Floyd-Hoare Logic

Ranjit Jhala
UC San Diego

Axiomatic Semantics

1. Language for making assertions about programs
2. Rules for establishing, i.e. proving the assertions

Typical kinds of assertions:

e This program terminates.

o During execution if var z has value 0, then x equals y
« All array accesses are within array bounds

Some typical languages of assertions:
» First-order logic
o Other logics (e.g., temporal logic)

TODAY’S PLAN

1. Define a small language
2. Define a logic for verifying assertions

IMP: An Imperative Language

syntax and operational
semantics

IMP Syntactic Entities

e Int integer literals n

« Bool booleans {true, false}
e Loc locations X,Y,2,..

o Aexp arithmetic expressions e

« Bexp boolean expressions b

o Comm commands c

Abstract Syntax: Arith Expressions (Aexp)

e::= n for n € Int
| x for x € Loc
| e, + e, fore , e, € Aexp
| e; - e, fore,, e, € Aexp
| e, * e, fore , e, € Aexp
Note:

e Variables are not declared
« All variables have integer type
e There are no side-effects

Abstract Syntax: Bool Expressions (Bexp)

true = true
| false
| e; = e, for e ,e, € Aexp
| e, < e for e ,e, € Aexp

| 'b for b € Bexp
fore,, e, € Bexp

for e , e, € Bexp

Abstract Syntax: Commands (Comm)

c ::=skip
| x:= e forxeL& e €Aexp
| c,ic, for c,,c, € Comm

| if b then ¢, else ¢, forb EBexp & c,,c,E Comm

| while b do ¢ for c € Comm & b € Bexp

Note:
« Typing rules embedded in syntax definition
- Other checks may not be context-free
- need to be specified separately (e.g., variables are declared)

» Commands contain all the side-effects in the language

Semantics of IMP : States

e Meaning of IMP expressions depends on
the values of variables

e Astate o is a function from to

- Value of variables at a given moment
- Set of all states is

Operational Semantics of IMP

Evaluation judgment for expressions:
« Ternary relation on expression, a
o We write: <e, 0> |

“Expression e in state o evaluates to n”

,and a

Q: Why no state on the right ?
- Evaluation of expressions has no side-effects:
- i.e., state unchanged by evaluating an expression

Q: Can we view judgment as a function of 2 args e,
- Only if there is a unique derivation ...

?

10

Operational Semantics of IMP

Evaluation judgement for commands
« Ternary relation on expression,
o We write: <c, 0> |

, and a new

“Executing cmd c from state o takes system into state

e Evaluation of a command has effect
- but no direct value
- So, “result” of a command is a new state

Note: evaluation of a command may not terminate

Q: Can we view judgment as a function of 2 args e, o ?
- Only if there is a unique successor state ...

”

Evaluation Rules (for Aexp)

<n, 0> U <x, 0> U (x)
e, 0> U <e,, 0> U <e,, 0> U <e,, 0> U
e, + e, > e, - e, 0>
e, 0> U <e,, 0> U

e, * e, >

12

Evaluation Rules (for Bexp)

<true, o> | <false, 0> |

, >U is <e,, >U <e,, >U is

<e1=e2: >U <e1<e21 >U

<b1l > U <b’71 > U‘ <b'll > U <b’)l > ‘U‘
<b, £b,, o> || <b, C by, 0>
<b, o> U
<b, o>

Evaluation Rules (for Comm)

<skip, 0> |

<c,, >U <c,, >U

<c,;c,, 0>

Define o[x := 1] as: <e, 0> |
[X:=](x): <X = e, >U [x:=]
[x = n](¥) = o(v)

14

Evaluation Rules (for Comm)

<b, >U <c,, >U

<if b then c, else c,, 0> |

<b, >U <c,, >U

<if b then c, else c,, 0> |

Axiomatic Semantics

1. Language for making assertions about programs
2. Rules for establishing, i.e. proving the assertions

Typical kinds of assertions:

e This program terminates.

e During execution if var z has value 0, then x equals y
« All array accesses are within array bounds

