
m1v1
B (before)

   ′1m1vB (after)

   ′2m2vB (after)
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Linear Momentum
CHAPTER-OPENING QUESTIONS—Guess now!
1. A railroad car loaded with rocks coasts on a level track without friction.
A worker at the back of the car starts throwing the rocks horizontally backward
from the car. Then what happens?

(a) The car slows down.
(b) The car speeds up.
(c) First the car speeds up and then it slows down.
(d) The car’s speed remains constant.
(e) None of these.

2. Which answer would you choose if the rocks fall out through a hole in the floor
of the car, one at a time?

T he law of conservation of energy, which we discussed in the previous Chapter,
is one of several great conservation laws in physics. Among the other quan-
tities found to be conserved are linear momentum, angular momentum, and

electric charge. We will eventually discuss all of these because the conservation laws
are among the most important ideas in science. In this Chapter we discuss linear
momentum and its conservation. The law of conservation of momentum is essen-
tially a reworking of Newton’s laws that gives us tremendous physical insight and
problem-solving power.

The law of conservation of momentum is particularly useful when dealing with
a system of two or more objects that interact with each other, such as in collisions
of ordinary objects or nuclear particles.

Our focus up to now has been mainly on the motion of a single object, often
thought of as a “particle” in the sense that we have ignored any rotation or internal
motion. In this Chapter we will deal with systems of two or more objects, and—toward
the end of the Chapter—the concept of center of mass.
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Conservation of linear momentum is another great conservation law of physics.
Collisions, such as between billiard or pool balls, illustrate this law very nicely: the 
total vector momentum just before the collision equals the total vector momentum 
just after the collision. In this photo, the moving cue ball makes a glancing collision with 
the 11 ball which is initially at rest. After the collision, both balls move at angles, but the 
sum of their vector momenta equals the initial vector momentum of the incoming cue ball.

We will consider both elastic collisions (where kinetic energy is also conserved) 
and inelastic collisions. We also examine the concept of center of mass, and how it 
helps us in the study of complex motion.















7–1 Momentum and Its Relation to Force
The linear momentum (or “momentum” for short) of an object is defined as the
product of its mass and its velocity. Momentum (plural is momenta—from Latin) is
represented by the symbol If we let m represent the mass of an object and 

represent its velocity, then its momentum is defined as

(7;1)

Velocity is a vector, so momentum too is a vector. The direction of the momentum
is the direction of the velocity, and the magnitude of the momentum is  
Because velocity depends on the reference frame, so does momentum; thus the ref-
erence frame must be specified. The unit of momentum is that of 
which in SI units is There is no special name for this unit.

Everyday usage of the term momentum is in accord with the definition above.
According to Eq. 7–1, a fast-moving car has more momentum than a slow-moving
car of the same mass; a heavy truck has more momentum than a small car moving
with the same speed. The more momentum an object has, the harder it is to stop
it, and the greater effect it will have on another object if it is brought to rest by
striking that object. A football player is more likely to be stunned if tackled by a
heavy opponent running at top speed than by a lighter or slower-moving tackler.
A heavy, fast-moving truck can do more damage than a slow-moving motorcycle.

EXERCISE A Can a small sports car ever have the same momentum as a large sport-
utility vehicle with three times the sports car’s mass? Explain.

A force is required to change the momentum of an object, whether to 
increase the momentum, to decrease it, or to change its direction. Newton origi-
nally stated his second law in terms of momentum (although he called the product
mv the “quantity of motion”). Newton’s statement of the second law of motion,
translated into modern language, is as follows:

The rate of change of momentum of an object is equal to the net force
applied to it.

We can write this as an equation,

(7;2)

where is the net force applied to the object (the vector sum of all forces acting
on it) and is the resulting momentum change that occurs during the time
interval†

We can readily derive the familiar form of the second law, from
Eq. 7–2 for the case of constant mass. If is the initial velocity of an object and

is its velocity after a time interval has elapsed, then

By definition, so

[constant mass]

Equation 7–2 is a more general statement of Newton’s second law than the more
familiar version  because it includes the situation in which the mass
may change. A change in mass occurs in certain circumstances, such as for rockets
which lose mass as they expel burnt fuel.

A©F
B = maB B

©F
B = maB.

aB = ¢vB!¢t,

= m
¢vB

¢t
.©F

B =
¢pB

¢t
=

mvB2 - mvB1

¢t
=

mAvB2 - vB1B
¢t

¢tvB2

vB1

©F
B = maB,

¢t.
¢pB

©F
B

©F
B =

¢pB

¢t
,

kg !m!s.
mass * velocity,

p = mv.

pB = mvB.

pBvB
pB.
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NEWTON’S SECOND LAW

C A U T I O N
The change in the momentum vector
is in the direction of the net force

NEWTON’S SECOND LAW

†Normally we think of as being a small time interval. If it is not small, then Eq. 7–2 is valid if 
is constant during that time interval, or if is the average net force during that time interval.©F

B
©F

B

¢t





















EXERCISE B If the water splashes back from the car in Example 7–2, would the force
on the car be larger or smaller?

Force of a tennis serve. For a top player, a ten-
nis ball may leave the racket on the serve with a speed of (about 

), Fig. 7–1. If the ball has a mass of 0.060 kg and is in contact with the
racket for about 4 ms estimate the average force on the ball. Would
this force be large enough to lift a 60-kg person?
APPROACH We write Newton’s second law, Eq. 7–2, for the average force as

where and are the initial and final momenta. The tennis ball is hit when
its initial velocity is very nearly zero at the top of the throw, so we set  
and we assume  is in the horizontal direction. We ignore all other
forces on the ball during this brief time interval, such as gravity, in comparison
to the force exerted by the tennis racket.
SOLUTION The force exerted on the ball by the racket is

This is a large force, larger than the weight of a 60-kg person, which would
require a force  to lift.
NOTE The force of gravity acting on the tennis ball is

which justifies our ignoring it compared to the enormous force the
racket exerts.
NOTE High-speed photography and radar can give us an estimate of the contact
time and the velocity of the ball leaving the racket. But a direct measure-
ment of the force is not practical. Our calculation shows a handy technique for 
determining an unknown force in the real world.

0.59 N,
mg = (0.060 kg)A9.8 m!s2B =mg = (60 kg)A9.8 m!s2B L 600 N

L 800 N.Favg =
¢p
¢t

=
mv2 - mv1

¢t
=

(0.060 kg)(55 m!s) - 0
0.004 s

v2 = 55 m!s
v1 = 0,v1

mv2mv1

Favg =
¢p
¢t

=
mv2 - mv1

¢t
,

A4 * 10–3 sB,120 mi!h
55 m!s

EXAMPLE 7;1 ESTIMATE
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v = 20 m/s

x

FIGURE 7;2 Example 7–2.

FIGURE 7;1 Example 7–1.

Washing a car: momentum change and force. Water
leaves a hose at a rate of with a speed of and is aimed at the side
of a car, which stops it, Fig. 7–2. (That is, we ignore any splashing back.) What
is the force exerted by the water on the car?
APPROACH The water leaving the hose has mass and velocity, so it has a
momentum in the horizontal (x) direction, and we assume gravity doesn’t
pull the water down significantly. When the water hits the car, the water loses
this momentum We use Newton’s second law in the momentum
form, Eq. 7–2, to find the force that the car exerts on the water to stop it.
By Newton’s third law, the force exerted by the water on the car is equal and
opposite. We have a continuing process: 1.5 kg of water leaves the hose in
each 1.0-s time interval. So let us write where and

SOLUTION The force (assumed constant) that the car must exert to change
the momentum of the water is

The minus sign indicates that the force exerted by the car on the water is oppo-
site to the water’s original velocity. The car exerts a force of 30 N to the left to
stop the water, so by Newton’s third law, the water exerts a force of 30 N to the
right on the car.
NOTE Keep track of signs, although common sense helps too. The water is
moving to the right, so common sense tells us the force on the car must be to 
the right.

