
Azure Synapse Analytics

James Serra

Data & AI Architect

Microsoft, NYC MTC

JamesSerra3@gmail.com

Blog: JamesSerra.com

About Me

 Microsoft, Big Data Evangelist

 In IT for 30 years, worked on many BI and DW projects

 Worked as desktop/web/database developer, DBA, BI and DW architect and developer, MDM

architect, PDW/APS developer

 Been perm employee, contractor, consultant, business owner

 Presenter at PASS Business Analytics Conference, PASS Summit, Enterprise Data World conference

 Certifications: MCSE: Data Platform, Business Intelligence; MS: Architecting Microsoft Azure

Solutions, Design and Implement Big Data Analytics Solutions, Design and Implement Cloud Data

Platform Solutions

 Blog at JamesSerra.com

 Former SQL Server MVP

 Author of book “Reporting with Microsoft SQL Server 2012”

Agenda

 Introduction

 Studio

 Data Integration

 SQL Analytics

 Data Storage and Performance Optimizations

 SQL On-Demand

 Spark

 Security

 Connected Services

Azure Synapse Analytics is a limitless analytics service, that brings together

enterprise data warehousing and Big Data analytics. It gives you the freedom

to query data on your terms, using either serverless on-demand or provisioned

resources, at scale. Azure Synapse brings these two worlds together with a

unified experience to ingest, prepare, manage, and serve data for immediate

business intelligence and machine learning needs.

Best in class price

per performance

Developer

productivity

Workload aware

query execution

Data flexibility

Up to 94% less expensive
than competitors

Manage heterogenous
workloads through

workload priorities and
isolation

Ingest variety of data
sources to derive the

maximum benefit.

Query all data.

Use preferred tooling for
SQL data warehouse

development

Industry-leading

security

Defense-in-depth

security and 99.9%

financially backed

availability SLA

Azure Synapse – SQL Analytics
focus areas

+ many more

Leveraging ISV partners with Azure Synapse Analytics

Power BI Azure Machine Learning

Azure Data Share Ecosystem

Azure Synapse Analytics

What workloads are NOT suitable?

• High frequency reads and writes.

• Large numbers of singleton

selects.

• High volumes of single row

inserts.

Operational workloads (OLTP)

• Row by row processing needs.

• Incompatible formats (XML).

Data Preparations

SQL

SQL

What Workloads are Suitable?

Store large volumes of data.

Consolidate disparate data into a single location.

Shape, model, transform and aggregate data.

Batch/Micro-batch loads.

Perform query analysis across large datasets.

Ad-hoc reporting across large data volumes.

All using simple SQL constructs.

Analytics

Azure Synapse Analytics
Integrated data platform for BI, AI and continuous intelligence

Platform

Azure

Data Lake Storage

Common Data Model

Enterprise Security

Optimized for Analytics

METASTORE

SECURITY

MANAGEMENT

MONITORING

DATA INTEGRATION

Analytics Runtimes

PROVISIONED ON-DEMAND

Form Factors

SQL

Languages

Python .NET Java Scala R

Experience Synapse Analytics Studio

Artificial Intelligence / Machine Learning / Internet of Things

Intelligent Apps / Business Intelligence

METASTORE

SECURITY

MANAGEMENT

MONITORING

Integrated data platform for BI, AI and continuous intelligence

Platform

Azure

Data Lake Storage

Common Data Model

Enterprise Security

Optimized for Analytics

METASTORE

SECURITY

MANAGEMENT

MONITORING

DATA INTEGRATION

Analytics Runtimes

PROVISIONED ON-DEMAND

Form Factors

SQL

Languages

Python .NET Java Scala R

Experience Synapse Analytics Studio

Artificial Intelligence / Machine Learning / Internet of Things

Intelligent Apps / Business Intelligence

Connected Services

Azure Data Catalog

Azure Data Lake Storage

Azure Data Share

Azure Databricks

Azure HDInsight

Azure Machine Learning

Power BI

3rd Party Integration

Provisioning Synapse workspace

Providing Synapse is easy

Subscription

Resource Group

Workspace Name

Region

Data Lake Storage Account

Synapse workspace

SQL pools

Apache Spark pools

Azure Synapse Analytics
Studio

Azure Synapse Analytics
Integrated data platform for BI, AI and continuous intelligence

Platform

Azure

Data Lake Storage

Common Data Model

Enterprise Security

Optimized for Analytics

METASTORE

SECURITY

MANAGEMENT

MONITORING

DATA INTEGRATION

Analytics Runtimes

PROVISIONED ON-DEMAND

Form Factors

SQL

Languages

Python .NET Java Scala R

Experience Synapse Analytics Studio

Artificial Intelligence / Machine Learning / Internet of Things

Intelligent Apps / Business Intelligence

METASTORE

SECURITY

MANAGEMENT

MONITORING

Studio
A single place for Data Engineers, Data Scientists, and IT Pros to collaborate on enterprise analytics

https://web.azuresynapse.net

https://web.azuresynapse.net/

Synapse Studio

Synapse Studio divided into Activity hubs.

These organize the tasks needed for building analytics solution.

Overview Data

Monitor Manage

Quick-access to common

gestures, most-recently used

items, and links to tutorials

and documentation.

Explore structured and

unstructured data

Centralized view of all resource

usage and activities in the

workspace.

Configure the workspace, pool,

access to artifacts

Develop

Write code and the define

business logic of the pipeline

via notebooks, SQL scripts,

Data flows, etc.

Orchestrate

Design pipelines that that

move and transform data.

Synapse Studio
Overview hub

Overview Hub

It is a starting point for the activities with key links to tasks, artifacts and documentation

Overview Hub

Overview

New dropdown – offers quickly start work
item

Recent & Pinned – Lists recently opened
code artifacts. Pin selected ones for quick
access

Synapse Studio
Data hub

Data Hub

Explore data inside the workspace and in linked storage accounts

Data Hub – Storage accounts

Browse Azure Data Lake Storage Gen2 accounts and filesystems – navigate through folders to see data

ADLS Gen2 Account

Container (filesystem)

Filepath

Data Hub – Storage accounts

Preview a sample of your data

Data Hub – Storage accounts

See basic file properties

Data Hub – Storage accounts

Manage Access - Configure standard POSIX ACLs on files and folders

Data Hub – Storage accounts

Two simple gestures to start analyzing with SQL scripts or with notebooks.

T-SQL or PySpark auto-generated.

Data Hub – Storage accounts

SQL Script from Multiple files

Multi-select of files generates a SQL script that analyzes all those files together

Data Hub –Databases

Explore the different kinds of databases that exist in a workspace.

SQL pool

SQL on-demand

Spark

Data Hub –Databases

Familiar gesture to generate T-SQL scripts from SQL
metadata objects such as tables.

Starting from a table, auto-generate a single line of PySpark code

that makes it easy to load a SQL table into a Spark dataframe

Data Hub –Datasets

Orchestration datasets describe data that is persisted. Once a dataset is defined, it can be used in pipelines and

sources of data or as sinks of data.

Synapse Studio
Develop hub

Develop Hub

Overview

It provides development experience to
query, analyze, model data

Benefits

Multiple languages to analyze data
under one umbrella

Switch over notebooks and scripts
without loosing content

Code intellisense offers reliable code
development

Create insightful visualizations

Develop Hub - SQL scripts

SQL Script

Authoring SQL Scripts

Execute SQL script on provisioned SQL Pool or SQL
On-demand

Publish individual SQL script or multiple SQL
scripts through Publish all feature

Language support and intellisense

Develop Hub - SQL scripts

SQL Script

View results in Table or Chart form and export results in
several popular formats

Develop Hub - Notebooks

Notebooks

Allows to write multiple languages in one
notebook

%%<Name of language>

Offers use of temporary tables across
languages

Language support for Syntax highlight, syntax
error, syntax code completion, smart indent,
code folding

Export results

Develop Hub - Notebooks

Configure session allows developers to control how many resources

are devoted to running their notebook.

Develop Hub - Notebooks

As notebook cells run, the underlying

Spark application status is shown.

Providing immediate feedback and

progress tracking.

Dataflow Capabilities

Handle upserts, updates,

deletes on sql sinks
Add new partition methods Add schema drift support

Add file handling (move files

after read, write files to file

names described in rows etc)

New inventory of functions

(for e.g Hash functions for

row comparison)

Commonly used ETL

patterns(Sequence

generator/Lookup

transformation/SCD…)

Data lineage – Capturing sink

column lineage & impact

analysis(invaluable if this is

for enterprise deployment)

Implement commonly used

ETL patterns as

templates(SCD Type1, Type2,

Data Vault)

Develop Hub - Data Flows

Data flows are a visual way of specifying how to transform data.

Provides a code-free experience.

Develop Hub – Power BI

Overview

Create Power BI reports in the workspace

Provides access to published reports in the
workspace

Update reports real time from Synapse
workspace to get it reflected on Power BI
service

Visually explore and analyze data

Develop Hub – Power BI

View published reports in Power BI workspace

Develop Hub – Power BI

Edit reports in Synapse workspace

Publish changes by simple save
report in workspace

Develop Hub – Power BI

Publish edited reports in Synapse workspace to Power BI workspace

Real-time publish on save

Synapse Studio
Orchestrate hub

Orchestrate Hub

It provides ability to create pipelines to ingest, transform and load data with 90+ inbuilt connectors.

Offers a wide range of activities that a pipeline can perform.

Synapse Studio
Monitor hub

Monitor Hub

Overview

This feature provides ability to monitor orchestration, activities and compute resources.

Monitoring Hub - Orchestration

Overview

Monitor orchestration in the Synapse workspace for the
progress and status of pipeline

Benefits

Track all/specific pipelines

Monitor pipeline run and activity run details

Find the root cause of pipeline failure or activity failure

Monitoring Hub - Spark applications

Overview

Monitor Spark pools, Spark applications for the progress and
status of activities

Benefits

Monitor Spark pools for the status as paused, active,
resume, scaling and upgrading

Track the usage of resources

Synapse Studio
Manage hub

Manage Hub

Overview

This feature provides ability to manage Linked Services, Orchestration and Security.

Manage – Linked services

Overview

It defines the connection information needed to

connect to external resources.

Benefits

Offers pre-build 90+ connectors

Easy cross platform data migration

Represents data store or compute resources

Manage –Access Control

Overview

It provides access control management to workspace

resources and artifacts for admin and users

Benefits

Share workspace with the team

Increases productivity

Manage permissions on code artifacts and Spark

pools

Manage – Triggers

Overview

It defines a unit of processing that determines when a

pipeline execution needs to be kicked off.

Benefits

Create and manage

• Schedule trigger

• Tumbling window trigger

• Event trigger

Control pipeline execution

Manage – Integration runtimes

Overview

Integration runtimes are the compute infrastructure used by

Pipelines to provide the data integration capabilities across

different network environments. An integration runtime

provides the bridge between the activity and linked services.

Benefits

Offers Azure Integration Runtime or Self-Hosted Integration

Runtime

Azure Integration Runtime – provides fully managed,

serverless compute in Azure

Self-Hosted Integration Runtime – use compute resources in

on-premises machine or a VM inside private network

Azure Synapse Analytics
Data Integration

Azure Synapse Analytics
Integrated data platform for BI, AI and continuous intelligence

Platform

Azure

Data Lake Storage

Common Data Model

Enterprise Security

Optimized for Analytics

METASTORE

SECURITY

MANAGEMENT

MONITORING

DATA INTEGRATION

Analytics Runtimes

PROVISIONED ON-DEMAND

Form Factors

SQL

Languages

Python .NET Java Scala R

Experience Synapse Analytics Studio

Artificial Intelligence / Machine Learning / Internet of Things

Intelligent Apps / Business Intelligence

METASTORE

SECURITY

MANAGEMENT

MONITORING

Azure

Integration Runtime

Command and Control

L E G E N D

Data

Orchestration @ Scale

Trigger Pipeline

Activity Activity

Activity Activity

Activity

Self-hosted

Integration Runtime

Linked

Service

Data Movement

Scalable

per job elasticity

Up to 4 GB/s

Simple

Visually author or via code (Python, .Net, etc.)

Serverless, no infrastructure to manage

Access all your data

90+ connectors provided and growing (cloud, on premises, SaaS)

Data Movement as a Service: 25 points of presence worldwide

Self-hostable Integration Runtime for hybrid movement

Azure (15) Database & DW (26) File Storage (6)
File

Formats(6)
NoSQL (3) Services and App (28) Generic (4)

Blob storage Amazon Redshift Oracle Amazon S3 AVRO Cassandra Amazon MWS Oracle Service Cloud Generic HTTP

Cosmos DB - SQL API DB2 Phoenix File system Binary Couchbase CDS for Apps PayPal Generic OData

Cosmos DB - MongoDB

API
Drill PostgreSQL FTP Delimited Text MongoDB Concur QuickBooks Generic ODBC

Data Explorer
Google

BigQuery
Presto

Google Cloud

Storage
JSON Dynamics 365 Salesforce Generic REST

Data Lake Storage Gen1 Greenplum
SAP BW Open

Hub
HDFS ORC Dynamics AX SF Service Cloud

Data Lake Storage Gen2 HBase SAP BW via MDX SFTP Parquet Dynamics CRM SF Marketing Cloud

Database for MariaDB Hive SAP HANA Google AdWords SAP C4C

Database for MySQL Apache Impala SAP table HubSpot SAP ECC

Database for PostgreSQL Informix Spark Jira ServiceNow

File Storage MariaDB SQL Server Magento Shopify

SQL Database Microsoft Access Sybase Marketo Square

SQL Database MI MySQL Teradata Office 365 Web table

SQL Data Warehouse Netezza Vertica Oracle Eloqua Xero

Search index Oracle Responsys Zoho

Table storage

90+ Connectors out of the box

Pipelines

Overview

It provides ability to load data from storage

account to desired linked service. Load data by

manual execution of pipeline or by

orchestration

Benefits

Supports common loading patterns

Fully parallel loading into data lake or SQL

tables

Graphical development experience

Prep & Transform Data

Mapping Dataflow

Code free data transformation @scale

Wrangling Dataflow

Code free data preparation @scale

Triggers

Overview

Triggers represent a unit of processing that
determines when a pipeline execution needs to be
kicked off.

