B.Tech (Mechanical Engineering) Laboratory Mapping with Virtual Laboratory as available in the Web Page (<u>http://www.vlab.co.in/broad-area-mechanical-engineering</u>) for the New Syllabus effective from 2018

Semes	Paper	Name of	Name of Lab/ Experiment	Mapped	Name of Experiment	Offering	Remarks
ter	Code	Paper		Virtual Lab		Institute	
I	ES-	Workshop/	Workshop Practice:	NIL	NIL	NIL	Till now not
	ME192	Manufacturin	1. Machine shop (10 hours)				recommended
		g Practices	2. Fitting shop (8 hours)				
			3. Carpentry (6 hours)				
			4. Electrical & Electronics (8				
			hours)				
			5. Welding shop (8 hours (Arc				
			welding 4 hrs + gas welding				
			4 hrs)				
			6. Casting (8 hours)				
			7. Smithy (6 hours)				
			8. Plastic moulding & Glass				
			Cutting (6 hours)				
п	ES-	Engineering	1. Introduction to engineering	NIL	NIL	NIL	Till now not
	ME291	Graphics &	design and its place in				recommended
		Design	society				
			2. Exposure to the visual				
			aspects of engineering				
			design				
			3. Exposure to engineering				
			graphics standards				
			4. Exposure to solid modelling				
			5. Exposure to computer-aided				
			6 Exposure to creating				
			o. Exposure to creating				
			7 Exposure to engineering				
			7. Exposure to engineering				
TIT	PC	Practice of	1 Machina Shop: Tapar	NII	NII	NII	Till now not
111	тс- мf301	Manufacturin	turning drilling boring	INIL	NIL	INIL	recommended
	WIE571	g Processes	shaping and milling				recommended
		5110003505	operations- 3 modules				
			2 Pattern Making: 1 or 2				
			wooden patterns to make- 2				
			modules				
			3. Moulding: 1 module				
			4. Smithy Shop: 1 module				
			5. Welding Shop: Practicing				
			SMAW, Gas Welding				
			and/or GMAW- 2 modules				
			6. Fitting Shop: 2 modules				
			7. Sheet Metal Shop: 1				
			module				

Semes	Paper	Name of	Name of Lab/ Experiment	Mapped	Name of Experiment	Offering	Remarks
ter	Code	Paper	-	Virtual Lab	-	Institute	
IV	PC-	Practice of	1. Laboratory modules of	NIL	NIL	NIL	This paper is
	ME491	Manufacturin	pneumatics and/or electro-				having few
		g Processes	pneumatics				practising
		and Systems	2. Laboratory modules of				(S.No.1-3, 5-
			hydraulics and/or electro-				10,12) and few
			hydraulics				simulationmod
			3. Study of working of Logic				ules (S.No.4,
			Gates practically				11).
			4. Simulation of designed				
			pneumatics / hydraulics				No Virtual Lab
			systems				tacility is found
			5. Measurement of surface				in these
			roughness				modules.
			6. Measurement of tapered				
			objects using Sine Bar and				
			7 Massurament of threads				
			using three wire method				
			8 Measurement of gears				
			9 Measurement of bore				
			diameter using micrometer				
			and gauges				
			10. Measurement of angles				
			using bevel vernier				
			protractor				
			11. Statistical process				
			control system to apply				
			to measured dimension				
			of samples				
			12. Practicing different				
			gauges to assess angles,				
			thread, internal and				
			external radius, etc.				
IV	PC-	Machine	about 10 assignments with	NIL	NIL	NIL	Till now not
	ME492	Drawing	the focus given as outlined				recommended
			below:				
			1. Projection and Isometric Drawing of Machine				
			components Assembly				
			and detailing				
			2 There should be on-				
			drawing board				
			assignments and				
			assignments to make using				
			a graphic software				
			3. Development of surface to				
			make in 1 or 2				
			assignments				

