ALGEBRA AND CALCULUS

B.Sc. COMPUTER SCIENCE, BCA

Allied Mathematics

ALLIED COURSE I (AC) - ALGEBRA AND CALCULUS

UNIT I

Theory of Equations: Relation between roots \& coefficients - Transformations of Equations - Diminishing, Increasing \& multiplying the roots by a constant- Forming equations with the given roots - Rolle's Theorem, Descarte's rule of Signs(statement only)-simple problems.

UNIT II

Matrices : Singular matrices - Inverse of a non-singular matrix using adjoint method -
Rank of a Matrix -Consistency - Characteristic equation, Eigen values, Eigen vectors Cayley Hamilton's Theorem (proof not needed) -Simple applications only

UNIT III

Differentiation: Maxima \& Minima - Concavity, Convexity - Points of inflexion -
Partial differentiation - Euler's Theorem - Total differential coefficients (proof not needed)-Simple problems only.

UNIT IV

Integration : Evaluation of integrals of types $\int \frac{p x+q}{a x^{2}+b x+c} d x, \int \frac{p x+q}{\sqrt{a x^{2}+b x+c}} d x, \int \frac{d x}{a+b \sin x}$, $\int \frac{d x}{a+b \cos x}$ Evaluation using Integration by parts - Properties of definite integrals - Fourier Series in the range ($0,2 \pi$) - Odd \& Even Functions - Fourier Half range Sine \& Cosine Series

UNIT V

Differential Equations: Variables Separables - Linear equations - Second order of types $\left(a D^{2}+b D+c\right) y=F(x)$ where a, b, c are constants and $F(x)$ is one of the following types (i) e^{Kx} (ii) $\sin (\mathrm{kx})$ or $\cos (\mathrm{kx})$ (iii) $\mathrm{x} n, \mathrm{n}$ being an integer (iv) $\mathrm{e}^{\mathrm{Kx}} \mathrm{F}$ (x).

ALGEBRA AND CALCULUS

Unit - I
Theory of Equations
Let us consider

$$
f(x)=a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n}
$$

This a polynomial in ' x ' of degree ' n ' provided $a_{0} \neq 0$.
The equation is obtained by putting $\mathrm{f}(\mathrm{x})=0$ is called an algebraic equation of degree n .
RELATIONS BETWEEN THE ROOTS AND COEFFICIENTS OF EQUATIONS
Let the given equation be $a_{0} x^{n}+a_{1} x^{n-1}+a_{2} x^{n-2}+\cdots+a_{n}=0$
Let $\alpha_{1}, \alpha_{2}, \ldots \ldots, \alpha_{n}$ be its roots.
$\sum \alpha_{1}=$ sum of the roots taken one at a time $=-\frac{a_{1}}{a_{0}}$
$\sum \alpha_{1} \alpha_{2}=$ sum of the product of the roots taken two at a time $=\frac{a_{2}}{a_{0}}$
$\sum \alpha_{1} \alpha_{2} \alpha_{3}=$ sum of the product of the roots taken three at a time $=-\frac{a_{8}}{a_{0}}$
finally we get $\alpha_{1} \cdot \alpha_{2} \ldots \ldots \alpha_{n}=(-1)^{n} \frac{a_{n}}{\alpha_{0}}$.

Problem:

If α and β are the roots of $2 x^{2}+3 x+5=0$, find $\alpha+\beta, \alpha \beta$.
Solution:
Here $a_{0}=2, a_{1}=3, a_{3}=5$.
$\sum \alpha=\alpha+\beta=-\frac{a_{1}}{a_{0}}=-\frac{3}{2}$
$\alpha \beta=\frac{a_{2}}{a_{0}}=\frac{5}{2}$.

Problem:

Solve the equation $x^{3}+6 x+20=0$, one root being $1+3 i$.
Solution:
Given equation is cubic. Hence we have 3 roots. One root is $(1+3 i)=\alpha$ (say) complex roots occur in pairs.
$\therefore \beta=1-3 \mathrm{i}$ is another root.
To find third root γ (say)

Sum of the roots taken one at a time

$$
\begin{aligned}
\alpha+\beta+\gamma & =\frac{0}{1}=0 . \\
\text { i.e., } \quad 1+3 i+1-3 i+\gamma & =0 \\
\gamma & =-2
\end{aligned}
$$

\therefore The roots of the given equation are $1+3 i, 1-3 i,-2$.
Problem:
Solve the equation $3 x^{3}-23 x^{2}+72 x-20=0$ having given that $3+\sqrt{-5}$ is a root.

Solution:

Given equation is cubic. Hence we have three roots.
One root is $3+i \sqrt{5}=\alpha$
Since complex roots occur in pairs, $3-i \sqrt{5}=\beta$ is another root.
Sum of the roots is $\alpha+\beta+\gamma=\frac{23}{3}$

$$
\text { i.e., } \begin{aligned}
3+\mathrm{i} \sqrt{5}+3-\mathrm{i} \sqrt{5}+\gamma & =\frac{23}{3} \\
6+\gamma & =\frac{23}{3} \\
\gamma & =\frac{23}{3}-6 \\
\gamma & =\frac{5}{3}
\end{aligned}
$$

Hence the roots of the given equation are $3+i \sqrt{5}, 3-i \sqrt{5}, \frac{5}{3}$.

Problem:

Solve the equation $x^{4}+2 x^{3}-16 x^{2}-22 x+7=0$ which has a root $2+\sqrt{3}$.

Solution:

Given $x^{4}+2 x^{3}-16 x^{2}-22 x+7=0$.
This equation is biquadratic, i.e., fourth degree equation.
\therefore It has 4 roots. Given $2+\sqrt{3}$ is a root which is clearly irrational. Since irrational roots occur in pairs, $2-\sqrt{3}$ is also a root of the given equation.

ALGEBRA AND CALCULUS

$\therefore[\mathrm{x}-(2+\sqrt{3})][\mathrm{x}-(2-\sqrt{3})]$ is a factor of (1)
i.e., $x^{2}-4 x+1=0$ is a factor.

Dividing (1) by $x^{2}-4 x+1=0$, we get

$$
\begin{gathered}
x^{2}+6 x+7 \\
\begin{array}{r}
x^{2}-4 x+1 \\
\begin{array}{c}
x^{4}+2 x^{3}-16 x^{2}-22 x+7 \\
x^{4}-4 x^{3}+x^{2}
\end{array} \\
\begin{array}{r}
(-) \quad 6 x^{3}-17 x^{2}-22 x+7 \\
6 x^{3}-24 x^{2}+6 x
\end{array} \\
\hline 7 x^{2}-28 x+7 \\
7 x^{2}-28 x+7
\end{array} \\
\hline 0
\end{gathered}
$$

Hence the quotient is $x^{2}+6 x+7=0$. Solving this quadratic equation, we get $=-3 \pm \sqrt{2}$.
Hence the roots of the given equation are $2+\sqrt{3}, 2-\sqrt{3},-3+\sqrt{2},-3-\sqrt{2}$.

Problem:

Form the equation, with rational coefficients one root of whose roots is $\sqrt{2}+\sqrt{3}$.

Solution:

One root is $\sqrt{2}+\sqrt{3}$
i.e., $\quad \mathrm{x}=\sqrt{2}+\sqrt{3}$
i.e., $\quad x-\sqrt{2}=\sqrt{3}$

Squaring on both sides we get

$$
\begin{aligned}
& (\mathrm{x}-\sqrt{2})^{2}=3 \\
& x^{2}-2 \sqrt{2} x+2=3 \\
& x^{2}-1=2 \sqrt{2} x
\end{aligned}
$$

Again squaring, we get

$$
\begin{aligned}
& \left(x^{2}-1\right)^{2}=(2 \sqrt{2} x)^{2} \\
& x^{4}-2 x^{2}+1=4 \cdot 2 \cdot x^{2} \\
& x^{4}-10 x^{2}+1=0, \text { which is the required equation. }
\end{aligned}
$$

Problem:

Form the equation with rational coefficients having $1+\sqrt{5}$ and $1+\sqrt{-5}$ as two of its roots.

Solution:

Given $\mathrm{x}=1+\sqrt{5}$ and $\mathrm{x}=1+i \sqrt{5}$
i.e., $[\mathrm{x}-(1+\sqrt{5})][\mathrm{x}-(1+i \sqrt{5})]$ are the factors of the required equation.

Since complex and irrational roots occur in pairs, we have $\mathrm{x}=1-\sqrt{5}, \mathrm{x}=1-i \sqrt{5}$ are also the roots of the required equation.
i.e., $x-(1-\sqrt{5})$ and $x-(1-i \sqrt{5})$ are also factors of the required equation.

Hence the required equation is,
$[\mathrm{x}-(1+\sqrt{5})][\mathrm{x}-(1+i \sqrt{5})][\mathrm{x}-(1-\sqrt{5})][\mathrm{x}-(1-i \sqrt{5})]=0$
i.e., $\left[(x-1)^{2}-5\right]\left[(x-1)^{2}+5\right]=0$

$$
\left(x^{2}-2 x-4\right)\left(x^{2}-2 x+6\right)=0
$$

Simplifying we get

$$
x^{4}-4 x^{3}+6 x^{2}-4 x-24=0 \text { which is the required equation. }
$$

Problem:

Solve the equation $32 x^{3}-48 x^{2}+22 x-3=0$ whose roots are in A.P.

Solution:

Let the roots be $\alpha-\mathrm{d}, \alpha, \alpha+\mathrm{d}$.
Sum of the roots taken one at a time is,
$\alpha-d+\alpha+\alpha+d=\frac{48}{32}$

$$
3 \alpha=\frac{48}{32}
$$

ALGEBRA AND CALCULUS

$$
\alpha=\frac{1}{2}
$$

$\therefore \frac{1}{2}$ is a root of the given equation. By division we have,

| $\frac{1}{2}$ | 32 -48 22
 -3
 0 16 -16 | 3 | |
| :--- | ---: | ---: | ---: | ---: |
| 32 | -32 | 6 | 0 |

The reduced equation is $32 x^{2}-32 x+6=0$
Solving this quadratic equation we get the remaining two roots $\frac{1}{4}, \frac{3}{4}$.
Hence the roots of the given equation are $\frac{1}{4}, \frac{1}{2}, \frac{3}{4}$.

Problem:

Find the value of k for which the roots of the equation $2 x^{3}+6 x^{2}+5 x+k=0$ are in A.P.

Solution:

Given $2 x^{3}+6 x^{2}+5 x+k=0$
Let the roots be $\alpha-\mathrm{d}, \alpha, \alpha+\mathrm{d}$.
Sum of the roots taken one at a time is,
$\alpha-d+\alpha+\alpha+d=\frac{-6}{2}$

$$
3 \alpha=-3
$$

i.e., $\quad \alpha=-1$
i.e., $\alpha=-1$ is a root of (1).
\therefore put $\mathrm{x}=-1$ in (1), we get $\mathrm{k}=1$.

Problem:

Solve the equation $27 x^{3}+42 x^{2}-28 x-8=0$ whose roots are in G.P.

Solution:

Given $27 x^{3}+42 x^{2}-28 x-8=0$
Let the roots be $\frac{\alpha}{r}, \alpha, \alpha r$
Product of the roots taken three at a time is $\frac{\alpha}{r} . \alpha . \alpha \mathrm{r}=\frac{8}{27}$
i.e., $\quad \alpha^{3}=\frac{8}{27}$
i.e., $\quad \alpha=\frac{2}{3}$.
i.e., $\alpha=\frac{2}{3}$ is a root of the given equation (1)
i.e., $x=\frac{2}{3}$ is a root of the given equation (1)
i.e., $\left(x-\frac{2}{3}\right)$ is a factor of (1).
$\left.x-\frac{2}{3} \begin{array}{c}27 x^{2}+60 x+12 \\ \begin{array}{r}27 x^{3}+42 x^{2}-28 x-8 \\ 27 x^{3}-18 x^{2}\end{array} \\ \hline(-) \quad \begin{array}{r}60 x^{2}-28 x-8 \\ 60 x^{2}-40 x\end{array} \\ \hline 12 x-8 \\ 12 x-8\end{array}\right]$

Hence the quotient is $27 x^{2}+60 x+12=0$
i.e., $9 x^{2}+20 x+4=0$

Solving this quadratic equation we get $\mathrm{x}=-2$ or $-\frac{2}{9}$
Hence the roots of the given equation are $-2,-\frac{2}{9}, \frac{2}{3}$.

ALGEBRA AND CALCULUS

Problem:

Find the condition that the roots of the equation $x^{3}-p x^{2}+q x-r=0$ may be in G.P.
Solution:
Given $x^{3}-p x^{2}+q x-r=0$
Let the roots be $\frac{\alpha}{r}, \alpha, \alpha \mathrm{r}$
Product of the roots taken three at a time $\frac{\alpha}{r} . \alpha . \alpha \mathrm{r}=\mathrm{r}$
i.e., $\quad \alpha^{3}=\mathrm{r}$

But α is a root of the equation (1). Put $\mathrm{x}=\alpha$ in (1), we get,

$$
\begin{equation*}
\alpha^{3}-p \alpha^{2}+q \alpha-r=0 \tag{3}
\end{equation*}
$$

Substituting (2) in (3) we get

$$
\begin{array}{ll}
& r-p \alpha^{2}+q \alpha-\mathrm{r}=0 \\
& p \alpha^{2}-q \alpha=0 \\
\alpha \neq 0 & \alpha(\mathrm{p} \alpha-\mathrm{q})=0 \\
\text { i.e., } & \therefore \mathrm{p} \alpha-\mathrm{q}=0 \\
\text { i.e., } & \mathrm{p} \alpha=\mathrm{q} \\
& \alpha=\frac{q}{p} \\
& \therefore \alpha^{3}=\frac{\alpha^{s}}{\beta^{s}} \\
& \mathrm{r}=\frac{q^{\mathrm{s}}}{p^{s}}
\end{array}
$$

Hence the required condition is $\mathrm{p}^{3} \mathrm{r}=\mathrm{q}^{3}$.

Transformation of Equations:

Problem:

If the roots of $x^{3}-12 x^{2}+23 x+36=0$ are $-1,4,9$, find the equation whose roots are $1,-4,-9$.

Solution:

Given $x^{3}-12 x^{2}+23 x+36=0$
The roots are $-1,4,9$.
Now we find an equation whose roots are $1,-4,-9$ ie., to find an equation whose roots are the roots of (1) but the signs are changed. Hence in (1) we have to change the sign of odd powers of x .

Hence the required equation is

$$
-x^{3}-12 x^{2}-23 x+36=0
$$

i.e., $\quad x^{3}+12 x^{2}+23 x-36=0$

This gives the required equation.

Problem:

Multiply the roots of the equation $x^{4}+2 x^{3}+4 x^{2}+6 x+8=0$ by $\frac{1}{2}$.
Solution:
Given $x^{4}+2 x^{3}+4 x^{2}+6 x+8=0$
To multiply the roots of (1) by $\frac{1}{2}$, we have to multiply the successive coefficients beginning with the second by $\frac{1}{2},\left(\frac{1}{2}\right)^{2},\left(\frac{1}{2}\right)^{3},\left(\frac{1}{2}\right)^{4}$
i.e.,

$$
x^{4}+\frac{1}{2} 2 x^{3}+\left(\frac{1}{2}\right)^{2} 4 x^{2}+\left(\frac{1}{2}\right)^{3} 6 x+\left(\frac{1}{2}\right)^{4} 8=0
$$

$$
x^{4}+x^{3}+x^{2}+\frac{3}{4} x+\frac{1}{2}=0
$$

i.e.,

$$
4 x^{4}+4 x^{3}+4 x^{2}+3 x+2=0
$$

which is the required equation.

