in this section to
troubleshoot further.

• Verify that you have the identity-based policy permission to call the action and resource that you have
requested. If any conditions are set, you must also meet those conditions when you send the request.
For information about viewing or modifying policies for an IAM user, group, or role, see Managing IAM
policies (p. 468).

• If the AWS Management Console returns a message stating that you're not authorized to perform an
action, then you must contact your administrator for assistance. Your administrator provided you with
your sign-in credentials or sign-in link.

The following example error occurs when the mateojackson IAM user attempts to use the console
to view details about a fictional my-example-widget resource but does not have the fictional
widgets:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 widgets:GetWidget on resource: my-example-widget

In this case, Mateo must ask his administrator to update his policies to allow access to the my-
example-widget resource using the widgets:GetWidget action.

• Are you trying to access a service that supports resource-based policies (p. 404), such as Amazon S3,
Amazon SNS, or Amazon SQS? If so, verify that the policy specifies you as a principal and grants you
access. If you make a request to a service within your account, either your identity-based policies or
the resource-based policies can grant you permission. If you make a request to a service in a different
account, then both your identity-based policies and the resource-based policies must grant you
permission. To view the services that support resource-based policies, see AWS services that work with
IAM (p. 725).

• If your policy includes a condition with a key–value pair, review it carefully. Examples
include the aws:RequestTag/tag-key (p. 812) global condition key, the AWS KMS
kms:EncryptionContext:encryption_context_key, and the ResourceTag/tag-key condition
key supported by multiple services. Make sure that the key name does not match multiple results.
Because condition key names are not case sensitive, a condition that checks for a key named foo
matches foo, Foo, or FOO. If your request includes multiple key–value pairs with key names that differ
only by case, then your access might be unexpectedly denied. For more information, see IAM JSON
policy elements: Condition (p. 758).

• If you have a permissions boundary (p. 395), verify that the policy that is used for the permissions
boundary allows your request. If your identity-based policies allow the request, but your permissions
boundary does not, then the request is denied. A permissions boundary controls the maximum
permissions that an IAM principal (user or role) can have. Resource-based policies are not limited by
permissions boundaries. Permissions boundaries are not common. For more information about how
AWS evaluates policies, see Policy evaluation logic (p. 784).

679

https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-kms-encryption-context

AWS Identity and Access Management User Guide
I get "access denied" when I make a request

with temporary security credentials

• If you are signing requests manually (without using the AWS SDKs), verify that you have correctly
signed the request.

I get "access denied" when I make a request with
temporary security credentials
• First, make sure that you are not denied access for a reason that is unrelated to your temporary

credentials. For more information, see I get "access denied" when I make a request to an AWS
service (p. 679).

• Verify that the service accepts temporary security credentials, see AWS services that work with
IAM (p. 725).

• Verify that your requests are being signed correctly and that the request is well-formed. For details,
see your toolkit documentation or Using temporary credentials with AWS resources (p. 334).

• Verify that your temporary security credentials haven't expired. For more information, see Temporary
security credentials in IAM (p. 322).

• Verify that the IAM user or role has the correct permissions. Permissions for temporary security
credentials are derived from an IAM user or role. As a result, the permissions are limited to those that
are granted to the role whose temporary credentials you have assumed. For more information about
how permissions for temporary security credentials are determined, see Controlling permissions for
temporary security credentials (p. 337).

• If you assumed a role, your role session might be limited by session policies. When you request
temporary security credentials (p. 324) programmatically using AWS STS, you can optionally pass
inline or managed session policies (p. 383). Session policies are advanced policies that you pass as a
parameter when you programmatically create a temporary credential session for a role. You can pass a
single JSON inline session policy document using the Policy parameter. You can use the PolicyArns
parameter to specify up to 10 managed session policies. The resulting session's permissions are
the intersection of the role's identity-based policies and the session policies. Alternatively, if your
administrator or a custom program provides you with temporary credentials, they might have included
a session policy to limit your access.

• If you are a federated user, your session might be limited by session policies. You become a federated
user by signing in to AWS as an IAM user and then requesting a federation token. For more information
about federated users, see GetFederationToken—federation through a custom identity broker (p. 329).
If you or your identity broker passed session policies while requesting a federation token, then your
session is limited by those policies. The resulting session's permissions are the intersection of your IAM
user identity-based policies and the session policies. For more information about session policies, see
Session policies (p. 383).

• If you are accessing a resource that has a resource-based policy by using a role, verify that the policy
grants permissions to the role. For example, the following policy allows MyRole from account
111122223333 to access MyBucket.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "S3BucketPolicy",
 "Effect": "Allow",
 "Principal": {"AWS": ["arn:aws:iam::111122223333:role/MyRole"]},
 "Action": ["s3:PutObject"],
 "Resource": ["arn:aws:s3:::MyBucket/*"]
 }]
}

680

http://aws.amazon.com/tools/
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
http://aws.amazon.com/tools/
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetFederationToken.html

AWS Identity and Access Management User Guide
Policy variables aren't working

Policy variables aren't working
• Verify that all policies that include variables include the following version number in the policy:
"Version": "2012-10-17". Without the correct version number, the variables are not replaced
during evaluation. Instead, the variables are evaluated literally. Any policies that don't include
variables will still work if you include the latest version number.

A Version policy element is different from a policy version. The Version policy element is used
within a policy and defines the version of the policy language. A policy version, on the other hand, is
created when you make changes to a customer managed policy in IAM. The changed policy doesn't
overwrite the existing policy. Instead, IAM creates a new version of the managed policy. To learn more
about the Version policy element see IAM JSON policy elements: Version (p. 745). To learn more
about policy versions, see the section called “Versioning IAM policies” (p. 492).

• Verify that your policy variables are in the right case. For details, see IAM policy elements: Variables
and tags (p. 776).

Changes that I make are not always immediately
visible
As a service that is accessed through computers in data centers around the world, IAM uses a distributed
computing model called eventual consistency. Any change that you make in IAM (or other AWS services)
takes time to become visible from all possible endpoints. Some of the delay results from the time it takes
to send the data from server to server, from replication zone to replication zone, and from Region to
Region around the world. IAM also uses caching to improve performance, but in some cases this can add
time: The change might not be visible until the previously cached data times out.

You must design your global applications to account for these potential delays. Ensure that they work
as expected, even when a change made in one location is not instantly visible at another. Such changes
include creating or updating users, groups, roles, or policies. We recommend that you do not include
such IAM changes in the critical, high-availability code paths of your application. Instead, make IAM
changes in a separate initialization or setup routine that you run less frequently. Also, be sure to verify
that the changes have been propagated before production workflows depend on them.

For more information about how some other AWS services are affected by this, consult the following
resources:

• Amazon DynamoDB: What is the consistency model of Amazon DynamoDB? in the DynamoDB FAQ,
and Read Consistency in the Amazon DynamoDB Developer Guide.

• Amazon EC2: EC2 Eventual Consistency in the Amazon EC2 API Reference.

• Amazon EMR: Ensuring Consistency When Using Amazon S3 and Amazon Elastic MapReduce for ETL
Workflows in the AWS Big Data Blog

• Amazon Redshift: Managing Data Consistency in the Amazon Redshift Database Developer Guide

• Amazon S3: Amazon S3 Data Consistency Model in the Amazon Simple Storage Service Developer Guide

I am not authorized to perform:
iam:DeleteVirtualMFADevice
You might receive the following error when you attempt to assign or remove a virtual MFA device for
yourself or others:

681

https://wikipedia.org/wiki/Eventual_consistency
https://aws.amazon.com/dynamodb/faqs
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadConsistency.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/query-api-troubleshooting.html#eventual-consistency
http://aws.amazon.com/blogs/big-data/ensuring-consistency-when-using-amazon-s3-and-amazon-elastic-mapreduce-for-etl-workflows/
http://aws.amazon.com/blogs/big-data/ensuring-consistency-when-using-amazon-s3-and-amazon-elastic-mapreduce-for-etl-workflows/
https://docs.aws.amazon.com/redshift/latest/dg/managing-data-consistency.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/Introduction.html#ConsistencyModel

AWS Identity and Access Management User Guide
How do I securely create IAM users?

User: arn:aws:iam::123456789012:user/Diego is not authorized to perform:
 iam:DeleteVirtualMFADevice on resource: arn:aws:iam::123456789012:mfa/Diego with an
 explicit deny

This could happen if someone previously began assigning a virtual MFA device to a user in the IAM
console and then cancelled the process. This creates an MFA device for the user in IAM but never
activates it. You must delete the existing MFA device before you can associate a new device with the user.

AWS recommends a policy that allows a user to delete their own virtual MFA device only if they are
authenticated using MFA. For more information, see AWS: Allows MFA-authenticated IAM users to
manage their own credentials on the My Security Credentials page (p. 422).

To fix this issue, an administrator should not edit policy permissions. Instead, the administrator must use
the AWS CLI or AWS API to remove the existing but deactivated device.

To delete an existing but deactivated MFA device

1. View the virtual MFA devices in your account.

• AWS CLI: aws iam list-virtual-mfa-devices

• AWS API: ListVirtualMFADevices

2. In the response, locate the ARN of the virtual device for the user you are trying to fix.

3. Delete the device.

• AWS CLI: aws iam delete-virtual-mfa-device

• AWS API: DeleteVirtualMFADevice

How do I securely create IAM users?
If you have employees that require access to AWS, you might choose to create IAM users or use AWS
SSO for authentication. If you use IAM, AWS recommends that you create an IAM user and securely
communicate the credentials to the employee. If you are not physically located next to your employee,
use a secure workflow to communicate credentials to employees.

Use the following workflow to securely create a new user in IAM:

1. Create a new user using the AWS Management Console. Choose to grant AWS Management Console
access with an auto-generated password. If necessary, select the Users must create a new password
at next sign-in check box. Do not add a permissions policy to the user until after they have changed
their password.

2. After the user is added, copy the sign-in URL, user name, and password for the new user. To view the
password, choose Show.

3. Send the password to your employee using a secure communications method in your company, such
as email, chat, or a ticketing system. Separately, provide your users with the IAM user console link
and their user name. Tell the employee to confirm that they can sign in successfully before you will
grant them permissions.

4. After the employee confirms, add the permissions that they need. As a security best practice, add a
policy that requires the user to authenticate using MFA to manage their credentials. For an example
policy, see AWS: Allows MFA-authenticated IAM users to manage their own credentials on the My
Security Credentials page (p. 422).

682

https://docs.aws.amazon.com/cli/latest/reference/iam/list-virtual-mfa-devices.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_ListVirtualMFADevices.html
https://docs.aws.amazon.com/cli/latest/reference/iam/delete-virtual-mfa-device.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_DeleteVirtualMFADevice.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html

AWS Identity and Access Management User Guide
IAM policies

Troubleshooting IAM policies
A policy (p. 381) is an entity in AWS that, when attached to an identity or resource, defines their
permissions. AWS evaluates these policies when a principal, such as a user, makes a request. Permissions
in the policies determine whether the request is allowed or denied. Policies are stored in AWS as JSON
documents that are attached to principals as identity-based policies or to resources as resource-based
policies. You can attach an identity-based policy to a principal (or identity), such as an IAM group, user,
or role. Identity-based policies include AWS managed policies, customer managed policies, and inline
policies. You can create and edit customer managed policies in the AWS Management Console using the
Visual editor tab or the JSON tab. When you view a policy in the AWS Management Console, you can see
a summary of the permissions that are granted by that policy. You can use the visual editor and policy
summaries to help you diagnose and fix common errors encountered while managing IAM policies.

Keep in mind that all IAM policies are stored using syntax that begins with the rules of JavaScript Object
Notation (JSON). You do not have to understand this syntax to create or manage your policies. You can
create and edit a policy using the visual editor in the AWS Management Console. To learn more about
JSON syntax in IAM policies, see Grammar of the IAM JSON policy language (p. 797).

Troubleshooting IAM Policy Topics

• Troubleshoot using the visual editor (p. 683)

• Policy restructuring (p. 684)

• Choosing a resource ARN in the visual editor (p. 684)

• Denying permissions in the visual editor (p. 685)

• Specifying multiple services in the visual editor (p. 685)

• Reducing the size of your policy in the visual editor (p. 685)

• Fixing unrecognized services, actions, or resource types in the visual editor (p. 685)

• Troubleshoot using policy summaries (p. 686)

• Missing policy summary (p. 687)

• Policy summary includes unrecognized services, actions, or resource types (p. 687)

• Service does not support IAM policy summaries (p. 688)

• My policy does not grant the expected permissions (p. 689)

• Troubleshoot policy management (p. 692)

• Attaching or detaching a policy in an IAM account (p. 693)

• Changing policies for your IAM identities based on their activity (p. 693)

• Troubleshoot JSON policy documents (p. 693)

• Validate your policies (p. 693)

• I don't have permissions for policy validation in the JSON editor (p. 693)

• More than one JSON policy object (p. 693)

• More than one JSON statement element (p. 694)

• More than one effect, action, or resource element in a JSON statement element (p. 695)

• Missing JSON version element (p. 696)

Troubleshoot using the visual editor
When you create or edit a customer managed policy, you can use information in the Visual editor tab
to help you troubleshoot errors in your policy. To view an example of using the visual editor to create a
policy, see the section called “Controlling access to identities” (p. 408).

683

http://www.json.org
http://www.json.org

AWS Identity and Access Management User Guide
Troubleshoot using the visual editor

Policy restructuring
When you create a policy, AWS validates, processes, and transforms the policy before storing it. When
AWS returns the policy in response to a user query or displays it in the console, AWS transforms the
policy back into a human-readable format without changing the permissions granted by the policy. This
can result in differences in what you see in the policy visual editor or JSON tab: Visual editor permission
blocks can be added, removed, or reordered, and content within a block can be optimized. In the JSON
tab, insignificant white space can be removed, and elements within JSON maps can be reordered. In
addition, AWS account IDs within the principal elements can be replaced by the ARN of the AWS account
root user. Because of these possible changes, you should not compare JSON policy documents as strings.

When you create a customer managed policy in the AWS Management Console, you can choose to work
entirely in the JSON tab. If you never make any changes in the Visual editor tab and choose Review
policy from the JSON tab, the policy is less likely to be restructured. However, if you create a policy and
use the Visual editor tab to make any modifications, or if you choose Review policy from the Visual
editor tab, then IAM might restructure the policy to optimize its appearance in the visual editor.

This restructuring exists only in your editing session and is not saved automatically.

If your policy is restructured in your editing session, IAM determines whether to save the restructuring
based on the following situations:

On this tab If you edit your policy And then choose
Review policy from this
tab

When you choose Save
changes

Visual editor Edited Visual editor The policy is
restructured

Visual editor Edited JSON The policy is
restructured

Visual editor Not Edited Visual editor The policy is
restructured

JSON Edited Visual editor The policy is
restructured

JSON Edited JSON The policy structure is
not changed

JSON Not Edited JSON The policy structure is
not changed

IAM might restructure complex policies or policies that have permission blocks or statements that allow
multiple services, resource types, or condition keys.

Choosing a resource ARN in the visual editor
When you create or edit a policy using the visual editor, you must first choose a service, and then
choose actions from that service. If the service and actions that you selected support choosing specific
resources (p. 413), then the visual editor lists the supported resource types. You can then choose Add
ARN to provide the details about your resource. You can choose from the following options for adding an
ARN for a resource type.

• Use the ARN builder – Based on the resource type, you might see different fields to build your ARN.
You can also choose Any to provide permissions for any value for the specified setting. For example,

684

AWS Identity and Access Management User Guide
Troubleshoot using the visual editor

if you selected the Amazon EC2 Read access level group, then the actions in your policy support the
instance resource type. You must provide the Region, Account, and InstanceId values for your
resource. If you provide your account ID but choose Any for the Region and instance ID, then the policy
grants permissions to any instance in your account.

• Type or paste the ARN – You can specify resources by their Amazon Resource Name (ARN) (p. 714).
You can include a wildcard character (*) in any field of the ARN (between each pair of colons). For more
information, see IAM JSON policy elements: Resource (p. 755).

Denying permissions in the visual editor
By default, the policy that you create using the visual editor allows the actions that you choose. To
deny the chosen actions instead, choose Switch to deny permissions. Because requests are denied by
default, we recommend as a security best practice that you allow permissions to only those actions and
resources that a user needs. You should create a statement to deny permissions only if you want to
override a permission separately that is allowed by another statement or policy. We recommend that
you limit the number of deny permissions to a minimum because they can increase the difficulty of
troubleshooting permissions. For more information about how IAM evaluates policy logic, see Policy
evaluation logic (p. 784).

Note
By default, only the AWS account root user has access to all the resources in that account. So if
you are not signed in as the root user, you must have permissions granted by a policy.

Specifying multiple services in the visual editor
When you use the visual editor to construct a policy, you can select only one service at a time. This is a
best practice because the visual editor then allows you to choose from the actions for that one service.
You then choose from the resources supported by that service and the selected actions. This makes it
easier to create and troubleshoot your policy.

If you are familiar with the JSON syntax, you can also use a wildcard character (*) to manually specify
multiple services. For example, type Code* to provide permissions for all services beginning with Code,
such as CodeBuild and CodeCommit. However, you must then type the actions and resource ARNs
to complete your policy. Additionally, when you save your policy, it might be restructured (p. 684) to
include each service in a separate permission block.

Alternatively, to use JSON syntax (such as wildcards) for services, create, edit, and save your policy using
the JSON tab.

Reducing the size of your policy in the visual editor
When you use the visual editor to create a policy, IAM creates a JSON document to store your policy. You
can view this document by switching to the JSON tab. If this JSON document exceeds the size limit of a
policy, the visual editor displays an error message and does not allow you to review and save your policy.
To view the IAM limitation on the size of a managed policy, see IAM and STS character quotas (p. 722).

To reduce the size of your policy in the visual editor, edit your policy or move permission blocks to
another policy. The error message includes the number of characters that your policy document contains,
and you can use this information to help you reduce the size of your policy.

Fixing unrecognized services, actions, or resource types in the
visual editor
When you create or edit a policy in the visual editor, you might see a warning that your policy includes an
unrecognized service, action, or resource type.

685

AWS Identity and Access Management User Guide
Troubleshoot using policy summaries

Note
IAM reviews service names, actions, and resource types for services that support policy
summaries. However, your policy summary might include a resource value or condition that does
not exist. Always test your policies with the policy simulator (p. 475).

If your policy includes unrecognized services, actions or resource types, one of the following errors has
occurred:

• Preview service – Services that are in preview do not support the visual editor. If you are participating
in the preview, you can ignore the warning and continue, though you must manually type the actions
and resource ARNs to complete your policy. Alternatively, you can choose the JSON tab to type or
paste a JSON policy document.

• Custom service – Custom services do not support the visual editor. If you are using a custom service,
you can ignore the warning and continue, though you must manually type the actions and resource
ARNs to complete your policy. Alternatively, you can choose the JSON tab to type or paste a JSON
policy document.

• Service does not support the visual editor – If your policy includes a generally available (GA) service
that does not support the visual editor, you can ignore the warning and continue, though you must
manually type the actions and resource ARNs to complete your policy. Alternatively, you can choose
the JSON tab to type or paste a JSON policy document.

Generally available services are services that are released publicly and are not preview or custom
services. If an unrecognized service is generally available and the name is spelled correctly, then the
service does not support the visual editor. To learn how to request visual editor or policy summary
support for a GA service, see Service does not support IAM policy summaries (p. 688).

• Action does not support the visual editor – If your policy includes a supported service with an
unsupported action, you can ignore the warning and continue, though you must manually type the
resource ARNs to complete your policy. Alternatively, you can choose the JSON tab to type or paste a
JSON policy document.

If your policy includes a supported service with an unsupported action, then the service does not fully
support the visual editor. To learn how to request visual editor or policy summary support for a GA
service, see Service does not support IAM policy summaries (p. 688).

• Resource type does not support the visual editor – If your policy includes a supported action with
an unsupported resource type, you can ignore the warning and continue. However, IAM cannot
confirm that you have included resources for all of your selected actions, and you might see additional
warnings.

• Typo – When you manually type a service, action, or resource in the visual editor, you can create a
policy that includes a typo. As a best practice, use the visual editor by selecting from the list of services
and actions, and then complete the resource section according to the prompts. However, if a service
does not fully support the visual editor, you might have to manually type parts of your policy.

If you are certain that your policy contains none of the errors above, then your policy might include a
typo. Check for misspelled service, action, and resource type names. For example, you might use s2
instead of s3 and ListMyBuckets instead of ListAllMyBuckets. Another common action typo is
the inclusion of unnecessary text in ARNs, such as arn:aws:s3: : :*, or missing colons in actions,
such as iam.CreateUser. You can evaluate a policy that might include typos by choosing Review
policy to review the policy summary and confirm whether the policy provides the permissions you
intended.

Troubleshoot using policy summaries
You can diagnose and resolve issues related to policy summaries.

686

AWS Identity and Access Management User Guide
Troubleshoot using policy summaries

Missing policy summary

The IAM console includes policy summary tables that describe the access level, resources, and conditions
that are allowed or denied for each service in a policy. Policies are summarized in three tables: the policy
summary (p. 521), the service summary (p. 531), and the action summary (p. 536). The policy summary
table includes a list of services and summaries of the permissions that are defined by the chosen policy.
You can view the policy summary (p. 520) for any policies that are attached to a user on the Users page.
You can view the policy summary for managed policies on the Policies page. If AWS is unable to render
a summary for a policy, then you see the JSON policy document instead of the summary, and receive the
following error:

A summary for this policy cannot be generated. You can still view or edit the JSON policy document.

If your policy does not include a summary, one of the following errors has occurred:

• Unsupported policy element – IAM does not support generating policy summaries for policies that
include one of the following policy elements (p. 744):

• Principal

• NotPrincipal

• NotResource

• No policy permissions – If a policy does not provide any effective permissions, then the policy
summary cannot be generated. For example, if a policy includes a single statement with the element
"NotAction": "*", then it grants access to all actions except "all actions" (*). This means it grants
Deny or Allow access to nothing.

Note
You must be careful when using these policy elements such as NotPrincipal, NotAction,
and NotResource. For information about using policy elements, see IAM JSON policy
elements reference (p. 744).

You can create a policy that does not provide effective permissions if you provide mismatched services
and resources. This can occur if you specify actions in one service and resources from another service.
In this case, the policy summary does appear. The only indication that there is a problem is that the
resource column in the summary can include a resource from a different service. If this column includes
a mismatched resource, then you should review your policy for errors. To better understand your
policies, always test them with the policy simulator (p. 475).

Policy summary includes unrecognized services, actions, or
resource types

In the IAM console, if a policy summary (p. 520) includes a warning symbol (), then the policy
might include an unrecognized service, action or resource type. To learn about warnings within a policy
summary, see Policy summary (list of services) (p. 521).

Note
IAM reviews service names, actions, and resource types for services that support policy
summaries. However, your policy summary might include a resource value or condition that does
not exist. Always test your policies with the policy simulator (p. 475).

If your policy includes unrecognized services, actions or resource types, one of the following errors has
occurred:

• Preview service – Services that are in preview do not support policy summaries.

• Custom service – Custom services do not support policy summaries.

687

AWS Identity and Access Management User Guide
Troubleshoot using policy summaries

• Service does not support summaries – If your policy includes a generally available (GA) service
that does not support policy summaries, then the service is included in the Unrecognized services
section of the policy summary table. Generally available services are services that are released
publicly and are not preview or custom services. If an unrecognized service is generally available
and the name is spelled correctly, then the service does not support IAM policy summaries. To learn
how to request policy summary support for a GA service, see Service does not support IAM policy
summaries (p. 688).

• Action does not support summaries – If your policy includes a supported service with an unsupported
action, then the action is included in the Unrecognized actions section of the service summary table.
To learn about warnings within a service summary, see Service summary (list of actions) (p. 531).

• Resource type does not support summaries – If your policy includes a supported action with an
unsupported resource type, then the resource is included in the Unrecognized resource types section
of the service summary table. To learn about warnings within a service summary, see Service summary
(list of actions) (p. 531).

• Typo – AWS checks that the JSON is syntactically correct, and that the policy does not include typos
or other errors as part of policy validation (p. 474). As a best practice, we recommend that you open
existing policies and review and resolve any policy validation recommendations.

Service does not support IAM policy summaries

When a generally available (GA) service or action is not recognized by IAM policy summaries or the visual
editor, it is possible that the service does not support these features. Generally available services are
services that are released publicly and are not previewed or custom services. If an unrecognized service
is generally available and the name is spelled correctly, then the service does not support these features.
If your policy includes a supported service with an unsupported action, then the service does not fully
support IAM policy summaries.

To request that a service add IAM policy summary or visual editor support

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Locate the policy that includes the unsupported service:

• If the policy is a managed policy, choose Policies in the navigation pane. In the list of policies,
choose the name of the policy that you want to view.

• If the policy is an inline policy attached to the user, choose Users in the navigation pane. In the list
of users, choose the name of the user whose policy you want to view. In the table of policies for
the user, expand the header for the policy summary that you want to view.

3. In the left side on the AWS Management Console footer, choose Feedback. In the Tell us about
your experience: box, type I request that the <ServiceName> service add support
for IAM policy summaries and the visual editor. If you want more than one service to
support summaries, type I request that the <ServiceName1>, <ServiceName2>, and
<ServiceName3> services add support for IAM policy summaries and the visual
editor.

To request that a service add IAM policy summary support for a missing action

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Locate the policy that includes the unsupported service:

• If the policy is a managed policy, choose Policies in the navigation pane. In the list of policies,
choose the name of the policy that you want to view.

688

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Troubleshoot using policy summaries

• If the policy is an inline policy attached to the user, choose Users in the navigation pane. In the list
of users, choose the name of the user whose policy you want to view. In the table of policies for
the user, choose the name of the policy that you want to view to expand the policy summary.

3. In the policy summary, choose the name of the service that includes an unsupported action.
4. In the left side on the AWS Management Console footer, choose Feedback. In the Tell us about

your experience: box, type I request that the <ServiceName> service add IAM policy
summary and the visual editor support for the <ActionName> action. If you want
to report more than one unsupported action, type I request that the <ServiceName>
service add IAM policy summary and the visual editor support for the
<ActionName1>, <ActionName2>, and <ActionName3> actions.

To request that a different service includes missing actions, repeat the last three steps.

My policy does not grant the expected permissions
To assign permissions to a user, group, role, or resource, you create a policy, which is a document that
defines permissions. The policy document includes the following elements:

• Effect – whether the policy allows or denies access
• Action – the list of actions that are allowed or denied by the policy
• Resource – the list of resources on which the actions can occur
• Condition (Optional) – the circumstances under which the policy grants permission

To learn about these and other policy elements, see IAM JSON policy elements reference (p. 744).

To grant access, your policy must define an action with a supported resource. If your policy also includes
a condition, that condition must include a global condition key (p. 812) or must apply to the action.
To learn which resources are supported by an action, see the AWS documentation for your service. To
learn which conditions are supported by an action, see Actions, Resources, and Condition Keys for AWS
Services.

To learn whether your policy defines an action, resource, or condition that does not grant permissions,
you can view the policy summary (p. 521) for your policy using the IAM console at https://
console.aws.amazon.com/iam/. You can use policy summaries to identify and correct problems in your
policy.

There are several reasons why an element might not grant permissions despite being defined in the IAM
policy:

• An action is defined without an applicable resource (p. 689)
• A resource is defined without an applicable action (p. 690)
• A condition is defined without an applicable action (p. 691)

To view examples of policy summaries that include warnings, see the section called “Policy summary (list
of services)” (p. 521).

An action is defined without an applicable resource

The policy below defines all ec2:Describe* actions and defines a specific resource. None of the
ec2:Describe actions are granted because none of these actions support resource-level permissions.
Resource-level permissions mean that the action supports resources using ARNs (p. 714) in the policy's
Resource (p. 755) element. If an action does not support resource-level permissions, then that
statement in the policy must use a wildcard (*) in the Resource element. To learn which services
support resource-level permissions, see AWS services that work with IAM (p. 725).

689

http://docs.aws.amazon.com/
reference_policies_actions-resources-contextkeys.html
reference_policies_actions-resources-contextkeys.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Troubleshoot using policy summaries

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "ec2:Describe*",
 "Resource": "arn:aws:ec2:us-east-2:ACCOUNT-ID:instance/*"
 }]
}

This policy does not provide any permissions, and the policy summary includes the following error:

This policy does not grant any permissions. To grant access, policies must have
an action that has an applicable resource or condition.

To fix this policy, you must use * in the Resource element.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "ec2:Describe*",
 "Resource": "*"
 }]
}

A resource is defined without an applicable action

The policy below defines an Amazon S3 bucket resource but does not include an S3 action that can be
performed on that resource. This policy also grants full access to all Amazon CloudFront actions.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "cloudfront:*",
 "Resource": [
 "arn:aws:cloudfront:*",
 "arn:aws:s3:::examplebucket"
]
 }]
}

This policy provides permissions for all CloudFront actions. But because the policy defines the S3
examplebucket resource without defining any S3 actions, the policy summary includes the following
warning:

This policy defines some actions, resources, or conditions that do not provide
permissions. To grant access, policies must have an action that has an
applicable resource or condition.

To fix this policy to provide S3 bucket permissions, you must define S3 actions that can be performed on
a bucket resource.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [

690

AWS Identity and Access Management User Guide
Troubleshoot using policy summaries

 "cloudfront:*",
 "s3:CreateBucket",
 "s3:ListBucket*",
 "s3:PutBucket*",
 "s3:GetBucket*"
],
 "Resource": [
 "arn:aws:cloudfront:*",
 "arn:aws:s3:::examplebucket"
]
 }]
}

Alternately, to fix this policy to provide only CloudFront permissions, remove the S3 resource.

A condition is defined without an applicable action

The policy below defines two Amazon S3 actions for all S3 resources, if the S3 prefix equals custom
and the version ID equals 1234. However, the s3:VersionId condition key is used for object version
tagging and is not supported by the defined bucket actions. To learn which conditions are supported by
an action, see Actions, Resources, and Condition Keys for AWS Services and follow the link to the service
documentation for condition keys.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucketVersions",
 "s3:ListBucket"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "s3:prefix": [
 "custom"
],
 "s3:VersionId": [
 "1234"
]
 }
 }
 }
]
}

This policy provides permissions for the s3:ListBucketVersions action and the s3:ListBucket
action if the bucket name includes the custom prefix. But because the s3:VersionId condition is not
supported by any of the defined actions, the policy summary includes the following error:

This policy does not grant any permissions. To grant access, policies must have
an action that has an applicable resource or condition.

To fix this policy to use S3 object version tagging, you must define an S3 action that supports the
s3:VersionId condition key.

{
 "Version": "2012-10-17",
 "Statement": [
 {

691

reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide
Troubleshoot policy management

 "Effect": "Allow",
 "Action": [
 "s3:ListBucketVersions",
 "s3:ListBucket",
 "s3:GetObjectVersion"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "s3:prefix": [
 "custom"
],
 "s3:VersionId": [
 "1234"
]
 }
 }
 }
]
}

This policy provides permissions for every action and condition in the policy. However, the policy
still does not provide any permissions because there is no case where a single action matches both
conditions. Instead, you must create two separate statements that each include only actions with the
conditions to which they apply.

To fix this policy, create two statements. The first statement includes the actions that support the
s3:prefix condition, and the second statement includes the actions that support the s3:VersionId
condition.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucketVersions",
 "s3:ListBucket"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "s3:prefix": "custom"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": "s3:GetObjectVersion",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "s3:VersionId": "1234"
 }
 }
 }
]
}

Troubleshoot policy management
You can diagnose and resolve issues relating to policy management.

692

AWS Identity and Access Management User Guide
Troubleshoot JSON policy documents

Attaching or detaching a policy in an IAM account

Some AWS managed policies are linked to a service. These policies are used only with a service-linked
role (p. 169) for that service. In the IAM console, when you view the Summary page for a policy, the
page includes a banner to indicate that the policy is linked to a service. You cannot attach this policy
to a user, group, or role within IAM. When you create a service-linked role for the service, this policy is
automatically attached to your new role. Because the policy is required, you cannot detach the policy
from the service-linked role.

Changing policies for your IAM identities based on their activity

You can update policies for your IAM identities (users, groups, and roles) based on their activity. To
do this, view your account's events in CloudTrail Event history. CloudTrail event logs include detailed
event information that you can use to change the policy's permissions. You might find that a user or
role is attempting to perform an action in AWS and that request is denied. In that case, you can consider
whether the user or role should have permission to perform the action. If so, you can add the action and
even the ARN of the resource that they attempted to access to their policy. Alternatively, if the user or
role has permissions that they are not using, you might consider removing those permissions from their
policy. Make sure that your policies grant the least privilege (p. 559) that is needed to perform only the
necessary actions. For more information about using CloudTrail, see Viewing CloudTrail Events in the
CloudTrail Console in the AWS CloudTrail User Guide.

Troubleshoot JSON policy documents
You can diagnose and resolve issues relating to JSON policy documents.

Validate your policies

When you create or edit a JSON policy, IAM can perform policy validation to help you create an effective
policy. IAM identifies JSON syntax errors, while IAM Access Analyzer provides additional policy checks
with recommendations to help you further refine your policies. To learn more about policy validation, see
Validating IAM policies (p. 474). To learn more about IAM Access Analyzer policy checks and actionable
recommendations, see IAM Access Analyzer policy validation.

I don't have permissions for policy validation in the JSON editor

In the AWS Management Console, you might receive the following error if you do not have permissions
to view IAM Access Analyzer policy validation results:

You need permissions. You do not have the permissions required to perform this
operation. Ask your administrator to add permissions.

To fix this error, ask your administrator to add the access-analyzer:ValidatePolicy permission for
you.

More than one JSON policy object

An IAM policy must consist of one and only one JSON object. You denote an object by placing { } braces
around it. Although you can nest other objects within a JSON object by embedding additional { } braces
within the outer pair, a policy can contain only one outermost pair of { } braces. The following example is
incorrect because it contains two objects at the top level (called out in red):

{

693

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events-console.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html

AWS Identity and Access Management User Guide
Troubleshoot JSON policy documents

 "Version": "2012-10-17",
 "Statement":
 {
 "Effect":"Allow",
 "Action":"ec2:Describe*",
 "Resource":"*"
 }
 }
 {
 "Statement": {
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::my-bucket/*"
 }
 }

You can, however, meet the intention of the previous example with the use of correct policy grammar.
Instead of including two complete policy objects each with its own Statement element, you can
combine the two blocks into a single Statement element. The Statement element has an array of two
objects as its value, as shown in the following example (called out in bold):

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "ec2:Describe*",
 "Resource":" *"
 },
 {
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::my-bucket/*"
 }
]
 }

More than one JSON statement element
This error might at first appear to be a variation on the previous section. However, syntactically it is a
different type of error. The following example has only one policy object as denoted by a single pair of { }
braces at the top level. However, that object contains two Statement elements within it.

An IAM policy must contain only one Statement element, consisting of the name (Statement)
appearing to the left of a colon, followed by its value on the right. The value of a Statement element
must be an object, denoted by { } braces, containing one Effect element, one Action element, and one
Resource element. The following example is incorrect because it contains two Statement elements in
the policy object (called out in red):

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "ec2:Describe*",
 "Resource": "*"
 },
 "Statement": {
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::my-bucket/*"
 }

694

AWS Identity and Access Management User Guide
Troubleshoot JSON policy documents

 }

A value object can be an array of multiple value objects. To solve this problem, combine the two
Statement elements into one element with an object array, as shown in the following example (called
out in bold):

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "ec2:Describe*",
 "Resource":"*"
 },
 {
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::my-bucket/*"
 }
]
 }

The value of the Statement element is an object array. The array in this example consists of two
objects, each of which is by itself is a correct value for a Statement element. Each object in the array is
separated by commas.

More than one effect, action, or resource element in a JSON
statement element
On the value side of the Statement name/value pair, the object must consist of only one Effect
element, one Action element, and one Resource element. The following policy is incorrect because it
has two Effect elements in the value object of the Statement:

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Deny",
 "Effect": "Allow",
 "Action": "ec2:* ",
 "Resource": "*"
 }
 }

Note
The policy engine does not allow such errors in new or edited policies. However, the policy
engine continues to permit policies that were saved before the engine was updated. The
behavior of existing policies with the error is as follows:

• Multiple Effect elements: only the last Effect element is observed. The others are ignored.

• Multiple Action elements: all Action elements are combined internally and treated as if
they were a single list.

• Multiple Resource elements: all Resource elements are combined internally and treated as
if they were a single list.

The policy engine does not allow you to save any policy with syntax errors. You must correct the
errors in the policy before you can save it.We recommend that you review any correct any policy
validation (p. 474) recommendations for your policies.

695

AWS Identity and Access Management User Guide
Troubleshoot JSON policy documents

In each case, the solution is to remove the incorrect extra element. For Effect elements, this is
straightforward: if you want the previous example to deny permissions to Amazon EC2 instances, then
you must remove the line "Effect": "Allow", from the policy, as follows:

{
 "Version": "2012-10-17",
 "Statement": {
 "Efect": "Deny",
 "Action": "ec2:* ",
 "Resource": "*"
 }
 }

However, if the duplicate element is Action or Resource, then the resolution can be more complicated.
You might have multiple actions that you want to allow (or deny) permission to, or you might want
to control access to multiple resources. For example, the following example is incorrect because it has
multiple Resource elements (called out in red):

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::my-bucket",
 "Resource": "arn:aws:s3:::my-bucket/*"
 }
 }

Each of the required elements in a Statement element's value object can be present only once. The
solution is to place each value in an array. The following example illustrates this by making the two
separate resource elements into one Resource element with an array as the value object (called out in
bold):

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::my-bucket",
 "arn:aws:s3:::my-bucket/*"
]
 }
 }

Missing JSON version element
A Version policy element is different from a policy version. The Version policy element is used within
a policy and defines the version of the policy language. A policy version, on the other hand, is created
when you make changes to a customer managed policy in IAM. The changed policy doesn't overwrite
the existing policy. Instead, IAM creates a new version of the managed policy. To learn more about the
Version policy element see IAM JSON policy elements: Version (p. 745). To learn more about policy
versions, see the section called “Versioning IAM policies” (p. 492).

As AWS features evolve, new capabilities are added to IAM policies to support those features.
Sometimes, an update to the policy syntax includes a new version number. If you use newer features
of the policy grammar in your policy, then you must tell the policy parsing engine which version
you are using. The default policy version is "2008-10-17." If you want to use any policy feature that

696

AWS Identity and Access Management User Guide
U2F security keys

was introduced later, then you must specify the version number that supports the feature you want.
We recommend that you always include the latest policy syntax version number, which is currently
"Version": "2012-10-17". For example, the following policy is incorrect because it uses a policy
variable ${...} in the ARN for a resource. But it fails to specify a policy syntax version that supports
policy variables (called out in red):

{
 "Statement":
 {
 "Action": "iam:*AccessKey*",
 "Effect": "Allow",
 "Resource": "arn:aws:iam::123456789012:user/${aws:username}"
 }
}

Adding a Version element at the top of the policy with the value 2012-10-17, the first IAM API version
that supports policy variables, solves this problem (called out in bold):

{
 "Version": "2012-10-17",
 "Statement":
 {
 "Action": "iam:*AccessKey*",
 "Effect": "Allow",
 "Resource": "arn:aws:iam::123456789012:user/${aws:username}"
 }
}

Troubleshooting U2F security keys
Use the information here to help you diagnose common issues that you might encounter when working
with U2F security keys.

Topics

• I can't enable my U2F security key (p. 697)

• I can't sign in using my U2F security key (p. 698)

• I lost or broke my U2F key (p. 698)

• Other issues (p. 698)

I can't enable my U2F security key
Consult the following solutions depending on your status as an IAM user or system administrator

IAM users
If you can't enable your U2F security key, check the following:

• Are you using a supported configuration?

For information on devices and browsers you can use with U2F and AWS, see Supported configurations
for using U2F security keys (p. 120).

• Are you using Mozilla Firefox?

697

AWS Identity and Access Management User Guide
I can't sign in using my U2F security key

Most Firefox versions that support U2F do not enable support by default. To enable support for U2F in
Firefox, do the following:

1. From the Firefox address bar, type about:config.

2. In the Search bar of the screen that opens, type u2f.

3. Choose security.webauth.u2f and change its value to true.

• Are you using any browser plugins?

AWS does not support the use of plugins to add U2F browser support. Instead, use a browser that
offers native support of the U2F standard.

Even if you're using a supported browser, you may have a plugin that is incompatible with U2F. An
incompatible plugin may prevent you from enabling and using your U2F security key. You should
disable any plugins that might be incompatible and restart your browser. Then retry enabling the U2F
security key.

• Do you have the appropriate permissions?

If you don't have any of the above compatibility issues, you may not have the appropriate permissions.
Contact your system administrator.

System administrators
If you're an administrator and your IAM users can't enable their U2F security keys despite using a
supported configuration, make sure they have the appropriate permissions. For a detailed example, see
IAM tutorial: Permit users to manage their credentials and MFA settings (p. 59).

I can't sign in using my U2F security key
If you're an IAM user and you can't sign in to the AWS Management Console using U2F, first see
Supported configurations for using U2F security keys (p. 120). If you're using a supported configuration
but cannot sign in, contact your system administrator for assistance.

I lost or broke my U2F key
Only one MFA device (virtual, U2F security key, or hardware) is assigned to a user at a time. Replacing a
U2F security key is similar to replacing a hardware MFA device. For information on what to do if you lose
or break any type of MFA device, see What if an MFA device is lost or stops working? (p. 136).

Other issues
If you have an issue with U2F security keys that is not covered here, do one of the following:

• IAM users: Contact your system administrator.

• AWS account root users: Contact AWS Support.

Troubleshooting IAM roles
Use the information here to help you diagnose and fix common issues that you might encounter when
working with IAM roles.

Topics

698

https://aws.amazon.com/premiumsupport/

AWS Identity and Access Management User Guide
I can't assume a role

• I can't assume a role (p. 699)

• A new role appeared in my AWS account (p. 700)

• I can't edit or delete a role in my AWS account (p. 700)

• I'm not authorized to perform: iam:PassRole (p. 701)

• Why can't I assume a role with a 12-hour session? (AWS CLI, AWS API) (p. 701)

• I receive an error when I try to switch roles in the IAM console (p. 701)

• My role has a policy that allows me to perform an action, but I get "access denied" (p. 702)

• The service did not create the role's default policy version (p. 702)

• There is no use case for a service role in the console (p. 703)

I can't assume a role
Check the following:

• When you assume a role using the AWS Management Console, make sure to use the exact name of
your role. Role names are case sensitive when you assume a role.

• When you assume a role using AWS STS API or AWS CLI, make sure to use the exact name of your role
in the ARN. Role names are case sensitive when you assume a role.

• Verify that your IAM policy grants you permission to call sts:AssumeRole for the role that you want
to assume. The Action element of your IAM policy must allow you to call the AssumeRole action. In
addition, the Resource element of your IAM policy must specify the role that you want to assume.
For example, the Resource element can specify a role by its Amazon Resource Name (ARN) or by a
wildcard (*). For example, at least one policy applicable to you must grant permissions similar to the
following:

 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::account_id_number:role/role-name-you-want-to-assume"

• Verify that your IAM identity is tagged with any tags that the IAM policy requires. For example,
in the following policy permissions, the Condition element requires that you, as the principal
requesting to assume the role, must have a specific tag. You must be tagged with department = HR
or department = CS. Otherwise, you cannot assume the role. To learn about tagging IAM users and
roles, see the section called “Tagging IAM resources” (p. 296).

 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "*",
 "Condition": {"StringEquals": {"aws:PrincipalTag/department": [
 "HR",
 "CS"
]}}

• Verify that you meet all the conditions that are specified in the role's trust policy. A Condition can
specify an expiration date, an external ID, or that a request must come only from specific IP addresses.
Consider the following example: If the current date is any time after the specified date, then the policy
never matches and cannot grant you the permission to assume the role.

 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::account_id_number:role/role-name-you-want-to-assume"
 "Condition": {
 "DateLessThan" : {
 "aws:CurrentTime" : "2016-05-01T12:00:00Z"

699

AWS Identity and Access Management User Guide
A new role appeared in my AWS account

 }
 }

• Verify that the AWS account from which you are calling AssumeRole is a trusted entity for the
role that you are assuming. Trusted entities are defined as a Principal in a role's trust policy.
The following example is a trust policy that is attached to the role that you want to assume. In this
example, the account ID with the IAM user that you signed in with must be 123456789012. If your
account number is not listed in the Principal element of the role's trust policy, then you cannot
assume the role. It does not matter what permissions are granted to you in access policies. Note that
the example policy limits permissions to actions that occur between July 1, 2017 and December 31,
2017 (UTC), inclusive. If you log in before or after those dates, then the policy does not match, and you
cannot assume the role.

 "Effect": "Allow",
 "Principal": { "AWS": "arn:aws:iam::123456789012:root" },
 "Action": "sts:AssumeRole",
 "Condition": {
 "DateGreaterThan": {"aws:CurrentTime": "2017-07-01T00:00:00Z"},
 "DateLessThan": {"aws:CurrentTime": "2017-12-31T23:59:59Z"}
 }

• Source Identity – Administrators can configure roles to require identities to pass a custom string that
identifies the person or application that is performing actions in AWS, called source identity. Verify
whether the role being assumed requires that a source identity is set. For more information about
source identity, see Monitor and control actions taken with assumed roles (p. 340).

A new role appeared in my AWS account
Some AWS services require that you use a unique type of service role that is linked directly to the service.
This service-linked role (p. 169) is predefined by the service and includes all the permissions that the
service requires. This makes setting up a service easier because you don't have to manually add the
necessary permissions. For general information about service-linked roles, see Using service-linked
roles (p. 219).

You might already be using a service when it begins supporting service-linked roles. If so, you might
receive an email telling you about a new role in your account. This role includes all the permissions that
the service needs to perform actions on your behalf. You don't need to take any action to support this
role. However, you should not delete the role from your account. Doing so could remove permissions that
the service needs to access AWS resources. You can view the service-linked roles in your account by going
to the IAM Roles page of the IAM console. Service-linked roles appear with (Service-linked role) in the
Trusted entities column of the table.

For information about which services support service-linked roles, see AWS services that work
with IAM (p. 725) and look for the services that have Yes in the Service-Linked Role column. For
information about using the service-linked role for a service, choose the Yes link.

I can't edit or delete a role in my AWS account
You cannot delete or edit the permissions for a service-linked role (p. 169) in IAM. These roles include
predefined trusts and permissions that are required by the service in order to perform actions on your
behalf. You can use the IAM console, AWS CLI, or API to edit only the description of a service-linked role.
You can view the service-linked roles in your account by going to the IAM Roles page in the console.
Service-linked roles appear with (Service-linked role) in the Trusted entities column of the table. A
banner on the role's Summary page also indicates that the role is a service-linked role. You can manage
and delete these roles only through the linked service, if that service supports the action. Be careful
when modifying or deleting a service-linked role because doing so could remove permissions that the
service needs to access AWS resources.

700

AWS Identity and Access Management User Guide
I'm not authorized to perform: iam:PassRole

For information about which services support service-linked roles, see AWS services that work with
IAM (p. 725) and look for the services that have Yes in the Service-Linked Role column.

I'm not authorized to perform: iam:PassRole
When you create a service-linked role, you must have permission to pass that role to the service. Some
services automatically create a service-linked role in your account when you perform an action in that
service. For example, Amazon EC2 Auto Scaling creates the AWSServiceRoleForAutoScaling service-
linked role for you the first time that you create an Auto Scaling group. If you try to create an Auto
Scaling group without the PassRole permission, you receive the following error:

ClientError: An error occurred (AccessDenied) when calling the
PutLifecycleHook operation: User: arn:aws:sts::111122223333:assumed-role/
Testrole/Diego is not authorized to perform: iam:PassRole on resource:
arn:aws:iam::111122223333:role/aws-service-role/autoscaling.amazonaws.com/
AWSServiceRoleForAutoScaling

To fix this error, ask your administrator to add the iam:PassRole permission for you.

To learn which services support service-linked roles, see AWS services that work with IAM (p. 725). To
learn whether a service automatically creates a service-linked role for you, choose the Yes link to view
the service-linked role documentation for the service.

Why can't I assume a role with a 12-hour session?
(AWS CLI, AWS API)
When you use the AWS STS AssumeRole* API or assume-role* CLI operations to assume a role, you
can specify a value for the DurationSeconds parameter. You can specify a value from 900 seconds
(15 minutes) up to the Maximum session duration setting for the role. If you specify a value higher
than this setting, the operation fails. This setting can have a maximum value of 12 hours. For example,
if you specify a session duration of 12 hours, but your administrator set the maximum session duration
to 6 hours, your operation fails. To learn how to view the maximum value for your role, see View the
maximum session duration setting for a role (p. 254).

If you use role chaining (p. 170) (using a role to assume a second role), your session is limited to a
maximum of one hour. If you then use the DurationSeconds parameter to provide a value greater than
one hour, the operation fails.

I receive an error when I try to switch roles in the IAM
console
The information you enter on the Switch Role page must match the information for the role. Otherwise,
the operation fails and you receive the following error:

Invalid information in one or more fields. Check your information or contact
your administrator.

If you receive this error, confirm that the following information is correct:

• Account ID or alias – The AWS account ID is a 12-digit number. Your account might have an alias,
which is a friendly identifier such as your company name that can be used instead of your AWS account
ID. You can use either the account ID or the alias in this field.

• Role name – Role names are case sensitive. The account ID and role name must match what is
configured for the role.

701

AWS Identity and Access Management User Guide
My role has a policy that allows me to

perform an action, but I get "access denied"

If you continue to receive an error message, contact your administrator to verify the previous
information. The role trust policy or the IAM user policy might limit your access. Your administrator can
verify the permissions for these policies.

My role has a policy that allows me to perform an
action, but I get "access denied"
Your role session might be limited by session policies. When you request temporary security
credentials (p. 324) programmatically using AWS STS, you can optionally pass inline or managed
session policies (p. 383). Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary credential session for a role. You can pass a single JSON inline
session policy document using the Policy parameter. You can use the PolicyArns parameter to
specify up to 10 managed session policies. The resulting session's permissions are the intersection of the
role's identity-based policies and the session policies. Alternatively, if your administrator or a custom
program provides you with temporary credentials, they might have included a session policy to limit your
access.

The service did not create the role's default policy
version
A service role is a role that a service assumes to perform actions in your account on your behalf. When
you set up some AWS service environments, you must define a role for the service to assume. In some
cases, the service creates the service role and its policy in IAM for you. Although you can modify or delete
the service role and its policy from within IAM, AWS does not recommend this. The role and policy are
intended for use only by that service. If you edit the policy and set up another environment, when the
service tries to use the same role and policy, the operation can fail.

For example, when you use AWS CodeBuild for the first time, the service creates a role named
codebuild-RWBCore-service-role. That service role uses the policy named codebuild-RWBCore-
managed-policy. If you edit the policy, it creates a new version and saves that version as the default
version. If you perform a subsequent operation in AWS CodeBuild, the service might try to update the
policy. If it does, you receive the following error:

codebuild.amazon.com did not create the default version (V2) of the codebuild-RWBCore-
managed-policy policy that is attached to the codebuild-RWBCore-service-role role. To
 continue, detach the policy from any other identities and then delete the policy and the
 role.

If you receive this error, you must make changes in IAM before you can continue with your service
operation. First, set the default policy version to V1 and try the operation again. If V1 was previously
deleted, or if choosing V1 doesn't work, then clean up and delete the existing policy and role.

For more information on editing managed policies, see Editing customer managed policies
(console) (p. 496). For more information about policy versions, see Versioning IAM policies (p. 492).

To delete a service role and its policy

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

3. In the list of policies, choose the name of the policy that you want to delete.

4. Choose the Policy usage tab to view which IAM users, groups, or roles use this policy. If any of these
identities use the policy, complete the following tasks:

702

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
There is no use case for a service role in the console

a. Create a new managed policy with the necessary permissions. To ensure that the identities have
the same permissions before and after your actions, copy the JSON policy document from the
existing policy. Then create the new managed policy and paste the JSON document as described
in Creating Policies on the JSON Tab (p. 469).

b. For each affected identity, attach the new policy and then detach the old one. For more
information, see Adding and removing IAM identity permissions (p. 484).

5. In the navigation pane, choose Roles.

6. In the list of roles, choose the name of the role that you want to delete.

7. Choose the Trust relationships tab to view which entities can assume the role. If any entity other
than the service is listed, complete the following tasks:

a. Create a new role (p. 228) that trusts those entities.

b. The policy that you created in the previous step. If you skipped that step, create the new
managed policy now.

c. Notify anyone who was assuming the role that they can no longer do so. Provide them with
information about how to assume the new role and have the same permissions.

8. Delete the policy (p. 500).

9. Delete the role (p. 291).

There is no use case for a service role in the console
Some services require that you manually create a service role to grant the service permissions to perform
actions on your behalf. If the service is not listed in the IAM console, you must manually list the service as
the trusted principal. If the documentation for the service or feature that you are using does not include
instructions for listing the service as the trusted principal, provide feedback for the page.

To manually create a service role, you must know the service principal (p. 750) for the service that will
assume the role. A service principal is an identifier that is used to grant permissions to a service. The
service principal is defined by the service.

You can find the service principal for some services by checking the following:

1. Open AWS services that work with IAM (p. 725).

2. Check whether the service has Yes in the Service-linked roles column.

3. Choose the Yes link to view the service-linked role documentation for that service.

4. Find the Service-linked role permissions section for that service to view the service principal (p. 750).

You can manually create a service role using AWS CLI commands (p. 238) or AWS API operations (p. 240).
To manually create a service role using the IAM console, complete the following tasks:

1. Create an IAM role using your account ID. Do not attach a policy or grant any permissions. For details,
see Creating a role to delegate permissions to an IAM user (p. 227).

2. Open the role and edit the trust relationship. Instead of trusting the account, the role must trust the
service. For example, update the following Principal element:

"Principal": { "AWS": "arn:aws:iam::123456789012:root" }

Change the principal to the value for your service, such as IAM.

