Electric Charge and Field Multiple Choice

Slide 3 / 34

2 An electric field is created by a positive charge $+Q$ located at point A. If the electric field at point B is E, what is the electric field at point E in terms of $E_{\text {a }}$?

○ $\mathrm{A} \quad \mathrm{E}_{0}$
(1) $E_{0} / 2$

○C $E_{0} / 4$
○D $\mathrm{E}_{0} / 8$

O $E_{0} / 16$

Slide 4 / 34

3 A dipole is placed in a uniform electric field as shown. Which of the following is true about the net force on the dipole?

A net force is directed to the left
E
O B net force is directed to the right

OC
net force causes the dipole to rotate in clockwise direction

net force causes the dipole to rotate in counterclockwise direction

OE the net force is zero

Slide 5 / 34

4 A dipole is placed in a non-uniform electric field as shown. Which of the following is true about the net force on the dipole?net force is directed to the left
OB net force is directed to the right
OC net force causes the dipole to rotate in clockwise direction

OD net force causes the dipole to rotate in counterclockwise direction

E the net force is zero

Slide 6 / 34

5 Two identical conducting spheres are charged to -7Q and +3Q respectively, and are separated by a distance r. The spheres are made to touch each other and then separated to the same distance. What is the new charge on each sphere?

○A -7Q
OB +3Q
OC -2Q
OD -10Q

6 Two identical conducting spheres are charged to＋6Q and－ 2Q respectively，and are separated by a distance r．The electrostatic force between the charges is Fo．The charges are made to touch each other and then separated to the same distance．What is the new force between the charges？

OA $F=F$ 。
OB $F=F_{0} / 3$
OC $F=F_{0} / 4$
OD $F=3 F$ 。
OE $F=4 F_{\text {。 }}$

Slide 9 ／ 34

8 A positively charged particle traveling with a velocity v enters a uniform electric field E that is perpendicular to the initial velocity． Which of the following paths the particle will describe in the field？

A parabolic
O circular
O straight line parallel to the field
OD straight line perpendicular to the field
OE helical

Slide 10 ／ 34

9 Three equal positive charges are placed in the corners of an equilateral triangle．What is the net electric field at the center of triangle？

OA $\left(3 k Q^{2}\right) / r^{2}$
OB $\left(k Q^{2}\right) / r^{2}$
○C zero
OD（ $\left.\sqrt{3} k Q^{2}\right) / r^{2}$
OE（ $\left.\sqrt{2} k Q^{2}\right) / r 2$

Slide 11 ／ 34
 Slide 12 ／ 34

10 Three equal by magnitude charges are placed in the corners of an equilateral triangle as shown．What is the direction of the net electric field at the center of triangle？

OA Right
OB Left
OC Net field is zero
OD Top of the page
OE Bottom of the page

7 Two small spheres have equal charges Q and are separated by a distance r ．The resulting force exerted on each sphere has a magnitude F o．If the charge on each sphere is doubled and r is quartered，the force on each sphere has a magnitude of
OA 64F。
B 16F。
OC F_{0}
OD $F_{0} / 16$
OE $\quad F_{0} / 64$ triangle？

11 Which of the following is the unit of electric field？
O（kgm）／（ $\left.\mathrm{s}^{2} \mathrm{C}\right)$
○B $\quad\left(\mathrm{sm}^{2}\right) /\left(\mathrm{kg}^{2} \mathrm{C}\right)$
$\bigcirc \mathrm{C} \quad\left(\mathrm{kgs}^{2}\right) /\left(\mathrm{m}^{2} \mathrm{C}\right)$
OD $\left(\mathrm{C} \mathrm{kgm}^{2}\right) /\left(\mathrm{s}^{2}\right)$
OE $\quad\left(\mathrm{Cm}^{2}\right) /\left(\mathrm{kg} \mathrm{s}^{2}\right)$

13 Spheres B is neutral and grounded. A positively charged sphere A is brought close to, but does not make contact with, sphere B. Which of the following is true?

A Negative charge flows from sphere B to the ground
O Begative charge flows from the ground to sphere B
O Negative charge moves neither direction because sphere B is neutral
O D Positive flows from sphere B to the ground
OE
Positive flows from the ground to sphere B

Slide 15 / 34

Slide 16 / 34

14 As shown above, two particles, each of charge $+Q$, are fixed at opposite corners of a square that lies in the plane of the page. A positive test charge $+q$ is placed at a third corner. What is the direction of the force on the test charge due to the two other charges?

Slide 17 / 34

6 Two charges are located on the line shown in the figure below, one on point I and the other on point III. The charge at point I is $-5 Q$ and the charge at point III is +3 Q. Point II is halfway between points I and III. Other than at infinity, the electric field strength is zero at a point on the line in which of the following ranges?

A To the left of I
O B Between I and II
OC Between II and III

O To the right of III
OE None; the field is zero only at infinity

17 If the only force acting on an electron is due to a uniform electric field, the electron moves with constant

O acceleration in a direction opposite to that of the field

O acceleration in a direction perpendicular to that of the field
OD speed in a direction opposite to that of the field
O speed in the direction of the field

18 A negative charge Q1 = $-8 \mu \mathrm{C}$ is placed at point $\mathrm{x} 1=-4 \mathrm{~m}$, a second unknown charge is placed a point $x 2=5 \mathrm{~m}$. What must the sign and magnitude of the second charge be in order to cancel the electric field at the origin?

