
3CG 2006 1 / 1

B4 Computational Geometry

David Murray

david.murray@eng.ox.ac.uk
www.robots.ox.ac.uk/∼dwm/Courses/3CG

Michaelmas 2006

3CG 2006 2 / 1

Overview

Computational geometry is concerned with
the derivation of techniques
the design of efficient algorithms and
the construction of effective representations

for geometric computation.

Techniques from computational geometry are used in:
Computer Graphics
Computer Aided Design
Computer Vision
Robotics

3CG 2006 3 / 1

Topics

Lecture 1: Euclidean, similarity, affine and projective
transformations. Homogeneous coordinates and matrices.
Coordinate frames. Perspective projection and its matrix
representation.

Lecture 2: Perspective projection and its matrix representation.
Vanishing points. Applications of projective transformations.

Lecture 3: Convexity of point-sets, convex hull and algorithms.
Conics and quadrics, implicit and parametric forms, computation
of intersections.

Lecture 4: Bezier curves, B-splines. Tensor-product surfaces.

3CG 2006 4 / 1

Useful Texts
Bartels, Beatty and Barsky, “An introduction to splines for use in computer
graphics and geometric modeling”, Morgan Kaufmann, 1987. Everything you
could want to know about splines.

Faux and Pratt, “Computational geometry for design and manufacture”, Ellis
Horwood, 1979. Good on curves and transformations.

Farin, “Curves and Surfaces for Computer-Aided Geometric Design : A
Practical Guide”, Academic Press, 1996.

Foley, van Dam, Feiner and Hughes, “Computer graphics - principles and
practice”, Addison Wesley, second edition, 1995. The computer graphics
book. Covers curves and surfaces well.

Hartley and Zisserman “Multiple View Geometry in Computer Vision”, CUP,
2000. Chapter 1 is a good introduction to projective geometry.

O’Rourke, “Computational geometry in C”, CUP, 1998. Very straightforward
to read, many examples. Highly recommended.

Preparata and Shamos, “Computational geometry, an introduction”,
Springer-Verlag, 1985. Very formal and complete for particular algorithms.

3CG 2006 5 / 1

Example I: Virtual Reality Models from Images

Input: Four overlapping aerial images of the same urban scene

Objective: Texture mapped 3D models of buildings

3CG 2006 6 / 1

Example II: Video Mosaicing

3CG 2006 7 / 1

Example II: Video Mosaicing

3CG 2006 8 / 1

Example II: Video Mosaicing

3CG 2006 9 / 1

Lecture 1.

Lecture 1:

Transformations, Homogeneous Coordinates, and Coordinate
Frames

Euclidean, similarity, affine and projective transformations.

Homogeneous coordinates and matrices.

Coordinate frames.

3CG 2006 10 / 1

Hierarchy of transformations

We will look at linear transformations represented by matrices
of increasing generality:

Euclidean→
Similarity→

Affine→
Projective

We consider both
2D → 2D mappings (“plane to plane” mappings); and
3D → 3D transformations

3CG 2006 11 / 1

Class I: Euclidean transformations: translation &
rotation

1. Translation — 2 dof in 2D(
x ′

y ′

)
=

(
x
y

)
+

(
tx
ty

)
O

t

t

x

y

2. Rotation — 1 dof in 2D(
x ′

y ′

)
=

[
cos θ − sin θ
sin θ cos θ

](
x
y

)

O

θ

θ

x

y

In vector notation, a Euclidean transformation is written

x′ = Rx + t

R is the orthogonal rotation matrix, RR> = I , and x′ etc are column
vectors.

3CG 2006 12 / 1

Build transformations in steps ...

Often useful to introduce intermediate coordinate frames. For
example:

Object model described
in body-centered frame
B
Pose (θ, t) of model
frame given w.r.t. world
frame W
Where is xB in W?

B
y

B
x

Model B
y

B
x

x

y

W

W

x

y
A

A

θ
t

In an “aligned” frame xA =

(
cos θ − sin θ
sin θ cos θ

)
xB.

Check using the point (1,0). It should be (+ cos θ,+ sin θ) in the
A frame.
Then xW = xA + tOrigin of B in W.
Check the above using the origin of A. It should be tOBW in W
frame ...

3CG 2006 13 / 1

In 3D ...