Problem:

Remove the fractional coefficients from the equation $x^{3}-\frac{1}{4} x^{2}+\frac{1}{3} x-1=0$.

ALGEBRA AND CALCULUS

Solution:

Given $\quad x^{3}-\frac{1}{4} x^{2}+\frac{1}{3} x-1=0$
Multiply by the roots of (1) by m, we get

$$
\begin{equation*}
x^{3}-\frac{m}{4} x^{2}+\frac{m^{2}}{3} x-m^{3}=0 \tag{2}
\end{equation*}
$$

If $\mathrm{m}=12$ (L.C.M. of 4 and 3), the fractions will be removed. Put $\mathrm{m}=12$ in (2), we get

$$
\text { i.e., } \quad x^{3}-3 x^{2}+48 x-1728=0
$$

Problem:

Solve the equation $6 x^{3}-11 x^{2}-3 x+2=0$ given that its roots are in H.P.

Solution:

Given $6 x^{3}-11 x^{2}-3 x+2=0$
Its roots are in H.P. x to $\frac{1}{x}$ in (1), we get

$$
\begin{align*}
& 6\left(\frac{1}{x}\right)^{3}-11\left(\frac{1}{x}\right)^{2}-3\left(\frac{1}{x}\right)+2=0 \\
& \Rightarrow 2 x^{3}-3 x^{2}-11 x+6=0 \tag{-}
\end{align*}
$$

Now the roots of (2) are in A.P. (Since H.P. is a reciprocal of A.P.). Let the roots of (2) be $\alpha-d, \alpha, \alpha+d$.

Sum of the roots
$\alpha-d+\alpha+\alpha+d=\frac{3}{2}$
$\Rightarrow 3 \alpha=\frac{3}{2}$
$\alpha=\frac{1}{2}$
Product of the roots taken 3 at the time is $(\alpha-d) \times \alpha \times(\alpha+d)=\frac{-11}{2}$
$\mathrm{d}= \pm \frac{5}{2}$.

ALGEBRA AND CALCULUS

Case(i) :

When $d=\frac{5}{2}$ and $\alpha=\frac{1}{2}$, the roots of are $\frac{1}{2}-\frac{5}{2}, \frac{1}{2}, \frac{1}{2}+\frac{5}{2}$
i.e., $-2, \frac{1}{2}, 3$.
\therefore The roots of the given equation are the reciprocal of the roots of
i.e., $-\frac{1}{2}, 2, \frac{1}{3}$. are roots of

Case (ii) :

When $d=\frac{-5}{2}$ and $\alpha=\frac{1}{2}$, the roots of are $\frac{1}{2}+\frac{5}{2}, \frac{1}{2}, \frac{1}{2}-\frac{5}{2}$
i.e., $3, \frac{1}{2},-2$.
\therefore The roots of the given equation are the reciprocal of the roots of
i.e., $\frac{1}{3}, 2,-\frac{1}{2}$. are roots of

Problem:

Diminish the roots of $x^{4}-5 x^{3}+7 x^{2}-4 x+5=0$ by 2 and find the transformed equation.
Solution :
Diminishing the roots by 2 , we get

The transformed equation whose roots are less by 2 of the given equation is $x^{4}+3 x^{3}+x^{2}-4 x+1=0$

ALGEBRA AND CALCULUS

Problem:

Increase by 7 the roots of the equation $3 x^{4}+7 x^{3}-15 x^{2}+x-2=0$ and find the transformed equation.
Solution :
Increasing by 7 the roots of the given equation is the same as diminishing the roots by -7 .

The transformed equation is $3 x^{4}-77 x^{3}+720 x^{2}-2876 x+4058=0$.
Problem:
Find the equation whose roots are the roots of $x^{4}-x^{3}-10 x^{2}+4 x+24=0$ increased by 2 .
Solution :

The transformed equation is $x^{4}-9 x^{3}+20 x=0$.

ALGEBRA AND CALCULUS

Problem:

If α, β, γ are the roots of the equation $x^{3}-6 x^{2}+12 x-8=0$, find an equation whose roots are $\alpha-2, \beta-2, \gamma-2$.

Solution :

2	1	-6	12	-8
	0	2	-8	8
2	1	-4	4	0
	0	2	-4	
2	1	-2	0	
	0	2		
2	1	0		
	1			

The transformed equation is $x^{3}=0$.
i.e., the roots are $=0,0,0$.
i.e., $\alpha-2=0, \beta-2=0, \gamma-2=0$
i.e., $\alpha=2, \beta=2, \gamma=2$.

Problem:

Find the transformed equation with sign changed $x^{5}+6 x^{4}+6 x^{3}-7 x^{2}+2 x-1=0$.

Solution:

Given that $x^{5}+6 x^{4}+6 x^{3}-7 x^{2}+2 x-1=0$
Given sign $=+\quad+\quad+\quad-\quad+\quad-$

Now the transformed equation $x^{5}-6 x^{4}+6 x^{3}+7 x^{2}+2 x+1=0$ which is the required equation.

Nature of the Roots:

Problem:

Determine completely the nature of the roots of the equation $x^{5}-6 x^{2}-4 x+5=0$.
Solution:
Given that $f(x)=x^{5}-6 x^{2}-4 x+5$
There are 2 times sign changed.
\therefore There exist 2 positive roots.
Put $x=-x$

$$
\begin{aligned}
f(-x) & =(-x)^{5}-6(-x)^{2}-4(-x)+5 \\
& =-x^{5}-6 x^{2}+4 x+5
\end{aligned}
$$

There is 1 time sign changed.
\therefore There is only one positive root.
\therefore There are 3 real roots.
The degree of the equation is 5 .
Number of imaginary roots $=$ degree of equation - number of real roots

$$
\begin{aligned}
& =5-3 \\
& =2
\end{aligned}
$$

\therefore The number of imaginary roots $=2$.

ALGEBRA AND CALCULUS

UNIT -2
MATRICES
A matrix is defined to be a rectangular array of numbers arranged into rows and columns. It is written as follows:-

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots \ldots . & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \ldots \ldots . & a_{3 n} \\
\ldots \ldots . & \ldots \ldots & \ldots \ldots . & \ldots . . & \ldots . . \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots \ldots . & a_{m n}
\end{array}\right]
$$

Special Types of Matrices:

(i) A row matrix is a matrix with only one row. E.g., [2 18 3 1 .
(ii) A column matrix is a matrix with only one column. E.g., $\left[\begin{array}{c}-1 \\ 2 \\ 3\end{array}\right]$.
(iii) Square matrix is one in which the number of rows is equal to the number of columns.

If A is the square matrix.

$$
\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots \ldots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \ldots \ldots & a_{3 n} \\
\ldots \ldots . & \ldots \ldots & \ldots . . & \ldots \ldots & \ldots \ldots \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots \ldots . & a_{m n}
\end{array}\right]
$$

then the determinant

$$
\left|\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \cdots & a_{3 n} \\
\hdashline & \bar{a} & \bar{\cdots} & \cdots & \overline{a_{m 1}} \\
a_{m 2} & a_{m 3} & \cdots & a_{m n}
\end{array}\right|
$$

is called the determinant of the matrix A and it is denoted by $|\mathrm{A}|$ or $\operatorname{det} \mathrm{A}$.
(iv) Scalar matrix is a diagonal matrix in which all the elements along the main diagonal are equal.

$$
\text { E.g., }\left[\begin{array}{cccc}
a_{1} & 0 & 0 & 0 \\
0 & a_{1} & 0 & 0 \\
0 & 0 & a_{1} & 0 \\
0 & 0 & 0 & a_{1}
\end{array}\right]
$$

(v) Unit matrix is a scalar matrix in which all the elements along the main diagonal are unity.

$$
\mathrm{I}_{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \mathrm{I}_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(vi) Null or Zero matrix. If all the elements in a matrix are zeros, it is called a null or zero matrix and is denoted by 0 .
(vii) Transpose matrix. If the rows and columns are interchanged in matrix A, we obtain a second
matrix that is called the transpose of the original matrix and is denoted by A^{t}.
(viii) Addition of matrices. Matrices are added, by adding together corresponding elements of the matrices. Hence only matrices of the same order may be added together. The result of addition of two matrices is a matrix of the same order whose elements are the sum of the same elements of the corresponding positions in the original matrices.
E.g., $\left[\begin{array}{ll}a_{1} & a_{2} \\ a_{3} & a_{4} \\ a_{5} & a_{6}\end{array}\right]+\left[\begin{array}{ll}b_{1} & b_{2} \\ b_{3} & b_{4} \\ b_{5} & b_{6}\end{array}\right]=\left[\begin{array}{ll}a_{1}+b_{1} & a_{2}+b_{2} \\ a_{3}+b_{3} & a_{4}+b_{4} \\ a_{5}+b_{5} & a_{6}+b_{6}\end{array}\right]$

Problem:

Given $A=\left[\begin{array}{ccc}1 & 0 & 2 \\ 3 & 1 & 4 \\ 5 & 0 & 6\end{array}\right] ; B=\left[\begin{array}{ccc}2 & 1 & -1 \\ 3 & 0 & -2 \\ 0 & 1 & 1\end{array}\right] ;$ compute 3A-4B

Solution :

$$
\begin{aligned}
3 A-4 B & =3\left[\begin{array}{lll}
1 & 0 & 2 \\
3 & 1 & 4 \\
5 & 0 & 6
\end{array}\right]-4\left[\begin{array}{ccc}
2 & 1 & -1 \\
3 & 0 & -2 \\
0 & 1 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
3 & 0 & 6 \\
9 & 3 & 12 \\
15 & 0 & 18
\end{array}\right]-\left[\begin{array}{ccc}
8 & 4 & -4 \\
12 & 0 & -8 \\
0 & 4 & 4
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-5 & -4 & 10 \\
-3 & 3 & 20 \\
15 & -4 & 14
\end{array}\right]
\end{aligned}
$$

Problem: Find values of x, y, z and ω that satisfy the matrix relationship
$\left[\begin{array}{ll}x+3 & 2 y+5 \\ z+4 & 4 x+5 \\ \omega-2 & 3 \omega+1\end{array}\right]=\left[\begin{array}{cc}1 & -5 \\ -4 & 2 x+1 \\ 2 \omega+5 & -20\end{array}\right]$

Solution:

From the equality of these two matices we get the equations

$$
\begin{array}{cc}
x+3=1 & 4 x+5=2 x+1 \\
2 y+5=-5 & \omega-2=2 \omega+5 \\
z+4=-4 & 3 \omega+1=-20
\end{array}
$$

Solving these equations we get
$x=-2, y=-5, z=-8, \omega=-7$

Multiplication of Matrices.

If A is a $m \times n$ matrix with rows $A_{1}, A_{2}, \ldots \ldots, A_{m}$ and B is a $n \times p$ matrix with columns $B_{1}, B_{2}, \ldots ., B_{p}$, then the prodduct $A B$ is a $m \times p$ matrix C whose elements are given by the formula $\mathrm{C}_{\mathrm{ij}}=\mathrm{A}_{\mathrm{i}} . \mathrm{B}_{\mathrm{j}}$.

$$
\text { Hence } \mathrm{C}=\mathrm{AB}=\left[\begin{array}{cccc}
A_{1} \cdot B_{1} & A_{1} \cdot B_{2} & \cdots & A_{1} \cdot B_{p} \\
A_{2} \cdot B_{1} & A_{2} \cdot B_{2} & \cdots & A_{2} \cdot B_{p} \\
\cdots & \ldots & \cdots & \cdots \\
\ldots & \cdots & \cdots & \cdots \\
A_{m} \cdot B_{1} & A_{m} \cdot B_{2} & \cdots & A_{m} \cdot B_{p}
\end{array}\right]
$$

Inverse of a Matrix

Problem: Find the inverse of the matrix $\left(\begin{array}{ccc}2 & 1 & -1 \\ 0 & 1 & 3 \\ 2 & -1 & 1\end{array}\right)$.
Solution:

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{ccc}
2 & 1 & -1 \\
0 & 1 & 3 \\
2 & -1 & 1
\end{array}\right) & =2\left|\begin{array}{cc}
1 & 3 \\
-1 & 1
\end{array}\right|-1\left|\begin{array}{ll}
0 & 3 \\
2 & 1
\end{array}\right|+(-1)\left|\begin{array}{cc}
0 & 1 \\
2 & -1
\end{array}\right| \\
& =2(1+3)-1(-6)-1(-2) \\
& =8+6+2 \\
& =16 .
\end{aligned}
$$

Form the matrix of minor determinants:

Adjust the signs of every other element (starting with the second entry):

$$
\left(\begin{array}{ccc}
4 & 6 & -2 \\
0 & 4 & 4 \\
4 & -6 & 2
\end{array}\right)
$$

Take the transpose and divide by the determinant:

$$
\frac{1}{16}\left(\begin{array}{ccc}
4 & 0 & 4 \\
6 & 4 & -6 \\
-2 & 4 & 2
\end{array}\right)=\left(\begin{array}{ccc}
\frac{1}{4} & 0 & \frac{1}{4} \\
\frac{3}{8} & \frac{1}{4} & -\frac{3}{8} \\
-\frac{1}{8} & \frac{1}{4} & \frac{1}{8}
\end{array}\right)
$$

So the inverse matrix is $\left(\begin{array}{ccc}\frac{1}{4} & 0 & \frac{1}{4} \\ \frac{3}{8} & \frac{1}{4} & -\frac{3}{8} \\ -\frac{1}{8} & \frac{1}{4} & \frac{1}{8}\end{array}\right)$.

Problem: Show that $A=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$ satisfies the equation $A^{2}-4 A-5 I=0$. Hence determine its inverse.
Solution: $A^{2}=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]=\left[\begin{array}{lll}9 & 8 & 8 \\ 8 & 9 & 8 \\ 8 & 8 & 9\end{array}\right]$

$$
\begin{aligned}
4 \mathrm{~A} & =\left[\begin{array}{lll}
4 & 8 & 8 \\
8 & 4 & 8 \\
8 & 8 & 4
\end{array}\right] \\
5 \mathrm{I} & =\left[\begin{array}{lll}
5 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 5
\end{array}\right] \\
\mathrm{A}^{2}-4 \mathrm{~A}-5 \mathrm{I} & =\left[\begin{array}{lll}
9 & 8 & 8 \\
8 & 9 & 8 \\
8 & 8 & 9
\end{array}\right]-\left[\begin{array}{lll}
4 & 8 & 8 \\
8 & 4 & 8 \\
8 & 8 & 4
\end{array}\right]-\left[\begin{array}{lll}
5 & 0 & 0 \\
0 & 5 & 0 \\
0 & 0 & 5
\end{array}\right] \\
& =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Therefore $\mathrm{A}^{2}-4 \mathrm{~A}-5 \mathrm{I}=0$.
Multiplying by A^{-1}, we have
$A^{-1} A^{2}-4 A^{-1} A-5 A^{-1} I=0$
i.e., $A-4 I-5 A^{-1}=0$

Therefore $5 \mathrm{~A}^{-1}=\mathrm{A}-4 \mathrm{I}$

$$
\begin{aligned}
& =\left[\begin{array}{lll}
1 & 2 & 2 \\
2 & 1 & 2 \\
2 & 2 & 1
\end{array}\right]-\left[\begin{array}{lll}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-3 & 2 & 2 \\
2 & -3 & 2 \\
2 & 2 & -3
\end{array}\right]
\end{aligned}
$$

Therefore $\mathrm{A}^{-1}=\frac{1}{5}\left[\begin{array}{ccc}-3 & 2 & 2 \\ 2 & -3 & 2 \\ 2 & 2 & -3\end{array}\right]$.