Some typical languages of assertions:
» First-order logic
e Other logics (e.g., temporal logic)

16

Axiomatic Semantics

History : Program Verification

Turing 1949: Checking a large routine
Floyd 1967: Assigning meaning to programs
Hoare 1971: An‘axiomatic basis for computer programming’

Program Verifiers (70’s - 80’s)
PREfix: Symbolic Execution for bug-hunting (WinXP)
Software Validation tools

Foundation for Software Verification

» Deductive Verifiers: ESCJava, Spec#, Verifast, YO, ...
* Model Checkers: SLAM, BLAST,...

« Test Generators: DART, CUTE, EXE,...

18

Hoare Triples

Partial correctness assertion: {A} c {B}
If A holds in state and exists o’ s.t. <c, 0 >|
then B holds in
Total correctness assertion: [A] ¢ [B]
If A holds in state
then there exists o’ s.t. <c, o >}’ and B holds in

[A] is called precondition, [B] is called postcondition

Example: {y=x}z := x; z := z+1{y<z}

The Assertion Language

 Arith Exprs + First-order Predicate logic

A=
lej=¢e,le &
| ~A A &&A, A |IA A =>A,
| \exists x.A | \forall x.A

true | false

e IMP boolean expressions are assertions

20

Semantics of Assertions

Semantics of Assertions

« Judgment o |= A means assertion holds in given state
|= true always Formal definition of partial correctness assertion:
|=e,=¢, iff <e,, o> | n., <e,,0> | n, and |={A}c{B}
|l=e, <=¢e, iff <e,, o> | n,, <e,,0> | n,and i
|= A, && A, iff o [= A, and o |[= A, _
I=A 11A, iffol=A oro|=A, forall o in |=A
|=A, =>A, iff o |=A, implies o |= A, implies [forall " in >. <c,0> || ¢" implies ¢ |= B]
|= \exists x.A iff for some n in |= A
|= \forall x. A iff for all n in |=
Semantics of Assertions Deriving Assertions
« Total correctness assertion: » Formal |= {A} c {B} hard to use
|=[A]c[B]
iff » Defined in terms of the op-semantics
|={A}c{B} _ , ,
and e Next, symbolic technique (logic)
forall o in
|= A implies [exists o" in >. <c,0> ||] o for deriving valid triples |- {A} c {B}

23

24

Derivation Rules for Hoare Triples

o Write |- {A} ¢ {B} when we can derive the
triple using derivation rules

e One rule per command

e Plus, the rule of consequence:

AN=>A |-{A}c{B}
|- {A} c {B’}

B=>DPB

Deriv. Rules for Hoare Logic |- {A} c {B}

Rules for each language construct

|- {A}c, {B} |-{B}c,{C}
|_ {A} C,/6Cy {C}

|- {A} skip {A}

|- {A&& b} c, {B} |- {A&& !b}c, {B}
|- {A}if b then c, else c, {B}

|- {A&& b} ¢ {A}

|- {A} while b do c {A&& !b} |- {[e/x]A} x:=e {A}

And the rule of consequence...

25

26

Free and Bound Variables

Key idea in logic/PL: scoping & substitution

 Assertions are equivalent up to renaming
of bound variables (a.k.a. alpha-renaming)

e Examples:
Vx.x = x is the same as Vy.y =y
- Rename bound x with y
Vx. Yy.x =y is the same as Vz. Vx.z = x
- Rename bound x with z and y with x

Substitution

» [e’/x] e is substituting e’ for x in e
- Also written as e[e’/x]
- Note: only substitute the free occurrences

« Alpha-rename bound variables to avoid conflicts
- To subst. [e’/x] in Yy.x =y rename v if it occurs in e’
- Result of alpha-renaming: Vz. e’ =z

« We say that substitution avoids variable capture
[x/z] Vx.z=x1is?
e Vx.x=x Wrong
e Vyx=y Correct

27

28

Example: Assighment

Assume x does not appear in e
Prove |- {truelx:=e{x=¢e}
Note [e/x](x=e)=e=[e/xle=e=¢€

