# **B4 Computational Geometry**

David Murray

david.murray@eng.ox.ac.uk www.robots.ox.ac.uk/~dwm/Courses/3CG

Michaelmas 2006

#### Overview

Computational geometry is concerned with

- the derivation of techniques
- the design of efficient algorithms and
- the construction of effective representations

for geometric computation.

Techniques from computational geometry are used in:

- Computer Graphics
- Computer Aided Design
- Computer Vision
- Robotics

- Lecture 1: Euclidean, similarity, affine and projective transformations. Homogeneous coordinates and matrices. Coordinate frames. Perspective projection and its matrix representation.
- Lecture 2: Perspective projection and its matrix representation.
   Vanishing points. Applications of projective transformations.
- Lecture 3: Convexity of point-sets, convex hull and algorithms. Conics and quadrics, implicit and parametric forms, computation of intersections.
- Lecture 4: Bezier curves, B-splines. Tensor-product surfaces.

#### **Useful Texts**

**Bartels, Beatty and Barsky**, "An introduction to splines for use in computer graphics and geometric modeling", Morgan Kaufmann, 1987. Everything you could want to know about splines.

**Faux and Pratt**, "Computational geometry for design and manufacture", Ellis Horwood, 1979. Good on curves and transformations.

**Farin**, "Curves and Surfaces for Computer-Aided Geometric Design : A Practical Guide", Academic Press, 1996.

**Foley, van Dam, Feiner and Hughes**, "Computer graphics - principles and practice", Addison Wesley, second edition, 1995. *The* computer graphics book. Covers curves and surfaces well.

Hartley and Zisserman "Multiple View Geometry in Computer Vision", CUP, 2000. Chapter 1 is a good introduction to projective geometry.

**O'Rourke**, "Computational geometry in C", CUP, 1998. Very straightforward to read, many examples. Highly recommended.

**Preparata and Shamos**, "Computational geometry, an introduction", Springer-Verlag, 1985. Very formal and complete for particular algorithms.

# Example I: Virtual Reality Models from Images

Input: Four overlapping aerial images of the same urban scene



Objective: Texture mapped 3D models of buildings





# Example II: Video Mosaicing

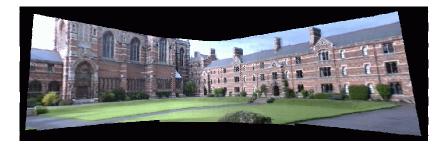


◆□ > ◆母 > ◆臣 > ◆臣 > 善臣 - 釣へ(?)

# Example II: Video Mosaicing



# Example II: Video Mosaicing



<ロト < 部 > < 注 > < 注 > ご の < で</p>

#### Lecture 1.

Lecture 1:

Transformations, Homogeneous Coordinates, and Coordinate Frames

Euclidean, similarity, affine and projective transformations.

Homogeneous coordinates and matrices.

Coordinate frames.

#### Hierarchy of transformations

We will look at **linear transformations** represented by matrices of **increasing** generality:

```
Euclidean \rightarrow
Similarity \rightarrow
Affine \rightarrow
Projective
```

We consider both

- $2D \rightarrow 2D$  mappings ("plane to plane" mappings); and
- **3** $D \rightarrow 3D$  transformations

# Class I: Euclidean transformations: translation & rotation



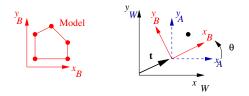
$$\mathbf{x}' - \mathbf{R}\mathbf{x} + \mathbf{t}$$

**R** is the orthogonal rotation matrix,  $\mathbf{R}\mathbf{R}^{\top} = \mathbf{I}$ , and  $\mathbf{x}'$  etc are column vectors.

## Build transformations in steps ...

Often useful to introduce intermediate coordinate frames. For example:

Object model described in body-centered frame BPose ( $\theta$ , **t**) of model frame given w.r.t. world frame WWhere is **x**<sub>B</sub> in W?



- In an "aligned" frame  $\mathbf{x}_A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \mathbf{x}_B$ . Check using the point (1,0). It should be  $(+\cos \theta, +\sin \theta)$  in the *A frame*.
- Then  $\mathbf{x}_W = \mathbf{x}_A + \mathbf{t}_{\text{Origin of B in W}}$ . Check the above using the origin of A. It should be  $\mathbf{t}_{OBW}$  in W frame ...

