
Azure Tips and Tricks:
Web

 azuredev.tips

ISBN 978-1-7327041-2-1

Introduction

When I reflect back on Azure Tips and Tricks a year ago, I was only thinking that I’d write
a couple of posts and move on. Fast-forward to today, the collection has grown to over
150+ tips, as well as videos, conference talks, and now an e-book spanning the entire
universe of the Azure platform. What you are currently reading is a special collection of
tips based on page views of the entire series over the last year. Before we dive in, you’ll
notice my pixelated form as you turn each page.

These represent:

You can stay up to date with the latest
Azure Tips and Tricks at:

• Blog - azuredev.tips
• Videos - videos.azuredev.tips
• eBook - ebook.azuredev.tips
• Survey - survey.azuredev.tips

I hope you enjoy reading the eBook
as much as I did writing it.

Thanks,
Michael Crump (@mbcrump)

Something I found
 interesting and you

may too.

Additional resources
to get the most out

of this tip.

A key takeaway from
the tip.

Hi, folks!

http://azuredev.tips
http://videos.azuredev.tips
http://ebook.azuredev.tips
http://survey.azuredev.tips
http://twitter.com/mbcrump

WEB

If you’ve used Azure, you’ve more than likely used Azure App Service
to easily host web applications, REST APIs, and mobile back ends. In
this e-book, I’ve pulled out the top 6 tips since the creation of Azure
Tips and Tricks for Azure App Service. They include easily working
with files in the console, easily setting up staging environments and
swapping between them, and routing traffic to different versions
of your app to “Test in Production”. I’ll also cover how you can
implement performance testing, best practices for App Settings in
Azure App Service, and cloning a web app that is especially helpful if
you have customers all over the world.

We’ll take a look at the files inside an Azure App Service
web site and how you can easily work with them.

Console Access to my App Service

Go to the Azure Portal and select my App Service. Click on
Console under Development Tools to have a command
prompt to quickly work with my Azure App Service.

As you can tell from the screenshot, I start in D:\home\site\wwwroot. I can type dir to see a
current directory listing.

Working with Files in Azure App Service

You can learn
more about
Azure App

Service
here

https://azure.microsoft.com/en-us/services/app-service/

I can do basic commands here and even use TYPE <FILENAME> to parse
the output of a file to the screen. You can make directory and so forth, but
keep in mind that this is a sandbox environment and some commands
which require elevated permissions may not work. Quick Tip You can

type help from the
console window for

a list of available
commands.

A VS Code Experience to an Azure App Service
There is also another option that is called “App Service Editor” located just
two items down from “Console” that you picked before.

A VS Code Experience to an Azure App Service

 If you’re familiar
with VS Code, then

you’ll be right at
home as you can
explore, search
and add to Git.

You can also
manipulate files
from within the
window. This

makes it easy to
add, edit or
 delete files.

Just like in VS Code, you can modify your
settings and even change your theme.

No App Service tutorial is complete without
mentioning Kudu Diagnostic Console. You can
access it from within the App Service Editor
under your app name -> Open Kudu Console
or through the portal under Advanced Tools.

Kudu Diagnostic Console

You can just click on the folder name to navigate or type in the command.
You can also easily manipulate the files, but I like the App Service Editor
better for that functionality.

Editor is perfect for lightweight work such as editing files whereas
Kudu puts you deep into the weeds with debugging information, file
manipulation and more.

The main reason that I typically come to the Kudu Diagnostic Console
 is to download files.

Quick Tip The App
Service Editor is a

great choice if ever
in doubt and you

can access it
directly here

 https://yoursitename.scm.azurewebsites.net/dev/

 You can learn
more about Azure
Deployment Slots

here

We’ll take a look at the files inside an Azure App Service
web site and how you can easily work with them.

Creating Deployment Slot

Deployment slots let you deploy different versions of your
web app to different URLs. You can test a certain version and
then swap content and configuration between slots.
Go to the Azure Portal and select my App Service and click
on Deployment Slots under Deployment to get started.
Then click on the Add Slots button. Give it a name such
as staging then use an existing configuration source. We’ll
use our “production” web app. You know, the cool quiz
application. Aka.ms/azuretips/myquizapp

Test Web Apps in Production
with Azure App Service

Great, now if we go back to Deployment Slots, we should see it running.

https://docs.microsoft.com/en-us/azure/app-service/web-sites-staged-publishing
http://aka.ms/azuretips/myquizapp

Click on the new staging site that we just created and you’ll notice that it
has appended the word staging. You’ll also notice we have
a new site: Aka.ms/azuretips/quizsourcegit

We need to push a new version of our existing quiz application to this
staging slot. Go to Deployment Options and select External Repository.
Give it the following URL: Aka.ms/azuretips/quizsource and hit OK.”You
might have to hit Sync, and you’ll eventually see the following:

http://aka.ms/azuretips/quizsourcegit
http://aka.ms/azuretips/quizsource

Give it a couple of minutes until you see that it has completed
pulling down your code from Git and then go to the new URL of
your site. You can find the URL on your overview page. In my case
it is, http://myquizapplication-staging.azurewebsites.net/

Success! This is our new site as indicated by the awesome large
font that says jsQuizEngine version 2.

