
1

BACKEND DESIGN

Basic Concepts in VLSI Physical 
Design Automation



2

3

VLSI Design Cycle

• Large number of devices

• Optimization requirements 
for high performance

• Time-to-market competition

• Cost

System 
Specifications

Chip

Manual Automation

November 3, 2015 Backend Design

4

VLSI Design Cycle (contd.)

1. System specification

2. Functional design

3. Logic design

4. Circuit design

5. Physical design

6. Design verification

7. Fabrication

8. Packaging, testing, and debugging

November 3, 2015 Backend Design



3

5

Physical Design

• Converts a circuit description into a geometric 
description.

– This description is used for fabrication of the chip.

• Basic steps in the physical design cycle:
1. Partitioning

2. Floorplanning

3. Placement

4. Routing – global and detailed

5. Clock and power routing

6. Others ….

November 3, 2015 Backend Design

6November 3, 2015 Backend Design



4

Floorplanning

November 3, 2015 Backend Design 8

Problem Definition

• Input:
– A set of blocks, both fixed and flexible.

• Area of the block  Ai = wi x hi

• Constraint on the shape of the block (rigid/flexible)
– Pin locations of fixed blocks.
– A netlist.

• Requirements:
– Find locations for each block so that no two blocks overlap.
– Determine shapes of flexible blocks.

• Objectives:
– Minimize area.
– Reduce wire-length for critical nets.



5

November 3, 2015 Backend Design 9

An Example for Rigid Blocks

Module Width Height

A 1 1

B 1 3

C 1 1

D 1 2

E 2 1

A

C

C

AA

A D

D

B

BB

C

AE

D

Some of the Feasible Floorplans

November 3, 2015 Backend Design 10

Design Style Specific Issues

• Full Custom
– All the steps required for general cells.

• Standard Cell
– Dimensions of all cells are fixed.

– Floorplanning problem is simply the placement problem.

– For large netlists, two steps:

• First do global partitioning.

• Placement for individual regions next.

• Gate Array
– Floorplanning problem same as placement problem.



6

November 3, 2015 Backend Design 11

Estimating Cost of a Floorplan

• The number of feasible solutions of a floorplanning 
problem is very large.
– Finding the best solution is NP-hard.

• Several criteria used to measure the quality of 
floorplans:

a) Minimize area

b) Minimize total length of wire

c) Maximize routability

d) Minimize delays

e) Any combination of above

November 3, 2015 Backend Design 12

Contd.

• How to determine area?
– Not difficult.
– Can be easily estimated because the dimensions of each 

block is known.
– Area A computed for each candidate floorplan.

• How to determine wire length?
– A coarse measure is used.
– Based on a model where all I/O pins of the blocks are 

merged and assumed to reside at its center.
– Overall wiring length  L = i,j (cij * dij) 

where cij : connectivity between blocks i and j  
dij : Manhattan distances between the

centres of rectangles of blocks i and j



7

November 3, 2015 Backend Design 13

Contd.

• Typical cost function used:
Cost  =  w1 * A  +  w2 * L

where w1 and w2 are user-specified parameters.

November 3, 2015 Backend Design 14

Slicing Structure

• Definition
– A rectangular dissection that can be obtained by repeatedly 

splitting rectangles by horizontal and vertical lines into 
smaller rectangles.

• Slicing Tree
– A binary tree that models a slicing structure.

– Each node represents a vertical cut line (V), or a horizontal 
cut line (H).

• A third kind of node called Wheel (W) appears for non-
sliceable floorplans (discussed later).

– Each leaf is a basic block (rectangle).



8

November 3, 2015 Backend Design 15

A Slicing Floorplan and its Slicing Tree

IH

GF
ED

C

B
A

V

H

VVV

V

HH

CB

EDIHGF A

November 3, 2015 Backend Design 16

Slicing Tree is not Unique

G

DC

B

A

FE

C ED F

B GA

V

H H

H

V V

B

G

A

V

H H

V

V H

C D

E F



9

November 3, 2015 Backend Design 17

A Non-Slicing Floorplan

E

D

C

B

A

Also called “WHEEL”

C EDBA

W

November 3, 2015 Backend Design 18

A Hierarchical Floorplan

E DC

B

A I

H

G

F

L

K

J
The dissection tree will

contain “wheel”.



10

November 3, 2015 Backend Design 19

Floorplanning Algorithms 

• Several broad classes of algorithms:
– Integer programming based

– Rectangular dual graph based

– Hierarchical tree based

– Simulated annealing based

– Other variations

November 3, 2015 Backend Design 20

Rectangular Dual-Graph Approach

• Basic Concept:
– Output of partitioning algorithms represented by a graph.

