Floyd-Hoare Logic

Ranjit Jhala UC San Diego

Axiomatic Semantics

- 1. Language for making assertions about programs
- 2. Rules for establishing, i.e. proving the assertions

Typical kinds of assertions:

- This program terminates.
- During execution if var z has value 0, then x equals y
- All array accesses are within array bounds

Some typical languages of assertions:

- First-order logic
- Other logics (e.g., temporal logic)

TODAY'S PLAN

- 1. **Define** a small language
- 2. **Define** a logic for verifying assertions

IMP: An Imperative Language

syntax and operational semantics

IMP Syntactic Entities

Int integer literals n

• Bool booleans {true,false}

• Loc locations x, y, z, ...

Aexp arithmetic expressions

Bexp boolean expressions b

• Comm commands c

Abstract Syntax: Arith Expressions (Aexp)

e ::= n for
$$n \in Int$$

| x for $x \in Loc$
| $e_1 + e_2$ for $e_1, e_2 \in Aexp$
| $e_1 - e_2$ for $e_1, e_2 \in Aexp$
| $e_1 * e_2$ for $e_1, e_2 \in Aexp$

Note:

- Variables are not declared
- All variables have integer type
- There are no side-effects

Abstract Syntax: Bool Expressions (Bexp)

```
true ::= true

| false
| e_1 = e_2 for e_1, e_2 \in Aexp
| e_1 < e_2 for e_1, e_2 \in Aexp
| ! b for b \in Bexp
| b_1 \mid\mid b_2 for e_1, e_2 \in Bexp
| b_1 \& b_2 for e_1, e_2 \in Bexp
```

Abstract Syntax: Commands (Comm)

```
c::= skip

| \mathbf{x} := \mathbf{e} for \mathbf{x} \in \mathsf{L} \& \mathbf{e} \in \mathsf{Aexp}

| \mathbf{c}_1; \mathbf{c}_2 for \mathbf{c}_1, \mathbf{c}_2 \in \mathsf{Comm}

| \text{ if b then } \mathbf{c}_1 \text{ else } \mathbf{c}_2 \text{ for } \mathbf{b} \in \mathsf{Bexp} \& \mathbf{c}_1, \mathbf{c}_2 \in \mathsf{Comm}

| \text{ while } \mathbf{b} \text{ do } \mathbf{c} for \mathbf{c} \in \mathsf{Comm} \& \mathbf{b} \in \mathsf{Bexp}
```

Note:

- Typing rules embedded in syntax definition
 - Other checks may not be context-free
 - need to be specified separately (e.g., variables are declared)
- Commands contain all the side-effects in the language

Semantics of IMP: States

- Meaning of IMP expressions depends on the values of variables
- A state σ is a function from Loc to Int.
 - Value of variables at a given moment
 - Set of all states is $\Sigma = Loc \rightarrow Int$

Operational Semantics of IMP

Evaluation judgment for expressions:

- Ternary relation on expression, a state, and a value:
- We write: <e, ♂> ↓ *n* "Expression e in state σ evaluates to n"

Q: Why no state on the right?

- Evaluation of expressions has no side-effects:
- i.e., state unchanged by evaluating an expression

Q: Can we view judgment as a function of 2 args e, σ ?

- Only if there is a unique derivation ...

Operational Semantics of IMP

Evaluation judgement for commands

- Ternary relation on expression, state, and a new state
- We write: <c, σ> ↓ σ' "Executing cmd \circ from state \circ takes system into state \circ "
- Evaluation of a command has effect
 - but no direct value
 - So, "result" of a command is a new state σ '

Note: evaluation of a command may not terminate

Q: Can we view judgment as a function of 2 args e, σ ?

- Only if there is a unique successor state ...

Evaluation Rules (for Aexp)

$$\langle \mathbf{x}, \sigma \rangle \Downarrow \sigma(\mathbf{x})$$

$$\langle \mathbf{e}_1, \sigma \rangle \Downarrow n_1 \quad \langle \mathbf{e}_2, \sigma \rangle \Downarrow n_2 \quad \langle \mathbf{e}_1, \sigma \rangle \Downarrow n_1 \quad \langle \mathbf{e}_2, \sigma \rangle \Downarrow n_2$$

$$\langle \mathbf{e}_1, \sigma \rangle \Downarrow n_1 \quad \langle \mathbf{e}_2, \sigma \rangle \Downarrow n_2$$

 $\langle \mathbf{e}_1 \ \star \ \mathbf{e}_2, \sigma \rangle \Downarrow n_1 \ \star n_2$