Data Integration offers 3 trigger types as –

1. Schedule – gets fired at a schedule with
information of start date, recurrence, end date

2. Event – gets fired on specified event

3. Tumbling window – gets fired at a periodic time
interval from a specified start date, while
retaining state

It also provides ability to monitor pipeline runs and
control trigger execution.

Manage – Linked Services

Overview

It defines the connection information needed for

Pipeline to connect to external resources.

Benefits

Offers pre-build 85+ connectors

Easy cross platform data migration

Represents data store or compute resources

NOTE: Linked Services are all for Data Integration

except for Power BI (eventually ADC, Databricks)

Manage – Integration runtimes

Overview

It is the compute infrastructure used by Pipelines to provide

the data integration capabilities across different network

environments. An integration runtime provides the bridge

between the activity and linked Services.

Benefits

Offers Azure Integration Runtime or Self-Hosted Integration

Runtime

Azure Integration Runtime – provides fully managed,

serverless compute in Azure

Self-Hosted Integration Runtime – use compute resources in

on-premises machine or a VM inside private network

Azure Synapse Analytics
SQL Analytics

Azure Synapse Analytics
Integrated data platform for BI, AI and continuous intelligence

Platform

Azure

Data Lake Storage

Common Data Model

Enterprise Security

Optimized for Analytics

METASTORE

SECURITY

MANAGEMENT

MONITORING

DATA INTEGRATION

Analytics Runtimes

PROVISIONED ON-DEMAND

Form Factors

SQL

Languages

Python .NET Java Scala R

Experience Synapse Analytics Studio

Artificial Intelligence / Machine Learning / Internet of Things

Intelligent Apps / Business Intelligence

METASTORE

SECURITY

MANAGEMENT

MONITORING

Platform: Performance

Overview

SQL Data Warehouse’s industry leading price-performance

comes from leveraging the Azure ecosystem and core SQL

Server engine improvements to produce massive gains in

performance.

These benefits require no customer configuration and are

provided out-of-the-box for every data warehouse

• Gen2 adaptive caching – using non-volatile memory solid-

state drives (NVMe) to increase the I/O bandwidth

available to queries.

• Azure FPGA-accelerated networking enhancements – to

move data at rates of up to 1GB/sec per node to improve

queries

• Instant data movement – leverages multi-core parallelism

in underlying SQL Servers to move data efficiently between

compute nodes.

• Query Optimization – ongoing investments in distributed

query optimization

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 2215

The first and only

analytics system to have

run all TPC-H queries

at petabyte-scale

TPC-H queries

TPC-H 1 Petabyte query times

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17 18 19 20 21 2215

Azure Synapse is the first

and only analytics

system to have run all

TPC-H queries at 1

petabyte-scale

TPC-H queries

TPC-H 1 Petabyte Query Execution

Comprehensive SQL functionality

T-SQL Querying

• Windowing aggregates

• Approximate execution

(Hyperloglog)

• JSON data support

Advanced storage system

• Columnstore Indexes

• Table partitions

• Distributed tables

• Isolation modes

• Materialized Views

• Nonclustered Indexes

• Result-set caching

Complete SQL object model

• Tables

• Views

• Stored procedures

• Functions

Azure Synapse Analytics > SQL >

OVER clause

Defines a window or specified set of rows within a query

result set

Computes a value for each row in the window

Aggregate functions

COUNT, MAX, AVG, SUM, APPROX_COUNT_DISTINCT,

MIN, STDEV, STDEVP, STRING_AGG, VAR, VARP,

GROUPING, GROUPING_ID, COUNT_BIG, CHECKSUM_AGG

Ranking functions

RANK, NTILE, DENSE_RANK, ROW_NUMBER

Analytical functions

LAG, LEAD, FIRST_VALUE, LAST_VALUE, CUME_DIST,

PERCENTILE_CONT, PERCENTILE_DISC, PERCENT_RANK

ROWS | RANGE

PRECEDING, UNBOUNDING PRECEDING, CURRENT ROW,

BETWEEN, FOLLOWING, UNBOUNDED FOLLOWING

Windowing functions
SELECT

ROW_NUMBER() OVER(PARTITION BY PostalCode ORDER BY SalesYTD DESC
) AS "Row Number",

LastName,
SalesYTD,
PostalCode

FROM Sales
WHERE SalesYTD <> 0
ORDER BY PostalCode;

Row Number LastName SalesYTD PostalCode

1 Mitchell 4251368.5497 98027

2 Blythe 3763178.1787 98027

3 Carson 3189418.3662 98027

4 Reiter 2315185.611 98027

5 Vargas 1453719.4653 98027

6 Ansman-Wolfe 1352577.1325 98027

1 Pak 4116870.2277 98055

2 Varkey Chudukaktil 3121616.3202 98055

3 Saraiva 2604540.7172 98055

4 Ito 2458535.6169 98055

5 Valdez 1827066.7118 98055

6 Mensa-Annan 1576562.1966 98055

7 Campbell 1573012.9383 98055

8 Tsoflias 1421810.9242 98055

Azure Synapse Analytics > SQL >

Analytical functions

LAG, LEAD, FIRST_VALUE, LAST_VALUE, CUME_DIST,

PERCENTILE_CONT, PERCENTILE_DISC, PERCENT_RANK

Windowing Functions (continued)

--LAG Function

SELECT BusinessEntityID,

YEAR(QuotaDate) AS SalesYear,

SalesQuota AS CurrentQuota,

LAG(SalesQuota, 1,0) OVER (ORDER BY YEAR(QuotaDate)) AS PreviousQuota

FROM Sales.SalesPersonQuotaHistory

WHERE BusinessEntityID = 275 and YEAR(QuotaDate) IN ('2005','2006');

BusinessEntityID SalesYear CurrentQuota PreviousQuota

---------------- ----------- --------------------- ---------------------

275 2005 367000.00 0.00

275 2005 556000.00 367000.00

275 2006 502000.00 556000.00

275 2006 550000.00 502000.00

275 2006 1429000.00 550000.00

275 2006 1324000.00 1429000.00

-- PERCENTILE_CONT, PERCENTILE_DISC

SELECT DISTINCT Name AS DepartmentName

,PERCENTILE_CONT(0.5) WITHIN GROUP (ORDER BY ph.Rate)

OVER (PARTITION BY Name) AS MedianCont

,PERCENTILE_DISC(0.5) WITHIN GROUP (ORDER BY ph.Rate)

OVER (PARTITION BY Name) AS MedianDisc

FROM HumanResources.Department AS d

INNER JOIN HumanResources.EmployeeDepartmentHistory AS dh

ON dh.DepartmentID = d.DepartmentID

INNER JOIN HumanResources.EmployeePayHistory AS ph

ON ph.BusinessEntityID = dh.BusinessEntityID

WHERE dh.EndDate IS NULL;

DepartmentName MedianCont MedianDisc

-------------------- ------------- -------------

Document Control 16.8269 16.8269

Engineering 34.375 32.6923

Executive 54.32695 48.5577

Human Resources 17.427850 16.5865

Azure Synapse Analytics > SQL >

Windowing Functions (continued)

ROWS | RANGE

PRECEDING, UNBOUNDING PRECEDING, CURRENT ROW,

BETWEEN, FOLLOWING, UNBOUNDED FOLLOWING

-- First_Value

SELECT JobTitle, LastName, VacationHours AS VacHours,

FIRST_VALUE(LastName) OVER (PARTITION BY JobTitle

ORDER BY VacationHours ASC ROWS UNBOUNDED PRECEDING) AS

FewestVacHours

FROM HumanResources.Employee AS e

INNER JOIN Person.Person AS p

ON e.BusinessEntityID = p.BusinessEntityID

ORDER BY JobTitle;

JobTitle LastName VacHours FewestVacHours

--------------------------------- ---------------- ---------- -------------------

Accountant Moreland 58 Moreland

Accountant Seamans 59 Moreland

Accounts Manager Liu 57 Liu

Accounts Payable Specialist Tomic 63 Tomic

Accounts Payable Specialist Sheperdigian 64 Tomic

Accounts Receivable Specialist Poe 60 Poe

Accounts Receivable Specialist Spoon 61 Poe

Accounts Receivable Specialist Walton 62 Poe

Azure Synapse Analytics > SQL >

-- Syntax

APPROX_COUNT_DISTINCT (expression)

-- The approximate number of different order keys by order status from the orders table.

SELECT O_OrderStatus, APPROX_COUNT_DISTINCT(O_OrderKey) AS Approx_Distinct_OrderKey

FROM dbo.Orders

GROUP BY O_OrderStatus

ORDER BY O_OrderStatus;

HyperLogLog accuracy

Will return a result with a 2% accuracy of true cardinality on average.

e.g. COUNT (DISTINCT) returns 1,000,000, HyperLogLog will return a value in the range of 999,736 to 1,016,234.

APPROX_COUNT_DISTINCT

Returns the approximate number of unique non-null values in a group.

Use Case: Approximating web usage trend behavior

Approximate execution

Azure Synapse Analytics > SQL >

APPROX_COUNT_DISTINCT

Approximate execution

COUNT DISTINCT

Azure Synapse Analytics > SQL >

Group by with rollup

Creates a group for each combination of column expressions.

Rolls up the results into subtotals and grand totals

Calculate the aggregates of hierarchical data

Grouping sets

Combine multiple GROUP BY clauses into one GROUP BY CLAUSE.

Equivalent of UNION ALL of specified groups.

Group by options

-- GROUP BY ROLLUP Example --

SELECT Country,

Region,

SUM(Sales) AS TotalSales

FROM Sales

GROUP BY ROLLUP (Country, Region);

-- Results --

Country Region TotalSales

Canada Alberta 100

Canada British Columbia 500

Canada NULL 600

United States Montana 100

United States NULL 100

NULL NULL 700

Azure Synapse Analytics > SQL >

-- GROUP BY SETS Example --

SELECT Country,

SUM(Sales) AS TotalSales

FROM Sales

GROUP BY GROUPING SETS (Country, ());

Overview

Specifies that statements cannot read data that has been modified but

not committed by other transactions.

This prevents dirty reads.

Isolation level

• READ COMMITTED

• REPEATABLE READ

• SERIALIZABLE

• READ UNCOMMITTED

READ_COMMITTED_SNAPSHOT

OFF (Default) – Uses shared locks to prevent other transactions from

modifying rows while running a read operation

ON – Uses row versioning to present each statement with a

transactionally consistent snapshot of the data as it existed at the start of

the statement. Locks are not used to protect the data from updates.

Snapshot isolation

ALTER DATABASE MyDatabase

SET ALLOW_SNAPSHOT_ISOLATION ON

ALTER DATABASE MyDatabase SET

READ_COMMITTED_SNAPSHOT ON

Azure Synapse Analytics > SQL >

Overview

The JSON format enables representation of

complex or hierarchical data structures in tables.

JSON data is stored using standard NVARCHAR

table columns.

Benefits

Transform arrays of JSON objects into table

format

Performance optimization using clustered

columnstore indexes and memory optimized

tables

JSON data support – insert JSON data

-- Create Table with column for JSON string
CREATE TABLE CustomerOrders

(

CustomerId BIGINT NOT NULL,

Country NVARCHAR(150) NOT NULL,

OrderDetails NVARCHAR(3000) NOT NULL –- NVARCHAR column for JSON

) WITH (DISTRIBUTION = ROUND_ROBIN)

-- Populate table with semi-structured data

INSERT INTO CustomerOrders

VALUES

(101, -- CustomerId

'Bahrain', -- Country

N'[{ StoreId": "AW73565",

"Order": { "Number":"SO43659",

"Date":"2011-05-31T00:00:00"

},

"Item": { "Price":2024.40, "Quantity":1 }

}]’ -- OrderDetails

)

Azure Synapse Analytics > SQL >

Overview

Read JSON data stored in a string column with the

following:

• ISJSON – verify if text is valid JSON

• JSON_VALUE – extract a scalar value from a JSON

string

• JSON_QUERY – extract a JSON object or array from a

JSON string

Benefits

Ability to get standard columns as well as JSON column

Perform aggregation and filter on JSON values

JSON data support – read JSON data

Azure Synapse Analytics > SQL >

-- Return all rows with valid JSON data
SELECT CustomerId, OrderDetails
FROM CustomerOrders
WHERE ISJSON(OrderDetails) > 0;

CustomerId OrderDetails

101
N'[{ StoreId": "AW73565", "Order": { "Number":"SO43659",
"Date":"2011-05-31T00:00:00“ }, "Item": { "Price":2024.40,
"Quantity":1 }}]'

-- Extract values from JSON string
SELECT CustomerId,

Country,
JSON_VALUE(OrderDetails,'$.StoreId') AS StoreId,
JSON_QUERY(OrderDetails,'$.Item') AS ItemDetails

FROM CustomerOrders;

CustomerId Country StoreId ItemDetails

101 Bahrain AW73565 { "Price":2024.40, "Quantity":1 }

Overview

Use standard table columns and values from JSON text

in the same analytical query.