Use assignment rule ... then conseq. rule

x does not appear in e

Example: Conditional

Prove: {true}if y<=0 then x:=1 else x:=y {x>0}

true & y<=0=>1>0 |- {1>0} x:=1 {x>0} true & y>0 =>y>0 |- {y>0} x:=y{x>0}

true =>e=e |- {e=e}x:=e {x = €}
|- {true} x:=e {x = e}

[- {true & y<=0} x:=1 {x>0} |- {true & y>0} x:=y {x>0}

|- {true} if y<=0 then x:=1 else x:=y {x >0}

 Rule for if-then-else
 Rule for assignment + consequence

29

30

Example: Loop)

e Prove |- {x<=0} while x<=5 do x:=x+1 {x=6}
e Use the rule for while with invariant x <= 6:

X<=6 & x<=5 => x+1<=6 |- {x+1<=6} x:=x+1 {x<=6}
|- {x<=6 & x<=5} x:=x+1 {x<=6}
|- {x<=6} while x<=5 do x:=x+1 {x<=6 & x>5}

 Finish off with consequence rule:

x<=0 => x<=6 |- {x<=6}W{x<=6 & x>5} x<=6 & x>5 =>x=6

|- {x<=0}w{x =6}

Soundness of Axiomatic Semantics

Formal Statement of Soundness:
If |- {A} ¢ {B} then |= {A} c {B}

Equivalently
If H:: |- {A} ¢ {B} then
forall o if o |= Aand D::<c,0> | o’ then o’ |[= B
Proof:

Simultaneous induction on structure of D and H

31

32

Algorithmic Verification

Hoare rules mostly syntax directed, but:

1. When to apply the rule of consequence ?
2. What invariant to use for while ?
3. How to prove implications (conseq. rule)?

Hint:

(3) involves ... SMT

(2) invariants are the hardest problem
(1) lets see how to deal with ...

Making Floyd-Hoare Algorithmic:
Predicate Transformers

33

34

Technique: Weakest Preconditions

|-{y>10}x := y{x>0}
|-{y>100}x := y{x>0}
|- {x=2&y=5}x := y{x>0}

After what preconditions does postcond. x>0 hold?

WP(c,B): weakest predicate s.t. {WP(c,B)} ¢ {B}
e For any A we have {A} ¢ {B}iff A=> WP(c, B)

How to verify |- {A} ¢ {B}?
1. Compute: WP(c,B)
2. Prove: A => WP(e,B)

Weakest Preconditions

Define wp(c, B) using Hoare rules

wp(c, i c,, B)

= wp(c,, Wp(c,, B))

|- {A} e, {B} |- {B}c,
|- {A}cii e, {C}

wp(x:=e, B)
= [e/x]B

|- {[e/x]A} x : =e {A}

Wp(if e then c, else c,, B) |- {A&b} c, {B} |-{A&!b}c, {B}

= e=>Wp(c,, B) && 'e=>wp(c,, B) |- {A}if b then c, else c, {B}

35

36

Weakest Preconditions for Loops

Start from the equivalence
while b do c =

if b then (c; while b do c) else skip

Let W = wp(while b do c, B)
It must be that: W = [b => wp(c, W) & 'b=>B]

But this is a recursive equation! How to compute?!
« We’'ll return to finding loop WPs later ...

Technique: Strongest Postconditions

|-{y>100}x := y{x> 10}
|-{y>100}x := y {x> 20}
|-{y>100}x := y {x> 100}

What postcond. is guaranteed after prec. y>100 ?

