B.Sc. Semester-II Core Course-III (CC-III)
Organic Chemistry-I
Aromatic Hydrocarbons
Dr. Rajeev Ranjan
University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi

Aromaticity

H

Conjugation: Series of overlapping p-orbitals
Aromaticity: Cyclic conjugated organic compounds such as benzene, that exhibit special stability due to resonance delocalization of π-electrons.

2. Naming aromatic compounds: (arenes)

Large number on non-systematic names:

benzene

phenol

anisole

anilin e styrene

Generally, mono-substituted benzenes are named in a similar manner as hydrocarbons with -benzene as the parent name
Br

ethylbenzene

toluene

bromobenzene

(1-methyl ethyl)benzene (isopropylbenzene)
NO_{2}

nitrobenzene

When the benzene ring is a substituent of a parent chain, referred to as a phenyl group. The benzene ring is is regarded as a substituent when the parent chain has greater than six carbons. The benzene ring is the parent when the longest alkyl chain substituent is six carbons or less

2
m
e
group (Bn-) ${ }^{t}$

Benzenes with two or more substituents:

Choose numbers to get lowest possible values
List substituents alphabetically with hyphenated numbers

4-Bromo-1,2-dimethylbenzene
© Thomson- Brooks Cole

2-Chloro-1,4-dinitrobenzene

2,4,6-Trinitrotoluene (TNT)

Common names, such as "toluene" can serve as root name (as in TNT)

2,6-Dibromophenol

m-Chlorobenzoic acid

3. Structure and Stability of Benzene

Formula: $\mathrm{C}_{6} \mathrm{H}_{6}$, four degrees of unsaturation (section 6.2)
three double bonds + one ring

The π-bonds of benzene are resistant to the normal reactions of alkenes and alkynes

Benzene's cyclic conjugated structure gives it special stabi 1_{1} ity

Benzene undergoes electrophilic substitution reactions
(chapter 16) rather than electrophilic addition

Stability of Benzene: Heats of Hydrogenations

$+\mathrm{H}_{2}$
 $+118 \mathrm{KJ} / \mathrm{mol}$

$+230 \mathrm{KJ} / \mathrm{mol}$
calc'd value $=336 \mathrm{KJ} / \mathrm{mol}$ $6 \mathrm{KJ} /$ mol added stabilit ty

$+3 \mathrm{H}_{2}$

$+206 \mathrm{KJ} / \mathrm{mol}$ calc'd value $=354 \mathrm{KJ} / \mathrm{mol}$
$148 \mathrm{KJ} / \mathrm{mol}$ added stability

Structure of Benzene:

Kekule benzene: two forms are in rapid equilibrium

- All bonds are $\sim 139 \mathrm{pm}$ (intermediate between $\mathrm{C}-\mathrm{C}$ and $\mathrm{C}=\mathrm{C}$)
- Electron density is distributed evenly between the six carbons
- Structure is planar, hexagonal
- $\mathrm{C}-\mathrm{C}-\mathrm{C}$ bond angles are 120°
- Each carbon is $s p^{2}$ and has a p orbital perpendicular to the plane of the six-membered ring

Arrows in organic chemistry

$\longrightarrow \quad$| Reaction arrow |
| :--- |
| \longleftrightarrowResonance
 Ralibrium arrow
 arrow |

Mechanism arrows

Double-headed arrow

Single-headed arrow

Drawing and Interpreting Resonance Forms

1. No one resonance forms accurately depicts the structure of the molecule.

The real structure is a composite or hybrid of all resonance forms
2. Resonance forms differ only by the placement of π - or non-bonding electrons. Neither the position or hybridization of the atoms changes.
3. Resonance forms are not necessarily equivalent. While all resonance forms contribute to the actual structure (resonance hybrid), some forms may contribute more.
4. All resonance forms must be proper Lewis structures.
5. The actual resonance hybrid is more stable than any single resonance form.
6. In general, the greater the number of resonance forms, the more stable the resonance hybrid.

4. Molecular orbitals of benzenes:

Degenerate orbitals: orbitals

 that have the same energyΨ_{1} : zero nodes
Ψ_{2} and Ψ_{3} : one node
Ψ_{4} and Ψ_{5} : two nodes
Ψ_{6} : three node

Bonding

Anti-bonding

5. Aromaticity and the Hückel $4 n+2$ Rule

Cyclic conjugated molecules: not all cyclic conjugated systems are aromatic (no special stability)

Cyclobutadiene: highly reactive
two different C-C bonds

Cyclooctatetraene: reactivity similar to normal $\mathrm{C}=\mathrm{C}$
Exists in a boat-like conformation: little overlap between double bonds

Aromatic:

Cyclic
Conjugated: "alternating single and double bonds"
Flat: maximum overlap between conjugated π-bonds Must contain $4 n+2 \pi$-electrons, where n is an integer
(Hückel's rule)

Anti-aromatic:

cyclic, conjugated, flat molecules that contain $4 n \pi$-electrons (where n is an integer).
Destabilized (highly reactive) relative to the corresponding open-chain conjugated system

6. Frost Circles: relative energies of the molecular

 orbitals of cyclic, conjugated systemsInscribe the cyclic, conjugated molecule into a circle so that a vertex is at the bottom. The relative energies of the MO's are where the ring atoms intersect the circle
benzene:

cyclobutadiene:

Cyclobutadiene 4 !-electrons

For anti- aromatic compounds, such as cyclobutadiene, there will be unpaired electrons in bonding, non-bonding or antibonding MO's.

7. Aromatic ions

8. Aromatic Heterocycles

Heterocycle: any cyclic compound that contains ring atom(s) other than carbon ($\mathrm{N}, \mathrm{O}, \mathrm{S}, \mathrm{P}$)

Cyclic compounds that contain only carbon are called carbocycles
Heterocyclic aromatic compounds are numerous, common and a very important class of organic compounds
Nomenclature for heterocyclic compounds is specialized

Pyridine

π-electron structure resembles benzene (6π-electrons) The nitrogen lone pair electrons are not part of the aromatic system (perpendicular orbital)

Six π electrons

Pyrrole:

6π-electron system similar to that of cyclopentadienyl anion
Four sp2-hybridized carbons with $4 p$ orbitals perpendicular to the ring and $4 p$ electrons
lone pair of electrons in an sp^{2} orbital; part of the aromatic sextet

Six π electrons
Pyrrole is much less basic than pyridine. Why?
9. Polycyclic aromatic hydrocarbons (PAH's):

Polycyclic heterocycles

10. Polycyclic aromatic hydrocarbons

Aromatic compounds can have rings that share a set of carbon atoms (fused rings)
Compounds from fused benzene or aromatic heterocyclic rings are themselves aromatic

Naphthalene: $4 n+2=10, n=2$ note: Hückels rule is strictly for monocyclic aromatic compound, its application to polycyclic aromatic compounds is tenuous.

11. Ring Current:

Aromatic ring oriented perpendicular to a strong magnetic field, delocalized π electrons producing a small local magnetic field

Opposes applied field in middle of ring but reinforces
applied field outside of ring
Results in outside H's resonance at lower

Aryl protons, 6.5-8.0 δ

g2004 Thomson - Brooks/Cole

[18]Annulene
Inside $\mathrm{H}:-3.08$
Outside H: 9.3δ

H

Thank You

Dr. Rajeev Ranjan
University Department of Chemistry
Dr. Shyama Prasad Mukherjee University, Ranchi