"Principal": { "Service": "iam.amazonaws.com" }

703

AWS Identity and Access Management User Guide
IAM and Amazon EC2

3. Add the permissions that the service requires by attaching permissions policies to the role.
4. Return to the service that requires the permissions and use the documented method to notify the

service about the new service role.

Troubleshooting IAM and Amazon EC2
Use the information here to help you troubleshoot and fix access denied or other issues that you might
encounter when working with Amazon EC2 and IAM.

Topics
• When attempting to launch an instance, I don't see the role I expected to see in the Amazon EC2

console IAM Role list (p. 704)
• The credentials on my instance are for the wrong role (p. 704)
• When I attempt to call the AddRoleToInstanceProfile, I get an AccessDenied error (p. 705)
• Amazon EC2: When I attempt to launch an instance with a role, I get an AccessDenied error (p. 705)
• I can't access the temporary security credentials on my EC2 instance (p. 705)
• What do the errors from the info document in the IAM subtree mean? (p. 706)

When attempting to launch an instance, I don't see
the role I expected to see in the Amazon EC2 console
IAM Role list
Check the following:

• If you are signed in as an IAM user, verify that you have permission to call ListInstanceProfiles.
For information about the permissions necessary to work with roles, see "Permissions Required for
Using Roles with Amazon EC2" in Using an IAM role to grant permissions to applications running on
Amazon EC2 instances (p. 270). For information about adding permissions to a user, see Managing IAM
policies (p. 468).

If you cannot modify your own permissions, you must contact an administrator who can work with IAM
in order to update your permissions.

• If you created a role by using the IAM CLI or API, verify that you created an instance profile and added
the role to that instance profile. Also, if you name your role and instance profile differently, you won't
see the correct role name in the list of IAM roles in the Amazon EC2 console. The IAM Role list in the
Amazon EC2 console lists the names of instance profiles, not the names of roles. You will have to
select the name of the instance profile that contains the role you want. For details about instance
profiles, see Using instance profiles (p. 276).

Note
If you use the IAM console to create roles, you don't need to work with instance profiles. For
each role that you create in the IAM console, an instance profile is created with the same
name as the role, and the role is automatically added to that instance profile. An instance
profile can contain only one IAM role, and that limit cannot be increased.

The credentials on my instance are for the wrong role
The role in the instance profile might have been replaced recently. If so, your application will need to
wait for the next automatically scheduled credential rotation before credentials for your role become
available.

704

AWS Identity and Access Management User Guide
When I attempt to call the AddRoleToInstanceProfile,

I get an AccessDenied error

When I attempt to call the
AddRoleToInstanceProfile, I get an
AccessDenied error
If you are making requests as an IAM user, verify that you have the following permissions:

• iam:AddRoleToInstanceProfile with the resource matching the instance profile ARN (for
example, arn:aws:iam::999999999999:instance-profile/ExampleInstanceProfile).

For more information about the permissions necessary to work with roles, see "How Do I Get Started?"
in Using an IAM role to grant permissions to applications running on Amazon EC2 instances (p. 270). For
information about adding permissions to a user, see Managing IAM policies (p. 468).

Amazon EC2: When I attempt to launch an instance
with a role, I get an AccessDenied error
Check the following:

• Launch an instance without an instance profile. This will help ensure that the problem is limited to IAM
roles for Amazon EC2 instances.

• If you are making requests as an IAM user, verify that you have the following permissions:
• ec2:RunInstances with a wildcard resource ("*")
• iam:PassRole with the resource matching the role ARN (for example,
arn:aws:iam::999999999999:role/ExampleRoleName)

• Call the IAM GetInstanceProfile action to ensure that you are using a valid instance profile name
or a valid instance profile ARN. For more information, see Using IAM roles with Amazon EC2 instances.

• Call the IAM GetInstanceProfile action to ensure that the instance profile has a role. Empty
instance profiles will fail with an AccessDenied error. For more information about creating a role, see
Creating IAM roles (p. 227).

For more information about the permissions necessary to work with roles, see "How Do I Get Started?"
in Using an IAM role to grant permissions to applications running on Amazon EC2 instances (p. 270). For
information about adding permissions to a user, see Managing IAM policies (p. 468).

I can't access the temporary security credentials on
my EC2 instance
To access temporary security credentials on your EC2 instance, you must first use the IAM console to
create a role. Then you launch an EC2 instance that uses that role and examine the running instance. For
more information, see How Do I Get Started? in Using an IAM role to grant permissions to applications
running on Amazon EC2 instances (p. 270).

If you still can't access your temporary security credentials on your EC2 instance, check the following:

• Can you access another part of the instance metadata service (IMDS)? If not, check that you have no
firewall rules blocking access to requests to the IMDS.

[ec2-user@domU-12-31-39-0A-8D-DE ~]$ GET http://169.254.169.254/latest/meta-data/
hostname; echo

705

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/UsingIAM.html#UsingIAMrolesWithAmazonEC2Instances

AWS Identity and Access Management User Guide
What do the errors from the info

document in the IAM subtree mean?

• Does the iam subtree of the IMDS exist? If not, verify that your instance has an IAM instance profile
associated with it by calling the EC2 DescribeInstances API operation or using the aws ec2 aws
ec2 describe-instances CLI command.

[ec2-user@domU-12-31-39-0A-8D-DE ~]$ GET http://169.254.169.254/latest/meta-data/iam;
 echo

• Check the info document in the IAM subtree for an error. If you have an error, see What do the errors
from the info document in the IAM subtree mean? (p. 706) for more information.

[ec2-user@domU-12-31-39-0A-8D-DE ~]$ GET http://169.254.169.254/latest/meta-data/iam/
info; echo

What do the errors from the info document in the
IAM subtree mean?

The iam/info document indicates
"Code":"InstanceProfileNotFound"

Your IAM instance profile has been deleted and Amazon EC2 can no longer provide credentials to your
instance. You must attach a valid instance profile to your Amazon EC2 instance.

If an instance profile with that name exists, check that the instance profile wasn't deleted and another
was created with the same name:

1. Call the IAM GetInstanceProfile operation to get the InstanceProfileId.

2. Call the Amazon EC2 DescribeInstances operation to get the IamInstanceProfileId for the
instance.

3. Verify that the InstanceProfileId from the IAM operation matches the
IamInstanceProfileId from the Amazon EC2 operation.

If the IDs are different, then the instance profile attached to your instances is no longer valid. You must
attach a valid instance profile to the instance.

The iam/info document indicates a success but indicates
"Message":"Instance Profile does not contain a
role..."

The role has been removed from the instance profile by the IAM RemoveRoleFromInstanceProfile
action. You can use the IAM AddRoleToInstanceProfile action to attach a role to the instance
profile. Your application will need to wait until the next scheduled refresh to access the credentials for
the role.

The iam/security-credentials/[role-name] document
indicates "Code":"AssumeRoleUnauthorizedAccess"
Amazon EC2 does not have permission to assume the role. Permission to assume the role is
controlled by the trust policy attached to the role, like the example that follows. Use the IAM
UpdateAssumeRolePolicy API to update the trust policy.

706

AWS Identity and Access Management User Guide
IAM and Amazon S3

{"Version": "2012-10-17","Statement": [{"Effect": "Allow","Principal": {"Service":
 ["ec2.amazonaws.com"]},"Action": ["sts:AssumeRole"]}]}

Your application will need to wait until the next automatically scheduled refresh to access the credentials
for the role.

Troubleshooting IAM and Amazon S3
Use the information here to help you troubleshoot and fix issues that you might encounter when
working with Amazon S3 and IAM.

How do I grant anonymous access to an Amazon S3
bucket?
You use an Amazon S3 bucket policy that specifies a wildcard (*) in the principal element, which
means anyone can access the bucket. With anonymous access, anyone (including users without an AWS
account) will be able to access the bucket. For a sample policy, see Example Cases for Amazon S3 Bucket
Policies in the Amazon Simple Storage Service Developer Guide.

I'm signed in as an AWS account root user; why can't I
access an Amazon S3 bucket under my account?
In some cases, you might have an IAM user with full access to IAM and Amazon S3. If the IAM user
assigns a bucket policy to an Amazon S3 bucket and doesn't specify the AWS account root user as a
principal, the root user is denied access to that bucket. However, as the root user, you can still access the
bucket. To do that, modify the bucket policy to allow root user access from the Amazon S3 console or the
AWS CLI. Use the following principal, replacing 123456789012 with the ID of the AWS account.

"Principal": { "AWS": "arn:aws:iam::123456789012:root" }

Troubleshooting SAML 2.0 federation with AWS
Use the information here to help you diagnose and fix issues that you might encounter when working
with SAML 2.0 and federation with IAM.

Topics
• Error: Your request included an invalid SAML response. to logout, click here. (p. 708)
• Error: RoleSessionName is required in AuthnResponse (service: AWSSecurityTokenService; status

code: 400; error code: InvalidIdentityToken) (p. 708)
• Error: Not authorized to perform sts:AssumeRoleWithSAML (service: AWSSecurityTokenService;

status code: 403; error code: AccessDenied) (p. 708)
• Error: RoleSessionName in AuthnResponse must match [a-zA-Z_0-9+=,.@-]{2,64} (service:

AWSSecurityTokenService; status code: 400; error code: InvalidIdentityToken) (p. 709)
• Error: Source Identity must match [a-zA-Z_0-9+=,.@-]{2,64} and not begin with "aws:" (service:

AWSSecurityTokenService; status code: 400; error code: InvalidIdentityToken) (p. 709)
• Error: Response signature invalid (service: AWSSecurityTokenService; status code: 400; error code:

InvalidIdentityToken) (p. 709)

707

https://docs.aws.amazon.com/AmazonS3/latest/dev/AccessPolicyLanguage_UseCases_s3_a.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/AccessPolicyLanguage_UseCases_s3_a.html

AWS Identity and Access Management User Guide
Invalid SAML response

• Error: Failed to assume role: Issuer not present in specified provider
(service: AWSOpenIdDiscoveryService; status code: 400; error code:
AuthSamlInvalidSamlResponseException) (p. 710)

• Error: Could not parse metadata. (p. 710)
• Error: Specified provider doesn't exist. (p. 710)
• Error: Requested DurationSeconds exceeds MaxSessionDuration set for this role. (p. 710)
• How to view a SAML response in your browser for troubleshooting (p. 710)

Error: Your request included an invalid SAML
response. to logout, click here.
This error can occur when the SAML response from the identity provider does not include an attribute
with the Name set to https://aws.amazon.com/SAML/Attributes/Role. The attribute must
contain one or more AttributeValue elements, each containing a comma-separated pair of strings:

• The ARN of a role that the user can be mapped to
• The ARN of the SAML provider

For more information, see Configuring SAML assertions for the authentication response (p. 204). To
view the SAML response in your browser, follow the steps listed in How to view a SAML response in your
browser for troubleshooting (p. 710).

Error: RoleSessionName is required in AuthnResponse
(service: AWSSecurityTokenService; status code: 400;
error code: InvalidIdentityToken)
This error can occur when the SAML response from the identity provider does not include an attribute
with the Name set to https://aws.amazon.com/SAML/Attributes/RoleSessionName. The
attribute value is an identifier for the user and is typically a user ID or an email address.

For more information, see Configuring SAML assertions for the authentication response (p. 204). To
view the SAML response in your browser, follow the steps listed in How to view a SAML response in your
browser for troubleshooting (p. 710).

Error: Not authorized to perform
sts:AssumeRoleWithSAML (service:
AWSSecurityTokenService; status code: 403; error
code: AccessDenied)
This error can occur if the IAM role specified in the SAML response is misspelled or does not exist. Make
sure to use the exact name of your role, because role names are case sensitive. Correct the name of the
role in the SAML service provider configuration.

You are allowed access only if your role trust policy includes the sts:AssumeRoleWithSAML action. If
your SAML assertion is configured to use the PrincipalTag attribute (p. 205), your trust policy must
also include the sts:TagSession action. For more information about session tags, see Passing session
tags in AWS STS (p. 313).

708

AWS Identity and Access Management User Guide
Invalid RoleSessionName characters

This error can occur if you do not have sts:SetSourceIdentity permissions in your role trust policy.
If your SAML assertion is configured to use the SourceIdentity (p. 207) attribute, then your trust
policy must also include the sts:SetSourceIdentity action. For more information about source
identity, see Monitor and control actions taken with assumed roles (p. 340).

This error can also occur if the federated users do not have permissions to assume the role. The role must
have a trust policy that specifies the ARN of the IAM SAML identity provider as the Principal. The role
also contains conditions that control which users can assume the role. Ensure that your users meet the
requirements of the conditions.

This error can also occur if the SAML response does not include a Subject containing a NameID.

For more information, see Establish Permissions in AWS for Federated Users and Configuring SAML
assertions for the authentication response (p. 204). To view the SAML response in your browser, follow
the steps listed in How to view a SAML response in your browser for troubleshooting (p. 710).

Error: RoleSessionName in AuthnResponse
must match [a-zA-Z_0-9+=,.@-]{2,64} (service:
AWSSecurityTokenService; status code: 400; error
code: InvalidIdentityToken)
This error can occur if the RoleSessionName attribute value is too long or contains invalid characters.
The maximum valid length is 64 characters.

For more information, see Configuring SAML assertions for the authentication response (p. 204). To
view the SAML response in your browser, follow the steps listed in How to view a SAML response in your
browser for troubleshooting (p. 710).

Error: Source Identity must match [a-zA-Z_0-9+=,.@-]
{2,64} and not begin with "aws:" (service:
AWSSecurityTokenService; status code: 400; error
code: InvalidIdentityToken)
This error can occur if the sourceIdentity attribute value is too long or contains invalid characters.
The maximum valid length is 64 characters. For more information about source identity, see Monitor and
control actions taken with assumed roles (p. 340).

For more information about creating SAML assertions, see Configuring SAML assertions for the
authentication response (p. 204). To view the SAML response in your browser, follow the steps listed in
How to view a SAML response in your browser for troubleshooting (p. 710).

Error: Response signature invalid (service:
AWSSecurityTokenService; status code: 400; error
code: InvalidIdentityToken)
This error can occur when federation metadata of the identity provider does not match the metadata
of the IAM identity provider. For example, the metadata file for the identity service provider might have
changed to update an expired certificate. Download the updated SAML metadata file from your identity

709

https://docs.aws.amazon.com/STS/latest/UsingSTS/STSMgmtConsole-SAML.html#configuring-role

AWS Identity and Access Management User Guide
Failed to assume role

service provider. Then update it in the AWS identity provider entity that you define in IAM with the
aws iam update-saml-provider cross-platform CLI command or the Update-IAMSAMLProvider
PowerShell cmdlet.

Error: Failed to assume role: Issuer not
present in specified provider (service:
AWSOpenIdDiscoveryService; status code: 400; error
code: AuthSamlInvalidSamlResponseException)
This error can occur if the issuer in the SAML response does not match the issuer declared in the
federation metadata file. The metadata file was uploaded to AWS when you created the identity provider
in IAM.

Error: Could not parse metadata.
This error can occur if your metadata file is not formatted properly.

When you create or manage a SAML identity provider (p. 198) in the AWS Management Console, you
must retrieve the SAML metadata document from your identity provider. This metadata file includes the
issuer's name, expiration information, and keys that can be used to validate the SAML authentication
response (assertions) that are received from the IdP. The metadata file must be encoded in UTF-8
format without a byte order mark (BOM). Also, the x.509 certificate that is included as part of the SAML
metadata document must use a key size of at least 1024 bits. If the key size is smaller, the IdP creation
fails with an "Unable to parse metadata" error. To remove the BOM, you can encode the file as UTF-8
using a text editing tool, such as Notepad++.

Error: Specified provider doesn't exist.
This error can occur if the name of the provider that you specify in the SAML assertion does not match
the name of the provider configured in IAM. For more information about viewing the provider name, see
Creating IAM SAML identity providers (p. 197).

Error: Requested DurationSeconds exceeds
MaxSessionDuration set for this role.
This error can occur if you assume a role from the AWS CLI or API.

When you use the assume-role-with-saml CLI or AssumeRoleWithSAML API operations to assume a role,
you can specify a value for the DurationSeconds parameter. You can specify a value from 900 seconds
(15 minutes) up to the maximum session duration setting for the role. If you specify a value higher than
this setting, the operation fails. For example, if you specify a session duration of 12 hours, but your
administrator set the maximum session duration to 6 hours, your operation fails. To learn how to view
the maximum value for your role, see View the maximum session duration setting for a role (p. 254).

How to view a SAML response in your browser for
troubleshooting
The following procedures describe how to view the SAML response from your service provider from in
your browser when troubleshooting a SAML 2.0–related issue.

710

https://docs.aws.amazon.com/cli/latest/reference/sts/assume-role-with-saml.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRoleWithSAML.html

AWS Identity and Access Management User Guide
Viewing a SAML response in your browser

For all browsers, go to the page where you can reproduce the issue. Then follow the steps for the
appropriate browser:

Topics
• Google chrome (p. 711)
• Mozilla firefox (p. 711)
• Apple safari (p. 711)
• Microsoft Internet Explorer (p. 712)
• What to do with the Base64-encoded SAML response (p. 712)

Google chrome

To view a SAML response in chrome

These steps were tested using version 54.0.2840.87m. If you use another version, you might need to
adapt the steps accordingly.

1. Press F12 to start the developer console.
2. Select the Network tab, and then select Preserve log.
3. Reproduce the issue.
4. Look for a SAML Post in the developer console pane. Select that row, and then view the Headers tab

at the bottom. Look for the SAMLResponse attribute that contains the encoded request.

Mozilla firefox

To view a SAML response in firefox

This procedure was tested on version 37.0.2 of Mozilla Firefox. If you use another version, you might
need to adapt the steps accordingly.

1. Press F12 to start the developer console.
2. In the upper right of the developer tools window, click options (the small gear icon). Under Common

Preferences select Enable persistent logs.
3. Select the Network tab.
4. Reproduce the issue.
5. Look for a POST SAML in the table. Select that row. In the Form Data window on the right, select

the Params tab and find the SAMLResponse element.

Apple safari

To view a SAML response in safari

These steps were tested using version 8.0.6 (10600.6.3). If you use another version, you might need to
adapt the steps accordingly.

1. Enable Web Inspector in Safari. Open the Preferences window, select the Advanced tab, and then
select Show Develop menu in the menu bar.

2. Now you can open Web Inspector. Click Develop, then select Show Web Inspector.
3. Select the Resources tab.
4. Reproduce the issue.

711

AWS Identity and Access Management User Guide
Viewing a SAML response in your browser

5. Look for a saml-signin.aws.amazon.com request.
6. Scroll down to find Request Data with the name SAMLResponse. The associated value is the

Base64-encoded response.

Microsoft Internet Explorer

To view a SAML response in Internet Explorer

The best way to analyze network traffic in Internet Explorer is through the use of a third-party tool.

• Follow the steps at http://social.technet.microsoft.com/wiki/contents/articles/3286.ad-fs-2-0-how-
to-use-fiddler-web-debugger-to-analyze-a-ws-federation-passive-sign-in.aspx to download and
install Fiddler and capture the data.

What to do with the Base64-encoded SAML response
Once you find the Base64-encoded SAML response element in your browser, copy it and use your favorite
Base-64 decoding tool to extract the XML tagged response.

Security tip
Because the SAML response data that you are viewing might contain sensitive security data, we
recommend that you do not use an online base64 decoder. Instead use a tool installed on your
local computer that does not send your SAML data over the network.

Built-in option for Windows systems (PowerShell):

PS C:
\> [System.Text.Encoding]::UTF8.GetString([System.Convert]::FromBase64String("base64encodedtext"))

Built-in option for MacOS and Linux systems:

$ echo "base64encodedtext" | base64 --decode

712

http://social.technet.microsoft.com/wiki/contents/articles/3286.ad-fs-2-0-how-to-use-fiddler-web-debugger-to-analyze-a-ws-federation-passive-sign-in.aspx
http://social.technet.microsoft.com/wiki/contents/articles/3286.ad-fs-2-0-how-to-use-fiddler-web-debugger-to-analyze-a-ws-federation-passive-sign-in.aspx

AWS Identity and Access Management User Guide
IAM identifiers

Reference information for AWS
Identity and Access Management

Use the topics in this section to find detailed reference material for various aspects of IAM and AWS STS.

Topics
• IAM identifiers (p. 713)
• IAM and AWS STS quotas (p. 719)
• AWS services that work with IAM (p. 725)
• IAM JSON policy reference (p. 744)

IAM identifiers
IAM uses a few different identifiers for users, user groups, roles, policies, and server certificates. This
section describes the identifiers and when you use each.

Topics
• Friendly names and paths (p. 713)
• IAM ARNs (p. 714)
• Unique identifiers (p. 718)

Friendly names and paths
When you create a user, a role, a user group, or a policy, or when you upload a server certificate, you
give it a friendly name. Examples include Bob, TestApp1, Developers, ManageCredentialsPermissions, or
ProdServerCert.

If you are using the IAM API or AWS Command Line Interface (AWS CLI) to create IAM resources,
you can also add resources an optional path. You can use a single path, or nest multiple paths as a
folder structure. For example, you could use the nested path /division_abc/subdivision_xyz/
product_1234/engineering/ to match your company organizational structure. You could then create
a policy to allow all users in that path to access the policy simulator API. To view this policy, see IAM:
Access the policy simulator API based on user path (p. 454). For information about how a friendly name
can be specified, see the User API documentation. For additional examples of how you might use paths,
see IAM ARNs (p. 714).

When you use AWS CloudFormation to create resources, you can specify a path for users, user groups,
and roles, and customer managed policies.

If you have a user and user group in the same path, IAM doesn't automatically put the user in that user
group. For example, you might create a Developers user group and specify the path as /division_abc/
subdivision_xyz/product_1234/engineering/. If you create a user named Bob and add the same path
to him, this doesn't automatically put Bob in the Developers user group. IAM doesn't enforce any
boundaries between users or user groups based on their paths. Users with different paths can use the
same resources if they've been granted permission to those resources. The number and size of IAM
resources in an AWS account are limited. For more information, see IAM and AWS STS quotas (p. 719).

713

https://docs.aws.amazon.com/IAM/latest/APIReference/API_User.html

AWS Identity and Access Management User Guide
IAM ARNs

IAM ARNs
Most resources have a friendly name (for example, a user named Bob or a user group named
Developers). However, the permissions policy language requires you to specify the resource or
resources using the following Amazon Resource Name (ARN) format.

arn:partition:service:region:account:resource

Where:

• partition identifies the partition for the resource . For standard AWS Regions, the partition is aws.
If you have resources in other partitions, the partition is aws-partitionname. For example, the
partition for resources in the China (Beijing) Region is aws-cn. You cannot delegate access (p. 294)
between accounts in different partitions.

• service identifies the AWS product. IAM resources always uses iam.
• region identifies the Region of the resource . For IAM resources, this is always kept blank.
• account specifies the AWS account ID with no hyphens or the alias for the AWS account.
• resource identifies the specific resource by name.

You can specify IAM and AWS STS ARNs using the following syntax. The Region portion of the ARN is
blank because IAM resources are global.

Syntax:

arn:aws:iam::account:root
arn:aws:iam::account:user/user-name-with-path
arn:aws:iam::account:group/group-name-with-path
arn:aws:iam::account:role/role-name-with-path
arn:aws:iam::account:policy/policy-name-with-path
arn:aws:iam::account:instance-profile/instance-profile-name-with-path
arn:aws:sts::account:federated-user/user-name
arn:aws:sts::account:assumed-role/role-name/role-session-name
arn:aws:iam::account:mfa/virtual-device-name-with-path
arn:aws:iam::account:u2f/u2f-token-id
arn:aws:iam::account:server-certificate/certificate-name-with-path
arn:aws:iam::account:saml-provider/provider-name
arn:aws:iam::account:oidc-provider/provider-name

Many of the following examples include paths in the resource part of the ARN. Paths cannot be created
or manipulated in the AWS Management Console. To use paths, you must work with the resource by
using the AWS API, the AWS CLI, or the Tools for Windows PowerShell.

Examples:

arn:aws:iam::123456789012:root
arn:aws:iam::123456789012:user/JohnDoe
arn:aws:iam::123456789012:user/division_abc/subdivision_xyz/JaneDoe
arn:aws:iam::123456789012:group/Developers
arn:aws:iam::123456789012:group/division_abc/subdivision_xyz/product_A/Developers
arn:aws:iam::123456789012:role/S3Access
arn:aws:iam::123456789012:role/application_abc/component_xyz/RDSAccess
arn:aws:iam::123456789012:role/aws-service-role/access-analyzer.amazonaws.com/
AWSServiceRoleForAccessAnalyzer
arn:aws:iam::123456789012:role/service-role/QuickSightAction
arn:aws:iam::123456789012:policy/UsersManageOwnCredentials
arn:aws:iam::123456789012:policy/division_abc/subdivision_xyz/UsersManageOwnCredentials
arn:aws:iam::123456789012:instance-profile/Webserver

714

AWS Identity and Access Management User Guide
IAM ARNs

arn:aws:sts::123456789012:federated-user/JohnDoe
arn:aws:sts::123456789012:assumed-role/Accounting-Role/JaneDoe
arn:aws:iam::123456789012:mfa/JaneDoeMFA
arn:aws:iam::123456789012:u2f/user/JohnDoe/default (U2F security key)
arn:aws:iam::123456789012:server-certificate/ProdServerCert
arn:aws:iam::123456789012:server-certificate/division_abc/subdivision_xyz/ProdServerCert
arn:aws:iam::123456789012:saml-provider/ADFSProvider
arn:aws:iam::123456789012:oidc-provider/GoogleProvider

The following examples provide more detail to help you understand the ARN format for different types
of IAM and AWS STS resources.

• An IAM user in the account:

Note
Each IAM user name is unique and case-insensitive.

arn:aws:iam::123456789012:user/JohnDoe

• Another user with a path reflecting an organization chart:

arn:aws:iam::123456789012:user/division_abc/subdivision_xyz/JaneDoe

• An IAM user group:

arn:aws:iam::123456789012:group/Developers

• An IAM user group with a path:

arn:aws:iam::123456789012:group/division_abc/subdivision_xyz/product_A/Developers

• An IAM role:

arn:aws:iam::123456789012:role/S3Access

• A service-linked role (p. 169):

arn:aws:iam::123456789012:role/aws-service-role/access-analyzer.amazonaws.com/
AWSServiceRoleForAccessAnalyzer

• A service role (p. 169):

arn:aws:iam::123456789012:role/service-role/QuickSightAction

• A managed policy:

arn:aws:iam::123456789012:policy/ManageCredentialsPermissions

• An instance profile that can be associated with an EC2 instance:

arn:aws:iam::123456789012:instance-profile/Webserver

• A federated user identified in IAM as "Paulo":

arn:aws:sts::123456789012:federated-user/Paulo

• The active session of someone assuming the role of "Accounting-Role", with a role session name of
"Mary":

715

AWS Identity and Access Management User Guide
IAM ARNs

arn:aws:sts::123456789012:assumed-role/Accounting-Role/Mary

• The multi-factor authentication device assigned to the user named Jorge:

arn:aws:iam::123456789012:mfa/Jorge

• A server certificate:

arn:aws:iam::123456789012:server-certificate/ProdServerCert

• A server certificate with a path that reflects an organization chart:

arn:aws:iam::123456789012:server-certificate/division_abc/subdivision_xyz/ProdServerCert

• Identity providers (SAML and OIDC):

arn:aws:iam::123456789012:saml-provider/ADFSProvider
arn:aws:iam::123456789012:oidc-provider/GoogleProvider

Another important ARN is the root user ARN. Although this is not an IAM resource, you should be familiar
with the format of this ARN. It is often used in the Principal element (p. 747) of a policy.

• The AWS account displays the following:

arn:aws:iam::123456789012:root

The following example shows a policy you could assign to Richard to allow him to manage his access
keys. Notice that the resource is the IAM user Richard.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ManageRichardAccessKeys",
 "Effect": "Allow",
 "Action": [
 "iam:*AccessKey*",
 "iam:GetUser"
],
 "Resource": "arn:aws:iam::*:user/division_abc/subdivision_xyz/Richard"
 },
 {
 "Sid": "ListForConsole",
 "Effect": "Allow",
 "Action": "iam:ListUsers",
 "Resource": "*"
 }
]
}

Note
When you use ARNs to identify resources in an IAM policy, you can include policy variables.
Policy variables can include placeholders for runtime information (such as the user's name) as
part of the ARN. For more information, see IAM policy elements: Variables and tags (p. 776)

716

AWS Identity and Access Management User Guide
IAM ARNs

Using wildcards and paths in ARNs
You can use wildcards in the resource portion of the ARN to specify multiple users or user groups or
policies. For example, to specify all users working on product_1234, you would use:

arn:aws:iam::123456789012:user/division_abc/subdivision_xyz/product_1234/*

Let's say you have users whose names start with the string app_. You could refer to them all with the
following ARN.

arn:aws:iam::123456789012:user/division_abc/subdivision_xyz/product_1234/app_*

To specify all users, user groups, or policies in your AWS account, use a wildcard after the user/,
group/, or policy/ part of the ARN, respectively.

arn:aws:iam::123456789012:user/*
arn:aws:iam::123456789012:group/*
arn:aws:iam::123456789012:policy/*

If you specify the following ARN for a user arn:aws:iam::111122223333:user/* it matches both of
the following examples.

arn:aws:iam::111122223333:user/JohnDoe
arn:aws:iam::111122223333:user/division_abc/subdivision_xyz/JaneDoe

But, if you specify the following ARN for a user arn:aws:iam::111122223333:user/
division_abc* it matches the second example, but not the first.

arn:aws:iam::111122223333:user/JohnDoe
arn:aws:iam::111122223333:user/division_abc/subdivision_xyz/JaneDoe

Don't use a wildcard in the user/, group/, or policy/ part of the ARN. For example, the following is
not allowed:

arn:aws:iam::123456789012:u*

Example Example use of paths and ARNs for a project-based user group

Paths cannot be created or manipulated in the AWS Management Console. To use paths you must work
with the resource by using the AWS API, the AWS CLI, or the Tools for Windows PowerShell.

In this example, Jules in the Marketing_Admin user group creates a project-based user group within the /
marketing/ path. Jules assigns users from different parts of the company to the user group. This example
illustrates that a user's path isn't related to the user groups the user is in.

The marketing group has a new product they'll be launching, so Jules creates a new user group in the /
marketing/ path called Widget_Launch. Jules then assigns the following policy to the user group, which
gives the user group access to objects in the part of the example_bucket that is designated to this
particular launch.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": "arn:aws:s3:::example_bucket/marketing/newproductlaunch/widget/*"

717

AWS Identity and Access Management User Guide
Unique identifiers

 },
 {
 "Effect": "Allow",
 "Action": "s3:ListBucket*",
 "Resource": "arn:aws:s3:::example_bucket",
 "Condition": {"StringLike": {"s3:prefix": "marketing/newproductlaunch/widget/*"}}
 }
]
}

Jules then assigns the users who are working on this launch to the user group. This includes Patricia and
Eli from the /marketing/ path. It also includes Chris and Chloe from the /sales/ path, and Alice and Jim
from the /legal/ path.

Unique identifiers
When IAM creates a user, user group, role, policy, instance profile, or server certificate, it assigns to each
resource a unique ID that looks like this:

AIDAJQABLZS4A3QDU576Q

For the most part, you use friendly names and ARNs (p. 714) when you work with IAM resources. That
way you don't need to know the unique ID for a specific resource. However, the unique ID can sometimes
be useful when it isn't practical to use friendly names.

One example reuses friendly names in your AWS account. Within your account, a friendly name for a
user, user group, or policy must be unique. For example, you might create an IAM user named David. Your
company uses Amazon S3 and has a bucket with folders for each employee. The bucket has a resource-
based policy (a bucket policy) that allows users access only their own folders in the bucket. Suppose that
the employee named David leaves your company and you delete the corresponding IAM user. But later
another employee named David starts and you create a new IAM user named David. If the bucket policy
specifies the David IAM user, the policy allows the new David to access information that was left by the
former David.

However, every IAM user has a unique ID, even if you create a new IAM user that reuses a friendly name
you deleted before. In the example, the old IAM user David and the new IAM user David have different
unique IDs. You can create resource-based policies that grant access by unique ID and not just by user
name. Doing so reduces the chance that you could inadvertently grant access to information that an
employee should not have.

Another example where user IDs can be useful is if you maintain your own database (or other store) of
IAM user information. The unique ID can provide a unique identifier for each IAM user you create. This is
the case when you have IAM users that reuse a name, as in the previous example.

Understanding unique ID prefixes
IAM uses the following prefixes to indicate what type of resource each unique ID applies to.

Prefix Resource type

ABIA AWS STS service bearer token (p. 360)

ACCA Context-specific credential

AGPA User group

AIDA IAM user

AIPA Amazon EC2 instance profile

718

AWS Identity and Access Management User Guide
Quotas

Prefix Resource type

AKIA Access key

ANPA Managed policy

ANVA Version in a managed policy

APKA Public key

AROA Role

ASCA Certificate

ASIA Temporary (AWS STS) access key IDs use this
prefix, but are unique only in combination with
the secret access key and the session token.

Getting the unique identifier
The unique ID for an IAM resource is not available in the IAM console. To get the unique ID, you can use
the following AWS CLI commands or IAM API calls.

AWS CLI:

• get-caller-identity
• get-group
• get-role
• get-user
• get-policy
• get-instance-profile
• get-server-certificate

IAM API:

• GetCallerIdentity
• GetGroup
• GetRole
• GetUser
• GetPolicy
• GetInstanceProfile
• GetServerCertificate

IAM and AWS STS quotas
AWS Identity and Access Management (IAM) and AWS Security Token Service (STS) have quotas that limit
the size of objects. This affects how you name an object, the number of objects you can create, and the
number of characters you can use when you pass an object.

Note
To get account-level information about IAM usage and quotas, use the GetAccountSummary API
operation or the get-account-summary AWS CLI command.

719

https://docs.aws.amazon.com/STS/latest/APIReference/API_Credentials.html
https://docs.aws.amazon.com/cli/latest/reference/sts/get-caller-identity.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-group.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-user.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-instance-profile.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-server-certificate.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetCallerIdentity.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetGroup.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetRole.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetUser.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetPolicy.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetInstanceProfile.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetServerCertificate.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetAccountSummary.html
https://docs.aws.amazon.com/cli/latest/reference/iam/get-account-summary.html

AWS Identity and Access Management User Guide
IAM name requirements

IAM name requirements
IAM names have the following requirements and restrictions:

• Policy documents can contain only the following Unicode characters: horizontal tab (U+0009), linefeed
(U+000A), carriage return (U+000D), and characters in the range U+0020 to U+00FF.

• Names of users, groups, roles, policies, instance profiles, and server certificates must be alphanumeric,
including the following common characters: plus (+), equal (=), comma (,), period (.), at (@), underscore
(_), and hyphen (-).

• Names of users, groups, roles, and instance profiles must be unique within the account. They are not
distinguished by case, for example, you cannot create groups named both ADMINS and admins.

• The external ID value that a third party uses to assume a role must have a minimum of 2 characters
and a maximum of 1,224 characters. The value must be alphanumeric without white space. It can also
include the following symbols: plus (+), equal (=), comma (,), period (.), at (@), colon (:), forward slash
(/), and hyphen (-). For more information about the external ID, see How to use an external ID when
granting access to your AWS resources to a third party (p. 231).

• Path names must begin and end with a forward slash (/).

• Policy names for inline policies (p. 389) must be unique to the user, group, or role they are embedded
in. The names can contain any Basic Latin (ASCII) characters minus the following reserved characters:
backward slash (\), forward slash (/), asterisk (*), question mark (?), and white space. These characters
are reserved according to RFC 3986.

• User passwords (login profiles) can contain any Basic Latin (ASCII) characters.

• AWS account ID aliases must be unique across AWS products, and must be alphanumeric following
DNS naming conventions. An alias must be lowercase, it must not start or end with a hyphen, it cannot
contain two consecutive hyphens, and it cannot be a 12-digit number.

For a list of Basic Latin (ASCII) characters, go to the Library of Congress Basic Latin (ASCII) Code Table.

IAM object quotas
Quotas, also referred to as limits in AWS, are the maximum values for the resources, actions, and items
in your AWS account. Use Service Quotas to manage your IAM quotas. You can request an increase
to default quotas for adjustable IAM quotas. Requests up to the maximum quota are automatically
approved and are completed within a few minutes.

To request a quota increase, sign in to the AWS Management Console and open the Service Quotas
console at https://console.aws.amazon.com/servicequotas/. In the navigation pane, choose AWS
services. On the navigation bar, choose the US East (N. Virginia) Region. Then search for IAM. Choose
AWS Identity and Access Management (IAM), choose a quota, and follow the directions to request a
quota increase. For more information, see Requesting a Quota Increase in the Service Quotas User Guide.

To see an example of how to request an IAM quota increase using the Service Quotas console, watch the
following video.

Request an IAM quota increase using the Service Quotas console.

The following quotas are adjustable.

Default quotas for IAM entities

Resource Default quota Maximum quota

Role trust policy length 2048 characters 4096 characters

720

https://tools.ietf.org/html/rfc3986#section-2.2
http://lcweb2.loc.gov/diglib/codetables/42.html
https://console.aws.amazon.com/servicequotas/
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://www.youtube.com/embed/srJ4jr6M9YQ

AWS Identity and Access Management User Guide
IAM object quotas

Resource Default quota Maximum quota

Customer managed policies in
an AWS account

1500 5000

Groups in an AWS account 300 500

Roles in an AWS account 1000 5000

Managed policies attached to an
IAM role

10 20

Managed policies attached to an
IAM user

10 20

Virtual MFA devices (assigned or
unassigned) in an AWS account

Equal to the user quota for the
account

Not applicable

Instance profiles in an AWS
account

1000 5000

Server certificates stored in an
AWS account

20 1000

You cannot request an increase for the following quotas.

Quotas for IAM entities

Resource Quota

Access keys assigned to an IAM user 2

Access keys assigned to the AWS account root user 2

Aliases for an AWS account 1

Groups an IAM user can be a member of 10

IAM users in a group Equal to the user quota for the account

Identity providers (IdPs) associated with an IAM
SAML provider object

10

Keys per SAML provider 10

Login profiles for an IAM user 1

Managed policies attached to an IAM group 10

OpenId Connect identity providers per AWS
account

100

Permissions boundaries for an IAM user 1

Permissions boundaries for an IAM role 1

MFA devices in use by an IAM user 1

MFA devices in use by the AWS account root user 1

Roles in an instance profile 1

721

AWS Identity and Access Management User Guide
IAM Access Analyzer quotas

Resource Quota

SAML providers in an AWS account 100

Signing certificates assigned to an IAM user 2

SSH public keys assigned to an IAM user 5

Tags that can be attached to a customer managed
policy

50

Tags that can be attached to an instance profile 50

Tags that can be attached to an Open ID Connect
(OIDC) identity provider

50

Tags that can be attached to an IAM role 50

Tags that can be attached to a SAML identity
provider

50

Tags that can be attached to a server certificate 50

Tags that can be attached to an IAM user 50

Tags that can be attached to a virtual MFA device 50

Users in an AWS account 5000 (If you need to add a large number
of users, consider using temporary security
credentials (p. 322).)

Versions of a managed policy that can be stored 5

IAM Access Analyzer quotas
For IAM Access Analyzer quotas, see IAM Access Analyzer Quotas.

IAM and STS character quotas
The following are the maximum character counts and size quotas for IAM and AWS STS. You cannot
request an increase for the following quotas.

Description Quota

Path 512 characters

User name 64 characters

Group name 128 characters

Role name 64 characters

Important
If you intend to use a role with the
Switch Role feature in the AWS
Management Console, then the combined
Path and RoleName cannot exceed 64
characters.

722

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-getting-started.html#access-analyzer-quotas

AWS Identity and Access Management User Guide
IAM and STS character quotas

Description Quota

Tag key 128 characters

This character quota applies to tags on IAM
resources and session tags (p. 313).

Tag value 256 characters

This character quota applies to tags on IAM
resources and session tags (p. 313).

Tag values can be empty which means tag values
can have a length of 0 characters.

Instance profile name 128 characters

Unique IDs created by IAM 128 characters. For example:

• User IDs that begin with AIDA
• Group IDs that begin with AGPA
• Role IDs that begin with AROA
• Managed policy IDs that begin with ANPA
• Server certificate IDs that begin with ASCA

Note
This is not intended to be an exhaustive
list, nor is it a guarantee that IDs of a
certain type begin only with the specified
letter combination.

Policy name 128 characters

Password for a login profile 1–128 characters

Alias for an AWS account ID 3–63 characters

Role session name 64 characters

723

AWS Identity and Access Management User Guide
IAM and STS character quotas

Description Quota

Role session duration 12 hours

When you assume a role from the AWS CLI
or API, you can use the duration-seconds
CLI parameter or the DurationSeconds API
parameter to request a longer role session. You
can specify a value from 900 seconds (15 minutes)
up to the maximum session duration setting
for the role, which can range 1–12 hours. If you
don't specify a value for the DurationSeconds
parameter, your security credentials are valid
for one hour. IAM users who switch roles in
the console are granted the maximum session
duration, or the remaining time in the IAM
user's session, whichever is less. The maximum
session duration setting does not limit sessions
assumed by AWS services. To learn how to view
the maximum value for your role, see View
the maximum session duration setting for a
role (p. 254).

Role session policies (p. 383) • The size of the passed JSON policy document
and all passed managed policy ARN characters
combined cannot exceed 2,048 characters.

• You can pass a maximum of 10 managed policy
ARNs when you create a session.

• You can pass only one JSON policy document
when you programmatically create a temporary
session for a role or federated user.

• Additionally, an AWS conversion compresses
the passed session policies and session tags
into a packed binary format that has a separate
quota. The PackedPolicySize response
element indicates by percentage how close the
policies and tags for your request are to the
upper size quota.

• We recommend that you pass session policies
using the AWS CLI or AWS API. The AWS
Management Console might add additional
console session information to the packed
policy.

724

AWS Identity and Access Management User Guide
Services that work with IAM

Description Quota

Role session tags (p. 313) • Session tags must meet the tag key quota of
128 characters and the tag value quota of 256
characters.

• You can pass up to 50 session tags.
• An AWS conversion compresses the passed

session policies and session tags into a packed
binary format that has a separate quota. You
can pass session tags using the AWS CLI or AWS
API. The PackedPolicySize response element
indicates by percentage how close the policies
and tags for your request are to the upper size
quota.

For inline policies (p. 389) You can add as many inline policies as you want
to an IAM user, role, or group. But the total
aggregate policy size (the sum size of all inline
policies) per entity cannot exceed the following
quotas:

• User policy size cannot exceed 2,048 characters.
• Role policy size cannot exceed 10,240

characters.
• Group policy size cannot exceed 5,120

characters.

Note
IAM does not count white space when
calculating the size of a policy against
these quotas.

For managed policies (p. 389) • The size of each managed policy cannot exceed
6,144 characters.

Note
IAM does not count white space when
calculating the size of a policy against
this quota.

AWS services that work with IAM
The AWS services listed below are grouped by their AWS product categories and include information
about what IAM features they support:

• Service – You can choose the name of a service to view the AWS documentation about IAM
authorization and access for that service.

• Actions – You can specify individual actions in a policy. If the service does not support this feature,
then All actions is selected in the visual editor (p. 470). In a JSON policy document, you must use * in
the Action element. For a list of actions in each service, see Actions, Resources, and Condition Keys
for AWS Services.

• Resource-level permissions – You can use ARNs (p. 714) to specify individual resources in the
policy. If the service does not support this feature, then All resources is chosen in the policy visual

725

https://aws.amazon.com/products/
reference_policies_actions-resources-contextkeys.html
reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide
Compute

editor (p. 470). In a JSON policy document, you must use * in the Resource element. Some actions,
such as List* actions, do not support specifying an ARN because they are designed to return multiple
resources. If a service supports this feature for some resources but not others, it is indicated by yellow
cells in the table. See the documentation for that service for more information.

• Resource-based policies – You can attach resource-based policies to a resource within the service.
Resource-based policies include a Principal element to specify which IAM identities can access that
resource. For more information, see Identity-based policies and resource-based policies (p. 404).

• Authorization based on tags – You can use resource tags in the condition of a policy to control access
to a resource in the service. You do this using the aws:ResourceTag (p. 824) global condition key
or service-specific tags, such as aws:ResourceTag. For more information about defining permissions
based on attributes such as tags, see What is ABAC for AWS? (p. 12).

• Temporary credentials – You can use short-term credentials that you obtain when you sign in using
SSO, switch roles in the console, or that you generate using AWS STS in the AWS CLI or AWS API. You
can access services with a No value only while using your long-term IAM user credentials. This includes
a user name and password or your user access keys. For more information, see Temporary security
credentials in IAM (p. 322).

• Service-linked roles – A service-linked role (p. 169) is a special type of service role that gives the
service permission to access resources in other services on your behalf. Choose the Yes link to see the
documentation for services that support these roles. This column does not indicate if the service uses
standard service roles. For more information, see Using service-linked roles (p. 219).

• More information – If a service doesn't fully support a feature, you can review the footnotes for an
entry to view the limitations and links to related information.

Compute services

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

AWS App Runner Yes Yes No Yes Yes Yes

AWS Batch
 Yes Partial No Yes Yes Yes

Amazon Elastic Compute
Cloud (Amazon EC2) Yes Partial No Partial Yes Partial¹

Amazon EC2 Auto Scaling Yes Yes No Yes Yes Yes

EC2 Image Builder Yes Yes No Yes Yes Yes

Amazon EC2 Instance Connect
 Yes Yes No Partial Yes No

AWS Elastic Beanstalk
 Yes Partial No Yes Yes Yes

Amazon Elastic Inference Yes Yes No No Yes No

Elastic Load Balancing
 Yes Partial No Partial Yes Yes

726

https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/tag-editor.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ExamplePolicies_EC2.html#iam-example-taggingresources
https://docs.aws.amazon.com/apprunner/latest/dg/what-is-apprunner.html
https://docs.aws.amazon.com/apprunner/latest/dg/security-iam-slr.html
https://docs.aws.amazon.com/batch/latest/userguide/IAM_policies.html
https://docs.aws.amazon.com/batch/latest/userguide/batch-supported-iam-actions-resources.html
https://docs.aws.amazon.com/batch/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/UsingIAM.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/UsingIAM.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html#tag-resources
https://docs.aws.amazon.com/autoscaling/latest/userguide/control-access-using-iam.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/autoscaling-service-linked-role.html
https://docs.aws.amazon.com/imagebuilder/latest/userguide/security-iam.html
https://docs.aws.amazon.com/imagebuilder/latest/userguide/image-builder-service-linked-role.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/security-iam.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Using_Tags.html#tag-resources
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/AWSHowTo.iam.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/AWSHowTo.iam.policies.access-tags.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-service-linked-roles.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/elastic-inference.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/index.html?UsingIAM.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/elb-service-linked-roles.html

AWS Identity and Access Management User Guide
Containers

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

AWS Lambda Yes Yes Yes No Yes Partial²

Amazon Lightsail
 Yes Partial³ No Partial³ Yes Yes

AWS Outposts Yes No No No Yes Yes

AWS Serverless
Application Repository Yes Yes Yes No Yes No

¹ Amazon EC2 service-linked roles can be used only for the following features: Spot Instance Requests
and Spot Fleet Requests.

² AWS Lambda doesn't have service-linked roles, but Lambda@Edge does. For more information, see
Service-Linked Roles for Lambda@Edge in the Amazon CloudFront Developer Guide.

³ Amazon Lightsail partially supports resource-level permissions and authorization based on tags.
For more information, see Support for resource-level permissions and authorization based on tags in
Amazon Lightsail

Containers services

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

AWS App Runner Yes Yes No Yes Yes Yes

Amazon Elastic Container
Registry (Amazon ECR) Yes Yes Yes Yes Yes No

Amazon Elastic Container Registry
Public (Amazon ECR Public) Yes Yes No Yes Yes No

Amazon Elastic Container
Service (Amazon ECS) Yes Partial¹ No Yes Yes Yes

Amazon Elastic Kubernetes
Service (Amazon EKS) Yes Yes No Yes Yes Yes

¹ Only some Amazon ECS actions support resource-level permissions.

Storage services

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

AWS Backup Yes Yes Yes Yes Yes Yes

727

https://docs.aws.amazon.com/lambda/latest/dg/lambda-auth-and-access-control.html
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/lambda-edge-permissions.html#using-service-linked-roles
https://lightsail.aws.amazon.com/ls/docs/all
https://lightsail.aws.amazon.com/ls/docs/en_us/articles/amazon-lightsail-using-service-linked-roles
https://docs.aws.amazon.com/outposts/latest/userguide/security.html
https://docs.aws.amazon.com/outposts/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/serverlessrepo/latest/devguide/serverlessrepo-auth-and-access-control.html
https://docs.aws.amazon.com/serverlessrepo/latest/devguide/serverlessrepo-auth-and-access-control.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-requests.html#service-linked-roles-spot-instance-requests
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-fleet-requests.html#service-linked-roles-spot-fleet-requests
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/lambda-edge-permissions.html#using-service-linked-roles
https://lightsail.aws.amazon.com/ls/docs/en_us/articles/resource-level-permissions-and-auth-based-on-tags-support
https://lightsail.aws.amazon.com/ls/docs/en_us/articles/resource-level-permissions-and-auth-based-on-tags-support
https://docs.aws.amazon.com/apprunner/latest/dg/what-is-apprunner.html
https://docs.aws.amazon.com/apprunner/latest/dg/security-iam-slr.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/ECR_IAM_policies.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/ECR_IAM_policies.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/ECR_IAM_policies.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/ECR_IAM_policies.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/IAM_policies.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/IAM_policies.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using-service-linked-roles.html
https://docs.aws.amazon.com/eks/latest/userguide/IAM_policies.html
https://docs.aws.amazon.com/eks/latest/userguide/IAM_policies.html
https://docs.aws.amazon.com/eks/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-supported-iam-actions-resources.html
https://docs.aws.amazon.com/aws-backup/latest/devguide/security-considerations.html
https://docs.aws.amazon.com/aws-backup/latest/devguide/using-service-linked-roles.html

AWS Identity and Access Management User Guide
Database

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

AWS Backup Storage Yes Yes No No Yes No

Amazon Elastic Block
Store (Amazon EBS) Yes Partial No Yes Yes No

Amazon Elastic File
System (Amazon EFS) Yes Yes Yes Yes Yes Yes

Amazon FSx Yes Yes No Yes Yes Yes

Amazon S3 Glacier Yes Yes Yes Yes Yes No

AWS Import/Export Yes No No No Yes No

Amazon Simple Storage
Service (Amazon S3) Yes Yes Yes Partial¹ Yes Partial²

Amazon Simple Storage Service
(Amazon S3) on AWS Outposts Yes Yes Yes Partial¹ Yes No

Amazon Simple Storage Service
(Amazon S3) Object Lambda Yes Yes No No Yes No

AWS Snow Device Management Yes Yes No Yes Yes No

AWS Snowball Yes No No No Yes No

AWS Snowball Edge Yes No No No Yes No

AWS Storage Gateway Yes Yes No Yes Yes No

¹ Amazon S3 supports tag-based authorization for only object resources.

² Amazon S3 supports service-linked roles for Amazon S3 Storage Lens.

Database services

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

Amazon DynamoDB Yes Yes No No Yes Yes

Amazon ElastiCache Yes Yes No Yes Yes Yes

Amazon Keyspaces
(for Apache Cassandra) Yes Yes No Yes Yes Yes

Amazon MemoryDB Yes Yes No Yes Yes Yes

728

https://docs.aws.amazon.com/aws-backup/latest/devguide/security-considerations.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AmazonEBS.html
https://docs.aws.amazon.com/efs/latest/ug/auth-and-access-control.html
https://docs.aws.amazon.com/efs/latest/ug/auth-and-access-control.html
https://docs.aws.amazon.com/efs/latest/ug/using-service-linked-roles.html
https://docs.aws.amazon.com/fsx/latest/WindowsGuide/access-control-overview.html
https://docs.aws.amazon.com/fsx/latest/WindowsGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/auth-and-access-control.html
https://docs.aws.amazon.com/AWSImportExport/latest/DG/using-iam.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/object-tagging.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/using-service-linked-roles.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/S3OutpostsIAM.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/S3OutpostsIAM.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/object-tagging.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/Welcome.html
https://docs.aws.amazon.com/snowball/latest/snowcone-guide/aws-sdms.html
https://docs.aws.amazon.com/snowball/latest/ug/auth-access-control.html
https://docs.aws.amazon.com/snowball/latest/developer-guide/authentication-and-access-control.html
https://docs.aws.amazon.com/storagegateway/latest/userguide/UsingIAMWithStorageGateway.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/UsingIAMWithDDB.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/using-service-linked-roles.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/UserGuide/IAM.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/using-service-linked-roles.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/security-iam.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/security-iam.html
https://docs.aws.amazon.com/keyspaces/latest/devguide/Ousing-service-linked-roles.html
https://docs.aws.amazon.com/memorydb/index.html
https://docs.aws.amazon.com/MemoryDB/latest/devguide/using-service-linked-roles.html

AWS Identity and Access Management User Guide
Developer tools

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

Amazon Neptune Yes Yes No No Yes Yes

AWS Performance Insights Yes Yes No No Yes No

Amazon Quantum Ledger
Database (Amazon QLDB) Yes Yes No Yes Yes No

Amazon Redshift Yes Yes No Yes Yes Yes

Amazon Redshift Data API Yes Yes No Yes Yes No

Amazon Relational Database
Service (Amazon RDS) Yes Yes No Yes Yes Yes

Amazon RDS Data API Yes Yes No Yes Yes No

Amazon SimpleDB Yes Yes No No Yes No

Amazon Timestream Yes Yes No Yes Yes No

Database Query Metadata Service Yes No No No Yes No

Developer tools services

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

AWS Cloud9 Yes Yes Yes Yes Yes Yes

AWS CloudShell Yes Yes No No No No

AWS CodeArtifact Yes Yes Yes Yes Yes No

CodeBuild
 Yes Yes Yes¹ Partial² Yes No

CodeCommit Yes Yes No Yes Yes No

AWS CodeDeploy Yes Yes No Yes Yes No

CodePipeline
 Yes Partial No Yes Yes No

AWS CodeStar
 Yes Partial No Yes Yes No

AWS CodeStar Connections Yes Yes No Yes Yes No

729

https://docs.aws.amazon.com/neptune/latest/userguide/intro.html
https://docs.aws.amazon.com/neptune/latest/userguide/security-iam-service-linked-roles.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_PerfInsights.access-control.html
https://docs.aws.amazon.com/qldb/latest/developerguide/security-iam.html
https://docs.aws.amazon.com/qldb/latest/developerguide/security-iam.html
https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-iam-authentication-access-control.html
https://docs.aws.amazon.com/redshift/latest/mgmt/using-service-linked-roles.html
https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-iam-authentication-access-control.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.IAM.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.IAM.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.IAM.ServiceLinkedRoles.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.IAM.html
https://docs.aws.amazon.com/AmazonSimpleDB/latest/DeveloperGuide/UsingIAMWithSDB.html
https://docs.aws.amazon.com/timestream/latest/developerguide/what-is-timestream.html
https://docs.aws.amazon.com/qldb/latest/developerguide/dbqms-api.html
https://docs.aws.amazon.com/cloud9/latest/user-guide/auth-and-access-control.html
https://docs.aws.amazon.com/cloud9/latest/user-guide/using-service-linked-roles.html
https://docs.aws.amazon.com/cloudshell/latest/userguide/welcome.html
https://docs.aws.amazon.com/codeartifact/latest/ug/auth-and-access-control-iam-identity-based-access-control.html
https://docs.aws.amazon.com/codeartifact/latest/ug/repo-policies.html
https://docs.aws.amazon.com/codebuild/latest/userguide/auth-and-access-control.html
https://docs.aws.amazon.com/codecommit/latest/userguide/auth-and-access-control.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/access-permissions.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/access-permissions.html
https://docs.aws.amazon.com/codestar/latest/userguide/security-iam.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/connections-permissions.html

AWS Identity and Access Management User Guide
Security, identity, & compliance

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

AWS CodeStar Notifications Yes Yes No Yes Yes Yes

AWS Fault Injection Simulator Yes Yes No Yes Yes Yes

AWS X-Ray
 Yes Partial³ No Partial⁴ Yes No

¹ CodeBuild supports cross-account resource sharing using AWS RAM.

