
User Guide

Ayla Portable Device Agent Porting Guide

Version: 1.0

Date Released: September 27, 2018

Document Number: AY006UPD3-1

Copyright Statement

© 2021 Ayla Networks, Inc. All rights reserved. Do not make printed or electronic copies of this
document, or parts of it, without written authority from Ayla Networks.

The information contained in this document is for the sole use of Ayla Networks personnel,
authorized users of the equipment, and licensees of Ayla Networks and for no other purpose.
The information contained herein is subject to change without notice.

Trademarks Statement

Ayla™ and the Ayla Networks logo are registered trademarks and service marks of Ayla
Networks. Other product, brand, or service names are trademarks or service marks of their
respective holders. Do not make copies, show, or use trademarks or service marks without
written authority from Ayla Networks.

Referenced Documents

Ayla Networks does not supply all documents that are referenced in this document with the
equipment. Ayla Networks reserves the right to decide which documents are supplied with
products and services.

Contact Information

Ayla Networks TECHNICAL SUPPORT and SALES

Contact Technical Support: https://support.aylanetworks.com
or via email at support@aylanetworks.com

Contact Sales: https://www.aylanetworks.com/company/contact-us

Ayla Networks REGIONAL OFFICES

For a complete contact list of our offices in the US, China, Europe, Taiwan, and Japan:
https://www.aylanetworks.com/company/contact-us

https://support.aylanetworks.com/
mailto:support@aylanetworks.com
https://www.aylanetworks.com/company/contact-us
https://www.aylanetworks.com/company/contact-us

Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary i
AY006UPD3-1/1.0/14-Jan-2021

Table of Contents

1 Introduction ... 1

1.1 Audience ... 1
1.2 Related Documentation .. 1
1.3 Document Conventions .. 1
1.4 Abbreviations and Acronyms ... 2
1.6 Glossary ... 2

2 PDA Software Architecture .. 4

2.1 PDA Architecture .. 4
2.2 PDA Thread Model ... 5
2.3 Adapter Layer ... 6

Memory Manager .. 6
Thread and Mutex Lock .. 6
ADA Thread ... 7
Netstream ... 7
NetUDP .. 8

2.4 Adapter Layer (AL) Interface List .. 9
2.5 Source Code Organization .. 10

3 Build and Run the Demo ... 11

4 Porting the PDA ... 12

4.1 Porting Tactic .. 12
4.2 Porting Memory Manager .. 13
4.3 Porting Thread and Lock ... 13
4.4 Porting Clock ... 13
4.5 Porting Netstream, Net TCP, and Net TLS .. 14
4.6 Porting Interface of Random, SHA1, SHA256, AES, RSA .. 15
4.7 Porting net-addr, net-if, net-udp .. 15
4.8 Porting the ADA Thread .. 16

5 Test the Framework and Auto-Test .. 17

5.1 Using the altest Command .. 17
5.2 Prepare altest-server ... 18
5.3 Test Variables ... 19

testvar Commands .. 19
Test Variables ... 19

5.4 Writing Your Own Test Case ... 21

 Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary ii
AY006UPD3-1/1.0/14-Jan-2021

6 Apptest ... 23

6.1 Apptest Demo Application .. 23
6.2 Automation Apptest Script ... 23
6.3 Apptest CLI Commands .. 24
6.4 Apptest ADA Layer APIs .. 24

7 Apptest Environment Setup .. 27

7.1 Apptest Demo App Setup Procedure .. 27
7.2 Automation Apptest Script Setup Procedure ... 30
7.3 Automation Apptest Script Run Procedure .. 31

Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 1
AY006UPD3-1/1.0/14-Jan-2021

1 Introduction
The Portable Device Agent (PDA) gives manufacturers the option to select any cellular or Wi-Fi
module and have it connected easily to the Ayla Cloud. Ayla customers no longer have to use
hardware supported by Ayla, and they have more control over development and deployment
schedules.

PDA is an Ayla Integrated Agent (white box) design with all platform-dependent functionalities
encapsulated in an adapter layer. Like the Ayla Integrated Agent, the PDA design is a lower
cost option than the Ayla Production Agent (black box) design; however, PDA additionally
removes the complexity involved in porting the Ayla Integrated Agent. Ayla customers using
PDA simply port the adapter layer to the new platform. PDA offers Ayla customers the
flexibility to enable Ayla connectivity on their hardware of choice and per their own schedule,
while maintaining the high standards of Ayla's reliability and security.

1.1 Audience

This document is intended for Ayla partners who want to port white box device agents to
previously unsupported platforms, while maintaining connectivity to the Ayla Device Service
(ADS).

1.2 Related Documentation

Refer to the following documents available on support.aylanetworks.com for additional
information on the Ayla Developer Portal and OEM Dashboard.

• Ayla Linux Agent Setup (AY006ULA6)

• Ayla Customer Dashboard User’s Guide (AY006UDB3)

• Ayla Developer Portal User’s Guide (AY006UDP3)

• Ayla Embedded Agent for Marvell WMSDK (AY006DAM6)

1.3 Document Conventions

This document uses these Ayla documentation conventions:

• Function prototypes, function names, variables, structure names and members, and other
code fragments are shown in courier new, a fixed-width font.

• Network paths, file paths, menu paths and the like are shown in bold text and each point
that you have to click to navigate to the next is separated by “/.”

https://help.aylasupport.com/?b_id=11960

 Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 2
AY006UPD3-1/1.0/14-Jan-2021

1.4 Abbreviations and Acronyms

The following acronyms are used in this document.

ADA Ayla Device Agent. This is a legacy term for Ayla Embedded Agent. The ADA
acronym is still used in CLI commands and sources, and descriptions of
either of these may refer to the Ayla Embedded Agent as the “device agent.”

ADS Ayla Device Service (the cloud service)

ADW Ayla Device Wi-Fi (library for embedded systems)

AL Adapter Layer. A layer that encapsulates all the platform-dependent code.

ANS Ayla Notification Service

DNS Domain Name Server

EVB Evaluation Board

MCU Microcontroller unit

PDA Portable Device Agent.

PWB Portable White Box device, which we call PDA.

RTC Real-time Clock

RTOS Real-time operating system

SDK Software Developer Kit

TCP Transmission Control Protocol

TLS Transport Layer Security

1.6 Glossary

Production Agent
(formerly called
Black Box)

This is a fully-managed, Ayla-enabled module intended to be used
as-is by the manufacturer. Some of the primary characteristics
include:

• Available for embedded solutions.
• Provides the fastest time to market for OEMs
• No custom gateway or other forms of communication

agent software, including QA required regardless of the
type of end-device.

• Any microcontroller-based system can easily be enabled
with cloud connectivity.

Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 3
AY006UPD3-1/1.0/14-Jan-2021

Integrated Agent
(formerly called
White Box)

This is a type of Ayla endpoint that allows for a more complex and
versatile device than the Production Agent class of devices.
However, the development effort is often significantly longer for
OEMs and therefore results in longer time to market than the Ayla
Wi-Fi Production Modules. Some of the primary characteristics
include:

• Available for embedded or LINUX solutions.
• Makes the Ayla Embedded Agent available as a library or

source.
• Well-equipped for applications with existing RTOS and

networking.
• Because of the modular design, allows code for additional

functions to be included as needed.
• Allows for a reduced bill of material (BOM) cost in certain

situations.

 Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 4
AY006UPD3-1/1.0/14-Jan-2021

2 PDA Software Architecture
In the PDA design, an adapter layer (AL) is constructed and all platform-dependent
functionalities are encapsulated in this layer. AL interfaces are defined in al_xxx.h.

IMPORTANT!

The implementation of the AL for the Linux platform is only for demo
purposes. If your new platform is Linux, the demo cannot be used for
production. For this platform, the Ayla Linux Agent is the best option,
especially in terms of its robustness.

This section provides information on how the PDA Software Architecture works.

2.1 PDA Architecture

Following is a basic diagram of the PDA’s layered architecture:

APP A customer application.

ADA Ayla Device Agent, which is a legacy term for Ayla Embedded Agent. It
is available as a library or source, and provides secure connectivity to
Ayla services.

Ayla Library This is a library of utilities, which is platform independent.

AL The Adapter Layer, which provides the interfaces that encapsulate
platform-dependent code.

RTOS Platform-dependent implementation, including device drivers, and
Real-time operating system.

Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 5
AY006UPD3-1/1.0/14-Jan-2021

In the PDA layered architecture (as shown in the above diagram), the customer application
interacts with the Ayla Embedded Agent, and may call some AL interfaces, like memory,
thread, and mutex lock. The implementation of the Ayla Embedded Agent is based on the AL
and Ayla library. Basically, the AL is the base of the customer application, Ayla Embedded
Agent, and Ayla Library.

PDA has two main differences from the Ayla white box design, which are described in this
section:

1. A new thread model

2. An adapter layer

2.2 PDA Thread Model

There are two threads in the PDA:

1. The application thread, for example, LEDEVB in sample demo.

2. The Ayla Embedded Agent (referred to as ADA) thread.

A main-loop is used in the ADA thread, and all operations are done in the main-loop. When an
application sends a request to the Ayla Embedded Agent, the request is placed in a queue in
the order of the request’s priority, and the ADA thread is intentionally woken up. When the
ADA main-loop runs, each request in the queue is checked according the request’s priority. If a
request is found, it is processed and then its callback is called to report the result.

In the PDA sample code, the default example of main-loop I/O processing does the following:

• Uses select () statement to check the socket for RX / TX / Exception signals

• If a signal is detected, then the process calls the socket RX-callback for receiving data,
tx-callback for sending data, err-callback for exception or error handling.

In the ADA main-loop, the select () statement is used for both the socket I/O as well as
for the timer handling and ADA thread wakeup. The select statement detects all of the file,
socket, and pipe descriptors that are registered. When waking up the ADA thread, a special
pipe descriptor is used. When writing data to the pipe in another thread, the select statement
in the ADA main-loop recovers from the blocking state; that is, the ADA thread is woken up by
the other thread.

For the timer, no special descriptors are required. Timer scheduling is just finding the next
timer that will timeout, calculating the time span, and using the time span as the last the
parameter of the select () function. For events in which the socket or pipe is not signaled,
the select statement will be recovered from blocking state in the specified time (automatically
woken up by the ADA timer).

 Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 6
AY006UPD3-1/1.0/14-Jan-2021

2.3 Adapter Layer

The Adapter Layer (also referred to as AL) is a new layer added for the PDA. All lower-level
interfaces that are platform dependent are encapsulated in this layer. You may think of the AL
as you would a Hardware Abstract Layer (HAL). All interfaces are listed in the AL by category.
For example, the default implementation is based on Linux. Ayla’s chip vendors and
cooperative partners who develop a device based on PDA just basically have to port the AL of
the PDA to the desired platform.

AL contains the following main components; all of which are explained in this section:

• Memory Manager

• Thread and Mutex Lock

• ADA Thread

• Netstream

• NetUDP

Memory Manager

The Memory Manager provides functionalities of memory allocation, memory free, and
memory pool initialization. In the AL, there are two types of memory:

1. al_os_mem_type_long_period

This is memory that is seldom free after allocation.

2. al_os_mem_type_long_cache

This is memory that is frequently allocated and free.

Thread and Mutex Lock

The thread interfaces in the AL includes: thread creation, suspend, resume, sleep, get exit-flag,
set exit-code, terminate synchronously, terminate asynchronously, and join (wait for thread
terminated). To create a thread, the thread name, stack address and size, priority, and entry
should be specified.

A running thread should call al_os_thread_get_exit_flag() constantly in its loop. If the
exit-flag is detected, the thread should leave the loop and terminate gracefully.

A thread can be terminated by another thread or itself. This can be achieved by calling
al_os_thread_termiate(). This function just sets the exit flag for the thread and lets the
thread terminate itself asynchronously.

If thread A wants to terminate thread B, thread A needs to call
al_os_thread_terminate_with_status() for thread B. This function sets an exit flag for
thread B, joins and waits for thread B to be terminated, and returns the exit-code of thread B.
This function cannot be used for the current thread to terminate itself.

If thread A wants to block itself until thread B is terminated, thread A just needs to call
al_os_thread_join() for thread B.

Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 7
AY006UPD3-1/1.0/14-Jan-2021

After a thread is created, the default memory allocation type for the thread is
al_os_mem_type_long_period. This can be changed by calling al_os_mem_set_type().

In the AL, mutex is called lock. It is used to keep thread safe when multiple threads access the
same data. The interfaces include: lock create, lock, unlock, destroy.

ADA Thread

ADA thread is an Ayla specialized thread. It contains a loop that is used for communication,
timer, and wakeup (that is, wakes itself up). ADA thread interfaces are defined in
al_ada_thread.h. The al_ada_main_loop() function is defined in al_ada_thread.c.

Interaction between the customer application (APP) thread and ADA thread can be performed
by asynchronous calls or synchronous calls, as follows:

• To wakeup the ADA thread from another thread, use call al_ada_wakeup().

• To send an asynchronous request to ADA: First, the APP should initialize a callback
structure using al_ada_callback_init(), and then, use call al_ada_call() with the
callback structure as a parameter. The request is executed in ADA thread. After
execution, a callback is called to report the result. It is APP's responsibility to keep the
callback being thread safe.

• To send a synchronous request to ADA: First, initialize a callback structure using
al_ada_callback_init(), and then call al_ada_sync_call() with the callback
structure as a parameter. The request is put into the ADA request queue, and then
wakes up ADA thread and waits for a semaphore. When ADA thread is activated, the
request is executed, the result is reported to APP through callback. Finally the
semaphore is signaled by the ADA, so ADA thread is suspended and the APP is activated
and continues to run. In this case, the callback's thread-safety is guaranteed by the
synchronous calling mechanism.

• Use ADA timer as follows: To start a timer, call al_ada_timer_set(). To stop a timer,
call al_ada_timer_cancel().

NOTE The ADA timer is for ADA internal use only. Calling al_ada_timer_set() in the
APP thread starts a timer in ADA, not a timer in APP. Calling
al_ada_timer_set(), al_ada_timer_cancel() in the APP thread is not thread
safe.

Netstream

Netstream is used by the http-client in ADA. The device uses Netstream to communicate with
Ayla Cloud service. There are 2 types of Netstream, stream of TCP and stream of TLS. The
implementation of Netstream is based on Net TCP and Net TLS. For TCP stream,
communication is reliable, but not secured. If TLS stream is used, a handshake is made, and a
secure link is set up. To use Netstream, follow these steps:

1. Call al_net_stream_new() to create a specified type of stream. A handle is returned.

 Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 8
AY006UPD3-1/1.0/14-Jan-2021

2. To set callbacks, call al_net_stream_set_recv_cb(),
al_net_stream_set_sent_cb(), and al_net_stream_set_err_cb().

3. To set the argument (which is used in callbacks), call al_net_stream_set_arg().
Generally, the argument is the caller itself.