Modify JSON data with the following:

• JSON_MODIFY – modifies a value in a JSON string

• OPENJSON – convert JSON collection to a set of

rows and columns

Benefits

Flexibility to update JSON string using T-SQL

Convert hierarchical data into flat tabular structure

JSON data support –modify and operate on JSON data

-- Modify Item Quantity value
UPDATE CustomerOrders SET OrderDetails =
JSON_MODIFY(OrderDetails, '$.OrderDetails.Item.Quantity',2)

Azure Synapse Analytics > SQL >

-- Convert JSON collection to rows and columns
SELECT CustomerId,

StoreId,
OrderDetails.OrderDate,
OrderDetails.OrderPrice

FROM CustomerOrders
CROSS APPLY OPENJSON (CustomerOrders.OrderDetails)
WITH (StoreId VARCHAR(50) '$.StoreId',

OrderNumber VARCHAR(100) '$.Order.Date',
OrderDate DATETIME '$.Order.Date',
OrderPrice DECIMAL ‘$.Item.Price',
OrderQuantity INT '$.Item.Quantity'

) AS OrderDetails

OrderDetails

N'[{ StoreId": "AW73565", "Order": { "Number":"SO43659",
"Date":"2011-05-31T00:00:00“ }, "Item": { "Price":2024.40, "Quantity": 2}}]'

CustomerId StoreId OrderDate OrderPrice

101 AW73565 2011-05-31T00:00:00 2024.40

Overview

It is a group of one or more SQL statements or a

reference to a Microsoft .NET Framework

common runtime language (CLR) method.

Promotes flexibility and modularity.

Supports parameters and nesting.

Benefits

Reduced server/client network traffic, improved

performance

Stronger security

Easy maintenance

Stored Procedures

CREATE PROCEDURE HumanResources.uspGetAllEmployees
AS

SET NOCOUNT ON;
SELECT LastName, FirstName, JobTitle, Department
FROM HumanResources.vEmployeeDepartment;

GO

-- Execute a stored procedures
EXECUTE HumanResources.uspGetAllEmployees;
GO
-- Or
EXEC HumanResources.uspGetAllEmployees;
GO
-- Or, if this procedure is the first statement
within a batch:
HumanResources.uspGetAllEmployees;

Azure Synapse Analytics > SQL >

Azure Synapse Analytics
Data Storage and Performance Optimizations

Columnar Storage Columnar Ordering

Table Partitioning Hash Distribution

Database Tables

Optimized Storage
Reduce Migration Risk

Less Data Scanned

Smaller Cache Required

Smaller Clusters

Faster Queries

Nonclustered Indexes

-- Create table with index

CREATE TABLE orderTable

(

OrderId INT NOT NULL,

Date DATE NOT NULL,

Name VARCHAR(2),

Country VARCHAR(2)

)

WITH

(

CLUSTERED COLUMNSTORE INDEX |

HEAP |
CLUSTERED INDEX (OrderId)

);

-- Add non-clustered index to table

CREATE INDEX NameIndex ON orderTable (Name);

Clustered Columnstore index (Default Primary)

Highest level of data compression

Best overall query performance

Clustered index (Primary)

Performant for looking up a single to few rows

Heap (Primary)

Faster loading and landing temporary data

Best for small lookup tables

Nonclustered indexes (Secondary)

Enable ordering of multiple columns in a table

Allows multiple nonclustered on a single table

Can be created on any of the above primary indexes

More performant lookup queries

Tables – Indexes

Azure Synapse Analytics > SQL >

OrderId Date Name Country

98137 11-3-2018 T FR

98310 11-3-2018 D DE

98799 11-3-2018 R NL

OrderId Date Name Country

82147 11-2-2018 Q FR

85016 11-2-2018 V UK

85018 11-2-2018 Q SP

OrderId Date Name Country

85016 11-2-2018 V UK

85018 11-2-2018 Q SP

85216 11-2-2018 Q DE

85395 11-2-2018 V NL

82147 11-2-2018 Q FR

86881 11-2-2018 D UK

93080 11-3-2018 R UK

94156 11-3-2018 S FR

96250 11-3-2018 Q NL

98799 11-3-2018 R NL

98015 11-3-2018 T UK

98310 11-3-2018 D DE

98979 11-3-2018 Z DE

98137 11-3-2018 T FR

… … … …

Logical table structure

OrderId

82147

85016

85018

85216

85395

Date

11-2-2018

Country

FR

UK

SP

DE

NL

Name

Q

V

Rowgroup1

Min (OrderId): 82147 | Max (OrderId): 85395

OrderId Date Name Country

98137 11-3-2018 T FR

98310 11-3-2018 D DE

98799 11-3-2018 R NL

98979 11-3-2018 Z DE

Delta Rowstore

Azure Synapse Analytics > SQL >

SQL Analytics Columnstore Tables

Clustered columnstore index
(OrderId)

…

• Data stored in compressed columnstore segments after

being sliced into groups of rows (rowgroups/micro-

partitions) for maximum compression

• Rows are stored in the delta rowstore until the number of

rows is large enough to be compressed into a

columnstore

Clustered/Non-clustered rowstore index
(OrderId)

• Data is stored in a B-tree index structure for performant

lookup queries for particular rows.

• Clustered rowstore index: The leaf nodes in the structure

store the data values in a row (as pictured above)

• Non-clustered (secondary) rowstore index: The leaf nodes

store pointers to the data values, not the values

themselves

+

OrderId PageId

82147 1001

98137 1002

OrderId PageId

82147 1005

85395 1006

OrderId PageId

98137 1007

98979 1008

OrderId Date Name Country

82147 11-2-2018 Q FR

85016 11-2-2018 V UK

85018 11-2-2018 Q SP

OrderId Date Name Country

98137 11-3-2018 T FR

98310 11-3-2018 D DE

98799 11-3-2018 R NL

… …

Overview

Queries against tables with ordered columnstore segments can

take advantage of improved segment elimination to drastically

reduce the time needed to service a query.

Ordered Clustered Columnstore Indexes

Azure Synapse Analytics > SQL >

-- Insert data into table with ordered columnstore index

INSERT INTO sortedOrderTable

VALUES (1, '01-01-2019','Dave’, 'UK')
-- Create Table with Ordered Columnstore Index

CREATE TABLE sortedOrderTable

(

OrderId INT NOT NULL,

Date DATE NOT NULL,

Name VARCHAR(2),

Country VARCHAR(2)

)

WITH

(

CLUSTERED COLUMNSTORE INDEX ORDER (OrderId)

)

-- Create Clustered Columnstore Index on existing table

CREATE CLUSTERED COLUMNSTORE INDEX cciOrderId

ON dbo.OrderTable ORDER (OrderId)

CREATE TABLE dbo.OrderTable

(

OrderId INT NOT NULL,

Date DATE NOT NULL,

Name VARCHAR(2),

Country VARCHAR(2)

)

WITH
(

CLUSTERED COLUMNSTORE INDEX,
DISTRIBUTION = HASH([OrderId]) |

ROUND ROBIN |
REPLICATED

);

Round-robin distributed

Distributes table rows evenly across all distributions

at random.

Hash distributed

Distributes table rows across the Compute nodes by

using a deterministic hash function to assign each

row to one distribution.

Replicated

Full copy of table accessible on each Compute node.

Tables –Distributions

Azure Synapse Analytics > SQL >

CREATE TABLE partitionedOrderTable

(

OrderId INT NOT NULL,

Date DATE NOT NULL,

Name VARCHAR(2),

Country VARCHAR(2)

)

WITH
(

CLUSTERED COLUMNSTORE INDEX,
DISTRIBUTION = HASH([OrderId]),
PARTITION (
[Date] RANGE RIGHT FOR VALUES (
'2000-01-01', '2001-01-01', '2002-01-01’,
'2003-01-01', '2004-01-01', '2005-01-01'
)

)
);

Overview

Table partitions divide data into smaller groups

In most cases, partitions are created on a date column

Supported on all table types

RANGE RIGHT – Used for time partitions

RANGE LEFT – Used for number partitions

Benefits

Improves efficiency and performance of loading and

querying by limiting the scope to subset of data.

Offers significant query performance enhancements

where filtering on the partition key can eliminate

unnecessary scans and eliminate IO.

Tables – Partitions

Azure Synapse Analytics > SQL >

OrderId Date Name Country

85016 11-2-2018 V UK

85018 11-2-2018 Q SP

85216 11-2-2018 Q DE

85395 11-2-2018 V NL

82147 11-2-2018 Q FR

86881 11-2-2018 D UK

93080 11-3-2018 R UK

94156 11-3-2018 S FR

96250 11-3-2018 Q NL

98799 11-3-2018 R NL

98015 11-3-2018 T UK

98310 11-3-2018 D DE

98979 11-3-2018 Z DE

98137 11-3-2018 T FR

… … … …

Logical table structure

Azure Synapse Analytics > SQL >

Tables –Distributions & Partitions

Physical data distribution
(Hash distribution (OrderId), Date partitions)

OrderId Date Name Country

85016 11-2-2018 V UK

85018 11-2-2018 Q SP

85216 11-2-2018 Q DE

85395 11-2-2018 V NL

82147 11-2-2018 Q FR

86881 11-2-2018 D UK

… … … …

OrderId Date Name Country

93080 11-3-2018 R UK

94156 11-3-2018 S FR

96250 11-3-2018 Q NL

98799 11-3-2018 R NL

98015 11-3-2018 T UK

98310 11-3-2018 D DE

98979 11-3-2018 Z DE

98137 11-3-2018 T FR

… … … …

11-2-2018 partition

11-3-2018 partition

x 60 distributions (shards)

Distribution1

(OrderId 80,000 – 100,000)

…

• Each shard is partitioned with the same

date partitions

• A minimum of 1 million rows per

distribution and partition is needed for

optimal compression and performance of

clustered Columnstore tables

Common table distribution methods

Table Category Recommended Distribution Option

Fact

Use hash-distribution with clustered columnstore index. Performance improves because hashing enables the

platform to localize certain operations within the node itself during query execution.

Operations that benefit:

COUNT(DISTINCT(<hashed_key>))

OVER PARTITION BY <hashed_key>

most JOIN <table_name> ON <hashed_key>

GROUP BY <hashed_key>

Dimension Use replicated for smaller tables. If tables are too large to store on each Compute node, use hash-distributed.

Staging
Use round-robin for the staging table. The load with CTAS is faster. Once the data is in the staging table, use

INSERT…SELECT to move the data to production tables.

Azure Synapse Analytics > SQL >

Database Views

Materialized Views

Views

Best in class price

performance

Interactive dashboarding with

Materialized Views

- Automatic data refresh and maintenance

- Automatic query rewrites to improve performance

- Built-in advisor

Overview

A materialized view pre-computes, stores, and maintains its

data like a table.

Materialized views are automatically updated when data in

underlying tables are changed. This is a synchronous

operation that occurs as soon as the data is changed.

The auto caching functionality allows Azure Synapse

Analytics Query Optimizer to consider using indexed view

even if the view is not referenced in the query.

Supported aggregations: MAX, MIN, AVG, COUNT,

COUNT_BIG, SUM, VAR, STDEV

Benefits

Automatic and synchronous data refresh with data changes

in base tables. No user action is required.

High availability and resiliency as regular tables

Materialized views
-- Create indexed view
CREATE MATERIALIZED VIEW Sales.vw_Orders
WITH
(

DISTRIBUTION = ROUND_ROBIN |
HASH(ProductID)

)
AS

SELECT SUM(UnitPrice*OrderQty) AS Revenue,
OrderDate,
ProductID,
COUNT_BIG(*) AS OrderCount

FROM Sales.SalesOrderDetail
GROUP BY OrderDate, ProductID;

GO

-- Disable index view and put it in suspended mode
ALTER INDEX ALL ON Sales.vw_Orders DISABLE;

-- Re-enable index view by rebuilding it
ALTER INDEX ALL ON Sales.vw_Orders REBUILD;

Azure Synapse Analytics > SQL >

In this example, a query to get the year total sales per customer is shown to

have a lot of data shuffles and joins that contribute to slow performance:

Materialized views - example

-- Get year total sales per customer
(WITH year_total AS

SELECT customer_id,
first_name,
last_name,
birth_country,
login,
email_address ,
d_year,
SUM(ISNULL(list_price – wholesale_cost –
discount_amt + sales_price, 0)/2)year_total

FROM customer cust
JOIN catalog_sales sales ON cust.sk = sales.sk
JOIN date_dim ON sales.sold_date = date_dim.date
GROUP BY customer_id , first_name ,

last_name,birth_country,
login,email_address ,d_year

)
SELECT TOP 100 …
FROM year_total …
WHERE …
ORDER BY …

Execution time: 103 seconds

Lots of data shuffles and joins needed to complete query

Azure Synapse Analytics > SQL >

No relevant indexed views created on the data warehouse

Now, we add an indexed view to the data warehouse to increase the performance of

the previous query. This view can be leveraged by the query even though it is not

directly referenced.

