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The next example is even more complicated, but it can be simplified con-
siderably with the aid of the following lemma.

Lemma 5.1.3. Let m ≥ 2 and n ≥ 1 and consider an m× 2n matrix game
of the following form. Player 1 has m strategies, labeled 1, 2, . . . ,m. Player
2 has 2n strategies, labeled by the subsets T ⊂ {1, 2, . . . , n}. Furthermore,
for i = 1, . . . ,m, there exist pi(0) ≥ 0, pi(1) > 0, . . . , pi(n) > 0 with
pi(0) + pi(1) + · · · + pi(n) = 1 together with a real number ai(0), and for
l = 1, 2, . . . , n, there exist m× 2 payoff matrices




a11(l) a12(l)

...
...

am1(l) am2(l)



 , (5.13)

such that the m × 2n matrix game has payoff matrix with (i, T ) entry given
by

ai,T := pi(0)ai(0) +
∑

l∈T

pi(l)ai1(l) +
∑

l∈T c

pi(l)ai2(l) (5.14)

for i ∈ {1, 2, . . . ,m} and T ⊂ {1, 2, . . . , n}. Here T c := {1, 2, . . . , n}− T .
We define

T1 := {1 ≤ l ≤ n : ai1(l) < ai2(l) for i = 1, 2, . . . ,m},
T2 := {1 ≤ l ≤ n : ai1(l) > ai2(l) for i = 1, 2, . . . ,m}, (5.15)
T3 := {1, 2, . . . , n}− T1 − T2,

and put n0 := |T3|. Then, given T ⊂ {1, 2, . . . , n}, strategy T is strictly
dominated unless T1 ⊂ T ⊂ T c

2 . Thus, the m×2n matrix game can be reduced
to an m× 2n0 matrix game.

Remark. The game can be thought of as follows. Player 1 chooses a strategy
i ∈ {1, 2, . . . ,m}. Let Zi be a random variable with distribution P(Zi = l) =
pi(l) for l = 0, 1, . . . , n. Given that Zi = 0, the game is over and player
1’s conditional expected profit is ai(0). If Zi ∈ {1, 2, . . . , n}, then player 2
observes Zi (but not i) and based on this information chooses a “move”
j ∈ {1, 2}. Given that Zi = l and player 2 chooses move 1 (resp., move 2),
player 1’s conditional expected profit is ai1(l) (resp., ai2(l)). Thus, player
2’s strategies can be identified with subsets T ⊂ {1, 2, . . . , n}, with player 2
choosing move 1 if Zi ∈ T and move 2 if Zi /∈ T .

Proof. Suppose that the condition T1 ⊂ T ⊂ T c
2 fails. There are two cases.

In case 1, there exists l0 ∈ T1 with l0 /∈ T . Here define T ′ := T ∪ {l0}. In case
2, there exists l0 ∈ T with l0 /∈ T c

2 (or l0 ∈ T2). Here define T ′ := T − {l0}.
Then, for i = 1, 2, . . . ,m,

ai,T ′ = pi(0)ai(0) +
∑

l∈T ′

pi(l)ai1(l) +
∑

l∈(T ′)c

pi(l)ai2(l)
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= pi(0)ai(0) +
∑

l∈T

pi(l)ai1(l) +
∑

l∈T c

pi(l)ai2(l)

± pi(l0)(ai1(l0)− ai2(l0))

< pi(0)ai(0) +
∑

l∈T

pi(l)ai1(l) +
∑

l∈T c

pi(l)ai2(l)

= ai,T , (5.16)

where the ± sign is a plus sign in case 1 and a minus sign in case 2. This
tells us that strategy T for player 2 is strictly dominated by strategy T ′, as
required. ♠

Example 5.1.4. Chemin de fer . The game of chemin de fer (“railway” in
French) is a variant of baccarat that is still played in Monte Carlo. However,
present-day rules are more restrictive than they once were, and it will serve
our purposes to consider the game as it was played early in the 20th century.
Chemin de fer is a two-person game played with a six-deck shoe comprising
six standard 52-card decks, hence 312 cards. We will refer to player 1 and
player 2 as player and banker, respectively. Denominations A, 2–9, 10, J, Q,
K have values 1, 2–9, 0, 0, 0, 0, respectively. The value of a hand, consisting
of two or three cards, is the sum of the values of the cards, modulo 10. In
other words, only the final digit of the sum is used to evaluate a hand. For
example, 5 + 7 ≡ 2 (mod 10) and 5 + 7 + 9 ≡ 1 (mod 10).