SP(c,A): strongest predicate s.t. {A} ¢ {SP(c,A)}
o For any B we have {A} ¢ {B}iff SP(c,A) => B

How to verify {A} c {B}?
1. Compute: SP(c,A)
2. Prove: SP(c,A) => B

37

38

Strongest Postconditions

Define sp(c, B) following Hoare rules
|- {A} e, {B} [-{B}c,
|- {A} c;; <, {C}

sp(c,ic,, A) =
sp(c,, sp(cy,A))

sp(x:=e, A) =
\exists X,. [Xo/X]A && x=[x,/x]e

|- {[e/Xx]A} x:=e {A}

sp(if e then c; else c,, A)=

sp(e;, A& e) || sp(e,, A& le)

|- {A&b} c, {B} |-{A&!b}c, {B}

|- {A}if b then ¢, else c, {B}

Axiomatic Semantics on Flow Graphs
Floyd’s Original Formulation

39

40

Axiomatic Semantics over Flow Graphs

A .

l{} ifP’=>P 1{ }

C C

@ o [}
NV

Relaxing Specifications via Consequence

Will revisit later as subtyping

Sequential Composition

P} x>=y} x.v}
C, x:= x-1
{Q {x >=y-1} f\exists x,.
= o Xo >=Y
C y:= y-1 &x0=x0-1 }
{R} {x>=y} {\exists y, X,.
Xo >=Yo
Backwards using weakest preconditions z X = Xo':}
Y = Yo~

Forwards using strongest postconditions

41

42

Conditionals
{P} {(P, & E)||(P, & 'E)}
T F T F
{P&E} {P&IEH ¢p3 P}
{x>=0} ‘{x=0||x>=1}
T @ F T F
{ x>=0 {x>=0 {x=0} @ {x >= 1}
&x=0} & x!=0}
Forwards Backwards

Joins

{P1}\1 / {P} {P}\‘l / P}

{Py 11 P33 P}

Forwards Backwards

43

44

Conditional+Join: Forward

{x=0]la=0}

T@F

{X¢O}$ ‘ {x=0 & a=0}
a = 2*x

{x=0][]a=2*} <

{a==2%%}

Check the implications (simplifications)

Conditionals+Joins: Backward

{(x=0&true) || (x=0&a=2*)}

.
{2*x=2*x}{a=2*x}
F

1= 2*%x

{a=2*i} \

fa=2"%}

45

46

Forward or Backward ?

» Forward reasoning
- Know the precondition
- Want to know what postcond the code guarantees

» Backward reasoning
- Know what we want to code to establish
- Want to know under what preconditions this happens

Another Example: Double Locking

unloc ‘ lock

“An attempt to re-acquire an acquired lock or
release a released lock will cause a deadlock.”

Calls to lock and unlock must alternate.

47

48

Locking Rules

Boolean variable 1locked states if lock is held or not

o {llocked & P[true/locked] } 1ock { P}

lock behaves as assert (!locked) ;locked:=true

o { locked & P[false/locked] } unlock { P }

unlock behaves as assert (locked) ;locked:=false

Locking Example

T |
{ llocked & x =0} x=0

{ locked }

lock { ocked & x =0}
{locked & x=0}

{locked & x=0 || !locked &m
T @
{locked&x=0}; ‘

unlock { locked & x = 0}

{ llocked & x = 0} \
{ locked }

49

50

Review

| Ll {Pﬁl/m
x:=E
- {P}
| {P3
if Q => P[E\x] } if P, =>PandP, => P
{P}
T F
{P,} {P,}

if P&E => P, if P& IE => P,

Implication is always in the direction of the control flow

What about real languages ?

e Loops
e Function calls
e Pointers

51

52

Reasoning about loops: Rules

|- {A& b} c {A}

Reasoning about loops: Flow Graphs

» Loops can be handled using conditionals and joins
e Consider the while b do S statement

- {A}while b do c{A& Ib} 0 {P3} Loop invariant
. . . { I }
Rewrite A with | : Loop Invariant S T F £Q}
| & E
|- {l & b} ¢ {I} HEE
P=>| |- {l} while b do c{l&!b} 1&b=>Q if P=>1 (loop invariant holds initially)
- {P}while b do c{Q) and | &b =>0Q (loop establishes the postcondition)
and {I&b}s{l} (loopinvariant is preserved)
Rule of Consequence
Loop Example Loop Example (ll)
Verify: Guess invariant y = 2*x
{x=8 & y=16} while (x>0) {x--; y-=2;} {y =0} (x=8&y=16}
{y=2%}
{x=8&y=16}
{13 | —
xX--; ts F y-=2 =0}
y-=2 1y=0} {y=2x& x>0}
t1&x0} Check :
. . . . - Initial: x=8&y=16 =>y=2%
Find an appropriate invariant | - Preservation: y = 2*x & x>0 => y-2 = 2*(x-1)
- Final: y=2x&x<=0 =>y=0 |nvalid