Rank of a Matrix

A sub-matrix of a given matrix A is defined to be either A itself or an array remaining after certain rows and columns are deleted from A .

The determinants of the square sub-matrices are called the minors of A .
The rank of an $m \times n$ matrix A is r iff every minor in A of order $r+1$ vanishes while there is at least one minor of order r which does not vanish.

ALGEBRA AND CALCULUS

Problem: Find the rank of the matrix $\left[\begin{array}{ccc}1 & -1 & 2 \\ 2 & 6 & 3 \\ 3 & 13 & 4\end{array}\right]$.
Solution:

$$
\begin{aligned}
\text { Minor of third order } & =\left|\begin{array}{ccc}
1 & -1 & 2 \\
2 & 6 & 3 \\
3 & 13 & 4
\end{array}\right| \\
& =0 .
\end{aligned}
$$

The minors of order 2 are obtained by deleting any one row and any one column.
One of the minors of orders 2 is $\left|\begin{array}{cc}1 & -1 \\ 2 & 6\end{array}\right|$
Its value is 8 .
Hence the rank of the given matrix is 2 .

Rank of a Matrix by Elementary Transformations:

Problem: Find the rank of the matrix $A=\left[\begin{array}{lll}1 & 2 & 5 \\ 2 & 3 & 4 \\ 3 & 5 & 7\end{array}\right]$.
Solution: The given matrix is

$$
\begin{aligned}
& \mathrm{A}=\left[\begin{array}{ccc}
1 & -1 & 2 \\
2 & 6 & 3 \\
3 & 13 & 4
\end{array}\right] \\
&\left.\sim\left[\begin{array}{ccc}
1 & 2 & 5 \\
0 & -1 & -6 \\
0 & -1 & -8
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-3 R_{1} \\
\\
\end{array} \begin{array}{cccc}
1 & 2 & 5 \\
0 & 1 & 6 \\
0 & -1 & -8
\end{array}\right] R_{2} \rightarrow R_{2}(-1) \\
& \sim\left[\begin{array}{ccc}
1 & 2 & 5 \\
0 & 1 & 6 \\
0 & 0 & -2
\end{array}\right] R_{3} \rightarrow R_{3}+R_{2} \\
& \sim\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right] C_{2} \rightarrow C_{2}-2 C_{1} \\
& C_{3} \rightarrow C_{3}-5 C_{1}
\end{aligned}
$$

$$
\sim\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right] C_{3} \rightarrow C_{3}-6 C_{2}
$$

$$
\sim\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]_{R_{3}} \rightarrow \frac{R_{3}}{-2}
$$

Hence $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ which is a unit matrix of order 3.
Hence the rank of the given matrix is 3 .

Procedure for finding the solutions of a system of equations:

Let the given system of linear equations be

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots \ldots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots \ldots+a_{2 n} x_{n}=b_{2}
\end{aligned}
$$

$$
\mathrm{a}_{\mathrm{m} 1} \mathrm{x}_{1}+\mathrm{a}_{\mathrm{m} 2} \mathrm{x}_{2}+\ldots \ldots+\mathrm{a}_{\mathrm{mn}} \mathrm{x}_{\mathrm{n}}=\mathrm{b}_{\mathrm{m}}
$$

Step 1:Construct the coefficient matrix which is denoted by

$$
A=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots \ldots . & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots \ldots . & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \ldots \ldots . & a_{3 n} \\
\ldots \ldots . & \ldots \ldots & \ldots . . & \ldots . . & \ldots . . \\
a_{m 1} & a_{m 2} & a_{m 3} & \ldots \ldots . & a_{m n}
\end{array}\right]
$$

Step 2: Construct the augmented matrix which is denoted by [A, B]

$$
[A, B]=\left[\begin{array}{ccccc}
a_{11} & a_{12} & \ldots \ldots . & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \ldots \ldots . & a_{2 n} & b_{2} \\
a_{31} & a_{32} & \ldots \ldots & a_{3 n} & b_{3} \\
\ldots \ldots & \ldots \ldots & \ldots \ldots & \ldots \ldots & \ldots \ldots \\
a_{m 1} & a_{m 2} & \ldots \ldots . & a_{m n} & b_{m}
\end{array}\right]
$$

Step 3: Find the ranks of both the coefficient matrix and augmented matrix which are denoted by $R(A)$ and $R(A, B)$.
Step 4: Compare the ranks of $R(A)$ and $R(A, B)$ we have the following results.
(a) If $R(A)=R(A, B)=n$ (number of unknowns) then the given system of equations are consistent and have unique solutions.

ALGEBRA AND CALCULUS

(b) If $R(A)=R(A, B)<n$ (number of unknowns) then the given system of equations are consistent and have infinite number of solutions.
(c) If $R(A) \neq R(A, B)$ then the given system of equations are inconsistent (that is the given system of equations have no solution).

Problem: Test for consistency and hence solve $x-2 y+3 z=2,2 x-3 z=3, x+y+z=0$.
Solution: The coefficient matrix

$$
A=\left[\begin{array}{ccc}
1 & -2 & 3 \\
2 & 0 & -3 \\
1 & 1 & 1
\end{array}\right]
$$

The augmented matrix

$$
\begin{aligned}
{[\mathrm{A}, \mathrm{~B}] } & \sim\left[\begin{array}{cccc}
1 & -2 & 3 & 2 \\
2 & 0 & -3 & 3 \\
1 & 1 & 1 & 0
\end{array}\right] \\
& \sim\left[\begin{array}{cccc}
1 & -2 & 3 & 2 \\
0 & 1 & -9 & -1 \\
0 & -3 & -2 & -2
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-R_{1}
\end{array} \\
& \sim\left[\begin{array}{cccc}
1 & -2 & 3 & 2 \\
0 & 1 & \frac{-9}{4} & \frac{-1}{4} \\
0 & -3 & -2 & -2
\end{array}\right] R_{2} \rightarrow \frac{R_{2}}{4} \\
& \sim\left[\begin{array}{cccc}
1 & -2 & 3 & 2 \\
0 & 1 & \frac{-9}{4} & \frac{-1}{4} \\
0 & -3 & -2 & -2
\end{array}\right] R_{2} \rightarrow \frac{R_{2}}{4} \\
& \sim\left[\begin{array}{cccc}
1 & -2 & 3 & 2 \\
0 & 1 & \frac{-9}{4} & \frac{-1}{4} \\
0 & 0 & 1 & \frac{-5}{19}
\end{array}\right] R_{3} \rightarrow \frac{4 R_{3}}{19}
\end{aligned}
$$

Here rank of coefficient matrix is 3 .
Rank of augmented matrix is 3 .
Hence the given system of equations are consistent and have unique solution.

ALGEBRA AND CALCULUS

Problem: Test the consistency of the following system of equations and if consistent solve $2 x-y-z=2, x+2 y+z=2,4 x-7 y-5 z=2$.

Solution:

The coefficient matrix

$$
A=\left[\begin{array}{ccc}
2 & -1 & -1 \\
1 & 2 & 1 \\
4 & -7 & -5
\end{array}\right]
$$

The augmented matrix

$$
\begin{aligned}
{[\mathrm{A}, \mathrm{~B}] } & \sim\left[\begin{array}{cccc}
2 & -1 & -1 & 2 \\
1 & 2 & 1 & 2 \\
4 & -7 & -5 & 2
\end{array}\right] \\
& \sim\left[\begin{array}{cccc}
1 & 2 & 1 & 2 \\
2 & -1 & -1 & 2 \\
4 & -7 & -5 & 2
\end{array}\right] R_{1} \sim R_{2} \\
& \sim\left[\begin{array}{cccc}
1 & 2 & 1 & 2 \\
0 & -5 & -3 & -2 \\
0 & -15 & -9 & -6
\end{array}\right] \begin{array}{l}
R_{2} \rightarrow R_{2}-2 R_{1} \\
R_{3} \rightarrow R_{3}-4 R_{1}
\end{array} \\
& \sim\left[\begin{array}{cccc}
1 & 2 & 1 & 2 \\
0 & -5 & -3 & -2 \\
0 & 5 & 3 & 2
\end{array}\right] R_{3} \rightarrow R_{3}+R_{2}
\end{aligned}
$$

Here rank of coefficient matrix is $R(A)=2$.
Rank of augmented matrix is $R(A, B)=2$.
i.e., $R(A)=R(A, B)<3$ (the number of unknowns)

Hence the given system of equations are consistent but have infinite number of solutions.
Here the reduced system is

$$
\begin{aligned}
& 5 y+3 z=2 \\
& x+2 y+z=2 \\
& \text { i.e., } \quad \mathrm{y}=\frac{2-3 z}{5} \\
& \mathrm{x}=2-\mathrm{z}-2\left(\frac{2-3 z}{5}\right) \\
& =\frac{6+z}{5} \\
& \text { i.e., } \mathrm{x}=\frac{6+k}{5}, \mathrm{y}=\frac{2-3 \mathrm{z}}{5}, \mathrm{z}=\mathrm{k} \text { where } \mathrm{z}=\mathrm{k} \text { is the parameter. }
\end{aligned}
$$

ALGEBRA AND CALCULUS

Solution of Simultaneous Equations

$$
2 x+y+z=6
$$

Problem: Solve the system of equations $x+2 y+3 z=6.5$

$$
4 x-2 y-5 z=2
$$

Solution:

It can be represented as: $\quad\left(\begin{array}{ccc}2 & 1 & 1 \\ 1 & 2 & 3 \\ 4 & -2 & -5\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{c}6 \\ 6.5 \\ 2\end{array}\right)$.
To see whether a solution exists we need to find $\operatorname{det}\left(\begin{array}{ccc}2 & 1 & 1 \\ 1 & 2 & 3 \\ 4 & -2 & -5\end{array}\right)$.
This determinant is $2\left|\begin{array}{cc}2 & 3 \\ -2 & -5\end{array}\right|-1\left|\begin{array}{cc}1 & 3 \\ 4 & -5\end{array}\right|+1\left|\begin{array}{cc}1 & 2 \\ 4 & -2\end{array}\right|=2(-4)-(-17)+(-10)=-1$
Therefore we know that the equations do have a unique solution.
To find the solution we need to find the inverse of the matrix $\left(\begin{array}{ccc}2 & 1 & 1 \\ 1 & 2 & 3 \\ 4 & -2 & -5\end{array}\right)$.
Find the determinant: we have already found that this is -1 .
Form the matrix of minor determinants (which, for a particular entry in the matrix, is the determinant of the 2 by 2 matrix that is left when the row and column containing the entry are deleted):

$$
\left(\begin{array}{ccc}
-4 & -17 & -10 \\
-3 & -14 & -8 \\
1 & 5 & 3
\end{array}\right)
$$

Adjust the signs of every other element (starting with the second entry):

$$
\left(\begin{array}{ccc}
-4 & 17 & -10 \\
3 & -14 & 8 \\
1 & -5 & 3
\end{array}\right)
$$

Take the transpose and divide by the determinant:

$$
\frac{1}{-1}\left(\begin{array}{ccc}
-4 & 3 & 1 \\
17 & -14 & -5 \\
-10 & 8 & 3
\end{array}\right)=\left(\begin{array}{ccc}
4 & -3 & -1 \\
-17 & 14 & 5 \\
10 & -8 & -3
\end{array}\right)
$$

So the inverse matrix is $\left(\begin{array}{ccc}4 & -3 & -1 \\ -17 & 14 & 5 \\ 10 & -8 & -3\end{array}\right)$.
Hence the solutions to the equations are found by

$$
\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{ccc}
4 & -3 & -1 \\
-17 & 14 & 5 \\
10 & -8 & -3
\end{array}\right)\left(\begin{array}{c}
6 \\
6.5 \\
2
\end{array}\right)=\left(\begin{array}{c}
2.5 \\
-1 \\
2
\end{array}\right) .
$$

Therefore $x=2.5, y=-1$ and $z=2$.

ALGEBRA AND CALCULUS

Cayley - Hamilton theorem:

Every square matrix satisfies its own characteristic equation.
Problem: Verify Cayley - Hamilton theorem for the matrix $\left(\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right)$ and hence find the
inverse of A.
Solution : The characteristic equation of matrix A is

$$
\lambda^{3}-\lambda^{2}(1+4+6)+\lambda(-1-3+0)-[1(-1)-2(-3)+3(-2)]=0
$$

$\lambda^{3}-11 \lambda^{2}-4 \lambda+1=0$, which is the characteristic equation.
By Cayley - Hamilton theorem, we have to prove

$$
A^{3}-11 A^{2}-4 A+1=0
$$

$$
\begin{aligned}
A^{2}=A \times \cdot A & =\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right)=\left(\begin{array}{lll}
14 & 25 & 31 \\
25 & 45 & 56 \\
31 & 56 & 70
\end{array}\right) \\
A^{3}=A^{2} \times A & =\left(\begin{array}{lll}
14 & 25 & 31 \\
25 & 45 & 56 \\
31 & 56 & 70
\end{array}\right)\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right)=\left(\begin{array}{lll}
157 & 283 & 353 \\
283 & 510 & 636 \\
353 & 636 & 793
\end{array}\right) \\
A^{3}-11 A^{2}-4 A+1 & =\left(\begin{array}{lll}
157 & 283 & 353 \\
283 & 510 & 636 \\
353 & 636 & 793
\end{array}\right)-11\left(\begin{array}{lll}
14 & 25 & 31 \\
25 & 45 & 56 \\
31 & 56 & 70
\end{array}\right)-4\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right)+\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=0
\end{aligned}
$$

Hence the theorem is verified.
To find A^{-1}
We have $A^{3}-11 A^{2}-4 A+1=0$

$$
\begin{aligned}
& I=-A^{3}+11 A^{2}+4 A \\
& A^{-1}=-A^{2}-11 A+4 I
\end{aligned}
$$

$$
=-\left(\begin{array}{lll}
14 & 25 & 31 \\
25 & 45 & 56 \\
31 & 56 & 70
\end{array}\right)-11\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 5 \\
3 & 5 & 6
\end{array}\right)+4\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \rightarrow A^{-1}=\left(\begin{array}{ccc}
1 & -3 & 2 \\
-3 & 3 & -1 \\
2 & -1 & 0
\end{array}\right)
$$

ALGEBRA AND CALCULUS

Problem: Find all the eigen values and eigen vectors of the matrix $A=\left(\begin{array}{ccc}2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1\end{array}\right)$
Solution : Given $\mathbf{A}=\left(\begin{array}{ccc}2 & 1 & -1 \\ 1 & 1 & -2 \\ -1 & -2 & 1\end{array}\right)$

The characteristic equation of the matrix is

$\lambda^{3}-\lambda^{2}(2+1+1)+\lambda(-3+1+1)-[2(-3)-1(-1)-1(-1)]=0$
$\lambda^{3}-4 \lambda^{2}-\lambda+4=0$, which is the characteristic equation.