² CodeBuild supports authorization based on tags for project-based actions.

³ X-Ray does not support resource-level permissions for all actions.

⁴ X-Ray supports tag-based access control for groups and sampling rules.

Security, identity, and compliance services

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

AWS Artifact Yes Yes No No Yes No

AWS Audit Manager Yes Yes No Yes Yes Yes

Amazon Cloud Directory Yes Yes No No Yes No

Amazon Cognito Yes Yes No Yes Yes Yes

Amazon Detective Yes Yes No Yes Yes No

AWS Directory Service Yes Yes No Yes Yes No

AWS Firewall Manager Yes Yes No Yes Yes Partial

Amazon GuardDuty Yes Yes No Yes Yes Yes

AWS Identity and Access
Management (IAM) Yes Yes Partial¹Partial² (p. 414)Partial³ No

AWS Identity and Access
Management Access Analyzer Yes Yes No Yes Yes Partial

Amazon Inspector Yes No No No Yes Yes

Amazon Macie Yes Yes No Yes Yes Yes

Amazon Macie Classic Yes No No No Yes Yes

AWS Network Firewall Yes Yes No Yes Yes Yes

730

https://docs.aws.amazon.com/codestar-notifications/latest/userguide/security.html
https://docs.aws.amazon.com/codestar-notifications/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/fis/latest/userguide/what-is.html
https://docs.aws.amazon.com/fis/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-permissions.html
https://docs.aws.amazon.com/xray/latest/devguide/security_iam_id-based-policy-examples.html#xray-permissions-resources
https://docs.aws.amazon.com/artifact/latest/ug/getting-started.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/clouddirectory/latest/developerguide/what_is_cloud_directory.html
https://docs.aws.amazon.com/cognito/latest/developerguide/resource-permissions.html
https://docs.aws.amazon.com/cognito/latest/developerguide/using-service-linked-roles.html
https://docs.aws.amazon.com/detective/latest/adminguide/security-iam.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/iam_policy.html
https://docs.aws.amazon.com/waf/latest/developerguide/fms-auth-and-access-control.html
https://docs.aws.amazon.com/waf/latest/developerguide/fms-using-service-linked-roles.html
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
https://docs.aws.amazon.com/guardduty/latest/ug/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_permissions-required.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_permissions-required.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-using-service-linked-roles.html
https://docs.aws.amazon.com/inspector/latest/userguide/inspector_introduction.html
https://docs.aws.amazon.com/inspector/latest/userguide/inspector_slr.html
https://docs.aws.amazon.com/macie/latest/user/identity-access-management.html
https://docs.aws.amazon.com/macie/latest/user/service-linked-roles.html
https://docs.aws.amazon.com/macie/latest/userguide/macie-access-control.html
https://docs.aws.amazon.com/macie/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/network-firewall/latest/developerguide/security-iam.html
https://docs.aws.amazon.com/network-firewall/latest/developerguide/using-service-linked-roles.html

AWS Identity and Access Management User Guide
Cryptography & PKI

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

AWS Resource Access
Manager (AWS RAM) Yes Yes No Yes Yes No

AWS Secrets Manager Yes Yes Yes Yes Yes No

AWS Security Hub Yes Yes No Yes Yes Yes

AWS Single Sign-On (AWS SSO) Yes Yes No Yes Yes Yes

AWS SSO Directory Yes No No No Yes No

AWS SSO Identity Store Yes No No No Yes No

AWS Security Token
Service (AWS STS) Yes Partial⁴ No Yes Partial⁵ No

AWS Shield Yes Yes No Yes Yes No

AWS WAF Yes Yes No Yes Yes Yes

AWS WAF Classic Yes Yes No Yes Yes Yes

AWS WAF Regional Yes Yes No Yes Yes Yes

¹ IAM supports only one type of resource-based policy called a role trust policy, which is attached to an
IAM role. For more information, see Granting a user permissions to switch roles (p. 255).

² IAM supports tag-based access control for most IAM resources. For more information, see Tagging IAM
resources (p. 296).

³ Only some of the API actions for IAM can be called with temporary credentials. For more information,
see Comparing your API options.

⁴ AWS STS does not have "resources," but does allow restricting access in a similar way to users. For more
information, see Denying Access to Temporary Security Credentials by Name.

⁵ Only some of the API operations for AWS STS support calling with temporary credentials. For more
information, see Comparing your API options.

Cryptography and PKI services

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

AWS Certificate Manager Private
Certificate Authority (ACM) Yes Yes Yes Yes Yes No

AWS Certificate Manager (ACM) Yes Yes No Yes Yes Yes

AWS CloudHSM Yes Yes No Yes Yes Yes

731

https://docs.aws.amazon.com/ram/latest/userguide/control-access.html
https://docs.aws.amazon.com/ram/latest/userguide/control-access.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/auth-and-access_resource-based-policies.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-settingup.html
https://docs.aws.amazon.com/securityhub/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/iam-auth-access.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/iam-auth-access.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/iam-auth-access.html
https://docs.aws.amazon.com/STS/latest/UsingSTS/TokenPermissions.html
https://docs.aws.amazon.com/STS/latest/UsingSTS/TokenPermissions.html
https://docs.aws.amazon.com/waf/latest/developerguide/shd-auth-and-access-control.html
https://docs.aws.amazon.com/waf/latest/developerguide/waf-auth-and-access-control.html
https://docs.aws.amazon.com/waf/latest/developerguide/using-service-linked-roles.html
https://docs.aws.amazon.com/waf/latest/developerguide/classic-waf-auth-and-access-control.html
https://docs.aws.amazon.com/waf/latest/developerguide/classic-using-service-linked-roles.html
https://docs.aws.amazon.com/waf/latest/developerguide/classic-waf-auth-and-access-control.html
https://docs.aws.amazon.com/waf/latest/developerguide/classic-using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access_disable-perms.html#denying-access-to-credentials-by-name
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html
https://docs.aws.amazon.com/acm-pca/latest/userguide/auth-toplevel.html
https://docs.aws.amazon.com/acm-pca/latest/userguide/auth-toplevel.html
https://docs.aws.amazon.com/acm-pca/latest/userguide/pca-rbp.html
https://docs.aws.amazon.com/acm/latest/userguide/authen-toplevel.html
https://docs.aws.amazon.com/acm/latest/userguide/acm-slr.html
https://docs.aws.amazon.com/cloudhsm/latest/userguide/prerequisites.html#permissions-for-cloudhsm
https://docs.aws.amazon.com/cloudhsm/latest/userguide/service-linked-roles.html

AWS Identity and Access Management User Guide
Machine learning

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

AWS Key Management
Service (AWS KMS) Yes Yes Yes Yes Yes Yes

AWS Signer Yes Yes No Yes Yes No

Machine learning services

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

AWS BugBust Yes Yes No Yes Yes Yes

Amazon CodeGuru Profiler Yes Yes No Yes Yes Yes

Amazon CodeGuru Reviewer Yes Yes No Yes Yes Yes

Amazon Comprehend Yes Yes No Yes Yes No

Amazon Comprehend Medical Yes No No No Yes No

AWS DeepComposer Yes Yes No Yes Yes No

AWS DeepRacer Yes Yes No Yes Yes Yes

AWS Panorama Yes Yes No Yes Yes No

Amazon DevOps Guru Yes Yes No No Yes Yes

Amazon Forecast Yes Yes No Yes Yes No

Amazon Fraud Detector Yes Yes No Yes Yes No

Ground Truth Labeling Yes No No No Yes No

Amazon HealthLake Yes Yes No Yes Yes No

Amazon Kendra Yes Yes No Yes Yes No

Amazon Lex Yes Yes No Yes Yes Yes

Amazon Lex V2 Yes Yes Yes Yes Yes Yes

Amazon Lookout for Equipment Yes Yes No Yes Yes No

Amazon Lookout for Metrics Yes Yes No Yes Yes No

Amazon Lookout for Vision Yes Yes No Yes Yes No

732

https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/using-service-linked-roles.html
https://docs.aws.amazon.com/signer/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/codeguru/latest/bugbust-ug/what-is-bughunt.html
https://docs.aws.amazon.com/codeguru/latest/bugbust-ug/using-service-linked-roles.html
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/security-iam.html
https://docs.aws.amazon.com/codeguru/latest/profiler-ug/using-service-linked-roles.html
https://docs.aws.amazon.com/codeguru/latest/reviewer-ug/welcome.html
https://docs.aws.amazon.com/codeguru/latest/reviewer-ug/auth-and-access-control-iam-identity-based-access-control.html#managed-policy-for-codecommit-and-codestar-connections
https://docs.aws.amazon.com/comprehend/latest/dg/auth-and-access-control.html
https://docs.aws.amazon.com/comprehend/latest/dg/comprehend-med.html
https://docs.aws.amazon.com/deepcomposer/latest/devguide/what-it-is.html
https://docs.aws.amazon.com/deepracer/latest/developerguide/deepracer-security.html
https://docs.aws.amazon.com/deepracer/latest/developerguide/deepracer-understand-required-permissions-and-iam-roles.html
https://docs.aws.amazon.com/panorama/latest/dev/panorama-welcome.html
https://docs.aws.amazon.com/devops-guru/latest/userguide/security-iam.html
https://docs.aws.amazon.com/devops-guru/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/forecast/latest/dg/authentication-and-access-control.html
https://docs.aws.amazon.com/frauddetector/latest/ug/set-up.html#set-up-iam-admin
https://docs.aws.amazon.com/sagemaker/latest/dg/sms.html
https://docs.aws.amazon.com/healthlake/latest/devguide/what-is-amazon-health-lake.html
https://docs.aws.amazon.com/kendra/latest/dg/security-iam.html
https://docs.aws.amazon.com/lex/latest/dg/auth-and-access-control.html
https://docs.aws.amazon.com/lex/latest/dg/using-service-linked-roles.html
https://docs.aws.amazon.com/lexv2/latest/dg/what-is.html
https://docs.aws.amazon.com/lexv2/latest/dg/security_iam_service-with-iam.html#security_iam_service-with-iam-resource-based-policies
https://docs.aws.amazon.com/lexv2/latest/dg/using-service-linked-roles.html
https://docs.aws.amazon.com/lookout-for-equipment/latest/ug/what-is.html
https://docs.aws.amazon.com/lookoutmetrics/latest/dev/lookoutmetrics-welcome.html
https://docs.aws.amazon.com/lookout-for-vision/latest/developer-guide/what-is.html

AWS Identity and Access Management User Guide
Management tools

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

Amazon Monitron Yes Yes No Yes Yes No

Amazon Machine Learning Yes Yes No Yes Yes No

Amazon Personalize Yes Yes No No Yes No

Amazon Polly Yes Yes No No Yes No

Amazon Rekognition Yes Yes No Yes Yes No

Amazon SageMaker Yes Yes No Yes Yes No

Amazon Textract Yes Yes No No Yes No

Amazon Transcribe Yes No No No Yes No

Amazon Translate Yes No No No Yes No

Management and governance services

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

Application Auto Scaling Yes No No No Yes Yes

AWS AppConfig Yes Yes No Yes Yes No

AWS Auto Scaling Yes No No No Yes Yes

AWS Chatbot Yes Yes No No Yes Yes

AWS CloudFormation Yes Yes No Yes Yes No

AWS CloudTrail Yes Yes No No Yes Yes

Amazon CloudWatch Yes Yes No Yes Yes Partial¹

Amazon CloudWatch
Application Insights Yes No No No Yes No

Amazon CloudWatch Events Yes Yes No Yes Yes No

Amazon CloudWatch Logs Yes Yes Yes Yes Yes Yes

Amazon CloudWatch Synthetics
 Yes Yes No Partial Yes No

733

https://docs.aws.amazon.com/Monitron/latest/admin-guide/admin_what-is-monitron.html
https://docs.aws.amazon.com/machine-learning/latest/dg/reference.html#controlling-access-to-amazon-ml-resources-by-using-iam
https://docs.aws.amazon.com/personalize/latest/dg/authentication-and-access-control.html
https://docs.aws.amazon.com/polly/latest/dg/authentication-and-access-control.html
https://docs.aws.amazon.com/rekognition/latest/dg/authentication-and-access-control.html
https://docs.aws.amazon.com/sagemaker/latest/dg/security-iam.html
https://docs.aws.amazon.com/textract/latest/dg/authentication-and-access-control.html
https://docs.aws.amazon.com/transcribe/latest/dg/auth-and-access-control.html
https://docs.aws.amazon.com/translate/latest/dg/auth-and-access-control.html
https://docs.aws.amazon.com/autoscaling/application/userguide/auth-and-access-control.html
https://docs.aws.amazon.com/autoscaling/application/userguide/application-auto-scaling-service-linked-roles.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/appconfig-getting-started-permissions.html
https://docs.aws.amazon.com/autoscaling/plans/userguide/auth-and-access-control.html
https://docs.aws.amazon.com/autoscaling/plans/userguide/aws-auto-scaling-service-linked-roles.html
https://docs.aws.amazon.com/chatbot/latest/adminguide/what-is.html
https://docs.aws.amazon.com/chatbot/latest/adminguide/using-service-linked-roles.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-iam-template.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-access-control.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/UsingIAM.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/using-service-linked-roles.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/appinsights-what-is.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/appinsights-what-is.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/EventsPoliciesRolesAccessControl.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/auth-and-access-control-cwl.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/using-service-linked-roles-cwl.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Synthetics_Canaries.html

AWS Identity and Access Management User Guide
Management tools

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

AWS Compute Optimizer Yes No No No Yes Yes

AWS Config
 Yes Partial² No Yes Yes Yes

AWS Control Tower Yes No No No Yes No

Amazon Data Lifecycle Manager Yes Yes No Yes Yes No

AWS Health Yes Yes No No Yes No

AWS License Manager Yes Yes No Yes Yes Yes

Amazon Managed Grafana Yes Yes No No Yes No

Amazon Managed
Service for Prometheus Yes Yes No No Yes No

AWS OpsWorks Yes Yes No No Yes No

AWS OpsWorks
Configuration Management Yes Yes No No Yes No

AWS Organizations Yes Yes No Yes Yes Yes

AWS Proton Yes Yes No Yes Yes No

AWS Resource Groups
 Yes Yes No Yes Partial³ No

AWS Resource Groups Tagging API Yes No No No Yes No

AWS Service Catalog
 Yes Yes No Partial⁴ Yes Yes

Amazon Session Manager
Message Gateway Service Yes No No No No No

AWS Systems Manager Yes Yes No Yes Yes Yes

AWS Systems Manager
Incident Manager Yes Yes No No Yes Yes

AWS Systems Manager
Incident Manager Contacts Yes Yes No No Yes No

AWS Tag Editor Yes No No No Yes No

AWS Trusted Advisor
Partial⁵ Yes No No Partial Yes

AWS Well-Architected Tool Yes Yes No Yes Yes No

734

https://docs.aws.amazon.com/compute-optimizer/latest/ug/security-iam.html
https://docs.aws.amazon.com/compute-optimizer/latest/ug/using-service-linked-roles.html
https://docs.aws.amazon.com/config/latest/developerguide/recommended-iam-permissions-using-aws-config-console-cli.html
https://docs.aws.amazon.com/config/latest/developerguide/using-service-linked-roles.html
https://docs.aws.amazon.com/controltower/latest/userguide/what-is-control-tower.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/snapshot-lifecycle.html
https://docs.aws.amazon.com/health/latest/ug/controlling-access.html
https://docs.aws.amazon.com/license-manager/latest/userguide/identity-access-management.html
https://docs.aws.amazon.com/license-manager/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/grafana/latest/userguide/index.html
https://docs.aws.amazon.com/prometheus/latest/userguide/what-is-Amazon-Managed-Service-Prometheus.html
https://docs.aws.amazon.com/prometheus/latest/userguide/what-is-Amazon-Managed-Service-Prometheus.html
https://docs.aws.amazon.com/opsworks/latest/userguide/opsworks-security-users.html
https://docs.aws.amazon.com/opsworks/latest/userguide/security-iam-opscm.html
https://docs.aws.amazon.com/opsworks/latest/userguide/security-iam-opscm.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_permissions_overview.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_integrate_services.html#orgs_integrate_services-using_slrs
https://docs.aws.amazon.com/proton/latest/adminguide/Welcome.html
https://docs.aws.amazon.com/ARG/latest/userguide/gettingstarted-prereqs.html#rg-permissions
https://docs.aws.amazon.com/resourcegroupstagging/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/servicecatalog/latest/adminguide/permissions.html
https://docs.aws.amazon.com/servicecatalog/latest/adminguide/controlling_access.html#slr-appregistry
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/session-manager.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/auth-and-access-control.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/incident-manager/latest/userguide/what-is-incident-manager.html
https://docs.aws.amazon.com/incident-manager/latest/userguide/what-is-incident-manager.html
https://docs.aws.amazon.com/incident-manager/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/incident-manager/latest/userguide/contacts.html
https://docs.aws.amazon.com/incident-manager/latest/userguide/contacts.html
https://docs.aws.amazon.com/ARG/latest/userguide/gettingstarted-prereqs.html#rg-permissions
https://aws.amazon.com/premiumsupport/ta-iam/
https://docs.aws.amazon.com/awssupport/latest/user/using-service-linked-roles-ta.html
https://docs.aws.amazon.com/wellarchitected/latest/userguide/security_iam_service-with-iam.html

AWS Identity and Access Management User Guide
Migration & transfer

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

Service Quotas Yes Yes No Yes Yes No

¹ Amazon CloudWatch service-linked roles cannot be created using the AWS Management Console, and
support only the Alarm Actions feature.

² AWS Config supports resource-level permissions for multi-account multi-Region data aggregation
and AWS Config Rules. For a list of supported resources, see the Multi-Account Multi-Region Data
Aggregation section and AWS Config Rules section of AWS Config API Guide.

³ Users can assume a role with a policy that allows AWS Resource Groups operations.

⁴ AWS Service Catalog supports tag-based access control for only actions that match API operations with
one resource in the input.

⁵ API access to Trusted Advisor is through the AWS Support API and is controlled by AWS Support IAM
policies.

Migration and transfer services

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

AWS Application Discovery Service Yes No No No Yes Yes

AWS Application
Discovery Arsenal Yes No No No Yes No

AWS Application Migration Service Yes Yes No Yes Yes Yes

AWS Connector Service Yes No No No Yes No

AWS Transfer for SFTP Yes Yes No Yes Yes No

AWS Database Migration Service Yes Yes No¹ Yes Yes No

AWS DataSync Yes Yes No Yes Yes No

AWS Migration Hub Yes Yes No No Yes Yes

AWS Server Migration Service Yes No No No Yes Yes

¹ You can create and modify policies that are attached to AWS KMS encryption keys you create to
encrypt data migrated to supported target endpoints. The supported target endpoints include Amazon
Redshift and Amazon S3. For more information, see Creating and Using AWS KMS Keys to Encrypt
Amazon Redshift Target Data and Creating AWS KMS Keys to Encrypt Amazon S3 Target Objects in the
AWS Database Migration Service User Guide.

735

https://docs.aws.amazon.com/servicequotas/latest/userguide/identity-access-management.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/UsingAlarmActions.html
https://docs.aws.amazon.com/config/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/application-discovery/latest/userguide/what-is-appdiscovery.html
https://docs.aws.amazon.com/application-discovery/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/application-discovery/latest/userguide/what-is-appdiscovery.html
https://docs.aws.amazon.com/application-discovery/latest/userguide/what-is-appdiscovery.html
https://docs.aws.amazon.com/mgn/latest/ug/what-is-application-migration-service.html
https://docs.aws.amazon.com/mgn/latest/ug/using-service-linked-roles.html
https://docs.aws.amazon.com/server-migration-service/latest/userguide/SMS_setup.html
https://docs.aws.amazon.com/transfer/latest/userguide/security-iam.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Security.IAMPermissions.html
https://docs.aws.amazon.com/datasync/latest/userguide/iam.html
https://docs.aws.amazon.com/migrationhub/latest/ug/auth-and-access-control.html
https://docs.aws.amazon.com/migrationhub/latest/ug/using-service-linked-roles.html
https://docs.aws.amazon.com/server-migration-service/latest/userguide/identity-access-management.html
https://docs.aws.amazon.com/server-migration-service/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.Redshift.html#CHAP_Target.Redshift.KMSKeys
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.Redshift.html#CHAP_Target.Redshift.KMSKeys
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.S3.html#CHAP_Target.S3.KMSKeys

AWS Identity and Access Management User Guide
Mobile

Mobile services

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

AWS Amplify Yes Yes No Yes Yes No

AWS Amplify Admin Yes Yes No No Yes No

AWS AppSync Yes Yes No Yes Yes No

AWS Device Farm Yes Yes No Yes Yes No

Amazon Location Yes Yes No Yes Yes No

Networking and content delivery services

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

Amazon API Gateway Yes Yes Yes Yes Yes Yes

Amazon API Gateway
Management Yes Yes No Yes Yes No

Amazon API Gateway
Management V2 Yes Yes No Yes Yes No

AWS App Mesh Yes Yes No Yes Yes Yes

AWS App Mesh Preview Yes Yes No No Yes Yes

Amazon CloudFront Yes Yes No Yes Yes Partial³

AWS Cloud Map Yes Yes No Yes Yes No

AWS Direct Connect Yes Yes No Yes Yes Yes

AWS Global Accelerator Yes Yes No Yes Yes Yes

Network Manager Yes Yes No Yes Yes Yes

Amazon Route 53 Yes Yes No No Yes No

Amazon Route 53 Domains Yes No No No No No

Amazon Route 53
Recovery Cluster Yes Yes No No Yes No

736

https://docs.aws.amazon.com/amplify/latest/userguide/welcome.html
https://docs.aws.amazon.com/amplify-admin-ui/latest/APIReference/what-is-admin-ui.html
https://docs.aws.amazon.com//appsync/latest/devguide/security-authorization-use-cases.html
https://docs.aws.amazon.com/devicefarm/latest/developerguide/permissions.html
https://docs.aws.amazon.com/location/latest/developerguide/what-is.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/permissions.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/using-service-linked-roles.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/Welcome.html
https://docs.aws.amazon.com/app-mesh/latest/userguide/IAM_policies.html
https://docs.aws.amazon.com/app-mesh/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/app-mesh/latest/userguide/what-is-app-mesh.html
https://docs.aws.amazon.com/app-mesh/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/auth-and-access-control.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/lambda-edge-permissions.html#using-service-linked-roles
https://docs.aws.amazon.com/cloud-map/latest/dg/auth-and-access-control.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/using_iam.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/using_tags.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/global-accelerator/latest/dg/auth-and-access-control.html
https://docs.aws.amazon.com/global-accelerator/latest/dg/using-service-linked-roles.html
https://docs.aws.amazon.com/vpc/latest/tgw/nm-security-iam.html
https://docs.aws.amazon.com/vpc/latest/tgw/nm-service-linked-roles.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/auth-and-access-control.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html
https://docs.aws.amazon.com/r53recovery/latest/dg/what-is-route53-recovery.html
https://docs.aws.amazon.com/r53recovery/latest/dg/what-is-route53-recovery.html

AWS Identity and Access Management User Guide
Media

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

Amazon Route 53
Recovery Controls Yes Yes No No Yes No

Amazon Route 53
Recovery Readiness Yes Yes No Yes Yes No

Amazon Route 53 Resolver Yes Yes No Yes Yes Yes

AWS Tiros API (for VPC
Reachability Analyzer) Yes No No No No No

Amazon Virtual Private
Cloud (Amazon VPC) Yes Partial¹ Partial² No Yes No

¹ In an IAM user policy, you cannot restrict permissions to a specific Amazon VPC endpoint. Any Action
element that includes the ec2:*VpcEndpoint* or ec2:DescribePrefixLists API actions must
specify ""Resource": "*"". For more information, see Controlling the Use of Endpoints in the Amazon
VPC User Guide.

² Amazon VPC supports attaching a single resource policy to a VPC endpoint to restrict what can be
accessed through that endpoint. For more information about using resource-based policies to control
access to resources from specific Amazon VPC endpoints, see Using Endpoint Policies in the Amazon VPC
User Guide.

³ Amazon CloudFront doesn't have service-linked roles, but Lambda@Edge does. For more information,
see Service-Linked Roles for Lambda@Edge in the Amazon CloudFront Developer Guide.

Media services

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

Amazon Elastic Transcoder Yes Yes No No Yes No

AWS Elemental
Appliances and Software Yes Yes No Yes Yes No

AWS Elemental Appliances and
Software Activation Service Yes Yes No Yes Yes No

AWS Elemental MediaConnect Yes Yes No No Yes No

AWS Elemental MediaConvert Yes Yes No Yes Yes No

AWS Elemental MediaLive Yes Yes No Yes Yes No

AWS Elemental MediaPackage Yes Yes No Yes Yes No

AWS Elemental
MediaPackage VOD Yes Yes No Yes Yes No

737

https://docs.aws.amazon.com/r53recovery/latest/dg/what-is-route53-recovery.html
https://docs.aws.amazon.com/r53recovery/latest/dg/what-is-route53-recovery.html
https://docs.aws.amazon.com/r53recovery/latest/dg/what-is-route53-recovery.html
https://docs.aws.amazon.com/r53recovery/latest/dg/what-is-route53-recovery.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/auth-and-access-control.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/vpc/latest/reachability/security_iam_required-API-permissions.html
https://docs.aws.amazon.com/vpc/latest/reachability/security_iam_required-API-permissions.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_IAM.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_IAM.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html#vpc-endpoints-iam-access
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html#vpc-endpoint-policies
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/lambda-edge-permissions.html#using-service-linked-roles
https://docs.aws.amazon.com/elastictranscoder/latest/developerguide/security.html
https://docs.aws.amazon.com/elemental-appliances-software/latest/ug/what-is.html
https://docs.aws.amazon.com/elemental-appliances-software/latest/ug/what-is.html
https://docs.aws.amazon.com/elemental-appliances-software/latest/ug/what-is.html
https://docs.aws.amazon.com/elemental-appliances-software/latest/ug/what-is.html
https://docs.aws.amazon.com/mediaconnect/latest/ug/auth-and-access-control.html
https://docs.aws.amazon.com/mediaconvert/latest/ug/auth-and-access-control.html
https://docs.aws.amazon.com/mediaconvert/latest/ug/example-policies.html#example-policy-tag-based-access-control-using-resource-tags
https://docs.aws.amazon.com/medialive/latest/ug/setting-up-for-production.html
https://docs.aws.amazon.com/mediapackage/latest/ug/what-is.html
https://docs.aws.amazon.com/mediapackage/latest/ug/setting-up.html
https://docs.aws.amazon.com/mediapackage/latest/ug/setting-up.html

AWS Identity and Access Management User Guide
Analytics

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

AWS Elemental MediaStore Yes Yes Yes No Yes No

AWS Elemental MediaTailor Yes Yes No Yes Yes No

AWS Elemental Support Cases Yes No No No Yes No

AWS Elemental Support Content Yes No No No Yes No

Amazon Interactive Video Service Yes Yes No Yes Yes Yes

Kinesis Video Streams Yes Yes No Yes Yes No

Amazon Nimble Studio Yes Yes No Yes Yes No

Analytics services

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

Amazon Athena Yes Yes No Yes Yes No

Amazon CloudSearch Yes Yes No No Yes No

AWS Data Exchange Yes Yes No Yes Yes No

AWS Data Pipeline Yes No No Yes Yes No

Amazon OpenSearch Service Yes Yes Yes Yes Yes Yes

Amazon EMR Yes Yes No Yes Yes Yes

Amazon EMR on EKS
(EMR Containers) Yes Yes No Yes Yes Yes

AWS Glue
 Yes Yes Yes Partial Yes No

AWS Glue DataBrew Yes Yes No Yes Yes No

Amazon Kinesis Data Analytics Yes Yes No Yes Yes No

Amazon Kinesis Data Analytics V2 Yes Yes No Yes Yes No

Amazon Kinesis Data Firehose Yes Yes No Yes Yes No

Amazon Kinesis Data Streams Yes Yes No No Yes No

738

https://docs.aws.amazon.com/mediastore/latest/ug/setting-up.html
https://docs.aws.amazon.com/mediatailor/latest/ug/setting-up.html
https://docs.aws.amazon.com/elemental-appliances-software/latest/ug/what-is.html
https://docs.aws.amazon.com/elemental-appliances-software/latest/ug/what-is.html
https://docs.aws.amazon.com/ivs/latest/userguide/security.html
https://docs.aws.amazon.com/ivs/latest/userguide/security-service-linked-roles.html
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/how-iam.html
https://docs.aws.amazon.com/nimble-studio/latest/userguide/what-is-nimble-studio.html
https://docs.aws.amazon.com/athena/latest/ug/access.html
https://docs.aws.amazon.com/cloudsearch/latest/developerguide/configureaccess.html
https://docs.aws.amazon.com/data-exchange/latest/userguide/auth-access.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-concepts-roles.html
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/es-createupdatedomains.html#es-createdomain-configure-access-policies
https://docs.aws.amazon.com/opensearch-service/latest/developerguide/slr-es.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-access-iam.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/emr-eks.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/emr-eks.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/glue/latest/dg/authentication-and-access-control.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-tags.html
https://docs.aws.amazon.com/databrew/latest/dg/security_iam_service-with-iam.html
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/authentication-and-access-control.html
https://docs.aws.amazon.com/kinesisanalytics/latest/apiv2/Welcome.html
https://docs.aws.amazon.com/firehose/latest/dev/controlling-access.html
https://docs.aws.amazon.com/streams/latest/dev/controlling-access.html

AWS Identity and Access Management User Guide
Application integration

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

AWS Lake Formation Yes No No No Yes Yes

Amazon Managed Streaming
for Apache Kafka (MSK) Yes Yes No Yes Yes No

Apache Kafka APIs for
Amazon MSK clusters Yes Yes No Yes Yes No

Amazon Managed Workflows
for Apache Airflow Yes Yes No Yes Yes No

Amazon QuickSight Yes Yes No Yes Yes No

Application integration services

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

Amazon AppFlow Yes Yes No Yes Yes No

Amazon EventBridge Yes Yes Yes Yes Yes No

Amazon EventBridge Schemas Yes Yes Yes Yes Yes No

Amazon MQ Yes Yes No Yes Yes Yes

Amazon Simple Notification
Service (Amazon SNS) Yes Yes Yes Yes Yes No

Amazon Simple Queue
Service (Amazon SQS) Yes Yes Yes No Yes No

AWS Step Functions Yes Yes No Yes Yes No

Amazon Simple Workflow
Service (Amazon SWF) Yes Yes No Yes Yes No

Business applications services

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

Alexa for Business Yes Yes No Yes Yes No

Amazon Chime Yes Yes No Yes Yes Yes

739

https://docs.aws.amazon.com/lake-formation/latest/dg/security-data-access.html
https://docs.aws.amazon.com/lake-formation/latest/dg/service-linked-roles.html
https://docs.aws.amazon.com/msk/latest/developerguide/security_iam_service-with-iam.html
https://docs.aws.amazon.com/msk/latest/developerguide/security_iam_service-with-iam.html
https://docs.aws.amazon.com/msk/latest/developerguide/iam-access-control.html
https://docs.aws.amazon.com/msk/latest/developerguide/iam-access-control.html
https://docs.aws.amazon.com/mwaa/latest/userguide/what-is-mwaa.html
https://docs.aws.amazon.com/mwaa/latest/userguide/what-is-mwaa.html
https://docs.aws.amazon.com/quicksight/latest/user/managing-access.html
https://docs.aws.amazon.com/appflow/latest/userguide/identity-access-management.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/auth-and-access-control-eventbridge.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/resource-based-policies-schemas.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/auth-and-access-control-eventbridge.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/resource-based-policies-schemas.html
https://docs.aws.amazon.com/amazon-mq/latest/developer-guide/amazon-mq-security.html
https://docs.aws.amazon.com/amazon-mq/latest/developer-guide/using-service-linked-roles.html
https://docs.aws.amazon.com/sns/latest/dg/UsingIAMwithSNS.html
https://docs.aws.amazon.com/sns/latest/dg/UsingIAMwithSNS.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/UsingIAM.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/UsingIAM.html
https://docs.aws.amazon.com/step-functions/latest/dg/security.html
https://docs.aws.amazon.com/step-functions/latest/dg/tag-based-policies.html
https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dev-iam.html
https://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-dev-iam.html
https://docs.aws.amazon.com/a4b/latest/ag/what-is.html
https://docs.aws.amazon.com/chime/latest/ag/control-access.html
https://docs.aws.amazon.com/chime/latest/ag/using-service-linked-roles.html

AWS Identity and Access Management User Guide
Satellite

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

Amazon Honeycode Yes Yes No No Yes No

Amazon WorkMail Yes Yes No Yes Yes Yes

Amazon WorkMail Message Flow Yes Yes No No Yes No

Satellite services

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

AWS Ground Station Yes Yes No Yes Yes No

Internet of Things services

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

AWS IoT 1-Click Yes Yes No Yes Yes No

AWS IoT Greengrass Yes Yes No Yes Yes No

AWS IoT Greengrass V2 Yes Yes No Yes Yes No

AWS IoT
 Yes Yes Partial¹ Yes Yes No

AWS IoT Analytics Yes Yes No Yes Yes No

AWS IoT Core Device Advisor Yes Yes No Yes Yes No

AWS IoT Core for LoRaWAN Yes Yes No Yes Yes No

AWS IoT Device Tester Yes No No No Yes No

AWS IoT Events Yes Yes No Yes Yes No

AWS IoT SiteWise Yes Yes No Yes Yes Yes

AWS IoT Things Graph Yes Yes No Yes Yes No

AWS IoT Fleet Hub for
Device Management Yes Yes No Yes Yes No

740

https://docs.aws.amazon.com/honeycode/latest/UserGuide/getting-started-authorization.html
https://docs.aws.amazon.com/workmail/latest/adminguide/security-iam.html
https://docs.aws.amazon.com/workmail/latest/adminguide/using-service-linked-roles.html
https://docs.aws.amazon.com/workmail/latest/adminguide/lambda-content.html
https://docs.aws.amazon.com/ground-station/latest/ug/auth-and-access-control.html
https://docs.aws.amazon.com/iot-1-click/latest/developerguide/what-is-1click.html
https://docs.aws.amazon.com/greengrass/latest/developerguide/what-is-gg.html
https://docs.aws.amazon.com/greengrass/v2/developerguide/what-is-iot-greengrass.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-security-identity.html
https://docs.aws.amazon.com/iot/latest/developerguide/policy-actions.html
https://docs.aws.amazon.com/iot/latest/developerguide/action-resources.html
https://docs.aws.amazon.com/iot/latest/developerguide/tagging-iot-iam.html
https://docs.aws.amazon.com/iotanalytics/latest/userguide/security.html
https://docs.aws.amazon.com/iot/latest/developerguide/device-advisor.html
https://docs.aws.amazon.com/iot/latest/developerguide/what-is-aws-iot.html
https://docs.aws.amazon.com/freertos/latest/userguide/dev-tester-prereqs.html
https://docs.aws.amazon.com/iotevents/latest/developerguide/security-iam.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/set-up-aws-account.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/thingsgraph/latest/ug/iot-tg-security.html
https://docs.aws.amazon.com/iot/latest/fleethubuserguide/what-is-aws-iot-monitor.html
https://docs.aws.amazon.com/iot/latest/fleethubuserguide/what-is-aws-iot-monitor.html

AWS Identity and Access Management User Guide
Robotics

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

FreeRTOS Yes Yes No Yes Yes No

¹ Devices connected to AWS IoT are authenticated by using X.509 certificates or using Amazon Cognito
Identities. You can attach AWS IoT policies to an X.509 certificate or Amazon Cognito Identity to control
what the device is authorized to do. For more information, see Security and Identity for AWS IoT in the
AWS IoT Developer Guide.

Robotics services

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

RoboMaker Yes Yes No Yes Yes Yes

Quantum Computing Services

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

Amazon Braket Yes Yes No Yes Yes Yes

Blockchain services

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

Amazon Managed Blockchain Yes Yes No Yes Yes No

Game development services

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

Amazon GameLift Yes Yes No Yes Yes No

741

https://docs.aws.amazon.com/freertos/latest/userguide/security-iam.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-security-identity.html
https://docs.aws.amazon.com/robomaker/latest/dg/what-is-robomaker.html
https://docs.aws.amazon.com/robomaker/latest/dg/auth-and-access-control.html
https://docs.aws.amazon.com/robomaker/latest/dg/using-service-linked-roles.html
https://docs.aws.amazon.com/braket/latest/developerguide/what-is-braket.html
https://docs.aws.amazon.com/braket/latest/developerguide/braket-slr.html
https://docs.aws.amazon.com/managed-blockchain/latest/managementguide/managed-blockchain-auth-and-access-control.html
https://docs.aws.amazon.com/gamelift/latest/developerguide/security-iam.html

AWS Identity and Access Management User Guide
AR & VR

AR & VR services

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

Amazon Sumerian Yes Yes No No Yes No

Customer enablement services

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

AWS IQ Yes No No No Yes No

AWS IQ Permissions No No No No Yes No

AWS Support Yes No No No Yes Yes

Customer engagement services

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

Amazon AppIntegrations Yes Yes No Yes Yes No

Amazon Connect Yes Yes No Yes Yes Yes

Amazon Connect
Customer Profiles Yes Yes No Yes Yes No

Amazon Pinpoint Yes Yes No Yes Yes No

Amazon Pinpoint Email Service Yes Yes No Yes Yes No

Amazon Pinpoint SMS
and Voice Service Yes No No No Yes No

Amazon Simple Email
Service (Amazon SES) v2 Yes Partial¹ Yes Yes Partial² No

¹ You can only use resource-level permissions in policy statements that refer to actions related to
sending email, such as ses:SendEmail or ses:SendRawEmail. For policy statements that refer to any
other actions, the Resource element can only contain *.

² Only the Amazon SES API supports temporary security credentials. The Amazon SES SMTP interface
does not support SMTP credentials that are derived from temporary security credentials.

742

https://docs.aws.amazon.com/sumerian/latest/userguide/sumerian-permissions.html
https://docs.aws.amazon.com/aws-iq/latest/user-guide/security.html
https://docs.aws.amazon.com/aws-iq/latest/experts-user-guide/working-with-permissions-requests.html
https://docs.aws.amazon.com/awssupport/latest/user/getting-started.html#accessing-support
https://docs.aws.amazon.com/awssupport/latest/user/using-service-linked-roles-sup.html
https://docs.aws.amazon.com/connect/latest/adminguide/what-is-amazon-connect.html
https://docs.aws.amazon.com/connect/latest/adminguide/what-is-amazon-connect.html
https://docs.aws.amazon.com/connect/latest/adminguide/connect-slr.html
https://docs.aws.amazon.com/customerprofiles/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/customerprofiles/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/pinpoint/latest/developerguide/permissions-actions.html
https://docs.aws.amazon.com/pinpoint/latest/developerguide/
https://docs.aws.amazon.com/pinpoint/latest/developerguide/
https://docs.aws.amazon.com/pinpoint/latest/developerguide/
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/Welcome.html
https://docs.aws.amazon.com/ses/latest/DeveloperGuide/Welcome.html

AWS Identity and Access Management User Guide
End user computing

End user computing services

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

Amazon AppStream Yes No No No Yes No

Amazon AppStream 2.0 Yes Yes No Yes Yes No

Amazon WAM Yes No No No Yes No

Amazon WorkDocs Yes No No No Yes No

Amazon WorkLink Yes Yes No Yes Yes Yes

Amazon WorkSpaces Yes Yes No Yes Yes No

Billing and cost management services

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

AWS Application
Cost Profiler Service Yes No No No Yes No

AWS Billing and Cost Management Yes No No No Yes No

AWS Cost and Usage Report Yes Yes No No Yes No

AWS Cost Explorer Yes No No No Yes No

AWS Savings Plans Yes Yes No Yes Yes No

Additional resources

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

AWS Activate Yes No No No Yes No

AWS Budget Service Yes Yes No No No No

AWS Marketplace Yes No No No Yes Yes

AWS Marketplace Catalog Yes Yes No No Yes No

743

https://docs.aws.amazon.com/appstream/latest/developerguide/appstream-security.html
https://docs.aws.amazon.com/appstream2/latest/developerguide/controlling-access.html
http://docs.aws.amazon.com/wam/latest/adminguide/iam.html
https://docs.aws.amazon.com/workdocs/latest/adminguide/setting_up.html#iam_policies
https://docs.aws.amazon.com/worklink/latest/ag/what-is.html
https://docs.aws.amazon.com/worklink/latest/ag/using-service-linked-roles.html
https://docs.aws.amazon.com/workspaces/latest/adminguide/wsp_iam.html
https://docs.aws.amazon.com/application-cost-profiler/latest/userguide/introduction.html
https://docs.aws.amazon.com/application-cost-profiler/latest/userguide/introduction.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/ControllingAccessWebsite.html
https://docs.aws.amazon.com/cur/latest/userguide/what-is-cur.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/ce-what-is.html
https://docs.aws.amazon.com/savingsplans/latest/userguide/identity-access-management.html
http://aws.amazon.com/activate/faq/#AWS_Activate_Console
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/budgets-managing-costs.html
https://docs.aws.amazon.com/marketplace/latest/userguide/marketplace-management-portal-user-access.html
https://docs.aws.amazon.com/marketplace/latest/buyerguide/buyer-using-service-linked-roles.html
https://docs.aws.amazon.com/marketplace-catalog/latest/api-reference/api-access-control.html

AWS Identity and Access Management User Guide
Policy reference

Service Actions Resource-
level

permissions

Resource-
based

policies

Authorization
based

on tags

Temporary
credentials

Service-
linked roles

AWS Marketplace
Commerce Analytics Service Yes No No No No No

AWS Marketplace Metering Service Yes No No No Yes No

AWS Marketplace
Private Marketplace Yes No No No Yes No

IAM JSON policy reference
This section presents detailed syntax, descriptions, and examples of the elements, variables, and
evaluation logic of JSON policies in IAM. For more general information, see Overview of JSON
policies (p. 386).

This reference includes the following sections.

• IAM JSON policy elements reference (p. 744) — Learn more about the elements that you can use
when you create a policy. View additional policy examples and learn about conditions, supported data
types, and how they are used in various services.

• Policy evaluation logic (p. 784) — This section describes AWS requests, how they are authenticated,
and how AWS uses policies to determine access to resources.

• Grammar of the IAM JSON policy language (p. 797) — This section presents a formal grammar for
the language that is used to create policies in IAM.

• AWS managed policies for job functions (p. 802) — This section lists all the AWS managed policies
that directly map to common job functions in the IT industry. Use these policies to grant the
permissions that are needed to carry out the tasks expected of someone in a specific job function.
These policies consolidate permissions for many services into a single policy.

• AWS global condition context keys (p. 812) — This section includes a list of all the AWS global
condition keys that you can use to limit permissions in an IAM policy.

• IAM and AWS STS condition context keys (p. 830) — This section includes a list of all the IAM and
AWS STS condition keys that you can use to limit permissions in an IAM policy.

• Actions, Resources, and Condition Keys for AWS Services — This section presents a list of all the AWS
API operations that you can use as permissions in an IAM policy. It also includes the service-specific
condition keys that can be used to further refine the request.

IAM JSON policy elements reference
JSON policy documents are made up of elements. The elements are listed here in the general order you
use them in a policy. The order of the elements doesn't matter—for example, the Resource element
can come before the Action element. You're not required to specify any Condition elements in the
policy. To learn more about the general structure and purpose of a JSON policy document, see Overview
of JSON policies (p. 386).

Some JSON policy elements are mutually exclusive. This means that you cannot create a policy that uses
both. For example, you cannot use both Action and NotAction in the same policy statement. Other
pairs that are mutually exclusive include Principal/NotPrincipal and Resource/NotResource.

The details of what goes into a policy vary for each service, depending on what actions the service makes
available, what types of resources it contains, and so on. When you're writing policies for a specific

744

https://docs.aws.amazon.com/marketplace/latest/userguide/commerce-analytics-service.html
https://docs.aws.amazon.com/marketplace/latest/userguide/commerce-analytics-service.html
https://docs.aws.amazon.com/marketplace/latest/userguide/metering-service.html
https://docs.aws.amazon.com/marketplace/latest/buyerguide/private-marketplace.html
https://docs.aws.amazon.com/marketplace/latest/buyerguide/private-marketplace.html
reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide
JSON element reference

service, it's helpful to see examples of policies for that service. For a list of all the services that support
IAM, and for links to the documentation in those services that discusses IAM and policies, see AWS
services that work with IAM (p. 725).

When you create or edit a JSON policy, IAM can perform policy validation to help you create an effective
policy. IAM identifies JSON syntax errors, while IAM Access Analyzer provides additional policy checks
with recommendations to help you further refine your policies. To learn more about policy validation, see
Validating IAM policies (p. 474). To learn more about IAM Access Analyzer policy checks and actionable
recommendations, see IAM Access Analyzer policy validation.

Topics
• IAM JSON policy elements: Version (p. 745)
• IAM JSON policy elements: Id (p. 746)
• IAM JSON policy elements: Statement (p. 746)
• IAM JSON policy elements: Sid (p. 747)
• IAM JSON policy elements: Effect (p. 747)
• AWS JSON policy elements: Principal (p. 747)
• AWS JSON policy elements: NotPrincipal (p. 751)
• IAM JSON policy elements: Action (p. 753)
• IAM JSON policy elements: NotAction (p. 754)
• IAM JSON policy elements: Resource (p. 755)
• IAM JSON policy elements: NotResource (p. 757)
• IAM JSON policy elements: Condition (p. 758)
• IAM policy elements: Variables and tags (p. 776)
• IAM JSON policy elements: Supported data types (p. 783)

IAM JSON policy elements: Version
Disambiguation note
This Version JSON policy element is different from a policy version. The Version policy
element is used within a policy and defines the version of the policy language. A policy version,
on the other hand, is created when you make changes to a customer managed policy in IAM.
The changed policy doesn't overwrite the existing policy. Instead, IAM creates a new version of
the managed policy. If you were searching for information about the multiple version support
available for managed policies, see the section called “Versioning IAM policies” (p. 492).

The Version policy element specifies the language syntax rules that are to be used to process a
policy. To use all of the available policy features, include the following Version element before the
Statement element in all of your policies.

"Version": "2012-10-17"

IAM supports the following Version element values:

• 2012-10-17. This is the current version of the policy language, and you should always include a
Version element and set it to 2012-10-17. Otherwise, you cannot use features such as policy
variables (p. 776) that were introduced with this version.

• 2008-10-17. This was an earlier version of the policy language. You might see this version on older
existing policies. Do not use this version for any new policies or when you update any existing policies.
Newer features, such as policy variables, will not work with your policy. For example, variables such
as ${aws:username} aren't recognized as variables and are instead treated as literal strings in the
policy.

745

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html

AWS Identity and Access Management User Guide
JSON element reference

IAM JSON policy elements: Id
The Id element specifies an optional identifier for the policy. The ID is used differently in different
services.

For services that let you set an ID element, we recommend you use a UUID (GUID) for the value, or
incorporate a UUID as part of the ID to ensure uniqueness.

"Id": "cd3ad3d9-2776-4ef1-a904-4c229d1642ee"

Note
Some AWS services (for example, Amazon SQS or Amazon SNS) might require this element and
have uniqueness requirements for it. For service-specific information about writing policies,
refer to the documentation for the service you're working with.

IAM JSON policy elements: Statement
The Statement element is the main element for a policy. This element is required. The Statement
element can contain a single statement or an array of individual statements. Each individual statement
block must be enclosed in curly braces { }. For multiple statements, the array must be enclosed in square
brackets [].

"Statement": [{...},{...},{...}]

The following example shows a policy that contains an array of three statements inside a single
Statement element. (The policy allows you to access your own "home folder" in the Amazon S3
console.) The policy includes the aws:username variable, which is replaced during policy evaluation
with the user name from the request. For more information, see Introduction (p. 776).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListAllMyBuckets",
 "s3:GetBucketLocation"
],
 "Resource": "arn:aws:s3:::*"
 },
 {
 "Effect": "Allow",
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:::BUCKET-NAME",
 "Condition": {"StringLike": {"s3:prefix": [
 "",
 "home/",
 "home/${aws:username}/"
]}}
 },
 {
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::BUCKET-NAME/home/${aws:username}",
 "arn:aws:s3:::BUCKET-NAME/home/${aws:username}/*"
]
 }
]

746

AWS Identity and Access Management User Guide
JSON element reference

}

IAM JSON policy elements: Sid
You can provide an optional identifier, Sid (statement ID, for the policy statement. You can assign a Sid
value to each statement in a statement array. In services that let you specify an ID element, such as SQS
and SNS, the Sid value is just a sub-ID of the policy document ID. In IAM, the Sid value must be unique
within a JSON policy.

"Sid": "1"

The Sid element supports ASCII uppercase letters (A-Z), lowercase letters (a-z), and numbers (0-9).

IAM does not expose the Sid in the IAM API. You can't retrieve a particular statement based on this ID.

Note
Some AWS services (for example, Amazon SQS or Amazon SNS) might require this element and
have uniqueness requirements for it. For service-specific information about writing policies,
refer to the documentation for the service you work with.

IAM JSON policy elements: Effect
The Effect element is required and specifies whether the statement results in an allow or an explicit
deny. Valid values for Effect are Allow and Deny.

"Effect":"Allow"

By default, access to resources is denied. To allow access to a resource, you must set the Effect element
to Allow. To override an allow (for example, to override an allow that is otherwise in force), you set the
Effect element to Deny. For more information, see Policy evaluation logic (p. 784).

AWS JSON policy elements: Principal
Use the Principal element in a policy to specify the principal that is allowed or denied access to a
resource. You cannot use the Principal element in an IAM identity-based policy. You can use it in the
trust policies for IAM roles and in resource-based policies. Resource-based policies are policies that you
embed directly in a resource. For example, you can embed policies in an Amazon S3 bucket or a AWS
KMS key.

You can specify any of the following principals in a policy:

• AWS account and root user
• IAM users
• Federated users (using web identity or SAML federation)
• IAM roles
• Assumed-role sessions
• AWS services
• Anonymous users (not recommended)

Use the Principal element in these ways:

• In IAM roles, use the Principal element in the role's trust policy to specify who can assume the
role. For cross-account access, you must specify the 12-digit identifier of the trusted account. To learn
whether principals in accounts outside of your zone of trust (trusted organization or account) have
access to assume your roles, see What is IAM Access Analyzer?.

747

https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html

AWS Identity and Access Management User Guide
JSON element reference

Note
After you create the role, you can change the account to "*" to allow everyone to assume the
role. If you do this, we strongly recommend that you limit who can access the role through
other means, such as a Condition element that limits access to only certain IP addresses. Do
not leave your role accessible to everyone!

• In resource-based policies, use the Principal element to specify the accounts or users who are
allowed to access the resource.

Do not use the Principal element in policies that you attach to IAM users and groups. Similarly, you do
not specify a principal in the permission policy for an IAM role. In those cases, the principal is implicitly
the user that the policy is attached to (for IAM users) or the user who assumes the role (for role access
policies). When the policy is attached to an IAM group, the principal is the IAM user in that group who is
making the request.

Specifying a principal

You specify a principal using the Amazon Resource Name (ARN) (p. 714) or other identifier of the
principal, as shown in the following sections. You cannot specify IAM groups and instance profiles as
principals.