Evaluation Rules (for Bexp)

$$\langle \mathbf{true}, \sigma \rangle \Downarrow true \qquad \langle \mathbf{false}, \sigma \rangle \Downarrow \underline{false}$$

$$\langle \mathbf{e}_{1}, \sigma \rangle \Downarrow \underline{n}_{1} \langle \mathbf{e}_{2}, \sigma \rangle \Downarrow \underline{n}_{2} \underline{p} \text{ is } \underline{n}_{1} = \underline{n}_{2}$$

$$\langle \mathbf{e}_{1} = \mathbf{e}_{2}, \sigma \rangle \Downarrow \underline{p} \qquad \langle \mathbf{e}_{1}, \sigma \rangle \Downarrow \underline{p}_{1} \langle \mathbf{e}_{2}, \sigma \rangle \Downarrow \underline{p}_{2}$$

$$\langle \mathbf{e}_{1} = \mathbf{e}_{2}, \sigma \rangle \Downarrow \underline{p}_{1} \qquad \langle \mathbf{e}_{1}, \sigma \rangle \Downarrow \underline{p}_{1} \qquad \langle \mathbf{e}_{2}, \sigma \rangle \Downarrow \underline{p}_{2}$$

$$\langle \mathbf{e}_{1}, \sigma \rangle \Downarrow \underline{p}_{1} \qquad \langle \mathbf{e}_{2}, \sigma \rangle \Downarrow \underline{p}_{2} \qquad \langle \mathbf{e}_{1}, \sigma \rangle \Downarrow \underline{p}_{1} \qquad \langle \mathbf{e}_{2}, \sigma \rangle \Downarrow \underline{p}_{2}$$

$$\langle \mathbf{e}_{1}, \sigma \rangle \Downarrow \underline{p}_{1} \qquad \langle \mathbf{e}_{2}, \sigma \rangle \Downarrow \underline{p}_{1} \qquad \langle \mathbf{e}_{2}, \sigma \rangle \Downarrow \underline{p}_{2}$$

$$\langle \mathbf{e}_{1}, \sigma \rangle \Downarrow \underline{p}_{2} \qquad \langle \mathbf{e}_{1}, \sigma \rangle \Downarrow \underline{p}_{1} \qquad \langle \mathbf{e}_{2}, \sigma \rangle \Downarrow \underline{p}_{1} \qquad \langle \mathbf{e}_{2}, \sigma \rangle \Downarrow \underline{p}_{2} \qquad \langle \mathbf{e}_{1}, \sigma \rangle \Downarrow \underline{p}_{2} \qquad \langle$$

Evaluation Rules (for Comm)

$$\langle skip, \sigma \rangle \Downarrow \sigma$$

$$\frac{\langle \mathbf{c}_1, \sigma \rangle \Downarrow \sigma' \langle \mathbf{c}_2, \sigma' \rangle \Downarrow \sigma''}{\langle \mathbf{c}_1, \mathbf{c}_2, \sigma \rangle \Downarrow \sigma''}$$

Define
$$\sigma[\mathbf{x} := n]$$
 as:

$$\sigma[\mathbf{x} := n](\mathbf{x}) = n$$

$$\sigma[\mathbf{x} := n](\mathbf{y}) = \sigma(\mathbf{y})$$

$$\langle \mathbf{e}, \sigma \rangle \Downarrow n$$
 $\langle \mathbf{x} := \mathbf{e}, \sigma \rangle \Downarrow \sigma[\mathbf{x} := n]$

Evaluation Rules (for Comm)

$$\langle \mathbf{b}, \sigma \rangle \Downarrow true \langle \mathbf{c}_1, \sigma \rangle \Downarrow \sigma'$$

 $\langle \mathbf{if} \ \mathbf{b} \ \mathbf{then} \ \mathbf{c}_1 \ \mathbf{else} \ \mathbf{c}_2, \sigma \rangle \Downarrow \sigma'$

$$\langle \mathbf{b}, \sigma \rangle \Downarrow false \langle \mathbf{c}_2, \sigma \rangle \Downarrow \sigma'$$

 $\langle \mathbf{if} \ \mathbf{b} \ \mathbf{then} \ \mathbf{c}_1 \ \mathbf{else} \ \mathbf{c}_2, \sigma \rangle \Downarrow \sigma'$

Axiomatic Semantics

- 1. Language for making assertions about programs
- 2. Rules for establishing, i.e. proving the assertions