1	1 0	-4 1	-1 -3	4 -4
	1	-3	-4	0

$\lambda=1$ is a root.
The other roots are $\lambda^{2}-3 \lambda-4=0$
$\Rightarrow(\lambda-4)(\lambda+1)=0$
$\Rightarrow \lambda=4,-1$
Hence $\boldsymbol{\lambda}=1,4,-4$.
The eigen vectors of the matrix A is given by $(A-\lambda) X=0$
i.e. $\left(\begin{array}{ccc}2-\lambda & 1 & -1 \\ 1 & 1-\lambda & -2 \\ -1 & -2 & 1-\lambda\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=0$

When $\lambda=1$, equation (1) becomes
$x_{1}+x_{2}-x_{3}=0$
$x_{1}+0 x_{2}-2 x_{3}=0$
$-x_{1}-2 x_{2}+0 x_{3}=0$
Take first and second equation,
$\mathrm{x}_{1}+\mathrm{x}_{2}-\mathrm{x}_{3}=0$
$\mathrm{x}_{1}+0 \mathrm{x}_{2}-2 \mathrm{x}_{3}=0$

$$
\begin{aligned}
& \Rightarrow \frac{x_{1}}{-2+0}=\frac{-x_{2}}{-2+1}=\frac{x_{3}}{0-1} \\
& \Rightarrow \frac{x_{1}}{-2}=\frac{x_{2}}{1}=\frac{x_{3}}{-1} \\
& \therefore \mathbf{x}_{1}=\left(\begin{array}{c}
-2 \\
1 \\
-1
\end{array}\right)
\end{aligned}
$$

When $\lambda=-1$, equation (1) becomes
$3 x_{1}+x_{2}-x_{3}=0$
$x_{1}+2 x_{2}-2 x_{3}=0$
$\Rightarrow \frac{x_{1}}{-2+2}=\frac{-x_{2}}{-6+1}=\frac{x_{3}}{6-1}$
$\Rightarrow \quad \frac{x_{1}}{0}=\frac{x_{2}}{1}=\frac{x_{3}}{1}$
$\therefore \mathbf{x}_{2}=\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$

When $\lambda=4$, equation (1) becomes

$$
\begin{aligned}
& -2 \mathrm{x}_{1}+\mathrm{x}_{2}-\mathrm{x}_{3}=0 \\
& \mathrm{x}_{1}-3 \mathrm{x}_{2}-2 \mathrm{x}_{3}=0 \\
& \Rightarrow \frac{x_{1}}{-2-3}=\frac{-x_{2}}{4+1}=\frac{x_{3}}{6-1} \\
& \Rightarrow \frac{x_{1}}{-1}=\frac{x_{2}}{-1}=\frac{x_{3}}{1}
\end{aligned}
$$

$$
\therefore \mathbf{x}_{\mathbf{3}}=\left(\begin{array}{c}
-1 \\
-1 \\
1
\end{array}\right) . \text { Hence Eigen vector }=\left(\begin{array}{ccc}
-2 & 0 & -1 \\
1 & 1 & -1 \\
-1 & 1 & 1
\end{array}\right)
$$

ALGEBRA AND CALCULUS

Problem: Find all the eigen values and eigen vectors of $\left(\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right)$
Solution : Given $\mathbf{A}=\left(\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right)$

The characteristic equation of the matrix is

$\lambda^{3}-\lambda^{2}(2+3+2)+\lambda(4+3+4)-[2(4)-2(1)+1(-1)]=0$
$\lambda^{3}-7 \lambda^{2}+11 \lambda-5=0$, which is the characteristic equation.

1	1 -7 0	11 1	-5 -6	5
	1	-6	5	0

$\lambda=1$ is a root.
The other roots are $\lambda^{2}-6 \lambda+5=0$
$\Rightarrow(\lambda-1)(\lambda-5)=0$
$\Rightarrow \lambda=1,5$
Hence $\boldsymbol{\lambda}=1,1,5$.
The eigen vectors of the matrix A is given by $(A-\lambda) X=0$
i.e. $\left(\begin{array}{ccc}2-\lambda & 2 & 1 \\ 1 & 3-\lambda & 1 \\ 1 & 2 & 2-\lambda\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=0$

$$
\begin{align*}
& (2-\lambda) x_{1}+2 x_{2}+x_{3}=0 \\
& x_{1}+(3-\lambda) x_{2}+x_{3}=0 \tag{1}\\
& x_{1}+2 x_{2}+(2-\lambda) x_{3}=0
\end{align*}
$$

When $\lambda=1$, equation (1) becomes
$x_{1}+2 x_{2}+x_{3}=0$
$\mathrm{x}_{1}+2 \mathrm{x}_{2}+\mathrm{x}_{3}=0$
$x_{1}+2 x_{2}+x_{3}=0$
Here all the equations are same.
Put $x_{3}=0$, we get $x_{1}+2 x_{2}=0$
$x_{1}=-2 x_{2}$
$\Rightarrow \frac{x_{1}}{-2}=\frac{x_{2}}{1}$
$\therefore \mathbf{x}_{1}=\left(\begin{array}{c}-2 \\ 1 \\ 0\end{array}\right)$
For $\lambda=1$, put $x_{2}=0$, we get
$x_{1}+x_{3}=0$
$x_{1}=-x_{3}$
$\Rightarrow \frac{x_{1}}{-2}=\frac{x_{2}}{1}$
$\therefore \mathbf{x}_{2}=\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)$
When $\lambda=5$, equation(1) becomes
$-3 x_{1}+2 x_{2}+x_{3}=0$
$\mathrm{x}_{1}-2 \mathrm{x}_{2}+\mathrm{x}_{3}=0$ (taking first and second equation)
$\Rightarrow \frac{x_{1}}{2+2}=\frac{-x_{2}}{-3-1}=\frac{x_{3}}{6-2}$
$\Rightarrow \quad \frac{x_{1}}{4}=\frac{x_{2}}{4}=\frac{x_{3}}{4}$
$\therefore \mathbf{x}_{3}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$. Hence Eigen vector $=\left(\begin{array}{ccc}-2 & -1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right)$

Problem: Find the eigen values and eigen vectors of $\left(\begin{array}{ccc}1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1\end{array}\right)$
Solution : The characteristic equation of matrix A is
$\lambda^{3}-\lambda^{2}(1+2-1)+\lambda(-3-1+3)-[1(-3)-1(1)-2(-1)]=0$
$\lambda^{3}-2 \lambda^{2}-\lambda+2=0$

$$
\begin{gathered}
2 \begin{array}{rrrr}
1 & -2 \\
0
\end{array} \\
2
\end{gathered} \begin{array}{r}
-1 \\
0
\end{array} \begin{aligned}
& 2 \\
& -2
\end{aligned}
$$

$\lambda=2$ is a root.
The other roots are
$\lambda^{2}-1=0$
$(\lambda-1)(\lambda+1)=0$
$\lambda=1,-1$
Hence $\boldsymbol{\lambda}=\mathbf{2 , 1 , - 1}$
The eigen vectors of matrix A is given by
$(A-\lambda I) X=0$
$\left(\begin{array}{ccc}1-\lambda & 1 & -2 \\ -1 & 2-\lambda & 1 \\ 0 & 1 & -1-\lambda\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=0$
$(1-\lambda) x_{1}+x_{2}-2 x_{3}=0$
$-x_{1}+(2-\lambda) x_{2}+x_{3}=0$
$0 x_{1}+x_{2}+(-1-\lambda) x_{3}=0$
When $\lambda=1$,Equation (1) becomes
$0 x_{1}+x_{2}-2 x_{3}=0$
$-x_{1}+x_{2}+x_{3}=0$
$\Rightarrow \frac{x_{1}}{1+2}=\frac{-x_{2}}{0-2}=\frac{x_{3}}{0+1}$
$\Rightarrow \frac{x_{1}}{3}=\frac{x_{2}}{2}=\frac{x_{3}}{1}$
$\therefore X_{1}=\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)$

When $\lambda=-1$, Equation (1) becomes
$\mathrm{x}_{2}=0$
$2 x_{1}-2 x_{3}=0$
$\mathrm{x}_{1}=\mathrm{x}_{3}$
$X_{2}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right)$
When $\lambda=2$,
Equation (1) becomes
$-x_{1}+x_{2}-2 x_{3}=0$
$-x_{1}+0 x_{2}+x_{3}=0$ (taking first and second equation)
$\Rightarrow \frac{x_{1}}{1-0}=\frac{-x_{2}}{-1-2}=\frac{x_{3}}{0-1}$
$\Rightarrow \frac{x_{1}}{1}=\frac{x_{2}}{3}=\frac{x_{3}}{1}$
$\therefore X_{3}=\left(\begin{array}{l}1 \\ 3 \\ 1\end{array}\right)$
Hence Eigen vector $=\left(\begin{array}{lll}3 & 1 & 1 \\ 2 & 0 & 3 \\ 1 & 1 & 1\end{array}\right)$

ALGEBRA AND CALCULUS

Unit - III

Maxima And Minima

If a continuous function increases up to a certain value and then decreases, that value is called a maximum value of the function.

If a continuous function decreases up to a certain value and then increases, that value is called a minimum value of the function.

Theorem: If $f^{\prime}(a)=0$ and $f^{\prime \prime}(a) \neq 0$, then $\mathrm{f}(\mathrm{x})$ has a maximum if $f^{\prime \prime}(a)<0$ and a minimum if $f^{\prime \prime}(a)>0$.

Problem:

Find the maxima and minima of the function $2 x^{3}-3 x^{2}-36 x+10$.
Solution:
Let $\mathrm{f}(\mathrm{x})$ be $2 x^{3}-3 x^{2}-36 x+10$.
At the maximum or minimum point $f^{\prime}(x)=0$
Here $f^{\prime}(x)=6 x^{2}-6 x-36$

$$
=6(x-3)(x+2)
$$

$\therefore x=3$ and $x=-2$ give maximum or minimum.
To distinguish between the maximum and minimum, we need $f^{\prime \prime}(x)=6(2 x-1)$.
When $x=3, f^{\prime \prime}(x)=6(6-1)=30$ i.e. $f^{\prime \prime}$ is positive.
When $\mathrm{x}=-2, f^{\prime \prime}(x)=6(-4-1)=-30$ i.e. $f^{\prime \prime}$ is negative.
$\therefore x=-2$ gives the maximum and $x=3$ gives the minimum.
Hence Maximum value $=f(-2)=54$ and Minimum value $=f(3)=-71$.
Problem: Find the maximum value of $\frac{\log x}{x}$ for positive values of x .
Solution : \quad Let $f(x)$ be $\frac{\log x}{x}$

$$
\begin{aligned}
& \therefore f^{\prime}(x)=\frac{1-\log x}{x^{2}} \\
& f^{\prime \prime}(x)=\frac{-3+2 \log x}{x^{5}}
\end{aligned}
$$

At a maximum or a minimum, $f^{\prime}(x)=0$.
$\therefore 1-\log x=0 . \therefore x=e$.
$f^{\prime \prime}(e)=\frac{-3+2 \log e}{e^{s}}=\frac{-1}{e^{s}}$, i.e., - ve.
$\therefore \mathrm{x}=\mathrm{e}$ gives a maximum.
Maximum value of the function $f(e)=\frac{1}{e}$.

Concavity and Convexity, Points of inflexion:

If the neighbourhood of a point P on a curve is above the tangent at P , it is said to be Concave upwards; if the curve is below the tangent at P , it is said to be concave downwards or convex upwards.

If at a point P , a curve changes its concavity from upwards to downwards or vice versa, P is called a point of inflexion.

Problem:

For what values of x is the curve $y=3 x^{2}-2 x^{3}$ concave upwards and when is it convex upwards?

Solution:

$$
y=3 x^{2}-2 x^{3}
$$

Then $\frac{d y}{d x}=6 x-6 x^{2}$,

$$
\frac{d^{2} y}{d x^{2}}=6-12 x=-6(2 x-1)
$$

If $x>\frac{1}{2}, \frac{d^{2} y}{d x^{2}}$ is negative and so convex upwards.
If $x<\frac{1}{2}, \frac{d^{2} y}{d x^{2}}$ is positive and so concave upwards.
If $\mathrm{x}=\frac{1}{2}, \frac{d^{2} y}{d x^{2}}=0, \frac{d^{\mathrm{s}} y}{d x^{8}}=-12$ and so there is a point of inflexion at $x=\frac{1}{2}$. i.e., at the point $\left(\frac{1}{2}, \frac{1}{2}\right)$

Partial Differentiation

Let $u=f(x, y)$ be a function of two independent variables. Differentiating u w.r.t. ' x ' keeping ' y ' constant is known as the partial differential coefficient of 'u' w.r.t. ' x '.

It is denoted by $\frac{\partial u}{\partial x}$.
$\therefore \frac{\partial u}{\partial x}$ means differentiate u w.r.t. ' x ' keeping ' y ' constant.
Similarly if we differentiate u w.r.t. ' y ' keeping ' x ' constant is known as the partial differential coefficient of 'u' w.r.t. ' y '.

It is denoted by $\frac{\partial u}{\partial y}$.

$$
\therefore \frac{\partial u}{\partial y} \text { means differentiate u w.r.t. ' } \mathrm{y} \text { ' keeping ' } \mathrm{x} \text { ' constant. }
$$

Symbolically, if $u=f(x, y)$, then

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=\lim _{\Delta x \rightarrow 0} \frac{f(x+\Delta x y)-f(x y)}{\Delta x} \\
& \frac{\partial u}{\partial y}=\lim _{\Delta y \rightarrow 0} \frac{f(x y y+\Delta y)-f(x y y)}{\Delta y} .
\end{aligned}
$$

Problem:

If $u=\log \left(x^{2}+y^{2}+z^{2}\right)$, prove that $\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=\frac{2}{x^{2}+y^{2}+z^{2}}$.

Solution:

Given

$$
\begin{gather*}
\mathrm{u}=\log \left(\mathrm{x}^{2}+\mathrm{y}^{2}+\mathrm{z}^{2}\right) \\
\frac{\partial u}{\partial x}=\frac{1}{x^{2}+y^{2}+z^{2}}(2 x) \\
=\frac{2 x}{x^{2}+y^{2}+z^{2}} \\
\frac{\partial^{2} u}{\partial x^{2}}=2\left[\frac{\left(x^{2}+y^{2}+z^{2}\right)(1)-(x)(2 x)}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}\right] \\
\frac{\partial^{2} u}{\partial x^{2}}=2\left[\frac{y^{2}+z^{2}-x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}\right] \tag{1}
\end{gather*}
$$

Similarly

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial y^{2}}=2\left[\frac{x^{2}+z^{2}-y^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}\right] \tag{2}
\end{equation*}
$$

ALGEBRA AND CALCULUS

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial z^{2}}=2\left[\frac{x^{2}+y^{2}-z^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}\right] \tag{3}
\end{equation*}
$$

Adding (1), (2) and (3) we get

$$
\begin{aligned}
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}+\frac{\partial^{z} u}{\partial z^{2}} & =2\left[\frac{x^{2}+y^{2}+z^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}\right] \\
& =\frac{2}{x^{2}+y^{2}+z^{2}}
\end{aligned}
$$

Problem:

If $u=\log (\tan x+\tan y+\tan z)$, show that $\sin 2 x \cdot \frac{\partial u}{\partial x}+\sin 2 y \cdot \frac{\partial u}{\partial y}+\sin 2 z \cdot \frac{\partial u}{\partial z}=2$.