#### In 3D ...

In 3D the transformation  $\mathbf{X}' = \mathbf{R}_{3 \times 3} \mathbf{X} + \mathbf{T}$  has 6 dof. Two major ways of representing 3 rotation

rotation about successive new axes: eg ZYX Euler angles

■ rotation about "old fixed axes": eg ZXY roll-pitch-yaw

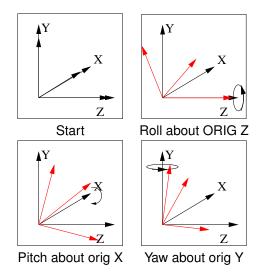
In each case the order is important, as rotations do not commute.

$$\mathbf{X}_{W} = \begin{bmatrix} \cos p & -\sin p & 0\\ \sin p & \cos p & 0\\ 0 & 0 & 1 \end{bmatrix} \mathbf{X}_{1}$$

$$\mathbf{X}_{1} = \begin{bmatrix} \cos e & 0 & -\sin e\\ 0 & 1 & 0\\ \sin e & 0 & \cos e \end{bmatrix} \mathbf{X}_{2}$$

$$\mathbf{X}_{2} = \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos c & -\sin c\\ 0 & \sin c & \cos c \end{bmatrix} \mathbf{X}_{B}$$

#### Rotation about "old fixed axes": eg ZXY roll-pitch-yaw

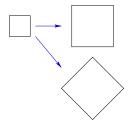


# Class II: Similarity transformations

- A Euclidean transformation is an isometry an action that preserves lengths and angles.
- Apply an isotropic scaling s to an isometry isotropic scaling and you'll arrive at a similarity transformation.
- A similarity had 4 degrees of freedom in 2D

 $\mathbf{x}' = s\mathbf{R}\mathbf{x} + \mathbf{t}$ 

- A similarity preserves
  - ratios of lengths
  - ratios of areas, and
  - angles.
- It is the most general transformation that preserves "shape".



### Class III: Affine transformations

An affine transformation (6 degrees of freedom in 2D)
 — is a non-singular linear transformation followed by a translation:

$$\left(\begin{array}{c} x'\\ y'\end{array}\right) = \left[\begin{array}{c} & \mathbf{A} \\ \end{array}\right] \left(\begin{array}{c} x\\ y\end{array}\right) + \left(\begin{array}{c} t_x\\ t_y\end{array}\right)$$

with **A** a  $2 \times 2$  non-singular matrix.

In vector form:

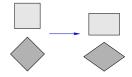
$$\mathbf{x}' = \mathbf{A}\mathbf{x} + \mathbf{t}$$

- Angles and length ratios are **not** preserved.
- How many points required to determine an affine transform in 2D?

#### Examples of affine transformations

- 1 Both the previous classes: Euclidean, similarity.
- 2 Scalings in the x and y directions

$$\boldsymbol{A} = \left[ \begin{array}{cc} \mu_1 & \mathbf{0} \\ \mathbf{0} & \mu_2 \end{array} \right]$$



This is non-isotropic if  $\mu_1 \equiv \mu_2$ .

If A is a symmetric matrix.
 then A can be decomposed as: (it's an eigen-decomposition)

$$\boldsymbol{A} = \boldsymbol{R} \boldsymbol{D} \boldsymbol{R}^{\top} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

where  $\lambda_1$  and  $\lambda_2$  are its eigenvalues. i.e. scalings in two dirns rotated by  $\theta.$ 

3CG 2006

# Affine transformations map parallel lines to ...

Always useful to think what is preserved in a transformation ...

$$\Rightarrow \mathbf{x}'_{A}(\lambda) = \mathbf{A}(\mathbf{a} + \lambda \mathbf{d}) + \mathbf{t}$$

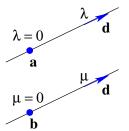
$$= (\mathbf{A}\mathbf{a} + \mathbf{t}) + \lambda(\mathbf{A}\mathbf{d})$$

$$= \mathbf{a}' + \lambda \mathbf{d}'$$

$$\mathbf{x}'_{B}(\mu) = \mathbf{A}(\mathbf{b} + \mu \mathbf{d}) + \mathbf{t}$$

$$= (\mathbf{A}\mathbf{b} + \mathbf{t}) + \mu(\mathbf{A}\mathbf{d})$$

$$= \mathbf{b}' + \mu \mathbf{d}'$$



- Lines are still parallel they both have direction d'.
- Affine transformations also preserve ...