In 3D the transformation X′ = R3×3X + T has 6 dof. Two major ways
of representing 3 rotation

rotation about successive new axes: eg ZYX Euler angles
rotation about “old fixed axes”: eg ZXY roll-pitch-yaw

In each case the order is important, as rotations do not commute.

XW =

 cos p − sin p 0
sin p cos p 0

0 0 1

X1

X1 =

 cos e 0 − sin e
0 1 0

sin e 0 cos e

X2

X2 =

 1 0 0
0 cos c − sin c
0 sin c cos c

XB

e c

p x

y

W

1

y
1 W x

p

z

x

x

z

1

2

12

e

z
B

y
B

2

2
z

y
c

3CG 2006 14 / 1

Rotation about “old fixed axes”: eg ZXY roll-pitch-yaw

X

Z

Y

X

Z

Y

Start Roll about ORIG Z

X

Z

Y

X

Z

Y

Pitch about orig X Yaw about orig Y

3CG 2006 15 / 1

Class II: Similarity transformations

A Euclidean transformation is an isometry — an action that
preserves lengths and angles.
Apply an isotropic scaling s to an isometry isotropic scaling and
you’ll arrive at a similarity transformation.
A similarity had 4 degrees of freedom in 2D

x′ = sRx + t

A similarity preserves
• ratios of lengths
• ratios of areas, and
• angles.
It is the most general
transformation that
preserves “shape”.

3CG 2006 16 / 1

Class III: Affine transformations

An affine transformation (6 degrees of freedom in 2D)
— is a non-singular linear transformation followed by a
translation:

(
x ′

y ′

)
=

 A

(x
y

)
+

(
tx
ty

)
with A a 2× 2 non-singular matrix.
In vector form:

x′ = Ax + t

Angles and length ratios are not preserved.
How many points required to determine an affine transform in
2D?

3CG 2006 17 / 1

Examples of affine transformations

1 Both the previous classes: Euclidean, similarity.
2 Scalings in the x and y directions

A =

[
µ1 0
0 µ2

]

This is non-isotropic if µ1=µ2.
3 If A is a symmetric matrix.

then A can be decomposed as: (it’s an eigen-decomposition)

A = R D R> =

[
cos θ − sin θ
sin θ cos θ

] [
λ1 0
0 λ2

] [
cos θ sin θ
− sin θ cos θ

]
where λ1 and λ2 are its eigenvalues. i.e. scalings in two dirns
rotated by θ.

3CG 2006 18 / 1

Affine transformations map parallel lines to ...

Always useful to think what is preserved in a transformation ...

xA(λ) = a + λd
xB(λ) = b + µd

x′ = Ax + t

⇒ x′A(λ) = A(a + λd) + t
= (Aa + t) + λ(Ad)
= a′ + λd′

x′B(µ) = A(b + µd) + t
= (Ab + t) + µ(Ad)
= b′ + µd′

a

d
λ = 0

λ

d
µ = 0

µ

b

Lines are still parallel – they both have direction d′.
Affine transformations also preserve ...

3CG 2006 19 / 1

Homogeneous notation — motivation
If the translation t is zero, then transformations can be
concatenated by simple matrix multiplication:

x1 = A1x and x2 = A2x1 THEN x2 = A2A1x

However, if the translation is non-zero it becomes a mess

x1 = A1x + t1

x2 = A2x1 + t2

= A2(A1x + t1) + t2

= (A2A1)x + (A2t1 + t2)

If instead 2D points
(

x
y

)
are represented by a three vector x

y
1

 then the transformation can be represented by a 3× 3

matrix ...

3CG 2006 20 / 1

Homogeneous notation
The matrix has block form:

(
x′
1

)
=

[
A t
0> 1

](
x
1

)
=


a11 a12

... tx

a21 a22
... ty

.
... . . .

0 0
... 1




x
y
. . .
1

 =

(
Ax + t

1

)

Transformations can now ALWAYS be concatenated by matrix
multiplication(

x1
1

)
=

[
A1 t1

0> 1

](
x
1

)
=

(
A1x + t1

1

)
(

x2
1

)
=

[
A2 t2

0> 1

](
x1
1

)
=

[
A2 t2

0> 1

] [
A1 t1

0> 1

](
x
1

)
=

[
A2A1 A2t1 + t2

0> 1

](
x
1

)
=

(
(A2A1)x + (A2t1 + t2)

1

)