You can specify more than one principal for each of the principal types in following sections using an
array. Arrays can take one or more values. If more than one value is included, the array is in square
brackets ([and]) and comma-delimited, as in the following example:

"Principal" : {
"AWS": [
 "arn:aws:iam::123456789012:root",
 "arn:aws:iam::555555555555:root"
]
}

AWS account principals

When you use an AWS account identifier as the principal in a policy, you delegate authority to the
account. An administrator in that account can then grant access to any identity in that account. This
includes IAM users and roles in that account. When you specify an AWS account, you can use the account
ARN (arn:aws:iam::AWS-account-ID:root), or a shortened form that consists of the AWS: prefix followed
by the account ID.

For example, given an account ID of 123456789012, you can use either of the following methods to
specify that account in the Principal element:

"Principal": { "AWS": "arn:aws:iam::123456789012:root" }

"Principal": { "AWS": "123456789012" }

You can also specify more than one AWS account, (or canonical user ID) as a principal using an array, with
any combination of the methods that we previously mentioned.

"Principal": {
 "AWS": [
 "arn:aws:iam::123456789012:root",
 "999999999999"
]
}

748

https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html#FindingCanonicalId

AWS Identity and Access Management User Guide
JSON element reference

Some AWS services support additional options for specifying an account principal. For example, Amazon
S3 lets you specify a canonical user ID using the following format:

"Principal": { "CanonicalUser":
 "79a59df900b949e55d96a1e698fbacedfd6e09d98eacf8f8d5218e7cd47ef2be" }

Individual IAM user principals

You can specify an individual IAM user (or array of users) as the principal, as in the following examples.
When you specify more than one principal in the element, you grant permissions to each principal. This is
a logical OR and not a logical AND, because you are authenticated as one principal at a time.

Note
In a Principal element, the user name is case sensitive.

"Principal": { "AWS": "arn:aws:iam::AWS-account-ID:user/user-name" }

"Principal": {
 "AWS": [
 "arn:aws:iam::AWS-account-ID:user/user-name-1",
 "arn:aws:iam::AWS-account-ID:user/UserName2"
]
}

When you specify users in a Principal element, you cannot use a wildcard (*) to mean "all users".
Principals must always name a specific user or users.

Important
If your Principal element in a role trust policy contains an ARN that points to a specific
IAM user, then that ARN is transformed to the user's unique principal ID when the policy is
saved. This helps mitigate the risk of someone escalating their privileges by removing and
recreating the user. You don't normally see this ID in the console, because there is also a reverse
transformation back to the user's ARN when the trust policy is displayed. However, if you delete
the user, then the relationship is broken. The policy no longer applies, even if you recreate the
user. That's because the new user has a new principal ID that does not match the ID stored
in the trust policy. When this happens, the principal ID shows up in the console because AWS
can no longer map it back to a valid ARN. The result is that if you delete and recreate a user
referenced in a trust policy's Principal element, you must edit the role to replace the now
incorrect principal ID with the correct ARN. The ARN is once again transformed into the user's
new principal ID when you save the policy.

Federated web identity user principals

"Principal": { "Federated": "cognito-identity.amazonaws.com" }

"Principal": { "Federated": "www.amazon.com" }

"Principal": { "Federated": "graph.facebook.com" }

"Principal": { "Federated": "accounts.google.com" }

Federated SAML user principals

"Principal": { "Federated": "arn:aws:iam::AWS-account-ID:saml-provider/provider-name" }

749

https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html#FindingCanonicalId

AWS Identity and Access Management User Guide
JSON element reference

IAM role principals

"Principal": { "AWS": "arn:aws:iam::AWS-account-ID:role/role-name" }

Important
If your Principal element in a role trust policy contains an ARN that points to a specific IAM
role, then that ARN is transformed to the role's unique principal ID when the policy is saved. This
helps mitigate the risk of someone escalating their privileges by removing and recreating the
role. You don't normally see this ID in the console, because there is also a reverse transformation
back to the role's ARN when the trust policy is displayed. However, if you delete the role, then
the relationship is broken. The policy no longer applies, even if you recreate the role because the
new role has a new principal ID that does not match the ID stored in the trust policy. When this
happens, the principal ID shows up in the console because AWS can no longer map it back to a
valid ARN. The end result is that if you delete and recreate a role referenced in a trust policy's
Principal element, you must edit the role to replace the now incorrect principal ID with the
correct ARN. The ARN will once again be transformed into the role's new principal ID when you
save the policy.

Specific assumed-role session principals

"Principal": { "AWS": "arn:aws:sts::AWS-account-ID:assumed-role/role-name/role-session-
name" }

When you specify an assumed-role session in a Principal element, you cannot use a wildcard (*) to
mean "all sessions". Principals must always name a specific session.

AWS service principals

IAM roles that can be assumed by an AWS service are called service roles (p. 169). Service roles must
include a trust policy. Trust policies are resource-based policies that are attached to a role that define
which principals can assume the role. Some service roles have predefined trust policies. However, in some
cases, you must specify the service principal in the trust policy. A service principal is an identifier that is
used to grant permissions to a service.

The identifier for a service principal includes the service name, and is usually in the following format:

service-name.amazonaws.com

The service principal is defined by the service. You can find the service principal for some services by
opening AWS services that work with IAM (p. 725), checking whether the service has Yes in the Service-
linked role column, and opening the Yes link to view the service-linked role documentation for that
service. Find the Service-Linked Role Permissions section for that service to view the service principal.

The following example shows a policy that can be attached to a service role. The policy enables two
services, Amazon ECS and Elastic Load Balancing, to assume the role. The services can then perform any
tasks granted by the permissions policy assigned to the role (not shown). To specify multiple service
principals, you do not specify two Service elements; you can have only one. Instead, you use an array
of multiple service principals as the value of a single Service element.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "ecs.amazonaws.com",
 "elasticloadbalancing.amazonaws.com"

750

AWS Identity and Access Management User Guide
JSON element reference

]
 },
 "Action": "sts:AssumeRole"
 }
]
}

Anonymous user principals (public access)

For resource-based policies, such as Amazon S3 bucket policies, a wildcard (*) in the principal element
specifies all users or public access. The following elements are equivalent:

"Principal": "*"

"Principal" : { "AWS" : "*" }

You cannot use a wildcard to match part of a name or an ARN.

We strongly recommend that you do not use a wildcard in the Principal element in a role's trust policy
unless you otherwise restrict access through a Condition element in the policy. Otherwise, any IAM
user in any account in your partition (p. 714) can access the role.

More information

For more information, see the following:

• Bucket Policy Examples in the Amazon Simple Storage Service Developer Guide
• Example Policies for Amazon SNS in the Amazon Simple Notification Service Developer Guide
• Amazon SQS Policy Examples in the Amazon Simple Queue Service Developer Guide
• Key Policies in the AWS Key Management Service Developer Guide
• Account Identifiers in the AWS General Reference
• About web identity federation (p. 178)

AWS JSON policy elements: NotPrincipal
Use the NotPrincipal element to specify the IAM user, federated user, IAM role, AWS account, AWS
service, or other principal that is not allowed or denied access to a resource. The NotPrincipal element
enables you to specify an exception to a list of principals. Use this element to deny access to all principals
except the one named in the NotPrincipal element. The syntax for specifying NotPrincipal is the
same as for specifying AWS JSON policy elements: Principal (p. 747).

You cannot use the NotPrincipal element in an IAM identity-based policy. You can use it in the trust
policies for IAM roles and in resource-based policies. Resource-based policies are policies that you embed
directly in an IAM resource.

Important
Very few scenarios require the use of NotPrincipal, and we recommend that you explore
other authorization options before you decide to use NotPrincipal.

NotPrincipal With Allow

We strongly recommend that you do not use NotPrincipal in the same policy statement as
"Effect": "Allow". Doing so allows all principals except the one named in the NotPrincipal
element. We do not recommend this because the permissions specified in the policy statement will
be granted to all principals except for the ones specified. By doing this, you might grant access to
anonymous (unauthenticated) users.

751

https://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html
https://docs.aws.amazon.com/sns/latest/dg/UsingIAMwithSNS.html#ExamplePolicies_SNS
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/SQSExamples.html
https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/general/latest/gr/acct-identifiers.html

AWS Identity and Access Management User Guide
JSON element reference

NotPrincipal With Deny

When you use NotPrincipal in the same policy statement as "Effect": "Deny", the actions
specified in the policy statement are explicitly denied to all principals except for the ones specified. When
you use NotPrincipal with Deny, you must also specify the account ARN of the not-denied principal.
Otherwise, the policy might deny access to the entire account containing the principal. Depending on
the service that you include in your policy, AWS might validate the account first and then the user. If an
assumed-role user (someone who is using a role) is being evaluated, AWS might validate the account
first, then the role, and then the assumed-role user. The assumed-role user is identified by the role
session name that is specified when they assumed the role. Therefore, we strongly recommend that you
explicitly include the ARN for a user's account, or include both the ARN for a role and the ARN for the
account containing that role.

Note
As a best practice, you should include the ARNs for the account in your policy. Some services
require the account ARN, although this is not required in all cases. Any existing policies without
the required ARN will continue to work, but new policies that include these services must meet
this requirement. IAM does not track these services, and therefore recommends that you always
include the account ARN.

The following examples show how to use NotPrincipal and "Effect": "Deny" in the same policy
statement effectively.

Example Example IAM user in the same or a different account

In the following example, all principals except the user named Bob in AWS account 444455556666
are explicitly denied access to a resource. Note that as a best practice, the NotPrincipal
element contains the ARN of both the user Bob and the AWS account that Bob belongs to
(arn:aws:iam::444455556666:root). If the NotPrincipal element contained only Bob's ARN, the
effect of the policy might be to explicitly deny access to the AWS account that contains the user Bob. In
some cases, a user cannot have more permissions than its parent account, so if Bob's account is explicitly
denied access then Bob might be unable to access the resource.

This example works as intended when it is part of a policy statement in a resource-based policy that is
attached to a resource in either the same or a different AWS account (not 444455556666). This example
by itself does not grant access to Bob, it only omits Bob from the list of principals that are explicitly
denied. To allow Bob access to the resource, another policy statement must explicitly allow access using
"Effect": "Allow".

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Deny",
 "NotPrincipal": {"AWS": [
 "arn:aws:iam::444455556666:user/Bob",
 "arn:aws:iam::444455556666:root"
]},
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::BUCKETNAME",
 "arn:aws:s3:::BUCKETNAME/*"
]
 }]
}

Example Example IAM role in the same or different account

In the following example, all principals except the assumed-role user named cross-account-audit-
app in AWS account 444455556666 are explicitly denied access to a resource. As a best practice, the
NotPrincipal element contains the ARN of the assumed-role user (cross-account-audit-app), the role

752

AWS Identity and Access Management User Guide
JSON element reference

(cross-account-read-only-role), and the AWS account that the role belongs to (444455556666). If the
NotPrincipal element was missing the ARN of the role, the effect of the policy might be to explicitly
deny access to the role. Similarly, if the NotPrincipal element was missing the ARN of the AWS
account that the role belongs to, the effect of the policy might be to explicitly deny access to the AWS
account and all entities in that account. In some cases, assumed-role users cannot have more permissions
than their parent role, and roles cannot have more permissions than their parent AWS account, so when
the role or the account is explicitly denied access, the assumed role user might be unable to access the
resource.

This example works as intended when it is part of a policy statement in a resource-based policy that
is attached to a resource in a different AWS account (not 444455556666). This example by itself does
not allow access to the assumed-role user cross-account-audit-app, it only omits cross-account-audit-
app from the list of principals that are explicitly denied. To give cross-account-audit-app access to the
resource, another policy statement must explicitly allow access using "Effect": "Allow".

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Deny",
 "NotPrincipal": {"AWS": [
 "arn:aws:sts::444455556666:assumed-role/cross-account-read-only-role/cross-
account-audit-app",
 "arn:aws:iam::444455556666:role/cross-account-read-only-role",
 "arn:aws:iam::444455556666:root"
]},
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::Bucket_AccountAudit",
 "arn:aws:s3:::Bucket_AccountAudit/*"
]
 }]
}

When you specify an assumed-role session in a NotPrincipal element, you cannot use a wildcard (*) to
mean "all sessions". Principals must always name a specific session.

IAM JSON policy elements: Action
The Action element describes the specific action or actions that will be allowed or denied. Statements
must include either an Action or NotAction element. Each AWS service has its own set of actions that
describe tasks that you can perform with that service. For example, the list of actions for Amazon S3 can
be found at Specifying Permissions in a Policy in the Amazon Simple Storage Service Developer Guide, the
list of actions for Amazon EC2 can be found in the Amazon EC2 API Reference, and the list of actions for
AWS Identity and Access Management can be found in the IAM API Reference. To find the list of actions
for other services, consult the API reference documentation for the service.

You specify a value using a service namespace as an action prefix (iam, ec2, sqs, sns, s3, etc.) followed
by the name of the action to allow or deny. The name must match an action that is supported by the
service. The prefix and the action name are case insensitive. For example, iam:ListAccessKeys is the
same as IAM:listaccesskeys. The following examples show Action elements for different services.

Amazon SQS action

"Action": "sqs:SendMessage"

Amazon EC2 action

"Action": "ec2:StartInstances"

753

https://docs.aws.amazon.com/AmazonS3/latest/dev/using-with-s3-actions.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/query-apis.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_Operations.html
http://aws.amazon.com/documentation

AWS Identity and Access Management User Guide
JSON element reference

IAM action

"Action": "iam:ChangePassword"

Amazon S3 action

"Action": "s3:GetObject"

You can specify multiple values for the Action element.

"Action": ["sqs:SendMessage", "sqs:ReceiveMessage", "ec2:StartInstances",
 "iam:ChangePassword", "s3:GetObject"]

You can use a wildcard (*) to give access to all the actions the specific AWS product offers. For example,
the following Action element applies to all S3 actions.

"Action": "s3:*"

You can also use wildcards (*) as part of the action name. For example, the following Action
element applies to all IAM actions that include the string AccessKey, including CreateAccessKey,
DeleteAccessKey, ListAccessKeys, and UpdateAccessKey.

"Action": "iam:*AccessKey*"

Some services let you limit the actions that are available. For example, Amazon SQS lets you make
available just a subset of all the possible Amazon SQS actions. In that case, the * wildcard doesn't
allow complete control of the queue; it allows only the subset of actions that you've shared. For more
information, see Understanding Permissions in the Amazon Simple Queue Service Developer Guide.

IAM JSON policy elements: NotAction
NotAction is an advanced policy element that explicitly matches everything except the specified list
of actions. Using NotAction can result in a shorter policy by listing only a few actions that should not
match, rather than including a long list of actions that will match. When using NotAction, you should
keep in mind that actions specified in this element are the only actions in that are limited. This, in turn,
means that all of the applicable actions or services that are not listed are allowed if you use the Allow
effect. In addition, such unlisted actions or services are denied if you use the Deny effect. When you use
NotAction with the Resource element, you provide scope for the policy. This is how AWS determines
which actions or services are applicable. For more information, see the following example policy.

NotAction with Allow

You can use the NotAction element in a statement with "Effect": "Allow" to provide access to all
of the actions in an AWS service, except for the actions specified in NotAction. You can use it with the
Resource element to provide scope for the policy, limiting the allowed actions to the actions that can
be performed on the specified resource.

The following example allows users to access all of the Amazon S3 actions that can be performed on any
S3 resource except for deleting a bucket. This does not allow users to use the ListAllMyBuckets S3
API operation, because that action requires the "*" resource. This policy also does not allow actions in
other services, because other service actions are not applicable to the S3 resources.

"Effect": "Allow",
"NotAction": "s3:DeleteBucket",
"Resource": "arn:aws:s3:::*",

754

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/acp-overview.html#PermissionTypes

AWS Identity and Access Management User Guide
JSON element reference

Sometimes, you might want to allow access to a large number of actions. By using the NotAction
element you effectively reverse the statement, resulting in a shorter list of actions. For example, because
AWS has so many services, you might want to create a policy that allows the user to do everything
except access IAM actions.

The following example allows users to access every action in every AWS service except for IAM.

"Effect": "Allow",
"NotAction": "iam:*",
"Resource": "*"

Be careful using the NotAction element and "Effect": "Allow" in the same statement or in a
different statement within a policy. NotAction matches all services and actions that are not explicitly
listed or applicable to the specified resource, and could result in granting users more permissions than
you intended.

NotAction with Deny

You can use the NotAction element in a statement with "Effect": "Deny" to deny access to all of
the listed resources except for the actions specified in the NotAction element. This combination does
not allow the listed items, but instead explicitly denies the actions not listed. You must still allow actions
that you want to allow.

The following conditional example denies access to non-IAM actions if the user is not signed in using
MFA. If the user is signed in with MFA, then the "Condition" test fails and the final "Deny" statement
has no effect. Note, however, that this would not grant the user access to any actions; it would only
explicitly deny all other actions except IAM actions.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "DenyAllUsersNotUsingMFA",
 "Effect": "Deny",
 "NotAction": "iam:*",
 "Resource": "*",
 "Condition": {"BoolIfExists": {"aws:MultiFactorAuthPresent": "false"}}
 }]
}

For an example policy that denies access to actions outside of specific Regions, except for actions from
specific services, see AWS: Denies access to AWS based on the requested Region (p. 432).

IAM JSON policy elements: Resource
The Resource element specifies the object or objects that the statement covers. Statements must
include either a Resource or a NotResource element. You specify a resource using an ARN. For more
information about the format of ARNs, see IAM ARNs (p. 714).

Each service has its own set of resources. Although you always use an ARN to specify a resource, the
details of the ARN for a resource depend on the service and the resource. For information about how to
specify a resource, refer to the documentation for the service you want to write a statement.

Note
Some services do not let you specify actions for individual resources; instead, any actions that
you list in the Action or NotAction element apply to all resources in that service. In these
cases, you use the wildcard * in the Resource element.

The following example refers to a specific Amazon SQS queue.

755

AWS Identity and Access Management User Guide
JSON element reference

"Resource": "arn:aws:sqs:us-east-2:account-ID-without-hyphens:queue1"

The following example refers to the IAM user named Bob in an AWS account.

Note
Each IAM user name is unique and case-insensitive.

"Resource": "arn:aws:iam::account-ID-without-hyphens:user/Bob"

Using wildcards in resource ARNs

You can use wildcards as part of the resource ARN. You can use wildcard characters (* and ?) within any
ARN segment (the parts separated by colons). An asterisk (*) represents any combination of characters
and a question mark (?) represents any single character. You can use multiple * or ? characters in each
segment. The following example refers to all IAM users whose path is /accounting.

"Resource": "arn:aws:iam::account-ID-without-hyphens:user/accounting/*"

The following example refers to all items within a specific Amazon S3 bucket.

"Resource": "arn:aws:s3:::DOC-EXAMPLE-BUCKET/*"

The asterisk (*) character can expand to replace everything within a segment, including characters like
a forward slash (/) that may otherwise appear to be a delimiter within a given service namespace. For
example, consider the following Amazon S3 ARN as the same wildcard expansion logic applies to all
services.

"Resource": "arn:aws:s3:::DOC-EXAMPLE-BUCKET/*/test/*"

The wildcards in the ARN apply to all of the following objects in the bucket, not only the first object
listed.

DOC-EXAMPLE-BUCKET/1/test/object.jpg
DOC-EXAMPLE-BUCKET/1/2/test/object.jpg
DOC-EXAMPLE-BUCKET/1/2/test/3/object.jpg
DOC-EXAMPLE-BUCKET/1/2/3/test/4/object.jpg
DOC-EXAMPLE-BUCKET/1///test///object.jpg
DOC-EXAMPLE-BUCKET/1/test/.jpg
DOC-EXAMPLE-BUCKET//test/object.jpg
DOC-EXAMPLE-BUCKET/1/test/

Consider the last two objects in the previous list. An Amazon S3 object name can validly begin or end
with the conventional delimiter forward slash (/) character. While "/" works as a delimiter, there is no
specific significance when this character is used within a resource ARN. It is treated the same as any other
valid character. The ARN would not match the following objects:

DOC-EXAMPLE-BUCKET/1-test/object.jpg
DOC-EXAMPLE-BUCKET/test/object.jpg
DOC-EXAMPLE-BUCKET/1/2/test.jpg

Specifying multiple resources

You can specify multiple resources. The following example refers to two DynamoDB tables.

"Resource": [
 "arn:aws:dynamodb:us-east-2:account-ID-without-hyphens:table/books_table",

756

AWS Identity and Access Management User Guide
JSON element reference

 "arn:aws:dynamodb:us-east-2:account-ID-without-hyphens:table/magazines_table"
]

Using policy variables in resource ARNs

In the Resource element, you can use JSON policy variables (p. 776) in the part of the ARN that
identifies the specific resource (that is, in the trailing part of the ARN). For example, you can use the key
{aws:username} as part of a resource ARN to indicate that the current user's name should be included
as part of the resource's name. The following example shows how you can use the {aws:username} key
in a Resource element. The policy allows access to a Amazon DynamoDB table that matches the current
user's name.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "dynamodb:*",
 "Resource": "arn:aws:dynamodb:us-east-2:ACCOUNT-ID-WITHOUT-HYPHENS:table/
${aws:username}"
 }
}

For more information about JSON policy variables, see IAM policy elements: Variables and tags (p. 776).

IAM JSON policy elements: NotResource
NotResource is an advanced policy element that explicitly matches every resource except those
specified. Using NotResource can result in a shorter policy by listing only a few resources that should
not match, rather than including a long list of resources that will match. This is particularly useful for
policies that apply within a single AWS service.

For example, imagine you have a group named HRPayroll. Members of HRPayroll should not be
allowed to access any Amazon S3 resources except the Payroll folder in the HRBucket bucket. The
following policy explicitly denies access to all Amazon S3 resources other than the listed resources. Note,
however, that this policy does not grant the user access to any resources.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Deny",
 "Action": "s3:*",
 "NotResource": [
 "arn:aws:s3:::HRBucket/Payroll",
 "arn:aws:s3:::HRBucket/Payroll/*"
]
 }
}

Normally, to explicitly deny access to a resource you would write a policy that uses "Effect":"Deny"
and that includes a Resource element that lists each folder individually. However, in that case, each
time you add a folder to HRBucket, or add a resource to Amazon S3 that should not be accessed,
you must add its name to the list in Resource. If you use a NotResource element instead, users are
automatically denied access to new folders unless you add the folder names to the NotResource
element.

When using NotResource, you should keep in mind that resources specified in this element are the
only resources that are not limited. This, in turn, limits all of the resources that would apply to the
action. In the example above, the policy affects only Amazon S3 actions, and therefore only Amazon S3
resources. If the action also included Amazon EC2 actions, then the policy would not deny access to any

757

AWS Identity and Access Management User Guide
JSON element reference

EC2 resources. To learn which actions in a service allow specifying the ARN of a resource, see Actions,
Resources, and Condition Keys for AWS Services.

NotResource with other elements

You should never use the "Effect": "Allow", "Action": "*", and "NotResource":
"arn:aws:s3:::HRBucket" elements together. This statement is very dangerous, because it allows all
actions in AWS on all resources except the HRBucket S3 bucket. This would even allow the user to add a
policy to themselves that allows them to access HRBucket. Do not do this.

Be careful using the NotResource element and "Effect": "Allow" in the same statement or in a
different statement within a policy. NotResource allows all services and resources that are not explicitly
listed, and could result in granting users more permissions than you intended. Using the NotResource
element and "Effect": "Deny" in the same statement denies services and resources that are not
explicitly listed.

IAM JSON policy elements: Condition
The Condition element (or Condition block) lets you specify conditions for when a policy is in effect.
The Condition element is optional. In the Condition element, you build expressions in which you
use condition operators (p. 760) (equal, less than, etc.) to match the condition keys and values in the
policy against keys and values in the request context. To learn more about the request context, see
Request (p. 5).

"Condition" : { "{condition-operator}" : { "{condition-key}" : "{condition-value}" }}

The condition key that you specify can be a global condition key (p. 812) or a service-specific condition
key. Global condition keys have the aws: prefix. Service-specific condition keys have the service's prefix.
For example, Amazon EC2 lets you write a condition using the ec2:InstanceType key, which is unique
to that service. To view service-specific IAM condition keys with the iam: prefix, see IAM and AWS STS
condition context keys (p. 830).

Condition key names are not case-sensitive. For example, including the aws:SourceIP condition
key is equivalent to testing for AWS:SourceIp. Case-sensitivity of condition key values depends on
the condition operator (p. 760) that you use. For example, the following condition includes the
StringEquals operator to ensure that only requests made by johndoe will match. Users named
JohnDoe are denied access.

"Condition" : { "StringEquals" : { "aws:username" : "johndoe" }}

The following condition uses the StringEqualsIgnoreCase (p. 761) operator to match users named
johndoe or JohnDoe.

"Condition" : { "StringEqualsIgnoreCase" : { "aws:username" : "johndoe" }}

Some condition keys support key–value pairs that allow you to specify part of the key name.
Examples include the aws:RequestTag/tag-key (p. 812) global condition key, the AWS KMS
kms:EncryptionContext:encryption_context_key, and the ResourceTag/tag-key condition
key supported by multiple services. If you use the ResourceTag/tag-key condition key for a service
such as Amazon EC2, then you must specify a key name for the tag-key. Key names are not case-
sensitive. This means that if you specify "aws:ResourceTag:TagKey1": "Value1" in the condition
element of your policy, then the condition matches a resource tag key named either TagKey1 or
tagkey1, but not both. AWS services that support these attributes might allow you to create multiple
key names that differ only by case. An example is tagging an Amazon EC2 instance with foo=bar1
and Foo=bar2. When you use a condition such as "aws:ResourceTag:Foo": "bar1" to allow
access to that resource, the key name matches both tags, but only one value matches. This can result in
unexpected condition failures.

758

reference_policies_actions-resources-contextkeys.html
reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-kms-encryption-context
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-policy-structure.html#amazon-ec2-keys

AWS Identity and Access Management User Guide
JSON element reference

Important
As a best practice, make sure that members of your account follow a consistent naming
convention when naming key–value pair attributes. Examples include tags or AWS KMS
encryption contexts. You can enforce this using the aws:TagKeys (p. 828) condition key for
tagging, or the kms:EncryptionContextKeys for the AWS KMS encryption context.

• For a list of all of the condition operators and a description of how each one works, see Condition
Operators (p. 760)

• Unless otherwise specified, all keys can have multiple values. For a description of how to
handle condition keys that have multiple values, see Creating a condition with multiple keys or
values (p. 769)

• For a list of all of the globally available condition keys, see AWS global condition context
keys (p. 812).

• For conditions keys that are defined by each service, see Actions, Resources, and Condition Keys for
AWS Services.

The request context

When a principal (p. 4) makes a request (p. 5) to AWS, AWS gathers the request information into
a request context. The information is used to evaluate and authorize the request. You can use the
Condition element of a JSON policy to test specific conditions against the request context. For
example, you can create a policy that uses the aws:CurrentTime (p. 815) condition key to allow a user to
perform actions within only a specific range of dates (p. 421).

When a request is submitted, AWS evaluates each condition key in the policy and returns a value of true,
false, not present, and occasionally null (an empty data string). A key that is not present in the request
is considered a mismatch. For example, the following policy allows removing your own multifactor
authentication (MFA) device, but only if you have signed in using MFA in the last hour (3,600 seconds).

{
 "Version": "2012-10-17",
 "Statement": {
 "Sid": "AllowRemoveMfaOnlyIfRecentMfa",
 "Effect": "Allow",
 "Action": [
 "iam:DeactivateMFADevice",
 "iam:DeleteVirtualMFADevice"
],
 "Resource": "arn:aws:iam::*:user/${aws:username}",
 "Condition": {
 "NumericLessThanEquals": {"aws:MultiFactorAuthAge": "3600"}
 }
 }
}

The request context can return the following values:

• True – If the requester signed in using MFA in the last one hour or less, then the condition returns true.
• False – If the requester signed in using MFA more than one hour ago, then the condition returns false.
• Not present – If the requester made a request using their IAM user access keys in the AWS CLI or AWS

API, the key is not present. In this case, the key is not present, and it won't match.
• Null – For condition keys that are defined by the user, such as passing tags in a request, it is possible to

include an empty string. In this case, the value in the request context is null. A null value might return
true in some cases. For example, if you use the multivalued ForAllValues (p. 770) condition
operator with the aws:TagKeys (p. 828) condition key, you can experience unexpected results if
the request context returns null. For more information, see aws:TagKeys (p. 828) and Using multiple
keys and values (p. 770).

759

https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-kms-encryption-context-keys
reference_policies_actions-resources-contextkeys.html
reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide
JSON element reference

The condition block

The following example shows the basic format of a Condition element:

"Condition": {"StringLike": {"s3:prefix": ["janedoe/*"]}}

A value from the request is represented by a condition key, in this case s3:prefix. The context
key value is compared to a value that you specify as a literal value, such as janedoe/*. The type of
comparison to make is specified by the condition operator (p. 760) (here, StringLike). You can create
conditions that compare strings, dates, numbers, and more using typical Boolean comparisons such as
equals, greater than, and less than. When you use string operators (p. 761) or ARN operators (p. 766),
you can also use a policy variable (p. 776) in the condition value. The following example includes the
aws:username variable.

"Condition": {"StringLike": {"s3:prefix": ["${aws:username}/*"]}}

Under some circumstances, keys can contain multiple values. For example, a request to Amazon
DynamoDB might ask to return or update multiple attributes from a table. A policy for access to
DynamoDB tables can include the dynamodb:Attributes key, which contains all the attributes listed
in the request. You can test the multiple attributes in the request against a list of allowed attributes in a
policy by using set operators in the Condition element. For more information, see Creating a condition
with multiple keys or values (p. 769).

When the policy is evaluated during a request, AWS replaces the key with the corresponding value
from the request. (In this example, AWS would use the date and time of the request.) The condition is
evaluated to return true or false, which is then factored into whether the policy as a whole allows or
denies the request.

Multiple values in a condition

A Condition element can contain multiple conditions, and each condition can contain multiple key-
value pairs. The following figure illustrates this.

For more information, see Creating a condition with multiple keys or values (p. 769).

IAM JSON policy elements: Condition operators

760

AWS Identity and Access Management User Guide
JSON element reference

Use condition operators in the Condition element to match the condition key and value in the policy
against values in the request context. For more information about the Condition element, see IAM
JSON policy elements: Condition (p. 758).

The condition operator that you can use in a policy depends on the condition key you choose. You can
choose a global condition key or a service-specific condition key. To learn which condition operator you
can use for a global condition key, see AWS global condition context keys (p. 812). To learn which
condition operator you can use for a service-specific condition key, see Actions, Resources, and Condition
Keys for AWS Services and choose the service that you want to view.

Important
If the key that you specify in a policy condition is not present in the request context, the
values do not match. This applies to all condition operators except ...IfExists (p. 767) and Null
check (p. 768). These operators test whether the key is present (exists) in the request context.

The condition operators can be grouped into the following categories:

• String (p. 761)

• Numeric (p. 763)

• Date and time (p. 763)

• Boolean (p. 764)

• Binary (p. 765)

• IP address (p. 765)

• Amazon Resource Name (ARN) (p. 766) (available for only some services.)

• ...IfExists (p. 767) (checks if the key value exists as part of another check)

• Null check (p. 768) (checks if the key value exists as a standalone check)

String condition operators

String condition operators let you construct Condition elements that restrict access based on
comparing a key to a string value.

Condition operator Description

StringEquals Exact matching, case sensitive

StringNotEquals Negated matching

StringEqualsIgnoreCase Exact matching, ignoring case

StringNotEqualsIgnoreCase Negated matching, ignoring case

StringLike Case-sensitive matching. The values can include a multi-character
match wildcard (*) and a single-character match wildcard (?)
anywhere in the string.

Note
If a key contains multiple values, StringLike
can be qualified with set operators
—ForAllValues:StringLike and
ForAnyValue:StringLike. For more information,
see Creating a condition with multiple keys or
values (p. 769).

761

reference_policies_actions-resources-contextkeys.html
reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide
JSON element reference

Condition operator Description

StringNotLike Negated case-sensitive matching. The values can include a multi-
character match wildcard (*) or a single-character match wildcard
(?) anywhere in the string.

For example, the following statement contains a Condition element that uses the StringEquals
condition operator with the aws:PrincipalTag key to specify that the principal making the request
must be tagged with the iamuser-admin job category.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "iam:*AccessKey*",
 "Resource": "arn:aws:iam::ACCOUNT-ID-WITHOUT-HYPHENS:user/*",
 "Condition": {"StringEquals": {"aws:PrincipalTag/job-category": "iamuser-admin"}}
 }
}

If the key that you specify in a policy condition is not present in the request context, the values do not
match. In this example, the aws:PrincipalTag/job-category key is present in the request context if
the principal is using an IAM user with attached tags. It is also included for a principal using an IAM role
with attached tags or session tags. If a user without the tag attempts to view or edit an access key, the
condition returns false and the request is implicitly denied by this statement.

You can use a policy variable (p. 776) with the String condition operator.

The following example uses the StringLike condition operator to perform string matching with a
policy variable (p. 776) to create a policy that lets an IAM user use the Amazon S3 console to manage
his or her own "home directory" in an Amazon S3 bucket. The policy allows the specified actions on an S3
bucket as long as the s3:prefix matches any one of the specified patterns.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListAllMyBuckets",
 "s3:GetBucketLocation"
],
 "Resource": "arn:aws:s3:::*"
 },
 {
 "Effect": "Allow",
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:::BUCKET-NAME",
 "Condition": {"StringLike": {"s3:prefix": [
 "",
 "home/",
 "home/${aws:username}/"
]}}
 },
 {
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::BUCKET-NAME/home/${aws:username}",
 "arn:aws:s3:::BUCKET-NAME/home/${aws:username}/*"

762

AWS Identity and Access Management User Guide
JSON element reference

]
 }
]
}

For an example of a policy that shows how to use the Condition element to restrict access to resources
based on an application ID and a user ID for web identity federation, see Amazon S3: Allows Amazon
Cognito users to access objects in their bucket (p. 462).

Numeric condition operators

Numeric condition operators let you construct Condition elements that restrict access based on
comparing a key to an integer or decimal value.

Condition operator Description

NumericEquals Matching

NumericNotEquals Negated matching

NumericLessThan "Less than" matching

NumericLessThanEquals "Less than or equals" matching

NumericGreaterThan "Greater than" matching

NumericGreaterThanEquals "Greater than or equals" matching

For example, the following statement contains a Condition element that uses the
NumericLessThanEquals condition operator with the s3:max-keys key to specify that the requester
can list up to 10 objects in example_bucket at a time.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "s3:ListBucket",
 "Resource": "arn:aws:s3:::example_bucket",
 "Condition": {"NumericLessThanEquals": {"s3:max-keys": "10"}}
 }
}

If the key that you specify in a policy condition is not present in the request context, the values do not
match. In this example, the s3:max-keys key is always present in the request when you perform the
ListBucket operation. If this policy allowed all Amazon S3 operations, then only the operations that
include the max-keys context key with a value of less than or equal to 10 would be allowed.

You can not use a policy variable (p. 776) with the Numeric condition operator.

Date condition operators

Date condition operators let you construct Condition elements that restrict access based on comparing
a key to a date/time value. You use these condition operators with the aws:CurrentTime key or
aws:EpochTime keys. You must specify date/time values with one of the W3C implementations of the
ISO 8601 date formats or in epoch (UNIX) time.

Note
Wildcards are not permitted for date condition operators.

763

http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime

AWS Identity and Access Management User Guide
JSON element reference

Condition operator Description

DateEquals Matching a specific date

DateNotEquals Negated matching

DateLessThan Matching before a specific date and time

DateLessThanEquals Matching at or before a specific date and time

DateGreaterThan Matching after a specific a date and time

DateGreaterThanEquals Matching at or after a specific date and time

For example, the following statement contains a Condition element that uses the DateGreaterThan
condition operator with the aws:TokenIssueTime key. This condition specifies that the temporary
security credentials used to make the request were issued in 2020. This policy can be updated
programmatically every day to ensure that account members use fresh credentials.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "iam:*AccessKey*",
 "Resource": "arn:aws:iam::ACCOUNT-ID-WITHOUT-HYPHENS:user/*",
 "Condition": {"DateGreaterThan": {"aws:TokenIssueTime": "2020-01-01T00:00:01Z"}}
 }
}

If the key that you specify in a policy condition is not present in the request context, the values do not
match. The aws:TokenIssueTime key is present in the request context only when the principal uses
temporary credentials to make the request. They key is not present in AWS CLI, AWS API, or AWS SDK
requests that are made using access keys. In this example, if an IAM user attempts to view or edit an
access key, the request is denied.

You can not use a policy variable (p. 776) with the Date condition operator.

Boolean condition operators

Boolean conditions let you construct Condition elements that restrict access based on comparing a key
to "true" or "false."

Condition operator Description

Bool Boolean matching

For example, the following statement uses the Bool condition operator with the
aws:SecureTransport key to specify that the request must use SSL.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "iam:*AccessKey*",
 "Resource": "arn:aws:iam::ACCOUNT-ID-WITHOUT-HYPHENS:user/*",
 "Condition": {"Bool": {"aws:SecureTransport": "true"}}
 }

764

AWS Identity and Access Management User Guide
JSON element reference

}

If the key that you specify in a policy condition is not present in the request context, the values do not
match. The aws:SecureTransport key is always present in the request context.

You can not use a policy variable (p. 776) with the Boolean condition operator.

Binary condition operators

The BinaryEquals condition operator let you construct Condition elements that test key values that
are in binary format. It compares the value of the specified key byte for byte against a base-64 encoded
representation of the binary value in the policy.

"Condition" : {
 "BinaryEquals": {
 "key" : "QmluYXJ5VmFsdWVJbkJhc2U2NA=="
 }
}

If the key that you specify in a policy condition is not present in the request context, the values do not
match.

You can not use a policy variable (p. 776) with the Binary condition operator.

IP address condition operators

IP address condition operators let you construct Condition elements that restrict access based
on comparing a key to an IPv4 or IPv6 address or range of IP addresses. You use these with the
aws:SourceIp key. The value must be in the standard CIDR format (for example, 203.0.113.0/24 or
2001:DB8:1234:5678::/64). If you specify an IP address without the associated routing prefix, IAM uses
the default prefix value of /32.

Some AWS services support IPv6, using :: to represent a range of 0s. To learn whether a service supports
IPv6, see the documentation for that service.

Condition operator Description

IpAddress The specified IP address or range

NotIpAddress All IP addresses except the specified IP address or range

For example, the following statement uses the IpAddress condition operator with the aws:SourceIp
key to specify that the request must come from the IP range 203.0.113.0 to 203.0.113.255.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "iam:*AccessKey*",
 "Resource": "arn:aws:iam::ACCOUNT-ID-WITHOUT-HYPHENS:user/*",
 "Condition": {"IpAddress": {"aws:SourceIp": "203.0.113.0/24"}}
 }
}

The aws:SourceIp condition key resolves to the IP address that the request originates from. If the
requests originates from an Amazon EC2 instance, aws:SourceIp evaluates to the instance's public IP
address.

765

https://en.wikipedia.org/wiki/Base64

AWS Identity and Access Management User Guide
JSON element reference

If the key that you specify in a policy condition is not present in the request context, the values do not
match. The aws:SourceIp key is always present in the request context, except when the requester
uses a VPC endpoint to make the request. In this case, the condition returns false and the request is
implicitly denied by this statement.

You can not use a policy variable (p. 776) with the IP Address condition operator.

The following example shows how to mix IPv4 and IPv6 addresses to cover all of your organization's
valid IP addresses. We recommend that you augment your organization's policies with your IPv6 address
ranges in addition to IPv4 ranges you already have to ensure the policies continue to work as you make
the transition to IPv6.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "someservice:*",
 "Resource": "*",
 "Condition": {
 "IpAddress": {
 "aws:SourceIp": [
 "203.0.113.0/24",
 "2001:DB8:1234:5678::/64"
]
 }
 }
 }
}

The aws:SourceIp condition key works only in a JSON policy if you are calling the tested API directly
as a user. If you instead use a service to call the target service on your behalf, the target service sees
the IP address of the calling service rather than the IP address of the originating user. This can happen,
for example, if you use AWS CloudFormation to call Amazon EC2 to construct instances for you. There
is currently no way to pass the originating IP address through a calling service to the target service for
evaluation in a JSON policy. For these types of service API calls, do not use the aws:SourceIp condition
key.

Amazon Resource Name (ARN) condition operators

Amazon Resource Name (ARN) condition operators let you construct Condition elements that restrict
access based on comparing a key to an ARN. The ARN is considered a string. Not all services support
comparing ARNs using this operator. If the ARN condition operator doesn't work, then try using string
condition operators (p. 761).

Condition operator Description

ArnEquals, ArnLike Case-sensitive matching of the ARN. Each of the six colon-delimited
components of the ARN is checked separately and each can include a
multi-character match wildcard (*) or a single-character match wildcard
(?). These behave identically.

ArnNotEquals,
ArnNotLike

Negated matching for ARN. These behave identically.

There are certain cases when a string operator would match when an ARN operator would not match. For
example, if the following pattern is used for matching:

arn:aws:someservice:*:111122223333:finance/*

766

AWS Identity and Access Management User Guide
JSON element reference

And the following value is in the request:

arn:aws:someservice:us-east-2:999999999999:store/abc:111122223333:finance/document.txt

With a StringLike condition, the match succeeds. The first asterisk matches us-
east-2:999999999999:store/abc:. With an ArnLike condition, which matches elements between
colons, the match fails. The first asterisk matches only us-east-2 and fails on 999999999999:store/
abc:.

You can use a policy variable (p. 776) with the ARN condition operator.

The following resource-based policy example shows a policy attached to an Amazon SQS queue to which
you want to send SNS messages. It gives Amazon SNS permission to send messages to the queue (or
queues) of your choice, but only if the service is sending the messages on behalf of a particular Amazon
SNS topic (or topics). You specify the queue in the Resource field, and the Amazon SNS topic as the
value for the SourceArn key.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": {"AWS": "123456789012"},
 "Action": "SQS:SendMessage",
 "Resource": "arn:aws:sqs:REGION:123456789012:QUEUE-ID",
 "Condition": {"ArnEquals": {"aws:SourceArn": "arn:aws:sns:REGION:123456789012:TOPIC-
ID"}}
 }
}

If the key that you specify in a policy condition is not present in the request context, the values do not
match. The aws:SourceArn key is present in the request context only if a resource triggers a service to
call another service on behalf of the resource owner. If an IAM user attempts to perform this operation
directly, the condition returns false and the request is implicitly denied by this statement.

...IfExists condition operators

You can add IfExists to the end of any condition operator name except the Null condition—for
example, StringLikeIfExists. You do this to say "If the policy key is present in the context of the
request, process the key as specified in the policy. If the key is not present, evaluate the condition
element as true." Other condition elements in the statement can still result in a nonmatch, but not a
missing key when checked with ...IfExists.

Example using IfExists

Many condition keys describe information about a certain type of resource and only exist when accessing
that type of resource. These condition keys are not present on other types of resources. This doesn't
cause an issue when the policy statement applies to only one type of resource. However, there are cases
where a single statement can apply to multiple types of resources, such as when the policy statement
references actions from multiple services or when a given action within a service accesses several
different resource types within the same service. In such cases, including a condition key that applies
to only one of the resources in the policy statement can cause the Condition element in the policy
statement to fail such that the statement's "Effect" does not apply.

For example, consider the following policy example:

{
 "Version": "2012-10-17",
 "Statement": {

767

AWS Identity and Access Management User Guide
JSON element reference

 "Sid": "THISPOLICYDOESNOTWORK",
 "Effect": "Allow",
 "Action": "ec2:RunInstances",
 "Resource": "*",
 "Condition": {"StringLike": {"ec2:InstanceType": [
 "t1.*",
 "t2.*",
 "m3.*"
]}}
 }
}

The intent of the preceding policy is to enable the user to launch any instance that is type t1, t2 or m3.
However, launching an instance actually requires accessing many resources in addition to the instance
itself; for example, images, key pairs, security groups, etc. The entire statement is evaluated against
every resource that is required to launch the instance. These additional resources do not have the
ec2:InstanceType condition key, so the StringLike check fails, and the user is not granted the
ability to launch any instance type. To address this, use the StringLikeIfExists condition operator
instead. This way, the test only happens if the condition key exists. You could read the following as: "If
the resource being checked has an "ec2:InstanceType" condition key, then allow the action only if the
key value begins with "t1.*", "t2.*", or "m3.*". If the resource being checked does not have that condition
key, then don't worry about it." The DescribeActions statement includes the actions required to view
the instance in the console.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "RunInstance",
 "Effect": "Allow",
 "Action": "ec2:RunInstances",
 "Resource": "*",
 "Condition": {
 "StringLikeIfExists": {
 "ec2:InstanceType": [
 "t1.*",
 "t2.*",
 "m3.*"
]}}
 },
 {
 "Sid": "DescribeActions",
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeImages",
 "ec2:DescribeInstances",
 "ec2:DescribeVpcs",
 "ec2:DescribeKeyPairs",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups"
],
 "Resource": "*"
 }]
}

Condition operator to check existence of condition keys

Use a Null condition operator to check if a condition key is present at the time of authorization. In the
policy statement, use either true (the key doesn't exist — it is null) or false (the key exists and its value
is not null).

You can not use a policy variable (p. 776) with the Null condition operator.

768

AWS Identity and Access Management User Guide
JSON element reference

For example, you can use this condition operator to determine whether a user is using their own
credentials for the operation or temporary credentials. If the user is using temporary credentials, then
the key aws:TokenIssueTime exists and has a value. The following example shows a condition that
states that the user must not be using temporary credentials (the key must not exist) for the user to use
the Amazon EC2 API.

{
 "Version": "2012-10-17",
 "Statement":{
 "Action":"ec2:*",
 "Effect":"Allow",
 "Resource":"*",
 "Condition":{"Null":{"aws:TokenIssueTime":"true"}}
 }
}

Creating a condition with multiple keys or values

You can use the Condition element of a policy to test multiple keys or multiple values for a single
key in a request. When you make a request to AWS, either programmatically or through the AWS
Management Console, your request includes information about your principal, operation, tags, and more.
To learn about information and data included in a request, see Request (p. 5). You can use condition
keys to test the values of the matching keys in the request. For example, you can use a condition key to
control access to specific attributes of a DynamoDB table or to an Amazon EC2 instance based on tags.

A Condition element can contain multiple conditions, and each condition can contain multiple key-
value pairs. Most condition keys support using multiple values. The following figure illustrates this.
Unless otherwise specified, all keys can have multiple values.

Topics

• Evaluation logic for conditions with multiple keys or values (p. 770)

• Using multiple keys and values (p. 770)

• Examples of using multiple values with condition set operators (p. 772)

• Evaluation logic for multiple values with condition set operators (p. 774)

769

AWS Identity and Access Management User Guide
JSON element reference

Evaluation logic for conditions with multiple keys or values

If your policy has multiple condition operators or multiple keys attached to a single condition operator,
the conditions are evaluated using a logical AND. If a single condition operator includes multiple values
for one key, that condition operator is evaluated using a logical OR. All conditions must resolve to true to
trigger the desired Allow or Deny effect.

Using multiple keys and values

To compare your condition against a request context with multiple key values, you must use the
ForAllValues or ForAnyValue set operators. These qualifiers add set-operation functionality to
the condition operator so that you can test multiple request values against multiple condition values.
Additionally, if you include a multivalued key in your policy with a wildcard or a variable, you must also
use the StringLike condition operator (p. 761). For requests that include multiple values for a single
key, you must enclose the conditions within brackets like an array ("Key2":["Value2A", "Value2B"]).

• ForAllValues – Tests whether the value of every member of the request set is a subset of the
condition key set. The condition returns true if every key value in the request matches at least one
value in the policy. It also returns true if there are no keys in the request, or if the key values resolve to
a null data set, such as an empty string.

• ForAnyValue – Tests whether at least one member of the set of request values matches at least one
member of the set of condition key values. The condition returns true if any one of the key values
in the request matches any one of the condition values in the policy. For no matching key or a null
dataset, the condition returns false.

Assume that you want to let John use a resource only if a numeric value foo equals either A or B, and
another numeric value bar equals C. You would create a condition block that looks like the following
figure.

770

AWS Identity and Access Management User Guide
JSON element reference

Assume that you also want to restrict John's access to after January 1, 2019. You would add another
condition, DateGreaterThan, with a date equal to January 1, 2019. The condition block would then
look like the following figure.

AWS has predefined condition operators and keys (like aws:CurrentTime). Individual AWS services also
define service-specific keys.

As an example, assume that you want to let user John access your Amazon SQS queue under the
following conditions:

• The time is after 12:00 p.m. on 7/16/2019
• The time is before 3:00 p.m. on 7/16/2019
• The request comes from an IP address within the range 192.0.2.0 to 192.0.2.255 or 203.0.113.0 to

203.0.113.255.

Your condition block has three separate condition operators, and all three of them must be met for John
to have access to your queue, topic, or resource.

The following shows what the condition block looks like in your policy. The two values for
aws:SourceIp are evaluated using OR. The three separate condition operators are evaluated using AND.

"Condition" : {

771

AWS Identity and Access Management User Guide
JSON element reference

 "DateGreaterThan" : {
 "aws:CurrentTime" : "2019-07-16T12:00:00Z"
 },
 "DateLessThan": {
 "aws:CurrentTime" : "2019-07-16T15:00:00Z"
 },
 "IpAddress" : {
 "aws:SourceIp" : ["192.0.2.0/24", "203.0.113.0/24"]
 }
}

Examples of using multiple values with condition set operators

You can create a policy to test multiple values in a request against one or more values that you specify
in the policy. Assume that you have an Amazon DynamoDB table named Thread that is used to store
information about threads in a technical support forum. The table has attributes named ID, UserName,
PostDateTime, Message, and Tags.

{
 ID=101
 UserName=Bob
 PostDateTime=20130930T231548Z
 Message="A good resource for this question is docs.aws.amazon.com"
 Tags=["AWS", "Database", "Security"]
}

For information about how set operators are used in DynamoDB to implement fine-grained access to
individual data items and attributes, see Fine-Grained Access Control for DynamoDB in the Amazon
DynamoDB Developer Guide.

You can create a policy that allows users to see only the PostDateTime, Message, and Tags attributes.
If the user's request contains any of these attributes, it is allowed. But if the request contains any other
attributes (for example, ID), the request is denied. Logically speaking, you want to create a list of
allowed attributes (PostDateTime, Message, Tags). You also want to indicate in the policy that all of
the user's requested attributes must be in that list of allowed attributes.

The following example policy shows how to use the ForAllValues qualifier with the StringEquals
condition operator. The condition allows a user to request only the attributes ID, Message, or Tags from
the DynamoDB table named Thread.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "dynamodb:GetItem",
 "Resource": "arn:aws:dynamodb:*:*:table/Thread",
 "Condition": {
 "ForAllValues:StringEquals": {
 "dynamodb:Attributes": [
 "ID",
 "Message",
 "Tags"
]
 }
 }
 }
]
}

772

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/FGAC_DDB.html

AWS Identity and Access Management User Guide
JSON element reference

Assume the user makes a request to DynamoDB to get the attributes Message and Tags from the
Thread table. In that case, the request is allowed because the user's requested attributes all match
values specified in the policy. The GetItem operation requires the user to pass the ID attribute as
the database table key, which is also allowed in the policy. However, if the user's request includes the
UserName attribute, the request fails. The reason is that UserName is not within the list of allowed
attributes and the ForAllValues qualifier requires all requested values to be listed in the policy.

Important
If you use dynamodb:Attributes, you must specify the names of all of the primary key and
index key attributes for the table. You must also specify any secondary indexes that are listed
in the policy. Otherwise, DynamoDB can't use these key attributes to perform the requested
action.

Alternatively, you might want to make sure that users are explicitly forbidden to include some attributes
in a request, such as the ID and UserName attributes. For example, you might exclude attributes when
the user is updating the DynamoDB table, because an update (PUT operation) should not change certain
attributes. In that case, you create a list of forbidden attributes (ID, UserName). If any of the user's
requested attributes match any of the forbidden attributes, the request is denied.

The following example shows how to use the ForAnyValue qualifier to deny access to the ID and
PostDateTime attributes if the user tries to perform the PutItem action. That is, if the user tries to
update either of those attributes in the Thread table. Notice that the Effect element is set to Deny.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Deny",
 "Action": "dynamodb:PutItem",
 "Resource": "arn:aws:dynamodb:*:*:table/Thread",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "dynamodb:Attributes": [
 "ID",
 "PostDateTime"
]
 }
 }
 }
}

Assume that the user makes a request to update the PostDateTime and Message attributes of the
Thread table. The ForAnyValue qualifier determines whether any of the requested attributes appear in
the list in the policy. In this case, there is one match (PostDateTime), so the condition is true. Assuming
the other values in the request also match (for example, the resource), the overall policy evaluation
returns true. Because the policy's effect is Deny, the request is denied.

Imagine the user instead makes a request to perform PutItem with just the UserName attribute.
None of the attributes in the request (just UserName) match any of attributes listed in the policy
(ID, PostDateTime). The condition returns false, so the effect of the policy (Deny) is also false, and
the request is not denied by this policy. (For the request to succeed, it must be explicitly allowed by a
different policy. It is not explicitly denied by this policy, but all requests are implicitly denied.)

Warning
When you use the ForAllValues condition operator, it returns true if there are no keys in the
request, or if the key values resolve to a null data set, such as an empty string. To require that
the request includes at least one value, you must use another condition in the policy. For an
example, see Controlling access during AWS requests (p. 417).

773

AWS Identity and Access Management User Guide
JSON element reference

Evaluation logic for multiple values with condition set operators

This section discusses the specifics of the evaluation logic used with the ForAllValues and
ForAnyValue operators. The following table illustrates possible keys that might be included in a
request (PostDateTime and UserName) and a policy condition that includes the values PostDateTime,
Message, and Tags.

Key (in the request) Condition value (in the policy)

PostDateTime PostDateTime

UserName Message

 Tags

The evaluation for the combination is this:

PostDateTime matches PostDateTime?

PostDateTime matches Message?

PostDateTime matches Tags?

UserName matches PostDateTime?

UserName matches Message?

UserName matches Tags?