Materialized views - example

-- Create indexed view for query
CREATE INDEXED VIEW nbViewCS WITH (DISTRIBUTION=HASH(customer_id)) AS
SELECT customer_id,

first_name,
last_name,
birth_country,
login,
email_address ,
d_year,
SUM(ISNULL(list_price – wholesale_cost – discount_amt +
sales_price, 0)/2) AS year_total

FROM customer cust
JOIN catalog_sales sales ON cust.sk = sales.sk
JOIN date_dim ON sales.sold_date = date_dim.date
GROUP BY customer_id , first_name ,

last_name,birth_country,
login, email_address, d_year

Create indexed view with hash distribution on customer_id column

-- Get year total sales per customer
(WITH year_total AS

SELECT customer_id,
first_name,
last_name,
birth_country,
login,
email_address ,
d_year,
SUM(ISNULL(list_price – wholesale_cost –
discount_amt + sales_price, 0)/2)year_total

FROM customer cust
JOIN catalog_sales sales ON cust.sk = sales.sk
JOIN date_dim ON sales.sold_date = date_dim.date
GROUP BY customer_id , first_name ,

last_name,birth_country,
login,email_address ,d_year

)
SELECT TOP 100 …
FROM year_total …
WHERE …
ORDER BY …

Original query – get year total sales per customer

Azure Synapse Analytics > SQL >

The SQL Data Warehouse query optimizer automatically leverages the indexed view to speed up the same query.

Notice that the query does not need to reference the view directly

Indexed (materialized) views - example

Azure Synapse Analytics > SQL >

-- Get year total sales per customer
(WITH year_total AS

SELECT customer_id,
first_name,
last_name,
birth_country,
login,
email_address,
d_year,
SUM(ISNULL(list_price – wholesale_cost –
discount_amt + sales_price, 0)/2)year_total

FROM customer cust
JOIN catalog_sales sales ON cust.sk = sales.sk
JOIN date_dim ON sales.sold_date = date_dim.date
GROUP BY customer_id, first_name,

last_name,birth_country,
login,email_address ,d_year

)
SELECT TOP 100 …
FROM year_total …
WHERE …
ORDER BY …

Original query – no changes have been made to query

Execution time: 6 seconds

Optimizer leverages materialized view to reduce data shuffles and joins needed

EXPLAIN - provides query plan for SQL Data Warehouse

SQL statement without running the statement; view

estimated cost of the query operations.

EXPLAIN WITH_RECOMMENDATIONS - provides query

plan with recommendations to optimize the SQL

statement performance.

Materialized views- Recommendations

Azure Synapse Analytics > SQL >

EXPLAIN WITH_RECOMMENDATIONS
select count(*)
from ((select distinct c_last_name, c_first_name, d_date

from store_sales, date_dim, customer
where store_sales.ss_sold_date_sk =

date_dim.d_date_sk
and store_sales.ss_customer_sk =

customer.c_customer_sk
and d_month_seq between 1194 and 1194+11)

except
(select distinct c_last_name, c_first_name, d_date
from catalog_sales, date_dim, customer
where catalog_sales.cs_sold_date_sk =

date_dim.d_date_sk
and catalog_sales.cs_bill_customer_sk =

customer.c_customer_sk
and d_month_seq between 1194 and 1194+11)

) top_customers

Streaming Ingestion

Event Hubs

IoT Hub

T-SQL Language

Data Warehouse

Azure Data Lake

--Copy files in parallel directly into data warehouse table
COPY INTO [dbo].[weatherTable]
FROM
'abfss://<storageaccount>.blob.core.windows.net/<filepath>'
WITH (
FILE_FORMAT = 'DELIMITEDTEXT’,
SECRET = CredentialObject);

Heterogenous Data

Preparation &

Ingestion

COPY statement

- Simplified permissions (no CONTROL required)

- No need for external tables

- Standard CSV support (i.e. custom row terminators,

escape delimiters, SQL dates)

- User-driven file selection (wild card support)

SQL Analytics

Overview

Copies data from source to destination

Benefits

Retrieves data from all files from the folder and all its

subfolders.

Supports multiple locations from the same storage account,

separated by comma

Supports Azure Data Lake Storage (ADLS) Gen 2 and Azure

Blob Storage.

Supports CSV, PARQUET, ORC file formats

COPY command

Azure Synapse Analytics > SQL >

COPY INTO test_1
FROM
'https://XXX.blob.core.windows.net/customerdatasets/tes
t_1.txt'
WITH (

FILE_TYPE = 'CSV',
CREDENTIAL=(IDENTITY= 'Shared Access Signature',

SECRET='<Your_SAS_Token>'),
FIELDQUOTE = '"',
FIELDTERMINATOR=';',
ROWTERMINATOR='0X0A',
ENCODING = 'UTF8',
DATEFORMAT = 'ymd',
MAXERRORS = 10,
ERRORFILE = '/errorsfolder/'--path starting from

the storage container,
IDENTITY_INSERT
)

COPY INTO test_parquet
FROM
'https://XXX.blob.core.windows.net/customerdatasets/test
.parquet'
WITH (

FILE_FORMAT = myFileFormat
CREDENTIAL=(IDENTITY= 'Shared Access Signature',

SECRET='<Your_SAS_Token>')
)

Parquet

Dashboards, Reports, Ad-hoc analytics

Data Flexibility – Parquet Direct
Overview

Control Node

Compute Node

Storage

Result

Compute NodeCompute Node

Alter Database <DBNAME> Set Result_Set_Caching ON

Best in class price

performance

Interactive dashboarding with

Resultset Caching

- Millisecond responses with resultset caching

- Cache survives pause/resume/scale operations

- Fully managed cache (1TB in size)

Overview

Cache the results of a query in DW storage. This enables interactive

response times for repetitive queries against tables with infrequent

data changes.

The result-set cache persists even if a data warehouse is paused and

resumed later.

Query cache is invalidated and refreshed when underlying table data

or query code changes.

Result cache is evicted regularly based on a time-aware least

recently used algorithm (TLRU).

Benefits

Enhances performance when same result is requested repetitively

Reduced load on server for repeated queries

Offers monitoring of query execution with a result cache hit or miss

Result-set caching

-- Turn on/off result-set caching for a database
-- Must be run on the MASTER database
ALTER DATABASE {database_name}
SET RESULT_SET_CACHING { ON | OFF }

-- Turn on/off result-set caching for a client session
-- Run on target data warehouse
SET RESULT_SET_CACHING {ON | OFF}

-- Check result-set caching setting for a database
-- Run on target data warehouse
SELECT is_result_set_caching_on
FROM sys.databases
WHERE name = {database_name}

-- Return all query requests with cache hits
-- Run on target data warehouse
SELECT *
FROM sys.dm_pdw_request_steps
WHERE command like '%DWResultCacheDb%'

AND step_index = 0

Azure Synapse Analytics > SQL >

Result-set caching flow

Azure Synapse Analytics > SQL >

Client sends query to DW1 Query is processed using DW compute

nodes which pull data from remote

storage, process query and output back

to client app

2 Query results are cached in remote

storage so subsequent requests can

be served immediately

0101010001

0100101010
0101010001

0100101010

Subsequent executions for the same

query bypass compute nodes and can

be fetched instantly from persistent

cache in remote storage

3

0101010001

0100101010

Remote storage cache is evicted regularly

based on time, cache usage, and any

modifications to underlying table data.

4 Cache will need to be

regenerated if query results

have been evicted from cache

5

Overview

Pre-determined resource limits defined for a user or role.

Benefits

Govern the system memory assigned to each query.

Effectively used to control the number of concurrent queries that

can run on a data warehouse.

Exemptions to concurrency limit:

CREATE|ALTER|DROP (TABLE|USER|PROCEDURE|VIEW|LOGIN)

CREATE|UPDATE|DROP (STATISTICS|INDEX)

SELECT from system views and DMVs

EXPLAIN

Result-Set Cache

TRUNCATE TABLE

ALTER AUTHORIZATION

CREATE|UPDATE|DROP STATISTICS

Resource classes

/* View resource classes in the data warehouse */
SELECT name
FROM sys.database_principals
WHERE name LIKE '%rc%' AND type_desc = 'DATABASE_ROLE';

/* Change user’s resource class to 'largerc' */
EXEC sp_addrolemember 'largerc', 'loaduser’;

/* Decrease the loading user's resource class */
EXEC sp_droprolemember 'largerc', 'loaduser';

Azure Synapse Analytics > SQL >

Static Resource Classes

Allocate the same amount of memory independent of

the current service-level objective (SLO).

Well-suited for fixed data sizes and loading jobs.

Dynamic Resource Classes

Allocate a variable amount of memory depending on

the current SLO.

Well-suited for growing or variable datasets.

All users default to the smallrc dynamic resource class.

Resource class types

Static resource classes:

staticrc10 | staticrc20 | staticrc30 |
staticrc40 | staticrc50 | staticrc60 |
staticrc70 | staticrc80

Dynamic resource classes:

smallrc | mediumrc | largerc | xlargerc

Resource Class Percentage

Memory

Max. Concurrent

Queries

smallrc 3% 32

mediumrc 10% 10

largerc 22% 4

xlargerc 70% 1

Azure Synapse Analytics > SQL >

Overview

Queries running on a DW compete for access to system resources

(CPU, IO, and memory).

To guarantee access to resources, running queries are assigned a

chunk of system memory (a concurrency slot) for processing the

query. The amount given is determined by the resource class of

the user executing the query. Higher DW SLOs provide more

memory and concurrency slots

Concurrency slots
@DW1000c: 40 concurrency slots

Memory (concurrency slots)

Smallrc query

(1 slot each)

Mediumrc query

(4 slots each)

Xlargerc query

(28 slots each)

Staticrc20 query

(2 slots each)

Azure Synapse Analytics > SQL >

Overview

The limit on how many queries can run at the same time is

governed by two properties:

• The max. concurrent query count for the DW SLO

• The total available memory (concurrency slots) for the DW SLO

Increase the concurrent query limit by:

• Scaling up to a higher DW SLO (up to 128 concurrent queries)

• Using lower resource classes that use less memory per query

Concurrent query limits
Queries

@DW1000c: 32 max concurrent queries, 40 slots

Concurrency slots

smallrc

(1 slot each)

mediumrc

(4 slots each)

staticrc50

(16 slots each)

staticrc20

(2 slots each)

15 concurrent queries

(40 slots used)

• 8 x smallrc

• 4 x staticrc20

• 2 x mediumrc

• 1 x staticrc50

Azure Synapse Analytics > SQL >

Concurrency limits based on resource classes

https://docs.microsoft.com/en-us/azure/sql-data-warehouse/memory-and-concurrency-limits

Workload Management

Overview

It manages resources, ensures highly efficient resource utilization,

and maximizes return on investment (ROI).

The three pillars of workload management are

1. Workload Classification – To assign a request to a workload

group and setting importance levels.

2. Workload Importance – To influence the order in which a

request gets access to resources.

3. Workload Isolation – To reserve resources for a workload

group.

Azure Synapse Analytics > SQL >

Pillars of Workload

Management

C
la

ss
if

ic
a
ti

o
n

Im
p

o
rt

a
n

ce

Is
o

la
ti

o
n

Workload classification

Overview

Map queries to allocations of resources via pre-determined rules.

Use with workload importance to effectively share resources

across different workload types.

If a query request is not matched to a classifier, it is assigned to

the default workload group (smallrc resource class).

Benefits

Map queries to both Resource Management and Workload

Isolation concepts.

Manage groups of users with only a few classifiers.

Monitoring DMVs

sys.workload_management_workload_classifiers

sys.workload_management_workload_classifier_details

Query DMVs to view details about all active workload classifiers.

CREATE WORKLOAD CLASSIFIER classifier_name
WITH
(

[WORKLOAD_GROUP = '<Resource Class>']
[IMPORTANCE = { LOW |

BELOW_NORMAL |
NORMAL |
ABOVE_NORMAL |
HIGH

}
]
[MEMBERNAME = ‘security_account’]

)
WORKLOAD_GROUP: maps to an existing resource class
IMPORTANCE: specifies relative importance of

request
MEMBERNAME: database user, role, AAD login or AAD

group

Azure Synapse Analytics > SQL >

Workload importance

Overview

Queries past the concurrency limit enter a FiFo queue

By default, queries are released from the queue on a

first-in, first-out basis as resources become available

Workload importance allows higher priority queries to

receive resources immediately regardless of queue

Example Video

State analysts have normal importance.

National analyst is assigned high importance.