Two cards are dealt face down to player and two to banker, and each may
look only at his own hand. The object of the game is to have the higher-valued
hand (closer to 9) at the end of play. A two-card hand of value 8 or 9 is a
natural . If either hand is a natural, the game is over and the higher-valued
hand wins. Hands of equal value result in a push (no money changes hands).
If neither hand is a natural, player then has the option of drawing a third
card. If he exercises this option, his third card is dealt face up. Next, banker
has the option of drawing a third card. This completes the game, and the
higher-valued hand wins. A win for player pays even money. Again, hands of
equal value result in a push.

Since nonplayers can bet on player’s hand, player’s strategy is restricted.
He must draw to a hand valued 4 or less and stand on a hand valued 6 or 7.
When his hand has value 5, he is free to draw or stand as he chooses. Banker,
on whose hand no one can bet, has no restrictions on his strategy. Bets on
player’s hand pay even money. (We again emphasize that current rules are
more restrictive as regards banker’s strategy.)

To keep calculations to a minimum, we will assume that cards are dealt
with replacement, recognizing that this is only an approximation. The prob-
ability that a two-card hand has a value of 0 is

(
4
13

)2

+ 9
(

1
13

)2

=
25
169

, (5.17)
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as we see by conditioning on the value of the first card dealt, while the
probability that a two-card hand has the value i ∈ {1, 2, . . . , 9} is

4
13

· 1
13

+
1
13

· 4
13

+ 8
(

1
13

)2

=
16
169

. (5.18)

Let X denote the value of player’s two-card hand and let Y denote the
value of banker’s two-card hand. On the event {X ≤ 7, Y ≤ 7}, let X3 denote
the value of player’s third card if he draws, and let X3 := ∅ if he stands.
Similarly, let Y3 denote the value of banker’s third card if he draws, and let
Y3 := ∅ if he stands. As the rules specify, player has only two strategies, which
we will denote by S5 := {0, 1, 2, 3, 4, 5} (draw to 5) and S4 := {0, 1, 2, 3, 4}
(stand on 5). In general, S ⊂ {0, 1, . . . , 7} denotes the strategy in which
player draws if X ∈ S and stands otherwise. Banker, on the other hand,
has a strategy for each subset T ⊂ {0, 1, . . . , 7}×{0, 1, . . . , 9, ∅}. Specifically,
suppose that X ≤ 7 and Y ≤ 7. Then banker draws if (Y, X3) ∈ T and stands
otherwise. It follows that chemin de fer is a 2× 288 matrix game.

Our first step is to show that Lemma 5.1.3 applies, allowing us to reduce
the game to a much more manageable 2 × 24 matrix game. Let us denote
by GST player’s profit from a one-unit bet when he adopts strategy S and
banker adopts strategy T , so that aST := E[GST ] is the (S, T ) entry in the
payoff matrix. Then

aST = E[GST ]
= P(X ∈ {8, 9}, X > Y )− P(Y ∈ {8, 9}, Y > X)

+ E[GST 1{X≤7, Y≤7}]
= E[GST 1{X≤7, Y≤7}] (5.19)

=
7∑

j=0

9∑

k=0

P(X ∈ S, Y = j, X3 = k)E[GST | X ∈ S, Y = j, X3 = k]

+
7∑

j=0

P(X ∈ Sc, Y = j, X3 = ∅)E[GST | X ∈ Sc, Y = j, X3 = ∅]

for S = S5 and S = S4, and for T ⊂ {0, 1, . . . , 7} × {0, 1, . . . , 9, ∅}, where
Sc := {0, 1, . . . , 7}− S.