We could now return to the
original app service that we
created and swap between
the two sites that we have.

For example, you might
want to move the staging
site over to the production

site and vice versa. The
power of this is that your
users don’t experience a
downtime and you can

continue working in your
preferred space until ready

to move to production.

Source Code The source
code to the staging
environment can be

 found here

In this tip, we’ll look at a feature called Testing in Production which
allows you to test your application in production. Not scary at all!

 http://myquizapplication-staging.azurewebsites.net/
https://github.com/mbcrump/jsQuizEngine

Hold up! You’ll want to take
a look at the deployment
slots in the previous tip if
you haven’t worked with
deployment slots before.

Testing Web Apps in Production
with Azure App Service

Go to the Azure Portal and select my App Service and click on
Testing in Production under Development Tools to get started.
The first thing you’ll see is Static Routing and you’ll notice that it’s
looking for a deployment slot and traffic percentage.

What is Static Routing This
section lets you control
how traffic is distributed
between your production

and other slots. This is
useful if you want to try out
a new change with a small
percentage of requests and
then gradually increase the
percentage of requests that

get the new behavior.

We’ll want to split the traffic to our site into two groups to test
our new site and see if customers like it. Since this is just a demo,
I want to send a large number of folks to our new staging site as
shown below.

Great! Now keep in mind that we have two versions of our site:
one that is production and one that is staging. They are identical
except for the staging site has a large font that says jsQuizEngine
version 2.

We don’t want to swap sites, we just want to distribute traffic
between the two sites.

I can test this by going to my production URL and refreshing the
site until the staging site is shown with the production URL.

Success! It works, but what happens when they leave the site? We actually store a cookie
that keeps track of it. You can find this cookie yourself by inspecting the site and looking for

the cookie shown on the next page.

z

You could actually force the old production site by setting the
x-ms-routing-name cookie to self or providing it in the URL
query string such as http://myquizapplication.azurewebsites.
net/?x-ms-routing-name=self You could even use the URL to let
your users test different versions of your site. For example, I could
use http://myquizapplication.azurewebsites.net/?x-ms-routing-
name=staging to let users try my new website before I push it live.
This is very neat stuff, folks!

In this tip, we’ll look at a simple and quick way to
perform load testing of your web app.Learn more about load

testing at
Aka.ms/azuretips/vsts

 http://myquizapplication.azurewebsites.net/?x-ms-routing-name=self
 http://myquizapplication.azurewebsites.net/?x-ms-routing-name=self
http://myquizapplication.azurewebsites.net/?x-ms-routing-name=staging
http://myquizapplication.azurewebsites.net/?x-ms-routing-name=staging
http://Aka.ms/azuretips/vsts

Load Testing allows you to test your web app’s performance
and determine if your app can handle increased traffic during
peak times. You can find this tool by logging into your Azure
account, going to your App service that you created, and
looking under Development Tools.

Inside the blade, select New and you will
see the following options:

Load Testing web apps with
Azure App Services

You have the option to Configure Test and you can leave this
as Manual Test or Visual Studio Web Test. The main difference
between the two is that with the latter you can select multiple
URLs and even use a HTTP Archive file (such as one created by
Fiddler). Leave the testing option as manual and select a name
and location, and make sure you leave the defaults as 250
users for 5 minutes.

Use Case Scenario Suppose
you have a web app and you
have something for sale. You

have an upcoming promo
that last year had 175 users

connected for 5 minutes.
Users complained that the

site was slow and since
your site has grown, you

want to improve customer
satisfaction by reducing the

page load time and test
your web app with a load of
250 users for 5 minutes. Let

the test run and you’ll be
presented with the following

information once it has
completed:

Look out! Keep in mind
that there is a charge for
performing a load test in
terms of virtual users as

indicated in the screenshot.

We were able to do this
without writing code and
with just a couple of clicks

in the portal.

In this post, we’ll take advantage of App Settings to store
a Key/Value pair securely in Azure and access it in your web app.

