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Abstract-The static buckling of bimodulus thick circular and annular plates subjected to a combination 
of a pure bending stress and compressive stress is investigated. The thick finite element model, which 
includes the effect of transverse shear deformation, are created for axisymmetric buckling problems. The 
obtained results of buckling coefficient are compared with the exact solutions for ordinary thin plates. 
The accuracy of the finite element solutions are shown to be very good. The etTects of various parameters 
on the buckling coefficients and neutral surfce locations are studied. The bimodulus properties are shown 
to have significant influences on the buckling coefficient. 
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NOTATION 

internal radius 
external radius; radius for cirular plate 
plate thickness 
stretching stiffness matrix 
bending-stretchng coupling stiffness 
matrix 
bending stiffness matrix 
material elastic matrix 
plane-stress reduced stiffness 
coefficients 
respective tensile and compressive and 
Young’s moduli 
respective tensile and compressive 
Poisson’s ratios 
respective tensile and compressive 
shear moduli 
respective tensile and compresive 
transverse shear moduli 
transverse istropic parameter, 
S = G’+/G’ = G’*/G’ 
initial stress and moment results 
buckling load, N, = hP, 
buckling coefficients, 

NJ: 

neutral surface position, L,, = 0 and 
c@j = 0 
ratio of bending stress to 
stress, /I = P,/P. 
initial external normal stress 
initial external bending stress 

INTRODUCTION 

normal 

Recent investigations concerning composite materials 

have shown some composites to behave differently 
under simple tension and compression [ 11. In addition 
to composite materials, some polycrystalline graph- 
ites and high polymers also behave differenw in 
tension and compression [2]. This characteristic be- 
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havior, although actually cumilinear, is often 
approximated by two straight lines with a slope 
discontinuity at the origin. Thus they are called 
bimodulus materials (see Fig. 1). 

It is believed that the first modem development of 
the basic constitutive equations of bimodulus materi- 
als was proposed by Ambartsumyan [3]. Bert [4] used 
the macroscopic material model [j] to study the lam- 
inated bimodulus composite plates. The bending 
analyses of bimodulus laminated rectangular plates 
are studied by Bert and his associates [6-S]. Bert et 
al. [9] are the first to study the vibration of thick 
rectangular bimodulus composite plates. Kamiya [lo] 
treated large deflections of a circular plate by finite 
difference, and he also applied the energy method to 
large deflections of a rectangular plate [I 11. Doong 
and Chen [12] investigated the axisymmetric initially 
stressed vibration of circular plate by using Galerkin 
method on the basis of Brunelle and Robertson [13]. 
The buckling problems appearing in the literature 
are sparse. Jones investigated the buckling of circu- 
lar cylindrical shells [14] and stiffened multilayered 
circular cylindrical shells [15] on the basis of 
Ambartsumyan [3]. Doong and Chen [24] studied the 
buckling of thick bimodulus rectangular plates. No 
publication is to be found on the buckling of bi- 
modulus circular and annular plates under a combi- 
nation of bending stress and compressive stress. 

In the present work, we employ the energy method 
to obtain the elastic and geometric stiffness matrix as 
indicated by Przemieniecki [ 161. For the finite element 
model, the annular ring elements will be used and the 
Lagrangian polynomials other than Hermitian 
ones [17-191 are used to complete this work. The 
buckling coefficients for ordinary material (not bi- 
modulus) circular plate obtained by present works 
are compared with the exact solutions [20]. The 
influence of various parameters on the neutral surface 
locations and the buckling coefficients of bimodulus 
plates are investigated. 
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which can also be expressed as 

e=i+e’, (3) 
where 0 denotes the linear strains while e’ denotes the 
nonlinear strains. 

For the Mindlin plate theory, the displacements are 
assumed to be the following form 

<,(r, 42) = u(r, 0) + zti/*fr, 8) 

C%r, 0, z) = r(r. 6) + z$o(r, B) 

S:(r, 0, z) = +o(r, e), (4 
Fig. I. Stress-strain relation of linearized different modulus 

material. where u and c are in-plane displacements and w is the 
lateral deflection of the neutral surface, while II/, and 
r/f0 account for the effect of transverse shear. 