F =
¢p
¢t

=
pfinal - pinitial

¢t
=

0 - 30 kg !m!s
1.0 s

= –30 N.

mvinitial = (1.5 kg)(20 m!s) = 30 kg !m!s.
¢t = 1.0 s,F = ¢p!¢t

Apfinal = 0B.pinitial

20 m!s1.5 kg!s
EXAMPLE 7;2



















SECTION 7–2 Conservation of Momentum 173

CONSERVATION OF MOMENTUM 
(two objects colliding)

mA A mB B
A

B

B

B

x

A

A
mA !AvB mB !BvB

vBvB

FIGURE 7;3 Momentum is 
conserved in a collision of two balls,
labeled A and B.

7–2 Conservation of Momentum
The concept of momentum is particularly important because, if no net external
force acts on a system, the total momentum of the system is a conserved quantity.
This was expressed in Eq. 7–2 for a single object, but it holds also for a system as
we shall see.

Consider the head-on collision of two billiard balls, as shown in Fig. 7–3.
We assume the net external force on this system of two balls is zero—that is,
the only significant forces during the collision are the forces that each ball 
exerts on the other. Although the momentum of each of the two balls changes 
as a result of the collision, the sum of their momenta is found to be the same
before as after the collision. If is the momentum of ball A and 
the momentum of ball B, both measured just before the collision, then the 
total momentum of the two balls before the collision is the vector sum

Immediately after the collision, the balls each have a different
velocity and momentum, which we designate by a “prime” on the velocity:

and The total momentum after the collision is the vector sum
No matter what the velocities and masses are, experiments

show that the total momentum before the collision is the same as afterward,
whether the collision is head-on or not, as long as no net external force acts:

(7;3)

That is, the total vector momentum of the system of two colliding balls is conserved:
it stays constant. (We saw this result in this Chapter’s opening photograph.)

Although the law of conservation of momentum was discovered experimen-
tally, it can be derived from Newton’s laws of motion, which we now show.

Let us consider two objects of mass and that have momenta
and before they collide and and after they

collide, as in Fig. 7–4. During the collision, suppose that the force exerted by
object A on object B at any instant is Then, by Newton’s third law, the force
exerted by object B on object A is During the brief collision time, we assume
no other (external) forces are acting (or that is much greater than any other
external forces acting). Over a very short time interval we have

and

We add these two equations together and find

This means  

or

This is Eq. 7–3. The total momentum is conserved.
We have put this derivation in the context of a collision. As long as no exter-

nal forces act, it is valid over any time interval, and conservation of momentum is
always valid as long as no external forces act on the chosen system. In the real world,
external forces do act: friction on billiard balls, gravity acting on a tennis ball, and so
on. So we often want our “observation time” (before and after) to be small.
When a racket hits a tennis ball or a bat hits a baseball, both before and after the
“collision”the ball moves as a projectile under the action of gravity and air resistance.

pB œA + pBB
œ = pBA + pBB .

pBB
œ - pBB + pBA

œ - pBA = 0,

0 =
¢pBB + ¢pBA

¢t
=
ApBB
œ - pBBB + ApBA

œ - pBAB
¢t

.

–F
B =

¢pBA

¢t
=

pB œA - pBA

¢t
.

F
B =

¢pBB

¢t
=

pB œB - pBB

¢t

¢t
F
B

–F
B

.
F
B

.

pBB
œpBA

œpBB A= mBvBBBpBA A= mAvBAB mBmA

C©F
B

ext = 0 DmA vBA + mB vBB = mA vBA
œ + mB vBB

œ .

 momentum before = momentum after

mA vBA
œ + mB vBB

œ .
mB vBB

œ .mA vBA
œ

mA vBA + mB vBB .

mB vBBmA vBA

Before
collision

At
collision

After
collision

mA

mA

mA

mB

mB

mB

−F
B

F
B

pA
B

pB
B

p!B
B

p!A
B

FIGURE 7;4 Collision of two
objects. Their momenta before 
collision are and and after
collision are and At any
moment during the collision each
exerts a force on the other of equal
magnitude but opposite direction.

pBB
œ .pBA

œ
pBB ,pBA









However, when the bat or racket hits the ball, during the brief time of the colli-
sion those external forces are insignificant compared to the collision force the bat
or racket exerts on the ball. Momentum is conserved (or very nearly so) as long
as we measure and just before the collision and and immediately
after the collision (Eq. 7–3). We can not wait for external forces to produce their
effect before measuring and 

The above derivation can be extended to include any number of interacting
objects. To show this, we let in Eq. 7–2 represent the total momen-
tum of a system—that is, the vector sum of the momenta of all objects in the system.
(For our two-object system above, ) If the net force on the
system is zero [as it was above for our two-object system, ], then
from Eq. 7–2, so the total momentum doesn’t change. The
general statement of the law of conservation of momentum is

The total momentum of an isolated system of objects remains constant.

By a system, we simply mean a set of objects that we choose, and which may
interact with each other. An isolated system is one in which the only (significant)
forces are those between the objects in the system. The sum of all these “internal”
forces within the system will be zero because of Newton’s third law. If there are
external forces—by which we mean forces exerted by objects outside the system—
and they don’t add up to zero, then the total momentum of the system won’t be
conserved. However, if the system can be redefined so as to include the other
objects exerting these forces, then the conservation of momentum principle can
apply. For example, if we take as our system a falling rock, it does not conserve
momentum because an external force, the force of gravity exerted by the Earth,
accelerates the rock and changes its momentum. However, if we include the Earth in
the system, the total momentum of rock plus Earth is conserved. (This means that
the Earth comes up to meet the rock. But the Earth’s mass is so great, its upward
velocity is very tiny.)

Although the law of conservation of momentum follows from Newton’s
second law, as we have seen, it is in fact more general than Newton’s laws. In the
tiny world of the atom, Newton’s laws fail, but the great conservation laws—
those of energy, momentum, angular momentum, and electric charge—have been
found to hold in every experimental situation tested. It is for this reason that 
the conservation laws are considered more basic than Newton’s laws.

¢pB = ©F
B ¢t = 0,

F
B + (–F

B

) = 0
©F

B

pB = mA vBA + mB vBB .

(©F
B = ¢pB!¢t)pB

pBB
œ .pBA

œ

pBB
œpBA

œpBBpBA
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LAW OF CONSERVATION 
OF MOMENTUM

vB = 0
(at rest)

v′ = ?

(b)  After collision

(a)  Before collision

x

x

vA = 24.0 m/s

A B

BA

FIGURE 7;5 Example 7–3.

Railroad cars collide: momentum conserved. A 10,000-kg
railroad car, A, traveling at a speed of strikes an identical car, B, at 
rest. If the cars lock together as a result of the collision, what is their common
speed just afterward? See Fig. 7–5.
APPROACH We choose our system to be the two railroad cars. We consider a very
brief time interval, from just before the collision until just after, so that external
forces such as friction can be ignored. Then we apply conservation of momentum.

24.0 m!s
EXAMPLE 7;3

















SOLUTION The initial total momentum is

because car B is at rest initially  The direction is to the right in the 
direction. After the collision, the two cars become attached, so they will have

the same speed, call it Then the total momentum after the collision is

We have assumed there are no external forces, so momentum is conserved:

Solving for we obtain

to the right. Their mutual speed after collision is half the initial speed of car A.
NOTE We kept symbols until the very end, so we have an equation we can use
in other (related) situations.
NOTE We haven’t included friction here. Why? Because we are examining
speeds just before and just after the very brief time interval of the collision, and
during that brief time friction can’t do much—it is ignorable (but not for long:
the cars will slow down because of friction).

v¿ =
mA

mA + mB
vA = a 10,000 kg

10,000 kg + 10,000 kg
b (24.0 m!s) = 12.0 m!s,

v¿,
mA vA = AmA + mBB v¿.pinitial = pfinal

pfinal = AmA + mBB v¿.v¿.
±x

AvB = 0B.pinitial = mA vA + mB vB = mA vA
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EXERCISE C In Example 7–3, so in the last equation,
Hence  What result do you get if (a)  (b) is much larger than

and (c) mB V mA ?mA AmB W mAB, mBmB = 3mA ,v¿ = 1
2 vA .

mA!AmA + mBB = 1
2 .mA = mB ,

EXERCISE D A 50-kg child runs off a dock at (horizontally) and lands in a waiting
rowboat of mass 150 kg. At what speed does the rowboat move away from the dock?