Typical kinds of assertions:

- This program terminates.
- During execution if var z has value 0, then x equals y
- All array accesses are within array bounds

Some typical languages of assertions:

- First-order logic
- Other logics (e.g., temporal logic)

Axiomatic Semantics

History: Program Verification

- Turing 1949: Checking a large routine
- Floyd 1967: Assigning meaning to programs
- Hoare 1971: An "axiomatic basis for computer programming"
- Program Verifiers (70's 80's)
- PREfix: Symbolic Execution for bug-hunting (WinXP)
- Software Validation tools

Foundation for Software Verification

- Deductive Verifiers: ESCJava, Spec#, Verifast, Y0, ...
- Model Checkers: SLAM, BLAST,...
- Test Generators: DART, CUTE, EXE,...

Hoare Triples

- Partial correctness assertion: {A} c {B}
 If A holds in state σ and exists σ' s.t. <c, σ > ψσ'
 then B holds in σ'
- Total correctness assertion: [A] c [B]
 If A holds in state σ
 then there exists σ' s.t. <c, σ > ↓σ' and B holds in σ'
- [A] is called precondition, [B] is called postcondition
- Example: $\{y=x\}z := x; z := z+1\{y < z\}$

The Assertion Language

• Arith Exprs + First-order Predicate logic

A ::= true | false

$$| e_1 = e_2 | e_1 | e_2$$

 $| \neg A | A_1 && A_2 | A_1 | A_2 | A_1 => A_2$
 $| \text{exists x.A} | \text{forall x.A}$

IMP boolean expressions are assertions

Semantics of Assertions

• Judgment $\sigma \mid = A$ means assertion holds in given state

```
\begin{array}{lll} \sigma \mid = true & \text{always} \\ \sigma \mid = e_1 = e_2 & \text{iff } < e_1, \ \sigma > \ \downarrow \ n_1 \ , \ < e_2, \sigma > \ \downarrow \ n_2 \ \text{and} \ n_1 = n_2 \\ \sigma \mid = e_1 < = e_2 & \text{iff } < e_1, \ \sigma > \ \downarrow \ n_1 \ , \ < e_2, \sigma > \ \downarrow \ n_2 \ \text{and} \ n_1 = n_2 \\ \sigma \mid = A_1 \ \&\& \ A_2 & \text{iff } \sigma \mid = A_1 \ \text{and} \ \sigma \mid = A_2 \\ \sigma \mid = A_1 \mid \mid A_2 & \text{iff } \sigma \mid = A_1 \ \text{or} \ \sigma \mid = A_2 \\ \sigma \mid = A_1 = > A_2 & \text{iff } \sigma \mid = A_1 \ \text{implies} \ \sigma \mid = A_2 \\ \sigma \mid = \ \backslash exists \ x. A & \text{iff for } some \ n \ \text{in } Z. \ \sigma[x := n] \mid = A \\ \sigma \mid = \ \backslash forall \ x. \ A & \text{iff for } all \ n \ \text{in } Z. \ \sigma[x := n] \mid = A \end{array}
```

Semantics of Assertions

Formal definition of partial correctness assertion:

```
|= {A} c {B}

iff

forall \sigma in \Sigma. \sigma |= A

implies [forall \sigma' in \Sigma. \langle c, \sigma \rangle \Downarrow \sigma' implies \sigma' |= B]
```

22

Semantics of Assertions

Total correctness assertion:

```
|= [A] c [B]
iff
|= \{A\} c \{B\}
and
forall \sigma in \Sigma.
\sigma |= A implies [exists \sigma' in \Sigma. <<, \sigma>   <math>\downarrow \sigma]
```

Deriving Assertions

- Formal |= {A} **c** {B} hard to use
- Defined in terms of the op-semantics
- Next, symbolic technique (logic)
- for deriving valid triples |- {A} c {B}

Derivation Rules for Hoare Triples

- Write |- {A} c {B} when we can derive the triple using derivation rules
- One rule per command
- Plus, the rule of consequence:

$$A' => A$$
 $|-\{A\} c \{B\}$ $B => B'$
 $|-\{A'\} c \{B'\}$

Deriv. Rules for Hoare Logic |- {A} c {B}

Rules for each language construct

And the rule of consequence...