The result of the condition operator depends on which modifier is used with the policy condition:

• ForAllValues. If every key in the request (PostDateTime or UserName) matches at least one
condition value in the policy (PostDateTime, Message, Tags), the condition operator returns true.
Stated another way, in order for the condition to be true, (PostDateTime must equal PostDateTime,
Message, or Tags) and (UserName must equal PostDateTime, Message, or Tags).

• ForAnyValue. If any combination of request value and policy value (any one of the six in the example)
returns true, the condition operator returns true.

The following policy includes a ForAllValues qualifier:

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "dynamodb:GetItem",
 "Resource": "arn:aws:dynamodb:*:*:table/Thread",
 "Condition": {
 "ForAllValues:StringEquals": {
 "dynamodb:Attributes": [
 "PostDateTime",
 "Message",
 "Tags"
]
 }
 }
 }
}

774

AWS Identity and Access Management User Guide
JSON element reference

Suppose that the user makes a request to DynamoDB to get the attributes PostDateTime and
UserName. The evaluation for the combination is this:

PostDateTime matches PostDateTime? True

PostDateTime matches Message? False

PostDateTime matches Tags? False

UserName matches PostDateTime? False

UserName matches Message? False

UserName matches Tags? False

The policy includes the ForAllValues condition operator modifier, meaning that there must be at least
one match for PostDateTime and one match for UserName. There's no match for UserName, so the
condition operator returns false, and the policy does not allow the request.

The following policy includes a ForAnyValue qualifier:

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Deny",
 "Action": "dynamodb:PutItem",
 "Resource": "arn:aws:dynamodb:*:*:table/Thread",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "dynamodb:Attributes": [
 "ID",
 "PostDateTime"
]
 }
 }
 }
}

Notice that the policy includes "Effect":"Deny" and the action is PutItem. Imagine that the user
makes a PutItem request that includes the attributes UserName, Message, and PostDateTime. The
evaluation is this:

UserName matches ID? False

UserName matches PostDateTime? False

Messages matches ID? False

Message matches PostDateTime? False

PostDateTime matches ID? False

PostDateTime matches PostDateTime? True

With the modifier ForAnyValue, if any one of these tests returns true, the condition returns true. The
last test returns true, so the condition is true; because the Effect element is set to Deny, the request is
denied.

775

AWS Identity and Access Management User Guide
JSON element reference

Note
If the key values in the request resolve to an empty data set, such as an empty list, a condition
operator modified by ForAllValues returns true. A condition operator modified by
ForAnyValue returns false.

IAM policy elements: Variables and tags
Use AWS Identity and Access Management (IAM) policy variables as placeholders when you don't know
the exact value of a resource or condition key when you write the policy.

Note
If AWS cannot resolve a variable, this might cause the entire statement to be invalid. For
example, if you use the aws:TokenIssueTime variable, the variable resolves to a value
only when the requester authenticated using temporary credentials (an IAM role). To prevent
variables from causing invalid statements, use the ...IfExists condition operator. (p. 767)

Topics

• Introduction (p. 776)

• Tags as policy variables (p. 778)

• Where you can use policy variables (p. 778)

• Request information that you can use for policy variables (p. 780)

• Specifying default values (p. 783)

• For more information (p. 783)

Introduction

In IAM policies, many actions allow you to provide a name for the specific resources that you want to
control access to. For example, the following policy allows the user to list, read, and write objects with a
prefix David in the Amazon S3 bucket mybucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": ["s3:ListBucket"],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::mybucket"],
 "Condition": {"StringLike": {"s3:prefix": ["David/*"]}}
 },
 {
 "Action": [
 "s3:GetObject",
 "s3:PutObject"
],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::mybucket/David/*"]
 }
]
}

In some cases, you might not know the exact name of the resource when you write the policy. You might
want to generalize the policy so it works for many users without having to make a unique copy of the
policy for each user. For example, consider writing a policy to allow each user to have access to his or her
own objects in an Amazon S3 bucket, as in the previous example. But don't create a separate policy for
each user that explicitly specifies the user's name as part of the resource. Instead, create a single group
policy that works for any user in that group.

776

AWS Identity and Access Management User Guide
JSON element reference

You can do this by using policy variables, a feature that lets you specify placeholders in a policy. When
the policy is evaluated, the policy variables are replaced with values that come from the context of the
request itself.

The following example shows a policy for an Amazon S3 bucket that uses a policy variable.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": ["s3:ListBucket"],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::mybucket"],
 "Condition": {"StringLike": {"s3:prefix": ["${aws:username}/*"]}}
 },
 {
 "Action": [
 "s3:GetObject",
 "s3:PutObject"
],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::mybucket/${aws:username}/*"]
 }
]
}

When this policy is evaluated, IAM replaces the variable ${aws:username}with the friendly
name (p. 713) of the actual current user. This means that a single policy applied to a group of users can
control access to a bucket. It does this by using the user name as part of the resource's name.

The variable is marked using a $ prefix followed by a pair of curly braces ({ }). Inside the ${ }
characters, you can include the name of the value from the request that you want to use in the policy.
The values you can use are discussed later on this page.

Note
In order to use policy variables, you must include the Version element in a statement, and
the version must be set to a version that supports policy variables. Variables were introduced in
version 2012-10-17. Earlier versions of the policy language don't support policy variables. If
you don't include the Version element and set it to an appropriate version date, variables like
${aws:username} are treated as literal strings in the policy.
A Version policy element is different from a policy version. The Version policy element is
used within a policy and defines the version of the policy language. A policy version, on the
other hand, is created when you change a customer managed policy in IAM. The changed policy
doesn't overwrite the existing policy. Instead, IAM creates a new version of the managed policy.
To learn more about the Version policy element see the section called “Version” (p. 745). To
learn more about policy versions, see the section called “Versioning IAM policies” (p. 492).

You can use policy variables in a similar way to allow each user to manage his or her own access keys. A
policy that allows a user to programmatically change the access key for user David looks like this:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Action": ["iam:*AccessKey*"],
 "Effect": "Allow",
 "Resource": ["arn:aws:iam::ACCOUNT-ID-WITHOUT-HYPHENS:user/David"]
 }]
}

777

AWS Identity and Access Management User Guide
JSON element reference

If this policy is attached to user David, that user can change his own access key. As with the policies for
accessing user-specific Amazon S3 objects, you would have to create a separate policy for each user that
includes the user's name. You would then attach each policy to the individual users.

By using a policy variable, you can create a policy like this:

{
 "Version": "2012-10-17",
 "Statement": [{
 "Action": ["iam:*AccessKey*"],
 "Effect": "Allow",
 "Resource": ["arn:aws:iam::ACCOUNT-ID-WITHOUT-HYPHENS:user/${aws:username}"]
 }]
}

When you use a policy variable for the user name like this, you don't have to have a separate policy for
each individual user. Instead, you can attach this new policy to an IAM group that includes everyone who
should be allowed to manage their own access keys. When a user makes a request to modify his or her
access key, IAM substitutes the user name from the current request for the ${aws:username} variable
and evaluates the policy.

Tags as policy variables

In some AWS services you can attach your own custom attributes to resources that are created by
those services. For example, you can apply tags to Amazon S3 buckets or to IAM users. These tags are
key-value pairs. You define the tag key name and the value that is associated with that key name. For
example, you might create a tag with a department key and a Human Resources value. For more
information about tagging IAM entities, see Tagging IAM resources (p. 296). For information about
tagging resources created by other AWS services, see the documentation for that service. For information
about using Tag Editor, see Working with Tag Editor in the AWS Management Console User Guide.

You can tag IAM resources to simplify discovering, organizing, and tracking your IAM resources. You can
also tag IAM identities to control access to resources or to tagging itself. To learn more about using tags
to control access, see Controlling access to and for IAM users and roles using tags (p. 414).

Where you can use policy variables

You can use policy variables in the Resource element and in string comparisons in the Condition
element.

Resource element

You can use a policy variable in the Resource element, but only in the resource portion of the ARN. This
portion of the ARN appears after the fifth colon (:). You can't use a variable to replace parts of the ARN
before the fifth colon, such as the service or account. For more information about the ARN format, see
IAM ARNs (p. 714).

The following policy might be attached to a group. It gives each of the users in the group full
programmatic access to a user-specific object (their own "home directory") in Amazon S3.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": ["s3:ListBucket"],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::mybucket"],
 "Condition": {"StringLike": {"s3:prefix": ["${aws:username}/*"]}}
 },

778

https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/tag-editor.html

AWS Identity and Access Management User Guide
JSON element reference

 {
 "Action": [
 "s3:GetObject",
 "s3:PutObject"
],
 "Effect": "Allow",
 "Resource": ["arn:aws:s3:::mybucket/${aws:username}/*"]
 }
]
}

Note
This example uses the aws:username key, which returns the user's friendly name (like "Adele"
or "David"). Under some circumstances, you might want to use the aws:userid key instead,
which is a globally unique value. For more information, see Unique identifiers (p. 718).

The following policy might be used for an IAM group. It gives users in that group the ability to create,
use, and delete queues that have their names and that are in the us-east-2 Region.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ListForConsole",
 "Effect": "Allow",
 "Action": "sqs:ListQueues",
 "Resource": "*"
 },
 {
 "Sid": "AllQueueActions",
 "Effect": "Allow",
 "Action": "sqs:*",
 "Resource": "arn:aws:sqs:us-east-2:*:${aws:username}-queue"
 }
]
}

To replace part of an ARN with a tag value, surround the prefix and key name with ${}. For example,
the following Resource element refers to only a bucket that is named the same as the value in the
requesting user's department tag.

 "Resource": ["arn:aws:s3:::bucket/${aws:PrincipalTag/department}"]

Condition element

You can use a policy variable for Condition values in any condition that involves the string operators or
the ARN operators. String operators include StringEquals, StringLike, and StringNotLike. ARN
operators include ArnEquals and ArnLike. You can't use a policy variable with other operators, such
as Numeric, Date, Boolean, Binary, IP Address, or Null operators. For more information about
condition operators, see IAM JSON policy elements: Condition operators (p. 760).

The following Amazon SNS topic policy gives users in AWS account 999999999999 the ability to
manage (perform all actions for) the topic. However this permission is granted only if the URL matches
their AWS user name.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Principal": {"AWS": "999999999999"},

779

AWS Identity and Access Management User Guide
JSON element reference

 "Effect": "Allow",
 "Action": "sns:*",
 "Condition": {"StringLike": {"sns:endpoint": "https://example.com/${aws:username}/*"}}
 }]
}

When referencing a tag in a Condition element expression, use the relevant prefix and key name as the
condition key. Then use the value that you want to test in the condition value. For example, the following
policy example allows full access to IAM users, but only if the tag costCenter is attached to the user.
The tag must also have a value of either 12345 or 67890. If the tag has no value, or has any other value,
then the request fails.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "iam:*user*"
],
 "Resource": "*",
 "Condition": {
 "StringLike": {
 "iam:ResourceTag/costCenter": ["12345", "67890"]
 }
 }
 }
]
}

Request information that you can use for policy variables

You can use the Condition element of a JSON policy to compare keys in the request context (p. 784)
with key values that you specify in your policy. When you use a policy variable, AWS substitutes a value
from the request context key in place of the variable in your policy.

Information available in all requests

Policies contain keys whose values you can use as policy variables. (Under some circumstances, the keys
do not contain a value—see the information that follows this list.)

• aws:CurrentTime This can be used for conditions that check the date and time.

• aws:EpochTime This is the date in epoch or Unix time, for use with date/time conditions.

• aws:TokenIssueTime This is the date and time that temporary security credentials were issued and
can be used with date/time conditions. Note: This key is only available in requests that are signed
using temporary security credentials. For more information about temporary security credentials, see
Temporary security credentials in IAM (p. 322).

• aws:PrincipalType This value indicates whether the principal is an account, user, federated, or
assumed role—see the explanation that follows later.

• aws:SecureTransport This is a Boolean value that represents whether the request was sent using
SSL.

• aws:SourceIp This is the requester's IP address, for use with IP address conditions. Refer to IP
address condition operators (p. 765) for information about when SourceIp is valid and when you
should use a VPC-specific key instead.

• aws:UserAgent This value is a string that contains information about the requester's client
application. This string is generated by the client and can be unreliable. You can only use this context
key from the AWS CLI.

780

AWS Identity and Access Management User Guide
JSON element reference

• aws:userid This value is the unique ID for the current user—see the chart that follows.

• aws:username This is a string containing the friendly name (p. 713) of the current user—see the
chart that follows.

• ec2:SourceInstanceARN This is the Amazon Resource Name (ARN) of the Amazon EC2 instance
from which the request is made. This key is present only when the request comes from an Amazon EC2
instance using an IAM role associated with an EC2 instance profile.

Important
Key names are case-insensitive. For example, aws:CurrentTime is equivalent to
AWS:currenttime.

Principal key values

The values for aws:username, aws:userid, and aws:PrincipalType depend on what type of
principal initiated the request. For example, the request could be made using the credentials of an
IAM user, an IAM role, or the AWS account root user. The following list shows values for these keys for
different types of principals.

• AWS account root user

• aws:username: (not present)

• aws:userid: AWS account ID

• aws:PrincipalType: Account

• IAM user

• aws:username: IAM-user-name

• aws:userid: unique ID (p. 718)

• aws:PrincipalType: User

• Federated user

• aws:username: (not present)

• aws:userid: account:caller-specified-name

• aws:PrincipalType: FederatedUser

• Web federated user and SAML federated user

Note
For information about policy keys that are available when you use web identity federation, see
Identifying users with web identity federation (p. 181).

• aws:username: (not present)

• aws:userid: (not present)

• aws:PrincipalType: AssumedRole

• Assumed role

• aws:username: (not present)

• aws:userid: role-id:caller-specified-role-name

• aws:PrincipalType: Assumed role

• Role assigned to Amazon EC2 instance

• aws:username: (not present)

• aws:userid: role-id:ec2-instance-id

• aws:PrincipalType: Assumed role

• Anonymous caller (Amazon SQS Amazon SNS and Amazon S3 only)

• aws:username: (not present)

• aws:userid: (not present) 781

AWS Identity and Access Management User Guide
JSON element reference

• aws:PrincipalType: Anonymous

For the items in this list, note the following:

• not present means that the value is not in the current request information, and any attempt to match
it fails and causes the statement to be invalid.

• role-id is a unique identifier assigned to each role at creation. You can display the role ID with the
AWS CLI command: aws iam get-role --role-name rolename

• caller-specified-name and caller-specified-role-name are names that are passed by the
calling process (such as an application or service) when it makes a call to get temporary credentials.

• ec2-instance-id is a value assigned to the instance when it is launched and appears on the
Instances page of the Amazon EC2 console. You can also display the instance ID by running the AWS
CLI command: aws ec2 describe-instances

Information available in requests for federated users

Federated users are users who are authenticated using a system other than IAM. For example, a company
might have an application for use in-house that makes calls to AWS. It might be impractical to give
an IAM identity to every corporate user who uses the application. Instead, the company might use a
proxy (middle-tier) application that has a single IAM identity, or the company might use a SAML identity
provider (IdP). The proxy application or SAML IdP authenticates individual users using the corporate
network. A proxy application can then use its IAM identity to get temporary security credentials for
individual users. A SAML IdP can in effect exchange identity information for AWS temporary security
credentials. The temporary credentials can then be used to access AWS resources.

Similarly, you might create an app for a mobile device in which the app needs to access AWS resources.
In that case, you might use web identity federation, where the app authenticates the user using a well-
known identity provider like Login with Amazon, Amazon Cognito, Facebook, or Google. The app
can then use the user's authentication information from these providers to get temporary security
credentials for accessing AWS resources.

The recommended way to use web identity federation is by taking advantage of Amazon Cognito and
the AWS mobile SDKs. For more information, see the following:

• Amazon Cognito Overview in the AWS Mobile SDK for Android Developer Guide
• Amazon Cognito Overview in the AWS Mobile SDK for iOS Developer Guide
• Common scenarios for temporary credentials (p. 322).

Service-specific information

Requests can also include service-specific keys and values in its request context. Examples include the
following:

• s3:prefix

• s3:max-keys

• s3:x-amz-acl

• sns:Endpoint

• sns:Protocol

For information about service-specific keys that you can use to get values for policy variables, refer to
the documentation for the individual services. For example, see the following topics:

• Bucket Keys in Amazon S3 Policies in the Amazon Simple Storage Service Developer Guide.

782

https://docs.aws.amazon.com/mobile/sdkforandroid/developerguide/cognito-auth.html#d0e840
https://docs.aws.amazon.com/mobile/sdkforios/developerguide/cognito-auth.html#d0e664
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingResOpsConditions.html#BucketKeysinAmazonS3Policies

AWS Identity and Access Management User Guide
JSON element reference

• Amazon SNS Keys in the Amazon Simple Notification Service Developer Guide.

Special characters

There are a few special predefined policy variables that have fixed values that enable you to represent
characters that otherwise have special meaning. If these special characters are part of the string, you are
trying to match and you inserted them literally they would be misinterpreted. For example, inserting an *
asterisk in the string would be interpreted as a wildcard, matching any characters, instead of as a literal *.
In these cases, you can use the following predefined policy variables:

• ${*} - use where you need an * (asterisk) character.
• ${?} - use where you need a ? (question mark) character.
• ${$} - use where you need a $ (dollar sign) character.

These predefined policy variables can be used in any string where you can use regular policy variables.

Specifying default values

When you add a variable to your policy, you can specify a default value for the variable. For example,
anonymous users will not populate the ${aws:userid} variable. You can set the default value to
anonymous for those users. To add a default value to a variable, surround the default value with single
quotes (' '), and separate the variable text and the default value with a comma and space (,).

Condition: StringEquals: "aws:Resource": "arn:aws:s3:::/bucket/${aws:userid, 'anonymous'}"

For more information

For more information about policies, see the following:

• Policies and permissions in IAM (p. 381)
• Example IAM identity-based policies (p. 418)
• IAM JSON policy elements reference (p. 744)
• Policy evaluation logic (p. 784)
• About web identity federation (p. 178)

IAM JSON policy elements: Supported data types
This section lists the data types that are supported when you specify values in JSON policies. The policy
language doesn't support all types for each policy element; for information about each element, see the
preceding sections.

• Strings
• Numbers (Ints and Floats)
• Boolean
• Null
• Lists
• Maps
• Structs (which are just nested Maps)

The following table maps each data type to the serialization. Note that all policies must be in UTF-8. For
information about the JSON data types, go to RFC 4627.

783

https://docs.aws.amazon.com/sns/latest/dg/AccessPolicyLanguage_SpecialInfo.html#sns_aspen_keys
http://tools.ietf.org/html/rfc4627

AWS Identity and Access Management User Guide
Policy evaluation logic

Type JSON

String String

Integer Number

Float Number

Boolean true false

Null null

Date String adhering to the W3C Profile of ISO 8601

IpAddress String adhering to RFC 4632

List Array

Object Object

Policy evaluation logic
When a principal tries to use the AWS Management Console, the AWS API, or the AWS CLI, that principal
sends a request to AWS. When an AWS service receives the request, AWS completes several steps to
determine whether to allow or deny the request.

1. Authentication – AWS first authenticates the principal that makes the request, if necessary. This step
is not necessary for a few services, such as Amazon S3, that allow some requests from anonymous
users.

2. Processing the request context (p. 784) – AWS processes the information gathered in the request to
determine which policies apply to the request.

3. Evaluating policies within a single account (p. 785) – AWS evaluates all of the policy types, which
affect the order in which the policies are evaluated.

4. Determining whether a request is allowed or denied within an account (p. 787) – AWS then
processes the policies against the request context to determine whether the request is allowed or
denied.

Processing the request context

AWS processes the request to gather the following information into a request context:

• Actions (or operations) – The actions or operations that the principal wants to perform.

• Resources – The AWS resource object upon which the actions or operations are performed.

• Principal – The user, role, federated user, or application that sent the request. Information about the
principal includes the policies that are associated with that principal.

• Environment data – Information about the IP address, user agent, SSL enabled status, or the time of
day.

• Resource data – Data related to the resource that is being requested. This can include information
such as a DynamoDB table name or a tag on an Amazon EC2 instance.

AWS then uses this information to find policies that apply to the request context.

784

http://www.w3.org/TR/NOTE-datetime
http://tools.ietf.org/html/rfc4632

AWS Identity and Access Management User Guide
Policy evaluation logic

Evaluating policies within a single account

How AWS evaluates policies depends on the types of policies that apply to the request context. The
following policy types, listed in order of frequency, are available for use within a single AWS account. For
more information about these policy types, see Policies and permissions in IAM (p. 381). To learn how
AWS evaluates policies for cross-account access, see Cross-account policy evaluation logic (p. 792).

1. Identity-based policies – Identity-based policies are attached to an IAM identity (user, group of users,
or role) and grant permissions to IAM entities (users and roles). If only identity-based policies apply to
a request, then AWS checks all of those policies for at least one Allow.

2. Resource-based policies – Resource-based policies grant permissions to the principal (account, user,
role, or federated user) specified as the principal. The permissions define what the principal can do
with the resource to which the policy is attached. If resource-based policies and identity-based policies
both apply to a request, then AWS checks all the policies for at least one Allow.

3. IAM permissions boundaries – Permissions boundaries are an advanced feature that sets the
maximum permissions that an identity-based policy can grant to an IAM entity (user or role). When
you set a permissions boundary for an entity, the entity can perform only the actions that are allowed
by both its identity-based policies and its permissions boundaries. An implicit deny in a permissions
boundary does not limit the permissions granted by a resource-based policy.

4. AWS Organizations service control policies (SCPs) – Organizations SCPs specify the maximum
permissions for an organization or organizational unit (OU). The SCP maximum applies to principals
in member accounts, including each AWS account root user. If an SCP is present, identity-based and
resource-based policies grant permissions to principals in member accounts only if those policies and
the SCP allow the action. If both a permissions boundary and an SCP are present, then the boundary,
the SCP, and the identity-based policy must all allow the action.

5. Session policies – Session policies are advanced policies that you pass as parameters when you
programmatically create a temporary session for a role or federated user. To create a role session
programmatically, use one of the AssumeRole* API operations. When you do this and pass session
policies, the resulting session's permissions are the intersection of the IAM entity's identity-based
policy and the session policies. To create a federated user session, you use an IAM user's access keys
to programmatically call the GetFederationToken API operation. A resource-based policy has a
different effect on the evaluation of session policy permissions. The difference depends on whether
the user or role's ARN or the session's ARN is listed as the principal in the resource-based policy. For
more information, see Session policies (p. 383).

Remember, an explicit deny in any of these policies overrides the allow.

Evaluating identity-based policies with resource-based policies

Identity-based policies and resource-based policies grant permissions to the identities or resources
to which they are attached. When an IAM entity (user or role) requests access to a resource within the
same account, AWS evaluates all the permissions granted by the identity-based and resource-based
policies. The resulting permissions are the total permissions of the two types. If an action is allowed by
an identity-based policy, a resource-based policy, or both, then AWS allows the action. An explicit deny in
either of these policies overrides the allow.

785

AWS Identity and Access Management User Guide
Policy evaluation logic

Evaluating identity-based policies with permissions boundaries

When AWS evaluates the identity-based policies and permissions boundary for a user, the resulting
permissions are the intersection of the two categories. That means that when you add a permissions
boundary to a user with existing identity-based policies, you might reduce the actions that the user
can perform. Alternatively, when you remove a permissions boundary from a user, you might increase
the actions they can perform. An explicit deny in either of these policies overrides the allow. To view
information about how other policy types are evaluated with permissions boundaries, see Evaluating
effective permissions with boundaries (p. 396).

Evaluating identity-based policies with Organizations SCPs

When a user belongs to an account that is a member of an organization, the resulting permissions are
the intersection of the user's policies and the SCP. This means that an action must be allowed by both
the identity-based policy and the SCP. An explicit deny in either of these policies overrides the allow.

786

AWS Identity and Access Management User Guide
Policy evaluation logic

You can learn whether your account is a member of an organization in AWS Organizations. Organization
members might be affected by an SCP. To view this data using the AWS CLI command or AWS API
operation, you must have permissions for the organizations:DescribeOrganization action
for your Organizations entity. You must have additional permissions to perform the operation in the
Organizations console. To learn whether an SCP is denying access to a specific request, or to change your
effective permissions, contact your AWS Organizations administrator.

Determining whether a request is allowed or denied within an
account

Assume that a principal sends a request to AWS to access a resource in the same account as the
principal's entity. The AWS enforcement code decides whether the request should be allowed or denied.
AWS gathers all of the policies that apply to the request context. The following is a high-level summary
of the AWS evaluation logic on those policies within a single account.

• By default, all requests are implicitly denied. (Alternatively, by default, the AWS account root user has
full access.)

• An explicit allow in an identity-based or resource-based policy overrides this default.

• If a permissions boundary, Organizations SCP, or session policy is present, it might override the allow
with an implicit deny.

• An explicit deny in any policy overrides any allows.

The following flow chart provides details about how the decision is made.

787

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_org_details.html#orgs_view_account

AWS Identity and Access Management User Guide
Policy evaluation logic

1. Deny evaluation – By default, all requests are denied. This is called an implicit deny (p. 791). The
AWS enforcement code evaluates all policies within the account that apply to the request. These
include AWS Organizations SCPs, resource-based policies, IAM permissions boundaries, role session
policies, and identity-based policies. In all those policies, the enforcement code looks for a Deny
statement that applies to the request. This is called an explicit deny (p. 791). If the code finds even
one explicit deny that applies, the code returns a final decision of Deny. If there is no explicit deny, the
code continues.

2. Organizations SCPs – Then the code evaluates AWS Organizations service control policies (SCPs)
that apply to the request. SCPs apply to principals of the account where the SCPs are attached. If the
enforcement code does not find any applicable Allow statements in the SCPs, then the request is
implicitly denied. The code returns a final decision of Deny. If there is no SCP, or if the SCP allows the
requested action, the code continues.

3. Resource-based policies – If the requested resource has a resource-based policy that allows the
principal to perform the requested action, then the code returns a final decision of Allow. If there
is no resource-based policy, or if the policy does not include an Allow statement, then the code
continues.

Note
This logic can behave differently if you specify the ARN of an IAM user or role as the principal
of the resource-based policy. When you assume the role or federate the user, it generates
a session. In that case, the effective permissions granted by the resource-based policy are
limited by a permissions boundary or session policy for that principal. For more information
about effective permissions for assumed-role sessions or federated user sessions, see Session
Policies and Evaluating effective permissions with boundaries.

4. IAM permissions boundaries – The enforcement code then checks whether the IAM entity that is
used by the principal has a permissions boundary. If the policy that is used to set the permissions
boundary does not allow the requested action, then the request is implicitly denied. The code returns
a final decision of Deny. If there is no permissions boundary, or if the permissions boundary allows the
requested action, the code continues.

5. Session policies – The code then checks whether the principal is using a session that was assumed
by passing a session policy. You can pass a session policy while using the AWS CLI or AWS API to get
temporary credentials for a role or federated user. If the session policy is present and does not allow
the requested action, then the request is implicitly denied. The code returns a final decision of Deny. If
there is no session policy, or if the policy allows the requested action, the code continues.

6. Identity-based policies – The code then checks the identity-based policies for the principal. For
an IAM user, these include user policies and policies from groups to which the user belongs. If any
statement in any applicable identity-based policies allows the requested action, then the enforcement

788

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html#access_policies_boundaries-eval-logic

AWS Identity and Access Management User Guide
Policy evaluation logic

code returns a final decision of Allow. If there are no statements that allow the requested action, then
the request is implicitly denied, and the code returns a final decision of Deny.

7. Errors – If the AWS enforcement code encounters an error at any point during the evaluation, then it
generates an exception and closes.

Example identity-based and resource-based policy evaluation
The most common types of policies are identity-based policies and resource-based policies.

Assume that Carlos has the user name carlossalazar and he tries to save a file to the
carlossalazar-logs Amazon S3 bucket.

Also assume that the following policy is attached to the carlossalazar IAM user.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowS3ListRead",
 "Effect": "Allow",
 "Action": [
 "s3:ListAllMyBuckets",
 "s3:HeadBucket"
],
 "Resource": "*"
 },
 {
 "Sid": "AllowS3Self",
 "Effect": "Allow",
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::carlossalazar/*",
 "arn:aws:s3:::carlossalazar"
]
 },
 {
 "Sid": "DenyS3Logs",
 "Effect": "Deny",
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::*log*",
 "arn:aws:s3:::*log*/*"
]
 }
]
}

The AllowS3ListRead statement in this policy allows Carlos to view a list of all of the buckets in the
account. The AllowS3Self statement allows Carlos full access to the bucket with the same name as his
user name. The DenyS3Logs statement denies Carlos access to any S3 bucket with log in its name.

Additionally, the following resource-based policy (called a bucket policy) is attached to the
carlossalazar bucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "s3:*",
 "Principal": { "AWS": "arn:aws:iam::111122223333:user/carlossalazar" },

789

AWS Identity and Access Management User Guide
Policy evaluation logic

 "Resource": "*"
 }
]
}

This policy specifies that only the carlossalazar user can access the carlossalazar bucket.

When Carlos makes his request to save a file to the carlossalazar-logs bucket, AWS determines
what policies apply to the request. In this case, only the identity-based policy and the resource-based
policy apply. These are both permissions policies. Because no permissions boundaries apply, the
evaluation logic is reduced to the following logic.

AWS first checks for a Deny statement that applies to the context of the request. It finds one, because
the identity-based policy explicitly denies Carlos access to any S3 buckets used for logging. Carlos is
denied access.

Assume that he then realizes his mistake and tries to save the file to the carlossalazar bucket.
AWS checks for a Deny statement and does not find one. It then checks the permissions policies. Both

790

AWS Identity and Access Management User Guide
Policy evaluation logic

the identity-based policy and the resource-based policy allow the request. Therefore, AWS allows the
request. If either of them explicitly denied the statement, the request would have been denied. If one of
the policy types allows the request and the other doesn't, the request is still allowed.

The difference between explicit and implicit denies

A request results in an explicit deny if an applicable policy includes a Deny statement. If policies that
apply to a request include an Allow statement and a Deny statement, the Deny statement trumps the
Allow statement. The request is explicitly denied.

An implicit denial occurs when there is no applicable Deny statement but also no applicable Allow
statement. Because an IAM user, role, or federated user is denied access by default, they must be
explicitly allowed to perform an action. Otherwise, they are implicitly denied access.

When you design your authorization strategy, you must create policies with Allow statements to allow
your principals to successfully make requests. However, you can choose any combination of explicit and
implicit denies. For example, you can create the following policy to allow an administrator full access
to all resources in AWS, but explicitly deny access to billing. If someone adds another policy to this
administrator granting them access to billing, it is still denied because of this explicit deny.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "*",
 "Resource": "*"
 },
 {
 "Effect": "Deny",
 "Action": "aws-portal:*",
 "Resource": "*"
 }
]
}

Alternatively, you can create the following policy to allow a user to manage users, but not groups or any
other resources in IAM. Those actions are implicitly denied, as are actions in other services. However,
if someone adds a policy to the user that allows them to perform these other actions, then they are
allowed.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "iam:AttachUserPolicy",
 "iam:CreateUser",
 "iam:DeleteUser",
 "iam:DeleteUserPolicy",
 "iam:DetachUserPolicy",
 "iam:GetUser",
 "iam:GetUserPolicy",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:ListUsers",
 "iam:PutUserPolicy",
 "iam:UpdateUser"
],
 "Resource": "*"

791

AWS Identity and Access Management User Guide
Policy evaluation logic

 }
}

Cross-account policy evaluation logic

You can allow a principal in one account to access resources in a second account. This is called cross-
account access. When you allow cross-account access, the account where the principal exists is called the
trusted account. The account where the resource exists is the trusting account.

To allow cross-account access, you attach a resource-based policy to the resource that you want to share.
You must also attach an identity-based policy to the identity that acts the principal in the request. The
resource-based policy in the trusting account must specify the principal of the trusted account that will
have access to the resource. You can specify the entire account or its IAM users, federated users, IAM
roles, or assumed-role sessions. You can also specify an AWS service as a principal. For more information,
see Specifying a principal (p. 748).

The principal's identity-based policy must allow the requested access to the resource in the trusting
service. You can do this by specifying the ARN of the resource or by allowing access to all resources (*).

In IAM, you can attach a resource-based policy to an IAM role to allow principals in other accounts to
assume that role. The role's resource-based policy is called a role trust policy. After assuming that role,
the allowed principals can use the resulting temporary credentials to access multiple resources in your
account. This access is defined in the role's identity-based permissions policy. To learn how allowing
cross-account access using roles is different from allowing cross-account access using other resource-
based policies, see How IAM roles differ from resource-based policies (p. 293).

Important
Other services can affect the policy evaluation logic. For example, AWS Organizations supports
service control policies that can be applied to principals one or more accounts. AWS Resource
Access Manager supports policy fragments that control which actions that principals are allowed
to perform on resources that are shared with them.

Determining whether a cross-account request is allowed

For cross-account requests, the requester in the trusted AccountA must have an identity-based policy.
That policy must allow them to make a request to the resource in the trusting AccountB. Additionally,
the resource-based policy in AccountB must allow the requester in AccountA to access the resource.

When you make a cross-account request, AWS performs two evaluations. AWS evaluates the request
in the trusting account and the trusted account. For more information about how a request is
evaluated within a single account, see Determining whether a request is allowed or denied within an
account (p. 787). The request is allowed only if both evaluations return a decision of Allow.

792

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scp.html
https://docs.aws.amazon.com/ram/latest/userguide/permissions.html

AWS Identity and Access Management User Guide
Policy evaluation logic

1. When a principal in one account makes a request to access a resource in another account, this is a
cross-account request.

2. The requesting principal exists in the trusted account (AccountA). When AWS evaluates this account,
it checks the identity-based policy and any policies that can limit an identity-based policy. For more
information, see Evaluating policies within a single account (p. 785).

3. The requested resource exists in the trusting account (AccountB). When AWS evaluates this account,
it checks the resource-based policy that is attached to the requested resource and any policies that
can limit a resource-based policy. For more information, see Evaluating policies within a single
account (p. 785).

793

AWS Identity and Access Management User Guide
Policy evaluation logic

4. AWS allows the request only if both account policy evaluations allow the request.

Example cross-account policy evaluation

The following example demonstrates a scenario where a user in one account is granted permissions by a
resource-based policy in a second account.

Assume that Carlos is a developer with an IAM user named carlossalazar in account 111111111111.
He wants to save a file to the Production-logs Amazon S3 bucket in account 222222222222.

Also assume that the following policy is attached to the carlossalazar IAM user.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowS3ListRead",
 "Effect": "Allow",
 "Action": "s3:ListAllMyBuckets",
 "Resource": "*"
 },
 {
 "Sid": "AllowS3ProductionObjectActions",
 "Effect": "Allow",
 "Action": "s3:*Object*",
 "Resource": "arn:aws:s3:::Production/*"
 },
 {
 "Sid": "DenyS3Logs",
 "Effect": "Deny",
 "Action": "s3:*",
 "Resource": [
 "arn:aws:s3:::*log*",
 "arn:aws:s3:::*log*/*"
]
 }
]
}

The AllowS3ListRead statement in this policy allows Carlos to view a list of all of the buckets in
Amazon S3. The AllowS3ProductionObjectActions statement allows Carlos full access to objects in
the Production bucket. The DenyS3Logs statement denies Carlos access to any S3 bucket with log in
its name. It also denies access to all objects in those buckets.

Additionally, the following resource-based policy (called a bucket policy) is attached to the Production
bucket in account 222222222222.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject*",
 "s3:PutObject*",
 "s3:ReplicateObject",
 "s3:RestoreObject"
],
 "Principal": { "AWS": "arn:aws:iam::111111111111:user/carlossalazar" },
 "Resource": "arn:aws:s3:::Production/*"
 }

794

AWS Identity and Access Management User Guide
Policy evaluation logic

]
}

This policy allows the carlossalazar user to access objects in the Production bucket. He can create
and edit, but not delete the objects in the bucket. He can't manage the bucket itself.

When Carlos makes his request to save a file to the Production-logs bucket, AWS determines what
policies apply to the request. In this case, the identity-based policy attached to the carlossalazar
user is the only policy that applies in account 111111111111. In account 222222222222, there is
no resource-based policy attached to the Production-logs bucket. When AWS evaluates account
111111111111, it returns a decision of Deny. This is because the DenyS3Logs statement in the
identity-based policy explicitly denies access to any log buckets. For more information about how a
request is evaluated within a single account, see Determining whether a request is allowed or denied
within an account (p. 787).

Because the request is explicitly denied within one of the accounts, the final decision is to deny the
request.

795

AWS Identity and Access Management User Guide
Policy evaluation logic

Assume that Carlos then realizes his mistake and tries to save the file to the Production bucket. AWS
first checks account 111111111111 to determine if the request is allowed. Only the identity-based
policy applies, and it allows the request. AWS then checks account 222222222222. Only the resource-
based policy attached to the Production bucket applies, and it allows the request. Because both
accounts allow the request, the final decision is to allow the request.

796

AWS Identity and Access Management User Guide
Policy grammar

Grammar of the IAM JSON policy language
This page presents a formal grammar for the language used to create JSON policies in IAM. We present
this grammar so that you can understand how to construct and validate policies.

For examples of policies, see the following topics:

• Policies and permissions in IAM (p. 381)

• Example IAM identity-based policies (p. 418)

• Example Policies for Working in the Amazon EC2 Console and Example Policies for Working With the
AWS CLI, the Amazon EC2 CLI, or an AWS SDK in the Amazon EC2 User Guide for Linux Instances.

797

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-policies-ec2-console.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ExamplePolicies_EC2.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ExamplePolicies_EC2.html

AWS Identity and Access Management User Guide
Policy grammar

• Bucket Policy Examples and User Policy Examples in the Amazon Simple Storage Service Developer
Guide.

For examples of policies used in other AWS services, go to the documentation for those services.

Topics

• The policy language and JSON (p. 798)

• Conventions used in this grammar (p. 798)

• Grammar (p. 799)

• Policy grammar notes (p. 800)

The policy language and JSON
Policies are expressed in JSON. When you create or edit a JSON policy, IAM can perform policy validation
to help you create an effective policy. IAM identifies JSON syntax errors, while IAM Access Analyzer
provides additional policy checks with recommendations to help you further refine your policies. To
learn more about policy validation, see Validating IAM policies (p. 474). To learn more about IAM Access
Analyzer policy checks and actionable recommendations, see IAM Access Analyzer policy validation.

In this document, we do not provide a complete description of what constitutes valid JSON. However,
here are some basic JSON rules:

• White space between individual entities is allowed.

• Values are enclosed in quotation marks. Quotation marks are optional for numeric and Boolean values.

• Many elements (for example, action_string_list and resource_string_list) can take a JSON
array as a value. Arrays can take one or more values. If more than one value is included, the array is in
square brackets ([and]) and comma-delimited, as in the following example:

"Action" : ["ec2:Describe*","ec2:List*"]

• Basic JSON data types (Boolean, number, and string) are defined in RFC 7159.

Conventions used in this grammar
The following conventions are used in this grammar:

• The following characters are JSON tokens and are included in policies:

{ } [] " , :

• The following characters are special characters in the grammar and are not included in policies:

= < > () |

• If an element allows multiple values, it is indicated using repeated values, a comma delimiter, and an
ellipsis (...). Examples:

[<action_string>, <action_string>, ...]

<principal_map> = { <principal_map_entry>, <principal_map_entry>, ... }

If multiple values are allowed, it is also valid to include only one value. For only one value, the trailing
comma must be omitted. If the element takes an array (marked with [and]) but only one value is
included, the brackets are optional. Examples:

"Action": [<action_string>]

798

https://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/example-policies-s3.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
http://tools.ietf.org/html/rfc7159

AWS Identity and Access Management User Guide
Policy grammar

"Action": <action_string>

• A question mark (?) following an element indicates that the element is optional. Example:

<version_block?>

However, be sure to refer to the notes that follow the grammar listing for details about optional
elements.

• A vertical line (|) between elements indicates alternatives. In the grammar, parentheses define the
scope of the alternatives. Example:

("Principal" | "NotPrincipal")

• Elements that must be literal strings are enclosed in double quotation marks ("). Example:

<version_block> = "Version" : ("2008-10-17" | "2012-10-17")

For additional notes, see Policy grammar notes (p. 800) following the grammar listing.

Grammar
The following listing describes the policy language grammar. For conventions used in the listing, see the
preceding section. For additional information, see the notes that follow.

Note
This grammar describes policies marked with a version of 2008-10-17 and 2012-10-17. A
Version policy element is different from a policy version. The Version policy element is used
within a policy and defines the version of the policy language. A policy version, on the other
hand, is created when you make changes to a customer managed policy in IAM. The changed
policy doesn't overwrite the existing policy. Instead, IAM creates a new version of the managed
policy. To learn more about the Version policy element see IAM JSON policy elements:
Version (p. 745). To learn more about policy versions, see the section called “Versioning IAM
policies” (p. 492).

policy = {
 <version_block?>
 <id_block?>
 <statement_block>
}

<version_block> = "Version" : ("2008-10-17" | "2012-10-17")

<id_block> = "Id" : <policy_id_string>

<statement_block> = "Statement" : [<statement>, <statement>, ...]

<statement> = {
 <sid_block?>,
 <principal_block?>,
 <effect_block>,
 <action_block>,
 <resource_block>,
 <condition_block?>
}

<sid_block> = "Sid" : <sid_string>

<effect_block> = "Effect" : ("Allow" | "Deny")

<principal_block> = ("Principal" | "NotPrincipal") : ("*" | <principal_map>)

799

AWS Identity and Access Management User Guide
Policy grammar

<principal_map> = { <principal_map_entry>, <principal_map_entry>, ... }

<principal_map_entry> = ("AWS" | "Federated" | "Service" | "CanonicalUser") :
 [<principal_id_string>, <principal_id_string>, ...]

<action_block> = ("Action" | "NotAction") :
 ("*" | [<action_string>, <action_string>, ...])

<resource_block> = ("Resource" | "NotResource") :
 ("*" | [<resource_string>, <resource_string>, ...])

<condition_block> = "Condition" : { <condition_map> }
<condition_map> = {
 <condition_type_string> : { <condition_key_string> : <condition_value_list> },
 <condition_type_string> : { <condition_key_string> : <condition_value_list> }, ...
}
<condition_value_list> = [<condition_value>, <condition_value>, ...]
<condition_value> = ("string" | "number" | "Boolean")

Policy grammar notes
• A single policy can contain an array of statements.

• Policies have a maximum size between 2048 characters and 10,240 characters, depending on what
entity the policy is attached to. For more information, see IAM and AWS STS quotas (p. 719). Policy
size calculations do not include white space characters.

• Individual elements must not contain multiple instances of the same key. For example, you cannot
include the Effect block twice in the same statement.

• Blocks can appear in any order. For example, version_block can follow id_block in a policy.
Similarly, effect_block, principal_block, action_block can appear in any order within a
statement.

• The id_block is optional in resource-based policies. It must not be included in identity-based policies.

• The principal_block element is required in resource-based policies (for example, in Amazon S3
bucket policies) and in trust policies for IAM roles. It must not be included in identity-based policies.

• The principal_map element in Amazon S3 bucket policies can include the CanonicalUser ID. Most
resource-based policies do not support this mapping. To learn more about using the canonical user ID
in a bucket policy, see Specifying a Principal in a Policy in the Amazon Simple Storage Service Developer
Guide.

• Each string value (policy_id_string, sid_string, principal_id_string, action_string,
resource_string, condition_type_string, condition_key_string, and the string version
of condition_value) can have its own minimum and maximum length restrictions, specific allowed
values, or required internal format.

Notes about string values

This section provides additional information about string values that are used in different elements in a
policy.

action_string

Consists of a service namespace, a colon, and the name of an action. Action names can include
wildcards. Examples:

"Action":"ec2:StartInstances"

"Action":[
 "ec2:StartInstances",

800

https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-bucket-user-policy-specifying-principal-intro.html

AWS Identity and Access Management User Guide
Policy grammar

 "ec2:StopInstances"
]

"Action":"cloudformation:*"

"Action":"*"

"Action":[
 "s3:Get*",
 "s3:List*"
]

policy_id_string

Provides a way to include information about the policy as a whole. Some services, such as Amazon
SQS and Amazon SNS, use the Id element in reserved ways. Unless otherwise restricted by an
individual service, policy_id_string can include spaces. Some services require this value to be unique
within an AWS account.

Note
The id_block is allowed in resource-based policies, but not in identity-based policies.

There is no limit to the length, although this string contributes to the overall length of the policy,
which is limited.

"Id":"Admin_Policy"

"Id":"cd3ad3d9-2776-4ef1-a904-4c229d1642ee"

sid_string

Provides a way to include information about an individual statement. For IAM policies, basic
alphanumeric characters (A-Z,a-z,0-9) are the only allowed characters in the Sid value. Other AWS
services that support resource policies may have other requirements for the Sid value. For example,
some services require this value to be unique within an AWS account, and some services allow
additional characters such as spaces in the Sid value.

"Sid":"1"

"Sid": "ThisStatementProvidesPermissionsForConsoleAccess"

principal_id_string

Provides a way to specify a principal using the Amazon Resource Name (ARN) (p. 714) of the AWS
account, IAM user, IAM role, federated user, or assumed-role user. For an AWS account, you can also
use the short form AWS:accountnumber instead of the full ARN. For all of the options including
AWS services, assumed roles, and so on, see Specifying a principal (p. 748).

Note that you can use * only to specify "everyone/anonymous." You cannot use it to specify part of a
name or ARN.

resource_string

In most cases, consists of an Amazon Resource Name (p. 714) (ARN).

"Resource":"arn:aws:iam::123456789012:user/Bob"

"Resource":"arn:aws:s3:::examplebucket/*"

801

AWS Identity and Access Management User Guide
AWS managed policies for job functions

condition_type_string

Identifies the type of condition being tested, such as StringEquals, StringLike,
NumericLessThan, DateGreaterThanEquals, Bool, BinaryEquals, IpAddress,
ArnEquals, etc. For a complete list of condition types, see IAM JSON policy elements: Condition
operators (p. 760).

"Condition": {
 "NumericLessThanEquals": {
 "s3:max-keys": "10"
 }
}

"Condition": {
 "Bool": {
 "aws:SecureTransport": "true"
 }
}

"Condition": {
 "StringEquals": {
 "s3:x-amz-server-side-encryption": "AES256"
 }
}

condition_key_string

Identifies the condition key whose value will be tested to determine whether the condition
is met. AWS defines a set of condition keys that are available in all AWS services, including
aws:PrincipalType, aws:SecureTransport, and aws:userid.

For a list of AWS condition keys, see AWS global condition context keys (p. 812). For condition keys
that are specific to a service, see the documentation for that service such as the following:
• Specifying Conditions in a Policy in the Amazon Simple Storage Service Developer Guide
• IAM Policies for Amazon EC2 in the Amazon EC2 User Guide for Linux Instances.

"Condition":{
 "Bool": {
 "aws:SecureTransport": "true"
 }
}

"Condition": {
 "StringNotEquals": {
 "s3:x-amz-server-side-encryption": "AES256"
 }
}

"Condition": {
 "StringEquals": {
 "aws:ResourceTag/purpose": "test"
 }
}

AWS managed policies for job functions
We recommend using policies that grant least privilege (p. 559), or granting only the permissions
required to perform a task. The most secure way to grant least privilege is to write a custom policy
with only the permissions needed by your team. You must create a process to allow your team to

802

https://docs.aws.amazon.com/AmazonS3/latest/dev/amazon-s3-policy-keys.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-policies-for-amazon-ec2.html

AWS Identity and Access Management User Guide
AWS managed policies for job functions

request more permissions when necessary. It takes time and expertise to create IAM customer managed
policies (p. 469) that provide your team with only the permissions they need.

To get started adding permissions to your IAM identities (users, groups of users, and roles), you can use
AWS managed policies (p. 390). AWS managed policies cover common use cases and are available in
your AWS account. AWS managed policies don't grant least privilege permissions. You must consider the
security risk of granting your principals more permissions than they need to do their job.

You can attach AWS managed policies, including job functions, to any IAM identity. To switch to least
privilege permissions, you can run AWS Identity and Access Management Access Analyzer to monitor
principals with AWS managed policies. After learning which permissions they are using, then you can
write a custom policy or generate a policy with only the required permissions for your team. This is less
secure, but provides more flexibility as you learn how your team is using AWS.

AWS managed policies for job functions are designed to closely align to common job functions in the IT
industry. You can use these policies to grant the permissions needed to carry out the tasks expected of
someone in a specific job function. These policies consolidate permissions for many services into a single
policy that's easier to work with than having permissions scattered across many policies.

Use Roles to Combine Services

Some of the policies use IAM service roles to help you take advantage of features found in other AWS
services. These policies grant access to iam:passrole, which allows a user with the policy to pass a role
to an AWS service. This role delegates IAM permissions to the AWS service to carry out actions on your
behalf.

You must create the roles according to your needs. For example, the Network Administrator policy
allows a user with the policy to pass a role named "flow-logs-vpc" to the Amazon CloudWatch service.
CloudWatch uses that role to log and capture IP traffic for VPCs created by the user.

To follow security best practices, the policies for job functions include filters that limit the names of valid
roles that can be passed. This helps avoid granting unnecessary permissions. If your users do require the
optional service roles, you must create a role that follows the naming convention specified in the policy.
You then grant permissions to the role. Once that is done, the user can configure the service to use the
role, granting it whatever permissions the role provides.

In the following sections, each policy's name is a link to the policy details page in the AWS Management
Console. There you can see the policy document and review the permissions it grants.

Administrator job function
AWS managed policy name: AdministratorAccess

Use case: This user has full access and can delegate permissions to every service and resource in AWS.

Policy updates: AWS maintains and updates this policy. For a history of changes for this policy, view
the policy in the IAM console and then choose the Policy versions tab. For more information about job
function policy updates, see Updates to AWS managed policies for job functions (p. 809).

Policy description: This policy grants all actions for all AWS services and for all resources in the account.

Note
Before an IAM user or role can access the AWS Billing and Cost Management console with the
permissions in this policy, you must first activate IAM user and role access. To do this, follow the
instructions in Step 1 of the tutorial about delegating access to the billing console (p. 29).

Billing job function
AWS managed policy name: Billing

803

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AdministratorAccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/job-function/Billing

AWS Identity and Access Management User Guide
AWS managed policies for job functions

Use case: This user needs to view billing information, set up payments, and authorize payments. The user
can monitor the costs accumulated for the entire AWS service.

Policy updates: AWS maintains and updates this policy. For a history of changes for this policy, view
the policy in the IAM console and then choose the Policy versions tab. For more information about job
function policy updates, see Updates to AWS managed policies for job functions (p. 809).

Policy description: This policy grants full permissions for managing billing, costs, payment methods,
budgets, and reports.

Note
Before an IAM user or role can access the AWS Billing and Cost Management console with the
permissions in this policy, you must first activate IAM user and role access. To do this, follow the
instructions in Step 1 of the tutorial about delegating access to the billing console (p. 29).

Database administrator job function
AWS managed policy name: DatabaseAdministrator

Use case: This user sets up, configures, and maintains databases in the AWS Cloud.

Policy updates: AWS maintains and updates this policy. For a history of changes for this policy, view
the policy in the IAM console and then choose the Policy versions tab. For more information about job
function policy updates, see Updates to AWS managed policies for job functions (p. 809).

Policy description: This policy grants permissions to create, configure, and maintain databases. It
includes access to AWS database services, such as Amazon DynamoDB, Amazon Relational Database
Service (RDS), and Amazon Redshift. View the policy for the full list of database services that this policy
supports.

This job function policy supports the ability to pass roles to AWS services. The policy allows the
iam:PassRole action for only those roles named in the following table. For more information, see
Creating roles and attaching policies (console) (p. 809) later in this topic.

Optional IAM service roles for the database administrator job function

Use case Role name (* is a
wildcard)

Service role type
to select

Select this AWS managed
policy

Allow the user to monitor
RDS databases

rds-monitoring-role Amazon RDS Role
for Enhanced
Monitoring

AmazonRDSEnhancedMonitoringRole

Allow AWS Lambda to
monitor your database and
access external databases

rdbms-lambda-access Amazon EC2 AWSLambda_FullAccess

Allow Lambda to upload
files to Amazon S3 and to
Amazon Redshift clusters
with DynamoDB

lambda_exec_role AWS Lambda Create a new managed
policy as defined in the
AWS Big Data Blog

Allow Lambda functions
to act as triggers for your
DynamoDB tables

lambda-dynamodb-* AWS Lambda AWSLambdaDynamoDBExecutionRole

Allow Lambda functions
to access Amazon RDS in a
VPC

lambda-vpc-
execution-role

Create a role with
a trust policy as
defined in the

AWSLambdaVPCAccessExecutionRole

804

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/job-function/DatabaseAdministrator
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Monitoring.OS.html
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AmazonRDSEnhancedMonitoringRole
http://aws.amazon.com/blogs/big-data/from-sql-to-microservices-integrating-aws-lambda-with-relational-databases
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/AWSLambda_FullAccess
http://aws.amazon.com/blogs/big-data/a-zero-administration-amazon-redshift-database-loader
http://aws.amazon.com/blogs/big-data/a-zero-administration-amazon-redshift-database-loader
https://docs.aws.amazon.com/lambda/latest/dg/with-ddb.html
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaDynamoDBExecutionRole
https://docs.aws.amazon.com/lambda/latest/dg/vpc-rds.html
https://docs.aws.amazon.com/lambda/latest/dg/vpc-rds.html
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaVPCAccessExecutionRole

AWS Identity and Access Management User Guide
AWS managed policies for job functions

Use case Role name (* is a
wildcard)

Service role type
to select

Select this AWS managed
policy

AWS Lambda
Developer Guide

Allow AWS Data Pipeline to
access your AWS resources

DataPipelineDefaultRole Create a role with
a trust policy as
defined in the
AWS Data Pipeline
Developer Guide

The AWS Data Pipeline
documentation lists the
required permissions
for this use case. See
IAM roles for AWS Data
Pipeline

Allow your applications
running on Amazon EC2
instances to access your
AWS resources

DataPipelineDefaultResourceRoleCreate a role with
a trust policy as
defined in the
AWS Data Pipeline
Developer Guide

AmazonEC2RoleforDataPipelineRole

Data scientist job function
AWS managed policy name: DataScientist

Use case: This user runs Hadoop jobs and queries. The user also accesses and analyzes information for
data analytics and business intelligence.