STRAIN ENERGY The total potential energy of an elastic body is 

The finite element stiffness matrices used in the 
given as 

displacement method of stability analysis can be 
derived most conveniently by starting with the non- 

n = U - jjje,sdV - jjT1’)u,dS, (5) 

linear strain-displacement equations. Following a 
” J 

technique described in [21,22], the nonlinear where U is the strain energy, B, is the body force and 

strain~isplacement equations, i.e. Green’s strain ten- v) is the surface traction. In the present problem the 

sor, in the cylindrical polar coordinate for the thick body force and surface traction are considered to be 

plate problems are as follows: zero. 
Let ci* be the initial stress matrix and written as 

Substituting equations (4) and (1) into equation (5) 
and neglecting higher order terms, the total potential 
energy due to the initial stresses is found to be 

jr=- ; 
j 

[ur(E’+ zFr)Q(E f zF)u 
D 

+ 2: ur(G;-t zH;)a’(G,+ zHj)uldK (7) 
:.-I 

where Q represents the reduced material elastic ma- 

The above strains can be denoted collectively by a trix of transversly isotropic elastic material. The 
column matrix -. detail of the matrices E, F, G, and H, can be seen in 

the appendix, and the displacement vector u is ex- 
er= (e,e88e~e,ze0z) pressed as 

(2) 
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THE RITZ FINITE ELEMENT 

For the finite element methods, the displacements 
can be expressed by the equation 

(9) 

where the subscript ‘&e” denotes that the variables are 
defined on the element, a@ are the shape functions and 
ur is the nodal displacements to be determined. 

Substituting equations (9) and (7) and sub- 
sequently applying the principle of minimum poten- 
tial energy, we have 

$=Ki=O, (10) 

where K represents the stiffness matrix. K can be 
written as 

K=K,+K,, (II) 

where 

K, = 
I 

(E’ + zP*)Q(E + z@)d V 
Y 

= @‘Ai? + erBE + i?BP) 

+ #‘D@jdA (12) 

represents the elastic stiffness, and A, B and D are 
extensional, flexural-extensional coupling and 
flexural stiffness matrices, respectively, and they are: 

D = z2QVdz, (13) 

in which the material elastic constants Q, are in the 
appendix, and while 

K,= 
5 

~(G;Z+zfi:)d”(G,+ ziti)dP 
Y i 

= 
+ I-iiT l@G,) + Ei,%“*fii] dA (14) 

represents the geometric stiffness matrix. The matri- 
-- ces Ho, h;r” and I@* are defined by 

hi2 

No= J ;‘dz 
-h/2 

J 
h,Z 

MO = za’dzb dz 
-h,? 

MO* = J 
h.? -2&o& i (1% 

-h’? 

It is noted that all the denotations E, E, Gj and fii 
and fii represent the product of the one without hat 
“ - 9, and shape functions ai,, and li is the finite 
element nodal displacements. It has therefore been 
demonstrated that both the elastic and geometrical 
stiffness matrices can be determined from integrals of 
simple matrix products evaluated over the area. For 
bimodulus materials, the different properties in ten- 
sion and compression cause a shift in the neutral 
surface away from the geometric midplane and thus 
symmetry about the midplane no longer holds. The 
result of this is that bending-stretching coupling, 
similar to orthotropic behavior, is exhibited. Thus, 
once the neutral surface has been determined, the A, 
B and D are given in the next section. When the 
combined stiffness K has been determined, the equa- 
tions of the present problem are then formulated as 

(KE + K,)ti = 0, (16) 

where ti is the finite element nodal displacements; 
these are homogeneous simultaneous equations. 

Now, we put 

K, =IK& (17) 

where L is called the load factor and KZ: is the relative 
reference of geometric stiffness due to intense initial 
stresses. Then, for nontrivial solutions of equation 
(16), the following relation must hold. 

lK,+LK;l =O. (18) 

This equation represents the stability determinant. 
The smallest value of L determines the instability 
condition for a specified loading configuration. The 
eigenvalue problems can be solved by means of any 
of the standard eigenvalue computer programs. 