Solution:

Given $\mathrm{u}=\log (\tan \mathrm{x}+\tan \mathrm{y}+\tan \mathrm{z})$

$$
\begin{align*}
\frac{\partial u}{\partial x}= & \frac{\sec ^{2} x}{\tan x+\tan y+\tan z} \\
& \therefore \sin 2 \mathrm{X} \frac{\partial u}{\partial x}=\frac{\sin 2 x \cdot \sec c^{2} x}{\tan x+\tan y+\tan z} \tag{1}
\end{align*}
$$

Similarly, $\quad \sin 2 \mathrm{y} \frac{\partial u}{\partial y}=\frac{\sin 2 y \cdot \sec ^{2} y}{\tan \mathrm{x}+\tan \mathrm{y}+\tan z}$

$$
\begin{equation*}
\sin 2 z \frac{\partial u}{\partial z}=\frac{\sin 2 z \cdot \sec ^{2} z}{\tan x+\tan y+\tan z} \tag{2}
\end{equation*}
$$

Adding (1), (2) and (3) we get

$$
\begin{aligned}
\sin 2 x \cdot \frac{\partial u}{\partial x}+\sin 2 y \cdot \frac{\partial u}{\partial y}+\sin 2 z \cdot \frac{\partial u}{\partial z} & =\frac{\sin 2 x \cdot \sec ^{2} x+\sin 2 y \cdot \sec ^{2} y+\sin 2 z \cdot \sec ^{2} z}{\tan x+\tan y+\tan z} \\
& =\frac{2 \sin x \cos x \cdot \frac{1}{\cos ^{2} x}+2 \sin y \cos y \cdot \frac{1}{\cos ^{2} y}+2 \sin y \cos y \cdot \frac{1}{\cos ^{2} y}}{\tan x+\tan y+\tan z} \\
& =\frac{2(\tan x+\tan y+\tan z)}{\tan x+\tan y+\tan z} \\
& =2
\end{aligned}
$$

Euler's Theorem on Homogeneous Function

Theorem: If u is a homogeneous function of degree n in x and y , then $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=n u$.
Problem: If $\mathrm{u}=\sin ^{-1}\left(\frac{x^{2}+y^{2}}{x+y}\right)$, show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\tan u$.
Solution: Given $\mathrm{u}=\sin ^{-1}\left(\frac{x^{2}+y^{2}}{x+y}\right)$

$$
\text { i.e., } \sin \mathrm{u}=\frac{x^{2}+y^{2}}{x+y}=\frac{x^{2}\left[1+\frac{y^{2}}{x^{2}}\right]}{x\left[1+\frac{y}{x}\right]}
$$

$$
\sin \mathrm{u}=\mathrm{xf}\left(\frac{y}{x}\right) \text {, where } \mathrm{f}\left(\frac{y}{x}\right)=\frac{1+\frac{y^{2}}{x^{2}}}{1+\frac{y}{x}}
$$

$\therefore \sin \mathrm{u}$ is a homogeneous function of degree 1 . By Euler's theorem

$$
\begin{aligned}
& x \frac{\partial(\sin u)}{\partial x}+y \frac{\partial(\sin u)}{\partial y}=1 \cdot \sin u \\
& x \cos u \frac{\partial u}{\partial x}+y \cos u \frac{\partial u}{\partial y}=\sin u \\
& x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{\sin u}{\cos u}=\tan u
\end{aligned}
$$

Problem:

Verify Euler's Theorem when $u=x^{3}+y^{3}+z^{3}+3 x y z$.

Solution:

$$
\begin{aligned}
\frac{\partial u}{\partial x} & =3 \mathrm{x}^{2}+3 \mathrm{yz} . \\
\frac{\partial u}{\partial y} & =3 \mathrm{y}^{2}+3 \mathrm{zx} . \\
\frac{\partial u}{\partial z} & =3 \mathrm{z}^{2}+3 \mathrm{xy} . \\
\therefore x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z} & =\mathrm{x}\left(3 \mathrm{x}^{2}+3 \mathrm{yz}\right)+\mathrm{y}\left(3 \mathrm{y}^{2}+3 \mathrm{zx}\right)+\mathrm{z}\left(3 \mathrm{z}^{2}+3 \mathrm{xy}\right) \\
& =3\left(\mathrm{x}^{3}+\mathrm{y}^{3}+\mathrm{z}^{3}+3 \mathrm{xyz}\right) \\
& =3 \mathrm{u} .
\end{aligned}
$$

Total Differential Coefficient:

Problem:

Find $\frac{d u}{d t}$ where $\mathrm{u}=x^{2}+y^{2}+z^{2}, \mathrm{x}=\mathrm{e}^{\mathrm{t}}, \mathrm{y}=\mathrm{e}^{\mathrm{t}} \sin \mathrm{t}$ and $\mathrm{z}=\mathrm{e}^{\mathrm{t}} \cos t$.
Solution:

$$
\begin{aligned}
\frac{d u}{d t} & =\frac{\partial u}{\partial x} \frac{d x}{d t}+\frac{\partial u}{\partial y} \frac{d y}{d t}+\frac{\partial u}{\partial z} \frac{d z}{d t} \\
& =2 \mathrm{xe}^{\mathrm{t}}+2 \mathrm{y}\left(\mathrm{e}^{\mathrm{t}} \sin \mathrm{t}+\mathrm{e}^{\mathrm{t}} \cos \mathrm{t}\right)+2 \mathrm{z}\left(\mathrm{e}^{\mathrm{t}} \cos \mathrm{t}-\mathrm{e}^{\mathrm{t}} \sin \mathrm{t}\right) \\
& =2 \mathrm{e}^{\mathrm{t}}(\mathrm{x}+\mathrm{y} \operatorname{sint}+\mathrm{y} \cos \mathrm{t}+\mathrm{z} \cos \mathrm{t}-\mathrm{z} \sin \mathrm{t}) \\
& =2 \mathrm{e}^{\mathrm{t}}\left(\mathrm{e}^{\mathrm{t}}+\mathrm{e}^{\mathrm{t}} \sin ^{2} \mathrm{t}+\mathrm{e}^{\mathrm{t}} \operatorname{sint} \cos \mathrm{t}+\mathrm{e}^{\mathrm{t}} \cos ^{2} \mathrm{t}-\mathrm{e}^{\mathrm{t}} \sin \mathrm{c} \cos \mathrm{t}\right) \\
& =2 \mathrm{e}^{\mathrm{t}} \cdot 2 \mathrm{e}^{\mathrm{t}} \\
& =4 \mathrm{e}^{\mathrm{t}} .
\end{aligned}
$$

Problem:

If $\mathrm{x}^{3}+\mathrm{y}^{3}+3$ axy, find $\frac{d y}{d x}$.

Solution:

$$
\begin{aligned}
\mathrm{x}^{3} & +\mathrm{y}^{3}+3 \mathrm{axy}=0, \text { i.e., } \mathrm{f}(\mathrm{x}, \mathrm{y})=0 \\
\frac{\partial u}{\partial x} & =3 \mathrm{x}^{2}-3 \mathrm{ay} \\
\frac{\partial f}{\partial y} & =3 \mathrm{y}^{2}-3 \mathrm{ax} \\
\therefore \quad \frac{d y}{d x} & =-\frac{3 x^{2}-3 a y}{3 y^{2}-3 a x} \\
& =-\frac{x^{2}-a y}{y^{2}-a x}
\end{aligned}
$$

Evaluation of Integrals \& Fourier Series

Integrals of the form $\int \frac{d x}{a x^{2}+b x+c}$
Problem: Evaluate $\int \frac{d x}{x^{2}+2 x+5}$.
Solution:

$$
\begin{aligned}
& \int \frac{d x}{x^{2}+2 x+5}=\int \frac{d x}{(x+1)^{2}+2^{2}} \\
& \text { Put } x+1=y ; \quad \therefore d x=d y \\
& \begin{aligned}
\int \frac{d x}{(x+1)^{2}+2^{2}} & =\int \frac{d y}{y^{2}+2^{2}}=\frac{1}{2} \tan ^{-1}\left(\frac{y}{2}\right) \\
& =\frac{1}{2} \tan ^{-1}\left(\frac{x+1}{2}\right) .
\end{aligned}
\end{aligned}
$$

Problem: Evaluate $\int \frac{\mathrm{dx}}{4+5 \mathrm{x}-\mathrm{x}^{2}}$.
Solution:

$$
\begin{aligned}
\int \frac{d x}{4+5 x-x^{2}} & =\int \frac{d x}{-\left(x^{2}-5 x-4\right)}=-\int \frac{d x}{x^{2}-5 x-4} \\
& =-\int \frac{d x}{\left(x-\frac{5}{2}\right)^{2}-\left(\frac{41}{4}\right)} \\
& =-\int \frac{d x}{\left(x-\frac{5}{2}\right)^{2}-\left(\frac{\sqrt{41}}{2}\right)^{2}} \\
\text { Put } x-\frac{5}{2} & =y ; \quad \therefore d x=d y \\
& =-\int \frac{d y}{(y)^{2}-\left(\frac{\sqrt{41}}{2}\right)^{2}} \\
& =-\frac{1}{2 \times \frac{\sqrt{41}}{2}} \log \left\{\frac{\sqrt{44}}{\frac{2}{\sqrt{41}}}+y\right\} \\
& =-\frac{1}{\sqrt{41}} \log \left\{\frac{\sqrt{41}+2 x-5}{\sqrt{41}-2 x+5}\right\}
\end{aligned}
$$

Integral of the form $\int \frac{p x+q}{a x^{2}+b x+c} d x$
Problem: Evaluate $\int \frac{3 x+1}{2 x^{2}-x+5} d x$

Solution:

$$
\begin{aligned}
& \text { Let } 3 \mathrm{x}+1=\mathrm{A} \frac{d}{d x}\left(2 \mathrm{x}^{2}-\mathrm{x}+5\right)+\mathrm{B} \\
& \qquad \begin{aligned}
\mathrm{x}+1 & =\mathrm{A}(4 \mathrm{x}-1)+\mathrm{B}
\end{aligned}
\end{aligned}
$$

Equating coefficient of ' x ' on both sides we get

$$
3=4 \mathrm{~A} \rightarrow \mathrm{~A}=\frac{3}{4}
$$

Equating constant coefficients we get,

$$
\begin{aligned}
& 1=-\mathrm{A}+\mathrm{B} \\
& \mathrm{~B}= \mathrm{A}+1=\frac{3}{4}+1=\frac{3+4}{4}=\frac{7}{4} . \\
& 3 \mathrm{x}+1=\frac{3}{4}(4 \mathrm{x}-1)+\frac{7}{4} . \\
& \int \frac{3 \mathrm{x}+1}{2 \mathrm{x}^{2}-\mathrm{x}+5} \mathrm{dx}=\int \frac{\frac{3}{4}(4 \mathrm{x}-1)+\frac{7}{4}}{2 \mathrm{x}^{2}-\mathrm{x}+5} d x \\
&=\frac{3}{4} \int \frac{4 \mathrm{x}-1}{2 \mathrm{x}^{2}-\mathrm{x}+5} d x+\frac{7}{4} \int \frac{\mathrm{dx}}{2 \mathrm{x}^{2}-\mathrm{x}+5} \\
&=\frac{3}{4} \log \left(2 \mathrm{x}^{2}-\mathrm{x}+5\right)+\frac{7}{4} \int \frac{\mathrm{dx}}{2\left(\mathrm{x}^{2}-\frac{x}{2}+\frac{5}{2}\right)} \\
&=\frac{3}{4} \log \left(2 \mathrm{x}^{2}-\mathrm{x}+5\right)+\frac{7}{8} \int \frac{\mathrm{dx}}{\left(\mathrm{x}-\frac{1}{4}\right)^{2}+\left(\frac{39}{16}\right)} \\
&=\frac{3}{4} \log \left(2 \mathrm{x}^{2}-\mathrm{x}+5\right)+\frac{7}{8} \frac{1}{2 \times \frac{\sqrt{39}}{2}} \tan ^{-1}\left(\frac{x-\frac{1}{4}}{\frac{\frac{\sqrt{59}}{2}}{2}}\right) \\
&=\frac{3}{4} \log \left(2 \mathrm{x}^{2}-\mathrm{x}+5\right)+\frac{7}{4 \sqrt{39}} \tan ^{-1}\left(\frac{4 x-1}{\sqrt{39}}\right) .
\end{aligned}
$$

Integrals of the form $\int \frac{d x}{\sqrt{a x^{2}+b x+c}}$
Problem: Evaluate $\int \frac{\mathrm{dx}}{\sqrt{3 \mathrm{x}^{2}+4 \mathrm{x}+2}}$

Solution:

$$
\begin{aligned}
\int \frac{\mathrm{dx}}{\sqrt{3 x^{2}+4 x+2}} & =\int \frac{\mathrm{dx}}{\sqrt{3}\left(\sqrt{x^{2}+\frac{4}{3} x+\frac{2}{3}}\right)} \\
& =\frac{1}{\sqrt{3}} \int \frac{\mathrm{dx}}{\left(\mathrm{x}+\frac{2}{3}\right)^{2}+\left(\frac{2}{9}\right)}=\frac{1}{\sqrt{3}} \int \frac{\mathrm{dx}}{\left(\mathrm{x}+\frac{2}{3}\right)^{2}+\left(\frac{\sqrt{2}}{3}\right)^{2}} \\
& =\frac{1}{\sqrt{3}} \sinh ^{-1}\left(\frac{x+\frac{2}{3}}{\frac{\sqrt{3}}{3}}\right) \\
& =\frac{1}{\sqrt{3}} \sinh ^{-1}\left(\frac{3 x+2}{\sqrt{2}}\right)
\end{aligned}
$$

Integral of the form $\int \frac{p x+q}{\sqrt{a x^{2}+b x+c}} d x$
Problem: Evaluate $\int \frac{2 x+1}{\sqrt{3+4 x-x^{2}}} d x$.

Solution:

Let $2 \mathrm{x}+1=\mathrm{A} \frac{d}{d x}\left(3+4 \mathrm{x}-\mathrm{x}^{2}\right)+\mathrm{B}$

$$
2 x+1=A(-2 x+4)+B
$$

Equating coefficient of ' x ' on both sides we get

$$
2=-2 \mathrm{~A} \rightarrow \mathrm{~A}=-1
$$

Equating constant coefficients we get,

$$
\begin{gathered}
1=4 \mathrm{~A}+\mathrm{B} \\
\mathrm{~B}=1-4 \mathrm{~A}=1+4=5 . \\
2 \mathrm{x}+1=-1(2 \mathrm{x}+1)+5 . \\
\therefore \int \frac{2 \mathrm{x}+1}{\sqrt{3+4 \mathrm{x}-\mathrm{x}^{2}}} \mathrm{dx}=\int \frac{-(-2 \mathrm{x}+4)+5}{\sqrt{3+4 \mathrm{x}-\mathrm{x}^{2}}} \mathrm{dx} \\
=\int \frac{2 \mathrm{x}-4}{\sqrt{3+4 \mathrm{x}-\mathrm{x}^{2}}} \mathrm{dx}+\int \frac{5}{\sqrt{3+4 \mathrm{x}-\mathrm{x}^{2}}} \mathrm{dx} \\
=2 \sqrt{3+4 \mathrm{x}-\mathrm{x}^{2}}+5 \int \frac{\mathrm{dx}}{\sqrt{-(x-2)^{2}+7}}
\end{gathered}
$$

ALGEBRA AND CALCULUS

$$
\begin{aligned}
& =2 \sqrt{3+4 \mathrm{x}-\mathrm{x}^{2}}+5 \int \frac{\mathrm{dx}}{\sqrt{(\sqrt{7})^{2}-(x-2)^{2}}} \\
& =2 \sqrt{3+4 \mathrm{x}-\mathrm{x}^{2}}+5 \sinh ^{-1}\left(\frac{x-2}{\sqrt{7}}\right) .
\end{aligned}
$$

Properties of Definite Integrals:

$\int_{a}^{b} f(x) d x=F(b)-F(a)$ where $\int f(x) d x=F(x)+c$.

1. $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$
2. $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(y) d y$
3. $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$
4. $\int_{0}^{a} f(x) d x=\int_{0}^{a} f(a-x) d x$
5. $\int_{-a}^{a} f(x) d x=\int_{0}^{a} f(x) d x+\int_{0}^{a} f(-x) d x$
6. If $f(x)$ is an odd function i.e., $f(-x)=-f(x)$ then

$$
\int_{-a}^{a} f(x) d x=-\int_{0}^{a} f(x) d x+\int_{0}^{a} f(x) d x
$$

7. If $f(x)$ is an even function i.e., $f(-x)=f(x)$ then

$$
\int_{-a}^{a} f(x) d x=\int_{0}^{a} f(x) d x+\int_{0}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x
$$

Problem: Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{n} x d x}{\sin ^{n} x+\cos ^{n} x} d x$.