State analyst queries execute in order of arrival

When the national analyst’s query arrives, it jumps to

the top of the queue

CREATE WORKLOAD CLASSIFIER National_Analyst
WITH
(

[WORKLOAD_GROUP = ‘smallrc’]
[IMPORTANCE = HIGH]
[MEMBERNAME = ‘National_Analyst_Login’]

Azure Synapse Analytics > SQL >

Intra Cluster Workload Isolation
(Scale In)

Marketing

CREATE WORKLOAD GROUP Sales
WITH
(

[MIN_PERCENTAGE_RESOURCE = 60]
[CAP_PERCENTAGE_RESOURCE = 100]
[MAX_CONCURRENCY = 6])

40%

Compute
1000c DWU

60%

Sales

60%

100%

Workload aware

query execution

Workload Isolation

- Multiple workloads share deployed resources

- Reservation or shared resource configuration

- Online changes to workload policies

CREATE WORKLOAD GROUP group_name
WITH
(

MIN_PERCENTAGE_RESOURCE = value
, CAP_PERCENTAGE_RESOURCE = value
, REQUEST_MIN_RESOURCE_GRANT_PERCENT = value
[[,] REQUEST_MAX_RESOURCE_GRANT_PERCENT = value]
[[,] IMPORTANCE = {LOW | BELOW_NORMAL | NORMAL | ABOVE_NORMAL | HIGH}]
[[,] QUERY_EXECUTION_TIMEOUT_SEC = value]

)[;]

Workload Isolation

Overview

Allocate fixed resources to workload group.

Assign maximum and minimum usage for varying

resources under load. These adjustments can be done live

without having to SQL Analytics offline.

Benefits

Reserve resources for a group of requests

Limit the amount of resources a group of requests can

consume

Shared resources accessed based on importance level

Set Query timeout value. Get DBAs out of the business of

killing runaway queries

Monitoring DMVs

sys.workload_management_workload_groups

Query to view configured workload group.

Azure Synapse Analytics > SQL >

0.4,

40%

0.2,

20%

0.4,

40%

RESOURCE ALLOCATION

group A

group B

Shared

Dynamic Management Views (DMVs)

Azure Synapse Analytics > SQL >

Overview

Dynamic Management Views (DMV) are queries that return information

about model objects, server operations, and server health.

Benefits:

Simple SQL syntax

Returns result in table format

Easier to read and copy result

SQL Monitor with DMVs

Overview

Offers monitoring of

-all open, closed sessions

-count sessions by user

-count completed queries by user

-all active, complete queries

-longest running queries

-memory consumption

Azure Synapse Analytics > SQL >

--count sessions by user
SELECT login_name, COUNT(*) as session_count FROM
sys.dm_pdw_exec_sessions where status = 'Closed' and session_id
<> session_id() GROUP BY login_name;

-- List all open sessions
SELECT * FROM sys.dm_pdw_exec_sessions where status <> 'Closed'
and session_id <> session_id();

-- List all active queries
SELECT * FROM sys.dm_pdw_exec_requests WHERE status not in
('Completed','Failed','Cancelled') AND session_id <> session_id()
ORDER BY submit_time DESC;

List all active queries

List all open sessions

Count sessions by user

Developer Tools

Azure Synapse Analytics > SQL >

Visual Studio - SSDT database projects

SQL Server Management Studio

(queries, execution plans etc.)
Azure Data Studio (queries, extensions etc.)

Azure Synapse Analytics

Visual Studio Code

Developer Tools

Azure Synapse Analytics > SQL >

Visual Studio - SSDT

database projects
SQL Server Management Studio Azure Data StudioAzure Synapse Analytics

Visual Studio Code

Azure Cloud Service

Offers end-to-end

lifecycle for analytics

Connects to multiple

services

Runs on Windows

Create, maintain

database code, compile,

code refactoring

Runs on Windows,

Linux, macOS

Light weight editor,

(queries and

extensions)

Runs on Windows

Offers GUI support to

query, design and

manage

Runs on Windows,

Linux, macOS

Offers development

experience with light-

weight code editor

Continuous integration and delivery (CI/CD)

Overview

Database project support in SQL Server Data Tools

(SSDT) allows teams of developers to collaborate over a

version-controlled data warehouse, and track, deploy

and test schema changes.

Benefits

Database project support includes first-class

integration with Azure DevOps. This adds support for:

• Azure Pipelines to run CI/CD workflows for any

platform (Linux, macOS, and Windows)

• Azure Repos to store project files in source control

• Azure Test Plans to run automated check-in tests to

verify schema updates and modifications

• Growing ecosystem of third-party integrations that

can be used to complement existing workflows

(Timetracker, Microsoft Teams, Slack, Jenkins, etc.)

Azure Synapse Analytics > SQL >

Azure Advisor recommendations

Suboptimal Table Distribution

Reduce data movement by replicating tables

Data Skew

Choose new hash-distribution key

Slowest distribution limits performance

Cache Misses

Provision additional capacity

Tempdb Contention

Scale or update user resource class

Suboptimal Plan Selection

Create or update table statistics

Azure Synapse Analytics > SQL >

Maintenance windows

Overview

Choose a time window for your upgrades.

Select a primary and secondary window within a seven-day

period.

Windows can be from 3 to 8 hours.

24-hour advance notification for maintenance events.

Benefits

Ensure upgrades happen on your schedule.

Predictable planning for long-running jobs.

Stay informed of start and end of maintenance.

Azure Synapse Analytics > SQL >

Automatic statistics management

Overview

Statistics are automatically created and maintained for SQL pool.

Incoming queries are analyzed, and individual column statistics

are generated on the columns that improve cardinality estimates

to enhance query performance.

Statistics are automatically updated as data modifications occur in

underlying tables. By default, these updates are synchronous but

can be configured to be asynchronous.

Statistics are considered out of date when:

• There was a data change on an empty table

• The number of rows in the table at time of statistics creation

was 500 or less, and more than 500 rows have been updated

• The number of rows in the table at time of statistics creation

was more than 500, and more than 500 + 20% of rows have

been updated

-- Turn on/off auto-create statistics settings

ALTER DATABASE {database_name}

SET AUTO_CREATE_STATISTICS { ON | OFF }

-- Turn on/off auto-update statistics settings

ALTER DATABASE {database_name}

SET AUTO_UPDATE_STATISTICS { ON | OFF }

-- Configure synchronous/asynchronous update

ALTER DATABASE {database_name}

SET AUTO_UPDATE_STATISTICS_ASYNC { ON | OFF }

-- Check statistics settings for a database

SELECT is_auto_create_stats_on,

is_auto_update_stats_on,

is_auto_update_stats_async_on

FROM sys.databases

Azure Synapse Analytics > SQL >

Event Hubs

IoT Hub

Heterogenous Data

Preparation &

Ingestion

Native SQL Streaming

- High throughput ingestion (up to 200MB/sec)

- Delivery latencies in seconds

- Ingestion throughput scales with compute scale

- Analytics capabilities (SQL-based queries for joins,

aggregations, filters)

- Removes the need to use Spark for streaming

Streaming Ingestion

T-SQL Language

Data Warehouse

SQL Analytics

--T-SQL syntax for scoring data in SQL DW
SELECT d.*, p.Score

FROM PREDICT(MODEL = @onnx_model, DATA =

dbo.mytable AS d)

WITH (Score float) AS p;

Machine Learning

enabled DW

Native PREDICT-ion

- T-SQL based experience (interactive./batch scoring)

- Interoperability with other models built elsewhere

- Execute scoring where the data lives

Upload

models

T-SQL Language

Data Warehouse

Data

+

Score

models

Model

Create

models

Predictions

=

SQL Analytics

Data Lake

Integration

ParquetDirect for interactive

data lake exploration

- >10X performance improvement

- Full columnar optimizations (optimizer, batch)

- Built-in transparent caching (SSD, in-memory,

resultset)

13X

SQL Analytics

Azure Data Share

Enterprise data sharing

- Share from DW to DW/DB/other systems

- Choose data format to receive data in (CSV, Parquet)

- One to many data sharing

- Share a single or multiple datasets

SQL Analytics
new features available

GA features:

- Performance: Resultset caching
- Performance: Materialized Views
- Performance: Ordered columnstore
- Heterogeneous data: JSON support
- Trustworthy compution: Dynamic Data Masking
- Continuous integration & deployment: SSDT support
- Language: Read committed snapshot isolation

Public preview features:

- Workload management: Workload Isolation
- Data ingestion: Simple ingestion with COPY
- Data Sharing: Share DW data with Azure Data Share
- Trustworthy computation: Private LINK support

Private preview features:

- Data ingestion: Streaming ingestion & analytics in DW
- Built-in ML: Native Prediction/Scoring
- Data lake enabled: Fast query over Parquet files
- Language: Updateable distribution column
- Language: FROM clause with joins
- Language: Multi-column distribution support
- Security: Column-level Encryption

Note: private preview features require whitelisting

Power BI Aggregations and Synapse query performance

Azure Synapse Analytics
SQL On-Demand

Query Options

1. Provisioned SQL over relational database – Traditional SQL DW [existing]

2. Provisioned SQL over ADLS Gen2 – via external tables or openrowset [existing via PolyBase]

3. On-demand SQL over relational database - dependency on the flexible data model (data cells) over

columnstore data (preview) [new]

4. On-demand SQL over ADLS Gen2 – via external tables or openrowset [new]

5. Provisioned Spark over relational database – Not possible

6. Provisioned Spark over ADLS Gen2 [new]

7. On-demand Spark over relational database - On-demand Spark is not supported

8. On-demand Spark over ADLS Gen2 – On-demand Spark is not supported

Notes:

• Separation of state (data, metadata and transactional logs) and compute

• Queries against data loaded into SQL Analytics tables are faster 2-3X compared to queries over external tables

• Improved performance compared to PolyBase. PolyBase is not used, but functional aspects are supported

• SQL on-demand will push down queries from the front-end to back-end nodes

• Warm-up for first on-demand query takes about 20-25 seconds

• If you create a Spark Table, that table will be created as an external table in SQL Pool or On-Demand without

having to keep a Spark cluster up and running

Distributed Query Processor (DQP)

• Auto-scale compute nodes - Instruct the underlying fabric the need for more compute power to

adjust to peaks during the workload. If compute power is granted, the Polaris DQP will re-distribute

tasks leveraging the new compute container. Note that in-flight tasks in the previous topology

continue running, while new queries get the new compute power with the new re-balancing

• Compute node fault tolerance - Recover from faulty nodes while a query is running. If a node fails

the DQP re-schedules the tasks in the faulted node through the remainder of the healthy topology

• Compute node hot spot: rebalance queries or scale out nodes - Can detect hot spots in the

existing topology. That is, overloaded compute nodes due to data skew. In the advent of a compute

node running hot because of skewed tasks, the DQP can decide to re-schedule some of the tasks

assigned to that compute node amongst others where the load is less

• Multi-cluster - Multiple compute pools accessing the same data

• Cross-database queries – A query can specify multiple databases

These features work for both on-demand and provisioned over ADLS Gen2 and relational databases

Azure Synapse Analytics
Integrated data platform for BI, AI and continuous intelligence

Platform

Azure

Data Lake Storage

Common Data Model

Enterprise Security

Optimized for Analytics

METASTORE

SECURITY

MANAGEMENT

MONITORING

DATA INTEGRATION

Analytics Runtimes

PROVISIONED ON-DEMAND

Form Factors

SQL

Languages

Python .NET Java Scala R

Experience Synapse Analytics Studio

Artificial Intelligence / Machine Learning / Internet of Things

Intelligent Apps / Business Intelligence

METASTORE

SECURITY

MANAGEMENT

MONITORING

Synapse SQL on-demand scenarios

What’s in this file? How many rows are there? What’s the max value?

SQL On-demand reduces data lake exploration to the right-click!

How to convert CSVs to Parquet quickly? How to transform the raw data?

Use the full power of T-SQL to transform the data in the data lake

SQL On-Demand

Overview

An interactive query service that provides T-SQL queries over

high scale data in Azure Storage.

Benefits

Serverless

No infrastructure

Pay only for query execution

No ETL

Offers security

Data integration with Databricks, HDInsight

T-SQL syntax to query data

Supports data in various formats (Parquet, CSV, JSON)

Support for BI ecosystem

Azure Synapse Analytics > SQL >

Azure Storage

SQL On

Demand

Query

Power BI

Azure Data Studio

SSMS

SQL DW

Read and write

data files

Curate and transform data

Sync table

definitions

Read and write

data files

SQL On Demand –Querying on storage

Azure Synapse Analytics > SQL On Demand

SQL On Demand –Querying CSV File

Overview

Uses OPENROWSET function to access data

Benefits

Ability to read CSV File with

- no header row, Windows style new line

- no header row, Unix-style new line

- header row, Unix-style new line

- header row, Unix-style new line, quoted

- header row, Unix-style new line, escape

- header row, Unix-style new line, tab-delimited

- without specifying all columns

Azure Synapse Analytics > SQL >

SELECT *
FROM OPENROWSET(

BULK 'https://XXX.blob.core.windows.net/csv/population/populat
ion.csv',

FORMAT = 'CSV',
FIELDTERMINATOR =',',
ROWTERMINATOR = '\n'

)
WITH (

[country_code] VARCHAR (5) COLLATE Latin1_General_BIN2,
[country_name] VARCHAR (100) COLLATE Latin1_General_BIN2,
[year] smallint,
[population] bigint

) AS [r]
WHERE

country_name = 'Luxembourg'
AND year = 2017

SQL On Demand –Querying CSV File

Read CSV file - header row, Unix-style new line

Azure Synapse Analytics > SQL On Demand

SELECT *
FROM OPENROWSET(

BULK 'https://XXX.blob.core.windows.net/csv/population-
unix-hdr/population.csv',

FORMAT = 'CSV',
FIELDTERMINATOR =',',
ROWTERMINATOR = '0x0a',
FIRSTROW = 2

)
WITH (

[country_code] VARCHAR (5) COLLATE Latin1_General_BIN2,
[country_name] VARCHAR (100) COLLATE Latin1_General_BIN2,
[year] smallint,
[population] bigint