THE RING ELEIMENT MODEL 

The present paper will employ the finite strip to 
demonstrate the axisymmetric buckling problem. The 
advantages of finite strip are indicated in [23]; they 
include fewer data input, smaller matrix dimensions 
and more accurate solutions, etc. Thus the present 
problem will be simplified to a one-dimensional prob- 
lem when we use ring elements to complete it. 

In the present work, it is clear that u = 0, J10 = 0 
and Z/a0 = 0 in E, F, Gi and H, for axisymmetric 
problems, and the Lagrangian polynomials will be 
used as shape functions, i.e. 

u~=Caj*ljj, 
i 

(19) 
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Z,, one sets 

e,, = n., + Z” IL,, = 0, (22) 

which can be displayed at Gauss points. An iterative 
procedure is used to obtain the final displacement 
ratios. Thus we can give the A, B and D as [8,9] 

j 

h? 

A/= Q,dr = (Qel+ Q/j,>(hP) 
- h, 2 

+ (Q,z -Q,,% 

B,= 
s 
h2 =Q& =(Qi,, - Q,dh%) 
-h: 

+ (Q,,? - Q,,,(Zi/2) 

fh.? 

Wb\/ Wa 

Nodal circles 

Fig. 2. Annular ring plate element and its 
displacements. 

D, = 
J 

z'Q& = (Q,+ Qi,2)@'/24) 
-h,? 

+ (Q, - Qv, NZ;/3). (23) 

generalized where subscripts ” I” and “2” denote the tension and 
compression, respectively. For the transversly iso- 
tropic materials 

where superscript “e” denotes element, the asterisk 
denotes element-by-element matrix multiplication. Q,,=G,=G, Qa=k2G,:, Q,,=k2Go,, 

aj’= {ajujuj} (20) 
where 

is the shape function vector and tij are the displace- 
G,,=Goz=G* and kl=E 

ments of the corresponding nodal linej. For example, 
if we choose the ring elements with three nodal lines 

is the shear correction factor. 

per element, the shape functions in one element are 

RESULTS AND DlSCUSSlONS 

(r - r*)(r - r3) 

” = (r, - rz)(r, - r3) Consider an annular plate of uniform thickness /I 

(r - rd(r - rd 
a2=(rZ-rI)(rZ-r3) 

with inner radius Ri and outer radius & in a state of 
initial stresses. The state of initial stresses on external 
edge is 

P, = P, + 2zP,/h, (24) 

(21) 
(r - rl)(r - rd 

a3=(r3-r,)(r3-r2)’ 

where subscripts denote the sequential number in one 
element. The ring elements are shown in Fig. 2. 

For a closed-form circular element, in order to 
avoid the problem of a singular point at a circular 
center, we let the circular element have a very small 
hole at center. It will be shown that this approach is 
very accurate in this paper. 

Choosing the proper shape functions, the elastic 
stiffness K, and geometric stiffness matrix KG can be 
determined for each element; the element stiffness can 
be transferred into a global displacement system to 
solve the eigenvalue problem. Thus, we can complete 
the finite element stability analysis. 

For bimodulus materials, it was indicated in the 
previous section that the symmetry about the mid- 
plane no longer holds because of the shift in the 
neutral surface away from the geometric midplane. 
To determine the Z-position of the neutral surface 

where P, and P,,, are taken to be constants. It is 
comprised of a compression plus in-plane bending 
stress. The Lame’s distribution is employed here, i.e. 
the stresses in terms of stress P, can be shown to be 

R; 
3,r = - P, - 

R;-R; 

000 = - P, 
RfJ 

R;-Rf 

‘0 uro = 0. 