Semes	Paper	Name of	Name of Lab/ Experiment	Mapped	Name of Experiment	Offering	Remarks
ter	Code	Paper	-	Virtual Lab	•	Institute	
V	PC-	Mechanical	1. Measurement of	Rotating	Cavitation of	IIT	S.No.3 is
	ME591	Engineering	coefficient of discharge of	Machinery	Centrifugal Pump	Kharagpur	having a
		Laboratory	given Orifice and Venturi	Fault			somewhat
		(Thermal) I	meters	Simulation			related Virtual
			2. Determination of the				Lab in Fluid
			density & viscosity of an				Mechanics and
			oil and friction factor of				Machinery
			oil flow in a pipe				area.
			3. Determination of the				
			performance				
			characteristics of a	Domoto	1 DV Diagram of a	IJТ	In themes lance
			centrifugal pump	Triggered	1. PV Diagram of a	II I Vhorogrum	in thermal area,
			4. Determination of the	Virtual Lab	2 Torque Crenk	Kharagpui	based Virtual
			performance	viituai Lab	2. Torque Crank		Labs are there
			Wheel	Automotive	SI Engine		Laus are more.
			5 Determination of the	Systems	3 Load Test on a SL		
			performance	Bysteins	Engine		
			characteristics of a Francis		4. Mechanical		
			Turbine		Efficiency of a SI		
			6. Determination of the		Engine		
			performance		5. Determination of		
			characteristics of a Kaplan		Cylinder Mean		
			Turbine		Effective Pressure		
			7. Determination of the				
			thermal conductivity and				
			specific heat of given				
			objects				
			8. Determination of the				
			calorific value of a given				
			fuel and its flash & fire				
			points				
			9. Determination of the p-V				
			diagram and the				
			diagol anging				
			10 Determination of the				
			10. Determination of the				
			coefficient for flow over				
			a heated plate				
			11 Determination of the				
			emissivity of a given				
			sample				
			12. Determination of the				
			performance				
			characteristics of a				
			vapour compression				
			system				

Semes	Paper	Name of	Name of Lab/ Experiment	Mapped	Name of Experiment	Offering	Remarks
ter	Code	Paper		Virtual Lab		Institute	
V	PC-	Machine	About 10 assignments to do	NIL	NIL	NIL	Till now not
	ME592	Drawing	as under:				recommended
			UNIT - I Projection and				
			Isometric Drawing of				
			Machine components				
			1. Fasteners: Drawings of				
			various views of Screw				
			threads, metric and BSW				
			threads, Square thread and				
			multi start threads. Nut				
			bolts, Washers, Setscrew,				
			Locknuts and foundation				
			bolts. Riveted joints:				
			Forms and proportions of				
			river heads, Different				
			views of different types of				
			riveted Lap and Butt				
			joints.				
			2. Drawings of various				
			views of Shaft joints:				
			Cotter joint and Knuckle				
			joint. Keys & Shaft				
			coupling: Muff, Flanged,				
			Flexible, Universal and				
			Oldhams coupling.				
			UNIT - II Assignments				
			using graphic software				
			1. Assembly and detailed				
			drawings: Tool head of a				
			shaping machine; Engine				
			parts: Eccentric, Piston,				
			Cross head and				
			Connecting rod; Valves:				
			Steam stop valve, Anyone				
			of safety, relief and non-				
			return valves; Solid				
			modeling of Plummer				
			block				

Semes	Paper	Name of		Name of Lab/ Experiment	Mapped	Name of Experiment	Offering	Remarks
ter	Code	Paper		_	Virtual Lab	_	Institute	
VI	PC-	Mechanical	1.	Uniaxial tension test on	Nil for	Nil	Nil	No V.L.
	ME691	Engineering		mild steel rod	S.No. 1-8,			for S.
		Laboratory	2.	Torsion test on mild steel	14.			No.1-
		(Design) II		rod				8,14.
			3.	Impact test on a metallic	Mechanisms	1. Oldham Coupling	IIT	S.No.1,2
				specimen	and	Mechanism	Kharagpur	of V.L.
			4.	Brinnell/ Vickers and	Robotics	2. A quick return	01	can be
				Rockwell hardness tests on	Lab	mechanism		against
				metallic specimens		3. CAM follower		S.No.10,
			5.	Bending deflection test on		mechanism		& S.N.3
				beams				of V.L.
			6.	Strain measurement using				can be of
				Rosette strain gauge, or				S.No. 11.
				like.	Dynamics	1. Proell Governer	NIT	S.No. 1-
			7.	Microscopic examination of	of Machine	2. Porter Governer	Karnataka	5, 8,9 of
				heat-treated and untreated	Lab	3. Hartnell Governer		V.L. can
				metallic samples		4. Dynamics analysis of		be
			8.	Determination of velocity		slider crank mechanism		additional
				ratios of simple, compound,		5. Dynamics analysis of		expts.
				epicyclic and differential		Four bar mechanism		Under
				gear trains		6. Balancing of multiple		this Lab.
			9.	Studying kinematics of		mass in single plane		
				four bar, slider crank,		7. Balancing of Multiple		S.No. 6-7
				crank rocker, double		Mass in Multiple Plane		of V.L.
				crank, double rocker and		8. Disc Type Flywheel		can be of
				oscillating cylinder		9. Rim Type Flywheel		S.No. 15.
				mechanisms	Vibration	1. Forced response of	COE	S.No. 1,2
			10	. Studying kinematics of	and	SDOF	Pune	of V.L.
				typical mechanisms like	Acoustics	2. Free response of SDOF		can be of
				pantograph, some straight	Lab	I I		S.No. 12.
				line motion mechanisms,				
				wiper, drafter, etc.	Rotating	Static Balancing Studies	IIT	This one
			11	. Motion studies of different	Machinery	of Rotary Systems	Kharagpur	of V.L.
				cams & followers	Fault			can be of
			12	.Single degree of freedom	Simulation			S.No. 15.
				Spring-mass-damper	Mechanics	1. Position analysis of		S.No. 1-
				system: determination of	of Machine	Grashof four bar	Karnataka	10 01
				natural frequency and	lab	mechanism		V.L. can
				damping coefficient		2. Velocity analysis of		be of
			13	. Determination of torsional		Grashof four bar		S.No. 9.
				natural frequency of		mechanism		ON 11
				single and double rotor		3. Acceleration analysis of		S.NO. 11-
				systems- undamped and		Grashof four bar		16, 19-24
				damped natural frequencies		mechanism 4 Decidional circle		01 V.L.
			14	. Studying machine vibration		4. Position analysis of		can be of S N = 10
				using sensor		NonGrasnoi Iour bar		5.INO. 10.
			15	. Solving simple balancing		mechanism		C N. 17
				problems experimentally		5. Velocity analysis of		S.No. 17,
						NonGrashot four bar		18 of
						mecnanism		v.L. can
						o. Acceleration analysis of		De of
						monorasnoi iour bar		S.INO. 11.
						mecnanism		