) AS [r]
WHERE

country_name = 'Luxembourg'
AND year = 2017

Read CSV file - without specifying all columns

SELECT
COUNT(DISTINCT country_name) AS countries

FROM OPENROWSET(
BULK 'https://XXX.blob.core.windows.net/csv/popul

ation/population.csv',
FORMAT = 'CSV',
FIELDTERMINATOR =',',
ROWTERMINATOR = '\n'

)
WITH (

[country_name] VARCHAR (100) COLLATE Latin1_Gener
al_BIN2 2
) AS [r]

SQL On Demand –Querying folders

Overview

Uses OPENROWSET function to access data from

multiple files or folders

Benefits

Offers reading multiple files/folders through usage of

wildcards

Offers reading specific file/folder

Supports use of multiple wildcards

Azure Synapse Analytics > SQL On Demand

SELECT YEAR(pickup_datetime) as [year], SUM(passenger_count) AS

passengers_total, COUNT(*) AS [rides_total]

FROM OPENROWSET(

BULK 'https://XXX.blob.core.windows.net/csv/taxi/*.*’,

FORMAT = 'CSV’

, FIRSTROW = 2)

WITH (

vendor_id VARCHAR(100) COLLATE Latin1_General_BIN2,

pickup_datetime DATETIME2,

dropoff_datetime DATETIME2,

passenger_count INT,

trip_distance FLOAT,

rate_code INT,

store_and_fwd_flag VARCHAR(100) COLLATE Latin1_General_BIN2,

pickup_location_id INT,

dropoff_location_id INT,

payment_type INT,

fare_amount FLOAT,

extra FLOAT, mta_tax FLOAT,

tip_amount FLOAT,

tolls_amount FLOAT,

improvement_surcharge FLOAT,

total_amount FLOAT

) AS nyc

GROUP BY YEAR(pickup_datetime)

ORDER BY YEAR(pickup_datetime)

SQL On Demand –Querying folders

Azure Synapse Analytics > SQL On Demand

SELECT
payment_type,
SUM(fare_amount) AS fare_total

FROM OPENROWSET(
BULK 'https://XXX.blob.core.windows.net/csv/taxi/yellow_tripdata_2017-*.csv',

FORMAT = 'CSV',
FIRSTROW = 2)

WITH (
vendor_id VARCHAR(100) COLLATE Latin1_General_BIN2,
pickup_datetime DATETIME2,
dropoff_datetime DATETIME2,
passenger_count INT,
trip_distance FLOAT,
<…columns>

) AS nyc
GROUP BY payment_type
ORDER BY payment_type

Read subset of files in folderRead all files from multiple folders

SELECT YEAR(pickup_datetime) as [year],
SUM(passenger_count) AS passengers_total,
COUNT(*) AS [rides_total]

FROM OPENROWSET(
BULK 'https://XXX.blob.core.windows.net/csv/t*i/',

FORMAT = 'CSV',
FIRSTROW = 2)

WITH (
vendor_id VARCHAR(100) COLLATE Latin1_General_BIN2,
pickup_datetime DATETIME2,
dropoff_datetime DATETIME2,
passenger_count INT,
trip_distance FLOAT,
<… columns>

) AS nyc
GROUP BY YEAR(pickup_datetime)
ORDER BY YEAR(pickup_datetime)

SQL On Demand –Querying specific files

Overview

filename – Provides file name that originates row
result

filepath – Provides full path when no parameter is
passed or part of path when parameter is passed
that originates result

Benefits

Provides source name/path of file/folder for row
result set

Azure Synapse Analytics > SQL On Demand

SELECT
r.filename() AS [filename]
,COUNT_BIG(*) AS [rows]

FROM OPENROWSET(
BULK 'https://XXX.blob.core.windows.net/csv/taxi/yellow_tripdata_201

7-1*.csv’,
FORMAT = 'CSV',
FIRSTROW = 2

)
WITH (

vendor_id INT,
pickup_datetime DATETIME2,
dropoff_datetime DATETIME2,
passenger_count SMALLINT,
trip_distance FLOAT,
<…columns>

) AS [r]

GROUP BY r.filename()

ORDER BY [filename]

Example of filename function

SQL On Demand –Querying specific files

Azure Synapse Analytics > SQL On Demand

SELECT
r.filepath() AS filepath
,r.filepath(1) AS [year]
,r.filepath(2) AS [month]
,COUNT_BIG(*) AS [rows]

FROM OPENROWSET(
BULK 'https://XXX.blob.core.windows.net/csv/taxi/yellow_tripdata_*-*.csv’,
FORMAT = 'CSV',
FIRSTROW = 2)

WITH (
vendor_id INT,
pickup_datetime DATETIME2,
dropoff_datetime DATETIME2,
passenger_count SMALLINT,
trip_distance FLOAT,
<… columns>

) AS [r]

WHERE r.filepath(1) IN ('2017’)
AND r.filepath(2) IN ('10', '11', '12’)

GROUP BY r.filepath() ,r.filepath(1) ,r.filepath(2)
ORDER BY filepath

filepath year month rows

https://XXX.blob.core.windows.net/csv/taxi/yellow_tripdata_2017-10.csv 2017 10 9768815

https://XXX.blob.core.windows.net/csv/taxi/yellow_tripdata_2017-11.csv 2017 11 9284803

https://XXX.blob.core.windows.net/csv/taxi/yellow_tripdata_2017-12.csv 2017 12 9508276

Example of filepath function

SQL On Demand –Querying Parquet files

Overview

Uses OPENROWSET function to access data

Benefits

Ability to specify column names of interest

Offers auto reading of column names and data types

Provides target specific partitions using filepath function

Azure Synapse Analytics > SQL On Demand

SELECT
YEAR(pickup_datetime),
passenger_count,
COUNT(*) AS cnt

FROM
OPENROWSET(

BULK 'https://XXX.blob.core.windows.net/parquet/taxi/*/*/*',
FORMAT='PARQUET'

) WITH (
pickup_datetime DATETIME2,
passenger_count INT

) AS nyc
GROUP BY

passenger_count,
YEAR(pickup_datetime)

ORDER BY
YEAR(pickup_datetime),
passenger_count

SQL On Demand – Creating views

Overview

Create views using SQL On Demand queries

Benefits

Works same as standard views

Azure Synapse Analytics > SQL On Demand

USE [mydbname]
GO

IF EXISTS(select * FROM sys.views where name = 'populationView')
DROP VIEW populationView
GO

CREATE VIEW populationView AS
SELECT *
FROM OPENROWSET(

BULK 'https://XXX.blob.core.windows.net/csv/population/population.csv',
FORMAT = 'CSV',
FIELDTERMINATOR =',',
ROWTERMINATOR = '\n'

)
WITH (

[country_code] VARCHAR (5) COLLATE Latin1_General_BIN2,
[country_name] VARCHAR (100) COLLATE Latin1_General_BIN2,
[year] smallint,
[population] bigint

) AS [r]

SELECT
country_name, population

FROM populationView
WHERE

[year] = 2019
ORDER BY

[population] DESC

SQL On Demand – Creating views

Azure Synapse Analytics > SQL On Demand

SQL On Demand –Querying JSON files

Azure Synapse Analytics > SQL On Demand

SELECT *
FROM

OPENROWSET(
BULK 'https://XXX.blob.core.windows.net/json/books/book

1.json’,
FORMAT='CSV',
FIELDTERMINATOR ='0x0b',
FIELDQUOTE = '0x0b',
ROWTERMINATOR = '0x0b'

)
WITH (

jsonContent varchar(8000)
) AS [r]

Overview

Read JSON files and provides data in tabular format

Benefits

Supports OPENJSON, JSON_VALUE and JSON_QUERY

functions

SQL On Demand –Querying JSON files

SELECT

JSON_QUERY(jsonContent, '$.authors') AS authors,

jsonContent
FROM

OPENROWSET(
BULK 'https://XXX.blob.core.windows.net/json/books/*.json',
FORMAT='CSV',
FIELDTERMINATOR ='0x0b',
FIELDQUOTE = '0x0b',
ROWTERMINATOR = '0x0b'

)
WITH (

jsonContent varchar(8000)
) AS [r]

WHERE
JSON_VALUE(jsonContent, '$.title') = 'Probabilistic and Statist

ical Methods in Cryptology, An Introduction by Selected Topics'

Azure Synapse Analytics > SQL On Demand

SELECT

JSON_VALUE(jsonContent, '$.title') AS title,
JSON_VALUE(jsonContent, '$.publisher') as publisher,

jsonContent
FROM

OPENROWSET(
BULK 'https://XXX.blob.core.windows.net/json/books/*.json',
FORMAT='CSV',
FIELDTERMINATOR ='0x0b',
FIELDQUOTE = '0x0b',
ROWTERMINATOR = '0x0b'

)
WITH (

jsonContent varchar(8000)
) AS [r]

WHERE
JSON_VALUE(jsonContent, '$.title') = 'Probabilistic and Statisti

cal Methods in Cryptology, An Introduction by Selected Topics'

Example of JSON_QUERY functionExample of JSON_VALUE function

Create External Table As Select
Overview

Creates an external table and then exports results of the

Select statement. These operations will import data into the

database for the duration of the query

Steps:

1. Create Master Key

2. Create Credentials

3. Create External Data Source

4. Create External Data Format

5. Create External Table

Azure Synapse Analytics > SQL On Demand

-- Create a database master key if one does not already exist
CREATE MASTER KEY ENCRYPTION BY PASSWORD = 'S0me!nfo'
;
-- Create a database scoped credential with Azure storage account key
as the secret.
CREATE DATABASE SCOPED CREDENTIAL AzureStorageCredential
WITH

IDENTITY = '<my_account>'
, SECRET = '<azure_storage_account_key>'
;
-- Create an external data source with CREDENTIAL option.
CREATE EXTERNAL DATA SOURCE MyAzureStorage
WITH
(LOCATION = 'wasbs://daily@logs.blob.core.windows.net/'
, CREDENTIAL = AzureStorageCredential
, TYPE = HADOOP
)
-- Create an external file format
CREATE EXTERNAL FILE FORMAT MyAzureCSVFormat
WITH (FORMAT_TYPE = DELIMITEDTEXT,

FORMAT_OPTIONS(
FIELD_TERMINATOR = ',',
FIRST_ROW = 2)

--Create an external table
CREATE EXTERNAL TABLE dbo.FactInternetSalesNew
WITH(

LOCATION = '/files/Customer',
DATA_SOURCE = MyAzureStorage,
FILE_FORMAT = MyAzureCSVFormat

)
AS SELECT T1.* FROM dbo.FactInternetSales T1 JOIN dbo.DimCustomer T2
ON (T1.CustomerKey = T2.CustomerKey)
OPTION (HASH JOIN);

SQL scripts > View and export results

SQL scripts > View results (chart)

Convert from CSV to Parquet on-demand

Azure Synapse Analytics
Spark

Azure Synapse Analytics
Integrated data platform for BI, AI and continuous intelligence

Platform

Azure

Data Lake Storage

Common Data Model

Enterprise Security

Optimized for Analytics

METASTORE

SECURITY

MANAGEMENT

MONITORING

DATA INTEGRATION

Analytics Runtimes

PROVISIONED ON-DEMAND

Form Factors

SQL

Languages

Python .NET Java Scala R

Experience Synapse Analytics Studio

Artificial Intelligence / Machine Learning / Internet of Things

Intelligent Apps / Business Intelligence

METASTORE

SECURITY

MANAGEMENT

MONITORING

• Apache Spark 2.4 derivation

• Linux Foundation Delta Lake 0.4 support

• .Net Core 3.0 support

• Python 3.6 + Anacondas support

• Tightly coupled to other Azure Synapse services

• Integrated security and sign on

• Integrated Metadata

• Integrated and simplified provisioning

• Integrated UX including nteract based notebooks

• Fast load of SQL Analytics pools

Azure Synapse Apache Spark - Summary

• Core scenarios

• Data Prep/Data Engineering/ETL

• Machine Learning via Spark ML and Azure ML

integration

• Extensible through library management

• Efficient resource utilization

• Fast Start

• Auto scale (up and down)

• Auto pause

• Min cluster size of 3 nodes

• Multi Language Support

• .Net (C#), PySpark, Scala, Spark SQL, Java

Languages

Overview

Supports multiple languages to develop
notebook

• PySpark (Python)

• Spark (Scala)

• .NET Spark (C#)

• Spark SQL

• Java

• R (early 2020)

Benefits

Allows to write multiple languages in one
notebook

%%<Name of language>

Offers use of temporary tables across
languages

Notebooks > Configure Session

Spark Unifies:

 Batch Processing

An unified, open source, parallel, data processing framework for Big Data Analytics

Spark Core Engine

Spark SQL

Batch processing

Spark Structured
Streaming

Stream processing

Spark MLlib

Machine
Learning

Yarn

Spark MLlib

Machine
Learning

Spark
Streaming

Stream processing

GraphX

Graph
Computation

http://spark.apache.org

Apache Spark

http://spark.apache.org/

Traditional Approach: MapReduce jobs for complex jobs, interactive query, and online event-hub processing

involves lots of (slow) disk I/O

HDFS

Read

HDFS

Write

HDFS

Read

HDFS

Write

CPU

Iteration 1

Memory CPU

Iteration 2

Memory

Motivation for Apache Spark

Traditional Approach: MapReduce jobs for complex jobs, interactive query, and online event-hub processing

involves lots of (slow) disk I/O

Solution: Keep data in-memory with a new distributed execution engine

HDFS

Read

Input

CPU

Iteration 1

Memory CPU

Iteration 2

Memory

10–100x faster than

network & disk

Minimal

Read/Write Disk

Bottleneck

Chain Job Output

into New Job Input

HDFS

Read

HDFS

Write

HDFS

Read

HDFS

Write

CPU

Iteration 1

Memory CPU

Iteration 2

Memory

Motivation for Apache Spark

Read from
HDFS

Write to
HDFS

Read from
HDFS

Write to
HDFS

Read from
HDFS

What makes Spark fast

Data Sources (HDFS, SQL, NoSQL, …)

Cluster Manager

Node Node Node

Cache Cache Cache

Driver Program
SparkContext

General Spark Cluster Architecture

Spark SQL

Mllib/SparkML

Spark Component Features

Spark Streaming

GraphX

Azure Synapse Apache Spark
Architecture Overview

Synapse Service

Job Service Frontend

Spark API
Controller …

Job Service Backend

Spark Plugin

Gateway

Resource
Provider

DB

Synapse Studio

AAD

Auth Service

Instance
Creation Service

DBDB

Azure

Spark Instance

VM VM VM VM VM

…

VM

Synapse Job Service • User creates Synapse Workspace and Spark pool and
launches Synapse Studio.