- Holds initially x =8 & y =16
- Holdsatend vy ==

56

55

Loop Example (lll)

Guess invariant y = 2*°x & x >= 0
{x=8&y=16}

=2*x & x >=0
ty =0 ey aweaxs-0)

x--;

y-=2

Check
- Initial : x=8 &y=16 =>y=2x&x>=0
- Preserv: y =2*x & x>= 0 & x>0 =>y-2 = 2*(x -1) & x-1 >=0
- Final: y =2x & x>=0&x<=0=>vy =0

Loops Discussion

» Simple forward/backward propagation fails

« Require loop invariants
- Hardest part of program verification
- Guess the invariants (existing programs)
- Write the invariants (new programs)

Note: Invariant depends on your proof goal!

57

58

Verification Example

int square(int n) {

int k=0, r=0, s=1;
while(k 1= n) { | {true]
r=r + s; k:=0 . . _ L2
coius =0 Pick I: r = k
k =k + 1; s:=1
¥ _ -
return r; ' {r=0 & k=0}
} | : {r = kZ}
=r+s
s:=s+2 @ E
= k2 - =n2
k:=k+1 fr=k2 & Tk=n} {r=k? & k=n}) {r=n?}

Need: {r=k? & 'k=n} ¢ {r=kZ}
i.e. {r=k2 & lk=n} => WP(c,{r=k})
i.e. {r=k? & 'k=n} => {r+s=(k+1)%}

Invalid

Verification Example

Need: {r=k? & s=2k+1 & ..} ¢ {r=k? & s=2k+1}
j.e. {r=k2 & s=2k+1 ..} => WP(c, {r=k? & s=2k+1})
i.e. {r=k? & s=2k+1 ..} => {r+s=(k+1)2 & (s+2) = 2(k+1)+1}

1 { true }
k:=0
r:=0

s:=1

{r=0 & k=0 & s=0}
[1: fr=k2& s=2k+1}
r:=r+s

T F
N sul—
T { K2

k:=k+1 2
& s=2k+1 & s=2k+1 => {r=n%}
& ... } & k=n }

0]

59

60

What about real languages ?

e Loops
e Function calls
e Pointers

Functions are big instructions

Suppose we have verified bsearch

int bsearch(int a[], int p) {

{ sorted(a) } < Precondition

“Requires”

{r=-1]] (r>=0 & r < a.length & a[r]=p)}
return r; Postcondition

} “Ensures”

» Function spec = precondition + postconditon
» Also called a contract

61

62

Function Calls

« Consider a call to function y:= £ (e)
- return variable r
- precondition Pre, postcondition Post

e Rule for function call:

|- P => Pre[e/x] |- {Pre} £ {Post} |- Post[e/x,y/r] =>Q

|- {P} y:=£ () {Q}

Function Calls

« Consider a call to function y:=£ (e)
- return variable r
- precondition Pre, postcondition Post

e Rule for function call:

l {P} if P => Pre[E/X]
y:=f (e)
1 {Q1} and Post[E/x,y/r] => Q

63

64

Function Call: Example

int bsearch(int a[],int p) {

Consider the call t sorted(a) }
{sorted(arr) }
y:=bsearch (arr,5) }
{y=-1 1| arr[y]=5}
if(y!'=-1){

{y!=-1 & (y=-1 || arr[y]=5}

{arr[y]=5}

{ =1 || (r>=0 & r<a.length & a[r]=p)}

return r;