– Floorplans can be obtained by converting the graph into its 
rectangular dual.

• The rectangular dual of a graph satisfies the 
following properties:
– Each vertex corresponds to a distinct rectangle.

– For every edge, the corresponding rectangles are adjacent.



11

November 3, 2015 Backend Design 21

A Rectangular Floorplan & its Dual Graph

• Without loss of generality, 
we assume that a 
rectangular floorplan 
contains no cross 
junctions.

• Under this assumption, the 
dual graph of a rectangular 
floorplan is a planar 
triangulated graph (PTG).

5
43

2
1

543

21

November 3, 2015 Backend Design 22

Contd.

• Every dual graph of a rectangular floorplan (without cross 
junction) is a PTG.

• However, not every PTG corresponds to a rectangular 
floorplan.

344 3

21 21

32

41

Complex 
triangle

Replace by



12

November 3, 2015 Backend Design 23

Drawbacks

• A new approach to floorplanning, in which many 
sub-problems are still unsolved.

• The main problem concerns the existence of the 
rectangular dual, i.e. the elimination of complex 
triangles.
– Select a minimum set E of edges such that each complex 

triangle has at least one edge in E.
– A vertex can be added to each edge of E to eliminate all 

complex triangles.
– The weighted complex triangle elimination problem has 

been shown to be NP-complete.
• Some heuristics are available.

Placement



13

Backend Design 25

The Placement Problem

• Inputs:
– A set of modules with 

• well-defined shapes

• fixed locations of pins.

– A netlist.

• Requirements:
– Find locations for each module so that no two modules overlap.

– The placement is routable.

• Objectives:
– Minimize layout area.

– Reduce the length of critical nets.

– Completion of routing.

November 3, 2015

Backend Design 26

Problem Formulation

• Notations:
B1,B2,…, Bn :   modules/blocks to be placed

wi, hi :   width and height of Bi, 1  i  n 

N={N1,N2,…,Nm} :   set of nets (i.e. the netlist)

Q={Q1,Q2,…,Qk} :   rectangular empty spaces for routing

Li :   estimated length of net Ni, 1  i  m

November 3, 2015



14

Backend Design 27

Contd.

• The problem
Find rectangular regions R={R1,R2,...Rn} for each of the blocks 

such that
• Block Bi can be placed in region Ri.

• No two rectangles overlap, RiRj = .

• Placement is routable (Q is sufficient to route all nets).

• Total area of rectangle bounding R and Q is minimized.

• Total wire length  Li is minimized.

• For high performance circuits, max {Li | i=1,2,…,m} is 
minimized.

• General problem is NP-complete.

• Algorithms used are heuristic in nature.

November 3, 2015

Backend Design 28November 3, 2015



15

Backend Design 29

Interconnection Topologies

• The actual wiring paths are not known during 
placement.
– For making an estimation, a placement algorithm needs to 

model the topology of the interconnection nets.

• An interconnection graph structure is used.

• Vertices are terminals, and edges are interconnections.

November 3, 2015

Backend Design 30

Estimation of Wirelength

• The speed and quality of estimation has a drastic 
effect on the performance of placement algorithms.
– For 2-terminal nets, we can use Manhattan distance as an 

estimate.

– If the end co-ordinates are (x1,y1) and (x2,y2), then the wire 
length

L =  x1 – x2  +  y1 – y2

• How to estimate length of multi-terminal nets?

November 3, 2015



16

Backend Design 31

Modeling of Multi-terminal Nets

1. Complete Graph
• nC2 = n(n-1)/2 edges for a n-pin net.
• A tree has (n-1) edges which is 2/n times the number 

of edges of the complete graph.
• Length is estimated as 2/n times the sum of the edge 

weights.

2. Minimum Spanning Tree
• Commonly used structure.
• Branching allowed only at pin locations.
• Easy to compute.

November 3, 2015

Backend Design 32

Contd.

3. Rectangular Steiner Tree
• A Steiner tree is the shortest route for connecting a 

set of pins.
• A wire can branch from any point along its length.
• Problem of finding Steiner tree is NP-complete.

4. Semi Perimeter 
• Efficient and most widely used.
• Finds the smallest bounding rectangle that encloses 

all the pins of the net to be connected.
• Estimated wire length is half the perimeter of this 

rectangle.
• Always underestimates the wire length for congested 

nets.

November 3, 2015



17

Backend Design 33

Example
Complete Graph Minimum Spanning Tree

Semi PerimeterSteiner Tree

November 3, 2015

Backend Design 34

Design Style Specific Issues

• Full Custom
– Placing a number of blocks of various shapes and sizes 

within a rectangular region.