• User attaches Notebook to Spark pool and enters
one or more Spark statements (code blocks).

• The Notebook client gets user token from AAD and
sends a Spark session create request to Synapse
Gateway.

• Synapse Gateway authenticates the request and
validates authorizations on the Workspace and Spark
pool and forwards it to the Spark (Livy) controller
hosted in Synapse Job Service frontend.

• The Job Service frontend forwards the request to Job
Service backend that creates two jobs – one for
creating the cluster and the other for creating the
Spark session.

• The Job service backend contacts Synapse Resource
Provider to obtain Workspace and Spark pool details
and delegates the cluster creation request to
Synapse Instance Service.

• Once the instance is created, the Job Service
backend forwards the Spark session creation request
to the Livy endpoint in the cluster.

• Once the Spark session is created the Notebook
client sends Spark statements to the Job Service
frontend.

• Job Service frontend obtains the actual Livy endpoint
for the cluster created for the particular user from
the backend and sends the statement directly to Livy
for execution.

Synapse Spark Instances

Spark Instance

VM – 001

Node Agent

Hive Metastore

YARN RM - 01

Zookeeper - 01

Livy - 01

VM – 002

Node Agent

YARN RM - 02

Zookeeper - 02

VM – 003

Node Agent

YARN NM - 03

Zookeeper - 03

VM – 004

Node Agent

YARN NM - 04

Subnet

VM – 005

Node Agent

Synapse Cluster
Service

(Control Plane)

Heartbeat sequence

Azure Resource
Provider

Create VMs with
Specialized VHD

Provision Resources

Heartbeats

Create Cluster

1. Synapse Job Service sends request to
Cluster Service for creating BBC clusters
per the description in the associated
Spark pool.

2. Cluster Service sends request to Azure
using Azure SDK to create VMs
(required plus additional) with
specialized VHD.

3. The specialized VHD contains bits for
all the services that are required by the
Cluster type (for e.g. Spark) with
prefetch instrumentation.

4. Once VM boots up, the Node Agent
sends heartbeat to Cluster Service for
getting node configuration.

5. The nodes are initialized and assigned
roles based on their first heartbeat.

6. Extra nodes get deleted on first
heartbeat.

7. After Cluster Service considers the
cluster ready, it returns the Livy end-
point to the Job Service.

YARN NM - 02

YARN NM - 01

Spark
Executors

Spark
Executors Spark

Executors Spark
Executors

Creating a Spark pool (1 of 2)

Default Settings

Only required field from user

Creating a Spark pool (2 of 2) - optional

Customize component versions, auto-pause

Import libraries by providing text file
containing library name and version

Control

Node

Compute Compute Compute Compute Compute

User Provisioned Workspace-Default Data Lake

JDBC to issue CETAS + send filters/projections1

Apply any Filters/Projections
DW exports the data in parallel

2

Spark reads the data in parallel3

Control

Node

Compute Compute Compute Compute Compute

Driver

Executor Executor Executor Executor Executor

Existing Approach: JDBC

New Approach: JDBC and Polybase

JDBC to open connection

Apply any Filters/Projections

Spark reads the data serially

1

2

3

Code-Behind Experience

val jdbcUsername = "<SQL DB ADMIN USER>"
val jdbcPwd = "<SQL DB ADMIN PWD>"
val jdbcHostname = "servername.database.windows.net”
val jdbcPort = 1433
val jdbcDatabase ="<AZURE SQL DB NAME>“

val jdbc_url =
s"jdbc:sqlserver://${jdbcHostname}:${jdbcPort};database=${jdbcDatabase};
encrypt=true;trustServerCertificate=false;hostNameInCertificate=*.databas
e.windows.net;loginTimeout=60;“

val connectionProperties = new Properties()

connectionProperties.put("user", s"${jdbcUsername}")
connectionProperties.put("password", s"${jdbcPwd}")

val sqlTableDf = spark.read.jdbc(jdbc_url, “dbo.Tbl1", connectionProperties)

// Construct a Spark DataFrame from SQL Pool
var df = spark.read.sqlanalytics("sql1.dbo.Tbl1")

// Write the Spark DataFrame into SQL Pool
df.write.sqlanalytics(“sql1.dbo.Tbl2”)

Existing Approach New Approach

Create Notebook on files in storage

View results in
table format

View results in
chart format

SQL support

Exploratory data analysis
with graphs – histogram,
boxplot etc

Library Management - Python
Overview

Customers can add new python libraries at Spark pool level

Benefits

Input requirements.txt in simple pip freeze format

Add new libraries to your cluster

Update versions of existing libraries on your cluster

Libraries will get installed for your Spark pool during cluster

creation

Ability to specify different requirements file for different pools

within the same workspace

Constraints

The library version must exist on PyPI repository

Version downgrade of an existing library not allowed

In the Portal
Specify the new requirements while creating Spark Pool in

Additional Settings blade

Library Management - Python

Get list of installed libraries with version information

Spark ML
Algorithms

Spark ML Algorithms

Synapse Notebook: Connect to AML workspace

Simple code to connect
workspace

Synapse Notebook: Configure AML job to run on Synapse

Configuration parameters

Synapse Notebook: Run AML job

ML job execution result

Industry-leading security
and compliance

Enterprise-grade security

HIPAA /
HITECH

IRS 1075 Section 508
VPAT

ISO 27001 PCI DSS Level 1SOC 1 Type 2 SOC 2 Type 2 ISO 27018Cloud Controls

Matrix

Content Delivery and

Security Association

Singapore

MTCS Level 3

United

Kingdom

G-Cloud

China Multi

Layer Protection

Scheme

China

CCCPPF

China

GB 18030

European Union

Model Clauses

EU Safe

Harbor

ENISA

IAF

Shared

Assessments

ITAR-ready

Japan

Financial Services

FedRAMP JAB
P-ATO

FIPS 140-2 21 CFR
Part 11

DISA Level 2FERPA CJIS

Australian

Signals

Directorate

New Zealand

GCIO

Industry-leading compliance

Comprehensive Security
Category Feature

Data Protection

Data in Transit

Data Encryption at Rest

Data Discovery and Classification

Access Control

Object Level Security (Tables/Views)

Row Level Security

Column Level Security

Dynamic Data Masking

SQL Login

Authentication Azure Active Directory

Multi-Factor Authentication

Virtual Networks

Network Security Firewall

Azure ExpressRoute

Thread Detection

Threat Protection Auditing

Vulnerability Assessment

Threat Protection

Threat Protection - Business requirements

Network Security

Authentication

Access Control

Data ProtectionHow do we enumerate

and track potential SQL

vulnerabilities?

To mitigate any security

misconfigurations before they

become a serious issue.

How do we discover and

alert on suspicious

database activity?

To detect and resolve any data

exfiltration or SQL injection attacks.

(1) Turn on SQL Auditing

(2) Analyze audit log

 Configurable via audit policy

 SQL audit logs can reside in

• Azure Storage account

• Azure Log Analytics

• Azure Event Hubs

 Rich set of tools for

• Investigating security alerts

• Tracking access to sensitive data

SQL auditing in Azure Log Analytics and Event Hubs

Gain insight into database audit log

Azure Synapse
Analytics

Audit Log

Log Analytics Power BI Dashboards

Event Hubs

Blob Storage

Azure Synapse AnalyticsApps

Audit Log Threat Detection
(1) Turn on Threat Detection

(3) Real-time actionable alerts

(2) Possible threat to

access / breach data

 Detects potential SQL injection

attacks

 Detects unusual access & data

exfiltration activities

 Actionable alerts to investigate &

remediate

 View alerts for your entire Azure

tenant using Azure Security Center

SQL threat detection

Detect and investigate anomalous database activity

 Automatic discovery of columns with

sensitive data

 Add persistent sensitive data labels

 Audit and detect access to the sensitive data

 Manage labels for your entire Azure tenant

using Azure Security Center

SQL Data Discovery & Classification
Discover, classify, protect and track access to sensitive data

SQL Data Discovery & Classification - setup

Step 1: Enable Advanced Data Security

on the logical SQL Server

Step 2: Use recommendations and/or manual classification to

classify all the sensitive columns in your tables

SQL Data Discovery & Classification – audit sensitive data access
Step 1: Configure auditing for your target Data warehouse. This can be

configured for just a single data warehouse or all databases on a server.

Step 2: Navigate to audit logs in storage account and

download ‘xel’ log files to local machine.

Step 3: Open logs using extended events viewer in SSMS.

Configure viewer to include ‘data_sensitivity_information’ column

Threat Protection

Network Security - Business requirements

Network Security

Authentication

Access Control

Data ProtectionHow do we implement

network isolation?

Data at different levels of security

needs to be accessed from

different locations.

How do we achieve

separation?

Disallowing access to entities

outside the company’s network

security boundary.

Azure networking: application-access patterns

Access to Synapse Analytics

Service Endpoints

Backend
Connectivity

ExpressRoute
VPN Gateways

Users

Internet

Your Virtual Network

Access to/from Internet

DDoS protection

Web application firewall

Azure Firewall

Network virtual appliances

Access private traffic

Network security groups (NSGs)

Application security groups (ASGs)

User-defined routes (UDRs)

FrontEndMid-tierBackEnd

Overview

By default, all access to your Azure Synapse Analytics is

blocked by the firewall.

Firewall also manages virtual network rules that are based on

virtual network service endpoints.

Rules

Allow specific or range of whitelisted IP addresses.

Allow Azure applications to connect.

Securing with firewalls

Yes

No
Client IP address in range?

SQL Data Warehouse firewall

Server-level firewall rules

Connection fails

Microsoft AzureInternet

DB 1 DB 2 DB 3

By default, Azure blocks all external

connections to port 1433

Configure with the following steps:

Azure Synapse Analytics Resource:

Server name > Firewalls and virtual networks

Firewall configuration on the portal

Managing firewall rules through REST API must be

authenticated.

For information, see Authenticating Service Management

Requests.

Server-level rules can be created, updated, or

deleted using REST API.

To create or update a server-level firewall rule,

execute the PUT method.

To remove an existing server-level firewall rule,

execute the DELETE method.

To list firewall rules, execute the GET.

Firewall configuration using REST API

PUT
https://management.azure.com/subscriptions/{subscriptionI
d}/resourceGroups/{resourceGroupName}/providers/Microsoft
.Sql/servers/{serverName}/firewallRules/{firewallRuleName
}?api-version=2014-04-01REQUEST BODY
{

"properties": {
"startIpAddress": "0.0.0.3",
"endIpAddress": "0.0.0.3"

}
}

DELETE
https://management.azure.com/subscriptions/{subscriptionI
d}/resourceGroups/{resourceGroupName}/providers/Microsoft
.Sql/servers/{serverName}/firewallRules/{firewallRuleName
}?api-version=2014-04-01

GET
https://management.azure.com/subscriptions/{subscriptionI
d}/resourceGroups/{resourceGroupName}/providers/Microsoft
.Sql/servers/{serverName}/firewallRules/{firewallRuleName
}?api-version=2014-04-01

Windows PowerShell Azure cmdlets

Transact SQL

Firewall configuration using PowerShell/T-SQL

PS Allow external IP access to SQL DW
PS C:\> New-AzureRmSqlServerFirewallRule

-ResourceGroupName "myResourceGroup" `
-ServerName $servername `
-FirewallRuleName "AllowSome"
-StartIpAddress "0.0.0.0"
-EndIpAddress "0.0.0.0“

-- T-SQL Allow external IP access to SQL DW
EXECUTE sp_set_firewall_rule

@name = N'ContosoFirewallRule’,
@start_ip_address = '192.168.1.1’,
@end_ip_address = '192.168.1.10'

Configure with the following steps:

Azure Synapse Analytics Resource:

Server name > Firewalls and virtual networks

REST API and PowerShell alternatives available

Note:

By default, VMs on your subnets cannot communicate

with your SQL Data Warehouse.

There must first be a virtual network service endpoint

for the rule to reference.