3CG 2006 21 / 1

Homogeneous notation — definition

x = (x , y)> is represented in homogeneous coordinates by any
3-vector  x1

x2
x3


such that

x = x1/x3 y = x2/x3

So the following homogeneous vectors represent the same point
for any λ=0.  x1

x2
x3

 and

 λx1
λx2
λx3


For example, the homogeneous vectors (2,3,1)> and (4,6,2)>

represent the same inhomogeneous point (2,3)>

3CG 2006 22 / 1

Homogeneous notation – rules for use
Then the rules for using homogeneous coordinates for
transformations are

1. Convert the inhomogeneous
point to an homogeneous
vector: (

x
y

)
→

 x
y
1


2. Apply the 3× 3 matrix
transformation.
3. Dehomogenise the resulting
vector: x1

x2
x3

→ (
x1/x3
x2/x3

)

NB the matrix needs only to be
defined up to scale.
E.g. 1 2 3

4 5 6
0 0 1

 and

 2 4 6
8 10 12
0 0 2


represent the SAME 2D affine
transformation
Think about degrees of freedom
...

3CG 2006 23 / 1

Homogeneous notation for R3

A point

X =

 X
Y
Z


is represented by a homogeneous 4-vector:

X1
X2
X3
X4


such that

X =
X1

X4
Y =

X2

X4
Z =

X3

X4

3CG 2006 24 / 1

Example: The Euclidean transformation in 3D

X′ = RX + T

where R is a 3× 3 rotation matrix, and T a translation 3-vector, is
represented as

X ′1
X ′2
X ′3
X ′4

 =

[
R T
0> 1

]
4×4


X
Y
Z
1

 =

[
R T
0> 1

](
X
1

)

with

X′ =

 X ′

Y ′

Z ′

 =
1
X ′4

 X ′1
X ′2
X ′3



3CG 2006 25 / 1

Application to coordinate frames: Eg - stereo cameras

W

R L

(
XR
1

)
=

[
RRW TRW

0> 1

](
XW
1

) (
XL
1

)
=

[
RLW TLW

0> 1

](
XW
1

)
Then(

XR
1

)
=

[
RRW TRW

0> 1

] [
RLW TLW

0> 1

]−1(
XL
1

)
=

[
4× 4

](
XL
1

)

3CG 2006 26 / 1

Application to coordinate frames: Eg - Puma robot arm

Links

4,5,6

Link 1

Link 2

Link 3

Base Frame Tool Frame

Kinematic chain:(
XT
1

)
=

[
RT6 TT6

0> 1

]
. . .

[
R32 0
0> 1

] [
R21 T21

0> 1

] [
R1B T1B

0> 1

](
XB
1

)
=

[
4× 4

](
XB
1

)

3CG 2006 27 / 1

A note on the inverse ...
It must be the case that[

RAB TAB

0> 1

]−1

=

[
RBA TBA

0> 1

]
Now, we know that

RBA = R−1
AB

but what is TBA?

Tempting to say −TAB, but no.

XA = RABXB + TAB (TAB is Origin of B in A)

⇒ XB = RBA(XA − TAB)

⇒ XB = RBAXA − RBATAB

BUT XB = RBAXA + TBA (TBA is Origin of A in B)
⇒ TBA = −RBATAB

3CG 2006 28 / 1

Class IV: Projective transformations

A projective transformation is a linear transformation on
homogeneous n-vectors represented by a non-singular n × n
matrix.
In 2D  x ′1

x ′2
x ′3

 =

 h11 h12 h13
h21 h22 h23
h31 h32 h33

 x1
x2
x3


Note the difference from an affine transformation is only in the
first two elements of the last row.
In inhomogeneous (normal) notation, a projective transformation
is a non-linear map

x ′ =
x ′1
x ′3

=
h11x + h12y + h13

h31x + h32y + h33
, y ′ =

x ′2
x ′3

=
h21x + h22y + h23

h31x + h32y + h33

The 3× 3 matrix has 8 dof ...

3CG 2006 29 / 1

Class IV: 3D-3D Projective transformations

In 3D 
X ′1
X ′2
X ′3
X ′4

 =


p11 p12 p13 p14
p21 p22 p23 p24
p31 p32 p33 p34
p41 p42 p43 p44




X1
X2
X3
X4



The 4× 4 matrix has 15 dof ...