#### Homogeneous notation — motivation

If the translation t is zero, then transformations can be concatenated by simple matrix multiplication:

$$\mathbf{x}_1 = \mathbf{A}_1 \mathbf{x}$$
 and  $\mathbf{x}_2 = \mathbf{A}_2 \mathbf{x}_1$  THEN  $\mathbf{x}_2 = \mathbf{A}_2 \mathbf{A}_1 \mathbf{x}$ 

However, if the translation is non-zero it becomes a mess

$$\begin{aligned} \mathbf{x}_1 &= & \mathbf{A}_1 \mathbf{x} + \mathbf{t}_1 \\ \mathbf{x}_2 &= & \mathbf{A}_2 \mathbf{x}_1 + \mathbf{t}_2 \\ &= & \mathbf{A}_2 (\mathbf{A}_1 \mathbf{x} + \mathbf{t}_1) + \mathbf{t}_2 \\ &= & (\mathbf{A}_2 \mathbf{A}_1) \mathbf{x} + (\mathbf{A}_2 \mathbf{t}_1 + \mathbf{t}_2) \end{aligned}$$

■ If instead 2D points  $\begin{pmatrix} x \\ y \end{pmatrix}$  are represented by a three vector  $\begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$  then the transformation can be represented by a 3 × 3 matrix ...

#### Homogeneous notation The matrix has block form:

$$\begin{pmatrix} \mathbf{x}' \\ 1 \end{pmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{t} \\ \mathbf{0}^{\top} & 1 \end{bmatrix} \begin{pmatrix} \mathbf{x} \\ 1 \end{pmatrix} = \begin{bmatrix} a_{11} & a_{12} \vdots & t_x \\ a_{21} & a_{22} \vdots & t_y \\ \vdots & \vdots & \vdots \\ 0 & 0 & \vdots & 1 \end{bmatrix} \begin{pmatrix} \mathbf{x} \\ \mathbf{y} \\ \vdots \\ 1 \end{pmatrix} = \begin{pmatrix} \mathbf{A}\mathbf{x} + \mathbf{t} \\ 1 \end{pmatrix}$$

Transformations can now **ALWAYS** be concatenated by matrix multiplication

$$\begin{pmatrix} \mathbf{x}_1 \\ 1 \end{pmatrix} = \begin{bmatrix} \mathbf{A}_1 & \mathbf{t}_1 \\ \mathbf{0}^{\top} & 1 \end{bmatrix} \begin{pmatrix} \mathbf{x} \\ 1 \end{pmatrix} = \begin{pmatrix} \mathbf{A}_1 \mathbf{x} + \mathbf{t}_1 \\ 1 \end{pmatrix}$$
$$\begin{pmatrix} \mathbf{x}_2 \\ 1 \end{pmatrix} = \begin{bmatrix} \mathbf{A}_2 & \mathbf{t}_2 \\ \mathbf{0}^{\top} & 1 \end{bmatrix} \begin{pmatrix} \mathbf{x}_1 \\ 1 \end{pmatrix} = \begin{bmatrix} \mathbf{A}_2 & \mathbf{t}_2 \\ \mathbf{0}^{\top} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{A}_1 & \mathbf{t}_1 \\ \mathbf{0}^{\top} & 1 \end{bmatrix} \begin{pmatrix} \mathbf{x} \\ 1 \end{pmatrix}$$
$$= \begin{bmatrix} \mathbf{A}_2 \mathbf{A}_1 & \mathbf{A}_2 \mathbf{t}_1 + \mathbf{t}_2 \\ \mathbf{0}^{\top} & 1 \end{bmatrix} \begin{pmatrix} \mathbf{x} \\ 1 \end{pmatrix} = \begin{pmatrix} (\mathbf{A}_2 \mathbf{A}_1) \mathbf{x} + (\mathbf{A}_2 \mathbf{t}_1 + \mathbf{t}_2) \\ 1 \end{pmatrix}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● の Q @