2.0 m!s

The law of conservation of momentum is particularly useful when we are
dealing with fairly simple systems such as colliding objects and certain types of
“explosions.” For example, rocket propulsion, which we saw in Chapter 4 can be
understood on the basis of action and reaction, can also be explained on the 
basis of the conservation of momentum. We can consider the rocket plus its fuel as an
isolated system if it is far out in space (no external forces). In the reference frame
of the rocket before any fuel is ejected, the total momentum of rocket plus fuel 
is zero. When the fuel burns, the total momentum remains unchanged: the back-
ward momentum of the expelled gases is just balanced by the forward momentum
gained by the rocket itself (see Fig. 7–6). Thus, a rocket can accelerate in empty
space. There is no need for the expelled gases to push against the Earth or the 
air (as is sometimes erroneously thought). Similar examples of (nearly) isolated
systems where momentum is conserved are the recoil of a gun when a bullet is fired
(Example 7–5), and the movement of a rowboat just after a package is thrown from it.

P H Y S I C S  A P P L I E D
Rocket propulsion

  rocketgas

(a)

(b)

   = 0

pB

pB

pB

FIGURE 7;6 (a) A rocket,
containing fuel, at rest in some 
reference frame. (b) In the same 
reference frame, the rocket fires and
gases are expelled at high speed out
the rear. The total vector momentum,

remains zero.pBgas + pBrocket ,Falling on or off a sled. (a) An empty sled
is sliding on frictionless ice when Susan drops vertically from a tree down onto
the sled. When she lands, does the sled speed up, slow down, or keep the same
speed? (b) Later: Susan falls sideways off the sled. When she drops off, does 
the sled speed up, slow down, or keep the same speed?

RESPONSE (a) Because Susan falls vertically onto the sled, she has no initial
horizontal momentum. Thus the total horizontal momentum afterward equals the
momentum of the sled initially. Since the mass of the system has
increased, the speed must decrease.
(b) At the instant Susan falls off, she is moving with the same horizontal speed
as she was while on the sled. At the moment she leaves the sled, she has the
same momentum she had an instant before. Because her momentum does not
change, neither does the sled’s (total momentum conserved); the sled keeps the
same speed.

(sled + person)

CONCEPTUAL EXAMPLE 7;4

C A U T I O N
A rocket does not push on the Earth;
it is propelled by pushing out the
gases it burned as fuel



































EXERCISE E Return to the Chapter-Opening Questions, page 170, and answer them
again now. Try to explain why you may have answered differently the first time.
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(b) After shooting

  B

   B
   R

(a) Before shooting (at rest)
x

   R
pB

pB

vBvB

FIGURE 7;7 Example 7–5.

Rifle recoil. Calculate the recoil velocity of a 5.0-kg rifle that
shoots a 0.020-kg bullet at a speed of Fig. 7–7.
APPROACH Our system is the rifle and the bullet, both at rest initially, just
before the trigger is pulled. The trigger is pulled, an explosion occurs inside the
bullet’s shell, and we look at the rifle and bullet just as the bullet leaves the barrel
(Fig. 7–7b). The bullet moves to the right and the gun recoils to the left.
During the very short time interval of the explosion, we can assume the external
forces are small compared to the forces exerted by the exploding gunpowder.
Thus we can apply conservation of momentum, at least approximately.
SOLUTION Let subscript B represent the bullet and R the rifle; the final veloc-
ities are indicated by primes. Then momentum conservation in the x direction
gives

We solve for the unknown and find

Since the rifle has a much larger mass, its (recoil) velocity is much less than that
of the bullet. The minus sign indicates that the velocity (and momentum) of the
rifle is in the negative x direction, opposite to that of the bullet.

vR
œ = –

mB vB
œ

mR
= –

(0.020 kg)(620 m!s)
(5.0 kg)

= –2.5 m!s.

vR
œ ,

mB vB + mR vR = mB vB
œ + mR vR

œ

0 + 0 = mB vB
œ + mR vR

œ .

 momentum before = momentum after

(±x),

620 m!s,
EXAMPLE 7;5

FIGURE 7;8 Tennis racket striking
a ball. Both the ball and the racket
strings are deformed due to the large
force each exerts on the other.

∆

Fo
rc

e,
 F

(N
)

0 Time, t (ms)

   t∆

FIGURE 7;9 Force as a function of time 
during a typical collision. F can become 
very large; is typically milliseconds 
for macroscopic collisions.

¢t

7–3 Collisions and Impulse
Collisions are a common occurrence in everyday life: a tennis racket or a baseball
bat striking a ball, billiard balls colliding, a hammer hitting a nail. When a collision
occurs, the interaction between the objects involved is usually far stronger than
any external forces. We can then ignore the effects of any other forces during the
brief time interval of the collision.

During a collision of two ordinary objects, both objects are deformed, often
considerably, because of the large forces involved (Fig. 7–8). When the collision
occurs, the force each exerts on the other usually jumps from zero at the moment
of contact to a very large force within a very short time, and then rapidly 
returns to zero again. A graph of the magnitude of the force that one object
exerts on the other during a collision, as a function of time, is something like 
the red curve in Fig. 7–9. The time interval is usually very distinct and very
small, typically milliseconds for a macroscopic collision.

¢t
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F

F

0 ti
ttf
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FIGURE 7;10 The average force 
acting over a very brief time 
interval gives the same impulse

as the actual force.(f ¢t)
¢t

f

From Newton’s second law, Eq. 7–2, the net force on an object is equal to the
rate of change of its momentum:

(We have written instead of for the net force, which we assume is entirely
due to the brief but large average force that acts during the collision.) This equa-
tion applies to each of the two objects in a collision. We multiply both sides of this
equation by the time interval and obtain

(7;4)

The quantity on the left, the product of the force times the time over which
the force acts, is called the impulse:

(7;5)

We see that the total change in momentum is equal to the impulse. The concept
of impulse is useful mainly when dealing with forces that act during a short time
interval, as when a bat hits a baseball. The force is generally not constant, and
often its variation in time is like that graphed in Figs. 7–9 and 7–10. We can often
approximate such a varying force as an average force acting during a time
interval as indicated by the dashed line in Fig. 7–10. is chosen so that the
area shown shaded in Fig. 7–10 (equal to ) is equal to the area under the
actual curve of F vs. t, Fig. 7–9 (which represents the actual impulse).

f * ¢t
f¢t,
f

Impulse = F
B ¢t.

¢tF
B

F
B ¢t = ¢pB.

¢t,

©F
B

F
B

F
B =

¢pB

¢t
.

EXERCISE F Suppose Fig. 7–9 shows the force on a golf ball vs. time during the time
interval when the ball hits a wall. How would the shape of this curve change if a softer
rubber ball with the same mass and speed hit the same wall?

FIGURE 7;11 Example 7–6.
Karate blow. Estimate the impulse and the

average force delivered by a karate blow that breaks a board (Fig. 7–11).
Assume the hand moves at roughly when it hits the board.
APPROACH We use the momentum-impulse relation, Eq. 7–4. The hand’s
speed changes from to zero over a distance of perhaps one cm (roughly
how much your hand and the board compress before your hand comes to a 
stop, and the board begins to give way). The hand’s mass should probably include
part of the arm, and we take it to be roughly
SOLUTION The impulse equals the change in momentum

We can obtain the force if we know The hand is brought to rest over the dis-
tance of roughly a centimeter: The average speed during the
impact is  and equals Thus  

or 2 ms. The average force is thus (Eq. 7–4) about

f =
¢p
¢t

=
10 kg !m!s
2 * 10–3 s

L 5000 N = 5 kN.

A10–2 mB!(5 m!s) = 2 * 10–3 s
¢t = ¢x!v L¢x!¢t.v = (10 m!s + 0)!2 = 5 m!s

¢x L 1 cm.
¢t.

f ¢t = ¢p = m ¢v L (1 kg)(10 m!s - 0) = 10 kg !m!s.