Learn more about App
Settings at

 Aka.ms/azuretips/
appservconfig

http://aka.ms/azuretips/appservconfig
http://aka.ms/azuretips/appservconfig

App Settings are used to store configurable items without
making any changes to the code. The key/value pairs are
stored behind the scenes in a configuration store, which is nice
because sensitive information never shows up in a web.config,
etc. file. In order to take advantage of this, you’ll need to log
into your Azure account and go to your App Service that you
created and look under Development Tools then you will see
Application Settings.

Open it and scroll down and you’ll see App Settings
as shown below.

We’re going to add an App Setting in Azure. I added one with
the key of Environment and the value is set to Staging.

Working with App Settings
and Azure App Services

Open or create your ASP.NET MVC app and modify the
appSettings section of the web.config file to add our
Environment key/value pair as shown below:

If you run the application locally, then you’ll see Production as it is coming from the
web.config file, but if you run it inside of Azure, then you’ll see Staging as it is coming

from the Apps Settings configuration store located in Azure. Neat stuff!

Connection Strings vs. App Settings You may have noticed Connection
Strings right below the App Settings option and wonder when to use it. A

general rule of thumb is to use Connection Strings for database connection
strings and App Settings for key/value pair application settings. If you
examine your web.config file, then you’ll see there is also a section for

connectionStrings just as there is a section for appSettings.

Scenario: A company has an existing web app in West US, they
would like to clone the app to East US to serve folks that live on
that site with better performance such as latency.
To do this, log into your Azure account and go to your
App Service that you created. Look under Development Tools and
find Clone App.

Cloning Web Apps Using
and Azure App Services

Cloning is the ability to
duplicate an existing Web

App to a newly created
app that is often

in a different region. This
will enable customers to
deploy a number of apps

across different
regions quickly and easily.

Open it and
you’ll see the following:

Ensure you give it an:

•	 App Name - Something unique as this site will live in
something.azurewebsites.net

•	 Resource Group - Create a new one or use an existing one

•	 App Service Plan/Location - This is a good time to
associate a new plan that will determine the location,
features, and cost, and compute resources associated with
your app.

Hold Up Besides
changing the location,
this is also a great time
to determine the plan
needed. You might not

need all the horsepower
to serve this site if you

expect very low traffic in
that region.

•	 Application Insights - You can turn it on or off to help you
detect and diagnose issues with .NET apps.

•	 Clone Settings - Clone will copy the content and
certificates of your app into a newly created application.
You can also copy things like App Settings, Connection
Strings, Deployment Source, and Custom Domains.

Finally, there is Automation Options which brings you to the
Azure Resource Manager templates that are so valuable.
Aka.ms/azuretips/resourcemanager

http://Aka.ms/azuretips/resourcemanager

What is a Azure Resource
Manager again? Azure

Resource Manager enables
you to work with the resources

in your solution as a group.
You can deploy, update, or
delete all the resources for
your solution in a single,

coordinated operation. You
use a template for deployment
and that template can work for
different environments such as

testing, staging, and production.
Resource Manager provides

security, auditing, and tagging
features to help you manage

your resources after deployment.
Aka.ms/azuretips/

appservdeploy

Once everything is set up then
press Create and you’ll see

the Deployment in Progress
begin. You can click on it while

deploying to see details as
shown:

http://aka.ms/azuretips/appservdeploy
http://aka.ms/azuretips/appservdeploy

`

Conclusion

There are 130+ additional tips waiting on you that cover
additional topics such as :

•	 App Services
•	 CLI
•	 Cloud Shell
•	 Cognitive Services
•	 Containers
•	 Cosmos DB
•	 Functions
•	 IoT
•	 Logic Apps
•	 Portal
•	 PowerShell
•	 Productivity
•	 Storage
•	 SQL and Search

Find all of these and more at azuredev.tips

Don't forget that if you are modernizing an existing application
or building a new app, you can get started
Azure for free and get:

•	 $200 credit toward use of any Azure service

•	 12 months of free services—includes compute, storage,
 network, and database

•	 25+ always-free services—includes serverless,
containers, and artificial intelligence

Start free

Until next time,

Michael Crump @mbcrump

 signing off...

http://azuredev.tips
https://azure.com/free
http://twitter.com/mbcrump

Azure Tips and Tricks
 azuredev.tips

Copyright © 2018 by Microsoft Corporation. All rights reserved. No part of the contents of this book may be
reproduced or transmitted in any form or by any means without the written permission of the publisher.

Made with love By Red Door Collaborative.com

http://www.reddoorcollaborative.com/