#### Homogeneous notation — definition

**x** =  $(x, y)^{\top}$  is represented in homogeneous coordinates by any **3-vector** 

such that

$$x = x_1/x_3 \quad y = x_2/x_3$$

 $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$ 

■ So the following homogeneous vectors represent the same point for any λ=0.

$$\left(\begin{array}{c} x_1\\ x_2\\ x_3 \end{array}\right) \text{ and } \left(\begin{array}{c} \lambda x_1\\ \lambda x_2\\ \lambda x_3 \end{array}\right)$$

■ For example, the homogeneous vectors (2,3,1)<sup>T</sup> and (4,6,2)<sup>T</sup> represent the **same** inhomogeneous point (2,3)<sup>T</sup>

## Homogeneous notation - rules for use

- Then the rules for using homogeneous coordinates for transformations are
- 1. Convert the inhomogeneous point to an homogeneous vector:

$$\left(\begin{array}{c} x\\ y\end{array}\right) \rightarrow \left(\begin{array}{c} x\\ y\\ 1\end{array}\right)$$

2. Apply the  $3 \times 3$  matrix transformation.

3. Dehomogenise the resulting vector:

$$\left(\begin{array}{c} x_1\\ x_2\\ x_3 \end{array}\right) \rightarrow \left(\begin{array}{c} x_1/x_3\\ x_2/x_3 \end{array}\right)$$

NB the matrix needs only to be defined up to scale. E.g.

| 1 | 2 | 3 | and | 2 | 4  | 6  | 1 |
|---|---|---|-----|---|----|----|---|
| 4 | 5 | 6 | and | 8 | 10 | 12 |   |
| 0 | 0 | 1 |     | 0 | 0  | 2  |   |

represent the SAME 2D affine transformation *Think about degrees of freedom* 

#### Homogeneous notation for $\mathcal{R}^3$

A point

$$\mathbf{X} = \left(\begin{array}{c} X \\ Y \\ Z \end{array}\right)$$

is represented by a homogeneous 4-vector:

$$\left(\begin{array}{c}X_1\\X_2\\X_3\\X_4\end{array}\right)$$

such that

$$X = \frac{X_1}{X_4} \qquad Y = \frac{X_2}{X_4} \qquad Z = \frac{X_3}{X_4}$$

### Example: The Euclidean transformation in 3D

 $\mathbf{X}' = \mathbf{R}\mathbf{X} + \mathbf{T}$ 

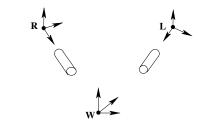
where  $\textbf{\textit{R}}$  is a 3  $\times$  3 rotation matrix, and T a translation 3-vector, is represented as

$$\begin{pmatrix} X'_1 \\ X'_2 \\ X'_3 \\ X'_4 \end{pmatrix} = \begin{bmatrix} \mathbf{R} & \mathbf{T} \\ \mathbf{0}^\top & \mathbf{1} \end{bmatrix}_{4 \times 4} \begin{pmatrix} X \\ Y \\ Z \\ \mathbf{1} \end{pmatrix} = \begin{bmatrix} \mathbf{R} & \mathbf{T} \\ \mathbf{0}^\top & \mathbf{1} \end{bmatrix} \begin{pmatrix} \mathbf{X} \\ \mathbf{1} \end{pmatrix}$$

with

$$\mathbf{X}' = \begin{pmatrix} X' \\ Y' \\ Z' \end{pmatrix} = \frac{1}{X'_4} \begin{pmatrix} X'_1 \\ X'_2 \\ X'_3 \end{pmatrix}$$

Application to coordinate frames: Eg - stereo cameras

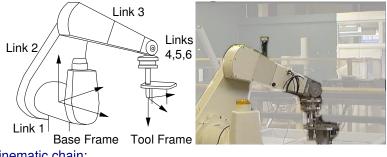


$$\begin{pmatrix} \mathbf{X}_{R} \\ 1 \end{pmatrix} = \begin{bmatrix} \mathbf{R}_{RW} & \mathbf{T}_{RW} \\ \mathbf{0}^{\top} & 1 \end{bmatrix} \begin{pmatrix} \mathbf{X}_{W} \\ 1 \end{pmatrix} \qquad \begin{pmatrix} \mathbf{X}_{L} \\ 1 \end{pmatrix} = \begin{bmatrix} \mathbf{R}_{LW} & \mathbf{T}_{LW} \\ \mathbf{0}^{\top} & 1 \end{bmatrix} \begin{pmatrix} \mathbf{X}_{W} \\ 1 \end{pmatrix}$$
Then