4. To connect to remote, call al_net_stream_connect(). For stream TLS, a handshake
is done at this stage, and the socket handle is also registered to the ADA main loop.

5. To send data, call al_net_stream_write(). The data is buffered in Netstream until
al_net_stream_output() is called. After the data is actually sent, sent-callback is
called to report how many bytes have been sent.

6. When the RX signal is detected in the ADA main loop, the Netstream raw receiving
function is called to receive data. Then, the caller's recv-callback is called to report
the received data, and the caller should call al_net_stream_recved() to tell
Netstream how many bytes were received.

7. After communication is done, call al_net_stream_close() to close Netstream.

Netstream is used for time-limited communication. After data is exchanged, Netstream
closes. For TLS-stream type, if a connection is in an idle status for 60 seconds, the
server also disconnects.

NetUDP

NetUDP is another communication interface used by the Ayla Embedded Agent. The Ayla
Notification Service (ANS) in the Ayla cloud sends the UDP packet to devices to inquire about
their online status. Devices send a UDP packet to report their status to the server. When a
property of a device is changed in the Ayla Device Service (ADS), ADS lets ANS send a
notification (UDP packet) to the device, and the device then performs a synchronization
through Netstream. NetUDP is used to transmit events or notifications.

The process to use NetUDP is as follows:

1. ADA calls al_net_udp_new() to create a net-udp object.

2. To receive a UDP packet correctly, it is required to bind the socket to a local address
and port. To do this, just call al_net_udp_bind().

3. To set the remote address and port, call al_net_udp_connect(). At this stage, the
socket is registered to the ADA main-loop.

4. To set recv-callback and argument, call al_net_udp_set_recv_cb().

5. To send the UDP packet to remote, call al_net_udp_send(). The packet is buffered
in NetUDP and is sent to remote when the TX signal is detected in the ADA main loop.
The UDP packet is then allocated by the ADA, and freed by NetUDP when the packet is
actually sent.

6. When the RX signal is detected in the ADA main loop, al_net_udp_raw_recv() is
called, a UDP packet is received, and the recv-callback is called to report to the upper
layer. The UDP packet is then allocated in NetUDP, and freed by the upper layer.

Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 9
AY006UPD3-1/1.0/14-Jan-2021

7. If ADA wants to send a multicast packet, call al_net_igmp_joingroup() to join a
UDP multicast group before sending. If multicast is not used any more, call
al_net_igmp_leavegroup() to leave the multicast group.

8. To close the NetUDP object, call al_net_udp_free().

2.4 Adapter Layer (AL) Interface List

The table in this section provides a complete list of the interfaces in the adapter layer. For
detailed information, please read the related header files and the Doxygen document.

Interface Header File Implementation

Memory al_os_mem.h al_os_mem.c
Thread al_os_thread.h al_os_thread.c
Lock (Mutex) al_os_lock.h al_os_lock.c
ADA thread Al_ada_thread.h Al_ada_thread.c
Clock Al_clock.h Al_clock.c
Netstream al_net_stream.h al_net_stream.c
Net TCP al_net_tcp.h al_net_tcp.c
Net TLS al_net_tls.h al_net_tls.c
Net-Interface al_net_if.h al_net_if.c
Net-DNS al_net_dns.h al_net_dns.c
Net-Address al_net_addr.h al_net_addr.c
Net-UDP al_net_udp.h al_net_udp.c
Random al_random.h al_random.c
AES al_aes.h al_aes.c
RSA al_rsa.h al_rsa.c
SHA1 al_hash_sha1.h al_hash_sha1.c
SHA256 al_hash_sha256.h Al_hash_sha256.c
CLI al_cli.h al_ali.c
Persist al_persist.h al_persist.c
OS Reboot al_os_reboot.h al_os_reboot.c

 Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 10
AY006UPD3-1/1.0/14-Jan-2021

2.5 Source Code Organization

Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 11
AY006UPD3-1/1.0/14-Jan-2021

3 Build and Run the Demo
1. Install the compiler on your developing host system.

2. Obtain the PDA software package (pda-demo-src-2.1-eng.tgz) from Ayla.

NOTE Once the Software License Agreement is signed, this is available on the Ayla
Support Portal. Contact your Ayla Customer Success representative if you need
assistance finding this.

3. Decompress the package in a directory (name it PDA, for example).

4. In the PDA directory, run the make command.

• To build and run the altest program, input the following command:

make run EXEC=altest

• To build and run the ledevb program, input the following command:

make run

5. After compilation, make sure you have the following output file(s):

• pda/ayla/bin/native/ledevb

• pda/ayla/bin/native/altest

6. Run the test program (altest).

When the PWB ALTest> prompt appears, input the altest command to list all test
cases.

7. Run LEDEVB demo.

IMPORTANT! Before running demo LEDEVB (a Linux program, a virtual device), you need
to configure a DSN (device serial number) and a key for the device. There is
a python script (pda/platform/linux/utils/conf-gen.py) that can be
used to generate a default configure file (.conf.pwb) in your home
directory. To do this, run the following command on Linux command line:
./conf-gen.py --region CN AC000W002397415.xml 0dfc7900 ledevb
\

--oem-key xxxxxxxxxxxxxxxxxxxxxxxx

• CN is the area code of China.
• AC000W002397415 is the DSN.
• 0dfc7900 is OEM-ID string.
• ledevb is oem_model.

• After running demo LEVEVB for the first time, you need to register the device to the
Ayla Cloud Service. After that, you can change the property of the device. For
detailed information, please refer to Ayla Embedded Agent for Marvell WMSDK
(AY006DAM6).

 Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 12
AY006UPD3-1/1.0/14-Jan-2021

When the demo ledevb runs, the PWB ledevb> prompt is shown in the console. In the
actual device, the Ayla Embedded Agent starts to work (or enter the Up state) only when
the device becomes a node of a network. But for PDA, there is no Wi-Fi module or no
connection manager. PDA is just a virtual device. You need to input the up command in
console to start ADA file.

4 Porting the PDA
Porting programs to another platform can be challenging work. The process is related to target
compiler, C library and platform drivers provided by the vendor. Some common challenges
are:

• Compilers may not support 64-bit data type or operation. The enum type in C
language may take a different size for a different compiler.

• Issues with the structure alignment and packing. Communication programs are
sensitive to platform byte order (little endian or big endian), so using union types is not
recommended.

Though it is useful to be aware of issues like these, the primary focus of this section is on PDA
porting.

IMPORTANT!

If required, the file called al_utypes.h may need some modification. But
all other header files that take form of al_xxx.h should not be modified.
These header files are Ayla-defined interfaces for the Adapter Layer. Only
al_xxx.c files need to be re-implemented on new platform.

4.1 Porting Tactic

When you start porting, you need to modify the make file. All the al_xxx.c files referred to in
make file should be changed to files with the same name, but must be located in
platform/stubs directory. This is because in the initial porting stage, all of the C files for the
adapter layer should use stub files.