Policy updates: AWS maintains and updates this policy. For a history of changes for this policy, view
the policy in the IAM console and then choose the Policy versions tab. For more information about job
function policy updates, see Updates to AWS managed policies for job functions (p. 809).

Policy description: This policy grants permissions to create, manage, and run queries on an Amazon EMR
cluster and perform data analytics with tools such as Amazon QuickSight. The policy includes access
to additional data scientist services, such as AWS Data Pipeline, Amazon EC2, Amazon Kinesis, Amazon
Machine Learning, and SageMaker. View the policy for the full list of data scientist services that this
policy supports.

This job function policy supports the ability to pass roles to AWS services. One statement allows passing
any role to SageMaker. Another statement allows the iam:PassRole action for only those roles named
in the following table. For more information, see Creating roles and attaching policies (console) (p. 809)
later in this topic.

Optional IAM service roles for the data scientist job function

Use case Role name (* is a
wildcard)

Service role type to
select

AWS managed
policy to select

Allow Amazon EC2 instances
access to services and resources
suitable for clusters

EMR-
EC2_DefaultRole

Amazon EMR for EC2 AmazonElasticMapReduceforEC2Role

Allow Amazon EMR access to
access the Amazon EC2 service
and resources for clusters

EMR_DefaultRole Amazon EMR AmazonEMRServicePolicy_v2

Allow Kinesis Kinesis Data
Analytics to access streaming
data sources

kinesis-* Create a role with
a trust policy as
defined in the AWS
Big Data Blog.

See the AWS Big
Data Blog, which
outlines four possible

805

https://docs.aws.amazon.com/lambda/latest/dg/vpc-rds.html
https://docs.aws.amazon.com/lambda/latest/dg/vpc-rds.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AmazonEC2RoleforDataPipelineRole
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/job-function/DataScientist
https://docs.aws.amazon.com/emr/latest/DeveloperGuide/emr-iam-roles-defaultroles.html
https://docs.aws.amazon.com/emr/latest/DeveloperGuide/emr-iam-roles-defaultroles.html
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AmazonElasticMapReduceforEC2Role
https://docs.aws.amazon.com/emr/latest/DeveloperGuide/emr-iam-roles-defaultroles.html
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AmazonEMRServicePolicy_v2
http://aws.amazon.com/blogs/big-data/a-zero-administration-amazon-redshift-database-loader
http://aws.amazon.com/blogs/big-data/a-zero-administration-amazon-redshift-database-loader
http://aws.amazon.com/blogs/big-data/a-zero-administration-amazon-redshift-database-loader
http://aws.amazon.com/blogs/big-data/a-zero-administration-amazon-redshift-database-loader
http://aws.amazon.com/blogs/big-data/a-zero-administration-amazon-redshift-database-loader

AWS Identity and Access Management User Guide
AWS managed policies for job functions

Use case Role name (* is a
wildcard)

Service role type to
select

AWS managed
policy to select

options depending
on your use case

Allow AWS Data Pipeline to
access your AWS resources

DataPipelineDefaultRoleCreate a role with
a trust policy as
defined in the
AWS Data Pipeline
Developer Guide

The AWS
Data Pipeline
documentation
lists the required
permissions for this
use case. See IAM
roles for AWS Data
Pipeline

Allow your applications running
on Amazon EC2 instances to
access your AWS resources

DataPipelineDefaultResourceRoleCreate a role with
a trust policy as
defined in the
AWS Data Pipeline
Developer Guide

AmazonEC2RoleforDataPipelineRole

Developer power user job function
AWS managed policy name: PowerUserAccess

Use case: This user performs application development tasks and can create and configure resources and
services that support AWS aware application development.

Policy updates: AWS maintains and updates this policy. For a history of changes for this policy, view
the policy in the IAM console and then choose the Policy versions tab. For more information about job
function policy updates, see Updates to AWS managed policies for job functions (p. 809).

Policy description: The first statement of this policy uses the NotAction (p. 754) element to allow
all actions for all AWS services and for all resources except AWS Identity and Access Management and
AWS Organizations. The second statement grants IAM permissions to create a service-linked role. This is
required by some services that must access resources in another service, such as an Amazon S3 bucket.
It also grants Organizations permissions to view information about the user's organization, including
the management account email and organization limitations. Although this policy limits IAM and
Organizations access, it allows the user to perform all AWS SSO actions if AWS SSO is enabled.

Network administrator job function
AWS managed policy name: NetworkAdministrator

Use case: This user is tasked with setting up and maintaining AWS network resources.

Policy updates: AWS maintains and updates this policy. For a history of changes for this policy, view
the policy in the IAM console and then choose the Policy versions tab. For more information about job
function policy updates, see Updates to AWS managed policies for job functions (p. 809).

Policy description: This policy grants permissions to create and maintain network resources in Auto
Scaling, Amazon EC2, AWS Direct Connect, Route 53, Amazon CloudFront, Elastic Load Balancing, AWS
Elastic Beanstalk, Amazon SNS, CloudWatch, CloudWatch Logs, Amazon S3, IAM, and Amazon Virtual
Private Cloud.

This job function requires the ability to pass roles to AWS services. The policy grants iam:GetRole and
iam:PassRole for only those roles named in the following table. For more information, see Creating
roles and attaching policies (console) (p. 809) later in this topic.

806

https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-iam-roles.html
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AmazonEC2RoleforDataPipelineRole
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/PowerUserAccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/job-function/NetworkAdministrator

AWS Identity and Access Management User Guide
AWS managed policies for job functions

Optional IAM service roles for the network administrator job function

Use case Role name (* is a
wildcard)

Service role type to
select

AWS managed
policy to select

Allows Amazon VPC to
create and manage logs in
CloudWatch Logs on the user's
behalf to monitor IP traffic
going in and out of your VPC

flow-logs-* Create a role with
a trust policy as
defined in the
Amazon VPC User
Guide

This use case does
not have an existing
AWS managed
policy, but the
documentation
lists the required
permissions. See
Amazon VPC User
Guide.

Read-only access
AWS managed policy name: ReadOnlyAccess

Use case: This user requires read-only access to every resource in an AWS account.

Policy updates: AWS maintains and updates this policy. For a history of changes for this policy, view
the policy in the IAM console and then choose the Policy versions tab. For more information about job
function policy updates, see Updates to AWS managed policies for job functions (p. 809).

Policy description: This policy grants permissions to list, get, describe, and otherwise view resources
and their attributes. It does not include mutating functions like create or delete. This policy does include
read-only access to security-related AWS services, such as AWS Identity and Access Management and
AWS Billing and Cost Management. View the policy for the full list of services and actions that this policy
supports.

Security auditor job function
AWS managed policy name: SecurityAudit

Use case: This user monitors accounts for compliance with security requirements. This user can access
logs and events to investigate potential security breaches or potential malicious activity.

Policy updates: AWS maintains and updates this policy. For a history of changes for this policy, view
the policy in the IAM console and then choose the Policy versions tab. For more information about job
function policy updates, see Updates to AWS managed policies for job functions (p. 809).

Policy description: This policy grants permissions to view configuration data for many AWS services and
to review their logs.

Support user job function
AWS managed policy name: SupportUser

Use case: This user contacts AWS Support, creates support cases, and views the status of existing cases.

Policy updates: AWS maintains and updates this policy. For a history of changes for this policy, view
the policy in the IAM console and then choose the Policy versions tab. For more information about job
function policy updates, see Updates to AWS managed policies for job functions (p. 809).

Policy description: This policy grants permissions to create and update AWS Support cases.

807

https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html#flow-logs-iam
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html#flow-logs-iam
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html#flow-logs-iam
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html#flow-logs-iam
https://docs.aws.amazon.com/vpc/latest/userguide/flow-logs.html#flow-logs-iam
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/ReadOnlyAccess
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/SecurityAudit
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/job-function/SupportUser

AWS Identity and Access Management User Guide
AWS managed policies for job functions

System administrator job function

AWS managed policy name: SystemAdministrator

Use case: This user sets up and maintains resources for development operations.

Policy updates: AWS maintains and updates this policy. For a history of changes for this policy, view
the policy in the IAM console and then choose the Policy versions tab. For more information about job
function policy updates, see Updates to AWS managed policies for job functions (p. 809).

Policy description: This policy grants permissions to create and maintain resources across a large variety
of AWS services, including AWS CloudTrail, Amazon CloudWatch, AWS CodeCommit, AWS CodeDeploy,
AWS Config, AWS Directory Service, Amazon EC2, AWS Identity and Access Management, AWS Key
Management Service, AWS Lambda, Amazon RDS, Route 53, Amazon S3, Amazon SES, Amazon SQS,
AWS Trusted Advisor, and Amazon VPC.

This job function requires the ability to pass roles to AWS services. The policy grants iam:GetRole and
iam:PassRole for only those roles named in the following table. For more information, see Creating
roles and attaching policies (console) (p. 809) later in this topic.

Optional IAM service roles for the system administrator job function

Use case Role name (* is a
wildcard)

Service role type to
select

AWS managed
policy to select

Allow apps running in EC2
instances in an Amazon ECS
cluster to access Amazon ECS

ecr-sysadmin-* Amazon EC2 Role
for EC2 Container
Service

AmazonEC2ContainerServiceforEC2Role

Allow a user to monitor
databases

rds-monitoring-role Amazon RDS Role for
Enhanced Monitoring

AmazonRDSEnhancedMonitoringRole

Allow apps running in EC2
instances to access AWS
resources.

ec2-sysadmin-* Amazon EC2 Sample policy for
role that grants
access to an S3
bucket as shown
in the Amazon EC2
User Guide for Linux
Instances; customize
as needed

Allow Lambda to read
DynamoDB streams and write
to CloudWatch Logs

lambda-sysadmin-* AWS Lambda AWSLambdaDynamoDBExecutionRole

View-only user job function

AWS managed policy name: ViewOnlyAccess

Use case: This user can view a list of AWS resources and basic metadata in the account across all services.
The user cannot read resource content or metadata that goes beyond the quota and list information for
resources.

Policy updates: AWS maintains and updates this policy. For a history of changes for this policy, view
the policy in the IAM console and then choose the Policy versions tab. For more information about job
function policy updates, see Updates to AWS managed policies for job functions (p. 809).

808

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/job-function/SystemAdministrator
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AmazonEC2ContainerServiceforEC2Role
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_Monitoring.OS.html
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AmazonRDSEnhancedMonitoringRole
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/lambda/latest/dg/with-ddb.html
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/service-role/AWSLambdaDynamoDBExecutionRole
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/job-function/ViewOnlyAccess

AWS Identity and Access Management User Guide
AWS managed policies for job functions

Policy description: This policy grants List*, Describe*, Get*, View*, and Lookup* access
to resources for most AWS services. To see what actions this policy includes for each service, see
ViewOnlyAccess.

Updates to AWS managed policies for job functions
These policies are all maintained by AWS and are kept up to date to include support for new services and
new capabilities as they are added by AWS services. These policies cannot be modified by customers. You
can make a copy of the policy and then modify the copy, but that copy is not automatically updated as
AWS introduces new services and API operations.

For a job function policy, you can view the version history and the time and date of each update in
the IAM console. To do this, use the links on this page to view the policy details. Then choose the
Policy versions tab to view the versions. This page shows the last 25 versions of a policy. To view all
of the versions for a policy, call the get-policy-version AWS CLI command or the GetPolicyVersion API
operation.

Note
You can have up to five versions of a customer managed policy, but AWS retains the full version
history of AWS managed policies.

Creating roles and attaching policies (console)
Several of the previously listed policies grant the ability to configure AWS services with roles that enable
those services to perform operations on your behalf. The job function policies either specify exact role
names that you must use or at least include a prefix that specifies the first part of the name that can be
used. To create one of these roles, perform the steps in the following procedure.

To create a role for an AWS service (IAM console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles, and then choose Create role.
3. Choose the AWS service role type, and then choose the service that you want to allow to assume

this role.
4. Choose the use case for your service. If the specified service has only one use case, it is selected for

you. Use cases are defined by the service to include the trust policy that the service requires. Then
choose Next: Permissions.

5. If possible, select the policy to use for the permissions policy or choose Create policy to open a new
browser tab and create a new policy from scratch. For more information, see step 4 in the procedure
Creating IAM policies in the IAM User Guide. After you create the policy, close that tab and return to
your original tab. Select the check box next to the permissions policies that you want the service to
have.

Depending on the use case that you selected, the service might allow you to do any of the following:

• Nothing, because the service defines the permissions for the role
• Allow you to choose from a limited set of permissions
• Allow you to choose from any permissions
• Allow you to select no policies at this time, create the policies later, and then attach them to the

role
6. (Optional) Set a permissions boundary. This is an advanced feature that is available for service roles,

but not service-linked roles.

Expand the Set permissions boundary section and choose Use a permissions boundary to control
the maximum role permissions. IAM includes a list of the AWS managed and customer managed
policies in your account. Select the policy to use for the permissions boundary or choose Create

809

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/job-function/ViewOnlyAccess
https://docs.aws.amazon.com/cli/latest/reference/iam/get-policy-version.html
https://docs.aws.amazon.com/IAM/latest/APIReference/API_GetPolicyVersion.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-start
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html

AWS Identity and Access Management User Guide
AWS managed policies for job functions

policy to open a new browser tab and create a new policy from scratch. For more information, see
step 4 in the procedure Creating IAM policies in the IAM User Guide. After you create the policy, close
that tab and return to your original tab to select the policy to use for the permissions boundary.

7. Choose Next: Tags.
8. (Optional) Add metadata to the user by attaching tags as key-value pairs. For more information

about using tags in IAM, see Tagging IAM entities in the IAM User Guide.
9. Choose Next: Review.
10. For Role name, the degree of role name customization is defined by the service. If the service

defines the role's name, this option is not editable. In other cases, the service might define a prefix
for the role and allow you to enter an optional suffix. Some services allow you to specify the entire
name of your role.

If possible, enter a role name or role name suffix to help you identify the purpose of this role. Role
names must be unique within your AWS account. They are not distinguished by case. For example,
you cannot create roles named both PRODROLE and prodrole. Because various entities might
reference the role, you cannot edit the name of the role after it has been created.

11. (Optional) For Role description, enter a description for the new role.
12. Review the role and then choose Create role.

Example 1: Configuring a user as a database administrator (console)

This example shows the steps required to configure Alice, an IAM user, as a Database
Administrator (p. 804). You use the information in first row of the table in that section and allow the
user to enable Amazon RDS monitoring. You attach the DatabaseAdministrator policy to Alice's IAM
user so that she can manage the Amazon database services. That policy also enables Alice to pass a role
called rds-monitoring-role to the Amazon RDS service that allows the service to monitor the RDS
databases on her behalf.

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Choose Policies and then type database in the search box.
3. Select the check box for the DatabaseAdministrator policy, choose Actions, and then choose

Attach.
4. In the list of users, select Alice and then choose Attach policy. Alice now can administer AWS

databases. However, to allow Alice to monitor those databases, you must configure the service role.
5. In the navigation pane of the IAM console, choose Roles, and then choose Create role.
6. Choose the AWS Service role type, and then choose Amazon RDS.
7. Choose the Amazon RDS Role for Enhanced Monitoring use case.
8. Amazon RDS defines the permissions for your role. Choose Next: Review to continue.
9. The role name must be one of those specified by the DatabaseAdministrator policy that Alice now

has. One of those is rds-monitoring-role. Type that for the Role name.
10. (Optional) For Role description, type a description for the new role.
11. After you review the details, choose Create role.
12. Alice can now enable RDS Enhanced Monitoring in the Monitoring section of the Amazon RDS

console. For example, she might do this when she creates a DB instance, creates a read replica,
or modifies a DB instance. She must type the role name she created (rds-monitoring-role) in the
Monitoring Role box when she sets Enable Enhanced Monitoring to Yes.

Example 2: Configuring a user as a network administrator (console)

This example shows the steps required to configure Juan, an IAM user, as a Network
Administrator (p. 806). It uses the information in the table in that section to allow Juan to monitor IP

810

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-start
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags.html
https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/job-function/DatabaseAdministrator
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
AWS managed policies for job functions

traffic going to and from a VPC. It also allows Juan to capture that information in the logs in CloudWatch
Logs. You attach the NetworkAdministrator policy to Juan's IAM user so that he can configure AWS
network resources. That policy also enables Juan to pass a role whose name begins with flow-logs*
to Amazon EC2 when you create a flow log. In this scenario, unlike Example 1, there isn't a predefined
service role type, so you must perform a few steps differently.

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies and then type network in the search box.

3. Select the check box next to NetworkAdministrator policy, choose Actions, and then choose Attach.

4. In the list of users, select the check box next to Juan and then choose Attach policy. Juan now can
administer AWS network resources. However, to enable monitoring of IP traffic in your VPC, you
must configure the service role.

5. Because the service role you need to create doesn't have a predefined managed policy, you must
first create it. In the navigation pane, choose Policies, then choose Create policy.

6. Choose the JSON tab and copy the text from the following JSON policy document. Paste this text
into the JSON text box.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:DescribeLogGroups",
 "logs:DescribeLogStreams"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
}

7. Resolve any security warnings, errors, or general warnings generated during policy
validation (p. 474), and then choose Review policy.

Note
You can switch between the Visual editor and JSON tabs any time. However, if you make
changes or choose Review policy in the Visual editor tab, IAM might restructure your policy
to optimize it for the visual editor. For more information, see Policy restructuring (p. 684).

8. On the Review page, type vpc-flow-logs-policy-for-service-role for the policy name.
Review the policy Summary to see the permissions granted by your policy, and then choose Create
policy to save your work.

The new policy appears in the list of managed policies and is ready to attach.

9. In the navigation pane of the IAM console, choose Roles, and then choose Create role.

10. Choose the AWS Service role type, and then choose Amazon EC2.

11. Choose the Amazon EC2 use case.

12. On the Attach permissions policies page, choose the policy you created earlier, vpc-flow-logs-
policy-for-service-role, and then choose Next: Review.

13. The role name must be permitted by the NetworkAdministrator policy that Juan now has. Any name
that begins with flow-logs- is allowed. For this example, type flow-logs-for-juan for the
Role name.

14. (Optional) For Role description, type a description for the new role.

811

https://console.aws.amazon.com/iam/home#policies/arn:aws:iam::aws:policy/job-function/NetworkAdministrator
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Identity and Access Management User Guide
Global condition keys

15. After you review the details, choose Create role.
16. Now you can configure the trust policy required for this scenario. On the Roles page, choose the

flow-logs-for-juan role (the name, not the check box). On the details page for your new role, choose
the Trust relationships tab, and then choose Edit trust relationship.

17. Change the "Service" line to read as follows, replacing the entry for ec2.amazonaws.com:

 "Service": "vpc-flow-logs.amazonaws.com"

18. Juan can now create flow logs for a VPC or subnet in the Amazon EC2 console. When you create the
flow log, specify the flow-logs-for-juan role. That role has the permissions to create the log and
write data to it.

AWS global condition context keys
When a principal (p. 4) makes a request (p. 5) to AWS, AWS gathers the request information into a
request context (p. 5). You can use the Condition element of a JSON policy to compare keys in the
request context with key values that you specify in your policy. To learn more about the circumstances
under which a global key is included in the request context, see the Availability information for each
global condition key. For information about how to use the Condition element in a JSON policy, see
IAM JSON policy elements: Condition (p. 758).

Note
If you use condition keys that are available only in some circumstances, you can use the
IfExists (p. 767) versions of the condition operators. If the condition keys are missing from
a request context, the policy can fail the evaluation. For example, use the following condition
block with ...IfExists operators to match when a request comes from a specific IP range or
from a specific VPC. If either or both keys are not included in the request context, the condition
still returns true. The values are only checked if the specified key is included in the request
context.

"Condition": {
 "IpAddressIfExists": {"aws:SourceIp" : ["xxx"] },
 "StringEqualsIfExists" : {"aws:SourceVpc" : ["yyy"]}
}

Global condition keys are condition keys with an aws: prefix. AWS services can support global condition
keys or provide service-specific keys that include their service prefix. For example, IAM condition keys
include the iam: prefix. For more information, see Actions, Resources, and Condition Keys for AWS
Services and choose the service whose keys you want to view.

aws:CalledVia
Works with string operators (p. 761).

Use this key to compare the services in the policy with the services that made requests on behalf of
the IAM principal (user or role). When a principal makes a request to an AWS service, that service might
use the principal's credentials to make subsequent requests to other services. The aws:CalledVia key
contains an ordered list of each service in the chain that made requests on the principal's behalf.

For example, you can use AWS CloudFormation to read and write from an Amazon DynamoDB table.
DynamoDB then uses encryption supplied by AWS Key Management Service (AWS KMS).

• Availability – This key is present in the request when a service that supports aws:CalledVia uses
the credentials of an IAM principal to make a request to another service. This key is not present if the
service uses a service role or service-linked role to make a call on the principal's behalf. This key is also
not present when the principal makes the call directly.

812

reference_policies_actions-resources-contextkeys.html
reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

AWS Identity and Access Management User Guide
Global condition keys

To use the aws:CalledVia condition key in a policy, you must provide the service principals to allow or
deny AWS service requests. AWS supports using the following services with aws:CalledVia.

CalledVia services

AWS service Service principal

Amazon Athena athena.amazonaws.com

AWS CloudFormation cloudformation.amazonaws.com

Amazon DynamoDB dynamodb.amazonaws.com

AWS Key Management Service (AWS KMS) kms.amazonaws.com

To allow or deny access when any service makes a request using the principal's credentials, use the
aws:ViaAWSService (p. 829) condition key. That condition key supports AWS services.

The aws:CalledVia key is a multivalued key (p. 769). However, you can't enforce order using this
key in a condition. Using the example above, User 1 makes a request to AWS CloudFormation, which
calls DynamoDB, which calls AWS KMS. These are three separate requests. The final call to AWS KMS is
performed by User 1 via AWS CloudFormation and then DynamoDB.

In this case, the aws:CalledVia key in the request context includes
cloudformation.amazonaws.com and dynamodb.amazonaws.com, in that order. If you care only
that the call was made via DynamoDB somewhere in the chain of requests, you can use this condition key
in your policy.

For example, the following policy allows managing the AWS KMS key named my-example-key, but only
if DynamoDB is one of the requesting services. The ForAnyValue:StringEquals (p. 770) condition
operator ensures that DynamoDB is one of the calling services. If the principal makes the call to AWS
KMS directly, the condition returns false and the request is not allowed by this policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "KmsActionsIfCalledViaDynamodb",
 "Effect": "Allow",
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey",
 "kms:DescribeKey"
],
 "Resource": "arn:aws:kms:region:111122223333:key/my-example-key",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "aws:CalledVia": ["dynamodb.amazonaws.com"]
 }
 }
 }
]
}

If you want to enforce which service makes the first or last call in the chain, you can use the
aws:CalledViaFirst (p. 814) and aws:CalledViaLast (p. 814) keys. For example, the
following policy allows managing the key named my-example-key in AWS KMS. These AWS KMS

813

AWS Identity and Access Management User Guide
Global condition keys

operations are allowed only if multiple requests were included in the chain. The first request must be
made via AWS CloudFormation and the last via DynamoDB. If other services make requests in the middle
of the chain, the operation is still allowed.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "KmsActionsIfCalledViaChain",
 "Effect": "Allow",
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:GenerateDataKey",
 "kms:DescribeKey"
],
 "Resource": "arn:aws:kms:region:111122223333:key/my-example-key",
 "Condition": {
 "StringEquals": {
 "aws:CalledViaFirst": "cloudformation.amazonaws.com",
 "aws:CalledViaLast": "dynamodb.amazonaws.com"
 }
 }
 }
]
}

The aws:CalledViaFirst (p. 814) and aws:CalledViaLast (p. 814) keys are present in the
request when a service uses an IAM principal's credentials to call another service. They indicate the first
and last services that made calls in the chain of requests. For example, assume that AWS CloudFormation
calls another service named X Service, which calls DynamoDB, which then calls AWS KMS. The
final call to AWS KMS is performed by User 1 via AWS CloudFormation, then X Service, and then
DynamoDB. It was first called via AWS CloudFormation and last called via DynamoDB.

aws:CalledViaFirst

Works with string operators (p. 761).

Use this key to compare the services in the policy with the first service that made a request on behalf of
the IAM principal (user or role). For more information, see aws:CalledVia (p. 812).

• Availability – This key is present in the request when a service uses the credentials of an IAM principal
to make at least one other request to a different service. This key is not present if the service uses a
service role or service-linked role to make a call on the principal's behalf. This key is also not present
when the principal makes the call directly.

aws:CalledViaLast

Works with string operators (p. 761).

Use this key to compare the services in the policy with the last service that made a request on behalf of
the IAM principal (user or role). For more information, see aws:CalledVia (p. 812).

• Availability – This key is present in the request when a service uses the credentials of an IAM principal
to make at least one other request to a different service. This key is not present if the service uses a
service role or service-linked role to make a call on the principal's behalf. This key is also not present
when the principal makes the call directly.

814

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

AWS Identity and Access Management User Guide
Global condition keys

aws:CurrentTime
Works with date operators (p. 763).

Use this key to compare the date and time of the request with the date and time that you specify in the
policy. To view an example policy that uses this condition key, see AWS: Allows access based on date and
time (p. 421).

• Availability – This key is always included in the request context.

aws:EpochTime
Works with date operators (p. 763) or numeric operators (p. 763).

Use this key to compare the date and time of the request in epoch or Unix time with the value that you
specify in the policy. This key also accepts the number of seconds since January 1, 1970.

• Availability – This key is always included in the request context.

aws:FederatedProvider
Works with string operators (p. 761).

The FederatedProvider key identifies which of the IdPs was used to authenticate the user. The key
is only available for federated sessions. For example, if the user was authenticated through Amazon
Cognito, the key would contain cognito-identity.amazonaws.com. Similarly, if the user was
authenticated through Login with Amazon, the key would contain the value www.amazon.com. You
might use the key in a resource policy like the following, which uses the aws:FederatedProvider key
as a policy variable in the ARN of a resource. The policy allows any user who has been authenticated
using an IdP to get objects out of a folder in an Amazon S3 bucket. However, the bucket must be specific
to the provider that the user authenticates with.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": "*",
 "Action": "s3:GetObject",
 "Resource": "arn:aws:s3:::BUCKET-NAME/${aws:FederatedProvider}/*"
 }
}

aws:MultiFactorAuthAge
Works with numeric operators (p. 763).

Use this key to compare the number of seconds since the requesting principal was authorized using MFA
with the number that you specify in the policy. For more information about MFA, see Using multi-factor
authentication (MFA) in AWS (p. 110).

• Availability – This key is included in the request context only if the principal making the call was
authenticated using MFA. If MFA was not used, this key is not present.

aws:MultiFactorAuthPresent
Works with Boolean operators (p. 764).

815

AWS Identity and Access Management User Guide
Global condition keys

Use this key to check whether multi-factor authentication (MFA) was used to validate the temporary
security credentials that made the request.

• Availability – This key is included in the request context only when the principal uses temporary
credentials to make the request. The key is not present in AWS CLI, AWS API, or AWS SDK requests that
are made using long-term credentials.

Temporary credentials are used to authenticate IAM roles, federated users, IAM users with temporary
tokens from sts:GetSessionToken, and users of the AWS Management Console. IAM user access
keys are long-term credentials, but in some cases, AWS creates temporary credentials on behalf of IAM
users to perform operations. In these cases, the aws:MultiFactorAuthPresent key is present in the
request and set to a value of false. There are two common cases where this can happen:

• IAM users in the AWS Management Console unknowingly use temporary credentials. Users sign into
the console using their user name and password, which are long-term credentials. However, in the
background, the console generates temporary credentials on behalf of the user.

• If an IAM user makes a call to an AWS service, the service re-uses the user's credentials to make
another request to a different service. For example, when calling Athena to access an Amazon S3
bucket, or when using AWS CloudFormation to create an Amazon EC2 instance. For the subsequent
request, AWS uses temporary credentials.

To learn which services support using temporary credentials, see AWS services that work with
IAM (p. 725).

The aws:MultiFactorAuthPresent key is not present when an API or CLI command is called with
long-term credentials, such as user access key pairs. Therefore we recommend that when you check for
this key that you use the ...IfExists (p. 767) versions of the condition operators.

It is important to understand that the following Condition element is not a reliable way to check
whether a request is authenticated using MFA.

WARNING: NOT RECOMMENDED
"Effect" : "Deny",
"Condition" : { "Bool" : { "aws:MultiFactorAuthPresent" : "false" } }

This combination of the Deny effect, Bool element, and false value denies requests that can be
authenticated using MFA, but were not. This applies only to temporary credentials that support using
MFA. This statement does not deny access to requests that are made using long-term credentials,
or to requests that are authenticated using MFA. Use this example with caution because its logic is
complicated and it does not test whether MFA-authentication was actually used.

Also do not use the combination of the Deny effect, Null element, and true because it behaves the
same way and the logic is even more complicated.

Recommended Combination

We recommend that you use the BoolIfExists (p. 767) operator to check whether a request is
authenticated using MFA.

"Effect" : "Deny",
"Condition" : { "BoolIfExists" : { "aws:MultiFactorAuthPresent" : "false" } }

This combination of Deny, BoolIfExists, and false denies requests that are not authenticated using
MFA. Specifically, it denies requests from temporary credentials that do not include MFA. It also denies
requests that are made using long-term credentials, such as AWS CLI or AWS API operations made using
access keys. The *IfExists operator checks for the presence of the aws:MultiFactorAuthPresent
key and whether or not it could be present, as indicated by its existence. Use this when you want to deny

816

AWS Identity and Access Management User Guide
Global condition keys

any request that is not authenticated using MFA. This is more secure, but can break any code or scripts
that use access keys to access the AWS CLI or AWS API.

Alternative Combinations

You can also use the BoolIfExists (p. 767) operator to allow MFA-authenticated requests and AWS
CLI or AWS API requests that are made using long-term credentials.

"Effect" : "Allow",
"Condition" : { "BoolIfExists" : { "aws:MultiFactorAuthPresent" : "true" } }

This condition matches either if the key exists and is present or if the key does not exist. This
combination of Allow, BoolIfExists, and true allows requests that are authenticated using MFA,
or requests that cannot be authenticated using MFA. This means that AWS CLI, AWS API, and AWS SDK
operations are allowed when the requester uses their long-term access keys. This combination does not
allow requests from temporary credentials that could, but do not include MFA.

When you create a policy using the IAM console visual editor and choose MFA required, this combination
is applied. This setting requires MFA for console access, but allows programmatic access with no MFA.

Alternatively, you can use the Bool operator to allow programmatic and console requests only when
authenticated using MFA.

"Effect" : "Allow",
"Condition" : { "Bool" : { "aws:MultiFactorAuthPresent" : "true" } }

This combination of the Allow, Bool, and true allows only MFA-authenticated requests. This applies
only to temporary credentials that support using MFA. This statement does not allow access to requests
that were made using long-term access keys, or to requests made using temporary credentials without
MFA.

Do not use a policy construct similar to the following to check whether the MFA key is present:

WARNING: USE WITH CAUTION

"Effect" : "Allow",
"Condition" : { "Null" : { "aws:MultiFactorAuthPresent" : "false" } }

This combination of the Allow effect, Null element, and false value allows only requests that can
be authenticated using MFA, regardless of whether the request is actually authenticated. This allows all
requests that are made using temporary credentials, and denies access for long-term credentials. Use
this example with caution because it does not test whether MFA-authentication was actually used.

aws:PrincipalAccount
Works with string operators (p. 761).

Use this key to compare the account to which the requesting principal belongs with the account
identifier that you specify in the policy.

• Availability – This key is always included in the request context.

aws:PrincipalArn
Works with ARN operators (p. 766) and string operators (p. 761).

Use this key to compare the Amazon Resource Name (p. 714) (ARN) of the principal that made the
request with the ARN that you specify in the policy. For IAM roles, the request context returns the ARN

817

AWS Identity and Access Management User Guide
Global condition keys

of the role, not the ARN of the user that assumed the role. To learn which types of principals you can
specify in this condition key, see Specifying a principal (p. 748).

• Availability – This key is always included in the request context.

aws:PrincipalIsAWSService
Works with Boolean operators (p. 764).

Use this key to check whether the call to your resource is being made directly by an
AWS service principal (p. 750). For example, AWS CloudTrail uses the service principal
cloudtrail.amazonaws.com to write logs to your Amazon S3 bucket. The request context key is
set to true when a service uses a service principal to perform a direct action on your resources. The
context key is set to false if the service uses the credentials of an IAM principal to make a request on the
principal's behalf. It is also set to false if the service uses a service role or service-linked role to make a
call on the principal's behalf.

• Availability – This key is present in the request context for all signed API requests that use AWS
credentials.

You can use this condition key to limit access to your trusted identities and expected network locations
while safely granting access to AWS services.

In the following Amazon S3 bucket policy example, access to the bucket is restricted unless the request
originates from vpc-111bbb22 or is from a service principal, such as CloudTrail.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Expected-network+service-principal",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::my-logs-bucket/AWSLogs/AccountNumber/*",
 "Condition": {
 "StringNotEqualsIfExists": {
 "aws:SourceVpc": "vpc-111bbb22"
 },
 "BoolIfExists": {
 "aws:PrincipalIsAWSService": "false"
 }
 }
 }
]
}

In the following video, learn more about how you might use the aws:PrincipalIsAWSService
condition key in a policy.

Safely grant access to your authorized users, expected network locations, and AWS services together.

aws:PrincipalOrgID
Works with string operators (p. 761).

Use this key to compare the identifier of the organization in AWS Organizations to which the requesting
principal belongs with the identifier specified in the policy.

818

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role
https://www.youtube.com/embed/gv-_H8a42G4

AWS Identity and Access Management User Guide
Global condition keys

• Availability – This key is included in the request context only if the principal is a member of an
organization.

This global key provides an alternative to listing all the account IDs for all AWS accounts in an
organization. You can use this condition key to simplify specifying the Principal element in a resource-
based policy (p. 404). You can specify the organization ID in the condition element. When you add and
remove accounts, policies that include the aws:PrincipalOrgID key automatically include the correct
accounts and don't require manual updating.

For example, the following Amazon S3 bucket policy allows members of any account in the o-
xxxxxxxxxxx organization to add an object into the policy-ninja-dev bucket.

 {
 "Version": "2012-10-17",
 "Statement": {
 "Sid": "AllowPutObject",
 "Effect": "Allow",
 "Principal": "*",
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::policy-ninja-dev/*",
 "Condition": {"StringEquals":
 {"aws:PrincipalOrgID":["o-xxxxxxxxxxx"]}
 }
 }
}

Note
This global condition also applies to the management account of an AWS organization.

For more information about AWS Organizations, see What Is AWS Organizations? in the AWS
Organizations User Guide.

aws:PrincipalOrgPaths
Works with string operators (p. 761).

Use this key to compare the AWS Organizations path for the principal who is making the request to
the path in the policy. That principal can be an IAM user, IAM role, federated user, or AWS account root
user. In a policy, this condition key ensures that the requester is an account member within the specified
organization root or organizational units (OUs) in AWS Organizations. An AWS Organizations path is a
text representation of the structure of an Organizations entity. For more information about using and
understanding paths, see Understand the AWS Organizations entity path (p. 511).

• Availability – This key is included in the request context only if the principal is a member of an
organization.

Note
Organization IDs are globally unique but OU IDs and root IDs are unique only within an
organization. This means that no two organizations share the same organization ID. However,
another organization might have an OU or root with the same ID as yours. We recommend that
you always include the organization ID when you specify an OU or root.

For example, the following condition returns true for principals in accounts that are attached directly to
the ou-ab12-22222222 OU, but not in its child OUs.

"Condition" : { "ForAnyValue:StringEquals" : {
 "aws:PrincipalOrgPaths":["o-a1b2c3d4e5/r-ab12/ou-ab12-11111111/ou-ab12-22222222/"]

819

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_org_details.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_introduction.html

AWS Identity and Access Management User Guide
Global condition keys

}}

The following condition returns true for principals in an account that is attached directly to the OU or
any of its child OUs. When you include a wildcard, you must use the StringLike condition operator.

"Condition" : { "ForAnyValue:StringLike" : {
 "aws:PrincipalOrgPaths":["o-a1b2c3d4e5/r-ab12/ou-ab12-11111111/ou-ab12-22222222/*"]
}}

The following condition returns true for principals in an account that is attached directly to any of the
child OUs, but not directly to the parent OU. The previous condition is for the OU or any children. The
following condition is for only the children (and any children of those children).

"Condition" : { "ForAnyValue:StringLike" : {
 "aws:PrincipalOrgPaths":["o-a1b2c3d4e5/r-ab12/ou-ab12-11111111/ou-ab12-22222222/ou-*"]
}}

The following condition allows access for every principal in the o-a1b2c3d4e5 organization, regardless
of their parent OU.

"Condition" : { "ForAnyValue:StringLike" : {
 "aws:PrincipalOrgPaths":["o-a1b2c3d4e5/*"]
}}

aws:PrincipalOrgPaths is a multivalued condition key. Multivalued keys include one or more
values in a list format. The result is a logical OR. When you use multiple values with the ForAnyValue
condition operator, the principal's path must match one of the paths listed in the policy. For policies
that include multiple values for a single key, you must enclose the conditions within brackets like an
array ("Key":["Value1", "Value2"]). You should also include these brackets when there is a single value.
For more information about multivalued condition keys, see Creating a condition with multiple keys or
values (p. 769).

 "Condition": {
 "ForAnyValue:StringLike": {
 "aws:PrincipalOrgPaths": [
 "o-a1b2c3d4e5/r-ab12/ou-ab12-33333333/*",
 "o-a1b2c3d4e5/r-ab12/ou-ab12-22222222/*"
]
 }
 }

aws:PrincipalServiceName
Works with string operators (p. 761).

Use this key to compare the service principal (p. 750) name in the policy with the service principal
that is making requests to your resources. You can use this key to check whether this call is made
by a specific service principal. When a service principal makes a direct request to your resource, the
aws:PrincipalServiceName key contains the name of the service principal. For example, the AWS
CloudTrail service principal name is cloudtrail.amazonaws.com.

• Availability – This key is present in the request when the call is made by an AWS service principal. This
key is not present in any other situation, including the following:

• If the service uses a service role or service-linked role to make a call on the principal's behalf.

• If the service uses the credentials of an IAM principal to make a request on the principal's behalf.

820

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

AWS Identity and Access Management User Guide
Global condition keys

• If the call is made directly by an IAM principal.

You can use this condition key to limit access to your trusted identities and expected network locations
while safely granting access to an AWS service.

In the following Amazon S3 bucket policy example, access to the bucket is restricted unless the request
originates from vpc-111bbb22 or is from a service principal, such as CloudTrail.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "expected-network+service-principal",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::my-logs-bucket/AWSLogs/AccountNumber/*",
 "Condition": {
 "StringNotEqualsIfExists": {
 "aws:SourceVpc": "vpc-111bbb22",
 "aws:PrincipalServiceName": "cloudtrail.amazonaws.com"
 }
 }
 }
]
}

aws:PrincipalServiceNamesList
Works with string operators (p. 761).

This key provides a list of all service principal (p. 750) names that belong to the service. This
is an advanced condition key. You can use it to restrict the service from accessing your resource
from a specific Region only. Some services may create Regional service principals to indicate a
particular instance of the service within a specific Region. You can limit access to a resource to a
particular instance of the service. When a service principal makes a direct request to your resource,
the aws:PrincipalServiceNamesList contains an unordered list of all service principal names
associated with the Regional instance of the service.

• Availability – This key is present in the request when the call is made by an AWS service principal. This
key is not present in any other situation, including the following:

• If the service uses a service role or service-linked role to make a call on the principal's behalf.

• If the service uses the credentials of an IAM principal to make a request on the principal's behalf.

• If the call is made directly by an IAM principal.

aws:PrincipalServiceNamesList is a multivalued condition key. Multivalued keys include
one or more values in a list format. The result is a logical OR. You must use the ForAnyValue or
ForAllValues set operators with the StringLike condition operator (p. 761) when you use this key.
For policies that include multiple values for a single key, you must enclose the conditions within brackets
like an array, such as ("Key":["Value1", "Value2"]). You should also include these brackets when
there is a single value. For more information about multivalued condition keys, see Using multiple keys
and values (p. 770).

aws:PrincipalTag
Works with string operators (p. 761).

821

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

AWS Identity and Access Management User Guide
Global condition keys

Use this key to compare the tag attached to the principal making the request with the tag that you
specify in the policy. If the principal has more than one tag attached, the request context includes one
aws:PrincipalTag key for each attached tag key.

• Availability – This key is included in the request context if the principal is using an IAM user
with attached tags. It is included for a principal using an IAM role with attached tags or session
tags (p. 313).

You can add custom attributes to a user or role in the form of a key-value pair. For more information
about IAM tags, see Tagging IAM resources (p. 296). You can use aws:PrincipalTag to control
access (p. 415) for AWS principals.

This example shows how you might create an IAM policy that allows users with the tagManager=true
tag to manage IAM users, groups, or roles. To use this policy, replace the italicized placeholder
text in the example policy with your own information. Then, follow the directions in create a
policy (p. 468) or edit a policy (p. 495).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "iam:*",
 "Resource": "*",
 "Condition": {"StringEquals": {"aws:PrincipalTag/tagManager": "true"}}
 }
]
}

aws:PrincipalType
Works with string operators (p. 761).

Use this key to compare the type of principal making the request with the principal type that you specify
in the policy. For more information, see Specifying a principal (p. 748).

• Availability – This key is always included in the request context.

aws:referer
Works with string operators (p. 761).

Use this key to compare who referred the request in the client browser with the referer that you specify
in the policy. The aws:referer request context value is provided by the caller in an HTTP header.
The Referer header is included in a web browser request when you select a link on a web page. The
Referer header contains the URL of the web page where the link was selected.

• Availability – This key is included in the request context only if the request to the AWS resource was
invoked by linking from a web page URL in the browser. This key is not included for programmatic
requests because it doesn't use a browser link to access the AWS resource.

For example, you can access an Amazon S3 object directly using a URL or using direct API invocation.
For more information, see Amazon S3 API operations directly using a web browser. When you access
an Amazon S3 object from a URL that exists in a webpage, the URL of the source web page is in
used in aws:referer. When you access an Amazon S3 object by typing the URL into your browser,
aws:referer is not present. When you invoke the API directly, aws:referer is also not present. You

822

https://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies.html#example-bucket-policies-use-case-4

AWS Identity and Access Management User Guide
Global condition keys

can use the aws:referer condition key in a policy to allow requests made from a specific referer, such
as a link on a web page in your company's domain.

Warning
This key should be used carefully. It is dangerous to include a publicly known referer header
value. Unauthorized parties can use modified or custom browsers to provide any aws:referer
value that they choose. As a result, aws:referer should not be used to prevent unauthorized
parties from making direct AWS requests. It is offered only to allow customers to protect their
digital content, such as content stored in Amazon S3, from being referenced on unauthorized
third-party sites.

aws:RequestedRegion
Works with string operators (p. 761).

Use this key to compare the AWS Region that was called in the request with the Region that you specify
in the policy. You can use this global condition key to control which Regions can be requested. To view
the AWS Regions for each service, see Service endpoints and quotas in the Amazon Web Services General
Reference.

• Availability – This key is always included in the request context.

Some global services, such as IAM, have a single endpoint. Because this endpoint is physically located in
the US East (N. Virginia) Region, IAM calls are always made to the us-east-1 Region. For example, if you
create a policy that denies access to all services if the requested Region is not us-west-2, then IAM calls
always fail. To view an example of how to work around this, see NotAction with Deny (p. 754).

Note
The aws:RequestedRegion condition key allows you to control which endpoint of a
service is invoked but does not control the impact of the operation. Some services have
cross-Region impacts. For example, Amazon S3 has API operations that control cross-Region
replication. You can invoke s3:PutBucketReplication in one Region (which is affected
by the aws:RequestedRegion condition key), but other Regions are affected based on the
replications configuration settings.

You can use this context key to limit access to AWS services within a given set of Regions. For example,
the following policy allows a user to view all of the Amazon EC2 instances in the AWS Management
Console. However it only allows them to make changes to instances in Ireland (eu-west-1), London (eu-
west-2), or Paris (eu-west-3).

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "InstanceConsoleReadOnly",
 "Effect": "Allow",
 "Action": [
 "ec2:Describe*",
 "ec2:Export*",
 "ec2:Get*",
 "ec2:Search*"
],
 "Resource": "*"
 },
 {
 "Sid": "InstanceWriteRegionRestricted",
 "Effect": "Allow",
 "Action": [
 "ec2:Associate*",
 "ec2:Import*",

823

https://docs.aws.amazon.com/general/latest/gr/aws-service-information.html

AWS Identity and Access Management User Guide
Global condition keys

 "ec2:Modify*",
 "ec2:Monitor*",
 "ec2:Reset*",
 "ec2:Run*",
 "ec2:Start*",
 "ec2:Stop*",
 "ec2:Terminate*"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:RequestedRegion": [
 "eu-west-1",
 "eu-west-2",
 "eu-west-3"
]
 }
 }
 }
]
}

aws:RequestTag/tag-key
Works with string operators (p. 761).

Use this key to compare the tag key-value pair that was passed in the request with the tag pair that you
specify in the policy. For example, you could check whether the request includes the tag key "Dept"
and that it has the value "Accounting". For more information, see Controlling access during AWS
requests (p. 417).

• Availability – This key is included in the request context when tags are passed in the request. When
multiple tags are passed in the request, there is one context key for each tag key-value pair.

This context key is formatted "aws:RequestTag/tag-key":"tag-value" where tag-key and tag-
value are a tag key and value pair.

Because you can include multiple tag key-value pairs in a request, the request content could be
a multivalued (p. 769) request. In this case, you should consider using the ForAllValues or
ForAnyValue set operators. For more information, see Using multiple keys and values (p. 770).

aws:ResourceTag/tag-key
Works with string operators (p. 761).

Use this key to compare the tag key-value pair that you specify in the policy with the key-value pair that
is attached to the resource. For example, you could require that access to a resource is allowed only if
the resource has the attached tag key "Dept" with the value "Marketing". For more information, see
Controlling access to AWS resources (p. 417).

• Availability – This key is included in the request context when the requested resource already
has attached tags. This key is returned only for resources that support authorization based on
tags (p. 725). There is one context key for each tag key-value pair.

This context key is formatted "aws:ResourceTag/tag-key":"tag-value" where tag-key and
tag-value are a tag key and value pair.

For examples of using the aws:ResourceTag key to control access to IAM resources, see Controlling
access to AWS resources (p. 417).

824

AWS Identity and Access Management User Guide
Global condition keys

For examples of using the aws:ResourceTag key to control access to other AWS resources, see
Controlling access to AWS resources using tags (p. 416).

For a tutorial on using the aws:ResourceTag condition key for attribute based access control (ABAC),
see IAM tutorial: Define permissions to access AWS resources based on tags (p. 44).

aws:SecureTransport
Works with Boolean operators (p. 764).

Use this key to check whether the request was sent using SSL. The request context returns true or
false. In a policy, you can allow specific actions only if the request is sent using SSL.

• Availability – This key is always included in the request context.

aws:SourceAccount
Works with string operators (p. 761).

Use this key to compare the account ID of the resource making a service-to-service request with the
account ID that you specify in the policy.

• Availability – This key is included in the request context only if accessing a resource triggers an AWS
service to call another service on behalf of the resource owner. The calling service must pass the
resource account ID of the source to the called service. This account ID includes the source account ID.

You can use this condition key to prevent an AWS service from being used as a confused deputy (p. 233)
during transactions between services. Set the value of this condition key to the account of the resource
in the request. For example, when an Amazon S3 bucket update triggers an Amazon SNS topic post, the
Amazon S3 service invokes the sns:Publish API operation. In the policy that allows the sns:Publish
operation, set the value of the condition key to the account ID of the Amazon S3 bucket. For information
about how and when these condition keys are recommended, see the documentation for the AWS
services you are using.

aws:SourceArn
Works with ARN operators (p. 766) and string operators (p. 761). We recommend that you use an ARN
operator, but not all services support comparing ARNs using ARN operators. If the ARN operator doesn't
work, then try using string operators.

Use this key to compare the Amazon Resource Name (ARN) (p. 714) of the resource making a service-
to-service request with the ARN that you specify in the policy.

This key does not work with the ARN of the principal making the request. Instead, use
aws:PrincipalArn (p. 817). The source's ARN includes the account ID, so it is not necessary to use
aws:SourceAccount with aws:SourceArn.

• Availability – This key is included in the request context only if accessing a resource triggers an AWS
service to call another service on behalf of the resource owner. The calling service must pass the ARN
of the original resource to the called service.

You can use this condition key to prevent an AWS service from being used as a confused deputy (p. 233)
during transactions between services. Set the value of this condition key to the ARN of the resource in
the request. For example, when an Amazon S3 bucket update triggers an Amazon SNS topic post, the
Amazon S3 service invokes the sns:Publish API operation. In the policy that allows the sns:Publish

825

AWS Identity and Access Management User Guide
Global condition keys

operation, set the value of the condition key to the ARN of the Amazon S3 bucket. For information about
how and when these condition keys are recommended, see the documentation for the AWS services you
are using.

aws:SourceIdentity
Works with string operators (p. 761).

Use this key to compare the source identity that was set by the principal with the source identity that you
specify in the policy.

• Availability – This key is included in the request context after a source identity has been set when
a role is assumed using any AWS STS assume-role CLI command, or AWS STS AssumeRole API
operation.

You can use this key in a policy to allow actions in AWS by principals that have set a source identity when
assuming a role. Activity for the role's specified source identity appears in AWS CloudTrail (p. 369). This
makes it easier for administrators to determine who or what performed actions with a role in AWS.

Unlike sts:RoleSessionName (p. 840), after the source identity is set, the value cannot be changed.
It is present in the request context for all actions taken by the role. The value persists into subsequent
role sessions when you use the session credentials to assume another role. Assuming one role from
another is called role chaining (p. 170).

The sts:SourceIdentity (p. 841) key is present in the request when the principal initially sets
a source identity while assuming a role using any AWS STS assume-role CLI command, or AWS STS
AssumeRole API operation. The aws:SourceIdentity key is present in the request for any actions
that are taken with a role session that has a source identity set.

The following role trust policy for CriticalRole in account 111122223333 contains a condition for
aws:SourceIdentity that prevents a principal without a source identity that is set to Saanvi or Diego
from assuming the role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AssumeRoleIfSourceIdentity",
 "Effect": "Allow",
 "Principal": {"AWS": " arn:aws:iam::111122223333:role/CriticalRole"},
 "Action": [
 "sts:AssumeRole",
 "sts:SetSourceIdentity"
],
 "Condition": {
 "StringLike": {
 "aws:SourceIdentity": ["Saanvi","Diego"]
 }
 }
 }
]
}

To learn more about using source identity information, see Monitor and control actions taken with
assumed roles (p. 340).

aws:SourceIp
Works with IP address operators (p. 765).

826

AWS Identity and Access Management User Guide
Global condition keys

Use this key to compare the requester's IP address with the IP address that you specify in the policy. The
aws:SourceIp condition key can only be used for public IP address ranges.

• Availability – This key is included in the request context, except when the requester uses a VPC
endpoint to make the request.

The aws:SourceIp condition key can be used in a policy to allow principals to make requests only
from within a specified IP range. However, this policy denies access if an AWS service makes calls on the
principal's behalf. In this case, you can use aws:SourceIp with the aws:ViaAWSService (p. 829)
key to ensure that the source IP restriction applies only to requests made directly by a principal.

For example, you can attach the following policy to an IAM user. This policy allows the user to put an
object into the my-service-bucket Amazon S3 bucket directly if they make the call from the specified
IP address. However, if the user makes another request that causes a service to call Amazon S3, the IP
address restriction does not apply. The PrincipalPutObjectIfIpAddress statement restricts the
IP address only if the request is not made by a service. The ServicePutObject statement allows the
operation without IP address restriction if the request is made by a service.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "PrincipalPutObjectIfIpAddress",
 "Effect": "Allow",
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::my-service-bucket/*",
 "Condition": {
 "Bool": {"aws:ViaAWSService": "false"},
 "IpAddress": {"aws:SourceIp": "123.45.167.89"}
 }
 },
 {
 "Sid": "ServicePutObject",
 "Effect": "Allow",
 "Action": "s3:PutObject",
 "Resource": "arn:aws:s3:::my-service-bucket/*",
 "Condition": {
 "Bool": {"aws:ViaAWSService": "true"}
 }
 }
]
}

If the request comes from a host that uses an Amazon VPC endpoint, then the aws:SourceIp key is
not available. You should instead use a VPC-specific key such as aws:VpcSourceIp (p. 826). For more
information about using VPC endpoints, see VPC Endpoints - Controlling the Use of Endpoints in the
Amazon VPC User Guide.

aws:SourceVpc

Works with string operators (p. 761).

Use this key to check whether the request comes from the VPC that you specify in the policy. In a policy,
you can use this key to allow access to only a specific VPC. For more information, see Restricting Access
to a Specific VPC in the Amazon Simple Storage Service Developer Guide.

• Availability – This key is included in the request context only if the requester uses a VPC endpoint to
make the request.

827

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints.html#vpc-endpoints-iam-access
https://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies-vpc-endpoint.html#example-bucket-policies-restrict-access-vpc
https://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies-vpc-endpoint.html#example-bucket-policies-restrict-access-vpc

AWS Identity and Access Management User Guide
Global condition keys

aws:SourceVpce
Works with string operators (p. 761).