– Irregularity of block shapes may lead to unused areas.

• Standard Cell
– Minimization of the layout area means:

• Minimize sum of channel heights.

• Minimize width of the widest row.

• All rows should have equal width.

– Over-the-cell routing leads to almost “channel-less” 
standard cell designs.

November 3, 2015



18

Backend Design 35

• Gate Arrays
– The problem of partitioning and placement are the same in 

this design style.

– For FPGA’s, the partitioned sub-circuit may be a complex 
netlist.

• Map the netlist to one or more basic blocks (placement).

November 3, 2015

Backend Design 36

Classification of Placement Algorithms

Placement Algorithms

OtherSimulation Based Partitioning Based

Simulated Annealing

Simulated Evolution

Force Directed

Breuer’s Algorithm

Terminal Propagation

Cluster Growth

Force Directed

November 3, 2015



19

Backend Design 37

Simulated Annealing

• Simulation of the annealing process in metals or 
glass.
– Avoids getting trapped in local minima.

– Starts with an initial placement.

– Incremental improvements by exchanging blocks, 
displacing a block, etc.

– Moves which decrease cost are always accepted.

– Moves which increase cost are accepted with a probability 
that decreases with the number of iterations.

• Timberwolf is one of the most successful placement 
algorithms based on simulated annealing.

November 3, 2015

Backend Design 38

Simulated Annealing Algorithm

Algorithm  SA_Placement
begin

T = initial_temperature;
P = initial_placement;
while  ( T > final_temperature)  do

while  (no_of_trials_at_each_temp not yet completed) do
new_P = PERTURB (P);
C = COST (new_P) – COST (P);
if  (C < 0)  then

P = new_P;
else if  (random(0,1) > exp(C/T))  then

P = new_P;
T = SCHEDULE (T);        /** Decrease temperature **/

end

November 3, 2015



20

Backend Design 39

TimberWolf

• One of the most successful placement algorithms.
– Developed by Sechen and Sangiovanni-Vincentelli.

• Parameters used:
– Initial_temperature = 4,000,000

– Final_temperature = 0.1

– SCHEDULE(T) = (T) x T

• (T) specifies the cooling rate which depends on the 
current temperature.

• (T) is 0.8 when the cooling process just starts.

• (T) is 0.95 in the medium range of temperature.

• (T) is 0.8 again when temperature is low.

November 3, 2015

Backend Design 40

The SCHEDULE Function

November 3, 2015



21

Backend Design 41

The PERTURB Function

• New configuration is generated by making a 
weighted random selection from one of the 
following:

a) The displacement of a block to a new location.

b) The interchange of locations between two blocks.

c) An orientation change for a block.
– Mirror image of the block’s x-coordinate.

– Used only when a new configuration generated using 
alternative (a) is rejected.

November 3, 2015

Backend Design 42

The COST Function

• The cost of a solution is computed as:
COST  =  cost1  +  cost2  + cost3

where cost1 : weighted sum of estimated length of all nets

cost2 :  penalty cost for overlapping

cost3 :  penalty cost for uneven length among

standard cell rows.

– Overlap is not allowed in placement.

– Computationally complex to remove all overlaps.

– More efficient to allow overlaps during intermediate 
placements.

• Cost function (cost2) penalizes the overlapping. 

November 3, 2015



22

Grid Routing

Backend Design 44

Introduction

• In the VLSI design cycle, routing follows cell 
placement.

• During routing, precise paths are defined on the 
layout surface, on which conductors carrying 
electrical signals are run.

• Routing takes up almost 30% of the design time, 
and a large percentage of layout area.

• We first take up the problem of grid routing.

November 3, 2015



23

Backend Design 45

What is Grid Routing?

• The layout surface is assumed to be made up of a 
rectangular array of grid cells.

• Some of the grid cells act as obstacles.
– Blocks that are placed on the surface.
– Some nets that are already laid out.

• Objective is to find out a path (sequence of grid 
cells) for connecting two points belonging to the 
same net.

• Two broad class of algorithms:
– Maze routing algorithms.
– Line search algorithms.

November 3, 2015

Backend Design 46

S

T

November 3, 2015



24

Backend Design 47

Problem Definition

• The general routing problem is defined as follows.

• Given:
– A set of blocks with pins on the boundaries.

– A set of signal nets.

– Locations of blocks on the layout floor.

• Objective:
– Find suitable paths on the available layout space, on which 

wires are run to connect the desired set of pins.

– Minimize some given objective function, subject to given 
constraints.

November 3, 2015

Backend Design 48

Contd.