Free and Bound Variables

Key idea in logic/PL: scoping & substitution

- Assertions are equivalent up to renaming of bound variables (a.k.a. alpha-renaming)
- Examples:

$$\forall x.x = x \text{ is the same as } \forall y.y = y$$

- Rename bound x with y

 $\forall x. \ \forall y.x = y \text{ is the same as } \forall z. \ \forall x.z = x$

- Rename bound x with z and y with x

Substitution

- [e'/x] e is substituting e' for x in e
 - Also written as e[e'/x]
 - Note: only substitute the free occurrences
- Alpha-rename bound variables to avoid conflicts
 - To subst. [e'/x] in $\forall y.x = y$ rename y if it occurs in e'
 - Result of alpha-renaming: ∀z. e' = z
- We say that substitution avoids variable capture

$$[x/z] \forall x.z = x \text{ is }?$$

- $\forall x.x = x$ Wrong
- ∀y.x = y Correct

Example: Assignment

Assume x does not appear in e

Prove $| - \{ \text{true} \} \mathbf{x} := \mathbf{e} \{ \mathbf{x} = \mathbf{e} \}$

Note [e/x](x = e) = e = [e/x]e = e = e

Use assignment rule ... then conseq. rule

```
x does not appear in e
true => e = e
                        -\{e = e\} x := e\{x = e\}
          - \{ true \} x := e \{ x = e \}
```

Example: Conditional

Prove: $\{true\}$ if $y \le 0$ then x := 1 else $x := y \{x > 0\}$

true & $y <= 0 => 1 > 0 \mid -\{1 > 0\} \mathbf{x} := \mathbf{1} \{x > 0\}$ true & $y > 0 => y > 0 \mid -\{y > 0\} \mathbf{x} := \mathbf{y} \{x > 0\}$

 $|-\{\text{true \& y} <=0\} \ \mathbf{x} := \mathbf{1} \ \{x > 0\}$ $|-\{\text{true \& y} > 0\} \ \mathbf{x} := \mathbf{y} \ \{x > 0\}$

 $|-\{true\}\ if\ y<=0\ then\ x:=1\ else\ x:=y\ \{x>0\}$

- Rule for if-then-else
- Rule for assignment + consequence

Example: Loop

- Prove $|-\{x<=0\}$ while x<=5 do x:=x+1 $\{x=6\}$
- Use the rule for while with invariant x <= 6:

• Finish off with consequence rule:

$$x <= 0 => x <= 6$$
 $|-\{x <= 6\} \mathbf{w} \{x <= 6 \& x > 5\}$ $x <= 6 \& x > 5 => x = 6$ $|-\{x <= 0\} \mathbf{w} \{x = 6\}$

Soundness of Axiomatic Semantics

Formal Statement of Soundness:

If $|-\{A\} \in \{B\}$ then $|=\{A\} \in \{B\}$

Equivalently

If H:: |- {A} c {B} then

for all σ if $\sigma = A$ and D:: $\langle c, \sigma \rangle \Downarrow \sigma'$ then $\sigma' = B$

Proof:

Simultaneous induction on structure of D and H

Algorithmic Verification

Hoare rules mostly syntax directed, but:

- 1. When to apply the rule of consequence?
- 2. What invariant to use for while?
- 3. How to prove implications (conseq. rule)?

Hint:

- (3) involves ... SMT
- (2) invariants are the hardest problem
- (1) lets see how to deal with ...

Making Floyd-Hoare Algorithmic: **Predicate Transformers**

Weakest Preconditions

```
Technique: Weakest Preconditions
```

```
|-\{y>10\} x := y\{x>0\}
|-\{ y > 100 \} x := y \{x > 0\}
|-\{x=2 \& v=5\} x := v \{x > 0\}
```

After what preconditions does postcond. x>0 hold?

WP(c,B): weakest predicate s.t. $\{WP(c,B)\}\ c\ \{B\}$

• For any A we have $\{A\}$ c $\{B\}$ iff A => WP(c, B)

How to verify $|-\{A\} \subset \{B\}$?

- 1. Compute: WP(c,B)
- 2. Prove: A = > WP(c,B)

Define wp(c, B) using Hoare rules

= $e = wp(c_1, B) \&\& !e = wp(c_2, B)$ |- {A} if b then c_1 else c_2 {B}

Weakest Preconditions for Loops

Start from the equivalence

```
while b do c =
  if b then (c; while b do c) else skip
```

```
Let W = wp(while b do c, B)
It must be that: W = [b \Rightarrow wp(c, W) \& !b \Rightarrow B]
```

But this is a recursive equation! How to compute?!

We'll return to finding loop WPs later ...