Use this key to compare the VPC endpoint identifier of the request with the endpoint ID that you specify
in the policy. In a policy, you can use this key to restrict access to a specific VPC endpoint. For more
information, see Restricting Access to a Specific VPC Endpoint in the Amazon Simple Storage Service
Developer Guide.

• Availability – This key is included in the request context only if the requester uses a VPC endpoint to
make the request.

aws:TagKeys
Works with string operators (p. 761).

Use this key to compare the tag keys in a request with the keys that you specify in the policy. As a best
practice when you use policies to control access using tags, use the aws:TagKeys condition key to
define what tag keys are allowed. For example policies and more information, see the section called
“Controlling access based on tag keys” (p. 418).

• Availability – This key is included in the request context only if the operation supports attaching tags
to resources.

This context key is formatted "aws:TagKeys":"tag-key" where tag-key is a list of tag keys without
values (for example, ["Dept","Cost-Center"]).

Because you can include multiple tag key-value pairs in a request, the request content could be a
multivalued (p. 769) request. In this case, you must use the ForAllValues or ForAnyValue set
operators. For more information, see Using multiple keys and values (p. 770).

Some services support tagging with resource operations, such as creating, modifying, or deleting
a resource. To allow tagging and operations as a single call, you must create a policy that includes
both the tagging action and the resource-modifying action. You can then use the aws:TagKeys
condition key to enforce using specific tag keys in the request. For example, to limit tags when someone
creates an Amazon EC2 snapshot, you must include the ec2:CreateSnapshot creation action
and the ec2:CreateTags tagging action in the policy. To view a policy for this scenario that uses
aws:TagKeys, see Creating a Snapshot with Tags in the Amazon EC2 User Guide for Linux Instances.

aws:TokenIssueTime
Works with date operators (p. 763).

Use this key to compare the date and time that temporary security credentials were issued with the date
and time that you specify in the policy.

• Availability – This key is included in the request context only when the principal uses temporary
credentials to make the request. The key is not present in AWS CLI, AWS API, or AWS SDK requests that
are made using access keys.

To learn which services support using temporary credentials, see AWS services that work with
IAM (p. 725).

aws:UserAgent
Works with string operators (p. 761).

828

https://docs.aws.amazon.com/AmazonS3/latest/dev/example-bucket-policies-vpc-endpoint.html#example-bucket-policies-restrict-access-vpc-endpoint
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ExamplePolicies_EC2.html#iam-creating-snapshot-with-tags

AWS Identity and Access Management User Guide
Global condition keys

Use this key to compare the requester's client application with the application that you specify in the
policy.

• Availability – This key is always included in the request context.

Warning
This key should be used carefully. Since the aws:UserAgent value is provided by the caller
in an HTTP header, unauthorized parties can use modified or custom browsers to provide any
aws:UserAgent value that they choose. As a result, aws:UserAgent should not be used to
prevent unauthorized parties from making direct AWS requests. You can use it to allow only
specific client applications, and only after testing your policy.

aws:userid
Works with string operators (p. 761).

Use this key to compare the requester's principal identifier with the ID that you specify in the policy. For
IAM users, the request context value is the user ID. For IAM roles, this value format can vary. For details
about how the information appears for different principals, see Specifying a principal (p. 748).

• Availability – This key is included in the request context for all signed requests. Anonymous requests
do not include this key.

aws:username
Works with string operators (p. 761).

Use this key to compare the requester's user name with the user name that you specify in the policy. For
details about how the information appears for different principals, see Specifying a principal (p. 748).

• Availability – This key is always included in the request context for IAM users. Anonymous requests
and requests that are made using the AWS account root user or IAM roles do not include this key.
Requests made using AWS SSO credentials do not include this key in the context. To learn how to
control access to AWS SSO users, see identitystore:UserId in Using predefined attributes from
the AWS SSO identity store for access control in AWS.

aws:ViaAWSService
Works with Boolean operators (p. 764).

Use this key to check whether an AWS service makes a request to another service on your behalf.

The request context key returns true when a service uses the credentials of an IAM principal to make
a request on behalf of the principal. The context key returns false if the service uses a service role or
service-linked role to make a call on the principal's behalf. The request context key also returns false
when the principal makes the call directly.

• Availability – This key is always included in the request context.

You can use this condition key to allow or deny access based on whether a request was made by a
service. To view an example policy, see AWS: Denies access to AWS based on the source IP (p. 433).

aws:VpcSourceIp
Works with IP address operators (p. 765).

829

https://docs.aws.amazon.com/singlesignon/latest/userguide/using-predefined-attributes.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/using-predefined-attributes.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-role
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html#iam-term-service-linked-role

AWS Identity and Access Management User Guide
IAM condition keys

Use this key to compare the IP address from which a request was made with the IP address that you
specify in the policy. In a policy, the key matches only if the request originates from the specified IP
address and it goes through a VPC endpoint.

• Availability – This key is included in the request context only if the request is made using a VPC
endpoint.

For more information, see Controlling Access to Services with VPC Endpoints in the Amazon VPC User
Guide.

Other cross-service condition keys
Global condition keys are condition keys with an aws: prefix. Individual services can create their own
condition keys. These service-specific condition keys include a prefix that matches the name of the
service, such as iam: or sts:.

Services can create service-specific keys that are available in the request context for other services.
These keys are available across multiple services, but are not global condition keys. For example, AWS
STS supports SAML-based federation condition keys (p. 835). These keys are available when a user
who was federated using SAML performs AWS operations in other services. Other examples include
identitystore:UserId and ec2:SourceInstanceArn.

To view the service-specific condition keys for a service, see Actions, Resources, and Condition Keys for
AWS Services and choose the service whose keys you want to view.

IAM and AWS STS condition context keys
You can use the Condition element in a JSON policy to test the value of keys that are included in the
request context of all AWS requests. These keys provide information about the request itself or the
resources that the request references. You can check that keys have specified values before allowing the
action requested by the user. This gives you granular control over when your JSON policy statements
match or don't match an incoming request. For information about how to use the Condition element in
a JSON policy, see IAM JSON policy elements: Condition (p. 758).

This topic describes the keys defined and provided by the IAM service (with an iam: prefix) and the
AWS Security Token Service (AWS STS) service (with an sts: prefix). Several other AWS services also
provide service-specific keys that are relevant to the actions and resources defined by that service. For
more information, see Actions, Resources, and Condition Keys for AWS Services. The documentation for
a service that supports condition keys often has additional information. For example, for information
about keys that you can use in policies for Amazon S3 resources, see Amazon S3 Policy Keys in the
Amazon Simple Storage Service Developer Guide.

Topics
• Available keys for IAM (p. 830)
• Available keys for AWS web identity federation (p. 833)
• Available keys for SAML-based AWS STS federation (p. 835)
• Available keys for AWS STS (p. 839)

Available keys for IAM
You can use the following condition keys in policies that control access to IAM resources:

iam:AssociatedResourceArn

Works with ARN operators (p. 766).

830

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/using-predefined-attributes.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-policy-structure.html#amazon-ec2-keys
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/amazon-s3-policy-keys.html#AvailableKeys-iamV2

AWS Identity and Access Management User Guide
IAM condition keys

Specifies the ARN of the resource to which this role will be associated at the destination service. The
resource usually belongs to the service to which the principal is passing the role. Sometimes, the
resource might belong to a third service. For example, you might pass a role to Amazon EC2 Auto
Scaling that they use on an Amazon EC2 instance. In this case, the condition would match the ARN
of the Amazon EC2 instance.

This condition key applies to only the PassRole (p. 257) action in a policy. It can't be used to limit any
other action.

Use this condition key in a policy to allow an entity to pass a role, but only if that role is associated
with the specified resource. You can use wildcards (*) to allow operations performed on a specific
type of resource without restricting the Region or resource ID. For example, you can allow an IAM
user or role to pass any role to the Amazon EC2 service to be used with instances in the Region us-
east-1 or us-west-1. The IAM user or role would not be allowed to pass roles to other services. In
addition, it doesn't allow Amazon EC2 to use the role with instances in other Regions.

{
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "*",
 "Condition": {
 "StringEquals": {"iam:PassedToService": "ec2.amazonaws.com"},
 "StringLike": {
 "iam:AssociatedResourceARN": [
 "arn:aws:ec2:us-east-1:111122223333:instance/*",
 "arn:aws:ec2:us-west-1:111122223333:instance/*"
]
 }
 }
}

Note
AWS services that support iam:PassedToService (p. 831) also support this condition key.

iam:AWSServiceName

Works with string operators (p. 761).

Specifies the AWS service to which this role is attached.

iam:OrganizationsPolicyId

Works with string operators (p. 761).

Checks that the policy with the specified AWS Organizations ID matches the policy used in the
request. To view an example IAM policy that uses this condition key, see IAM: View service last
accessed information for an Organizations policy (p. 457).

iam:PassedToService

Works with string operators (p. 761).

Specifies the service principal of the service to which a role can be passed. This condition key applies
to only the PassRole (p. 257) action in a policy. It can't be used to limit any other action.

When you use this condition key in a policy, specify the service using a service principal. A service
principal is the name of a service that can be specified in the Principal element of a policy. This is
the usual format: SERVICE_NAME_URL.amazonaws.com.

You can use iam:PassedToService to restrict your users so that they can pass roles only to
specific services. For example, a user might create a service role (p. 169) that trusts CloudWatch to

831

AWS Identity and Access Management User Guide
IAM condition keys

write log data to an Amazon S3 bucket on their behalf. Then the user must attach a permissions
policy and a trust policy to the new service role. In this case, the trust policy must specify
cloudwatch.amazonaws.com in the Principal element. To view a policy that allows the user to
pass the role to CloudWatch, see IAM: Pass an IAM role to a specific AWS service (p. 451).

By using this condition key, you can ensure that users create service roles only for the services that
you specify. For example, if a user with the preceding policy attempts to create a service role for
Amazon EC2, the operation will fail. The failure occurs because the user does not have permission to
pass the role to Amazon EC2.

Sometimes you pass a role to a service that then passes the role to a different service.
iam:PassedToService includes only the final service that assumes the role, not the intermediate
service that passes the role.

Note
Some services, such as AWS CodeBuild and AWS CodeCommit do not support this condition
key.

iam:PermissionsBoundary

Works with string operators (p. 761).

Checks that the specified policy is attached as permissions boundary on the IAM principal resource.
For more information, see Permissions boundaries for IAM entities (p. 395)

iam:PolicyARN

Works with ARN operators (p. 766).

Checks the Amazon Resource Name (ARN) of a managed policy in requests that involve a managed
policy. For more information, see Controlling access to policies (p. 410).

iam:ResourceTag/key-name

Works with string operators (p. 761).

Checks that the tag attached to the identity resource (user or role) matches the specified key name
and value.

Note
IAM and AWS STS support both the iam:ResourceTag IAM condition key and the
aws:ResourceTag global condition key.

You can add custom attributes to IAM resouces in the form of a key-value pair. For more information
about tags for IAM resources, see the section called “Tagging IAM resources” (p. 296). You can
use ResourceTag to control access (p. 417) to AWS resources, including IAM resources. However,
because IAM does not support tags for groups, you cannot use tags to control access to groups.

This example shows how you might create an IAM policy that allows deleting users with the
status=terminated tag. To use this policy, replace the italicized placeholder text in the
example policy with your own information. Then, follow the directions in create a policy (p. 468) or
edit a policy (p. 495).

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": "iam:DeleteUser",
 "Resource": "*",
 "Condition": {"StringLike": {"iam:ResourceTag/status": "terminated"}}
 }]
}

832

AWS Identity and Access Management User Guide
IAM condition keys

Available keys for AWS web identity federation
You can use web identity federation to give temporary security credentials to users who have been
authenticated through an identity provider (IdP). Examples of such providers include Login with Amazon,
Amazon Cognito, Google, or Facebook. In that case, additional condition keys are available when the
temporary security credentials are used to make a request. You can use these keys to write policies that
limit the access of federated users to resources that are associated with a specific provider, app, or user.
These keys are typically used in the trust policy for a role.

amr

Works with string operators (p. 761).

Example: cognito-identity.amazonaws.com.com:amr

If you are using Amazon Cognito for web identity federation, the cognito-
identity.amazonaws.com:amr key (Authentication Methods Reference) includes login
information about the user. The key is multivalued, meaning that you test it in a policy using
condition set operators (p. 769). The key can contain the following values:
• If the user is unauthenticated, the key contains only unauthenticated.
• If the user is authenticated, the key contains the value authenticated and the name of

the login provider used in the call (graph.facebook.com, accounts.google.com, or
www.amazon.com).

As an example, the following condition in the trust policy for an Amazon Cognito role tests whether
the user is unauthenticated:

"Condition": {
 "StringEquals":
 { "cognito-identity.amazonaws.com:aud": "us-east-2:identity-pool-id" },
 "ForAnyValue:StringLike":
 { "cognito-identity.amazonaws.com:amr": "unauthenticated" }
}

aud

Works with string operators (p. 761).

Use the aud condition key to verify that the Google client ID or Amazon Cognito identity pool ID
matches the one that you specify in the policy. You can use the aud key with the sub key for the
same identity provider.

Examples:
• accounts.google.com:aud

• cognito-identity.amazonaws.com:aud

The accounts.google.com:aud condition key matches the following Google ID Token fields.
• aud for OAuth 2.0 Google client IDs of your application, when the azp field is not set. When the
azp field is set, the aud field matches the accounts.google.com:oaud (p. 835) condition
key.

• azp when the azp field is set. This can happen for hybrid apps where a web application and
Android app have a different OAuth 2.0 Google client ID but share the same Google APIs project.

For more information about Google aud and azp fields, see the Google Identity Platform OpenID
Connect Guide.

When you write a policy using the accounts.google.com:aud condition key, you must know
whether the app is a hybrid app that sets the azp field.

833

https://developers.google.com/identity/protocols/OpenIDConnect
https://developers.google.com/identity/protocols/OpenIDConnect

AWS Identity and Access Management User Guide
IAM condition keys

azp Field Not Set

The following example policy works for non-hybrid apps that do not set the azp field. In this case
the Google ID Token aud field value matches both the accounts.google.com:aud and the
accounts.google.com:oaud condition key values.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {"Federated": "accounts.google.com"},
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringEquals": {
 "accounts.google.com:aud": "aud-value",
 "accounts.google.com:oaud": "aud-value",
 "accounts.google.com:sub": "sub-value"
 }
 }
 }
]
}

azp Field Set

The following example policy works for hybrid apps that do set the azp field. In this case, the
Google ID Token aud field value matches only the accounts.google.com:oaud condition key
value. The azp field value matches the accounts.google.com:aud condition key value.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {"Federated": "accounts.google.com"},
 "Action": "sts:AssumeRoleWithWebIdentity",
 "Condition": {
 "StringEquals": {
 "accounts.google.com:aud": "azp-value",
 "accounts.google.com:oaud": "aud-value",
 "accounts.google.com:sub": "sub-value"
 }
 }
 }
]
}

id

Works with string operators (p. 761).

Examples:
• graph.facebook.com:app_id

• graph.facebook.com:id

• www.amazon.com:app_id

• www.amazon.com:user_id

Use these keys to verify that the application (or site) ID or user ID matches the one that you specify
in the policy. This works for Facebook or Login with Amazon. You can use the app_id key with the
id key for the same identity provider.

834

AWS Identity and Access Management User Guide
IAM condition keys

oaud

Works with string operators (p. 761).

Example: accounts.google.com:oaud

If you use Google for web identity federation, this key specifies the Google audience (aud) that this
ID token is intended for. It must be one of the OAuth 2.0 client IDs of your application.

sub

Works with string operators (p. 761).

Examples:
• accounts.google.com:sub

• cognito-identity.amazonaws.com:sub

Use these keys to verify that the user ID matches the one that you specify in the policy. You can use
the sub key with the aud key for the same identity provider.

More information about web identity federation

For more information about web identity federation, see the following:
• Amazon Cognito Overview in the AWS Mobile SDK for Android Developer Guide guide
• Amazon Cognito Overview in the AWS Mobile SDK for iOS Developer Guide guide
• About web identity federation (p. 178)

Available keys for SAML-based AWS STS federation
If you are working with SAML-based federation using AWS Security Token Service (AWS STS), you can
include additional condition keys in the policy.

SAML role trust policies

In the trust policy of a role, you can include the following keys, which help you establish whether the
caller is allowed to assume the role. Except for saml:doc, all the values are derived from the SAML
assertion. All items in the list are available in the IAM console visual editor when you create or edit a
policy with conditions. Items marked with [] can have a value that is a list of the specified type.

saml:aud

Works with string operators (p. 761).

An endpoint URL to which SAML assertions are presented. The value for this key comes from the
SAML Recipient field in the assertion, not the Audience field.

saml:commonName[]

Works with string operators (p. 761).

This is a commonName attribute.
saml:cn[]

Works with string operators (p. 761).

This is an eduOrg attribute.
saml:doc

Works with string operators (p. 761).

835

https://docs.aws.amazon.com/mobile/sdkforandroid/developerguide/cognito-auth.html#d0e840
https://docs.aws.amazon.com/mobile/sdkforios/developerguide/cognito-auth.html#d0e664
https://docs.aws.amazon.com/STS/latest/UsingSTS/CreatingSAML.html

AWS Identity and Access Management User Guide
IAM condition keys

This represents the principal that was used to assume the role. The format is account-
ID/provider-friendly-name, such as 123456789012/SAMLProviderName. The account-ID
value refers to the account that owns the SAML provider (p. 197).

saml:edupersonaffiliation[]

Works with string operators (p. 761).

This is an eduPerson attribute.
saml:edupersonassurance[]

Works with string operators (p. 761).

This is an eduPerson attribute.
saml:edupersonentitlement[]

Works with string operators (p. 761).

This is an eduPerson attribute.
saml:edupersonnickname[]

Works with string operators (p. 761).

This is an eduPerson attribute.
saml:edupersonorgdn

Works with string operators (p. 761).

This is an eduPerson attribute.
saml:edupersonorgunitdn[]

Works with string operators (p. 761).

This is an eduPerson attribute.
saml:edupersonprimaryaffiliation

Works with string operators (p. 761).

This is an eduPerson attribute.
saml:edupersonprimaryorgunitdn

Works with string operators (p. 761).

This is an eduPerson attribute.
saml:edupersonprincipalname

Works with string operators (p. 761).

This is an eduPerson attribute.
saml:edupersonscopedaffiliation[]

Works with string operators (p. 761).

This is an eduPerson attribute.
saml:edupersontargetedid[]

Works with string operators (p. 761).

This is an eduPerson attribute.

836

AWS Identity and Access Management User Guide
IAM condition keys

saml:eduorghomepageuri[]

Works with string operators (p. 761).

This is an eduOrg attribute.
saml:eduorgidentityauthnpolicyuri[]

Works with string operators (p. 761).

This is an eduOrg attribute.
saml:eduorglegalname[]

Works with string operators (p. 761).

This is an eduOrg attribute.
saml:eduorgsuperioruri[]

Works with string operators (p. 761).

This is an eduOrg attribute.
saml:eduorgwhitepagesuri[]

Works with string operators (p. 761).

This is an eduOrg attribute.
saml:givenName[]

Works with string operators (p. 761).

This is a givenName attribute.
saml:iss

Works with string operators (p. 761).

The issuer, which is represented by a URN.
saml:mail[]

Works with string operators (p. 761).

This is a mail attribute.
saml:name[]

Works with string operators (p. 761).

This is a name attribute.
saml:namequalifier

Works with string operators (p. 761).

A hash value based on the friendly name of the SAML provider. The value is the concatenation of the
following values, in order and separated by a '/' character:
1. The Issuer response value (saml:iss)
2. The AWS account ID
3. The friendly name (the last part of the ARN) of the SAML provider in IAM

The concatenation of the account ID and friendly name of the SAML provider is available to IAM
policies as the key saml:doc. For more information, see Uniquely identifying users in SAML-based
federation (p. 186).

837

AWS Identity and Access Management User Guide
IAM condition keys

saml:organizationStatus[]

Works with string operators (p. 761).

This is an organizationStatus attribute.
saml:primaryGroupSID[]

Works with string operators (p. 761).

This is a primaryGroupSID attribute.
saml:sub

Works with string operators (p. 761).

This is the subject of the claim, which includes a value that uniquely identifies an individual user
within an organization (for example, _cbb88bf52c2510eabe00c1642d4643f41430fe25e3).

saml:sub_type

Works with string operators (p. 761).

This key can have the value persistent, transient, or consist of the full Format URI from the
Subject and NameID elements used in your SAML assertion. A value of persistent indicates
that the value in saml:sub is the same for a user between sessions. If the value is transient, the
user has a different saml:sub value for each session. For information about the NameID element's
Format attribute, see Configuring SAML assertions for the authentication response (p. 204).

saml:surname[]

Works with string operators (p. 761).

This is a surnameuid attribute.
saml:uid[]

Works with string operators (p. 761).

This is a uid attribute.
saml:x500UniqueIdentifier[]

Works with string operators (p. 761).

This is an x500UniqueIdentifier attribute.

For general information about eduPerson and eduOrg attributes, see the REFEDS Wiki website. For a
list of eduPerson attributes, see eduPerson Object Class Specification (201602).

Condition keys whose type is a list can include multiple values. To create conditions in the policy for
list values, you can use set operators (p. 769) (ForAllValues, ForAnyValue). For example, to allow
any user whose affiliation is "faculty" or "staff" (but not "student"), you might use a condition like the
following:

"Condition": {
 "ForAllValues:StringLike": {
 "saml:edupersonaffiliation":["faculty", "staff"]
 }
}

SAML role permissions policies

In the permissions policy of a role for SAML federation that defines what users are allowed to access in
AWS, you can include the following keys:

838

https://wiki.refeds.org/display/STAN/eduPerson
https://software.internet2.edu/eduperson/internet2-mace-dir-eduperson-201602.html

AWS Identity and Access Management User Guide
IAM condition keys

saml:namequalifier

Works with string operators (p. 761).

This contains a hash value that represents the combination of the saml:doc and saml:iss values.
It is used as a namespace qualifier; the combination of saml:namequalifier and saml:sub
uniquely identifies a user.

saml:sub

Works with string operators (p. 761).

This is the subject of the claim, which includes a value that uniquely identifies an individual user
within an organization (for example, _cbb88bf52c2510eabe00c1642d4643f41430fe25e3).

saml:sub_type

Works with string operators (p. 761).

This key can have the value persistent, transient, or consist of the full Format URI from the
Subject and NameID elements used in your SAML assertion. A value of persistent indicates
that the value in saml:sub is the same for a user between sessions. If the value is transient, the
user has a different saml:sub value for each session. For information about the NameID element's
Format attribute, see Configuring SAML assertions for the authentication response (p. 204).

For more information about using these keys, see About SAML 2.0-based federation (p. 183).

Available keys for AWS STS
You can use the following condition keys in IAM role trust policies for roles that are assumed using AWS
Security Token Service (AWS STS) operations.

sts:AWSServiceName

Works with string operators (p. 761).

Use this key to specify a service where a bearer token can be used. When you use this
condition key in a policy, specify the service using a service principal. A service principal is the
name of a service that can be specified in the Principal element of a policy. For example,
codeartifact.amazonaws.com is the AWS CodeArtifact service principal.

Some AWS services require that you have permission to get an AWS STS service bearer token
before you can access their resources programmatically. For example, AWS CodeArtifact requires
principals to use bearer tokens to perform some operations. The aws codeartifact get-
authorization-token command returns a bearer token. You can then use the bearer token to
perform AWS CodeArtifact operations. For more information about bearer tokens, see Using bearer
tokens (p. 360).

Availability – This key is present in requests that get a bearer token. You cannot make a direct call
to AWS STS to get a bearer token. When you perform some operations in other services, the service
requests the bearer token on your behalf.

You can use this condition key to allow principals to get a bearer token for use with a specific service.
sts:DurationSeconds

Works with numeric operators (p. 763).

Use this key to specify the duration (in seconds) that a principal can use when getting an AWS STS
bearer token.

839

AWS Identity and Access Management User Guide
IAM condition keys

Some AWS services require that you have permission to get an AWS STS service bearer token
before you can access their resources programmatically. For example, AWS CodeArtifact requires
principals to use bearer tokens to perform some operations. The aws codeartifact get-
authorization-token command returns a bearer token. You can then use the bearer token to
perform AWS CodeArtifact operations. For more information about bearer tokens, see Using bearer
tokens (p. 360).

Availability – This key is present in requests that get a bearer token. You cannot make a direct
call to AWS STS to get a bearer token. When you perform some operations in other services, the
service requests the bearer token on your behalf. The key is not present for AWS STS assume-role
operations.

sts:ExternalId

Works with string operators (p. 761).

Use this key to require that a principal provide a specific identifier when assuming an IAM role.

Availability – This key is present in the request when the principal provides an external ID while
assuming a role using the AWS CLI or AWS API.

A unique identifier that might be required when you assume a role in another account. If the
administrator of the account to which the role belongs provided you with an external ID, then
provide that value in the ExternalId parameter. This value can be any string, such as a passphrase
or account number. The primary function of the external ID is to address and prevent the confused
deputy problem. For more information about the external ID and the confused deputy problem, see
How to use an external ID when granting access to your AWS resources to a third party (p. 231).

The ExternalId value must have a minimum of 2 characters and a maximum of 1,224 characters.
The value must be alphanumeric without white space. It can also include the following symbols: plus
(+), equal (=), comma (,), period (.), at (@), colon (:), forward slash (/), and hyphen (-).

sts:RoleSessionName

Works with string operators (p. 761).

Use this key to compare the session name that a principal specifies when assuming a role with the
value that is specified in the policy.

Availability – This key is present in the request when the principal assumes the role using the AWS
Management Console, any assume-role CLI command, or any AWS STS AssumeRole API operation.

You can use this key in a role trust policy to require that your users provide a specific session
name when they assume a role. For example, you can require that IAM users specify their own
user name as their session name. After the IAM user assumes the role, activity appears in AWS
CloudTrail logs (p. 369) with the session name that matches their user name. This makes it easier for
administrators to differentiate between role sessions when a role is used by different principals.

The following role trust policy requires that IAM users in account 111122223333 provide their IAM
user name as the session name when they assume the role. This requirement is enforced using the
aws:username condition variable (p. 776) in the condition key. This policy allows IAM users to
assume the role to which the policy is attached. This policy does not allow anyone using temporary
credentials to assume the role because the username variable is present for only IAM users.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "RoleTrustPolicyRequireUsernameForSessionName",
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Principal": {"AWS": "arn:aws:iam::111122223333:root"},

840

AWS Identity and Access Management User Guide
IAM condition keys

 "Condition": {
 "StringLike": {"sts:RoleSessionName": "${aws:username}"}
 }
 }
]
}

When an administrator views the AWS CloudTrail log for an action, they can compare the session
name to the user names in their account. In the following example, the user named matjac
performed the operation using the role named MateoRole. The administrator can then contact
Mateo Jackson, who has the user named matjac.

 "assumedRoleUser": {
 "assumedRoleId": "AROACQRSTUVWRAOEXAMPLE:matjac",
 "arn": "arn:aws:sts::111122223333:assumed-role/MateoRole/matjac"
 }

If you allow cross-account access using roles (p. 172), then users in one account can assume a role in
another account. The ARN of the assumed role user listed in CloudTrail includes the account where
the role exists. It does not include the account of the user that assumed the role. Users are unique
only within an account. Therefore, we recommend that you use this method for checking CloudTrail
logs only for roles that are assumed by users in accounts that you administer. Your users might use
the same user name in multiple accounts.

sts:SourceIdentity

Works with string operators (p. 761).

Use this key to compare the source identity that a principal specifies when assuming a role with the
value that is specified in the policy.

Availability – This key is present in the request when the principal provides a source identity while
assuming a role using any AWS STS assume-role CLI command, or AWS STS AssumeRole API
operation.

You can use this key in a role trust policy to require that your users set a specific source identity
when they assume a role. For example, you can require your workforce or federated identities to
specify a value for source identity. You can configure your identity provider (IdP) to use one of the
attributes that are associated with your users, like a user name or email as the source identity. The
IdP then passes the source identity as an attribute in the assertions or claims that it sends to AWS.
The value of the source identity attribute identifies the user or application who is assuming the role.

After the user assumes the role, activity appears in AWS CloudTrail logs (p. 369) with the
source identity value that was set. This makes it easier for administrators to determine
who or what performed actions with a role in AWS. You must grant permissions for the
sts:SetSourceIdentity action to allow an identity to set a source identity.

Unlike sts:RoleSessionName (p. 840), after the source identity is set, the value cannot be
changed. It is present in the request context for all actions taken with the role by the source identity.
The value persists into subsequent role sessions when you use the session credentials to assume
another role. Assuming one role from another is called role chaining (p. 170).

You can use the aws:SourceIdentity (p. 826) global condition key to further control access to
AWS resources based on the value of source identity in subsequent requests.

The following role trust policy allows the IAM user AdminUser to assume a role in account
111122223333. It also grants permission to the AdminUser to set a source identity, as long as the
source identity set is DiegoRamirez.

{

841

AWS Identity and Access Management User Guide
Actions, resources, and condition keys

 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAdminUserAssumeRole",
 "Effect": "Allow",
 "Principal": {"AWS": " arn:aws:iam::111122223333:user/AdminUser"},
 "Action": [
 "sts:AssumeRole",
 "sts:SetSourceIdentity"
],
 "Condition": {
 "StringEquals": {"sts:SourceIdentity": "DiegoRamirez"}
 }
 }
]
}

To learn more about using source identity information, see Monitor and control actions taken with
assumed roles (p. 340).

sts:TransitiveTagKeys

Works with string operators (p. 761).

Use this key to compare the transitive session tag keys in the request with those specified in the
policy.

Availability – This key is present in the request when you make a request using temporary
security credentials. These include credentials created using any assume-role operation, or the
GetFederationToken operation.

When you make a request using temporary security credentials, the request context (p. 759)
includes the aws:PrincipalTag (p. 821) context key. This key includes a list of session
tags (p. 313), transitive session tags (p. 320), and role tags. Transitive session tags are tags that
persist into all subsequent sessions when you use the session credentials to assume another role.
Assuming one role from another is called role chaining (p. 170).

You can use this condition key in a policy to require setting specific session tags as transitive when
assuming a role or federating a user.

Actions, resources, and condition keys for AWS
services
Each AWS service can define actions, resources, and condition context keys for use in IAM policies. For a
list of AWS services and their actions, resources, and condition context keys, see Actions, resources, and
condition keys in the Service Authorization Reference.

842

https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html

AWS Identity and Access Management User Guide
Users and groups

Resources to learn more about IAM
IAM is a rich product, and you'll find many resources to help you learn more about how IAM can help you
secure your AWS account and resources.

Topics
• Users and groups (p. 843)
• Credentials (passwords, access keys, and MFA devices) (p. 843)
• Permissions and policies (p. 843)
• Federation and delegation (p. 844)
• IAM and other AWS products (p. 844)
• General security practices (p. 845)
• General resources (p. 845)

Users and groups
Consult these resources for creating, managing, and using users and groups.

• Creating your first IAM admin user and user group (p. 19) – A step-by-step procedure that shows
how to create an IAM users and assign permissions.

• IAM Identities (users, user groups, and roles) (p. 71) – An in-depth discussion of how to administer
IAM users and groups.

• Guidelines for When to Use Accounts, Users, and Groups – An AWS Security Blog post that discusses
how to organize user access with separate AWS accounts or with IAM users and groups in a single
account.

Credentials (passwords, access keys, and MFA
devices)

Review the following guides to manage passwords for your AWS account and for IAM users. You'll also
find information about access keys—the secret key that you use to make programmatic calls to AWS.

• AWS Security Credentials – Describes the types of credentials you use to access Amazon Web Services,
explains how to create and manage them, and includes recommendations for managing access keys
securely.

• Managing user passwords in AWS (p. 91) and Managing access keys for IAM users (p. 102) –
Describes options for managing credentials for IAM users in your account.

• Using multi-factor authentication (MFA) in AWS (p. 110) – Describes how to configure your account
and IAM users to require both a password and a one-time use code that is generated on a device
before sign-in is allowed. (This is sometimes called two-factor authentication.)

Permissions and policies
Learn the inner workings of IAM policies and find tips on the best ways to confer permissions:

843

http://aws.amazon.com/blogs/security/guidelines-for-when-to-use-accounts-users-and-groups
https://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html

AWS Identity and Access Management User Guide
Federation and delegation

• Policies and permissions in IAM (p. 381) – Introduces the policy language that is used to define
permissions. Describes how permissions can be attached to users or groups or, for some AWS products,
to resources themselves.

• IAM JSON policy elements reference (p. 744) – Provides descriptions and examples of each policy
language element.

• Validating IAM policies (p. 474) – Find resources for JSON policy validation.

• Example IAM identity-based policies (p. 418) – Shows examples of policies for common tasks in
various AWS products.

• AWS Policy Generator – Create custom policies by choosing products and actions from a list.

• IAM Policy Simulator – Test whether a policy would allow or deny a specific request to AWS.

Federation and delegation
You can grant access to resources in your AWS account for users who are authenticated (signed in)
elsewhere. These can be IAM users in another AWS account (known as delegation), users who are
authenticated with your organization's sign-in process, or users from an Internet identity provider
like Login with Amazon, Facebook, Google, or any other OpenID Connect (OIDC) compatible identity
provider. In these cases, the users get temporary security credentials to access AWS resources.

• IAM tutorial: Delegate access across AWS accounts using IAM roles (p. 33) – Guides you through
granting cross-account access to an IAM user in another AWS account.

• Common scenarios for temporary credentials (p. 322) – Describes ways in which users can be
federated into AWS after being authenticated outside of AWS.

• Web Identity Federation Playground – Lets you experiment with Login with Amazon, Google, or
Facebook to authenticate and then make a call to Amazon S3.

IAM and other AWS products
Most AWS products are integrated with IAM so that you can use IAM features to help protect access
to the resources in those products. The following resources discuss IAM and security for some of the
most popular AWS products. For a complete list of products that work with IAM, including links to more
information on each, see AWS services that work with IAM (p. 725).

Using IAM with Amazon EC2
• Controlling Access to Amazon EC2 Resources – Describes how to use IAM features to permit users to

administer Amazon EC2 instances, volumes, and more.

• Using instance profiles (p. 276) – Describes how to use IAM roles to securely provide credentials for
applications that run on Amazon EC2 instances and that need access to other AWS products.

Using IAM with Amazon S3
• Managing Access Permissions to Your Amazon S3 Resources – Discusses the Amazon S3 security model

for buckets and objects, which includes IAM policies.

• Writing IAM Policies: Grant Access to User-Specific Folders in an Amazon S3 Bucket – Discusses how to
let users protect their own folders in Amazon S3. (For more posts about Amazon S3 and IAM, choose
the S3 tag below the title of the blog post.)

844

http://aws.amazon.com/blogs/aws/aws-policy-generator/
https://policysim.aws.amazon.com/
http://aws.amazon.com/blogs/aws/the-aws-web-identity-federation-playground/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/UsingIAM.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html
http://aws.amazon.com/blogs/security/writing-iam-policies-grant-access-to-user-specific-folders-in-an-amazon-s3-bucket

AWS Identity and Access Management User Guide
Using IAM with Amazon RDS

Using IAM with Amazon RDS
• Using AWS Identity and Access Management (IAM) to Manage Access to Amazon RDS Resources –

Describes how to use IAM to control access to database instances, database snapshots, and more.

• A Primer on RDS Resource-Level Permissions – Describes how to use IAM to control access to specific
Amazon RDS instances.

Using IAM with Amazon DynamoDB
• Using IAM to Control Access to DynamoDB Resources – Describes how to use IAM to permit users to

administer DynamoDB tables and indexes.

• The following video (8:55) explains how to provide access control for individual DynamoDB database
items or attributes (or both).

Getting Started with Fine-Grained Access Control for DynamoDB

General security practices
Find expert tips and guidance on the best ways to secure your AWS account and resources:

• AWS Security Best Practices (PDF) – Provides an in-depth look at how to manage security across AWS
accounts and products, including suggestions for security architecture, use of IAM, encryption and data
security, and more.

• Security best practices in IAM (p. 557) – Offers recommendations for ways to use IAM to help secure
your AWS account and resources.

• AWS CloudTrail User Guide – Use AWS CloudTrail to track a history of API calls made to AWS and
store that information in log files. This helps you determine which users and accounts accessed
resources in your account, when the calls were made, what actions were requested, and more.

General resources
Explore the following resources to learn more about IAM and AWS.

• Product Information for IAM – General information about the AWS Identity and Access Management
product.

• Discussion Forms for AWS Identity and Access Management – A community forum for customers to
discuss technical questions related to IAM.

• Classes & Workshops – Links to role-based and specialty courses, in addition to self-paced labs to help
sharpen your AWS skills and gain practical experience.

• AWS Developer Tools – Links to developer tools, SDKs, IDE toolkits, and command line tools for
developing and managing AWS applications.

• AWS Whitepapers – Links to a comprehensive list of technical AWS whitepapers, covering topics such
as architecture, security, and economics and authored by AWS Solutions Architects or other technical
experts.

• AWS Support Center – The hub for creating and managing your AWS Support cases. Also includes
links to other helpful resources, such as forums, technical FAQs, service health status, and AWS Trusted
Advisor.

845

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/UsingWithRDS.IAM.html
http://aws.amazon.com/blogs/security/a-primer-on-rds-resource-level-permissions
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/UsingIAMWithDDB.html
http://youtu.be/uAUYphLWL5w
https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Best_Practices.pdf
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://aws.amazon.com/iam/
https://forums.aws.amazon.com/forum.jspa?forumID=76
https://aws.amazon.com/training/course-descriptions/
https://aws.amazon.com/tools/
https://aws.amazon.com/whitepapers/
https://console.aws.amazon.com/support/home#/

AWS Identity and Access Management User Guide
General resources

• AWS Support – The primary webpage for information about AWS Support, a one-on-one, fast-
response support channel to help you build and run applications in the cloud.

• Contact Us – A central contact point for inquiries concerning AWS billing, account, events, abuse, and
other issues.

• AWS Site Terms – Detailed information about our copyright and trademark; your account, license, and
site access; and other topics.

846

https://aws.amazon.com/premiumsupport/
https://aws.amazon.com/contact-us/
https://aws.amazon.com/terms/

AWS Identity and Access Management User Guide
Endpoints

Calling the IAM API using HTTP
query requests

Contents

• Endpoints (p. 847)

• HTTPS required (p. 848)

• Signing IAM API requests (p. 848)

You can access the IAM and AWS STS services programmatically using the Query API. Query API requests
are HTTPS requests that must contain an Action parameter to indicate the action to be performed. IAM
and AWS STS support GET and POST requests for all actions. That is, the API does not require you to use
GET for some actions and POST for others. However, GET requests are subject to the limitation size of
a URL; although this limit is browser dependent, a typical limit is 2048 bytes. Therefore, for Query API
requests that require larger sizes, you must use a POST request.

The response is an XML document. For details about the response, see the individual action pages in the
IAM API Reference or the AWS Security Token Service API Reference.

Tip
Instead of making direct calls to the IAM or AWS STS API operations, you can use one of the
AWS SDKs. The AWS SDKs consist of libraries and sample code for various programming
languages and platforms (Java, Ruby, .NET, iOS, Android, etc.). The SDKs provide a convenient
way to create programmatic access to IAM and AWS. For example, the SDKs take care of tasks
such as cryptographically signing requests (see below), managing errors, and retrying requests
automatically. For information about the AWS SDKs, including how to download and install
them, see the Tools for Amazon Web Services page.

For details about the API actions and errors, see the IAM API Reference or the AWS Security Token
Service API Reference.

Endpoints
IAM and AWS STS each have a single global endpoint:

• (IAM) https://iam.amazonaws.com

• (AWS STS) https://sts.amazonaws.com

Note
AWS STS also supports sending requests to regional endpoints in addition to the global
endpoint. Before you can use AWS STS in a Region, you must first activate STS in that Region for
your AWS account. For more information about activating additional Regions for AWS STS, see
Managing AWS STS in an AWS Region (p. 356).

For more information about AWS endpoints and Regions for all services, see Service endpoints and
quotas in the AWS General Reference.

847

https://docs.aws.amazon.com/IAM/latest/APIReference/
https://docs.aws.amazon.com/STS/latest/APIReference/
http://aws.amazon.com/tools/
https://docs.aws.amazon.com/IAM/latest/APIReference/
https://docs.aws.amazon.com/STS/latest/APIReference/
https://docs.aws.amazon.com/STS/latest/APIReference/
https://iam.amazonaws.com
https://sts.amazonaws.com
https://docs.aws.amazon.com/general/latest/gr/aws-service-information.html
https://docs.aws.amazon.com/general/latest/gr/aws-service-information.html

AWS Identity and Access Management User Guide
HTTPS required

HTTPS required
Because the Query API returns sensitive information such as security credentials, you must use HTTPS
with all API requests.

Signing IAM API requests
Requests must be signed using an access key ID and a secret access key. We strongly recommend that
you do not use your AWS account root user credentials for everyday work with IAM. You can use the
credentials for an IAM user or you can use AWS STS to generate temporary security credentials.

To sign your API requests, we recommend using AWS Signature Version 4. For information about using
Signature Version 4, go to Signature Version 4 Signing Process in the AWS General Reference.

If you need to use Signature Version 2, information about using Signature Version 2 is available in the
AWS General Reference.

For more information, see the following:

• AWS Security Credentials. Provides general information about the types of credentials used for
accessing AWS.

• Security best practices in IAM (p. 557). Presents a list of suggestions for using IAM service to help
secure your AWS resources.

• Temporary security credentials in IAM (p. 322). Describes how to create and use temporary security
credentials.

848

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html

AWS Identity and Access Management User Guide

Document history for IAM
The following table describes major documentation updates for IAM.

update-history-change update-history-description update-history-date

IAM Access Analyzer supports
Amazon S3 Multi-Region Access
Points

IAM Access Analyzer identifies
Amazon S3 buckets that allow
public and cross-account access,
including those that use Amazon
S3 Multi-Region Access Points.

September 2, 2021

AWS managed policy updates -
Update to an existing policy

IAM Access Analyzer updated an
existing AWS managed policy.

September 2, 2021

More services supported for
action-level policy generation

IAM Access Analyzer can
generate IAM policies with
action-level access activity
information for additional AWS
services.

August 24, 2021

Generate IAM policies for cross-
account trails

You can now use IAM Access
Analyzer to generate fine-
grained policies based on
your access activity using
a AWS CloudTrail trail in a
different account, for example,
a centralized AWS Organizations
trail.

August 18, 2021

Additional IAM Access Analyzer
policy checks

IAM Access Analyzer extended
policy validation by adding
new policy checks that validate
conditions included in IAM
policies. These checks analyze
the condition block in your
policy statement and report
security warnings, errors,
and suggestions along with
actionable recommendations.

IAM Access Analyzer added the
following policy checks:

• Error – Invalid service principal
format

• Error – Missing tag key in
condition

• Security Warning – Deny
NotAction with unsupported
tag condition key for service

• Security Warning – Deny with
unsupported tag condition key
for service

June 29, 2021

849

https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/MultiRegionAccessPoints.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/security-iam-awsmanpol.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-generation.html#access-analyzer-policy-generation-cross-account
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-generation.html#access-analyzer-policy-generation-cross-account
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-generation.html#access-analyzer-policy-generation-cross-account
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-generation.html#access-analyzer-policy-generation-cross-account
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-error-invalid-service-principal-format
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-error-invalid-service-principal-format
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-error-missing-tag-key-in-condition
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-error-missing-tag-key-in-condition
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-security-warning-deny-notaction-with-unsupported-tag-condition-key-for-service
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-security-warning-deny-notaction-with-unsupported-tag-condition-key-for-service
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-security-warning-deny-notaction-with-unsupported-tag-condition-key-for-service
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-security-warning-deny-with-unsupported-tag-condition-key-for-service
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-security-warning-deny-with-unsupported-tag-condition-key-for-service
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-security-warning-deny-with-unsupported-tag-condition-key-for-service

AWS Identity and Access Management User Guide

• Security Warning – Missing
paired condition keys

• Suggestion – Allow NotAction
with unsupported tag
condition key for service

• Suggestion – Allow with
unsupported tag condition key
for service

Action last accessed support for
more services

You can now view action last
accessed information in the IAM
console about the last time an
IAM principal used an action for
the following services: Amazon
EC2, IAM, Lambda, and Amazon
S3 management actions. You
can also use the AWS CLI or AWS
API to retrieve a data report.
You can use this information to
identify unnecessary permissions
so that you can refine your IAM
policies to better adhere to the
principle of least privilege.

April 19, 2021

Monitor and control actions
taken with assumed roles

Administrators can configure
IAM roles to require that
identities pass a source identity,
which is logged in AWS
CloudTrail. Reviewing source
identity information helps
administrators determine who
or what performed actions with
assumed role sessions.

April 13, 2021

Generate IAM policies based on
access activity

You can now use IAM Access
Analyzer to generate fine-
grained policies based on your
access activity found in your
AWS CloudTrail.

April 7, 2021

IAM Access Analyzer policy
checks

IAM Access Analyzer now
provides over 100 policy
checks with actionable
recommendations during policy
authoring.

March 16, 2021

Expanded policy validation
options

Expanded policy validation
available in the IAM console,
AWS API, and AWS CLI using
policy checks in IAM Access
Analyzer to help you author
secure and functional JSON
policies.

March 15, 2021

Tagging IAM resources You can now tag additional IAM
resources using a tag key-value
pair.

February 11, 2021

850

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-security-warning-missing-paired-condition-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-security-warning-missing-paired-condition-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-suggestion-allow-notaction-with-unsupported-tag-condition-key-for-service
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-suggestion-allow-notaction-with-unsupported-tag-condition-key-for-service
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-suggestion-allow-notaction-with-unsupported-tag-condition-key-for-service
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-suggestion-allow-with-unsupported-tag-condition-key-for-service
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-suggestion-allow-with-unsupported-tag-condition-key-for-service
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html#access-analyzer-reference-policy-checks-suggestion-allow-with-unsupported-tag-condition-key-for-service
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_access-advisor.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_access-advisor.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access_monitor.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access_monitor.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_generate-policy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_generate-policy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-reference-policy-checks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_policy-validator.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_policy-validator.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags.html

AWS Identity and Access Management User Guide

Default password policy for IAM
users

If you do not set a custom
password policy for your AWS
account, IAM user passwords
must now meet the default AWS
password policy.

November 18, 2020

The actions, resources, and
condition keys pages for AWS
services have moved

Each AWS service can define
actions, resources, and condition
context keys for use in IAM
policies. You can now find the
list of AWS services and their
actions, resources, and condition
context keys in the Service
Authorization Reference.

November 16, 2020

IAM users longer role session
duration

IAM users can now have a longer
role session duration when
switching roles in the AWS
Management Console, reducing
interruptions due to session
expiration. Users are granted the
maximum session duration set
for the role, or the remaining
time in the IAM user's session,
whichever is less.

July 24, 2020

Use Service Quotas to request
quick increases for IAM entities

You can request quota increases
for adjustable IAM quotas
using the Service Quotas
console. Now, some increases
are automatically approved in
Service Quotas and available
in your account within a few
minutes. Larger requests are
submitted to AWS Support.

June 25, 2020

Last accessed information in
IAM now includes Amazon S3
management actions

In addition to service last
accessed information, you can
now view information in the IAM
console about the last time an
IAM principal used an Amazon
S3 action. You can also use the
AWS CLI or AWS API to retrieve
the data report. The report
includes information about the
allowed services and actions
that principals last attempted
to access and when. You can
use this information to identify
unnecessary permissions so that
you can refine your IAM policies
to better adhere to the principle
of least privilege.

June 3, 2020

851

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_passwords_account-policy.html#default-policy-details
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_passwords_account-policy.html#default-policy-details
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/service-authorization/latest/reference/reference_policies_actions-resources-contextkeys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-quotas.html#reference_iam-quotas-entities
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-quotas.html#reference_iam-quotas-entities
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_access-advisor.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_access-advisor.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_access-advisor.html

AWS Identity and Access Management User Guide

Security chapter addition The security chapter helps you
understand how to configure
IAM and AWS STS to meet
your security and compliance
objectives. You also learn how to
use other AWS services that help
you to monitor and secure your
IAM resources.

April 29, 2020

sts:RoleSessionName You can now write a policy that
grants permissions based on the
session name that a principal
specifies when assuming a role.

April 21, 2020

AWS sign-in page update When you sign in on the main
AWS sign-in page, you can no
choose to sign in as the AWS
account root user or an IAM
user. When you do, the label
on the page indicates whether
you should provide your root
user email address or your IAM
user account information. This
documentation includes updated
screen captures to help you
understand the AWS sign-in
pages.

March 4, 2020

aws:ViaAWSService and
aws:CalledVia condition keys

You can now write a policy
to limit whether services can
make requests on behalf of
an IAM principal (user or role).
When a principal makes a
request to an AWS service, that
service might use the principal's
credentials to make subsequent
requests to other services. Use
the aws:ViaAWSService
condition key to match if any
service makes a request using
a principal's credentials. Use
the aws:CalledVia condition
keys to match if specific
services make a request using a
principal's credentials.

February 20, 2020

Policy simulator adds support
for permissions boundaries

You can now test the effect of
permissions boundaries on IAM
entities with the IAM policy
simulator.

January 23, 2020

852

https://docs.aws.amazon.com/IAM/latest/UserGuide/security.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_iam-condition-keys.html#ck_rolesessionname
https://docs.aws.amazon.com/IAM/latest/UserGuide/console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_testing-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_testing-policies.html

AWS Identity and Access Management User Guide

Cross-account policy evaluation You can now learn how AWS
evaluates policies for cross-
account access. This occurs when
a resource in a trusting account
includes a resource-based policy
that allows a principal in another
account to access the resource.
The request must be allowed in
both accounts.

January 2, 2020

Session tags You can now include tags when
you assume a role or federate
a user in AWS STS. When you
perform the AssumeRole
or GetFederationToken
operation, you can pass the
session tags as attributes.
When you perform the
AssumeRoleWithSAML or
AssumeRoleWithWebIdentity
operations, you can pass
attributes from your corporate
identities to AWS.

November 22, 2019

Control access for groups
of AWS accounts in AWS
Organizations

You can now reference
organizational units (OUs) from
AWS Organizations in IAM
policies. If you use Organizations
to organize your accounts
into OUs, you can require that
principals belong to a specific
OU before granting access
to your resources. Principals
include AWS account root user,
IAM users and IAM roles. To do
this, specify the OU path in the
aws:PrincipalOrgPaths
condition key in your policies.

November 20, 2019

Role last used You can now view the date, time,
and Region where a role was
last used. This information also
helps you identify unused roles
in your account. You can use
the AWS Management Console,
AWS CLI and AWS API to view
information about when a role
was last used.

November 19, 2019

853

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic-cross-account.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_session-tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-principal-org-paths
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-principal-org-paths
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-principal-org-paths
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage_delete.html

AWS Identity and Access Management User Guide

Update to the global condition
context keys page

You can now learn when each
of the global condition keys
is included in the context of a
request. You can also navigate
to each key more easily using
the page table of contents
(TOC). The information on the
page helps you to write more
accurate policies. For example, if
your employees use federation
with IAM roles, you should use
the aws:userId key and not
the aws:userName key. The
aws:userName key applies only
to IAM users and not roles.

October 6, 2019

ABAC in AWS Learn how attribute-based
access control (ABAC) works
in AWS using tags, and how it
compares to the traditional AWS
authorization model. Use the
ABAC tutorial to learn how to
create and test a policy that
allows IAM roles with principal
tags to access resources with
matching tags. This strategy
allows individuals to view or edit
only the AWS resources required
for their jobs.

October 3, 2019

AWS STS GetAccessKeyInfo
operation

You can review the AWS access
keys in your code to determine
whether the keys are from an
account that you own. You can
pass an access key ID using the
aws sts get-access-key-
info AWS CLI command or the
GetAccessKeyInfo AWS API
operation.

July 24, 2019

854

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_access-keys-audit
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_access-keys-audit
https://docs.aws.amazon.com/cli/latest/reference/sts/get-access-key-info.html
https://docs.aws.amazon.com/cli/latest/reference/sts/get-access-key-info.html
https://docs.aws.amazon.com/STS/latest/APIReference/API_GetAccessKeyInfo.html

AWS Identity and Access Management User Guide

Viewing Organizations service
last accessed information in IAM

You can now view service last
accessed information for an
AWS Organizations entity or
policy in the AWS Organizations
section of the IAM console.
You can also use the AWS CLI
or AWS API to retrieve the
data report. This data includes
information about the allowed
services that principals in an
Organizations account last
attempted to access and when.
You can use this information to
identify unnecessary permissions
so that you can refine your
Organizations policies to better
adhere to the principle of least
privilege.

June 20, 2019

Using a managed policy as a
session policy

You can now pass up to 10
managed policy ARNs when you
assume a role. This allows you
to limit the permissions of the
role's temporary credentials.

May 7, 2019

AWS STS Region compatibility
of session tokens for the global
endpoint

You can now choose whether
to use version 1 or version 2
global endpoint tokens. Version
1 tokens are valid only in AWS
Regions that are available by
default. These tokens will not
work in manually enabled
Regions, such as Asia Pacific
(Hong Kong). Version 2 tokens
are valid in all Regions. However,
version 2 tokens are longer and
might affect systems where you
temporarily store tokens.

April 26, 2019

Allow enabling and disabling
AWS regions

You can now create a policy
that allows an administrator
to enable and disable the Asia
Pacific (Hong Kong) Region (ap-
east-1).

April 24, 2019

IAM user my security credentials
page

IAM users can now manage
all of their own credentials on
the My Security Credentials
page. This AWS Management
Console page displays account
information such as the account
ID and canonical user ID. Users
can also view and edit their own
passwords, access keys, X.509
certificates, SSH keys, and Git
credentials.

January 24, 2019

855

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_access-advisor.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_access-advisor.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access_assumerole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access_assumerole.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_aws-enable-disable-regions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_aws-enable-disable-regions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_aws_my-sec-creds-self-manage-no-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_examples_aws_my-sec-creds-self-manage-no-mfa.html

AWS Identity and Access Management User Guide

Access advisor API You can now use the AWS CLI
and AWS API to view service last
accessed information.