F¢t
m L 1 kg.

10 m!s

10 m!s

EXAMPLE 7;6 ESTIMATE

7–4 Conservation of Energy and
Momentum in Collisions

During most collisions, we usually don’t know how the collision force varies 
over time, and so analysis using Newton’s second law becomes difficult or impos-
sible. But by making use of the conservation laws for momentum and energy,
we can still determine a lot about the motion after a collision, given the motion
before the collision. We saw in Section 7–2 that in the collision of two objects
such as billiard balls, the total momentum is conserved. If the two objects are
very hard and no heat or other energy is produced in the collision, then 
the total kinetic energy of the two objects is the same after the collision as before.
For the brief moment during which the two objects are in contact, some (or 
all) of the energy is stored momentarily in the form of elastic potential energy.
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A B

A B

  A   B
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    ′B

(a) Approach

(b) Collision

(c) If elastic

(d) If inelastic

    ′B

vB vB

vB

vB vB
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FIGURE 7;12 Two equal-mass
objects (a) approach each other 
with equal speeds, (b) collide, and
then (c) bounce off with equal
speeds in the opposite directions if
the collision is elastic, or (d) bounce
back much less or not at all if the
collision is inelastic (some of the KE

is transformed to other forms of
energy such as sound and heat).

x

y

  A   B

x

y

mA

(a)

mB

mA mB

(b)

   ′A    ′B

vB vB

vB vB

FIGURE 7;13 Two small objects of
masses and (a) before the
collision and (b) after the collision.

mB ,mA

†Note that Eqs. (i) and (ii), which are the conservation laws for momentum and kinetic energy, are
both satisfied by the solution  and  This is a valid solution, but not very interesting.
It corresponds to no collision at all—when the two objects miss each other.

vB
œ = vB .vA

œ = vA

But if we compare the total kinetic energy just before the collision with the 
total kinetic energy just after the collision, and they are found to be the same,
then we say that the total kinetic energy is conserved. Such a collision is called 
an elastic collision. If we use the subscripts A and B to represent the two objects,
we can write the equation for conservation of total kinetic energy as

[elastic collision] (7;6)

Primed quantities mean after the collision, and unprimed mean before the
collision, just as in Eq. 7–3 for conservation of momentum.

At the atomic level the collisions of atoms and molecules are often elastic.
But in the “macroscopic” world of ordinary objects, an elastic collision is an ideal
that is never quite reached, since at least a little thermal energy is always produced
during a collision (also perhaps sound and other forms of energy). The col-
lision of two hard elastic balls, such as billiard balls, however, is very close to
being perfectly elastic, and we often treat it as such.

We do need to remember that even when kinetic energy is not conserved,
the total energy is always conserved.

Collisions in which kinetic energy is not conserved are said to be inelastic
collisions. The kinetic energy that is lost is changed into other forms of energy,
often thermal energy, so that the total energy (as always) is conserved. In this case,

See Fig. 7–12, and the details in its caption.

7–5 Elastic Collisions in One Dimension
We now apply the conservation laws for momentum and kinetic energy to an elastic
collision between two small objects that collide head-on, so all the motion is along a
line. To be general, we assume that the two objects are moving, and their velocities
are and along the x axis before the collision, Fig. 7–13a. After the collision,
their velocities are and Fig. 7–13b. For any the object is moving to the
right (increasing x), whereas for the object is moving to the left (toward
decreasing values of x).

From conservation of momentum, we have

Because the collision is assumed to be elastic, kinetic energy is also conserved:

We have two equations, so we can solve for two unknowns. If we know the masses
and velocities before the collision, then we can solve these two equations for the
velocities after the collision, and We derive a helpful result by rewriting the
momentum equation as

(i)

and we rewrite the kinetic energy equation as

Noting that algebraically  we write this last equation as

(ii)

We divide Eq. (ii) by Eq. (i), and (assuming and )† obtain

vA + vA
œ = vB

œ + vB .

vB Z vB
œvA Z vA

œ

mAAvA - vA
œ B AvA + vA

œ B = mBAvB
œ - vBB AvB

œ + vBB.Aa2 - b2B = (a - b)(a + b),

mAAvA
2 - vA

œ2B = mBAvB
œ2 - vB

2 B.
mAAvA - vA

œ B = mBAvB
œ - vBB,

vB
œ .vA

œ

1
2 mA vA

2 + 1
2 mB vB

2 = 1
2 mA vA

œ2 + 1
2 mB vB

œ2 .

mA vA + mB vB = mA vA
œ + mB vB

œ .

v 6 0,
v 7 0,vB

œ ,vA
œ

vBvA

keA + keB = keA
œ + keB

œ + thermal and other forms of energy.

(¿)

1
2 mA vA

2 + 1
2 mB vB

2 = 1
2 mA vA

œ2 + 1
2 mB vB

œ2 .

 total ke before = total ke after
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C A U T I O N
Relative speeds (one dimension only)

We can rewrite this equation as

or
[head-on (1-D) elastic collision] (7;7)

This is an interesting result: it tells us that for any elastic head-on collision, the
relative speed of the two objects after the collision  has the same magnitude
(but opposite direction) as before the collision, no matter what the masses are.

Equation 7–7 was derived from conservation of kinetic energy for elastic 
collisions, and can be used in place of it. Because the v’s are not squared in
Eq. 7–7, it is simpler to use in calculations than the conservation of kinetic 
energy equation (Eq. 7–6) directly.

AvA
œ - vB

œ B
vA - vB = – AvA

œ - vB
œ B.vA - vB = vB

œ - vA
œ

Equal masses. Billiard ball A of mass m moving with
speed collides head-on with ball B of equal mass. What are the speeds of the two
balls after the collision, assuming it is elastic? Assume (a) both balls are moving
initially ( and ), (b) ball B is initially at rest
APPROACH There are two unknowns, and so we need two indepen-
dent equations. We focus on the time interval from just before the collision 
until just after. No net external force acts on our system of two balls (mg and
the normal force cancel), so momentum is conserved. Conservation of kinetic
energy applies as well because we are told the collision is elastic.
SOLUTION (a) The masses are equal  so conservation of
momentum gives

We need a second equation, because there are two unknowns. We could use the
conservation of kinetic energy equation, or the simpler Eq. 7–7 derived from it:

We add these two equations and obtain

and then subtract the two equations to obtain

That is, the balls exchange velocities as a result of the collision: ball B acquires
the velocity that ball A had before the collision, and vice versa.
(b) If ball B is at rest initially, so that  we have

and

That is, ball A is brought to rest by the collision, whereas ball B acquires the
original velocity of ball A. See Fig. 7–14.
NOTE Our result in part (b) is often observed by billiard and pool players, and
is valid only if the two balls have equal masses (and no spin is given to the balls).

vA
œ = 0.

vB
œ = vA

vB = 0,

vA
œ = vB .

vB
œ = vA

vA - vB = vœB - vA
œ .

vA + vB = vA
œ + vB

œ .