Technique: Strongest Postconditions

```
|-\{y > 100\} \mathbf{x} := \mathbf{y} \{x > 10\}
|-\{y > 100\} \mathbf{x} := \mathbf{y} \{x > 20\}
|-\{y > 100\} \mathbf{x} := \mathbf{y} \{x > 100\}
```

What postcond. is guaranteed after prec. y>100?

SP(c,A): strongest predicate s.t. $\{A\}$ c $\{SP(c,A)\}$

• For any B we have $\{A\}$ c $\{B\}$ iff $SP(c,A) \Rightarrow B$

How to verify {A} c {B}?

1. Compute: SP(c,A)

2. Prove: $SP(c,A) \Rightarrow B$

7

Strongest Postconditions

Define sp(c, B) following Hoare rules

Axiomatic Semantics on Flow Graphs Floyd's Original Formulation

Axiomatic Semantics over Flow Graphs

Relaxing Specifications via Consequence

Will revisit later as subtyping

Sequential Composition

Backwards using weakest preconditions

& $x = x_0-1$ & $y = y_0-1$

Forwards using strongest postconditions

Conditionals

Forwards

Backwards

Joins

Forwards

43

Backwards

Conditional+Join: Forward

• Check the implications (simplifications)

Conditionals+Joins: Backward

{
$$(x \neq 0 \& true) || (x = 0 \& a = 2*x) }$$

{ $2*x = 2*x$ }

$$\begin{cases} a := 2*x \end{cases}$$
{ $a = 2*x$ }

45 46

Forward or Backward?

- Forward reasoning
 - Know the precondition
 - Want to know what postcond the code guarantees
- Backward reasoning
 - Know what we want to code to establish
 - Want to know under what preconditions this happens

Another Example: Double Locking

"An attempt to re-acquire an acquired lock or release a released lock will cause a deadlock."

Calls to lock and unlock must alternate.

47

Locking Rules

Boolean variable **locked** states if lock is held or not

- {!locked & P[true/locked] } lock { P }
 lock behaves as assert(!locked);locked:=true
- { locked & P[false/locked] } unlock { P }
 unlock behaves as assert (locked); locked:=false

Locking Example

Review

Implication is always in the direction of the control flow

What about real languages?

- Loops
- Function calls
- Pointers

Reasoning about loops: Rules

Rewrite A with I: Loop Invariant

Rule of Consequence

Reasoning about loops: Flow Graphs

- Loops can be handled using conditionals and joins
- Consider the while b do S statement


```
if P => I (loop invariant holds initially)
and I \& !b => Q (loop establishes the postcondition)
and \{I \& b\} S \{I\} (loop invariant is preserved)
```

Loop Example

Verify:

$$\{x=8 \& y=16\} \text{ while } (x>0) \{x--; y-=2;\} \{y=0\}$$

Find an appropriate invariant |

- Holds initially x = 8 & y = 16
- Holds at end v == 0

Loop Example (II)

Guess invariant y = 2*x

Check:

- Initial: x = 8 & y = 16 = y = 2*x
- Preservation: y = 2*x & x>0 => y-2 = 2*(x-1)
- Final: y = 2*x & x <= 0 => y = 0 Invalid

Loop Example (III)

Guess invariant $y = 2^*x \& x >= 0$ $\{ y=2^*x \& x >= 0 \}$ $\{ y=2^*x \& x >= 0 \}$ $\{ y=2^*x \& x >= 0 \}$ $\{ y=2^*x \& x >= 0 \}$ $\{ y=2^*x \& x >= 0 \}$

Check

- Initial : x = 8 & y = 16 => y = 2*x & x >= 0
- Preserv: y = 2*x & x >= 0 & x > 0 => y 2 = 2*(x 1) & x 1 >= 0
- Final: $y = 2^*x & x >= 0 & x <= 0 => y = 0$

Loops Discussion

- Simple forward/backward propagation fails
- Require loop invariants
 - Hardest part of program verification
 - Guess the invariants (existing programs)
 - Write the invariants (new programs)

Note: Invariant depends on your proof goal!

Verification Example

```
int square(int n) {
  int k=0, r=0, s=1;
                                    { true }
  while(k != n) {
                                \mathbf{k} := 0
     r = r + s;
                                                 Pick I: r = k^2
    s = s + 2;
                                r := 0
     k = k + 1;
                                 s := 1
                                    { r=0 & k=0}
  return r;
                                     I: \{r = k^2\}
                                       \{r=k^2 \& k=n\} \} \{r=n^2\}
                 \{r=k^2 \& !k=n\}
```


Verification Example

What about real languages?