For convenient purpose, let 

Ri 
c,= +- 

R;--Ri 

(25) 

(26) 
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Thus the non-zero force and moment resultants in 
equation (15) are 

fi;= -hJ’,C,, 

fi”,= -hP,C, 

I@ = -h2PmCJ6, 

A%“,= -hLP,,,C,/6 

My = -h’P”C,/IZ, 

I@‘= -h3P,C,,‘12. (27) 

For the circular plate case, the Lame’s distribution no 
longer holds, and the stresses are 

-0 
ff” =I?&= -P, and &$=O. (28) 

Thus the non-zero force and moment resultants in 
equation (15) become 

IV; = -hP,, 

iv;= -tip, 

M;= -h2P,,,/6, 

MO, = - h2P,,,/6 

McW = -h’F,/lZ, 

My= -h’P,,/12. (29) 

Now, we put p = P,,,jP,,, which represents the ratio of 
bending pressure to compression pressure, and also 
define the buckling coefficient K, as 

(30) 

There are so many parameters that can be varied 
that it would be difficuIt to present results for all 
cases. 

Only a few typical cases have been selected for 
discussion here. For verifying the accuracy of present 
results, the non-dimensional buckling coefficients of 
ordinary (not bimodulus material) thin circular plate 
are considered first. In Table 1, the present results for 
ordinary circular plate are compared with the exact 

Table 1. Comparison between the present results and exact 
solutions in (201 for ordinary circular plates 

IL/h 8 IO 20 50 loo 

Resent K, 13.549 13.934 14.495 14.661 14.685 
results 

Exact K, 14.68 14.68 14.68 14.68 14.68 
solutions 
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Fig. 3. Buckling coefficients and neutral surface locations of 
circular plate vs ~dius-thickne~ ratios for (a) E”E’ = 0.2 

and (b) E’/E’ = 2.0. S = 1; @ = 0. 

solution of thin plate by Timoshenko 1201. It can be 
shown that buckling coefficients with no bending 
stresses for ordinary plate which are calculated in the 
present paper coincide very well with Timoshenko’s 
for clamped circular plate. 

The buckling coefficients KC, for the circular and 
annular plates are obtained in Figs 3-8. In the 
computations, EC = 1.0, vc = 0.2, El/EC = 0.2-2.0 and 
Y’ is given by the relation 

v’= v’E’/E’. (31) 

The shear moduli G” and G’ in the respective com- 
pressive and tensile regions are 

G” = EC/2( 1 f V), G’ = E’/2( 1 + v’). (32) 

Plots of f&/h vs K, and 2,/h for circular plates are 
shown in Fig. 3 {a). The values of Et/EC, S and fi are 
equal to 0.2, 1 and 0, respectively. It can be seen that 
the buckling coefficients increase with increasing val- 
ues of&/h. Owing to the non-dimensional coefficient 
effect, the actual buckfing load N, which is equal to 
hP, decreases with increasing radius to thickness 
ratio. The neutral surface locations of thick plates are 
further away from the middle plane than those of thin 
plates. The conditions in Fig. 3(b) are the same as 
those in Fig. 3(a) except that El/E’ = 2.0. The neutral 
surface locations have the same trend as in Fig. 3(a). 

The effects of transverse isotropic parameter 
S = G*/G on k& and 2,/h for circular plates are 
shown in Figs 4(a) and (b), where &/h = 10, j? = 0 
and F/E’ is equal to 0.2 and 2.0, respectively. It is 
seen that the larger the transverse isotropic coefficient 
S is, the greater the buckling load is, and the further 
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Fig. 4. Buckling coefficients and neutra1 surface locations of 
circular plate vs tranverse isotropic coeficients for (a) 

Et/EC = 0.2 and (b) Et/EC = 2.0. R,,/h = 10; p = 0. 

the neutral surface location moves away from the 
midplane. Also, we can see that the effects of small 
S have more influences than those of large S. This 
means that the buckling load reduces and &//I 
approaches the midplane when the transverse shear 
resistance is small. 

Plots of E/E’ vs K, and ZJh for circular plates are 
shown in Fig. 5, where R,Jh = IO. S = I and fl = 0. 
It is easy to be seen that the buckling coefficient K, 
increases with increasing the Young’s modulus ratio 
Et/EC due to the larger values of rigidity as Et/EC 

increases, and the tensile zone decreases with in- 
creasing values of El/E’. 