AmA = mB = mB
vB
œ ,vA

œ
AvB = 0B.vBvA

vA

EXAMPLE 7;7

FIGURE 7;14 In this multiflash photo of a head-on
collision between two balls of equal mass, the white
cue ball is accelerated from rest by the cue stick and
then strikes the red ball, initially at rest. The white 
ball stops in its tracks, and the (equal-mass) red ball
moves off with the same speed as the white ball had
before the collision. See Example 7–7, part (b).
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A nuclear collision. A proton (p) of mass (unified
atomic mass units) traveling with a speed of has an elastic 
head-on collision with a helium (He) nucleus  initially at rest.
What are the velocities of the proton and helium nucleus after the collision?
(As mentioned in Chapter 1, but we won’t need this 
fact.) Assume the collision takes place in nearly empty space.
APPROACH Like Example 7–7, this is an elastic head-on collision, but now the
masses of our two particles are not equal. The only external force could be 
Earth’s gravity, but it is insignificant compared to the powerful forces between the 
two particles at the moment of collision. So again we use the conservation laws of
momentum and of kinetic energy, and apply them to our system of two particles.
SOLUTION We use the subscripts p for the proton and He for the helium
nucleus. We are given  and  We want to find the
velocities and after the collision. From conservation of momentum,

Because the collision is elastic, the kinetic energy of our system of two particles is
conserved and we can use Eq. 7–7, which becomes

Thus

and substituting this into our momentum equation displayed above, we get

Solving for we obtain

The other unknown is which we can now obtain from

The minus sign for tells us that the proton reverses direction upon collision,
and we see that its speed is less than its initial speed (see Fig. 7–15).
NOTE This result makes sense: the lighter proton would be expected to “bounce
back” from the more massive helium nucleus, but not with its full original velocity
as from a rigid wall (which corresponds to extremely large, or infinite, mass).

vp
œ

= –2.15 * 104 m!s.vp
œ = vHe

œ - vp = A1.45 * 104 m!sB - A3.60 * 104 m!sBvp
œ ,

= 1.45 * 104 m!s.vHe
œ =

2mp vp

mp + mHe
=

2(1.01 u)A3.60 * 104 m!sB
(4.00 u + 1.01 u)

vHe
œ ,

mp vp = mp vHe
œ - mp vp + mHe vHe

œ .

vp
œ = vHe

œ - vp ,

vp - 0 = vHe
œ - vp

œ .

mp vp + 0 = mp vp
œ + mHe vHe

œ .
vHe
œvp

œ
vp = 3.60 * 104 m!s.vHe = 0

1 u = 1.66 * 10–27 kg,

AmHe = 4.00 uB3.60 * 104 m!s
1.01 uEXAMPLE 7;8

He

(a)

  ′

(b)

  ′He

p

  p

pvB vB

vB

FIGURE 7;15 Example 7–8:
(a) before collision, (b) after collision.

7–6 Inelastic Collisions
Collisions in which kinetic energy is not conserved are called inelastic collisions.
Some of the initial kinetic energy is transformed into other types of energy, such
as thermal or potential energy, so the total kinetic energy after the collision is less
than the total kinetic energy before the collision. The inverse can also happen
when potential energy (such as chemical or nuclear) is released, in which case the
total kinetic energy after the interaction can be greater than the initial kinetic
energy. Explosions are examples of this type.

Typical macroscopic collisions are inelastic, at least to some extent, and often to
a large extent. If two objects stick together as a result of a collision, the collision
is said to be completely inelastic. Two colliding balls of putty that stick together
or two railroad cars that couple together when they collide are examples of com-
pletely inelastic collisions. The kinetic energy in some cases is all transformed to
other forms of energy in an inelastic collision, but in other cases only part of it is.
In Example 7–3, for instance, we saw that when a traveling railroad car collided
with a stationary one, the coupled cars traveled off with some kinetic energy. In a
completely inelastic collision, the maximum amount of kinetic energy is transformed
to other forms consistent with conservation of momentum. Even though kinetic
energy is not conserved in inelastic collisions, the total energy is always conserved,
and the total vector momentum is also conserved.
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Ballistic pendulum. The ballistic pendulum is a device used
to measure the speed of a projectile, such as a bullet. The projectile, of mass m,
is fired into a large block (of wood or other material) of mass M, which is
suspended like a pendulum. (Usually, M is somewhat greater than m.) As a result
of the collision, the pendulum and projectile together swing up to a maximum
height h, Fig. 7–16. Determine the relationship between the initial horizontal
speed of the projectile, v, and the maximum height h.
APPROACH We can analyze the process by dividing it into two parts or two
time intervals: (1) the time interval from just before to just after the collision
itself, and (2) the subsequent time interval in which the pendulum moves from
the vertical hanging position to the maximum height h.

In part (1), Fig. 7–16a, we assume the collision time is very short, so that the
projectile is embedded in the block before the block has moved significantly from its
rest position directly below its support. Thus there is effectively no net external force,
and we can apply conservation of momentum to this completely inelastic collision.

In part (2), Fig. 7–16b, the pendulum begins to move, subject to a net 
external force (gravity, tending to pull it back to the vertical position); so for
part (2), we cannot use conservation of momentum. But we can use conservation
of mechanical energy because gravity is a conservative force (Chapter 6). The
kinetic energy immediately after the collision is changed entirely to gravitational
potential energy when the pendulum reaches its maximum height, h.
SOLUTION In part (1) momentum is conserved:

(i)

where is the speed of the block and embedded projectile just after the colli-
sion, before they have moved significantly.

In part (2), mechanical energy is conserved. We choose when the
pendulum hangs vertically, and then when the pendulum–projectile
system reaches its maximum height. Thus we write

or

(ii)

We solve for 

Inserting this result for into Eq. (i) above, and solving for v, gives 

which is our final result.
NOTE The separation of the process into two parts was crucial. Such an analysis is
a powerful problem-solving tool. But how do you decide how to make such a
division? Think about the conservation laws. They are your tools. Start a problem
by asking yourself whether the conservation laws apply in the given situation.
Here, we determined that momentum is conserved only during the brief colli-
sion, which we called part (1). But in part (1), because the collision is inelastic, the
conservation of mechanical energy is not valid. Then in part (2), conservation 
of mechanical energy is valid, but not conservation of momentum.

Note, however, that if there had been significant motion of the pendulum
during the deceleration of the projectile in the block, then there would have
been an external force (gravity) during the collision, so conservation of momen-
tum would not have been valid in part (1).

v = m + M
m v¿ = m + M

m 22gh ,

v¿

v¿ = 22gh .

v¿:

1
2 (m + M)v¿2 +   0 = 0 +   (m + M)gh.

 (ke + pe) just after collision = (ke + pe) at pendulum’s maximum height

y = h
y = 0

v¿

mv = (m + M)v¿,
 total p before = total p after

EXAMPLE 7;9 P H Y S I C S  A P P L I E D
Ballistic pendulum

l

M + m
h

l

vM = 0
M

m

(a)

(b)

vB

′vB

FIGURE 7;16 Ballistic pendulum.
Example 7–9.

P R O B L E M  S O L V I N G
Use the conservation laws to 
analyze a problem

















Railroad cars again. For the completely inelastic collision
of the two railroad cars that we considered in Example 7–3, calculate how much
of the initial kinetic energy is transformed to thermal or other forms of energy.
APPROACH The railroad cars stick together after the collision, so this is a 
completely inelastic collision. By subtracting the total kinetic energy after the
collision from the total initial kinetic energy, we can find how much energy is
transformed to other types of energy.
SOLUTION Before the collision, only car A is moving, so the total initial
kinetic energy is  After the
collision, both cars are moving with half the speed, by conserva-
tion of momentum (Example 7–3). So the total kinetic energy afterward is 

Hence the
energy transformed to other forms is

which is half the original kinetic energy.
A2.88 * 106 JB - A1.44 * 106 JB = 1.44 * 106 J,

1
2 (20,000 kg)(12.0 m!s)2 = 1.44 * 106 J.ke¿ = 1

2 AmA + mBBv¿2 = v¿ = 12.0 m!s,

1
2 mA vA

2 = 1
2 (10,000 kg)(24.0 m!s)2 = 2.88 * 106 J.

EXAMPLE 7;10
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†The objects may begin to deflect even before they touch if electric, magnetic, or nuclear forces act
between them. You might think, for example, of two magnets oriented so that they repel each other:
when one moves toward the other, the second moves away before the first one touches it.

FIGURE 7;17 A recent color-
enhanced version of a cloud-chamber
photograph made in the early days
(1920s) of nuclear physics. Green
lines are paths of helium nuclei (He)
coming from the left. One He,
highlighted in yellow, strikes a proton
of the hydrogen gas in the chamber,
and both scatter at an angle; the 
scattered proton’s path is shown in red.