3CG 2006 30 / 1

Perspective is a subclass of projective transformation

3CG 2006 31 / 1

Perspective (central) projection — 3D to 2D

Mathematical idealized
camera 3D→ 2D
Image coordinates xy
Camera frame XYZ (origin
at optical centre)
Focal length f , image plane
is at Z = f .

y

Y

O

image
plane

x

f

X

x

Z

X

Use similar triangles

x
f
=

X
Z

y
f
=

Y
Z

or x = f
X
Z

where x and X are 3-vectors, with
x = (x , y , f)>, X = (X ,Y ,Z)>.

f

Z

y
Y

3CG 2006 32 / 1

Examples

Circle in space, orthogonal to and centred on the Z -axis:

X

Y

Z

a

X(θ) = (a cos θ,a sin θ,Z)>

x(θ) = (
fa
Z

cos θ,
fa
Z

sin θ, f)>

⇒ (x , y) =
fa
Z
(cos θ, sin θ)

Image is a circle of radius fa/Z
— inverse distance scaling

Now move circle in X direction:
that is, to X1(θ) = (a cos θ + X0,a sin θ,Z)>

Exercise:
What happens to the image? Is it still a circle? Is it larger or smaller?

3CG 2006 33 / 1

Examples ctd/

Sphere concentric with Z -axis:

X

Y

Z

cone
grazing
rays

Intersection of cone with image plane is a circle.
Exercise:
Now move sphere in the X direction. What happens to the image?

3CG 2006 34 / 1

The Homogeneous 3× 4 Projection Matrix

In inhomogeneous coords

x = fX/Z

Choose f = 1 from now on.

X

y

Y

Z

O

x

X

x

f

Homogeneous image coordinates (x1, x2, x3)
> represent

x = X/Z if

 x1
x2
x3

 =

 1 0 0 0
0 1 0 0
0 0 1 0




X
Y
Z
1

 = [I | 0]
(

X
1

)

Check that x = x1/x3 = X/Z y = x2/x3 = Y/Z
Then perspective projection is a linear map, represented by
a 3× 4 projection matrix, from 3D to 2D.

3CG 2006 35 / 1

Example: a 3D point

Non-homogeneous

 X
Y
Z

 =

 6
4
2

 is imaged at

(x , y) = (6/2,4/2) = (3,2).
In homogeneous notation using 3× 4 projection matrix:

 λx
λy
λ

 =

 x1
x2
x3

 =

 1 0 0 0
0 1 0 0
0 0 1 0




6
4
2
1

 =

 6
4
2


which is the 2D inhomogeneous point (x , y) = (3,2).

3CG 2006 36 / 1

Suppose scene is describe in a World coord frame

The Euclidean transformation between the camera and world
coordinate frames is XC = RXW + T:

(
XC
1

)
=

[
R T
0> 1

](
XW
1

)
R, T

Z

Y
W

W

OW

W

C

O

X

Y

X

Z
C

C

C

Concatenating the two matrices ... x1
x2
x3

 =

 1 0 0 0
0 1 0 0
0 0 1 0

[R T
0> 1

](
XW
1

)
= [R | T]

(
XW
1

)
= P

(
XW
1

)

which defines the 3× 4 projection matrix P = [R| T] from a
Euclidean World coordinate frame to an image.

3CG 2006 37 / 1

Suppose scene described as set of Objects and Poses

Now each 3D object O is described in it own Object frame ...
Each Object frame is given a Pose [Ro,To] relative to World
frame ...
Cameras are placed at [Rc ,Tc] relative to world frame ...

(
xc
1

)
= K c

 1 0 0 0
0 1 0 0
0 0 1 0

[Rc Tc

0> 1

]−1 [Ro To

0> 1

](
Xo
1

)

3× 3 matrix K c allows each camera to have a different focal
length etc ...
You can now do 3D computer graphics ...

3CG 2006 38 / 1

Isn’t every projective transform a perspective
projection?

A projective trans followed by a projective trans is a
..
So a perspective trans followed by a perpspective trans is a
.............................

A

B

C

C

B

A

3CG 2006 38 / 1

Isn’t every projective transform a perspective
projection?

A projective trans followed by a projective trans is a
..
So a perspective trans followed by a perpspective trans is a
.............................

A

B

C

C

B

A

A B
C

3CG 2006 38 / 1

Isn’t every projective transform a perspective
projection?

A projective trans followed by a projective trans is a
..
So a perspective trans followed by a perpspective trans is a
.............................

A

B

C

C

B

A

A B
C