Plots of K, vs /I for circular plates are shown in 
Figs 6(a) and (b), with h/h and S equal to IO and 
1, respectively, and El/E’ equal to 0.2 and 2.0, re- 
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Fig. 5. Buckling coefficients and neutral surface locations vs 
modulus ratio of circular plate. &/h = IO; S = 1; p = 0. 
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Fig. 6. Buckfing coefficients and neutral surface locations vs 
bending stress ratio of circular plate for (a) El/E’ = 0.2 and 

(b) E’jEc = 2.0. RJh = 10; S = 1. 

spectively. The bending stress effects can be seen to 
reduce the buckling coefficient K,, when EC/EC c I 
and increase it when El/E’ > 1. But the neutral 
surface location is shifted down when /I is increased. 
Owing to the shifts of the neutral surface locations, 
the effects of bending stress on bimodulus materials 
have much more influence than those on ordinary 
materials (not bimodulus). 

Figure 7 shows the neutral position Z,,/h and Z&/h 

of annular plates for two cases in which the ratios of 

‘,,I , , >/ , , I ‘a’. 1 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

@) 
-0.05 , c 

0 0.25 0.5 0.6 0.7 0.8 0.9 1 

?I& 

Fig. 7. Neutral surface locations 2,/h and 2,/h vs r/& of 
annular plate with inner free-outer clamped boundary con- 
dition for (a) R,/h$ = 0.3; (b) RJR, = 0.5. E*/E’= 2.0; 

S=1;/?=o;&/h=IO. 



Axisymmetric buckling of bimodulus thick circular plates 181 

j 6.0 

I / I 

0 0.2 0.4 0.6 0:s 

RJR, 

Pig. 8. Buckling coefficients K, of annular plates vs internal 
radius-external radius ratios R,/& of an annular plate 
with inner free-outer clamped boundary condition and with 
inner free-outer simply supported boundary condition for 

Et/E’ = 2.0; S = 0; j3 = 0; RJk = IO. 

internal radius to external radius R,/& are 0.3 and 
0.5, respectively, where E’/F, h/h, Sand fl are equal 
to 2.0, 10, 1 and 0, and their boundary conditions are 
free-clamped. The position Z,, is derived by err = 0 
while Z,, is derived by 6~ = 0. It is seen that both 2, 
and Z,, vary with position and Z,,? is not the same as 
Z, in general, and this phenomenon does not take 
place in cicular plates. It is believed that the Lame’s 
distribution causes the result in the present study. We 
shall take the approach that 2, =$.?nl -t- Z,,) to 
solve the annular plates with isotropic bimodulus 
material. Even though this approach is rough, it 
provides an approach to complete this problem. 

Plots of K, vs R&R,, for annular plates are shown 
in Fig. 8, where Et/EC, fib/h, S and /l are equal to 2.0, 
10, 1 and 0, respectively. The dashed line represents 
the buckling with free-simply boundary condition, 
while the solid line represents the buckling with 
free-clamped boundary conditon in Fig. 8. We can 
see that the buckling coefficient with free-clamped 
boundary condition has the lowest value when Ri/& 

equals approximately 0.16. It is also seen that the 
buckling coefficients with free-simply boundary con- 
dition decrease with increasing the values of R,j& 

while the one with free-clamped condition has the 
reverse effect. 

(3) The buckling load increases with increasing 
transverse isotropic coefficient S. The effect can be 
seen more significantly when S < 2 for circular plates. 

(4) The buckling load decreases with increasing 
initial bending stress coefficient for E’/,!? c 1, and 
with decreasing /l for E’/EC > I for circular plates. 

(5) The buckling coefficient increases with in- 
creasing Et/EC for circular plates. 

(6) The buckling of the annular bimodulus plates 
is also studied. The Lame’s solution is found to have 
an important effect. 

The buckling and vibration problems of laminated 
composite bimodulus circular plates need to be fur- 

ther studied. The results will be presented in the near 
future. 

COFiCLUSlONS 

The following conclusions can be drawn from the 
prelimina~ results presented. 

(1) The present finite strip method can produce 
accurate buckling analysis of a circular plate, 

(2) The thicker the plate is, the lower the buckling 
coefficient K, is; the buckling loads N,( = hP,) of 
thick circular plates are larger than those of thin 
circular plates. 17 . r. 
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APPENDIX 
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