′Bθ 

′Aθ

mB

mB

mA   ′ApB

   ′BpB

   ApB
mA

y

x
FIGURE 7;18 Object A, the projectile,
collides with object B, the target. After
the collision, they move off with
momenta and at angles and uB

œ .uA
œpBB

œpBA
œ

Let us apply the law of conservation of momentum to a collision like that of
Fig. 7–18. We choose the xy plane to be the plane in which the initial and final
momenta lie. Momentum is a vector, and because the total momentum is 
conserved, its components in the x and y directions also are conserved. The
x component of momentum conservation gives

or, with  

(7;8a)

where primes refer to quantities after the collision. There is no motion in the y direc-
tion initially, so the y component of the total momentum is zero before the collision.

(¿)
mA vA = mA vA

œ cos uA
œ + mB vB

œ cos uB
œ ,

pBx = mB vBx = 0,

pAx + pBx = pAx
œ + pBx

œ

7–7 Collisions in Two Dimensions
Conservation of momentum and energy can also be applied to collisions in two or
three dimensions, where the vector nature of momentum is especially important.
One common type of non-head-on collision is that in which a moving object (called
the “projectile”) strikes a second object initially at rest (the “target”). This is the
common situation in games such as billiards and pool, and for experiments in
atomic and nuclear physics (the projectiles, from radioactive decay or a high-
energy accelerator, strike a stationary target nucleus, Fig. 7–17).

Figure 7–18 shows the incoming projectile, heading along the x axis
toward the target object, which is initially at rest. If these are billiard balls,

strikes not quite head-on and they go off at the angles and 
respectively, which are measured relative to ’s initial direction (the x axis).†mA

uB
œ ,uA

œmBmA

mB ,
mA ,

*
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FIGURE 7;19 Example 7–11.

C A U T I O N
Equation 7–7 applies only in 1-D

The y component equation of momentum conservation is then

or
(7;8b)

When we have two independent equations, we can solve for two unknowns at most.

 0 = mA vA
œ sin uA

œ + mB vB
œ sin uB

œ .

pAy + pBy = pAy
œ + pBy

œ

Billiard ball collision in 2-D. Billiard ball A moving with
speed  in the direction (Fig. 7–19) strikes an equal-mass ball B
initially at rest. The two balls are observed to move off at 45° to the x axis,
ball A above the x axis and ball B below. That is, and  in
Fig. 7–19. What are the speeds of the two balls after the collision?
APPROACH There is no net external force on our system of two balls, assuming
the table is level (the normal force balances gravity). Thus momentum con-
servation applies, and we apply it to both the x and y components using the 
xy coordinate system shown in Fig. 7–19. We get two equations, and we have
two unknowns, and From symmetry we might guess that the two balls
have the same speed. But let us not assume that now. Even though we are not
told whether the collision is elastic or inelastic, we can still use conservation of
momentum.
SOLUTION We apply conservation of momentum for the x and y components,
Eqs. 7–8a and b, and we solve for and We are given  
so

(for x)
and

(for y)

The m’s cancel out in both equations (the masses are equal). The second equation
yields [recall from trigonometry that ]:

So they do have equal speeds as we guessed at first. The x component equation
gives [recall that  ]:

solving for (which also equals ) gives

vA
œ =

vA

2 cos(45°)
= 3.0 m!s

2(0.707)
= 2.1 m!s.

vB
œvA

œ

vA = vA
œ cos(45°) + vB

œ cos(45°) = 2vA
œ cos(45°);

cos(–u) = cos u

vB
œ = –vA

œ sin(45°)
sin(–45°)

= –vA
œ a sin 45°

–sin 45°
b = vA

œ .

sin(–u) = –sin u

 0 = mvA
œ sin(45°) + mvB

œ sin(–45°).

mvA = mvA
œ cos(45°) + mvB

œ cos(–45°)

mA = mB A= mB,vB
œ .vA

œ

vB
œ .vA

œ

uB
œ = –45°uA

œ = 45°

±xvA = 3.0 m!s
EXAMPLE 7;11

If we know that a collision is elastic, we can also apply conservation of
kinetic energy and obtain a third equation in addition to Eqs. 7–8a and b:

or, for the collision shown in Fig. 7–18 or 7–19 (where ),

[elastic collision] (7;8c)

If the collision is elastic, we have three independent equations and can solve for
three unknowns. If we are given (and if it is not zero), we can-
not, for example, predict the final variables, and because there
are four of them. However, if we measure one of these variables, say then the
other three variables ( and ) are uniquely determined, and we can
determine them using Eqs. 7–8a, b, c.

A note of caution: Eq. 7–7 (page 179) does not apply for two-dimensional
collisions. It works only when a collision occurs along a line.

uB
œvA

œ , vB
œ ,

uA
œ ,

uB
œ ,vA

œ , vB
œ , uA

œ ,
vB ,mA , mB , vA

1
2 mA vA

2 = 1
2 mA vA

œ2 + 1
2 mB vB

œ2 .

keB = 0

keA + keB = keA
œ + keB

œ



(a)

(b)

FIGURE 7;20 The motion of the diver is pure translation
in (a), but is translation plus rotation in (b). The black dot
represents the diver’s CM at each moment.

7–8 Center of Mass (CM)
Momentum is a powerful concept not only for analyzing collisions but also for
analyzing the translational motion of real extended objects. Until now, when-
ever we have dealt with the motion of an extended object (that is, an object that
has size), we have assumed that it could be approximated as a point particle or
that it undergoes only translational motion. Real extended objects, however, can
undergo rotational and other types of motion as well. For example, the diver 
in Fig. 7–20a undergoes only translational motion (all parts of the object follow
the same path), whereas the diver in Fig. 7–20b undergoes both translational 
and rotational motion. We will refer to motion that is not pure translation as 
general motion.

Observations indicate that even if an object rotates, or several parts of a
system of objects move relative to one another, there is one point that moves in
the same path that a particle would move if subjected to the same net force.
This point is called the center of mass (abbreviated CM). The general motion of
an extended object (or system of objects) can be considered as the sum of the
translational motion of the CM, plus rotational, vibrational, or other types of motion
about the CM.

As an example, consider the motion of the center of mass of the diver in 
Fig. 7–20; the CM follows a parabolic path even when the diver rotates, as shown
in Fig. 7–20b. This is the same parabolic path that a projected particle follows
when acted on only by the force of gravity (projectile motion, Chapter 3).
Other points in the rotating diver’s body, such as her feet or head, follow more
complicated paths.
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only an x axis.) It is often convenient to choose the
axis in the direction of one object’s initial velocity.

5. Apply the momentum conservation equation(s):

You have one equation for each component (x, y, z):
only one equation for a head-on collision. [Don’t for-
get that it is the total momentum of the system that
is conserved, not the momenta of individual objects.]

6. If the collision is elastic, you can also write down a
conservation of kinetic energy equation:

[Alternatively, you could use Eq. 7–7:

if the collision is one dimensional (head-on).]

7. Solve for the unknown(s).

8. Check your work, check the units, and ask yourself
whether the results are reasonable.

vB
œ - vA

œ ,vA - vB =

total initial ke = total final ke.

total initial momentum = total final momentum.

±x

P
R

O
B

L
E

M
S O LV I N G

Momentum Conservation 
and Collisions
1. Choose your system. If the situation is complex,

think about how you might break it up into separate
parts when one or more conservation laws apply.

2. Consider whether a significant net external force
acts on your chosen system; if it does, be sure the time
interval is so short that the effect on momentum
is negligible. That is, the forces that act between the
interacting objects must be the only significant ones
if momentum conservation is to be used. [Note: If
this is valid for a portion of the problem, you can
use momentum conservation only for that portion.]

3. Draw a diagram of the initial situation, just before
the interaction (collision, explosion) takes place, and
represent the momentum of each object with an arrow
and a label. Do the same for the final situation, just
after the interaction.

4. Choose a coordinate system and “ ” and “ ”
directions. (For a head-on collision, you will need

–±

¢t
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FIGURE 7;21 Translation plus 
rotation: a wrench moving over a
smooth horizontal surface. The CM,
marked with a red cross, moves in 
a straight line because no net 
force acts on the wrench.