—

» sorted[array] => Pre[a := arr]
e Post[y/r, arr/a, 5/p] => (y=-1 || arr[y]=5)

What about real languages ?

e Loops
e Function calls
e Pointers

65

66

Assignment and Aliasing

Does assignment rule work with aliasing ?
If *x and *y are aliased then:

{x=y} *x:=5 {*x + *y=10}

Hoare Rules: Assignment and References

« When is the following Hoare triple valid?
A} *x := 5{*x+*y =10}

« Ashould be “*y=5o0rx=y”

« but Hoare rule for assignment gives:
[5/*x](*x + *y = 10)
=5+*y =10
= *y =5
(uh oh! we lost one case! What happened?)

67

68

Hoare Rules: Assignment and References

Modeling writes with memory expressions

» Treat memory as a whole with memory variables (M)
« upd(M,E,E,) : update M at address E, with value E,
o sel(M,E,) : read M at address E,

Reason about memory expressions with McCarthy’s rule
E, if E, = E;

sellupdM, B1, E2) B = | seim By i E. = E
)y =3 1 3

Assignment (update) changes the value of memory

{Blupd(M, E,, E,)/M]} *E, :=E, (B}

Memory Aliasing

o Consider again: {A} *x:=5 {*x+*y=10 }

A = [upd(M, x, 5)/M] (*x+*y=10)
= [upd(M, x, 5)/M] (sel(M,x) + sel(M,y) = 10)
= sel(upd(M, x, 5), x) + sel(upd(M, x, 5), y) =10
=5 + sel(upd(M, x, 5), y) =10
= sel(upd(M, x, 5),y) =5
=(x=y&5=5) || (x!=y &sel(M, y)=5)
=x=y [1*y=5

69

Program Verification Tools

e Semi-automated

- You write some invariants and specifications
- Tool tries to fill in the other invariants
- And to prove all implications

- Explains when implication is invalid:
counterexample for your specification

o ESC/Java is one of the best tools
e ... Spec#, Verifast, VCC

Algorithmic Program Verification

...or how does ESC/Java work ?

Q: How to algorithmically prove {P} ¢ {Q} ?
If no loops:

1. Compute: WP(c,Q)

2. Prove: P => WP(c,Q)
Verification Condition
Proved By SMT Solver

70

71

72

VC Generation for Loops

Suppose all loops annotated with Invariant
while, b do c

Compute VC:
SMTValid(VC) implies |- {P} ¢ {Q}

Q: Why not iff ?
1. Loop invariants may be bogus...
2. SMT solver may not handle logic...

VCGen

We will write a function
vcgen :: Pred -> Com -> (Pred, [Pred])

Suppose (Q',L") = VCG(c,(Q,L)))

Then VC for {P} c {Q} is: P=>Q’ && f

{f in L'}

o |’ : the set of conditions that must be true
- From loops (init, preservation, final)

« Q: “precondition” modulo invariants...

73

74

verify :: Pred -> Com -> Pred -> Bool

- | The top level verifier, takes:
- in : pre "p°, command "¢ and post “q°
- out: True iff {p} c {g} is a valid Hoare-Triple

verify :: Pred -> Com -> Pred -> Bool
verify p c gq all smtvValid queries
where
(g', conds)
queries

runState (vcgen g c) []
p “implies® g' : conds

VCGen

Pred -> Com -> VC Pred

vcgen ::

vegen (Skip) g
= return g

vcgen (Asgn X e) g
= return $ g “subst” (x, e)

vegen (If b cl c2) g
= do gl <- vcgen g cl
q2 <- vcgen g c2
return $§ (b "And” gl) "Or (Not b “And"~ g2)

vegen (While i b ¢) g
= do q' <- vcgen i c
valid §$ (i “And" Not b) “implies” qg'
valid §$ (i “And" b) “implies® g
return $ i

75

76

ESC/Java

Semi-automated “Deductive Verification”

e You write the invariants

e ESC/Java:
- VCGen
- Simplify: SMT used to prove VC

« Explains when implication is invalid:
counterexample for your specification

77