- Loops
- Function calls
- Pointers

Functions are big instructions

Suppose we have verified bsearch

- Function spec = precondition + postconditon
- Also called a contract

Function Calls

- Consider a call to function y:= f(e)
 - return variable r
 - precondition Pre, postcondition Post
- Rule for function call:

```
|-P| = \Pr[e/x] - \{Pre\} f \{Post\} - Post[e/x,y/r] = Q
|-\{P\} y := f(e)\{Q\}
```

Function Calls

- Consider a call to function y:=f(e)
 - return variable r
 - precondition Pre, postcondition Post
- Rule for function call:

Function Call: Example

What about real languages?

- Loops
- Function calls
- Pointers

5 66

Assignment and Aliasing

• Post[y/r, arr/a, 5/p] => (y=-1 || arr[y]=5)

Does assignment rule work with aliasing?

If *x and *y are aliased then:

```
\{x=y\} *x:=5 \{x + y=10\}
```

Hoare Rules: Assignment and References

• When is the following Hoare triple valid?

$$\{A\} *x := 5 \{ *x + *y = 10 \}$$

- A should be "*y = 5 or x = y"
- but Hoare rule for assignment gives:

$$[5/*x](*x + *y = 10)$$

= 5 + *y = 10
= *y = 5

(uh oh! we lost one case! What happened?)

Hoare Rules: Assignment and References

Modeling writes with memory expressions

- Treat memory as a whole with memory variables (M)
- upd(M,E₁,E₂): update M at address E₁ with value E₂
- sel(M,E₁) : read M at address E₁

Reason about memory expressions with McCarthy's rule

sel(upd(M, E₁, E₂), E₃) =
$$\begin{cases} E_2 & \text{if } E_1 = E_3 \\ \text{sel}(M, E_3) & \text{if } E_1 \neq E_3 \end{cases}$$

Assignment (update) changes the value of memory

$$\{B[upd(M, E_1, E_2)/M]\} *E_1 := E_2 \{B\}$$

Memory Aliasing

• Consider again: {A} *x:=5 {*x+*y=10 }

```
A = [upd(M, x, 5)/M] (*x+*y=10)

= [upd(M, x, 5)/M] (sel(M,x) + sel(M,y) = 10)

= sel(upd(M, x, 5), x) + sel(upd(M, x, 5), y) = 10

= 5 + sel(upd(M, x, 5), y) = 10

= sel(upd(M, x, 5), y) = 5

= (x = y & 5 = 5) || (x != y & sel(M, y) = 5)

= x=y || *y = 5
```

69 70

Program Verification Tools

- Semi-automated
 - You write some invariants and specifications
 - Tool tries to fill in the other invariants
 - And to prove all implications
 - Explains when implication is invalid: counterexample for your specification
- ESC/Java is one of the best tools
- ... Spec#, Verifast, VCC

Algorithmic Program Verification

...or how does ESC/Java work?

Q: How to algorithmically prove {P} c {Q} ? If no loops:

1. Compute: WP(c,Q)

71

2. Prove: P => WP(c,Q)

Verification Condition
Proved By SMT Solver

VC Generation for Loops

Suppose all loops annotated with Invariant

```
while, b do c
```

Compute VC:

```
SMTValid(VC) implies |- {P} c {Q}
```

Q: Why not iff?

- 1. Loop invariants may be bogus...
- 2. SMT solver may not handle logic...

VCGen

We will write a function

```
vcgen :: Pred -> Com -> (Pred, [Pred])
```

```
Suppose (Q',L') = VCG(c,(Q,L;))
Then VC for \{P\} \subset \{Q\} is: P=>Q' \&\&_{\{f \text{ in } L'\}} f
```

- L': the set of conditions that must be true
 - From loops (init, preservation, final)
- Q': "precondition" modulo invariants...

VCGen

```
verify :: Pred -> Com -> Pred -> Bool

-- | The top level verifier, takes:
-- in : pre `p`, command `c` and post `q`
-- out: True iff {p} c {q} is a valid Hoare-Triple

verify :: Pred -> Com -> Pred -> Bool
verify p c q = all smtValid queries
   where
        (q', conds) = runState (vcgen q c) []
        queries = p `implies` q' : conds
```

VCGen

ESC/Java

Semi-automated "Deductive Verification"

- You write the invariants
- ESC/Java:
 - VCGen
 - Simplify: SMT used to prove VC
- Explains when implication is invalid: counterexample for your specification