Figure 7–21 shows a wrench acted on by zero net force, translating and rotating
along a horizontal surface. Note that its CM, marked by a red cross, moves in a
straight line, as shown by the dashed white line.

We will show in Section 7–10 that the important properties of the CM follow from
Newton’s laws if the CM is defined in the following way. We can consider any extended
object as being made up of many tiny particles. But first we consider a system made
up of only two particles (or small objects), of masses and We choose a coor-
dinate system so that both particles lie on the x axis at positions and Fig. 7–22.
The center of mass of this system is defined to be at the position given by

where is the total mass of the system. The center of mass lies on
the line joining and If the two masses are equal then

is midway between them, because in this case

If one mass is greater than the other, then the CM is closer to the larger mass.
If there are more than two particles along a line, there will be additional terms:

(7;9a)

where M is the total mass of all the particles.

CM of three guys on a raft. On a lightweight (air-filled)
“banana boat,” three people of roughly equal mass m sit along the x axis at posi-
tions and measured from the left-hand
end as shown in Fig. 7–23. Find the position of the CM. Ignore the mass of the boat.
APPROACH We are given the mass and location of the three people, so we 
use three terms in Eq. 7–9a. We approximate each person as a point particle.
Equivalently, the location of each person is the position of that person’s own CM.
SOLUTION We use Eq. 7–9a with three terms:

The CM is 4.0 m from the left-hand end of the boat.

EXERCISE G Calculate the CM of the three people in Example 7–12, taking the origin
at the driver on the right. Is the physical location of the CM the same?

Note that the coordinates of the CM depend on the reference frame or coordinate
system chosen. But the physical location of the CM is independent of that choice.

If the particles are spread out in two or three dimensions, then we must specify
not only the x coordinate of the CM but also the y and z coordinates, which will
be given by formulas like Eq. 7–9a. For example, the y coordinate of the CM will be

(7;9b)

where M is the total mass of all the particles.

ycm =
mA yA + mB yB + p

mA + mB + p
=

mA yA + mB yB + p
M

AxcmB,
AxC = 0B

=
(1.0 m + 5.0 m + 6.0 m)

3
= 12.0 m

3
= 4.0 m.

xcm =
mxA + mxB + mxC

m + m + m
=

mAxA + xB + xCB
3m

xC = 6.0 m,xB = 5.0 m,xA = 1.0 m,

EXAMPLE 7;12

xcm =
mA xA + mB xB + mC xC + p

mA + mB + mC + p
=

mA xA + mB xB + mC xC + p
M

,

xcm =
mAxA + xBB

2m
=
AxA + xBB

2
.

xcm

AmA = mB = mB,mB .mA

M = mA + mB

xcm =
mA xA + mB xB

mA + mB
=

mA xA + mB xB

M
,

xcm ,
xB ,xA

mB .mA

y

x
mA

xA
xB

xCM

mB

FIGURE 7;22 The center of mass 
of a two-particle system lies on the 
line joining the two masses. Here

so the CM is closer to 
than to mB .

mAmA 7 mB ,

0 5.0 mx = 0 6.0 m1.0 m
x

5.0 m 6.0 m x

y

0 1.0 m

FIGURE 7;23 Example 7–12.

















A concept similar to center of mass is center of gravity (CG). An object’s CG is
that point at which the force of gravity can be considered to act. The force of gravity
actually acts on all the different parts or particles of an object, but for purposes of
determining the translational motion of an object as a whole, we can assume that 
the entire weight of the object (which is the sum of the weights of all its parts) acts 
at the CG. There is a conceptual difference between the center of gravity and the
center of mass, but for nearly all practical purposes, they are at the same point.†

It is often easier to determine the CM or CG of an extended object experimen-
tally rather than analytically. If an object is suspended from any point, it will swing
(Fig. 7–24) due to the force of gravity on it, unless it is placed so its CG lies on 
a vertical line directly below the point from which it is suspended. If the object is
two dimensional, or has a plane of symmetry, it need only be hung from two 
different pivot points and the respective vertical (plumb) lines drawn. Then the
center of gravity will be at the intersection of the two lines, as in Fig. 7–25. If 
the object doesn’t have a plane of symmetry, the CG with respect to the third dimen-
sion is found by suspending the object from at least three points whose plumb
lines do not lie in the same plane.

For symmetrically shaped objects such as uniform cylinders (wheels), spheres,
and rectangular solids, the CM is located at the geometric center of the object.

To locate the center of mass of a group of extended objects, we can use
Eqs. 7–9, where the m’s are the masses of these objects and the x’s, y’s, and z’s 
are the coordinates of the CM of each of the objects.
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†There would be a difference between the CM and CG only in the unusual case of an object so large
that the acceleration due to gravity, g, was different at different parts of the object.

Pivot point

m

CG

gB

FIGURE 7;24 The force of gravity,
considered to act at the CG, causes
this object to rotate about the pivot
point; if the CG were on a vertical
line directly below the pivot, the
object would remain at rest.

CG

FIGURE 7;25 Finding the CG.

7–9 CM for the Human Body
For a group of extended objects, each of whose CM is known, we can find the 
CM of the group using Eqs. 7–9a and b. As an example, we consider the human 
body. Table 7–1 indicates the CM and hinge points (joints) for the different compo-
nents of a “representative” person. Of course, there are wide variations among
people, so these data represent only a very rough average. The numbers represent
a percentage of the total height, which is regarded as 100 units; similarly, the total
mass is 100 units. For example, if a person is 1.70 m tall, his or her shoulder joint
would be above the floor.(1.70 m)(81.2!100) = 1.38 m

*

TABLE 7;1 Center of Mass of Parts of Typical Human Body, given as 
(full height and )

Distance of Hinge Hinge Points (•) Center of Mass ( ) Percent 
Points from Floor ( ) (Joints) ( Height Above Floor) Mass%%%%

"

mass # 100 units
%%

elbow 62.2%‡

wrist 46.2%‡

Head 93.5% 6.9%
Trunk and neck 71.1% 46.1%

Upper arms 71.7% 6.6%
Lower arms 55.3% 4.2%
Hands 43.1% 1.7%

Upper legs (thighs) 42.5% 21.5%

Lower legs 18.2% 9.6%

Feet 1.8% 3.4%

91.2% Base of skull on spine
81.2% Shoulder joint

52.1% Hip joint

28.5% Knee joint

4.0% Ankle joint

Body CM 58.0% 100.0%
‡ For arm hanging vertically.

=
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A leg’s CM. Determine the position of the CM of a whole leg
(a) when stretched out, and (b) when bent at 90°. See Fig. 7–26. Assume the
person is 1.70 m tall.

APPROACH Our system consists of three objects: upper leg, lower leg, and foot.
The location of the CM of each object, as well as the mass of each, is given in
Table 7–1, where they are expressed in percentage units. To express the results
in meters, these percentage values need to be multiplied by 
When the leg is stretched out, the problem is one dimensional and we can 
solve for the x coordinate of the CM. When the leg is bent, the problem is two
dimensional and we need to find both the x and y coordinates.

SOLUTION (a) We determine the distances from the hip joint using Table 7–1
and obtain the numbers (%) shown in Fig. 7–26a. Using Eq. 7–9a, we obtain
(u upper leg, etc.)

Thus, the center of mass of the leg and foot is 20.4 units from the hip joint, or
from the base of the foot. Since the person is 1.70 m

tall, this is above the bottom of the foot.
(b) We use an xy coordinate system, as shown in Fig. 7–26b. First, we calculate
how far to the right of the hip joint the CM lies, accounting for all three parts:

For our 1.70-m-tall person, this is from the hip joint.
Next, we calculate the distance, of the CM above the floor:

or Thus, the CM is located 39 cm above the floor
and 25 cm to the right of the hip joint.

NOTE The CM lies outside the body in (b).

(1.70 m)(23.0!100) = 0.39 m.

ycm =
(3.4)(1.8) + (9.6)(18.2) + (21.5)(28.5)

3.4 + 9.6 + 21.5
= 23.0 units,

ycm ,
(1.70 m)(14.9!100) = 0.25 m

xcm =
(21.5)(9.6) + (9.6)(23.6) + (3.4)(23.6)

21.5 + 9.6 + 3.4
= 14.9 units.