O $\mathrm{A}-12.5 \mu \mathrm{C}$
OB $+12.5 \mu \mathrm{C}$
C $-16 \mu \mathrm{C}$
OD $+8 \mu \mathrm{C}$
OE $-8 \mu \mathrm{C}$

19 Positive electric charge $+Q$ is uniformly distributed over insulating ring of radius R that lies in a plane perpendicular to the x -axis. A positive test charge $+q$ is placed at the center of the ring. What is the net force on the test charge?

○A
$(k Q q x) /\left(x^{2}+R^{2}\right)^{(3 / 2)}$
O $(\sqrt{ } 2 k Q q x) /\left(x^{2}+R^{2}\right)^{(3 / 2)}$
○ $\quad(\sqrt{ } 3 \mathrm{kQqx}) /\left(\mathrm{x}^{2}+\mathrm{R}^{2}\right)^{(3 / 2)}$
OD (kQq) $/\left(x^{2}+R^{2}\right)^{(3 / 2)}$
OE zero

Slide 21 / 34

Slide 22 / 34

20 Positive charge Q is uniformly distributed over a thin ring of radius R that lies in a plane perpendicular to the x -axis. Which of the following formulas best represents the electric field along the positive x-axis?

Slide 23 / 34

2 A negatively charged rod is brought near without touching a neutral, grounded electroscope. With the rod held in place, the wire is removed from the ground. Which of the following is now true of electroscope?

A It is uncharged because it was originally neutral
B It is positively charged
OC It is negatively charged
OD It is charged, but its sign cannot be predicted
E It is uncharged because it wasn't touch to the rod

23 Two charges are arranged on the corners of a square as shown below. What is the direction of the net electric field at the center of the square?

Slide 24 / 34

Positive charge Q is uniformly distributed over a thin ring of radius R that lies in a plane perpendicular to the x-axis. Which of the following graphs best represents the electric field along the positive x-axis?
OA

OD
(D) E

OB

OE

Oc

24 Two charges are arranged on the corners of a square as shown below. At which point is the magnitude of the field is strongest?

OA A
○B B
○C C
OD D
OE E

Slide 27 / 34

Slide 28 / 34

25 A $2 \mu \mathrm{C}$ charge of mass 0.1 g accelerates at $4 \mathrm{~m} / \mathrm{s} 2$ in a uniform electric field. The magnitude of the field is most nearly

OA 2000 N/C
OB $\quad 20$ N/C
○C $2 N / C$
OD $0.2 \mathrm{~N} / \mathrm{C}$
OE 200 N/C

26 The electric field E shown in the diagram below increases:
OA to the right
OB to the left
CE to the bottom of the page top of the page
OE page
26 The electric field E shown in the diagram below increases:
OA to the right
OB to the left
CE to the bottom of the page top of the page
OE page
26 The electric field E shown in the diagram below increases:
OA to the right
OB to the left
CE to the bottom of the page top of the page
OE page
26 The electric field E shown in the diagram below increases:
OA to the right
OB to the left
CE to the bottom of the page top of the page
OE page
26 The electric field E shown in the diagram below increases:
OA to the right
OB to the left
CE to the bottom of the page top of the page
OE page
26 The electric field E shown in the diagram below increases:
OA to the right
OB to the left
CE to the bottom of the page top of the page
OE page

Slide 29 / 34

Slide 30 / 34

28 The diagram below depicts a line of charge Q with length $2 a$. Which of the following represents the x component of the electric field E at point P ?

O 0

- B $Q /\left(4 \pi \varepsilon_{0} x^{2}\right)$

OC $\mathrm{Q} /\left[\left(4 \pi \varepsilon_{0}\right) \sqrt{ }\left(x^{2}+a^{2}\right)\right]$
○D Q/[(4 $\left.\left.\pi \varepsilon_{0} x\right) \sqrt{ }\left(x^{2}+a^{2}\right)\right]$
OE Q/[(2 $\left.\pi \varepsilon_{0}\right)\left(x\left(x^{2}+a^{2}\right)^{(3 / 2)}\right]$

27 The diagram below depicts a line of charge Q with length $2 a$. Which of the following represents the y component of the electric field E at point P ?

○A 0
○B \quad / $\left(4 \pi \varepsilon_{0} x^{2}\right)$
$\bigcirc C \quad Q /\left[\left(4 \pi \varepsilon_{0}\right) \sqrt{ }\left(x^{2}+a^{2}\right)\right]$
○D $Q /\left[\left(4 \pi \varepsilon_{0} x\right) \sqrt{ }\left(x^{2}+a^{2}\right)\right]$
○E Q/[(2T $\left.\varepsilon_{0}\right)\left(x\left(x^{2}+a^{2}\right)^{(3 / 2)}\right]$

29 Two small spheres have charges Q and $3 Q$ and are separated by a distance d. The force exerted on the charge Q has magnitude F . What is the force on the other charge?

○A F/9
(B $\quad \mathrm{F} / 3$
$\bigcirc C \quad F$
OD 3F
OE 9F

30 A battery is hooked up to a parallel plate capacitor and creates an electric field E between the plates. Between the plates exists a small particle of mass m that is levitated by the electric field. What is the charge on the particle?

A No charge
OB Positive
OC Negative
OD The charge does not matter
OE Not enough information provided

Slide 33 / 34

32 A battery is hooked up to a parallel plate capacitor and creates an electric field E between the plates. Between the plates exists a small particle of mass m that is levitated by the electric field. If the charge was replaced with a charge q , what is the direction of electric force on the particle?

A down
OB up
OC left
OD right
OE force is zero