Let us now define, for j ∈ {0, 1, . . . , 7} and k ∈ {0, 1, . . . , 9},

aS,l(j, k) := E[GST | X ∈ S, Y = j, X3 = k]
aS,l(j, ∅) := E[GST | X ∈ Sc, Y = j, X3 = ∅]

(5.20)

for S = S5 and S = S4; l = 1 if (j, k) (or (j, ∅)) belongs to T ; and l = 2 if
(j, k) (or (j, ∅)) belongs to T c := ({0, 1, . . . , 7}×{0, 1, . . . , 9, ∅})−T . Defining
also
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pS(j, k) := P(X ∈ S, Y = j, X3 = k),
pS(j, ∅) := P(X ∈ Sc, Y = j, X3 = ∅),

(5.21)

we have

aST =
∑

(j,k)∈T, k $=∅
pS(j, k)aS,1(j, k) +

∑

(j,∅)∈T

pS(j, ∅)aS,1(j, ∅) (5.22)

+
∑

(j,k)∈T c, k $=∅
pS(j, k)aS,2(j, k) +

∑

(j,∅)∈T c

pS(j, ∅)aS,2(j, ∅),

which has the form (5.14) with m = 2, n = 88, pS(0) = P(X ∈ {8, 9} or Y ∈
{8, 9}), and aS(0) = 0. It remains to evaluate T1, T2, and T3 of the lemma.
For this we need to evaluate aS,l(j, k) and aS,l(j, ∅) in (5.20).

Observe that

aS,l(j, k)
= E[GST | X ∈ S, Y = j, X3 = k]

=
∑

i∈S

P(X = i, Y = j, X3 = k)
P(X ∈ S, Y = j, X3 = k)

E[GST | X = i, Y = j, X3 = k]

=
∑

i∈S

P(X = i | X ∈ S)E[GST | X = i, Y = j, X3 = k] (5.23)

if k *= ∅ and that

aS,l(j, ∅)
= E[GST | X ∈ Sc, Y = j, X3 = ∅]

=
∑

i∈Sc

P(X = i, Y = j, X3 = ∅)
P(X ∈ Sc, Y = j, X3 = ∅)

E[GST | X = i, Y = j, X3 = ∅]

=
∑

i∈Sc

P(X = i | X ∈ Sc)E[GST | X = i, Y = j, X3 = ∅]. (5.24)

Let us define the function M : Z+ +→ {0, 1, . . . , 9} by M(r) ≡ r (mod 10).
Then there are four cases to consider:

Case 1. i ∈ S, (j, k) ∈ T , k *= ∅. Here

E[GST | X = i, Y = j, X3 = k]
= P(M(i + k) > M(j + Y3) | X = i, Y = j, X3 = k)

− P(M(i + k) < M(j + Y3) | X = i, Y = j, X3 = k)

=
M(i + k) + 3 · 1{M(i+k)>j}

13
−

9−M(i + k) + 3 · 1{M(i+k)<j}

13

=
2M(i + k)− 9 + 3 sgn(M(i + k)− j)

13
. (5.25)
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Case 2. i ∈ S, (j, k) ∈ T c, k *= ∅. Here

E[GST | X = i, Y = j, X3 = k] = 1{M(i+k)>j} − 1{M(i+k)<j}

= sgn(M(i + k)− j). (5.26)

Case 3. i ∈ Sc, (j, ∅) ∈ T . Here

E[GST | X = i, Y = j, X3 = ∅]
= P(i > M(j + Y3) | X = i, Y = j, X3 = ∅)

− P(i < M(j + Y3) | X = i, Y = j, X3 = ∅)

=
i + 3 · 1{i>j}

13
−

9− i + 3 · 1{i<j}

13

=
2i− 9 + 3 sgn(i− j)

13
. (5.27)

Case 4. i ∈ Sc, (j, ∅) ∈ T c. Here

E[GST | X = i, Y = j, X3 = ∅] = 1{i>j} − 1{i<j} = sgn(i− j). (5.28)

Finally, by (5.17) and (5.18), we have

P(X = i | X ∈ S) = (16 + 9δi,0)/(16|S| + 9), i ∈ S, (5.29)
P(X = i | X ∈ Sc) = 1/|Sc|, i ∈ Sc. (5.30)

This suffices to complete the evaluation of (5.23) and (5.24). For example,
substituting (5.29) and either (5.25) or (5.26) into (5.23), we find that

aS4,1(5, 4) =
∑

i∈S4

P(X = i | X ∈ S4)E[GS4T | X = i, Y = 5, X3 = 4]

=
4∑

i=0

16 + 9δi,0

89
2M(i + 4)− 9 + 3 sgn(M(i + 4)− 5)

13

=
300

1,157
(5.31)

and

aS4,2(5, 4) =
∑

i∈S4

P(X = i | X ∈ S4)E[GS4T | X = i, Y = 5, X3 = 4]