(1.70 m)(31.7!100) = 0.54 m
52.1 - 20.4 = 31.7 units

=
(21.5)(9.6) + (9.6)(33.9) + (3.4)(50.3)

21.5 + 9.6 + 3.4
= 20.4 units.

xcm =
mulxul + mllxll + mfxf

mul + mll + mf

=l

(1.70 m!100).

EXAMPLE 7;13

Knowing the CM of the body when it is in various positions is of great use in
studying body mechanics. One simple example from athletics is shown in Fig. 7–27.
If high jumpers can get into the position shown, their CM can pass below the 
bar which their bodies go over, meaning that for a particular takeoff speed, they
can clear a higher bar. This is indeed what they try to do.

50.3
33.9

9.6

23.6
9.6

28.5

18.2

1.8

(a)

(b)

y

x

FIGURE 7;26 Example 7–13:
finding the CM of a leg in two 
different positions using percentages
from Table 7–1. ( represents the
calculated CM.)

!

CM

FIGURE 7;27 A high jumper’s CM

may actually pass beneath the bar.

P H Y S I C S  A P P L I E D
The high jump

7–10 CM and Translational Motion
As mentioned in Section 7–8, a major reason for the importance of the concept
of center of mass is that the motion of the CM for a system of particles (or an
extended object) is directly related to the net force acting on the system as a
whole. We now show this, taking the simple case of one-dimensional motion
(x direction) and only three particles, but the extension to more objects and to
three dimensions follows the same reasoning.

*
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Suppose the three particles lie on the x axis and have masses 
and positions From Eq. 7–9a for the center of mass, we can write

where is the total mass of the system. If these particles
are in motion (say, along the x axis with velocities and respectively),
then in a short time interval each particle and the CM will have traveled a dis-
tance  so that

We cancel and get

(7;10)

Since is the sum of the momenta of the particles 
of the system, it represents the total momentum of the system. Thus we see from
Eq. 7–10 that the total (linear) momentum of a system of particles is equal to the
product of the total mass M and the velocity of the center of mass of the system.
Or, the linear momentum of an extended object is the product of the object’s mass
and the velocity of its CM.

If forces are acting on the particles, then the particles may be accelerating. In 
a short time interval each particle’s velocity will change by an amount  
If we use the same reasoning as we did to obtain Eq. 7–10, we find

According to Newton’s second law, and 
where and are the net forces on the three particles, respectively. Thus
we get for the system as a whole or

(7;11)

That is, the sum of all the forces acting on the system is equal to the total mass of
the system times the acceleration of its center of mass. This is Newton’s second 
law for a system of particles. It also applies to an extended object (which can be
thought of as a collection of particles). Thus the center of mass of a system of 
particles (or of an object) with total mass M moves as if all its mass were concen-
trated at the center of mass and all the external forces acted at that point. We can
thus treat the translational motion of any object or system of objects as the
motion of a particle (see Figs. 7–20 and 7–21). This result simplifies our analysis
of the motion of complex systems and extended objects. Although the motion of
various parts of the system may be complicated, we may often be satisfied with
knowing the motion of the center of mass. This result also allows us to solve
certain types of problems very easily, as illustrated by the following Example.

Macm = Fnet .

Macm = FA + FB + FC ,
FCFB,FA,

mC aC = FC ,mB aB = FB,mA aA = FA,

Macm = mA aA + mB aB + mC aC .

¢v = a ¢t.¢t,

mA vA + mB vB + mC vC

Mvcm = mA vA + mB vB + mC vC .

¢t
Mvcm ¢t = mA vA ¢t + mB vB ¢t + mC vC ¢t.

¢x = v¢t,
¢t

vC ,vA , vB ,
M = mA + mB + mC

Mxcm = mA xA + mB xB + mC xC ,

xC .xA , xB ,
mC ,mA , mB ,

NEWTON’S SECOND LAW
(for a system)

d

I II

II Pa
th

of
 I

II

d

I
I

Path of CM

Path of II

FIGURE 7;28 Example 7–14.

A two-stage rocket. A rocket is shot into
the air as shown in Fig. 7–28. At the moment the rocket reaches its highest point,
a horizontal distance d from its starting point, a prearranged explosion separates
it into two parts of equal mass. Part I is stopped in midair by the explosion, and
it falls vertically to Earth. Where does part II land? Assume gB = constant.

CONCEPTUAL EXAMPLE 7;14
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P H Y S I C S  A P P L I E D
Distant planets discovered

The linear momentum, of an object is defined as the product
of its mass times its velocity,

(7;1)

In terms of momentum, Newton’s second law can be written
as

(7;2)

That is, the rate of change of momentum of an object equals
the net force exerted on it.

When the net external force on a system of objects is 
zero, the total momentum remains constant. This is the law of
conservation of momentum. Stated another way, the total
momentum of an isolated system of objects remains constant.

The law of conservation of momentum is very useful in
dealing with collisions. In a collision, two (or more) objects
interact with each other over a very short time interval, and the
force each exerts on the other during this time interval is very
large compared to any other forces acting.

The impulse delivered by a force on an object is defined as 

(7;5)

where is the average force acting during the (usually very
short) time interval The impulse is equal to the change in
momentum of the object:

(7;4)

Total momentum is conserved in any collision as long as
any net external force is zero or negligible. If and 
are the momenta of two objects before the collision and mA vBA

œ
mB vBBmA vBA

Impulse = F
B

¢t = ¢pB.

¢t.
F
B

Impulse = F
B

¢t,

©F
B

=
¢pB

¢t
.

pB = mvB.

pB,

Summary

EXERCISE H A woman stands up in a rowboat and walks from one end of the boat to
the other. How does the boat move, as seen from the shore?

An interesting application is the discovery of nearby stars (see Section 5–8)
that seem to “wobble.”What could cause such a wobble? It could be that a planet
orbits the star, and each exerts a gravitational force on the other. The planets are
too small and too far away to be observed directly by telescopes. But the slight
wobble in the motion of the star suggests that both the planet and the star (its sun)
orbit about their mutual center of mass, and hence the star appears to have a wobble.
Irregularities in the star’s motion can be measured to high accuracy, yielding
information on the size of the planets’ orbits and their masses. See Fig. 5–30 in
Chapter 5.

and are their momenta after, then momentum conserva-
tion tells us that 

(7;3)

for this two-object system.
Total energy is also conserved. But this may not be helpful

unless kinetic energy is conserved, in which case the collision is
called an elastic collision and we can write

(7;6)

If kinetic energy is not conserved, the collision is called
inelastic. Macroscopic collisions are generally inelastic.
A completely inelastic collision is one in which the colliding
objects stick together after the collision.

The center of mass (CM) of an extended object (or group of
objects) is that point at which the net force can be considered
to act, for purposes of determining the translational motion of
the object as a whole. The x component of the CM for objects
with mass is given by

(7;9a)

[*The center of mass of a system of total mass M moves in
the same path that a particle of mass M would move if subjected
to the same net external force. In equation form, this is Newton’s
second law for a system of particles (or extended objects):

(7;11)

where M is the total mass of the system, is the acceleration
of the CM of the system, and is the total (net) external 
force acting on all parts of the system.]

Fnet

aCM

MaCM = Fnet

xCM =
mA xA + mB xB + p

mA + mB + p
.

p ,mB ,mA ,

1
2 mA vA

2 + 1
2 mB vB

2 = 1
2 mA vA

œ2 + 1
2 mB vB

œ2 .

mA vBA + mB vBB = mA vBA
œ + mB vBB

œ

mB vBB
œ

RESPONSE After the rocket is fired, the path of the CM of the system contin-
ues to follow the parabolic trajectory of a projectile acted on by only a constant
gravitational force. The CM will thus land at a point 2d from the starting 
point. Since the masses of I and II are equal, the CM must be midway between
them at any time. Therefore, part II lands a distance 3d from the starting point.
NOTE If part I had been given a kick up or down, instead of merely falling, the
solution would have been more complicated.