Solution:

Let $\quad \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{n} x d x}{\sin ^{n} x+\cos ^{n} x} d x$

$$
\begin{align*}
\text { Also I } & =\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{n}\left(\frac{\pi}{2}-x\right) d x}{\sin ^{n}\left(\frac{\pi}{2}-x\right)+\cos ^{n}\left(\frac{\pi}{2}-x\right)} d x \tag{1}\\
& =\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{n} x d x}{\cos ^{n} x+\sin ^{n} x} d x \tag{2}
\end{align*}
$$

Adding (1) and (2) we get

$$
\begin{aligned}
2 \mathrm{I} & =\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{n} x d x}{\sin ^{n} x+\cos ^{n} x} d x+\int_{0}^{\frac{\pi}{2}} \frac{\cos ^{n} x d x}{\cos ^{n} x+\sin ^{n} x} d x \\
& =\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{n} x+\cos ^{n} x}{\sin ^{n} x+\cos ^{n} x} d x
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{\frac{\pi}{2}} d x=[x]_{0}^{\frac{\pi}{2}} \\
2 \mathrm{I} & =\frac{\pi}{2} \\
\therefore \mathrm{I} & =\frac{\pi}{4} .
\end{aligned}
$$

Problem: Evaluate $\int_{0}^{\frac{\pi}{2}} \log (\sin x) d x$.

Solution:

Let $\quad \mathrm{I}=\int_{0}^{\frac{\pi}{2}} \log (\sin x) d x$
Also $\mathrm{I}=\int_{0}^{\frac{\pi}{2}} \log \left[\sin \left(\frac{\pi}{2}-x\right)\right] d x$
[\because using property 4]

$$
\begin{equation*}
=\int_{0}^{\frac{\pi}{2}} \log (\cos x) d x \tag{2}
\end{equation*}
$$

Adding (1) and (2) we get

$$
\begin{align*}
2 \mathrm{I} & =\int_{0}^{\frac{\pi}{2}} \log (\sin x) d x+\int_{0}^{\frac{\pi}{2}} \log (\cos x) d x \\
& =\int_{0}^{\frac{\pi}{2}}[\log (\sin x)+\log (\cos x)] d x \\
& =\int_{0}^{\frac{\pi}{2}} \log (\sin x \cdot \cos x) d x \\
& =\int_{0}^{\frac{\pi}{2}} \log \left(\frac{\sin 2 x}{2}\right) d x \\
& =\int_{0}^{\frac{\pi}{2}}[\log (\sin 2 x)-\log 2] d x \\
& =\int_{0}^{\frac{\pi}{2}} \log (\sin 2 x) d x-\int_{0}^{\frac{\pi}{2}} \log 2 d x \\
& =\int_{0}^{\frac{\pi}{2}} \log (\sin 2 x) d x-\log 2[x]_{0}^{\frac{\pi}{2}} \\
2 \mathrm{I} & =\int_{0}^{\frac{\pi}{2}} \log (\sin 2 x) d x-\frac{\pi}{2} \log 2 \tag{3}
\end{align*}
$$

To evaluate $\int_{0}^{\frac{\pi}{2}} \log (\sin 2 x) d x$
Put $2 \mathrm{x}=\mathrm{y}, 2 \mathrm{dx}=\mathrm{dy}$. When $\mathrm{x}=0, \mathrm{y}=0 ; \mathrm{x}=\frac{\pi}{2}, \mathrm{y}=\pi$

ALGEBRA AND CALCULUS

$\therefore \int_{0}^{\frac{\pi}{2}} \log (\sin 2 x) d x=\frac{1}{2} \int_{0}^{\pi} \log (\sin y) d y$

$$
\begin{aligned}
& =\frac{1}{2} \cdot 2 \int_{0}^{\frac{\pi}{2}} \log (\sin y) d y \\
& =\int_{0}^{\frac{\pi}{2}} \log (\sin x) d x=\mathrm{I}
\end{aligned}
$$

i.e., $\int_{0}^{\frac{\pi}{2}} \log (\sin 2 x) d x=I$

Substituting (4) in (3), we get

$$
\begin{aligned}
2 \mathrm{I} & =\mathrm{I}+\frac{\pi}{2} \log 2 \\
\mathrm{I} & =-\frac{\pi}{2} \log 2
\end{aligned}
$$

i.e., $\int_{0}^{\frac{\pi}{2}} \log (\sin x) d x=-\frac{\pi}{2} \log 2=\frac{\pi}{2} \log (2)^{-1}$

$$
=\frac{\pi}{2} \log \left(\frac{1}{2}\right)
$$

FOURIER SERIES

Particular Cases

Case (i)
If $f(x)$ is defined over the interval $(0,2 /)$.

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \frac{n \pi x}{l}+b_{n} \sin \frac{n \pi x}{l}\right] \\
& a_{0}=\frac{1}{l} \int_{0}^{2 l} f(x) d x \\
& a_{n}=\frac{1}{l} \int_{0}^{2 l} f(x) \cos \left(\frac{n \pi}{l}\right) x d x, \quad n=1,2, \ldots \ldots \infty \\
& b_{n}=\frac{1}{l} \int_{0}^{2 l} f(x) \sin \left(\frac{n \pi}{l}\right) x d x,
\end{aligned}
$$

If $f(x)$ is defined over the interval $(0,2 \pi)$.

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos n x+b_{n} \sin n x\right] \\
& \mathrm{a}_{0}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) d x
\end{aligned}
$$

ALGEBRA AND CALCULUS

$$
\begin{aligned}
& a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \cos n x d x, \quad \mathrm{n}=1,2, \ldots \ldots \infty \\
& b_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(x) \sin n x d x \quad \mathrm{n}=1,2, \ldots . . \infty
\end{aligned}
$$

Case (ii)

If $f(x)$ is defined over the interval $(-I, I)$.

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos \frac{n \pi x}{l}+b_{n} \sin \frac{n \pi x}{l}\right] \\
& a_{0}=\frac{1}{l} \int_{-l}^{l} f(x) d x \\
& a_{n}=\frac{1}{l} \int_{-l}^{l} f(x) \cos \left(\frac{n \pi}{l}\right) x d x \\
& b_{n}=\frac{1}{l} \int_{-l}^{l} f(x) \sin \left(\frac{n \pi}{l}\right) x d x, \\
& \mathrm{n}=1,2, \ldots \ldots . . \infty
\end{aligned}
$$

If $f(x)$ is defined over the interval $(-\pi, \pi)$.

$$
\begin{aligned}
& \mathrm{f}(\mathrm{x})=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left[a_{n} \cos n x+b_{n} \sin n x\right] \\
& \mathrm{a}_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x, \quad \mathrm{n}=1,2, \ldots . . \infty \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x \quad \mathrm{n}=1,2, \ldots \ldots \infty
\end{aligned}
$$

Problem: Obtain the Fourier expansion of

$$
f(x)=\frac{1}{2}<-x-\text { in }-\pi<x<\pi
$$

Solution:

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2}(\pi-x) d x \\
& =\frac{1}{2 \pi}\left[\pi x-\frac{x^{2}}{2}\right]_{-\pi}^{\pi}=\pi \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x=\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2}(\pi-x) \cos n x d x
\end{aligned}
$$

Here we use integration by parts, so that

$$
\begin{aligned}
& a_{n}=\frac{1}{2 \pi}\left[\frac{x}{\frac{\sin n x}{n}}-(-1)\left(\frac{-\cos n x}{n^{2}}\right)\right]_{-\pi}^{\pi} \\
& =\frac{1}{2 \pi} \mathbf{l}_{-}^{-}=0 \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} \frac{1}{2}(\pi-x) \sin n x d x \\
& =\frac{1}{2 \pi}\left[-x-\frac{-\cos n x}{n}-(-1)\left(\frac{-\sin n x}{n^{2}}\right)\right]_{-\pi}^{\pi} \\
& =\frac{(-1)^{n}}{n}
\end{aligned}
$$

Using the values of a_{0}, a_{n} and b_{n} in the Fourier expansion

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x+\sum_{n=1}^{\infty} b_{n} \sin n x
$$

we get,

$$
f(x)=\frac{\pi}{2}+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} \sin n x
$$

This is the required Fourier expansion of the given function.

ALGEBRA AND CALCULUS

Problem: Obtain the Fourier expansion of $f(x)=e^{-a x}$ in the interval $(-\pi, \pi)$. Deduce that

$$
\operatorname{cosech} \pi=\frac{2}{\pi} \sum_{n=2}^{\infty} \frac{(-1)^{n}}{n^{2}+1}
$$

Solution:

Here,

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} e^{-a x} d x=\frac{1}{\pi}\left[\frac{e^{-a x}}{-a}\right]_{-\pi}^{\pi} \\
& =\frac{e^{a \pi}-e^{-a \pi}}{a \pi}=\frac{2 \sinh a \pi}{a \pi} \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} e^{-a x} \cos n x d x \\
& a_{n}=\frac{1}{\pi}\left[\frac{e^{-a x}}{a^{2}+n^{2}}\{a \cos n x+n \sin n x]_{-\pi}^{\pi}\right. \\
& =\frac{2 a}{\pi}\left[\frac{(-1)^{n} \sinh a \pi}{a^{2}+n^{2}}\right] \\
& \mathrm{b}_{\mathrm{n}}=\frac{1}{\pi} \int_{-\pi}^{\pi} e^{-a x} \sin n x d x \\
& =\frac{1}{\pi}\left[\frac{e^{-a x}}{a^{2}+n^{2}} \frac{2}{\pi} a \sin n x-n \cos n x\right]_{-\pi}^{\pi} \\
& =\frac{2 n}{\pi}\left[\frac{(-1)^{n} \sinh a \pi}{a^{2}+n^{2}}\right]
\end{aligned}
$$

Thus,

$$
\mathrm{f}(\mathrm{x})=\frac{\sinh a \pi}{a \pi}+\frac{2 a \sinh a \pi}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{a^{2}+n^{2}} \cos n x+\frac{2}{\pi} \sinh a \pi \sum_{n=1}^{\infty} \frac{n(-1)^{n}}{a^{2}+n^{2}} \sin n x
$$

For $\mathrm{x}=0, \mathrm{a}=1$, the series reduces to

$$
\mathrm{f}(0)=1=\frac{\sinh \pi}{\pi}+\frac{2 \sinh \pi}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2}+1}
$$

or

$$
1=\frac{\sinh \pi}{\pi}+\frac{2 \sinh \pi}{\pi}\left[-\frac{1}{2}+\sum_{n=2}^{\infty} \frac{(-1)^{n}}{n^{2}+1}\right]
$$

or

$$
1=\frac{2 \sinh \pi}{\pi} \sum_{n=2}^{\infty} \frac{(-1)^{n}}{n^{2}+1}
$$

ALGEBRA AND CALCULUS

Thus,

$$
\pi \operatorname{cosech} \pi=2 \sum_{n=2}^{\infty} \frac{(-1)^{n}}{n^{2}+1}
$$

This is the desired deduction.

Problem: Obtain the Fourier expansion of $f(x)=x^{2}$ over the interval $(-\pi, \pi)$. Deduce that

$$
\frac{\pi^{2}}{6}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots \ldots+\infty
$$

Solution:

The function $f(x)$ is even. Hence

$$
\begin{aligned}
& \mathrm{a}_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x \\
& =\frac{2}{\pi} \int_{0}^{\pi} x^{2} d x=\frac{2}{\pi}\left[\frac{x^{3}}{3}\right]_{0}^{\pi} \\
& a_{0}=\frac{2 \pi^{2}}{3}
\end{aligned}
$$

$$
\begin{aligned}
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x \\
& =\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x, \text { since } f(x) \cos n \mathrm{x} \text { is even } \\
& =\frac{2}{\pi} \int_{0}^{\pi} x^{2} \cos n x d x
\end{aligned}
$$

Integrating by parts, we get

$$
\begin{aligned}
& a_{n}=\frac{2}{\pi}\left[x^{2}\left(\frac{\sin n x}{n}\right)-2 x\left(\frac{-\cos n x}{n^{2}}\right)+2\left(\frac{-\sin n x}{n^{3}}\right)\right]_{0}^{\pi} \\
& =\frac{4(-1)^{n}}{n^{2}}
\end{aligned}
$$

Also, $\quad b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x=0 \quad$ since $\mathrm{f}(\mathrm{x})$ sinn x is odd.

ALGEBRA AND CALCULUS

Thus
$f(x)=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{(-1)^{n} \cos n x}{n^{2}}$
$\pi^{2}=\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty} \frac{1}{n^{2}}$
$\sum_{1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$
Hence,

$$
\frac{\pi^{2}}{6}=1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots .
$$

Problem: Obtain the Fourier expansion of

$$
f(x)=\left\{\begin{array}{l}
x, \quad 0 \leq x \leq \pi \\
2 \pi-x, \pi \leq x \leq 2 \pi
\end{array}\right.
$$

Deduce that

$$
\frac{\pi^{2}}{8}=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots
$$

Solution:

Here,

$$
\begin{aligned}
& \mathrm{a}_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) d x=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x \\
& =\frac{2}{\pi} \int_{0}^{\pi} x d x=\pi \\
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos n x d x=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x \quad \text { since } \mathrm{f}(\mathrm{x}) \cos \mathrm{x} \text { is even. } \\
& =\frac{2}{\pi} \int_{0}^{\pi} x \cos n x d x \\
& =\frac{2}{\pi}\left[x\left(\frac{\sin n x}{n}\right)-1\left(\frac{-\cos n x}{n^{2}}\right)\right]_{0}^{\pi} \\
& =\frac{2}{n^{2} \pi}\{-1)^{n}-1-
\end{aligned}
$$

Also,

$$
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin n x d x=0, \text { since } \mathrm{f}(\mathrm{x}) \operatorname{sinn} \mathrm{x} \text { is odd }
$$

Thus the Fourier series of $f(x)$ is

$$
\left.f(x)=\frac{\pi}{2}+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n^{2}}-1\right)^{n}-1 \overline{\cos } n x
$$

For $x=\pi$, we get
or

$$
\left.f(\pi)=\frac{\pi}{2}+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n^{2}}-1\right)^{n}-1 \underline{\cos } n \pi
$$

$$
\pi=\frac{\pi}{2}+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{-2 \cos (2 n-1) \pi}{(2 n-1)^{2}}
$$

Thus,
or

$$
\begin{aligned}
& \frac{\pi^{2}}{8}=\sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}} \\
& \frac{\pi^{2}}{8}=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots
\end{aligned}
$$

This is the series as required.

Problem: Obtain the Fourier expansion of

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}
-\pi,-\pi<x<0 \\
x, 0<x<\pi
\end{array}\right.
$$

Deduce that

$$
\frac{\pi^{2}}{8}=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots
$$

Solution:

Here,

$$
\begin{aligned}
& a_{0}=\frac{1}{\pi}\left[\int_{-\pi}^{0}-\pi d x+\int_{0}^{\pi} x d x\right]=-\frac{\pi}{2} \\
& a_{n}=\frac{1}{\pi}\left[\int_{-\pi}^{0}-\pi \cos n x d x+\int_{0}^{\pi} x \cos n x d x\right] \\
& =\frac{1}{n^{2} \pi}[-1)^{n}-1- \\
& b_{n}=\frac{1}{\pi}\left[\int_{-\pi}^{0}-\pi \sin n x d x+\int_{0}^{\pi} x \sin n x d x\right] \\
& =\frac{1}{n}\left[-2(-1)^{n}-\right.
\end{aligned}
$$

Fourier series is

ALGEBRA AND CALCULUS

Note that the point $x=0$ is a point of discontinuity of $f(x)$. Here $f\left(x^{+}\right)=0, f\left(x^{-}\right)=-\pi$ at $x=0$. Hence

$$
\frac{1}{2}\left[f\left(x^{+}\right)+f\left(x^{-}\right)\right]=\frac{1}{2}\left(-\pi \equiv \frac{-\pi}{2}\right.
$$

The Fourier expansion of $f(x)$ at $x=0$ becomes

$$
\begin{aligned}
& \frac{-\pi}{2}=\frac{-\pi}{4}-\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{1}{n^{2}}\left[(-1)^{n}-1\right] \\
& \text { or } \frac{\pi^{2}}{4}=\sum_{n=1}^{\infty} \frac{1}{n^{2}}\left[(-1)^{n}-1\right]
\end{aligned}
$$

Simplifying we get, $\frac{\pi^{2}}{8}=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots$
Problem: Obtain the Fourier series of $f(x)=1-x^{2}$ over the interval $(-1,1)$.