$$\begin{pmatrix} \mathbf{X}_{R} \\ 1 \end{pmatrix} = \begin{bmatrix} \mathbf{R}_{RW} & \mathbf{T}_{RW} \\ \mathbf{0}^{\top} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{R}_{LW} & \mathbf{T}_{LW} \\ \mathbf{0}^{\top} & 1 \end{bmatrix}^{-1} \begin{pmatrix} \mathbf{X}_{L} \\ 1 \end{pmatrix} = \begin{bmatrix} 4 \times 4 \\ 1 \end{bmatrix} \begin{pmatrix} \mathbf{X}_{L} \\ 1 \end{pmatrix}$$

◆ロ > ◆母 > ◆ 母 > ◆ 母 > ◆ 母 > ◆ の へ @ >

# Application to coordinate frames: Eg - Puma robot arm



Kinematic chain:

$$\begin{pmatrix} \mathbf{X}_{\mathrm{T}} \\ 1 \end{pmatrix} = \begin{bmatrix} \mathbf{R}_{\mathrm{T6}} & \mathbf{T}_{\mathrm{T6}} \\ \mathbf{0}^{\top} & 1 \end{bmatrix} \cdots \begin{bmatrix} \mathbf{R}_{32} & \mathbf{0} \\ \mathbf{0}^{\top} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{R}_{21} & \mathbf{T}_{21} \\ \mathbf{0}^{\top} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{R}_{\mathrm{IB}} & \mathbf{T}_{\mathrm{IB}} \\ \mathbf{0}^{\top} & 1 \end{bmatrix} \begin{pmatrix} \mathbf{X}_{\mathrm{IB}} \\ \mathbf{0}^{\top} & 1 \end{bmatrix} \begin{pmatrix} \mathbf{X}_{\mathrm{IB}} \\ \mathbf{0}^{\top} & \mathbf{1} \end{bmatrix}$$
$$= \begin{bmatrix} \mathbf{4} \times \mathbf{4} \\ \mathbf{1} \end{bmatrix} \begin{pmatrix} \mathbf{X}_{\mathrm{IB}} \\ \mathbf{1} \end{pmatrix}$$

◆□ > ◆母 > ◆臣 > ◆臣 > 善臣 - 釣へ(?)

#### A note on the inverse ...

It must be the case that

$$\begin{bmatrix} \boldsymbol{R}_{AB} & \boldsymbol{T}_{AB} \\ \boldsymbol{0}^{\top} & 1 \end{bmatrix}^{-1} = \begin{bmatrix} \boldsymbol{R}_{BA} & \boldsymbol{T}_{BA} \\ \boldsymbol{0}^{\top} & 1 \end{bmatrix}$$

Now, we know that

$$\boldsymbol{R}_{\mathrm{BA}}=\boldsymbol{R}_{\mathrm{AB}}^{-1}$$

but what is  $T_{BA}$ ?

**Tempting to say**  $-\mathbf{T}_{AB}$ , but no.

$$\begin{array}{rcl} \mathbf{X}_{A} &=& \mathbf{R}_{AB}\mathbf{X}_{B} + \mathbf{T}_{AB} & (\mathbf{T}_{AB} \text{ is Origin of B in A}) \\ \Rightarrow \mathbf{X}_{B} &=& \mathbf{R}_{BA}(\mathbf{X}_{A} - \mathbf{T}_{AB}) \\ \Rightarrow \mathbf{X}_{B} &=& \mathbf{R}_{BA}\mathbf{X}_{A} - \mathbf{R}_{BA}\mathbf{T}_{AB} \\ \text{BUT } \mathbf{X}_{B} &=& \mathbf{R}_{BA}\mathbf{X}_{A} + \mathbf{T}_{BA} & (\mathbf{T}_{BA} \text{ is Origin of A in B}) \\ \Rightarrow \mathbf{T}_{BA} &=& -\mathbf{R}_{BA}\mathbf{T}_{AB} \end{array}$$

## **Class IV: Projective transformations**

■ A projective transformation is a linear transformation on homogeneous *n*-vectors represented by a non-singular *n* × *n* matrix.