=
4∑

i=0

16 + 9δi,0

89
sgn(M(i + 4)− 5) =

23
89

=
299

1,157
. (5.32)

The distinction between the first sums in (5.31) and (5.32), which appear
identical, is that (5, 4) ∈ T in (5.31), while (5, 4) /∈ T in (5.32).
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In Table 5.3, we display (1,365)aS5,1(j, k) and (1,365)aS5,2(j, k), and in
Table 5.4, we display (1,157)aS4,1(j, k) and (1,157)aS4,2(j, k), in both cases
for j = 0, 1, . . . , 7 and k = 0, 1, . . . , 9, ∅. This tells us what T1, T2, and T3

are, and the results are summarized in Table 5.2. T1 (resp., T2) is the set of
pairs (j, k) for which the first (j, k) entry is greater than (resp., is less than)
the second in both Table 5.3 and Table 5.4. In particular, |T3| = 4.

Table 5.2 Banker’s optimal move in chemin de fer, indicated by D (draw)
or S (stand), except in the four cases indicated by ∗ in which it depends on
player’s strategy.

banker’s player’s third card (∅ if player stands)
two-card

total 0 1 2 3 4 5 6 7 8 9 ∅

0–2 D D D D D D D D D D D
3 D D D D D D D D S ∗ D
4 S ∗ D D D D D D S S D
5 S S S S ∗ D D D S S D
6 S S S S S S D D S S ∗
7 S S S S S S S S S S S

Requiring that banker make the optimal move in the 84 cases that do not
depend on player’s strategy, we have reduced the game to a 2 × 24 matrix
game, and our next step is to find the resulting payoff matrix. Banker’s 16
remaining strategies are described by whether he draws or stands in the four
uncertain cases, namely (j, k) = (3, 9), (4, 1), (5, 4), (6, ∅) (in that order). For
example, the strategy DSDS corresponds to banker drawing with (j, k) ∈
{(3, 9), (5, 4)} and standing with (j, k) ∈ {(4, 1), (6, ∅)}.

It suffices to use equations (5.22), etc., together with
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pS(j, k) :=
16|S| + 9

169
16 + 9δj,0

169
1 + 3δk,0

13
,

pS(j, ∅) :=
16|Sc|
169

16 + 9δj,0

169
,

(5.33)

to obtain the 2 × 16 payoff matrix, of which, for typographical reasons, we
display the transpose multiplied by (13)6/16 in Table 5.5. Keep in mind that
the entries are player’s expected profits.

We can reduce this payoff matrix using strict dominance. Specifically,
strategies DDSS, SDDS, and SDSS are strictly dominated by strategy DSDS.
In addition, strategies DDSD, SDDD, and SDSD are strictly dominated by
strategy DSDD. This leaves us with the 2× 10 payoff matrix of Table 5.6.

In Example 5.2.7 on p. 184 we will find the optimal strategies for player
and banker. ♠

It would be instructive to include some examples of game theory applied
to poker, but we postpone them to Section 22.2.
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Table 5.5 Transpose of 2 × 16 payoff matrix, multiplied by (13)6/16, for
chemin de fer, obtained by application of Lemma 5.1.3.

player player
draws stands

to 5 on 5
DDDD
DDDS
DDSD
DDSS
DSDD
DSDS
DSSD
DSSS
SDDD
SDDS
SDSD
SDSS
SSDD
SSDS
SSSD
SSSS





−2,585 −4,126
−4,457 −3,710
−2,586 −4,111
−4,458 −3,695
−2,692 −4,121
−4,564 −3,705
−2,693 −4,106
−4,565 −3,690
−2,656 −4,021
−4,528 −3,605
−2,657 −4,006
−4,529 −3,590
−2,763 −4,016
−4,635 −3,600
−2,764 −4,001
−4,636 −3,585





Table 5.6 Transpose of 2 × 10 payoff matrix, multiplied by (13)6/16, for
chemin de fer, obtained from Table 5.5 by strict dominance.

player player
draws stands

to 5 on 5
DDDD
DDDS
DSDD
DSDS
DSSD
DSSS
SSDD
SSDS
SSSD
SSSS





−4,126 −2,585
−3,710 −4,457
−4,121 −2,692
−3,705 −4,564
−4,106 −2,693
−3,690 −4,565
−4,016 −2,763
−3,600 −4,635
−4,001 −2,764
−3,585 −4,636