Solution:

The given function is even, as $f(-x)=f(x)$. Also period of $f(x)$ is $1-(-1)=2$
Here

$$
\begin{aligned}
& \mathrm{a}_{0}=\frac{1}{1} \int_{-1}^{1} f(x) d x=2 \int_{0}^{1} f(x) d x \\
& =2 \int_{0}^{1}\left(1-x^{2}\right) d x=2\left[x-\frac{x^{3}}{3}\right]_{0}^{1} \\
& =\frac{4}{3} \\
& a_{n}=\frac{1}{1} \int_{-1}^{1} f(x) \cos (n \pi x) d x \quad \text { as } \mathrm{f}(\mathrm{x}) \cos (\mathrm{n} \pi \mathrm{x}) \text { is even } \\
& =2 \int_{0}^{1} f(x) \cos (n \pi x) d x \quad \\
& =2 \int_{0}^{1}\left(1-x^{2}\right) \cos (n \pi x) d x
\end{aligned}
$$

Integrating by parts, we get

$$
\begin{aligned}
& a_{n}=2\left[-x^{2}\left(\frac{\sin n \pi x}{n \pi}\right)-(-2 x)\left(\frac{-\cos n \pi x}{(n \pi)^{2}}\right)+(-2)\left(\frac{-\sin n \pi x}{(n \pi)^{3}}\right)\right]_{0}^{1} \\
& =\frac{4(-1)^{n+1}}{n^{2} \pi^{2}} \\
& b_{n}=\frac{1}{1} \int_{-1}^{1} f(x) \sin (n \pi x) d x \quad=0, \text { since } \mathrm{f}(\mathrm{x}) \sin (\mathrm{n} \pi \mathrm{x}) \text { is odd. }
\end{aligned}
$$

The Fourier series of $f(x)$ is $f(x)=\frac{2}{3}+\frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2}} \cos (n \pi x)$

Problem: Obtain the Fourier expansion of

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{l}
1+\frac{4 x}{3},-\frac{3}{2}<x \leq 0 \\
1-\frac{4 x}{3}, 0 \leq x<\frac{3}{2}
\end{array}\right.
$$

Deduce that $\frac{\pi^{2}}{8}=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots .$.

Solution:

The period of $f(x)$ is $\frac{3}{2}-\left(\frac{-3}{2}\right)=3$
Also $\quad f(-x)=f(x)$. Hence $f(x)$ is even

$$
\begin{aligned}
& a_{0}=\frac{1}{3 / 2} \int_{-3 / 2}^{3 / 2} f(x) d x=\frac{2}{3 / 2} \int_{0}^{3 / 2} f(x) d x \\
& =\frac{4}{3} \int_{0}^{3 / 2}\left(1-\frac{4 x}{3}\right) d x=0 \\
& a_{n}=\frac{1}{3 / 2} \int_{-3 / 2}^{3 / 2} f(x) \cos \left(\frac{n \pi x}{3 / 2}\right) d x \\
& =\frac{2}{3 / 2} \int_{0}^{3 / 2} f(x) \cos \left(\frac{2 n \pi x}{3}\right) d x \\
& =\frac{4}{3}\left(1-\frac{4 x}{3}\right)\left(\frac{\sin \left(\frac{2 n \pi x}{3}\right)}{\left(\frac{2 n \pi}{3}\right)}\right)-\left(\frac{-4}{3}\right)\left(\frac{\cos \left(\frac{2 n \pi x}{3}\right)}{\left(\frac{2 n \pi}{3}\right)^{2}}\right)_{0}^{3 / 2} \\
& =\frac{4}{n^{2} \pi^{2}}-(-1)^{n^{-}}-
\end{aligned}
$$

Also,

$$
b_{n}=\frac{1}{3} \int_{-3 / 2}^{3 / 2} f(x) \sin \left(\frac{n \pi x}{3 / 2}\right) d x=0
$$

Thus

$$
\mathrm{f}(\mathrm{x})=\frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \boldsymbol{-}-(-1)^{n}-\overline{\cos }\left(\frac{2 n \pi x}{3}\right)
$$

putting $x=0$, we get

$$
\left.\mathrm{f}(0)=\frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \right\rvert\,-(-1)^{n} .
$$

ALGEBRA AND CALCULUS

or

$$
1=\frac{8}{\pi^{2}}\left[1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots .\right]
$$

Thus,

$$
\frac{\pi^{2}}{8}=1+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\ldots \ldots
$$

HALF-RANGE FOURIER SERIES

The Fourier expansion of the periodic function $f(x)$ of period $2 /$ may contain both sine and cosine terms. Many a time it is required to obtain the Fourier expansion of $f(x)$ in the interval ($0, /$) which is regarded as half interval. The definition can be extended to the other half in such a manner that the function becomes even or odd. This will result in cosine series or sine series only.

Sine series :

Suppose $f(x)=\varphi(x)$ is given in the interval $(0, l)$. Then we define $f(x)=-\varphi(-x)$ in $(-l, 0)$. Hence $f(x)$ becomes an odd function in $(-l, l)$. The Fourier series then is

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{l}\right) \tag{11}
\end{equation*}
$$

where

$$
b_{n}=\frac{2}{l} \int_{0}^{l} f(x) \sin \left(\frac{n \pi x}{l}\right) d x
$$

The series (11) is called half-range sine series over ($0, /$).
Putting $I=\pi$ in (11), we obtain the half-range sine series of $f(x)$ over $(0, \pi)$ given by

$$
\begin{aligned}
& f(x)=\sum_{n=1}^{\infty} b_{n} \sin n x \\
& b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x
\end{aligned}
$$

Cosine series :

Let us define

$$
f(x)=\left\{\begin{array}{lrl}
\phi(x) & \text { in }(0, I) & \ldots . . \text { given } \\
\phi(-x) & \text { in }(-1,0) & \text {.....in order to make the function even. }
\end{array}\right.
$$

Then the Fourier series of $f(x)$ is given by

$$
\begin{gather*}
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{l}\right) \tag{12}\\
a_{0}=\frac{2}{l} \int_{0}^{l} f(x) d x
\end{gather*}
$$

where,

$$
a_{n}=\frac{2}{l} \int_{0}^{l} f(x) \cos \left(\frac{n \pi x}{l}\right) d x
$$

ALGEBRA AND CALCULUS

The series (12) is called half-range cosine series over ($0, /$)
Putting $\mathrm{I}=\pi$ in (12), we get

$$
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos n x
$$

where

$$
\begin{aligned}
& a_{0}=\frac{2}{\pi} \int_{0}^{\pi} f(x) d x \\
& a_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \cos n x d x \quad \mathrm{n}=1,2,3, \ldots .
\end{aligned}
$$

Problem: Expand $f(x)=x(\pi-x)$ as half-range sine series over the interval $(0, \pi)$.
Solution: We have,

$$
\begin{aligned}
& b_{n}=\frac{2}{\pi} \int_{0}^{\pi} f(x) \sin n x d x \\
& =\frac{2}{\pi} \int_{0}^{\pi}\left(\pi x-x^{2}\right) \sin n x d x
\end{aligned}
$$

Integrating by parts, we get

$$
\begin{aligned}
& b_{n}=\frac{2}{\pi}\left[x-x^{2}\left(\frac{-\cos n x}{n}\right)-\left(-2 x\left(\frac{-\sin n x}{n^{2}}\right)+(-2)\left(\frac{\cos n x}{n^{3}}\right)\right]_{0}^{\pi}\right. \\
& =\frac{4}{n^{3} \pi} \mathbf{I}-(-1)^{n}-
\end{aligned}
$$

The sine series of $f(x)$ is

$$
f(x)=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{n^{3}} \mathbf{I}-(-1)^{n} \underline{-} \underline{\sin } n x
$$

Problem: Obtain the cosine series of

$$
f(x)=\left\{\begin{array}{l}
x, 0<x<\frac{\pi}{2} \\
\pi-x, \frac{\pi}{2}<x<\pi
\end{array} \quad \operatorname{over}(0, \pi)\right.
$$

Solution:

Here

$$
a_{0}=\frac{2}{\pi}\left[\int_{0}^{\pi / 2} x d x+\int_{\pi / 2}^{\pi}(\pi-x) d x\right]=\frac{\pi}{2}
$$

$$
a_{n}=\frac{2}{\pi}\left[\int_{0}^{\pi / 2} x \cos n x d x+\int_{\pi / 2}^{\pi}(\pi-x) \cos n x d x\right]
$$

ALGEBRA AND CALCULUS

Performing integration by parts and simplifying, we get

$$
\begin{aligned}
& a_{n}=-\frac{2}{n^{2} \pi}\left[1+(-1)^{n}-2 \cos \left(\frac{n \pi}{2}\right)\right] \\
& =-\frac{8}{n^{2} \pi}, n=2,6,10, \ldots .
\end{aligned}
$$

Thus, the Fourier cosine series is

$$
f(x)=\frac{\pi}{4}-\frac{2}{\pi}\left[\frac{\cos 2 x}{1^{2}}+\frac{\cos 6 x}{3^{2}}+\frac{\cos 10 x}{5^{2}}+\ldots . . \infty\right]
$$

Problem: Obtain the half-range cosine series of $f(x)=c-x$ in $0<x<c$

Solution:

Here

$$
\begin{aligned}
& a_{0}=\frac{2}{c} \int_{0}^{c}(c-x) d x=c \\
& a_{n}=\frac{2}{c} \int_{0}^{c}(c-x) \cos \left(\frac{n \pi x}{c}\right) d x
\end{aligned}
$$

Integrating by parts and simplifying we get,

$$
a_{n}=\frac{2 c}{n^{2} \pi^{2}} \mathbf{\lfloor}-(-1)^{n} .
$$

The cosine series is given by

$$
\mathrm{f}(\mathrm{x})=\frac{c}{2}+\frac{2 c}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}}-(-1)^{n}-\overline{\cos }\left(\frac{n \pi x}{c}\right)
$$

ALGEBRA AND CALCULUS

UNIT-V

DIFFERENTIAL EQUATIONS

Definition:

A differential equation is an equation in which differential coefficients occur.
Differential equations are of two types(i) Ordinary and (ii) Partial.
An ordinary differential equation is one which a single independent variable enters, either explicity or implicity. For example,
$\frac{d y}{d x}=2 \sin x, \frac{d^{2} x}{d r^{2}}+m^{2} x=0$
$x 2 \frac{d^{2} y}{d x^{2}}+2 x y \frac{d y}{d x}+y=\sin x$
are ordinary differential equations.

Variable separable.

Suppose an equation is of the form $f(x) d x+F(y) d y=0$.
We can directly integrate this equation and the solution is $\int f(x) d x+\int F(y) d y=c$, where c is an arbitrary constant.

Problem: Solve $\frac{d y}{d x}+\left(\frac{1-y^{2}}{1-x^{2}}\right)^{\frac{1}{2}}=0$

Solution:

We have $\frac{d y}{\sqrt{1-y^{2}}}+\frac{d y}{\sqrt{1-x^{2}}}=0$.
Integrating, $\sin ^{-1} y+\sin ^{-1} x=c$.
Problem: Solve tany $\frac{d y}{d x}=\cot x$.
Solution: $\quad \tan y \frac{d y}{d x}=\cot x$
$\tan y d y=\cot x d x$
$\int \tan y d y=\int \cot x d x$
$\log \sec y=\log \sin x+\log c$
$\log \sec y-\log \sin x=\log c$

$$
\begin{gathered}
\log \left(\frac{\sec y}{\sin x}\right)=\log \mathrm{c} \\
\frac{\sec y}{\sin x}=\mathrm{c}
\end{gathered}
$$

Problem: Solve $\tan x \sec ^{2} y d y+\tan y \sec ^{2} x d x=0$

Solution:

$$
\begin{aligned}
& \tan x \sec ^{2} y d y=-\tan y \sec ^{2} x d x \\
& \frac{\sec ^{2} y}{\tan y} d y=\frac{\sec ^{2} x}{\tan x} d x \\
& \int \frac{\sec ^{2} y}{\tan y} d y=\int \frac{\sec ^{2} x}{\tan x} d x \\
& \text { put } \mathrm{t}=\tan \mathrm{y} \quad \text { put } \mathrm{u}=\tan \mathrm{x} \\
& \mathrm{dt}=\sec ^{2} \mathrm{y} \text { dy } \quad \text { du }=\sec ^{2} \mathrm{x}(-\mathrm{dx}) \\
& \log \mathrm{t}=-\log \mathrm{u}+\log \mathrm{c} \\
& \log \mathrm{t}+\log \mathrm{u}=\log \mathrm{c} \\
& \log (\mathrm{tu})=\log \mathrm{c} \\
& \operatorname{tu}=\mathrm{c} \\
& \tan \mathrm{y} \tan \mathrm{x}=\mathrm{c} .
\end{aligned}
$$

Problem: Solve sec $x d y+$ secy $d x=0$
Solution: \quad secx dy $=-\sec y d x$

$$
\begin{aligned}
& \frac{d y}{\sec y}=\frac{d x}{\sec x} \\
& \int \cos y d y=\int \cos x d x \\
& \sin y=-\sin \mathrm{x}+\mathrm{c} \\
& \sin \mathrm{x}+\sin \mathrm{y}=\mathrm{c}
\end{aligned}
$$

Linear Equation:

A differential equation is said to be linear when the dependent variable and its derivatives occur only in the first degree and no products of these occur.

The linear equation of the first order is of the form $\frac{d y}{d x}+P y=Q$, where P and Q are functions of x only.

Problem: Solve $\left(1+\mathrm{x}^{2}\right) \frac{d y}{d x}+2 \mathrm{xy}=4 \mathrm{x}^{2}$.