In 2D

$$\begin{pmatrix} x_1' \\ x_2' \\ x_3' \end{pmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$$

- Note the difference from an affine transformation is only in the first two elements of the last row.
- In inhomogeneous (normal) notation, a projective transformation is a non-linear map

$$x' = rac{x_1'}{x_3'} = rac{h_{11}x + h_{12}y + h_{13}}{h_{31}x + h_{32}y + h_{33}}, \qquad \qquad y' = rac{x_2'}{x_3'} = rac{h_{21}x + h_{22}y + h_{23}}{h_{31}x + h_{32}y + h_{33}},$$

■ The 3 × 3 matrix has 8 dof ...

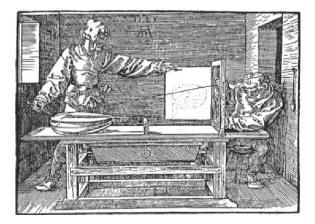
# Class IV: 3D-3D Projective transformations

#### In 3D

$$\begin{pmatrix} X_1' \\ X_2' \\ X_3' \\ X_4' \end{pmatrix} = \begin{bmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \\ p_{41} & p_{42} & p_{43} & p_{44} \end{bmatrix} \begin{pmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{pmatrix}$$

#### ■ The 4 × 4 matrix has 15 dof ...

### Perspective is a subclass of projective transformation

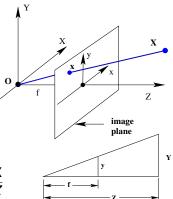


# Perspective (central) projection - 3D to 2D

- Mathematical idealized camera  $3D \rightarrow 2D$
- Image coordinates xy
- Camera frame XYZ (origin at optical centre)
- Focal length f, image plane is at Z = f.
- Use similar triangles

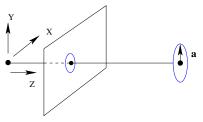
$$\frac{x}{f} = \frac{X}{Z}$$
  $\frac{y}{f} = \frac{Y}{Z}$  or  $\mathbf{x} = f\frac{\mathbf{X}}{Z}$ 

where **x** and **X** are **3-vectors**, with  $\mathbf{x} = (x, y, f)^{\top}$ ,  $\mathbf{X} = (X, Y, Z)^{\top}$ .



#### Examples

Circle in space, orthogonal to and centred on the Z-axis:



$$\begin{aligned} \mathbf{X}(\theta) &= (a\cos\theta, a\sin\theta, Z)^{\top} \\ \mathbf{x}(\theta) &= (\frac{fa}{Z}\cos\theta, \frac{fa}{Z}\sin\theta, f)^{\top} \\ \cdot (x, y) &= \frac{fa}{Z}(\cos\theta, \sin\theta) \end{aligned}$$

Image is a circle of radius fa/Z — inverse distance scaling

#### Now move circle in X direction:

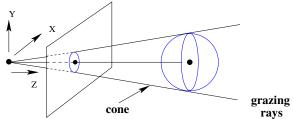
that is, to  $\mathbf{X}_1(\theta) = (a \cos \theta + X_0, a \sin \theta, Z)^\top$ Exercise:

What happens to the image? Is it still a circle? Is it larger or smaller?

 $\Rightarrow$ 

#### Examples ctd/

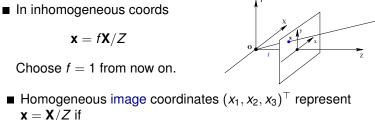
#### Sphere concentric with *Z*-axis:



Intersection of **cone** with image plane is a circle. **Exercise:** 

Now move sphere in the X direction. What happens to the image?

## The Homogeneous $3 \times 4$ Projection Matrix



$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix} = [I \mid \mathbf{0}] \begin{pmatrix} \mathbf{X} \\ 1 \end{pmatrix}$$

- Check that  $x = x_1/x_3 = X/Z$   $y = x_2/x_3 = Y/Z$
- Then perspective projection is a linear map, represented by a 3 × 4 projection matrix, from 3D to 2D.