In the PDA demo packet, all al_xxx.c files are located in the platform/Linux directory. If, for
example, your target platform is stm32, you need to create a new directory called stm32 in
the same directory as the platform. Once this is done, follow these steps (which are based on
this same example):

1. Put your c file (for example, al_aes.c) in the platform/stm32 directory.

2. Modify the make file to refer to the new file.

3. Add a reference in the make file to refer to al_test_aes.c in the test directory.

4. Build altest by running the following command:

make run EXEC=altest

5. Test your new implementation, which in this example is an implementation of AES. For
this example, let’s assume that the altest program built in step 4 above is in the

Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 13
AY006UPD3-1/1.0/14-Jan-2021

Ayla/bin/smt32/ directory. Run the program, and in the console of the device, type the
test command:

altest aes

4.2 Porting Memory Manager

Following is important information regarding the Porting Memory Manager:

• Support for memory allocation is free.

• Memory interfaces are called by the customer application, Ayla Embedded Agent, and
Ayla Library. These interfaces should be thread-safe.

• There are two types of memory and therefore two memory pools.

• Function al_os_mem_set_type() is related to the thread. Calling this function sets
memory type for the current thread. After this call, all memory allocated in the thread
are of this same memory-type.

4.3 Porting Thread and Lock

The thread and mutex interfaces are always related to the operating system. Operating
systems have different prototypes of task or mutex. The Ayla Black Box and White Box devices
have been ported to Realtek Ameba (FreeRTOS), Marvell (FreeRTOS), and QCA4010 (ThreadX)
platforms. Therefore, these are the preferred platforms. Additional information to keep in
mind:

• Thread creation, sleep, set/get priority, join, terminate, terminate with exit code returned
should be implemented.

• Thread get exit-flag and set exit-code should be implemented.

• Thread suspend and resume are optional.

• Using the operating system’s mutex to implement lock in the adapter layer is sufficient.

4.4 Porting Clock

In the PDA, local time and the software timer are based on the clock. There two types of clocks
provided in the adapter layer: One is UTC time (seconds elapsed from 1970, Jan, 1st 00:00), and
the another is elapsed time from boot (in milliseconds)

The clock interfaces may be used by the customer application and the Ayla Embedded Agent.
They should be thread-safe, whether based on the system clock or RTC.

When calling al_clock_set(), the clock-source should be specified. After setting the clock
with a high priority clock-source, setting the clock with a lower priority clock-source has no
effect. The clock-source in al_clock.h is defined by Ayla and should not be changed.

 Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 14
AY006UPD3-1/1.0/14-Jan-2021

4.5 Porting Netstream, Net TCP, and Net TLS

Netstream is used by the http-client. There two types of streams: stream-tcp for HTTP and
stream-tls for HTTPS. The sample implementation of Netstream is based on Net TCP and Net
TLS.

Netstream itself is platform-independent and not required to port, but you can implement
your own Netstream and keep the prototypes as-is. If re-implementing a new Netstream, you
can ignore Ayla’s sample codes of Net TCP and Net TLS. Other important considerations
regarding Netstream, Net TCP, and Net TLS are as follows:

• Netstream, Net TCP, and Net TLS are not thread-safe; the design is for use with the ADA
thread only. Do not call Netstream, Net TCP, and Net TLS in other threads. If you want to
use Netstream in both the customer application and the Ayla Embedded Agent, you
must make Netstream thread-safe.

• Do not use Net TCP and Net TLS directly. Use Netstream instead.

• In porting Net TCP, low-level functions, like socket (), connect (), recv(), send()
may need to be ported. The select () function used in the ADA main-loop may need
porting as well.

NOTE Make sure that the ADA main loop works in blocking mode.

• Net TCP is implemented in pfm_net_tcp.c. When the upper-layer calls
pfm_net_tcp_write(), the data is not sent immediately, and instead is buffered by
Net TCP until select() in the ADA main-loop detects the TX signal, then the callback
pfm_net_sync_write() is called for the actual transmission. Net TCP uses
pfm_pwb_linux_add_socket () to register its socket handler, pfm_net_sync_read,
pfm_net_sync_writ to the main-loop.

• The Net TCP sample is based on Linux. The two functions are empty. On embedded
platform, these functions are required to handle communication error:

o pfm_net_tcp_abort()

o pfm_net_tcp_abandon()

• The Net TLS sample code is based on OpenSSL on Linux. To set up a security link,
certificates need to be verified. In OpenSSL, certificates are files stored in /etc/ssl/certs/
directory. Before running the sample PDA demo on Linux, you need to copy certificates
(*.pem) from the PDA directory ayla/src/libada/certs/ to the destination of /etc/ssl/certs/.
Some examples are:

cd /etc/ssl

sudo mv certs certs_old

sudo mkdir certs

sudo cp ~/pda/ayla/src/libada/certs/*.pem /etc/ssl/certs/

sudo c_rehash

On the embedded platform, there is no filesystem or OpenSSL, so it is required to load
certificate into memory in the function pfm_net_tls_init().

Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 15
AY006UPD3-1/1.0/14-Jan-2021

• When a Netstream of TLS stream type is created and al_net_stream_connect() is
called, Net TLS makes a handshake with the remoted server. The handshake time
depends on net speed. After a successful handshake, a security link is set up. The
security link is disconnected when it is in an idle state for 60 seconds.

4.6 Porting Interface of Random, SHA1, SHA256, AES, RSA

The default implementation of the random generator is pseudo-random. For porting
al_random.c to the embedded platform, it is recommended to use the true random
generator supported by the hardware.

The default implementation of Advanced Encryption Standard (AES) is based on OpenSSL. On
the embedded platform, we suggest that hardware acceleration is used. Cipher block chaining
(CBC) operation mode and the initialization vector (IV) are used in AES encryption and
decryption. The encryptions and decryptions are strictly sequential operations, so AES
encryption of the first step affects the encryption of the next step. This feature makes it
thread-unsafe. Do not use an AES handle in two threads to encrypt/decrypt data concurrently.

RSA is an asymmetric crypto interface used in digital signature and verification. On an
embedded platform, RSA’s speed is relatively slow for software implementation. Hardware
acceleration should be used. However, RSA with software implementation is thread-safe. So,
when using hardware acceleration, make sure it is thread safe.

SHA1 and SHA256 are hash algorithms. Using software implementation on an embedded
platform is sufficient for SHA1 and SHA256. The interface should be thread-safe.

The software implementations of Random, SHA1, SHA256, and RSA are thread-safe. If
acceleration is used, it is your responsibility to make the acceleration thread-safe. AES with
CBC mode supported is not thread-safe.

4.7 Porting net-addr, net-if, net-udp

In the default implementation of net-addr, the internet address is stored in a structure called
struct in_addr. The address provides a convenient way for conversion to and from a 32-bit
host address. Porting is not required.

The interface net-if is used for searching net-interfaces (like ether-net, Wi-Fi) in the system.
When the device is powered on, the Wi-Fi interface is selected, and Ayla Embedded Agent tries
working in STATION mode and connecting to Ayla Cloud Server. If this fails, AP mode is used
for configuration and device registration. The net interface implementation varies with
embedded platforms, so the interface must be ported and must be thread-safe.

The default implementation of net-udp is based on the Linux socket. The interface of net-udp
defined in adapter layer is for use in the Ayla Embedded Agent only, the buffered packet-list is
not protected by a mutex, so it is not thread-safe. Porting net-udp is just to replace bind (),
sendto (), and recvfrom () with corresponding functions defined in the platform library or
RTOS.

 Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 16
AY006UPD3-1/1.0/14-Jan-2021

4.8 Porting the ADA Thread

As mentioned in Section 4, there is a main-loop in the ADA thread, and all I/O and
communications are performed in the main-loop, which uses select (). On embedded
systems, select () should keep the same functionality.

In the default implementation of al_ada_sync_call(), a semaphore is used. The
semaphore may need to be ported.

The implementation of the PDA sample demo is based on Linux. After building a PDA target
(LEDEVB), PDA is an executable program on Linux. After the program is started, it can restart
itself without ^C and can be started again manually. For this purpose, al_ada_kill() is
provided to kill the ADA thread on Linux. On the embedded platform, this function is not
required and can be implemented as empty.

Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 17
AY006UPD3-1/1.0/14-Jan-2021

5 Test the Framework and Auto-Test
There is a test framework in the PDA source package. The test framework is used to test all of
the Adapter Layer APIs manually or automatically. This test framework is implemented in the
following file:

ayla/test/altest/pfm_test_frame.c

The main entry is pfm_altest_main(). This entry is registered to CLI in
pfm_test_frame_init(). The implementation of all test cases is located in the following
directory:

ayla/test/altest/testcases/

To build the target of altest, change the current directory to PDA, and input the following
command:

make run EXEC=altest

For PDA on the Linux platform, the built program altest is in the ayla\bin\native
directory.

For your target platform, you can change the output directory by modifying the path in the
makefile.

After compilation is completed, run the altest program, then input the altest commands
on the device console. You can test all of the Adapter Layer APIs, and after a test command is
executed, the statistic information of test results is shown.

5.1 Using the altest Command

The test framework supports both auto test cases and manual test cases. For an auto test
case, its order number must be larger than or equal to zero. For manual test case, its order
number must be negative. All auto test cases can be automatically executed by the following
command:

altest all

If you want to test a manual test case, the case name must be specified on the command line.

NOTE Test variables must be set before running altest all. Refer to Section 5.3, Test
Variables, for more details on this.

Following is how to use the altest command to test cases:

1. Get help on the command line by inputting the following command:

altest ?

2. Show all of the test case names by inputting the following command:

altest

 Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 18
AY006UPD3-1/1.0/14-Jan-2021

3. To test a specified case (for example, aes-C610096), input the following command:

altest aes-C610096

4. To test two specified cases, input the following command:

altest aes-C610096 aes-C610097

5. To test all cases, input the following command::

altest all

6. To test all cases and repeat the test 10 times, input the following command:

altest all --repeat 10

7. To test all cases and stop the test immediately when a case fails, input the following
command:

altest all --stop_on_fail

5.2 Prepare altest-server

In the PDA source packet, there is a test-server written in python, which is in the following
location:

/ayla/test/altest-server/altest-server.py

This is used to help net-udp and Netstream (TCP or TLS) testing. When altest program sends
data to the server, the server simply sends the data back. The server-related packages and
versions are as follows:

• Python 3.6.5

• Tornado 5.0.2

In the /ayla/test/altest-server/certs/ directory, the following files are provided:

• altest.aylanetworks.com.chain --- Certificate chain

• altest.aylanetworks.com.key --- RSA private key of server

• altest.aylanetworks.com.pub.key --- RSA public key of server (format1)

• altest.aylanetworks.com.pub2.key --- RSA public key of server (format2)

• AylaQATestRoot.crt --- Root Certificate

These files are generated by Ayla and are used for altest only. The Certificate chain and the
RSA private key are used by the server (altest-server.py). The two public keys are used for
test RSA encryption, so it is not used for altest-server.

On device side (which is where altest located), to make TLS work, the following two actions
should be done:

1. The root certificate file should be installed on the computer where altest runs.
Generally, the certificate is stored in this directory:

/etc/ssl/certs/

Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 19
AY006UPD3-1/1.0/14-Jan-2021

2. In the /etc/hosts file, add this line:

172.18.88.2 altest.aylanetworks.com

Where 172.18.88.2 is the server’s IP address, and altest.aylanetworks.com is the
server’s host name.

On the server side, to start altest-server, input this command:

python altest-server.py

5.3 Test Variables

There are test variables in some of the altest test cases The test variables have a default value,
but need have another value set according to different running environments.

Before running altest all, test variables need to be set. This section provides information
on the testvar commands and test variables.

testvar Commands

• To show how testvar is used, input the following command to get test variable help:

testvar ?

• To show the name and value of the test variables, input the following command:

testvar show

• To set a new value for the test variable, input the testvar set command as follows:

testvar set <name> <value>

Where <name> is the name of the test variable.

Test Variables

• dns_ads_ayla_com_ip

The dns_ads_ayla_com_ip test variable is a list of DNS IPs of ads-
dev.aylanetworks.com. This test variable is used to verify that the DNS Adapter Layer API
can perform correctly. The DNS Adapter Layer API can get a list of DNS IPs of ads-
dev.aylanetworks.com, and then compare them to test variable dns_ads_ayla_com_ip.
If the DNS IPs in the list can be found in the dns_ads_ayla_com_ip test variable, then
the DNS Adapter Layer API performs correctly.

To get DNS IPs of ads-dev.aylanetworks.com, use the command: nslookup or dig, and
then set dns_ads_ayla_com_ip using the testvar set dns_ads_ayla_com_ip
<dns_ip_list> command. For example:

testvar set dns_ads_ayla_com_ip “34.195.40.112,52.72.209.12”

• dns_www_ayla_com_ip

The dns_www_ayla_com_ip test variable is a list of DNS IPs of www.aylanetworks.com.
This test variable is used to verify that the DNS Adapter Layer API can perform correctly.
The DNS Adapter Layer API can get a list of DNS IPs of www.aylanetworks.com, and then
compare them to the dns_www_ayla_com_ip test variable. If the DNS IPs in the list can

http://www.aylanetworks.com/

 Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 20
AY006UPD3-1/1.0/14-Jan-2021

be found in the dns_www_ayla_com_ip test variable, then the DNS Adapter Layer API
performs correctly.

To get DNS IPs of www.aylanetworks.com use the command: nslookup or dig, and then
set dns_www_ayla_com_ip using the testvar set dns_www_ayla_com_ip
<dns_ip_list> command. For example:

testvar set dns_www_ayla_com_ip “52.27.42.170,34.213.252.117”

• if_ip

The if_ip test variable is the IP of the main interface that PDA uses to connect to the
Ayla cloud. This test variable is used to verify that the net-if Adapter Layer API can
perform correctly. The net-if Adapter Layer API can get the IP of the main interface, then
the net-if test case compares the IP to the if_ip test variable. If they are equal, the test
case is marked as “pass.”

To get the IP of the main interface, use the ifconfig <interface_name> command,
then set if_ip using the testvar set if_ip <if_ip> command. For example,

testvar set if_ip 192.168.50.202

• if_mac

The if_mac test variable is the MAC of the main interface that PDA uses to connect to
the Ayla cloud. This test variable is used to verify that the net-if Adapter Layer API can
perform correctly. The net-if Adapter Layer API can get the MAC of the main interface,
then the net-if test case compares the MAC to the if_mac test variable. If they are equal,
the test case is marked as “pass.”

To get the MAC of the main interface, use the ifconfig <interface_name> command, then
set the if_mac using testvar set if_mac <if_mac> command. For example:

testvar set if_mac 08:00:27:ef:4d:55

• if_netmask

 The if_netmask test variable is the netmask of the main interface that PDA uses to
connect to the Ayla cloud. This test variable is used to verify the net-if Adapter Layer API
can perform correctly. The net-if Adapter Layer API can get the netmask of the main
interface, then the net-if test case compares the netmask to the if_netmask test
variable. If they are equal, the test case is marked as “pass.”