VNET configuration on Azure portal

Authentication - Business requirements

How do I configure Azure

Active Directory with Azure

Synapse Analytics?

I want additional control in the form

of multi-factor authentication

How do I allow non-

Microsoft accounts to be

able to authenticate?

Threat Protection

Network Security

Authentication

Access Control

Data Protection

Overview

Manage user identities in one location.

Enable access to Azure Synapse Analytics and other Microsoft

services with Azure Active Directory user identities and groups.

Benefits

Alternative to SQL Server authentication

Limits proliferation of user identities across databases

Allows password rotation in a single place

Enables management of database permissions by using

external Azure Active Directory groups

Eliminates the need to store passwords

Azure Active Directory authentication

Azure Synapse Analytics

Customer 1

Customer 2

Customer 3

Azure Active Directory and Azure Synapse Analytics

Azure Active Directory trust architecture

SQL Server Management Suite

Azure Active Directory Authentication

Library for SQL Server (ADALSQL)

SQL Server Data Tools

On-premises Active Directory

Azure Active

Directory

Azure

Synapse Analytics
ADFS

ADALSQL

ADO .NET

4.6

App

Overview

This authentication method uses a username and

password.

When you created the logical server for your data

warehouse, you specified a "server admin" login with a

username and password.

Using these credentials, you can authenticate to any

database on that server as the database owner.

Furthermore, you can create user logins and roles with

familiar SQL Syntax.

SQL authentication

-- Connect to master database and create a login
CREATE LOGIN ApplicationLogin WITH PASSWORD = 'Str0ng_password';
CREATE USER ApplicationUser FOR LOGIN ApplicationLogin;

-- Connect to SQL DW database and create a database user
CREATE USER DatabaseUser FOR LOGIN ApplicationLogin;

Access Control - Business requirements

How do I restrict access

to sensitive data to

specific database users?

How do I ensure users

only have access to

relevant data?

For example, in a hospital only

medical staff should be allowed

to see patient data that is

relevant to them—and not every

patient’s data.

Threat Protection

Network Security

Authentication

Access Control

Data Protection

Overview

GRANT controls permissions on designated tables, views, stored procedures, and functions.

Prevent unauthorized queries against certain tables.

Simplifies design and implementation of security at the database level as opposed to application level.

Object-level security (tables, views, and more)

-- Grant SELECT permission to user RosaQdM on table Person.Address in the AdventureWorks2012 database

GRANT SELECT ON OBJECT::Person.Address TO RosaQdM;

GO

-- Grant REFERENCES permission on column BusinessEntityID in view HumanResources.vEmployee to user Wanida

GRANT REFERENCES(BusinessEntityID) ON OBJECT::HumanResources.vEmployee to Wanida with GRANT OPTION;

GO

-- Grant EXECUTE permission on stored procedure HumanResources.uspUpdateEmployeeHireInfo to an application role called Recruiting11

USE AdventureWorks2012;

GRANT EXECUTE ON OBJECT::HumanResources.uspUpdateEmployeeHireInfo TO RECRUITING 11;

GO

Overview

Fine grained access control of specific rows in a

database table.

Help prevent unauthorized access when multiple

users share the same tables.

Eliminates need to implement connection filtering

in multi-tenant applications.

Administer via SQL Server Management Studio or

SQL Server Data Tools.

Easily locate enforcement logic inside the database

and schema bound to the table.

Row-level security (RLS)

SQL Data Warehouse

Customer 1

Customer 2

Customer 3

Creating policies

Filter predicates silently filter the rows

available to read operations (SELECT,

UPDATE, and DELETE).

The following examples demonstrate

the use of the CREATE SECURITY

POLICY syntax

Row-level security

-- The following syntax creates a security policy with a filter predicate for the
Customer table

CREATE SECURITY POLICY [FederatedSecurityPolicy]

ADD FILTER PREDICATE [rls].[fn_securitypredicate]([CustomerId])

ON [dbo].[Customer];

-- Create a new schema and predicate function, which will use the application user ID
stored in CONTEXT_INFO to filter rows.

CREATE FUNCTION rls.fn_securitypredicate (@AppUserId int)

RETURNS TABLE

WITH SCHEMABINDING

AS

RETURN (

SELECT 1 AS fn_securitypredicate_result

WHERE

DATABASE_PRINCIPAL_ID() = DATABASE_PRINCIPAL_ID('dbo') -- application context

AND CONTEXT_INFO() = CONVERT(VARBINARY(128), @AppUserId));

GO

Three steps:

1. Policy manager creates filter predicate and security policy in T-SQL, binding

the predicate to the patients table.

2. App user (e.g., nurse) selects from Patients table.

3. Security policy transparently rewrites query to apply filter predicate.

Row-level security

Database

Policy manager

CREATE FUNCTION dbo.fn_securitypredicate(@wing int)
RETURNS TABLE WITH SCHEMABINDING AS
return SELECT 1 as [fn_securitypredicate_result] FROM

StaffDuties d INNER JOIN Employees e
ON (d.EmpId = e.EmpId)
WHERE e.UserSID = SUSER_SID() AND @wing = d.Wing;

CREATE SECURITY POLICY dbo.SecPol
ADD FILTER PREDICATE dbo.fn_securitypredicate(Wing) ON Patients
WITH (STATE = ON)

Filter

Predicate:

INNER

JOIN…

Security policy

Application

Patients

Nurse

SELECT * FROM Patients

SEMIJOIN APPLY dbo.fn_securitypredicate(patients.Wing);

SELECT Patients.* FROM Patients,

StaffDuties d INNER JOIN Employees e ON (d.EmpId = e.EmpId)

WHERE e.UserSID = SUSER_SID() AND Patients.wing = d.Wing;

SELECT * FROM Patients

Overview

Control access of specific columns in a database table

based on customer’s group membership or execution

context.

Simplifies the design and implementation of security by

putting restriction logic in database tier as opposed to

application tier.

Administer via GRANT T-SQL statement.

Both Azure Active Directory (AAD) and SQL authentication

are supported.

Column-level security

Three steps:

1. Policy manager creates permission policy in T-SQL, binding the policy to the Patients

table on a specific group.

2. App user (for example, a nurse) selects from Patients table.

3. Permission policy prevents access on sensitive data.

Column-level security

Database

Policy manager

CREATE TABLE Patients (
PatientID int IDENTITY,
FirstName varchar(100) NULL,
SSN char(9) NOT NULL,
LastName varchar(100) NOT NULL,
Phone varchar(12) NULL,
Email varchar(100) NULL

);

Permission policy

Application

Patients

Nurse

GRANT SELECT ON Patients (

PatientID, FirstName, LastName, Phone, Email

) TO Nurse;

SELECT * FROM Membership;

Msg 230, Level 14, State 1, Line 12

The SELECT permission was denied on the column

'SSN' of the object 'Membership', database

'CLS_TestDW', schema 'dbo'.

Allow ‘Nurse’ to access all columns except for sensitive SSN column

Queries executed as ‘Nurse’ will fail if they include
the SSN column

Data Protection - Business requirements

How do I protect sensitive data against

unauthorized (high-privileged) users?

What key management options do I have?

Threat Protection

Network Security

Authentication

Access Control

Data Protection

Overview

Prevent abuse of sensitive data by hiding it from users

Easy configuration in new Azure Portal

Policy-driven at table and column level, for a defined

set of users

Data masking applied in real-time to query results

based on policy

Multiple masking functions available, such as full or

partial, for various sensitive data categories

(credit card numbers, SSN, etc.)

Dynamic Data Masking

Real-time data masking,

partial masking

CreditCardNo

XXXX-XXXX-XXXX-5796

XXXX-XXXX-XXXX-1978

SQL Database

Table.CreditCardNo

4465-6571-7868-5796

4468-7746-3848-1978

4484-5434-6858-6550

Three steps

1. Security officer defines dynamic data masking policy in T-SQL

over sensitive data in the Employee table. The security officer uses

the built-in masking functions (default, email, random)

2. The app-user selects from the Employee table

3. The dynamic data masking policy obfuscates the sensitive data

in the query results for non-privileged users

Dynamic Data Masking

ALTER TABLE [Employee]
ALTER COLUMN [SocialSecurityNumber]
ADD MASKED WITH (FUNCTION = 'DEFAULT()')

ALTER TABLE [Employee]
ALTER COLUMN [Email]
ADD MASKED WITH (FUNCTION = 'EMAIL()')

ALTER TABLE [Employee]
ALTER COLUMN [Salary]
ADD MASKED WITH (FUNCTION = 'RANDOM(1,20000)')

GRANT UNMASK to admin1

Business app

Security officer
Masked data (admin1 login)

Non-masked data (admin login)

1

SELECT [First Name],
[Social Security Number],
[Email],
[Salary]

FROM [Employee]

2

3

Database files, backups,

Tx log, TempDB
Customer data

In transit At restIn use

Data Encryption Encryption Technology Customer Value

In transit Transport Layer Security (TLS) from

the client to the server

TLS 1.2

Protects data between client and server against snooping and

man-in-the-middle attacks

At rest Transparent Data Encryption (TDE)

for Azure Synapse Analytics

Protects data on the disk

User or Service Managed key management is handled by Azure, which makes it

easier to obtain compliance

Column encryption

Types of data encryption

Overview

All customer data encrypted at rest

TDE performs real-time I/O encryption and

decryption of the data and log files.

Service OR User managed keys.

Application changes kept to a minimum.

Transparent encryption/decryption of data

in a TDE-enabled client driver.

Compliant with many laws, regulations, and

guidelines established across various industries.

Transparent data encryption (TDE)

USE master;
GO
CREATE MASTER KEY ENCRYPTION BY PASSWORD = '<UseStrongPasswordHere>';
go
CREATE CERTIFICATE MyServerCert WITH SUBJECT = 'My DEK Certificate';
go
USE MyDatabase;
GO
CREATE DATABASE ENCRYPTION KEY
WITH ALGORITHM = AES_128
ENCRYPTION BY SERVER CERTIFICATE MyServerCert;
GO
ALTER DATABASE MyDatabase
SET ENCRYPTION ON;
GO

Key Vault

Benefits with User Managed Keys

Assume more control over who has access

to your data and when.

Highly available and scalable cloud-based

key store.

Central key management that allows

separation of key management and data.

Configurable via Azure Portal, PowerShell,

and REST API.

Transparent data encryption (TDE)

Single Sign-On

Implicit authentication - User provides

login credentials once to access Azure

Synapse Workspace

AAD authentication - Azure Synapse

Studio will request token to access each

linked services as user. A separate token is

acquired for each of the below services:

1. ADLS Gen2

2. Azure Synapse Analytics

3. Power BI

4. Spark – Spark Livy API

5. management.azure.com – resource

provisioning

6. Develop artifacts – dev.workspace.net

7. Graph endpoints

MSI authentication - Orchestration uses

MSI auth for automation

Azure Synapse Analytics
Connected Services

Azure Synapse Analytics

On-premises data

Cloud data

SaaS data

Limitless analytics service with unmatched time to insight

Unified platform and experience

Synapse Studio

Integration Management Monitoring Security

Analytics Runtimes

SQL

Azure Data Lake Storage

Power BI

Azure Machine
Learning

Azure Machine Learning

Overview

Data Scientists can use Azure ML notebooks to do

(distributed) data preparation on Synapse Spark compute.

Benefits

Connect to your existing Azure ML workspace and project

Use the AutoML Classifier for classification or regression

problem

Train the model

Access open datasets

Azure Machine Learning (continued)

Power BI

Overview

Power BI is a business analytics service

that delivers insights to enable fast,

informed decisions

Benefits

Create Power BI reports in the workspace

Have access to published reports in
workspace

Update reports real time from Synapse
workspace to get it reflected on Power BI
service

Visually explore and analyze data

Migration Path

SQL DW – All of the data warehousing features that were generally available in Azure SQL Data Warehouse (intelligent

workload management, dynamic data masking, materialized views, etc.) continue to be generally available today. Businesses

can continue running their existing data warehouse workloads in production today with Azure Synapse and will automatically

benefit from the new capabilities which are in preview (unified experience with Azure Synapse studio, query-as-a-service,

built-in data integration, integrated Apache Spark, etc.) once they become generally available in 2020 and can use them in

production if they choose to do so. Customers will not have to migrate any workloads

Azure Data Factory - Continue using Azure Data Factory. When the new functional of data integration within Azure Synapse

becomes generally available, we will provide the capability to import your Azure Data Factory pipelines into Azure Synapse.

Your existing Azure Data Factory accounts and pipelines will work with Azure Synapse if you choose not to import them into

the Azure Synapse workspace. Note that Azure-SSIS Integration Runtime (IR) will not be supported in Synapse

Power BI – Customers link to a Power BI workspace within Azure Synapse Studio so no migration needed

ADLS Gen2 – Customers link to ADLS Gen2 within Azure Synapse Studio so no migration needed

Azure Databricks – TBD

Azure HDInsight - The Spark runtime within the Azure Synapse service is different from HDInsight

Q & A ?
James Serra, Big Data Evangelist

Email me at: JamesSerra3@gmail.com

Follow me at: @JamesSerra

Link to me at: www.linkedin.com/in/JamesSerra

Visit my blog at: JamesSerra.com (where this slide deck is posted under the “Presentations” tab)

mailto:JamesSerra3@gmail.com
http://www.linkedin.com/in/JamesSerra
http://www.jamesserra.com/