Solution:

Divided by $1+\mathrm{x}^{2}$

$$
\begin{aligned}
& \frac{\left(1+\mathrm{x}^{2}\right)}{\left(1+\mathrm{x}^{2}\right)} \frac{d y}{d x}+\frac{2 x y}{1+x^{2}}=\frac{4 x^{2}}{1+x^{2}} \\
& \frac{d y}{d x}+\frac{2 x y}{1+x^{2}}=\frac{4 x^{2}}{1+x^{2}}
\end{aligned}
$$

This is of the form $\frac{d y}{d x}+P y=Q$.

$$
\mathrm{P}=\frac{2 x}{1+x^{2}} \text { and } \mathrm{Q}=\frac{4 x^{2}}{1+x^{2}}
$$

The solution is $y e^{\int P d x}=\int Q e^{\int P d x} d x+c$

$$
\begin{aligned}
& y e^{\int \frac{2 x}{1+x^{2}} d x}=\int \frac{4 x^{2}}{1+x^{2}} e^{\int \frac{2 x}{1+x^{2}} d x} d x+c \quad \rightarrow(1) \\
& e^{\int P d x}=e^{\int \frac{2 x}{1+x^{2}} d x} \\
& \mathrm{dt}=2 \mathrm{x} \mathrm{dx} \\
& \begin{aligned}
e^{\int \frac{2 x}{1+x^{2}} d x} & =e^{\int \frac{d t}{t}} \\
= & \mathrm{e}^{\operatorname{logt}} \\
= & \mathrm{t}
\end{aligned}
\end{aligned}
$$

$e^{\int \frac{2 x}{1+x^{2}} d x}=1+\mathrm{x}^{2} . \quad \rightarrow(2)$
Using (2) in (1),
$y\left(1+x^{2}\right)=\int \frac{4 x^{2}}{1+x^{2}}\left(1+x^{2}\right) d x+c$
$\mathrm{y}\left(1+\mathrm{x}^{2}\right)=\int 4 x^{2} d x+c$
$y\left(1+x^{2}\right)=\frac{4 x^{3}}{3}+c$.
Problem: Solve $\frac{d y}{d x}+y \sec x=\tan \mathrm{x}$.

Solution:

This is of the form $\frac{d y}{d x}+P y=Q$.
The solution is $y e^{\int P d x}=\int Q e^{\int P d x} d x+c$

$$
P=\sec x \& Q=\tan x
$$

$$
y e^{\int \sec x d x}=\int \tan x e^{\int \sec x d x} d x+c \quad-->(1)
$$

Now $e^{\int \sec x d x}=e^{\log (\sec x+\tan x)}$ $=\sec x+\tan x$
(1) $\rightarrow \mathrm{y}(\sec \mathrm{x}+\tan \mathrm{x})=\int \tan x(\sec \mathrm{x}+\tan \mathrm{x}) d x+c$

$$
\begin{aligned}
& =\int \tan x \sec x d x+\int \tan ^{2} x d x+c \\
& =\sec x+\int\left(1-\sec ^{2} x\right) d x \\
& =\sec x+\int d x-\int \sec ^{2} x d x \\
& =\sec x+x-\tan x+c
\end{aligned}
$$

Problem: Solve $\frac{d y}{d x}-\tan x y=-2 \sin x$.

Solution:

This is of the form $\frac{d y}{d x}+P y=Q$.
The solution is $y e^{\int P d x}=\int Q e^{\int P d x} d x+c$

$$
\begin{aligned}
& \mathrm{P}=-\tan \mathrm{x} \& \mathrm{Q}=-2 \sin \mathrm{x} \\
& \begin{aligned}
& y e^{\int-\tan x d x}=\int-2 \sin x e^{\int-\tan x d x} d x+c \\
& \text { Now } e^{-\int \tan x d x}=e^{-\log \sec x} \\
&=-\sec x
\end{aligned} \\
& \begin{aligned}
&-\mathrm{y} \sec \mathrm{x}= \int-2 \sin x(-\sec x) d x+c \\
&= \int 2 \sin x \sec x d x+c \\
&= 2 \int \frac{\sin x}{\cos x} d x+c \\
&=2 \int \tan x d x+c
\end{aligned} \\
& \text { - y sec } \mathrm{x}=2 \log \sec \mathrm{x}+\mathrm{c}
\end{aligned}
$$

Problem: Solve $\cos ^{2} x \frac{d y}{d x}+y=\tan x$.

Solution:

Divided by $\cos ^{2} \mathrm{x}$.

$$
\frac{\cos ^{2} x}{\cos ^{2} x} \frac{d y}{d x}+\frac{y}{\cos ^{2} x}=\frac{\tan x}{\cos ^{2} x}
$$

$\frac{d y}{d x}+y \sec ^{2} x=\tan x \sec ^{2} x$
$P=\sec ^{2} x \& Q=\tan x \sec ^{2} x$
The solution is $y e^{\int P d x}=\int Q e^{\int P d x} d x+c$

ALGEBRA AND CALCULUS

$$
\begin{gathered}
y e^{\int \sec ^{2} x d x}=\int \tan x \sec ^{2} x \\
\text { Nowe } e^{\int \sec ^{2} x d x}=e^{\tan x} \\
y^{\tan x}=\int \tan x \sec ^{2} x e^{\tan x} d x+c \\
\text { put } \mathrm{t}=\operatorname{tanx} \\
\mathrm{dt}=\sec ^{2} \mathrm{x} d \mathrm{dx} \\
\mathrm{ye}^{\mathrm{t}}=\int t e^{t} d t+c \\
=\mathrm{t} \cdot \mathrm{e}^{\mathrm{t}}-\mathrm{e}^{\mathrm{t}} \\
=\mathrm{e}^{\mathrm{t}}(\mathrm{t}-1)+\mathrm{c} \\
\text { y e }^{\operatorname{tanx}}=\mathrm{e}^{\tan x}(\tan x-1)+\mathrm{c}
\end{gathered}
$$

Problem: Solve $\left(1+x^{2}\right) \frac{d y}{d x}+2 x y=\cos x$.

Solution:

Divided by $1+\mathrm{x}^{2}$

$$
\begin{aligned}
& \frac{\left(1+\mathrm{x}^{2}\right)}{\left(1+\mathrm{x}^{2}\right)} \frac{d y}{d x}+\frac{2 x y}{1+x^{2}}=\frac{\cos x}{1+x^{2}} \\
& \frac{d y}{d x}+\frac{2 x y}{1+x^{2}}=\frac{\cos x}{1+x^{2}}
\end{aligned}
$$

This is of the form $\frac{d y}{d x}+P y=Q$.

$$
\mathrm{P}=\frac{2 x}{1+x^{2}} \text { and } \mathrm{Q}=\frac{\cos x}{1+x^{2}}
$$

The solution is $y e^{\int P d x}=\int Q e^{\int P d x} d x+c$

$$
y e^{\int \frac{2 x}{1+x^{2}} d x}=\int \frac{\cos x}{1+x^{2}} e^{\int \frac{2 x}{1+x^{2}} d x} d x+c \quad \rightarrow(1)
$$

$$
e^{\int P d x}=e^{\int \frac{2 x}{1+x^{2}} d x}
$$

put $\mathrm{t}=1+\mathrm{x}^{2}$

$$
\begin{aligned}
\mathrm{dt}= & 2 \mathrm{x} \mathrm{dx} \\
e^{\int \frac{2 x}{1+x^{2}} d x} & =e^{\int \frac{d t}{t}} \\
& =\mathrm{e}^{\log \mathrm{t}} \\
& =\mathrm{t}
\end{aligned}
$$

$e^{\int \frac{2 x}{1+x^{2}} d x}=1+\mathrm{x}^{2}$.
Using (2) in (1),
$\mathrm{y}\left(1+\mathrm{x}^{2}\right)=\int \frac{\cos x}{1+x^{2}}\left(1+x^{2}\right) d x+c$
$\mathrm{y}\left(1+\mathrm{x}^{2}\right)=\int \cos x d x+c$
$y\left(1+x^{2}\right)=\sin x+c$.

LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS

Problem: Solve $\left(D^{2}+5 D+6\right) y=e^{x}$.

Solution:

To find the C.F. solve $\left(D^{2}+5 D+6\right) y=0$.
The auxiliary equation is $\mathrm{m}^{2}+5 \mathrm{~m}+6=0$.
Solving, $m=-2$ and -3 .

$$
\begin{aligned}
\text { C.F. } & =A \mathrm{e}^{-2 \mathrm{x}}+{\mathrm{B} \mathrm{e}^{-3 \mathrm{x}}}_{\text {P.I. }}=\frac{1}{D^{2}+5 D+6} e^{x} \\
& =\frac{1}{12} \mathrm{e}^{\mathrm{x}} \text { on replacing } \mathrm{D} \text { by } 1 . \\
\mathrm{y} & =A \mathrm{e}^{-2 \mathrm{x}}+\mathrm{Be}^{-3 \mathrm{x}}+\frac{1}{12} \mathrm{e}^{\mathrm{x}}
\end{aligned}
$$

Problem: Solve $\left(D^{2}-2 m D+m^{2}\right) y=e^{m x}$.

Solution:

To find the C.F. solve $\left(D^{2}-2 m D+m^{2}\right) y=0$.
The auxiliary equation is $\mathrm{k}^{2}-2 \mathrm{mk}+\mathrm{m}^{2}=0$.
i.e., $(\mathrm{k}-\mathrm{m})^{2}=0 \quad, \therefore \mathrm{k}=\mathrm{m}$ twice.
C.F. $=e^{m x}(A+B x)$.
P.I. $=\frac{1}{(\mathrm{k}-\mathrm{m})^{2}} e^{m x}$

$$
=\frac{x^{2}}{2} e^{m x}
$$

$$
\therefore \quad \mathrm{y}=\mathrm{e}^{\mathrm{mx}}\left(\mathrm{~A}+\mathrm{Bx}+\frac{x^{2}}{2}\right)
$$

Problem: Solve $\left(D^{2}-3 D+2\right) y=\sin 3 x$.

Solution:

To find the C.F. solve $\left(D^{2}+5 D+6\right) y=0$.
The auxiliary equation is $m^{2}-3 m+2=0$.
Solving, $\mathrm{m}=2$ and 1 .
C.F. $=\mathrm{Ae}^{2 \mathrm{x}}+\mathrm{Be}^{\mathrm{x}}$.
P.I. $=\frac{\sin 3 x}{D^{2}-3 D+2}$

$$
=\frac{\sin 3 x}{-9-3 D+2}, \text { put } D^{2}=-a^{2}=-9
$$

$$
=\frac{\sin 3 x}{-7-3 D} \times \frac{7-3 D}{7-3 D}
$$

$$
=\frac{7 \sin 3 x-3 D(\sin 3 x)}{-49+9 D^{2}}
$$

$$
=\frac{7 \sin 3 x-3(3 \cos 3 x)}{-49+9(-9)}
$$

$$
\begin{aligned}
& =\frac{7 \sin 3 x-9 \cos 3 x}{-49-81} \\
& =\frac{7 \sin 3 x-9 \cos 3 x}{-130}
\end{aligned}
$$

$$
=-\left[\frac{7 \sin 3 x-9 \cos 3 x}{130}\right]
$$

$$
\begin{aligned}
\mathrm{y} & =\text { C.F. }+ \text { P.I. } \\
& =\mathrm{Ae}^{2 \mathrm{x}}+\mathrm{Be}^{\mathrm{x}}-\left[\frac{7 \sin 3 x-9 \cos 3 x}{130}\right]
\end{aligned}
$$

Problem: Solve $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+3 y=5 x^{2}$.
Solution:

$$
\left(D^{2}+2 D+3\right) y=5 x^{2}
$$

To find the C.F. solve $\left(D^{2}+2 D+3\right) y=0$.
The auxiliary equation is $\mathrm{m}^{2}+2 \mathrm{~m}+3=0$.

$$
\begin{aligned}
\mathrm{m} & =\frac{-2 \pm \sqrt{2^{2}-4.1 \cdot 3}}{2.1} \\
& =\frac{-2 \pm \sqrt{4-12}}{2} \\
& =\frac{-2 \pm \sqrt{-8}}{2} \\
& =\frac{-2 \pm 2 i \sqrt{2}}{2} \\
& =-1 \pm i \sqrt{2}
\end{aligned}
$$

$$
\alpha=-1, \beta=\sqrt{2}
$$

C.F. $=\mathrm{e}^{-\mathrm{x}}(\mathrm{A} \cos \sqrt{2} \mathrm{x}+\mathrm{B} \sin \sqrt{2} \mathrm{x})$
P.I. $=\frac{5 x^{2}}{D^{2}+2 D+3}$

$$
\begin{aligned}
& =\frac{5 x^{2}}{3+2 D+D^{2}} \\
& =\frac{5 x^{2}}{3\left[1+\frac{2 D+D^{2}}{3}\right]} \\
& =\frac{5}{3}\left[1+\frac{2 D+D^{2}}{3}\right]^{-1} x^{2} \\
& =\frac{5}{3}\left[1-\left(\frac{2 D+D^{2}}{3}\right)+\left(\frac{2 D+D^{2}}{3}\right)^{2}-\ldots \ldots \ldots .\right] x^{2} \\
& =\frac{5}{3}\left[1-\left(\frac{2 D+D^{2}}{3}\right)+\left(\frac{4 D^{2}+4 D^{3}+D^{4}}{9}\right)-\ldots \ldots \ldots \cdot\right] x^{2} \\
& =\frac{5}{3}\left[1-\left(\frac{2 D+D^{2}}{3}\right)+\left(\frac{4 D^{2}}{9}\right)\right] x^{2} \quad \text { (Neglecting Higher Powers) } \\
& =\frac{5}{3}\left[x^{2}-\left(\frac{2 D\left(x^{2}\right)+D^{2}\left(x^{2}\right)}{3}\right)+\left(\frac{4 D^{2}\left(x^{2}\right)}{9}\right)\right] \\
& =\frac{5}{3}\left[x^{2}-\left(\frac{2(2 x)+2}{3}\right)+\left(\frac{4(2)}{9}\right)\right] \\
& =\frac{5}{3}\left[x^{2}-\left(\frac{4 x+2}{3}\right)+\left(\frac{8}{9}\right)\right] \\
& =\frac{5}{3}\left[x^{2}-\frac{4 x}{3}-\frac{2}{3}+\frac{8}{9}\right] \\
& =\frac{5}{3}\left[x^{2}-\frac{4 x}{3}+\frac{2}{9}\right] \\
& \mathrm{y}=\mathrm{C} . \mathrm{F} .+ \text { P.I. } \\
& =\mathrm{e}^{-\mathrm{x}}(A \cos \sqrt{2} x+B \sin \sqrt{2} x)+\frac{5}{3}\left[x^{2}-\frac{4 x}{3}+\frac{2}{9}\right] .
\end{aligned}
$$

Problem: Solve $\left(D^{2}+4\right) y=e^{2 x} \sin 2 x$.

Solution:

The auxiliary equation $\mathrm{m}^{2}+4=0$.

$$
\begin{aligned}
& \mathrm{m}^{2}=-4 \\
& \mathrm{~m}=\sqrt{-4} \\
& \mathrm{~m}= \pm 2 \mathrm{i} .
\end{aligned}
$$

C.F. $=e^{0 x}(A \cos 2 x+B \sin 2 x)$

$$
=A \cos 2 x+B \sin 2 x
$$

$$
\text { P.I. }=\frac{e^{2 x} \sin 2 x}{D^{2}+4}
$$

$$
=\frac{e^{2 x} \sin 2 x}{0+2 y+4} \text {, replace } \mathrm{D} \text { by D+2 }
$$

$$
=\frac{e^{2 x} \sin 2 x}{D^{2}+4 D+8}
$$

$$
=\frac{e^{2 x} \sin 2 x}{-4+4 D+8} \quad, \quad \text { replace } \mathrm{D}^{2} \text { by }-4
$$

$$
=\frac{e^{2 x} \sin 2 x}{4 D+4} \times \frac{4 D-4}{4 D-4}
$$

$$
=\frac{e^{2 x}[4 D(\sin 2 x)-4 \sin 2 x]}{16 D^{2}-16}=\frac{e^{2 x}[4 D(\sin 2 x)-4 \sin 2 x]}{16(-4)-16}
$$

$$
=\frac{4 e^{2 x}[2 \cos 2 x-\sin 2 x]}{-80}
$$

$$
\mathrm{y}=\mathrm{C} . \mathrm{F} .+ \text { P.I. }
$$

$$
=\mathrm{A} \cos 2 \mathrm{x}+\mathrm{B} \sin 2 \mathrm{x}-\frac{4 e^{2 x}[2 \cos 2 x-\sin 2 x]}{80}
$$