To get the netmask of the main interface, use the ifconfig <interface_name> command,
then set if_netmask using the testvar set if_netmask <if_netmask> command. The
default value of if_netmask is 255.255.255.0. If if_netmask of the main interface is
equal to the default value, the if_netmask test variable does not need to be set. For
example:

testvar if_netmask 255.255.255.0

• stream_server_ip

The Stream Server IP is the IP of the altest-server for Netstream to connect. Altest has
test cases for Netstream to connect to altest-server, the stream_server_ip test variable
should be set before performing the test.

Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 21
AY006UPD3-1/1.0/14-Jan-2021

If altest-server is located in current system, set stream_server_ip to 127.0.0.1. If
altest-server is located in another system in the local LAN, set stream_server_ip to the
IP of the other system. For example:

testvar set stream_server_ip 192.168.50.105

• udp_server_lip

The UDP local IP is the IP of the local system that receives UDP packets. The IP can have
the following settings:

o If the IP is set to 0.0.0.0, this indicates that the local system can receive UDP
packets from any interfaces.

o If the IP is set to 127.0.0.1, this indicates that the local system can receive
UDP packets from a local interface.

o If the IP is set to the IP of one interface, this indicates that the local system can
receive UDP packets from the interface.

For example:

testvar set udp_server_lip 192.168.50.66

• udp_server_rip

The UDP server remote IP is the IP of altest-server for net-udp to connect. Altest has test
cases for net-udp to connect to altest-server; however, the udp_server_rip test
variable should be set before performing the test:

o If altest-server is located in the current system, set udp_server_ip to
127.0.0.1.

o If altest-server is located in another system in the local LAN, set udp_server_ip
to the IP of the other system.

For example:

testvar set udp_server_rip 192.168.50.105

5.4 Writing Your Own Test Case

All of the test cases provided by Ayla are sufficient for testing the Adapter Layer APIs. If you
want to run a specific test, you need to write a non-standard test case with a negative order. In
the test case function, the return-value of null means success and non-null is the address
of an error message string.

If the function to be tested is a synchronous procedure, the test framework can detect
assertion failure in your function or its sub-functions. But if your function starts an
asynchronous procedure (i.e. using ada_call()), and then returns a null value
immediately, the actual test will be performed later. Also, the asynchronously executed
function may cause assertion failure. In this case, the test framework cannot detect the failure,
and instead, the PDA main function detects it and the default action is to terminate the
program or reboot the device.

 Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 22
AY006UPD3-1/1.0/14-Jan-2021

NOTE Sometimes, when running the altest all test command if the test program
accidently terminates or reboots, this could be the same assertion failure issue
described above.

If you want to test a function that is asynchronous procedure, follow these steps:

1. In your test case, call pfm_test_case_async_start() before calling al_ada_call().
For example:

static char *xxxx_test_case_proc(const struct pfm_test_desc *pcase, int argc,
char **argv)
{

struct al_ada_callback cb;
if (my_init()) {
return "my_init() failure";
}
al_ada_callback_init(&cb, xxxx_callback_proc, NULL);
pfm_test_case_async_start();
al_ada_call(&cb);
return NULL;

}
PFM_TEST_DESC_DEF(xxxx_test_case_desc, -1, "xxxx_case_name",
EXPECT_SUCCESS, xxxx_test_case_proc, NULL);

2. Write your asynchronous callback function (which is part of the test case). For example:
static void xxxx_callback_proc(void *arg)
{

int rc;
char *status;
rc = pfm_try_catch_assert();
if (rc == 0) {
status = async_action_to_be_tested();
} else {
status = "async_action_to_be_tested() assert fails";
}
pfm_try_catch_final();
pfm_test_case_async_finished(status);

}

NOTE When pfm_test_case_async_start() is called, the test framework does not
execute the next test case until pfm_test_case_async_finished() is called.

Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 23
AY006UPD3-1/1.0/14-Jan-2021

6 Apptest
Apptest provides utilities to test the API calls in the Adapter Layer of the PDA. Apptest includes
an apptest demo application and an automation apptest script. This section describes both
and provides Apptest CLI Commands and Apptest ADA layer APIs.

6.1 Apptest Demo Application

The apptest demo application is an application layer test program running on the device. The
apptest demo provides test CLI commands that can set the property, show the property, and
show test results. When test CLI commands are called to set the property, apptest demo calls
property set ADA APIs.

 When apptest connects to the Ayla Cloud, apptest calls the ADA layer APIs to send a property
and get property updates from the cloud. Additionally, apptest does the following:

• Calls the schedule ADA APIs when schedules and schedule actions are set in the Ayla
Customer Dashboard.

• Calls log APIs when running and logging output.

• Calls OTA APIs when an OTA job is started in Ayla Customer Dashboard.

The ADA APIs can be tested manually by inputting test CLI commands to apptest demo, setting
schedule in Ayla Customer Dashboard, and starting an OTA job in the dashboard.

6.2 Automation Apptest Script

The automation apptest script is a python script that communicate with the apptest demo
program using a local pipeline or serial console. The script facilitates the testing of the ADA
APIs, so that the ADA APIs do not need to be tested manually.

The script sends CLI commands to the apptest demo program, parses the output buffer of the
commands, and gets the test results of ADA APIs. The tests include:

• prop ada API testing

• log ada API testing

• schedule ada API testing

• client ada API testing

• ota ada API testing

 Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 24
AY006UPD3-1/1.0/14-Jan-2021

6.3 Apptest CLI Commands

CLI Commands Description

test-show sys Shows the OEM and DSN information
test-show res Shows the test results
test-show prop Shows the property name and value
test-prop set <prop_name> <prop_val> Sets the value for the property whose name is

<prop_name>

6.4 Apptest ADA Layer APIs

ADA API API Description How to Test

ada_sprop_mgr_register Register a table of properties to
the sprop prop manager

Start apptest demo

ada_sprop_send Send property update Input the test-prop set input
202 CLI command in apptest demo,
and apptest demo sends output
property

ada_sprop_send_by_name Send a property update by
name

Input test-prop set decimal_in
88.5 CLI command in apptest demo,
and apptest demo sends
decimal_out property

ada_sprop_set_bool Set an ATLV_BOOL property
value to the value

Input test-prop set Blue_LED 1
CLI command in apptest demo

ada_sprop_get_bool Get an ATLV_BOOL type
property from the sprop
structure

Input test-prop get Blue_LED CLI
command in apptest demo

ada_sprop_set_int Set an ATLV_INT or
ATLV_CENTS property value

Input test-prop set input -101
CLI command in apptest demo

ada_sprop_get_int Get an ATLV_INT or
ATLV_CENTS type property from
the sprop structure

Input test-prop get input CLI
command in apptest demo

ada_sprop_set_uint Set an ATLV_UINT property
value to the value

Input test-prop set uinput 212
CLI command in apptest demo

ada_sprop_get_uint Get an ATLV_UINT type property
from the sprop structure

Input test-prop get uinput CLI
command in apptest demo

ada_sprop_set_string Set an ATLV_UTF8 property
value to the value

Input test-prop set cmd abc CLI
command in apptest demo

ada_sprop_get_string Get an ATLV_UTF8 type
property from the sprop
structure

Input test-prop get cmd CLI
command in apptest demo

ada_sprop_dest_mask Mask of currently-connected Start apptest demo, which gets the

Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 25
AY006UPD3-1/1.0/14-Jan-2021

ADA API API Description How to Test

destinations mask in main loop

ada_prop_mgr_register Property manager uses this to
register itself as a handler of
properties

Start apptest demo, and the prop
manager is registered during
initialization

ada_prop_mgr_ready Property manager reports that it
is ready to receive data

Start apptest demo, and the prop
manager is registered during
initialization

ada_prop_mgr_request Request a property value from
the ADS

Start apptest demo, then connect to
the ADS

ada_prop_mgr_send Post a property to ADS/app Apptest demo connects to the ADS,
then posts property outlet_pmgr to
the ADS using the property manager

send_done Callback to report
success/failure of property post
to ADS/apps

Apptest demo connects to the ADS,
and the send_done callback is called
after the property outlet_pmgr is sent
to the ADS

connect_status ADC reports a change in its
connectivity

Apptest demo connects to the ADS,
connect_status callback is called

prop_recv Receive property value from
ADS or app

Apptest demo connects to the ADS,
and then creates a new datapoint for
property uinput_pmgr in the Ayla
Customer Dashboard

client_reg_window_start Starts the registration window Apptest demo connects to the ADS for
the first time, the client_reg button
changes, and the registration window
begins

ada_init Initializes the ADA client
environment

Start apptest demo, and ada_init is
called during initialization

ada_client_up Starts the ADA client agent Input the up CLI command in apptest
demo

ada_client_down Shuts down the ADA client agent Inputs the down CLI command in
apptest demo

ada_sched_init Initializes schedules and
allocates space

Start apptest demo, and schedule init
is called during initialization

ada_sched_enable Turns on schedule handling Start apptest demo, and schedule
enable is called during initialization

ada_sched_set_name Sets the name of the schedule Start apptest demo, schedule set
name is called when loading schedule
configuration

ada_sched_get_index Gets the name and value for the
schedule

Start apptest demo, then set schedule
‘sched1’ in the Ayla Customer
Dashboard

ada_sched_set_index Sets the value for a schedule by
index

Start apptest demo, schedule set index
is called when loading schedule
configuration

ada_ota_register Registers the handler for OTA Start apptest demo, ota register is

 Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 26
AY006UPD3-1/1.0/14-Jan-2021

ADA API API Description How to Test

called during initialization

ada_ota_start Gives permission for OTA to
start

Uploads the OTA image and then
performs OTA in the Ayla Customer
Dashboard

ada_ota_report Report status of OTA update Uploads OTA image and then perform
OTA in the Ayla Customer Dashboard

log_info Sending information to log Start apptest demo, then connect to
ADS, and the virtual button
control info is logged

log_put Sending log in default mode Start apptest demo, then connects to
the ADS, and the button process is
logged.

Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 27
AY006UPD3-1/1.0/14-Jan-2021

7 Apptest Environment Setup
Setting up the apptest environment involves the following procedures (which are described in
this section):

• apptest demo app setup

• automation apptest script setup

• automation apptest script run

7.1 Apptest Demo App Setup Procedure

In the PDA source packet, the apptest demo is located in ayla/test/apptest/src. Follow these
steps to complete the setup:

1. Enter the OEM of apptest demo, which is apptestpwb.

2. Use conf-gen.py in platform/linux/utils/ to generate the config file of apptest demo.
For example:

./conf-gen.py --oem-key <oem_key> --region US ACxxx.xml <oem_id> apptestpwb

3. In the Ayla Developer Portal, enter the details of the template for apptest demo. Refer to
the following as an example:

a. Log in to the Ayla Developer Portal at https://developer.aylanetworks.com/, and
click View My Devices.

b. Click Templates, which is a tab across the top of the portal.

c. Click .

d. Fill in the details requested in the New Template dialog box. Following is an
example of this dialog box completed.

https://developer.aylanetworks.com/

 Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 28
AY006UPD3-1/1.0/14-Jan-2021

e. Click the Properties tab to show the PROPERTIES page where you can modify or
add template properties. Refer to the following example:

f. Click Schedules to show the SCHEDULES page to add or modify schedules. Refer
to the following example:

NOTE For more information on how to use the Ayla Developer Portal, refer to the Ayla
Developer Portal User Guide (AY006UDP3) on support.aylanetworks.com.

4. Enter the commands for the apptest demo. Following describes the commands:

• test-show sys

This command shows the OEM and DSN information. Following is an example:

PWB apptest> test-show sys

model = AY008PWB1

serial = AC000W001565370

oem = 0dfc7900

oem_model = apptestpwb

version = ADA 2.1.1-beta demo 2018-07-27 18:49:56 5069bb8

version_demo = 1.0-pwb

https://help.aylasupport.com/?b_id=11960

Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 29
AY006UPD3-1/1.0/14-Jan-2021

• test-show prop

This command shows the property name and its corresponding value. Following is
an example:

PWB apptest> test-show prop

oem_host_version = 1.0-pwb

version = ayla_apptest_demo 1.3 Jul 27 2018 21:42:37

Blue_button = 0

Blue_LED = 0

…...

• test-show res

This command shows the test results for the ADA APIs. Following is an example:

PWB apptest> test-show res

C610678 ada_sprop_mgr_register -> 0 (1) <none>

C610679 ada_sprop_send -> -99 (0) <not tested>

…...

• test-prop set <prop_name> <prop_value>

This command sets the value for the property whose name is prop_name. Following
is an example:

PWB apptest> test-prop set Blue_LED 1

[ada] 1236453 info: c mod: Blue_LED set to 1

5. Compile apptest demo:

a. In the PDA source packet, input the following commands to compile apptest demo:

make clean

make

b. Use the following command to run apptest demo:

make run EXEC=apptest

6. Make sure the apptest demo can be called anywhere:

Add the location of apptest to the PATH variable as follows:

export $PATH=$PATH:<location_apptest_bin>

 Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 30
AY006UPD3-1/1.0/14-Jan-2021

7.2 Automation Apptest Script Setup Procedure

The automation apptest script is an automation python script that communicates with the
apptest demo application using a local pipe or serial port. If the automation script
communicates with the device via the serial port, do the following:

1. Set localCmd to ‘’

2. Modify the port to serial port /dev/tty* in the file called:
~/automation_pda/automation_apptest_script/py/lib/TestCaseAda.py

Following is the setup procedure:

1. Install Ubuntu:

~$ lsb_release -a

Response:

No LSB modules are available.