			7	۱ ۱	I
			/. Position analysis of		
			Slider crank mechanism		
			8. Velocity analysis of		
			Slider crank mechanism		
			9. Acceleration analysis of		
			Slider crank mechanism		
			10. Position analysis of		
			Slider crank		
			mechanism with		
			Offset		
			11 Position analysis of		
			Scotch Voke		
			Machanism		
			12 Valacity analysis of		
			12. Velocity analysis of		
			Scotch Yoke		
			Mechanism		
			13. Acceleration analysis		
			of Scotch Yoke		
			Mechanism		
			14. Position analysis of		
			Elliptical Trammel		
			15. Hart Straight Line		
			Mechanism		
			16. Peaucellier Straight		
			Line Mechanism		
			17. Elliptical Cam		
			Mechanism		
			18. Eccentric Cam		
			Mechanism		
			19. Klann Mechanism		
			20. Jansen Linkage Model		
			21. Tchebichev Straight		
			Line Mechanism		
			22. Whitworth		
			Mechanism		
			23 Crank and Slotted		
			Mechanism		
			24 Universal Joint		
		Machina	1 Free vibration of	NIT	S No. 1.4
		Dynamias	1. Free vibration of	INII Kornotoko	5.1NO. 1-4,
		Dynamics	2 Ence with notion of simply	Nainataka	5,701 v.L.
		anu Mashaniaal	2. Free vibration of simply		can be of
		Mechanical	supported beam		S.NO.
		Vibrations	3. Free vibration of fixed		12,13 and
			beam		additional
			4. Forced vibration of	ľ	expts.
			SDOF system	ſ	S.N. 5 of
			5. Rotating Unbalance	ľ	V.L. can
			6. 2DOF Forced vibration	ſ	pe of S.No.
			7. Dynamic Vibration	ſ	15.
			Absorber		1

Semest	Paper	Name of	Τ	Name of Lab/ Experiment	Mapped	Name of Experiment	Offering	Remarks
er	Code	Paper			Virtual Lab		Institute	
VII	РС- МЕ791	Mechanical Engineering Laboratory III	1. 2.	 Measurement of Cutting Force in Turning Study of the effect of parametric variation in arc welding 	Nil for S.No. 1-4, 6-9, 12,13.	Nil	Nil	No V.L. for S.No. 1-4, 6- 9, 12,13
		ng)	3, 4, 5, 6, 7	 Testing of moulding sand Testing for Weld Quality Study of and Solving problems on geometry of robot manipulator, actuators and grippers Programming on CNC Lathe using G and M Codes Programming on CNC Lathe using APT 	FAB laboratory	 Computer Controlled Cutting of wooden object 3D Machining 3D scanning Molding and Casting of Polyurethane parts. Digital Fabrication and Project Development 	COE Pune	S.No.1-2 of V.L. are of S.No. 10. S.No. 3-5 of V.L. can be additional expts. Under this lab.
			8 9 1 1 1 1 1	 Programming on CNC Milling Machine using G and M Codes Programming on CNC Milling Machine using APT Programming on CNC machine Simulator and to observe virtual machining Robot Programming Experiments on AJM/ USM/ WEDM/ EDM/ ECM/ LBM Design and manufacture of products using Additive Manufacturing 	Mechanism s and Robotics Lab	 Movemaster Forward Kinematics of PUMA 560 Inverse Kinematics of PUMA 560 	IIT Kharagpur	These of Virtual Lab are of S.No. 5,11.