#### Example: a 3D point

■ Non-homogeneous 
$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} 6 \\ 4 \\ 2 \end{pmatrix}$$
 is imaged at  $(x, y) = (6/2, 4/2) = (3, 2).$ 

■ In homogeneous notation using 3 × 4 projection matrix:

$$\begin{pmatrix} \lambda x \\ \lambda y \\ \lambda \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{pmatrix} 6 \\ 4 \\ 2 \\ 1 \end{pmatrix} = \begin{pmatrix} 6 \\ 4 \\ 2 \end{pmatrix}$$

which is the 2D inhomogeneous point (x, y) = (3, 2).

#### Suppose scene is describe in a World coord frame

The Euclidean transformation between the camera and world coordinate frames is X<sub>C</sub> = RX<sub>W</sub> + T:

$$\begin{pmatrix} \mathbf{X}_{\mathrm{C}} \\ 1 \end{pmatrix} = \begin{bmatrix} \mathbf{R} & \mathbf{T} \\ \mathbf{0}^{\mathrm{T}} & 1 \end{bmatrix} \begin{pmatrix} \mathbf{X}_{\mathrm{W}} \\ 1 \end{pmatrix} \qquad \underbrace{\mathbf{0}_{\mathrm{c}}}_{\mathbf{X}_{\mathrm{c}}} \xrightarrow{\mathbf{Z}_{\mathrm{c}}} \underbrace{\mathbf{X}_{\mathrm{W}}}_{\mathbf{X}_{\mathrm{W}}}$$

Concatenating the two matrices ...

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R} & \mathbf{T} \\ \mathbf{0}^{\top} & 1 \end{bmatrix} \begin{pmatrix} \mathbf{X}_{\mathrm{W}} \\ 1 \end{pmatrix} = \begin{bmatrix} \mathbf{R} \mid \mathbf{T} \end{bmatrix} \begin{pmatrix} \mathbf{X}_{\mathrm{W}} \\ 1 \end{pmatrix}$$

1Yc

which defines the  $3 \times 4$  projection matrix  $\mathbf{P} = [\mathbf{R} | \mathbf{T}]$  from a Euclidean World coordinate frame to an image.

#### Suppose scene described as set of Objects and Poses

- Now each 3D object O is described in it own Object frame ...
- Each Object frame is given a Pose [*R*<sub>o</sub>, **T**<sub>o</sub>] relative to World frame ...
- Cameras are placed at  $[\mathbf{R}_c, \mathbf{T}_c]$  relative to world frame ...

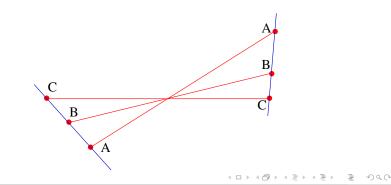
$$\begin{pmatrix} \mathbf{x}_{c} \\ 1 \end{pmatrix} = \mathbf{K}_{c} \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{R}_{c} & \mathbf{T}_{c} \\ \mathbf{0}^{\top} & 1 \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{R}_{o} & \mathbf{T}_{o} \\ \mathbf{0}^{\top} & 1 \end{bmatrix} \begin{pmatrix} \mathbf{X}_{o} \\ 1 \end{pmatrix}$$

- 3 × 3 matrix *K<sub>c</sub>* allows each camera to have a different focal length etc ...
- You can now do 3D computer graphics ...

# Isn't every projective transform a perspective projection?

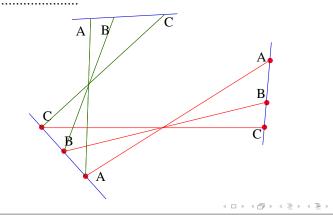
. . . . . . . . . . . . . . . . . . . .

- A projective trans followed by a projective trans is a
- So a perspective trans followed by a perpspective trans is a



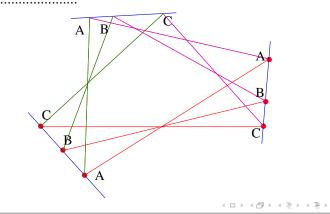
# Isn't every projective transform a perspective projection?

- A projective trans followed by a projective trans is a
- So a perspective trans followed by a perpspective trans is a



# Isn't every projective transform a perspective projection?

- A projective trans followed by a projective trans is a
- So a perspective trans followed by a perpspective trans is a



San