December 7, 2018

Tagging IAM users and roles You can now use IAM tags to
add custom attributes to an
identity (IAM user or role) using
a tag key-value pair. You can also
use tags to control an identity's
access to resources or to control
what tags can be attached to an
identity.

November 14, 2018

U2F security keys You can now use U2F security
keys as a multi-factor
authentication (MFA) option
when signing in to the AWS
Management Console.

September 25, 2018

Support for Amazon VPC
endpoints

You can now establish a private
connection between your VPC
and AWS STS in the US West
(Oregon) Region.

July 31, 2018

Permissions boundaries New feature makes it easier
to grant trusted employees
the ability to manage IAM
permissions without also
granting full IAM administrative
access.

July 12, 2018

aws:PrincipalOrgID New condition key provides an
easier way to control access to
AWS resources by specifying
the AWS organization of IAM
principals.

May 17, 2018

aws:RequestedRegion New condition key provides an
easier way to use IAM policies to
control access to AWS Regions.

April 25, 2018

Increased session duration for
IAM roles

An IAM role can now have a
session duration of 12 hours.

March 28, 2018

Updated role-creation workflow New workflow improves the
process of creating trust
relationships and attaching
permissions to roles.

September 8, 2017

AWS account sign-in process Updated AWS sign-in experience
allows both root users and
IAM users to use the Sign In to
the Console link on the AWS
Management Console's home
page.

August 25, 2017

Example IAM policies Documentation update features
more than 30 example policies.

August 2, 2017

856

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_access-advisor.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_enable_u2f.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_sts_vpce.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_sts_vpce.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#requested-region
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_policy-summary-examples.html

AWS Identity and Access Management User Guide

IAM best practices Information added to the Users
section of the IAM console
makes it easier to follow IAM
best practices.

July 5, 2017

Auto Scaling resources Resource-level permissions
can control access to and
permissions for Auto Scaling
resources.

May 16, 2017

Amazon RDS for MySQL and
Amazon Aurora databases

Database administrators can
associate database users with
IAM users and roles and thus
manage user access to all AWS
resources from a single location.

April 24, 2017

Service-linked roles Service-linked roles provide an
easier and more secure way to
delegate permissions to AWS
services.

April 19, 2017

Policy summaries New policy summaries make it
easier to understand permissions
in IAM policies.

March 23, 2017

857

https://docs.aws.amazon.com/IAM/latest/UserGuide/IAMBestPracticesAndUseCases.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_autoscaling.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonrds.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_amazonrds.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_understand-policy-summary.html

	AWS Identity and Access Management
	Table of Contents
	What is IAM?
	Video introduction to IAM
	IAM features
	Accessing IAM
	Understanding how IAM works
	Terms
	Principal
	Request
	Authentication
	Authorization
	Actions or operations
	Resources

	Overview of AWS identity management: Users
	First-time access only: Your root user credentials
	IAM users
	Federating existing users

	Overview of access management: Permissions and policies
	Policies and accounts
	Policies and users
	Policies and groups
	Federated users and roles
	Identity-based and resource-based policies

	What is ABAC for AWS?
	Comparing ABAC to the traditional RBAC model

	Security features outside IAM
	Quick links to common tasks

	Getting set up with IAM
	Using IAM to give users access to your AWS resources
	Do I need to sign up for IAM?
	Additional resources

	Getting started with IAM
	Creating your first IAM admin user and user group
	Creating an administrator IAM user and user group (console)
	Creating an IAM user and user group (AWS CLI)
	Creating a user group (AWS CLI)
	Attaching a policy to the user group (AWS CLI)

	Related resources

	Creating your first IAM delegated user and user group
	Creating a delegated IAM user and user group (console)
	Reducing the user group permissions
	Reviewing last accessed information
	Editing a policy to reduce permissions

	How IAM users sign in to your AWS account
	Permissions required for console activities
	Logging sign-in details in CloudTrail

	IAM console search
	Using IAM console search
	Icons in the IAM console search results
	Sample search phrases

	IAM tutorials
	IAM tutorial: Delegate access to the billing console
	Prerequisites
	Step 1: Activate access to billing data on your AWS test account
	Step 2: Create IAM policies that grant permissions to billing data
	Step 3: Attach billing policies to your user groups
	Step 4: Test access to the billing console
	Related resources
	Summary

	IAM tutorial: Delegate access across AWS accounts using IAM roles
	Prerequisites
	Step 1: Create a role
	Step 2: Grant access to the role
	Step 3: Test access by switching roles
	Switch roles (console)
	Switch roles (AWS CLI)
	Using AssumeRole (AWS API)

	Related resources
	Summary

	IAM tutorial: Create and attach your first customer managed policy
	Prerequisites
	Step 1: Create the policy
	Step 2: Attach the policy
	Step 3: Test user access
	Related resources
	Summary

	IAM tutorial: Define permissions to access AWS resources based on tags
	Tutorial overview
	Prerequisites
	Step 1: Create test users
	Step 2: Create the ABAC policy
	Step 3: Create roles
	Step 4: Test creating secrets
	Step 5: Test viewing secrets
	Step 6: Test scalability
	Step 7: Test updating and deleting secrets
	Summary
	Related resources
	IAM tutorial: Use SAML session tags for ABAC
	Prerequisites
	Step 1: Create a test IAM user
	Step 2: Create the ABAC policy
	Step 3: Create and configure the SAML role
	Step 3A: Create the SAML role
	Step 3B: Configure the SAML IdP
	Step 3B: Enable console access

	Step 4: Test creating secrets
	Step 5: Test viewing secrets
	Step 6: Test scalability
	Step 7: Test updating and deleting secrets
	Summary

	IAM tutorial: Permit users to manage their credentials and MFA settings
	Prerequisites
	Step 1: Create a policy to enforce MFA sign-in
	Step 2: Attach policies to your test user group
	Step 3: Test your user's access
	Related resources

	Signing in to the AWS Management Console as an IAM user or root user
	Sign in as the root user
	Sign in as an IAM user
	Your AWS account ID and its alias
	Finding your AWS account ID
	Finding Your Account ID using the console
	Finding Your Account ID using the AWS CLI
	Finding Your Account ID using the API

	About account aliases
	Creating, deleting, and listing an AWS account alias
	Creating, editing, and deleting aliases (console)
	Creating, deleting, and listing aliases (AWS CLI)
	Creating, deleting, and listing aliases (AWS API)

	Troubleshooting AWS sign-in or account issues
	I need my AWS account ID or AWS account alias
	I forgot my IAM user name or password
	I forgot the root user password for my AWS account
	I don't have access to the email for my AWS account
	I need to change the credit card for my AWS account
	I need to report fraudulent AWS account activity
	I need to close my AWS account

	IAM Identities (users, user groups, and roles)
	AWS account root user
	IAM users
	IAM user groups
	IAM roles
	Temporary credentials in IAM
	When to create an IAM user (instead of a role)
	When to create an IAM role (instead of a user)
	IAM users
	How AWS identifies an IAM user
	Users and credentials
	Users and permissions
	Users and accounts
	Users as service accounts
	Creating an IAM user in your AWS account
	Creating IAM users (console)
	Creating IAM users (AWS CLI)
	Creating IAM users (AWS API)

	Controlling user access to the AWS Management Console
	How IAM users sign in to AWS
	Using MFA devices with your IAM sign-in page
	Signing in with a virtual MFA device
	Signing in with a U2F security key
	Signing in with a hardware MFA device

	Managing IAM users
	View user access
	Listing IAM users
	To list all the users in the account
	To list the users in a specific user group
	To list all the user groups that a user is in

	Renaming an IAM user
	To rename a user

	Deleting an IAM user
	Deleting an IAM user (console)
	Deleting an IAM user (AWS CLI)

	Changing permissions for an IAM user
	View user access
	Generate a policy based on a user's access activity
	Adding permissions to a user (console)
	Adding permissions by adding the user to a group
	Adding permissions by copying from another user
	Adding permissions by attaching policies directly to the user
	Setting the permissions boundary for a user

	Changing permissions for a user (console)
	Editing a permissions policy attached to a user
	Changing the permissions boundary for a user

	Removing a permissions policy from a user (console)
	Removing the permissions boundary from a user (console)
	Adding and removing a user's permissions (AWS CLI or AWS API)

	Managing user passwords in AWS
	Changing the AWS account root user password
	Setting an account password policy for IAM users
	Rules for setting a password policy
	Permissions required to set a password policy
	Default password policy
	Custom password policy options
	Setting a password policy (console)
	Setting a password policy (AWS CLI)
	Setting a password policy (AWS API)

	Managing passwords for IAM users
	Creating, changing, or deleting an IAM user password (console)
	Creating, changing, or deleting an IAM user password (AWS CLI)
	Creating, changing, or deleting an IAM user password (AWS API)

	Permitting IAM users to change their own passwords
	For more information

	How an IAM user changes their own password
	Permissions required
	How IAM users change their own password (console)
	How IAM users change their own password (AWS CLI or AWS API)

	Managing access keys for IAM users
	Permissions required
	Managing access keys (console)
	Managing access keys (AWS CLI)
	Managing access keys (AWS API)
	Rotating access keys
	Rotating IAM user access keys (console)
	Rotating access keys (AWS CLI)
	Rotating access keys (AWS API)

	Auditing access keys

	Resetting lost or forgotten passwords or access keys for AWS
	Resetting a lost or forgotten root user password

	Using multi-factor authentication (MFA) in AWS
	What is MFA?
	Enabling MFA devices for users in AWS
	General steps for enabling MFA devices
	Enabling a virtual multi-factor authentication (MFA) device (console)
	Permissions required
	Enable a virtual MFA device for an IAM user (console)
	Enable a virtual MFA device for your AWS account root user (console)
	Replace or "rotate" a virtual MFA device

	Enabling a U2F security key (console)
	Permissions required
	Enable a U2F security key for your own IAM user (console)
	Enable a U2F security key for another IAM user (console)
	Enable a U2F security key for the AWS account root user (console)
	Replace a U2F security key
	Supported configurations for using U2F security keys
	U2F devices supported by AWS
	Browsers that support U2F
	Browser plugins

	Mobile environments
	AWS CLI and AWS API
	Additional resources

	Enabling a hardware MFA device (console)
	Permissions required
	Enable a hardware MFA device for your own IAM user (console)
	Enable a hardware MFA device for another IAM user (console)
	Enable a hardware MFA device for the AWS account root user (console)
	Replace or "rotate" a physical MFA device

	PREVIEW – Enabling SMS text message MFA devices
	Enable an SMS MFA device for an IAM user (console)
	Change the phone number for SMS MFA for an IAM user

	Enabling and managing virtual MFA devices (AWS CLI or AWS API)

	Checking MFA status
	Resynchronizing virtual and hardware MFA devices
	Permissions required
	Resynchronizing virtual and hardware MFA devices (IAM console)
	Resynchronizing virtual and hardware MFA devices (AWS CLI)
	Resynchronizing virtual and hardware MFA devices (AWS API)

	Deactivating MFA devices
	Deactivating MFA devices (console)
	Deactivating MFA devices (AWS CLI)
	Deactivating MFA devices (AWS API)

	What if an MFA device is lost or stops working?
	Recovering a root user MFA device
	Recovering an IAM user MFA device

	Configuring MFA-protected API access
	Overview
	IAM policies with MFA conditions
	Choosing between GetSessionToken and AssumeRole
	Important points about MFA-protected API access

	Scenario: MFA protection for cross-account delegation
	Scenario: MFA protection for access to API operations in the current account
	Scenario: MFA protection for resources that have resource-based policies

	Sample code: Requesting credentials with multi-factor authentication
	Calling GetSessionToken with MFA authentication (Python and C#)
	Using Python
	Using C#

	Calling AssumeRole with MFA authentication (Python)

	Finding unused credentials
	Finding unused passwords
	Finding unused access keys

	Getting credential reports for your AWS account
	Required permissions
	Understanding the report format
	Getting credential reports (console)
	Getting credential reports (AWS CLI)
	Getting credential reports (AWS API)

	Using IAM with CodeCommit: Git credentials, SSH keys, and AWS access keys
	Use Git credentials and HTTPS with CodeCommit (recommended)
	Use SSH keys and SSH with CodeCommit
	Use HTTPS with the AWS CLI credential helper and CodeCommit

	Using IAM with Amazon Keyspaces (for Apache Cassandra)
	Generating Amazon Keyspaces credentials (console)
	Generating Amazon Keyspaces credentials (AWS CLI)
	Generating Amazon Keyspaces credentials (AWS API)

	Managing server certificates in IAM
	Uploading a server certificate (AWS API)
	Retrieving a server certificate (AWS API)
	Listing server certificates (AWS API)
	Tagging and Untagging Server Certificates (AWS API)
	Renaming a server certificate or updating its path (AWS API)
	Deleting a server certificate (AWS API)
	Troubleshooting

	IAM user groups
	Creating IAM user groups
	Managing IAM user groups
	Listing IAM user groups
	Adding and removing users in an IAM user group
	View policy access
	Add or remove a user in a user group (console)
	Add or remove a user in a user group (AWS CLI)
	Add or remove a user in a user group (AWS API)

	Attaching a policy to an IAM user group
	Renaming an IAM user group
	Deleting an IAM user group
	Deleting an IAM user group (console)
	Deleting an IAM user group (AWS CLI)
	Deleting an IAM user group (AWS API)

	IAM roles
	Roles terms and concepts
	Common scenarios for roles: Users, applications, and services
	Providing access to an IAM user in another AWS account that you own
	Example scenario using separate development and production accounts
	More information

	Providing access to AWS accounts owned by third parties
	Providing access to an AWS service
	Providing access to externally authenticated users (identity federation)
	Federating users of a mobile or web-based app with Amazon Cognito
	Federating users with public identity service providers or OpenID Connect
	Federating users with SAML 2.0
	Federating users by creating a custom identity broker application

	Identity providers and federation
	About web identity federation
	Using Amazon Cognito for mobile apps
	Using web identity federation API operations for mobile apps
	Identifying users with web identity federation
	Additional resources for web identity federation

	About SAML 2.0-based federation
	Using SAML-based federation for API access to AWS
	Overview of configuring SAML 2.0-based federation
	Overview of the role to allow SAML-federated access to your AWS resources
	Uniquely identifying users in SAML-based federation

	Creating IAM identity providers
	Creating OpenID Connect (OIDC) identity providers
	Creating and managing an OIDC provider (console)
	Creating and managing an IAM OIDC identity provider (AWS CLI)
	Creating and managing an OIDC Identity Provider (AWS API)
	Obtaining the root CA thumbprint for an OpenID Connect Identity Provider
	Install OpenSSL
	Configure OpenSSL

	Creating IAM SAML identity providers
	Creating and managing an IAM identity provider (console)
	Creating and managing an IAM SAML Identity Provider (AWS CLI)
	Creating and managing an IAM SAML identity provider (AWS API)
	Configuring your SAML 2.0 IdP with relying party trust and adding claims
	Integrating third-party SAML solution providers with AWS
	Configuring SAML assertions for the authentication response
	Subject and NameID
	AudienceRestriction and Audience
	SAML PrincipalTag Attribute
	SAML Role Attribute
	SAML RoleSessionName Attribute
	SAML SessionDuration Attribute
	SAML SourceIdentity Attribute
	Mapping SAML attributes to AWS trust policy context keys

	Enabling SAML 2.0 federated users to access the AWS Management Console
	Overview
	Configure your network as a SAML provider for AWS
	Create a SAML provider in IAM
	Configure permissions in AWS for your federated users
	Finish configuration and create SAML assertions

	Enabling custom identity broker access to the AWS console
	Example code using IAM query API operations
	Example code using Python
	Example code using Java
	Example showing how to construct the URL (Ruby)

	Using service-linked roles
	Service-linked role permissions
	Transferring service-linked role permissions

	Creating a service-linked role
	Creating a service-linked role (console)
	Creating a service-linked role (AWS CLI)
	Creating a service-linked role (AWS API)

	Editing a service-linked role
	Editing a service-linked role description (console)
	Editing a service-linked role description (AWS CLI)
	Editing a service-linked role description (AWS API)

	Deleting a service-linked role
	Cleaning up a service-linked role
	Deleting a service-linked role (console)
	Deleting a service-linked role (AWS CLI)
	Deleting a service-linked role (AWS API)

	Creating IAM roles
	Creating a role to delegate permissions to an IAM user
	Creating an IAM role (console)
	Creating an IAM role (AWS CLI)
	Creating an IAM role (AWS API)
	Creating an IAM role (AWS CloudFormation)
	How to use an external ID when granting access to your AWS resources to a third party
	Why use an external ID?
	When should I use an external ID?

	The confused deputy problem
	How does an external ID prevent the confused deputy problem?

	Creating a role to delegate permissions to an AWS service
	Service role permissions
	Creating a role for an AWS service (console)
	Creating a role for a service (AWS CLI)
	Creating a role for a service (AWS API)
	

	Creating a role for a third-party Identity Provider (federation)
	Creating a role for federated users (console)
	Creating a role for federated access (AWS CLI)
	Creating a role for federated access (AWS API)
	Creating a role for web identity or OpenID connect federation (console)
	Prerequisites for creating a role for web identity or OIDC
	Creating a role for web identity or OIDC

	Creating a role for SAML 2.0 federation (console)
	Prerequisites for creating a role for SAML
	Creating a role for SAML

	Examples of policies for delegating access
	Using roles to delegate access to another AWS account's resources
	Using a policy to delegate access to services
	Using a resource-based policy to delegate access to an Amazon S3 bucket in another account
	Using a resource-based policy to delegate access to an Amazon SQS queue in another account
	Cannot delegate access when the account is denied access

	Using IAM roles
	View the maximum session duration setting for a role
	Granting a user permissions to switch roles
	Creating or editing the policy
	Providing information to the user

	Granting a user permissions to pass a role to an AWS service
	Switching to a role (console)
	Things to know about switching roles in the console

	Switching to an IAM role (AWS CLI)
	Example scenario: Switch to a production role
	Example scenario: Allow an instance profile role to switch to a role in another account

	Switching to an IAM role (Tools for Windows PowerShell)
	Switching to an IAM role (AWS API)
	Using an IAM role to grant permissions to applications running on Amazon EC2 instances
	How do roles for EC2 instances work?
	Permissions required for using roles with Amazon EC2
	Restricting which roles can be passed to EC2 instances (using PassRole)
	Allowing an instance profile role to switch to a role in another account

	How do I get started?
	Related information
	Using instance profiles
	Managing instance profiles (console)
	Managing instance profiles (AWS CLI or AWS API)
	Managing instance profiles (AWS CLI)
	Managing instance profiles (AWS API)

	Revoking IAM role temporary security credentials
	Minimum permissions to revoke session permissions from a role
	Revoking session permissions

	Managing IAM roles
	Modifying a role
	View role access
	Generate a policy based on access information
	Modifying a role (console)
	Modifying a role trust policy (console)
	Modifying a role permissions policy (console)
	Modifying a role description (console)
	Modifying a role maximum session duration (console)
	Modifying a role permissions boundary (console)

	Modifying a role (AWS CLI)
	Modifying a role trust policy (AWS CLI)
	Modifying a role permissions policy (AWS CLI)
	Modifying a role description (AWS CLI)
	Modifying a role maximum session duration (AWS CLI)
	Modifying a role permissions boundary (AWS CLI)

	Modifying a role (AWS API)
	Modifying a role trust policy (AWS API)
	Modifying a role permissions policy (AWS API)
	Modifying a role description (AWS API)
	Modifying a role maximum session duration (AWS API)
	Modifying a role permissions boundary (AWS API)

	Deleting roles or instance profiles
	View role access
	Deleting a service-linked role
	Deleting an IAM role (console)
	Deleting an IAM role (AWS CLI)
	Deleting an IAM role (AWS API)
	Related information

	How IAM roles differ from resource-based policies
	About delegating AWS permissions in a resource-based policy

	Tagging IAM resources
	Choose an AWS tag naming convention
	Rules for tagging in IAM and AWS STS
	Naming tags
	Applying and editing tags

	Tagging IAM users
	Permissions required for tagging IAM users
	Managing tags on IAM users (console)
	Managing tags on IAM users (AWS CLI or AWS API)

	Tagging IAM roles
	Permissions required for tagging IAM roles
	Managing tags on IAM roles (console)
	Managing tags on IAM roles (AWS CLI or AWS API)

	Tagging customer managed policies
	Permissions required for tagging customer managed policies
	Managing tags on IAM customer managed policies (console)
	Managing tags on IAM customer managed policies (AWS CLI or AWS API)

	Tagging IAM identity providers
	Tagging OpenID Connect (OIDC) identity providers
	Permissions required for tagging IAM OIDC identity providers
	Managing tags on IAM OIDC identity providers (console)
	Managing tags on IAM OIDC identity providers (AWS CLI or AWS API)

	Tagging IAM SAML identity providers
	Permissions required for tagging SAML identity providers
	Managing tags on IAM SAML identity providers (console)
	Managing tags on IAM SAML identity providers (AWS CLI or AWS API)

	Tagging instance profiles for Amazon EC2 roles
	Permissions required for tagging instance profiles
	Managing tags on instance profiles (AWS CLI or AWS API)

	Tagging server certificates
	Permissions required for tagging server certificates
	Managing tags on server certificates (AWS CLI or AWS API)

	Tagging virtual MFA devices
	Permissions required for tagging virtual MFA devices
	Managing tags on virtual MFA devices (AWS CLI or AWS API)

	Passing session tags in AWS STS
	Session tagging operations
	Things to know about session tags
	Permissions required to add session tags
	Passing session tags using AssumeRole
	Passing session tags using AssumeRoleWithSAML
	Passing session tags using AssumeRoleWithWebIdentity
	Passing session tags using GetFederationToken
	Chaining roles with session tags
	Using session tags for ABAC
	Viewing session tags in CloudTrail

	Temporary security credentials in IAM
	AWS STS and AWS regions
	Common scenarios for temporary credentials
	Identity federation
	Roles for cross-account access
	Roles for Amazon EC2
	Other AWS services

	Requesting temporary security credentials
	Using AWS STS with AWS Regions
	AssumeRole—cross-account delegation and federation through a custom identity broker
	AssumeRoleWithWebIdentity—federation through a web-based identity provider
	AssumeRoleWithSAML—federation through an enterprise Identity Provider compatible with SAML 2.0
	GetFederationToken—federation through a custom identity broker
	GetSessionToken—temporary credentials for users in untrusted environments
	Comparing the AWS STS API operations

	Using temporary credentials with AWS resources
	Using temporary credentials in Amazon EC2 instances
	Using temporary security credentials with the AWS SDKs
	Using temporary security credentials with the AWS CLI
	Using temporary security credentials with API operations
	More information

	Controlling permissions for temporary security credentials
	Permissions for AssumeRole, AssumeRoleWithSAML, and AssumeRoleWithWebIdentity
	Example: Assigning permissions using AssumeRole
	Role permissions policy
	Session policy passed as a parameter
	Resource-based policy

	Monitor and control actions taken with assumed roles
	Setting up to use source identity
	Things to know about source identity
	Permissions required to set source identity
	Specifying a source identity when assuming a role
	Using source identity with AssumeRole
	Using source identity with AssumeRoleWithSAML
	Using source identity with AssumeRoleWithWebIdentity
	Control access using source identity information
	Role chaining and cross-account requirements

	Viewing source identity in CloudTrail

	Permissions for GetFederationToken
	Example: Assigning permissions using GetFederationToken
	Policy attached to the IAM user
	Session policy passed as parameter
	Resource-based policies

	Permissions for GetSessionToken
	Permissions required for GetSessionToken
	Permissions granted by GetSessionToken

	Disabling permissions for temporary security credentials
	Denying access to the creator of the temporary security credentials
	Denying access to credentials created by AssumeRole, AssumeRoleWithSAML, or AssumeRoleWithWebIdentity
	Denying access to credentials created by GetFederationToken or GetSessionToken

	Denying access to temporary security credentials by name
	Denying access to federated users
	Denying access to assumed role users

	Denying access to temporary security credentials issued before a specific time

	Granting permissions to create temporary security credentials

	Managing AWS STS in an AWS Region
	Managing global endpoint session tokens
	Activating and deactivating AWS STS in an AWS Region
	Writing code to use AWS STS regions
	Regions and endpoints
	AWS CloudTrail and Regional endpoints

	Using AWS STS interface VPC endpoints
	Availability
	Create a VPC for AWS STS

	Using bearer tokens
	Sample applications that use temporary credentials
	Samples for web identity federation

	Additional resources for temporary security credentials

	AWS account root user
	Create or delete an AWS account
	Enable MFA on the AWS account root user
	Creating access keys for the root user
	Deleting access keys for the root user
	Changing the password for the root user
	Securing the credentials for the root user
	Transferring the root user owner

	Logging IAM and AWS STS API calls with AWS CloudTrail
	IAM and AWS STS information in CloudTrail
	Logging IAM and AWS STS API requests
	Logging API requests to other AWS services
	Logging Regional sign-in events
	Preventing duplicate Regional log entries

	Logging user sign-in events
	Logging sign-in events for temporary credentials
	Example IAM API events in CloudTrail log
	Example IAM API event in CloudTrail log file

	Example AWS STS API events in CloudTrail log
	Example cross-account AWS STS API events in CloudTrail log files
	Example AWS STS role chaining API event in CloudTrail log file
	Example AWS service AWS STS API event in CloudTrail log file
	Example SAML AWS STS API event in CloudTrail log file
	Example web identity AWS STS API event in CloudTrail log file

	Example sign-in events in CloudTrail log
	Example sign-in success event in CloudTrail log file
	Example sign-in failure event in CloudTrail log file
	Example sign-in failure event caused by incorrect user name

	Access management for AWS resources
	Access management resources
	Policies and permissions in IAM
	Policy types
	Identity-based policies
	Resource-based policies
	IAM permissions boundaries
	Service control policies (SCPs)
	Access control lists (ACLs)
	Session policies

	Policies and the root user
	Overview of JSON policies
	JSON policy document structure
	Multiple statements and multiple policies
	Examples of JSON policy syntax

	Managed policies and inline policies
	AWS managed policies
	Customer managed policies
	Inline policies
	Choosing between managed policies and inline policies
	Using inline policies

	Deprecated AWS managed policies

	Permissions boundaries for IAM entities
	Evaluating effective permissions with boundaries
	Delegating responsibility to others using permissions boundaries

	Identity-based policies and resource-based policies
	Controlling access to AWS resources using policies
	Controlling access for principals
	Controlling access to identities
	Controlling access to policies
	Controlling permissions for creating, updating, and deleting customer managed policies
	Controlling permissions for attaching and detaching managed policies

	Controlling access to resources
	Controlling access to principals in a specific account

	Controlling access to and for IAM users and roles using tags
	Controlling access for IAM principals
	Controlling access based on tag keys

	Controlling access to AWS resources using tags
	Controlling access to AWS resources
	Controlling access during AWS requests
	Controlling access based on tag keys

	Example IAM identity-based policies
	Example policies: AWS
	Example policies: AWS Data Pipeline
	Example policies: Amazon DynamoDB
	Example policies: Amazon EC2
	Example policies: AWS Identity and Access Management (IAM)
	Example policies: AWS Lambda
	Example policies: Amazon RDS
	Example policies: Amazon S3
	AWS: Allows access based on date and time
	AWS: Allows enabling and disabling AWS regions
	AWS: Allows MFA-authenticated IAM users to manage their own credentials on the My Security Credentials page
	AWS: Allows specific access using MFA within specific dates
	AWS: Allows IAM users to manage their own credentials on the My Security Credentials page
	AWS: Allows MFA-authenticated IAM users to manage their own MFA device on the My Security Credentials page
	AWS: Allows IAM users to change their own console password on the My Security Credentials page
	AWS: Allows IAM users to manage their own password, access keys, and SSH public keys on the My Security Credentials page
	AWS: Denies access to AWS based on the requested Region
	AWS: Denies access to AWS based on the source IP
	AWS Data Pipeline: Denies access to DataPipeline pipelines that a user did not create
	Amazon DynamoDB: Allows access to a specific table
	Amazon DynamoDB: Allows access to specific attributes
	Amazon DynamoDB: Allows item-level access to DynamoDB based on an Amazon Cognito ID
	Amazon EC2: Attach or detach volumes to an EC2 instance
	Amazon EC2: Attach or detach Amazon EBS volumes to EC2 instances based on tags
	Amazon EC2: Allows launching EC2 instances in a specific subnet, programmatically and in the console
	Amazon EC2: Allows managing EC2 security groups associated with a specific VPC, programmatically and in the console
	Amazon EC2: Allows starting or stopping EC2 instances a user has tagged, programmatically and in the console
	EC2: Start or stop instances based on tags
	EC2: Start or stop instances based on matching principal and resource tags
	Amazon EC2: Allows full EC2 access within a specific Region, programmatically and in the console
	Amazon EC2: Allows starting or stopping an EC2 instance and modifying a security group, programmatically and in the console
	Amazon EC2: Requires MFA (GetSessionToken) for specific EC2 operations
	Amazon EC2: Limits terminating EC2 instances to an IP address range
	IAM: Access the policy simulator API
	IAM: Access the policy simulator console
	IAM: Assume roles that have a specific tag
	IAM: Allows and denies access to multiple services programmatically and in the console
	IAM: Add a specific tag to a user with a specific tag
	IAM: Add a specific tag with specific values
	IAM: Create new users only with specific tags
	IAM: Generate and retrieve IAM credential reports
	IAM: Allows managing a group's membership programmatically and in the console
	IAM: Manage a specific tag
	IAM: Pass an IAM role to a specific AWS service
	IAM: Allows read-only access to the IAM console without reporting
	IAM: Allows read-only access to the IAM console
	IAM: Allows specific IAM users to manage a group programmatically and in the console
	IAM: Allows setting the account password requirements programmatically and in the console
	IAM: Access the policy simulator API based on user path
	IAM: Access the policy simulator console based on user path
	IAM: Allows IAM users to self-manage an MFA device
	IAM: Allows IAM users to rotate their own credentials programmatically and in the console
	IAM: View service last accessed information for an Organizations policy
	IAM: Limits managed policies that can be applied to an IAM user, group, or role
	AWS Lambda: Allows a Lambda function to access an Amazon DynamoDB table
	Amazon RDS: Allows full RDS database access within a specific Region
	Amazon RDS: Allows restoring RDS databases, programmatically and in the console
	Amazon RDS: Allows tag owners full access to RDS resources that they have tagged
	Amazon S3: Allows Amazon Cognito users to access objects in their bucket
	Amazon S3: Allows federated users access to their S3 home directory, programmatically and in the console
	Amazon S3: S3 Bucket access, but production bucket denied without recent MFA
	Amazon S3: Allows IAM users access to their S3 home directory, programmatically and in the console
	Amazon S3: Limits managing to a specific S3 Bucket
	Amazon S3: Allows read and write access to objects in an S3 Bucket
	Amazon S3: Allows read and write access to objects in an S3 Bucket, programmatically and in the console

	Managing IAM policies
	Creating IAM policies
	Creating IAM policies (console)
	Creating IAM policies
	Creating policies on the JSON tab
	Creating policies with the visual editor
	Importing existing managed policies

	Creating IAM policies (AWS CLI)
	Creating IAM policies (AWS CLI)

	Creating IAM policies (AWS API)
	Creating IAM policies (AWS API)

	Validating IAM policies
	Generate policies based on access activity
	Testing IAM policies with the IAM policy simulator
	How the IAM policy simulator works
	Permissions required for using the IAM policy simulator
	Permissions required for using the policy simulator console
	Permissions required for using the policy simulator API

	Using the IAM policy simulator (console)
	Troubleshooting IAM policy simulator console messages

	Using the IAM policy simulator (AWS CLI and AWS API)

	Adding and removing IAM identity permissions
	Terminology
	More information

	View identity activity
	Adding IAM identity permissions (console)
	Removing IAM identity permissions (console)
	Adding IAM policies (AWS CLI)
	Removing IAM policies (AWS CLI)
	Adding IAM policies (AWS API)
	Removing IAM policies (AWS API)

	Versioning IAM policies
	Permissions for setting the default version of a policy
	Setting the default version of customer managed policies
	

	Using versions to roll back changes
	Version limits

	Editing IAM policies
	View policy access
	Editing customer managed policies (console)
	Editing inline policies (console)
	Editing customer managed policies (AWS CLI)
	Editing customer managed policies (AWS API)

	Deleting IAM policies
	View policy access
	Deleting IAM policies (console)
	Deleting IAM policies (AWS CLI)
	Deleting IAM policies (AWS API)

	Refining permissions in AWS using last accessed information
	Last accessed information types for IAM
	Last accessed information for AWS Organizations
	Things to know about last accessed information
	Permissions required
	Permissions for IAM information
	Permissions for AWS Organizations information

	Troubleshooting activity for IAM and Organizations entities
	Where AWS tracks last accessed information
	Viewing last accessed information for IAM
	Viewing information for IAM (console)
	Viewing information for IAM (AWS CLI)
	Viewing information for IAM (AWS API)

	Viewing last accessed information for Organizations
	Understand the AWS Organizations entity path
	Viewing information for Organizations (console)
	Viewing information for Organizations (AWS CLI)
	Viewing information for Organizations (AWS API)

	Example scenarios for using last accessed information
	Using information to reduce permissions for an IAM group
	Using information to reduce permissions for an IAM user
	Using information before deleting IAM resources
	Using information before editing IAM policies
	Other IAM scenarios
	Using information to refine permissions for an organizational unit

	Understanding permissions granted by a policy
	Policy summary (list of services)
	Viewing policy summaries
	Editing policies to fix warnings
	Understanding the elements of a policy summary
	SummaryAllElements JSON policy document
	Understanding access level summaries within policy summaries
	AWS access level summary
	AWS access levels

	Service summary (list of actions)
	Viewing service summaries
	Understanding the elements of a service summary

	Action summary (list of resources)
	Viewing action summaries
	Understanding the elements of an action summary

	Examples of policy summaries
	Policy 1: DenyCustomerBucket
	Policy 2: DynamoDbRowCognitoID
	Policy 3: MultipleResourceCondition
	Policy 4: EC2_troubleshoot
	Policy 5: Unrecognized_Service_Action
	Policy 6: CodeBuild_CodeCommit_CodeDeploy

	Permissions required to access IAM resources
	Permissions for administering IAM identities
	Permissions for working in the AWS Management Console
	Granting permissions across AWS accounts
	Permissions for one service to access another
	Required actions
	Example policies for administering IAM resources
	Allow a user to list the account's groups, users, policies, and more for reporting purposes
	Allow a user to manage a group's membership
	Allow a user to manage IAM users
	Allow users to set account password policy
	Allow users to generate and retrieve IAM credential reports
	Allow all IAM actions (admin access)

	Security in IAM and AWS STS
	Data protection in AWS Identity and Access Management
	Data encryption in IAM and AWS STS
	Encryption at rest
	Encryption in transit

	Key management in IAM and AWS STS
	Internetwork traffic privacy in IAM and AWS STS

	Logging and monitoring in AWS Identity and Access Management
	Compliance validation for AWS Identity and Access Management
	Resilience in AWS Identity and Access Management
	Infrastructure security in AWS Identity and Access Management
	Configuration and vulnerability analysis in AWS Identity and Access Management
	Security best practices and use cases in AWS Identity and Access Management
	Security best practices in IAM
	Lock away your AWS account root user access keys
	Create individual IAM users
	Use user groups to assign permissions to IAM users
	Grant least privilege
	Get started using permissions with AWS managed policies
	Validate your policies
	Use customer managed policies instead of inline policies
	Use access levels to review IAM permissions
	Configure a strong password policy for your users
	Enable MFA
	Use roles for applications that run on Amazon EC2 instances
	Use roles to delegate permissions
	Do not share access keys
	Rotate credentials regularly
	Remove unnecessary credentials
	Use policy conditions for extra security
	Monitor activity in your AWS account

	Business use cases for IAM
	Initial setup of example corp
	Use case for IAM with Amazon EC2
	Amazon EC2 permissions for the user groups
	User's job function change

	Use case for IAM with Amazon S3
	Creation of other users and user groups
	User's job function change
	Integration with a third-party business

	AWS managed policies for AWS Identity and Access Management Access Analyzer
	IAMAccessAnalyzerFullAccess
	Permissions groupings

	IAMAccessAnalyzerReadOnlyAccess
	Service-level permissions

	AccessAnalyzerServiceRolePolicy
	Service-level permissions

	
	IAM Access Analyzer updates to AWS managed policies

	Using AWS IAM Access Analyzer
	Validating policies
	Generating policies
	Access Analyzer resource types
	Amazon Simple Storage Service buckets
	AWS Identity and Access Management roles
	AWS Key Management Service keys
	AWS Lambda functions and layers
	Amazon Simple Queue Service queues
	AWS Secrets Manager secrets

	How Access Analyzer works
	Getting started with AWS IAM Access Analyzer
	Permissions required to use Access Analyzer
	AWS managed policies for Access Analyzer
	Resources defined by AWS IAM Access Analyzer
	Required Access Analyzer service permissions

	Enabling Access Analyzer
	Access Analyzer status
	Access Analyzer quotas
	Using service-linked roles for AWS IAM Access Analyzer
	Service-linked role permissions for AWS IAM Access Analyzer
	Creating a service-linked role for Access Analyzer
	Editing a service-linked role for Access Analyzer
	Deleting a service-linked role for Access Analyzer
	Supported Regions for Access Analyzer service-linked roles

	Settings for Access Analyzer
	Delegated administrator for Access Analyzer

	Access Analyzer findings
	Working with findings
	Reviewing findings
	Filtering findings
	Archiving findings
	Resolving findings

	Access Analyzer policy validation
	Validating policies in IAM (console)
	Validating policies using Access Analyzer (AWS CLI or AWS API)
	Access Analyzer policy check reference
	Error – ARN account not allowed
	Error – ARN Region not allowed
	Error – Data type mismatch
	Error – Duplicate keys with different case
	Error – Invalid action
	AWS managed policies with this error

	Error – Invalid ARN account
	Error – Invalid ARN prefix
	Error – Invalid ARN Region
	Error – Invalid ARN resource
	Error – Invalid ARN service case
	Error – Invalid condition data type
	Error – Invalid condition key format
	Error – Invalid condition multiple Boolean
	Error – Invalid condition operator
	Error – Invalid effect
	Error – Invalid global condition key
	Error – Invalid partition
	Error – Invalid policy element
	Error – Invalid principal format
	Error – Invalid principal key
	Error – Invalid Region
	Error – Invalid service
	Error – Invalid service condition key
	Error – Invalid service in action
	Error – Invalid service principal format
	Error – Invalid variable for operator
	Error – Invalid version
	Error – Json syntax error
	Error – Json syntax error
	Error – Missing action
	Error – Missing ARN field
	Error – Missing ARN Region
	Error – Missing effect
	Error – Missing principal
	Error – Missing qualifier
	AWS managed policies with this error

	Error – Missing resource
	Error – Missing statement
	Error – Missing tag key in condition
	Error – Null with if exists
	Error – SCP syntax error action wildcard
	Error – SCP syntax error allow condition
	Error – SCP syntax error allow NotAction
	Error – SCP syntax error allow resource
	Error – SCP syntax error NotResource
	Error – SCP syntax error principal
	Error – Unique Sids required
	Error – Unsupported element combination
	Error – Unsupported global condition key
	Error – Unsupported principal
	Error – Unsupported Sid
	Error – Unsupported wildcard in principal
	Error – Missing brace in variable
	Error – Unsupported symbol in variable
	Error – Unsupported symbol in variable
	Error – Missing quote in variable
	Error – Unsupported space in variable
	Error – Empty variable
	Error – Variable unsupported in element
	Error – Variable unsupported in version
	Error – Private IP address
	Error – Private NotIpAddress
	Error – Policy size exceeds SCP quota
	General Warning – Create SLR with NotResource
	General Warning – Create SLR with star in action and NotResource
	General Warning – Create SLR with NotAction and NotResource
	General Warning – Create SLR with star in resource
	AWS managed policies with this general warning

	General Warning – Create SLR with star in action and resource
	AWS managed policies with this general warning

	General Warning – Create SLR with star in resource and NotAction
	General Warning – Deprecated global condition key
	General Warning – Invalid date value
	General Warning – Invalid role reference
	General Warning – Invalid user reference
	General Warning – Missing version
	General Warning – Unique Sids recommended
	General Warning – Wildcard without like operator
	AWS managed policies with this general warning

	General Warning – Policy size exceeds identity policy quota
	AWS managed policies with this general warning

	General Warning – Type mismatch
	General Warning – Type mismatch Boolean
	General Warning – Type mismatch date
	General Warning – Type mismatch IP range
	General Warning – Type mismatch number
	General Warning – Type mismatch string
	Security Warning – Allow with NotPrincipal
	Security Warning – Deny NotAction with unsupported tag condition key for service
	Security Warning – Deny with unsupported tag condition key for service
	Security Warning – ForAllValues with single valued key
	Security Warning – Missing paired condition keys
	Security Warning – Pass role with NotResource
	Security Warning – Pass role with star in action and NotResource
	Security Warning – Pass role with NotAction and NotResource
	Security Warning – Pass role with star in resource
	AWS managed policies with this security warning

	Security Warning – Pass role with star in action and resource
	AWS managed policies with this security warning

	Security Warning – Pass role with star in resource and NotAction
	Suggestion – Allow NotAction with unsupported tag condition key for service
	Suggestion – Allow with unsupported tag condition key for service
	Suggestion – Empty array action
	Suggestion – Empty array condition
	Suggestion – Empty array condition ForAllValues
	Suggestion – Empty array condition ForAnyValue
	Suggestion – Empty array condition IfExists
	Suggestion – Empty array principal
	Suggestion – Empty array resource
	Suggestion – Empty object condition
	Suggestion – Empty object principal
	Suggestion – Empty Sid value
	Suggestion – Improve IP range
	Suggestion – Null with qualifier
	Suggestion – Private IP address subset
	Suggestion – Private NotIpAddress subset
	Suggestion – Redundant action
	AWS managed policies with this suggestion

	Suggestion – Redundant condition value num
	Suggestion – Redundant resource
	AWS managed policies with this suggestion

	Suggestion – Redundant statement
	Suggestion – Wildcard in service name

	IAM Access Analyzer policy generation
	How policy generation works
	Service and action-level information
	Supported services for action-level information

	Things to know about generating policies
	Permissions required to generate a policy
	Permissions required for service role

	Generate a policy based on CloudTrail activity (console)
	Step 1: Generate a policy based on CloudTrail activity
	Step 2: Review permissions and add actions for services used
	Step 3: Further customize the generated policy
	Step 4: Review and create a managed policy

	Generate a policy using AWS CloudTrail data in another account
	Generate a policy based on CloudTrail activity (AWS CLI)
	Generate a policy based on CloudTrail activity (AWS API)

	Archive rules
	Preview access
	Previewing access in Amazon S3 console
	Previewing access with Access Analyzer APIs
	Preview access to your Amazon S3 bucket
	Preview access to your AWS KMS key
	Preview access to your IAM role
	Preview access to your Amazon SQS queue
	Preview access to your Secrets Manager secret

	Reference information for AWS IAM Access Analyzer
	Access Analyzer filter keys

	Monitoring AWS IAM Access Analyzer with Amazon EventBridge
	Findings events
	Access preview events
	Event notification frequency
	Example findings events
	Example access preview events
	Creating an event rule using the console
	Creating an event rule using the CLI

	Integration with AWS Security Hub
	How Access Analyzer sends findings to Security Hub
	Types of findings that Access Analyzer sends
	Latency for sending findings
	Retrying when Security Hub is not available
	Updating existing findings in Security Hub

	Viewing Access Analyzer findings in Security Hub
	Interpreting Access Analyzer finding names in Security Hub

	Typical finding from Access Analyzer
	Enabling and configuring the integration
	How to stop sending findings

	Logging Access Analyzer API calls with AWS CloudTrail
	Access Analyzer information in CloudTrail
	Understanding Access Analyzer log file entries

	Troubleshooting IAM
	Troubleshooting general IAM issues
	I can't sign in to my AWS account
	I lost my access keys
	I get "access denied" when I make a request to an AWS service
	I get "access denied" when I make a request with temporary security credentials
	Policy variables aren't working
	Changes that I make are not always immediately visible
	I am not authorized to perform: iam:DeleteVirtualMFADevice
	How do I securely create IAM users?

	Troubleshooting IAM policies
	Troubleshoot using the visual editor
	Policy restructuring
	Choosing a resource ARN in the visual editor
	Denying permissions in the visual editor
	Specifying multiple services in the visual editor
	Reducing the size of your policy in the visual editor
	Fixing unrecognized services, actions, or resource types in the visual editor

	Troubleshoot using policy summaries
	Missing policy summary
	Policy summary includes unrecognized services, actions, or resource types
	Service does not support IAM policy summaries
	My policy does not grant the expected permissions
	An action is defined without an applicable resource
	A resource is defined without an applicable action
	A condition is defined without an applicable action

	Troubleshoot policy management
	Attaching or detaching a policy in an IAM account
	Changing policies for your IAM identities based on their activity

	Troubleshoot JSON policy documents
	Validate your policies
	I don't have permissions for policy validation in the JSON editor
	More than one JSON policy object
	More than one JSON statement element
	More than one effect, action, or resource element in a JSON statement element
	Missing JSON version element

	Troubleshooting U2F security keys
	I can't enable my U2F security key
	IAM users
	System administrators

	I can't sign in using my U2F security key
	I lost or broke my U2F key
	Other issues

	Troubleshooting IAM roles
	I can't assume a role
	A new role appeared in my AWS account
	I can't edit or delete a role in my AWS account
	I'm not authorized to perform: iam:PassRole
	Why can't I assume a role with a 12-hour session? (AWS CLI, AWS API)
	I receive an error when I try to switch roles in the IAM console
	My role has a policy that allows me to perform an action, but I get "access denied"
	The service did not create the role's default policy version
	There is no use case for a service role in the console

	Troubleshooting IAM and Amazon EC2
	When attempting to launch an instance, I don't see the role I expected to see in the Amazon EC2 console IAM Role list
	The credentials on my instance are for the wrong role
	When I attempt to call the AddRoleToInstanceProfile, I get an AccessDenied error
	Amazon EC2: When I attempt to launch an instance with a role, I get an AccessDenied error
	I can't access the temporary security credentials on my EC2 instance
	What do the errors from the info document in the IAM subtree mean?
	The iam/info document indicates "Code":"InstanceProfileNotFound"
	The iam/info document indicates a success but indicates "Message":"Instance Profile does not contain a role..."
	The iam/security-credentials/[role-name] document indicates "Code":"AssumeRoleUnauthorizedAccess"

	Troubleshooting IAM and Amazon S3
	How do I grant anonymous access to an Amazon S3 bucket?
	I'm signed in as an AWS account root user; why can't I access an Amazon S3 bucket under my account?

	Troubleshooting SAML 2.0 federation with AWS
	Error: Your request included an invalid SAML response. to logout, click here.
	Error: RoleSessionName is required in AuthnResponse (service: AWSSecurityTokenService; status code: 400; error code: InvalidIdentityToken)
	Error: Not authorized to perform sts:AssumeRoleWithSAML (service: AWSSecurityTokenService; status code: 403; error code: AccessDenied)
	Error: RoleSessionName in AuthnResponse must match [a-zA-Z_0-9+=,.@-]{2,64} (service: AWSSecurityTokenService; status code: 400; error code: InvalidIdentityToken)
	Error: Source Identity must match [a-zA-Z_0-9+=,.@-]{2,64} and not begin with "aws:" (service: AWSSecurityTokenService; status code: 400; error code: InvalidIdentityToken)
	Error: Response signature invalid (service: AWSSecurityTokenService; status code: 400; error code: InvalidIdentityToken)
	Error: Failed to assume role: Issuer not present in specified provider (service: AWSOpenIdDiscoveryService; status code: 400; error code: AuthSamlInvalidSamlResponseException)
	Error: Could not parse metadata.
	Error: Specified provider doesn't exist.
	Error: Requested DurationSeconds exceeds MaxSessionDuration set for this role.
	How to view a SAML response in your browser for troubleshooting
	Google chrome
	Mozilla firefox
	Apple safari
	Microsoft Internet Explorer
	What to do with the Base64-encoded SAML response

	Reference information for AWS Identity and Access Management
	IAM identifiers
	Friendly names and paths
	IAM ARNs
	Using wildcards and paths in ARNs

	Unique identifiers
	Understanding unique ID prefixes
	Getting the unique identifier

	IAM and AWS STS quotas
	IAM name requirements
	IAM object quotas
	IAM Access Analyzer quotas
	IAM and STS character quotas

	AWS services that work with IAM
	Compute services
	Containers services
	Storage services
	Database services
	Developer tools services
	Security, identity, and compliance services
	Cryptography and PKI services
	Machine learning services
	Management and governance services
	Migration and transfer services
	Mobile services
	Networking and content delivery services
	Media services
	Analytics services
	Application integration services
	Business applications services
	Satellite services
	Internet of Things services
	Robotics services
	Quantum Computing Services
	Blockchain services
	Game development services
	AR & VR services
	Customer enablement services
	Customer engagement services
	End user computing services
	Billing and cost management services
	Additional resources

	IAM JSON policy reference
	IAM JSON policy elements reference
	IAM JSON policy elements: Version
	IAM JSON policy elements: Id
	IAM JSON policy elements: Statement
	IAM JSON policy elements: Sid
	IAM JSON policy elements: Effect
	AWS JSON policy elements: Principal
	Specifying a principal
	AWS account principals
	Individual IAM user principals
	Federated web identity user principals
	Federated SAML user principals
	IAM role principals
	Specific assumed-role session principals
	AWS service principals
	Anonymous user principals (public access)
	More information

	AWS JSON policy elements: NotPrincipal
	NotPrincipal With Allow
	NotPrincipal With Deny

	IAM JSON policy elements: Action
	IAM JSON policy elements: NotAction
	IAM JSON policy elements: Resource
	Using wildcards in resource ARNs
	Specifying multiple resources
	Using policy variables in resource ARNs

	IAM JSON policy elements: NotResource
	NotResource with other elements

	IAM JSON policy elements: Condition
	The request context
	The condition block
	Multiple values in a condition

	IAM JSON policy elements: Condition operators
	String condition operators
	Numeric condition operators
	Date condition operators
	Boolean condition operators
	Binary condition operators
	IP address condition operators
	Amazon Resource Name (ARN) condition operators
	...IfExists condition operators
	Condition operator to check existence of condition keys

	Creating a condition with multiple keys or values
	Evaluation logic for conditions with multiple keys or values
	Using multiple keys and values
	Examples of using multiple values with condition set operators
	Evaluation logic for multiple values with condition set operators

	IAM policy elements: Variables and tags
	Introduction
	Tags as policy variables
	Where you can use policy variables
	Resource element
	Condition element

	Request information that you can use for policy variables
	Information available in all requests
	Principal key values

	Information available in requests for federated users
	Service-specific information
	Special characters

	Specifying default values
	For more information

	IAM JSON policy elements: Supported data types

	Policy evaluation logic
	Processing the request context
	Evaluating policies within a single account
	Evaluating identity-based policies with resource-based policies
	Evaluating identity-based policies with permissions boundaries
	Evaluating identity-based policies with Organizations SCPs

	Determining whether a request is allowed or denied within an account
	Example identity-based and resource-based policy evaluation
	The difference between explicit and implicit denies
	Cross-account policy evaluation logic
	Determining whether a cross-account request is allowed
	Example cross-account policy evaluation

	Grammar of the IAM JSON policy language
	The policy language and JSON
	Conventions used in this grammar
	Grammar
	Policy grammar notes
	Notes about string values

	AWS managed policies for job functions
	Administrator job function
	Billing job function
	Database administrator job function
	Data scientist job function
	Developer power user job function
	Network administrator job function
	Read-only access
	Security auditor job function
	Support user job function
	System administrator job function
	View-only user job function
	Updates to AWS managed policies for job functions
	Creating roles and attaching policies (console)
	Example 1: Configuring a user as a database administrator (console)
	Example 2: Configuring a user as a network administrator (console)

	AWS global condition context keys
	aws:CalledVia
	aws:CalledViaFirst
	aws:CalledViaLast
	aws:CurrentTime
	aws:EpochTime
	aws:FederatedProvider
	aws:MultiFactorAuthAge
	aws:MultiFactorAuthPresent
	aws:PrincipalAccount
	aws:PrincipalArn
	aws:PrincipalIsAWSService
	aws:PrincipalOrgID
	aws:PrincipalOrgPaths
	aws:PrincipalServiceName
	aws:PrincipalServiceNamesList
	aws:PrincipalTag
	aws:PrincipalType
	aws:referer
	aws:RequestedRegion
	aws:RequestTag/tag-key
	aws:ResourceTag/tag-key
	aws:SecureTransport
	aws:SourceAccount
	aws:SourceArn
	aws:SourceIdentity
	aws:SourceIp
	aws:SourceVpc
	aws:SourceVpce
	aws:TagKeys
	aws:TokenIssueTime
	aws:UserAgent
	aws:userid
	aws:username
	aws:ViaAWSService
	aws:VpcSourceIp
	Other cross-service condition keys

	IAM and AWS STS condition context keys
	Available keys for IAM
	Available keys for AWS web identity federation
	Available keys for SAML-based AWS STS federation
	SAML role trust policies
	SAML role permissions policies

	Available keys for AWS STS

	Actions, resources, and condition keys for AWS services

	Resources to learn more about IAM
	Users and groups
	Credentials (passwords, access keys, and MFA devices)
	Permissions and policies
	Federation and delegation
	IAM and other AWS products
	Using IAM with Amazon EC2
	Using IAM with Amazon S3
	Using IAM with Amazon RDS
	Using IAM with Amazon DynamoDB

	General security practices
	General resources

	Calling the IAM API using HTTP query requests
	Endpoints
	HTTPS required
	Signing IAM API requests

	Document history for IAM