Distributor ID: Ubuntu

Description: Ubuntu 12.04.5 LTS

Release: 12.04

Codename: precise

2. Install python3.6.2:

sudo apt-get install zlib1g

sudo apt-get install zlib1g-dev

wget https://www.python.org/ftp/python/3.6.2/Python-3.6.2.tar.xz

tar -xvf Python-3.6.2.tar.xz

cd Python-3.6.2

./configure

make

sudo make install

Install virtualenv and virtualenvwrapper as follows:

pip install virtualenv

pip install virtualenvwrapper

3. Create the virtual environment for the apptest automation script as follows:

a. Modify ~/.bashrc to use virtualenvwrapper. Add the following lines to
~/.bashrc:

export WORKON_HOME=$HOME/venv

export VIRTUALENVWRAPPER_PYTHON=/usr/local/bin/python3

. /usr/local/bin/virtualenvwrapper.sh

https://www.python.org/ftp/python/3.6.2/Python-3.6.2.tar.xz

Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 31
AY006UPD3-1/1.0/14-Jan-2021

b. Use the following commands to create virtualenv:

mkdir ~/venv

cd ~/venv

mkvirtualenv venv_automation_pda

4. Activate the virtual environment as follows:

source ~/venv/venv_automation_pda/bin/activate

5. Create pip.conf, and add config to it:

cd ~/.pip/

touch pip.conf

vi ~/.pip/pip.conf

[global]

index-url = http://pypi.douban.com/simple

trusted-host = pypi.douban.com

disable-pip-version-check = true

timeout = 120

6. Copy the automation script to the working directory, which must be:
~/automation_pda/automation_apptest_scrip.

mkdir ~/automation_pda

cp ayla/test/apptest/automation_apptest_script/ ~/automation_pda/ -a

cd ~/automation_pda/automation_apptest_script

7. Run testenv.sh to install the packages and init automation environment.

cd ~/automation_pda/automation_apptest_script/util

./testenv.sh

7.3 Automation Apptest Script Run Procedure

1. Open a new terminal in Ubuntu.

2. Make sure the apptest is located in /usr/bin, and the apptest program can be called in
the automation script.

3. Activate the virtual environment as follows:

source ~/venv/venv_automation_pda/bin/activate

4. Run the TestAdaSuilte.py automation script:

TestAdaSuilte.py located in
~/automation_pda/automation_apptest_script/py/ada.

5. Run the TestAdaSuilte.py automation script using the following command:

python3 TestAdaSuite.py

http://pypi.douban.com/simple

 Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 32
AY006UPD3-1/1.0/14-Jan-2021

6. Wait for the prompt and then perform corresponding actions in the Ayla Customer
Dashboard as follows:

a. Navigate and log in to the dashboard:

o US: https://dashboard.aylanetworks.com

o EU: https://dashboard-field-eu.aylanetworks.com/

o CN: https://dashboard.ayla.com.cn/

b. Create a new datapoint for the uinput_pmgr property in the dashboard:

1. Click Devices in the Navigation Panel on the left side of the dashboard.

2. Double-click the device that has the uinput_pmgr property.

3. Click PROPERTIES in the Device Navigation menu (see below).

4. Double-click the uinput_pmgr property on the Properties page.

5. Click CREATE DATAPOINT to create the new datapoint.

NOTE For more information on how to use the Ayla Customer Dashboard, refer to the
Ayla Customer Dashboard User Guide (AY006UDB3) on
support.aylanetworks.com.

You can view and change the value for this datapoint in the Ayla Developer Portal as
follows:

1. Log in to the Ayla Developer Portal at https://developer.aylanetworks.com/, and
click the Devices tab across the top of the portal.

2. Click the serial number of the device to open the PROPERTIES page.

3. Click the uinput_pmgr property under DISPLAY NAME to open the Details for
this property.

4. Click the click to update link in the Current Value field to open the dialog box to
view and change the value for the datapoint, as shown below:

https://dashboard.aylanetworks.com/
https://dashboard-field-eu.aylanetworks.com/
https://dashboard.ayla.com.cn/
https://help.aylasupport.com/?b_id=11960
https://developer.aylanetworks.com/

Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 33
AY006UPD3-1/1.0/14-Jan-2021

c. Configure the schedule, which in this example is sched1, in the Ayla Developer
Portal:

1. Log in to the Ayla Developer Portal at https://developer.aylanetworks.com/, and
click the Devices tab across the top of the portal.

2. Click the serial number of the device, which opens the PROPERTIES page.

3. Click the Schedules tab.

4. Click to open the New Schedule dialog box, fill in the details for your
schedule (as shown below), and then click OK.

d. Create and start an OTA job for apptest in the Ayla Customer Dashboard:

1. Navigate and log in to the dashboard:

o US: https://dashboard.aylanetworks.com

o EU: https://dashboard-field-eu.aylanetworks.com/

o CN: https://dashboard.ayla.com.cn/

2. Click OTA in the Navigation Panel on the left side of the dashboard.

https://developer.aylanetworks.com/
https://dashboard.aylanetworks.com/
https://dashboard-field-eu.aylanetworks.com/
https://dashboard.ayla.com.cn/

 Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 34
AY006UPD3-1/1.0/14-Jan-2021

3. Click the Host MCU Images tab (shown below).

4. Click CREATE (either button at the top or bottom of the page).

5. Enter all of the details for the New Host Image, and then click SAVE, which adds it
to the table listing on the Host MCU Image tab.

6. Click this new Host MCU image in the table listing to edit any of the details, as
shown below:

7. On the Host MCU Image tab, click the Create OTA job icon, , in the same row
as the new Host MCU image that you created in steps 3-6 above.

8. Enter all of the details for the OTA job in the Create Job dialog box (example
shown below), and then click CREATE.

9. Click the OTA Jobs tab, as shown below:

Ayla Portable Device Agent Porting Guide

© 2021 Ayla Networks, Inc. Proprietary 35
AY006UPD3-1/1.0/14-Jan-2021

10. Locate the new OTA job, and then click the Start OTA Job icon.

11. Click ACCEPT in the Confirmation dialog box that opens to start the OTA job.

e. Collect the test results when the automation script is finished. The test results are
located in ~/automation_pda/automation_apptest_script/logs. Collect the
following test results:

• TestAdaProp_xxx.tr

• TestAdaLog_xxx.tr

• TestAdaSched_xxx.tr

• TestAdaClient_xxx.tr

• TestAdaOta_xxx.tr

The log is shown in the following line:

{"case_id":610678, "status_id":1, "elapsed":"3s",
"comment":"Expected: <[0]>, got: <0>"}

Where status_id value 1 means success, and other value means failure.

680 N. McCarthy Blvd., Suite 100
Milpitas, CA 95054

Phone: +1 408 830 9844
Fax: +1 408 716 2621

	Copyright Statement
	Trademarks Statement
	Referenced Documents
	Contact Information
	Table of Contents
	1 Introduction
	1.1 Audience
	1.2 Related Documentation
	1.3 Document Conventions
	1.4 Abbreviations and Acronyms
	1.6 Glossary

	2 PDA Software Architecture
	2.1 PDA Architecture
	2.2 PDA Thread Model
	2.3 Adapter Layer
	2.4 Adapter Layer (AL) Interface List
	2.5 Source Code Organization

	3 Build and Run the Demo
	4 Porting the PDA
	4.1 Porting Tactic
	4.2 Porting Memory Manager
	4.3 Porting Thread and Lock
	4.4 Porting Clock
	4.5 Porting Netstream, Net TCP, and Net TLS
	4.6 Porting Interface of Random, SHA1, SHA256, AES, RSA
	4.7 Porting net-addr, net-if, net-udp
	4.8 Porting the ADA Thread

	5 Test the Framework and Auto-Test
	5.1 Using the altest Command
	5.2 Prepare altest-server
	5.3 Test Variables
	5.4 Writing Your Own Test Case

	6 Apptest
	6.1 Apptest Demo Application
	6.2 Automation Apptest Script
	6.3 Apptest CLI Commands
	6.4 Apptest ADA Layer APIs

	7 Apptest Environment Setup
	7.1 Apptest Demo App Setup Procedure
	7.2 Automation Apptest Script Setup Procedure
	7.3 Automation Apptest Script Run Procedure