• Types of constraints:
– Minimum width of routing wires.

– Minimum separation between adjacent wires.

– Number of routing layers available.

– Timing constraints.

November 3, 2015



25

Backend Design 49

Grid Routing Algorithms

1. Maze running algorithm
– Lee’s algorithm

– Hadlock’s algorithm

2. Line search algorithm
– Mikami-Tabuchi’s algorithm

– Hightower’s algorithm

3. Steiner tree algorithm

November 3, 2015

Backend Design 50

Maze Running Algorithms

• The entire routing surface is represented by a 2-D 
array of grid cells.
– All pins, wires and edges of bounding boxes that enclose 

the blocks are aligned with respect to the grid lines.
– The segments on which wires run are also aligned.
– The size of grid cells is appropriately defined.

• Wires belonging to different nets can be routed through 
adjacent cells without violating the width and spacing 
rules.

• Maze routers connect a single pair of points at a 
time.
– By finding a sequence of adjacent cells from one point to 

the other.

November 3, 2015



26

Backend Design 51

Lee’s Algorithm

• The most common maze routing algorithm.

• Characteristics:
– If a path exists between a pair of points S and T, it is 

definitely found.

– It always finds the shortest path.

– Uses breadth-first search.

• Time and space complexities are O(N2) for a grid of 
dimension NN.

November 3, 2015

Backend Design 52

Phase 1 of Lee’s Algorithm

• Wave propagation phase
– Iterative process.

– During step i, non-blocking grid cells at Manhattan distance 
of i from grid cell S are all labeled with i.

– Labeling continues until the target grid cell T is marked in 
step L.

• L is the length of the shortest path.

– The process fails if:

• T is not reached and no new grid cells can be labeled 
during step i.

• T is not reached and i equals M, some upper bound on 
the path length.

November 3, 2015



27

Backend Design 53

Phase 2 of Lee’s Algorithm

• Retrace phase
– Systematically backtrack from the target cell T back 

towards the source cell S.

– If T was reached during step i, then at least one grid cell 
adjacent to it will be labeled i-1, and so on.

– By tracing the numbered cells in descending order, we can 
reach S following the shortest path.

• There is a choice of cells that can be made in general.

• In practice, the rule of thumb is not to change the 
direction of retrace unless one has to do so.

• Minimizes number of bends.

November 3, 2015

Backend Design 54

Phase 3 of Lee’s Algorithm

• Label clearance
– All labeled cells except those corresponding to the path 

just found are cleared.

– Search complexity is as involved as the wave propagation 
step itself.

November 3, 2015



28

Backend Design 55

S

T

November 3, 2015

Backend Design 56

• Memory Requirement
– Each cell needs to store a number between 1 and L, where 

L is some bound on the maximum path length.

– One bit combination to denote empty cell.

– One bit combination to denote obstacles.

log2(L+2) bits per cell

November 3, 2015



29

Backend Design 57

• Improvements:

– Instead of using the sequence 1,2,3,4,5,….. for numbering 
the cells, the sequence 1,2,3,1,2,3,… is used.

• For a cell, labels of predecessors and successors are 
different. So tracing back is easy.

log2(3+2) = 3 bits per cell. 

– Use the sequence 0,0,1,1,0,0,1,1,…..

• Predecessors and successors are again different.

log2(2+2) = 2 bits per cell.

November 3, 2015

Backend Design 58

S

T

November 3, 2015



30

Backend Design 59

Reducing Running Time

• Starting point selection
– Choose the starting point as the one that is farthest from 

the center of the grid.

• Double fan-out
– Propagate waves from both the source and the target cells.

– Labeling continues until the wavefronts touch.

• Framing
– An artificial boundary is considered outside the terminal 

pairs to be connected.

– 10-20% larger than the smallest bounding box.

November 3, 2015

Global Routing



31

Backend Design 61

Basic Idea

• The routing problem is typically solved using a two-
step approach:
– Global Routing

• Define the routing regions.
• Generate a tentative route for each net.
• Each net is assigned to a set of routing regions.
• Does not specify the actual layout of wires.

– Detailed Routing
• For each routing region, each net passing through that 

region is assigned particular routing tracks.
• Actual layout of wires gets fixed.
• Associated subproblems: channel routing and 

switchbox routing.

November 3, 2015

Backend Design 62

Routing Regions

• Regions through which interconnecting wires are 
laid out.

• How to define these regions?
– Partition the routing area into a set of non-intersecting 

rectangular regions.

– Types of routing regions:

• Horizontal channel: parallel to the x-axis with pins at 
their top and bottom boundaries.

• Vertical channel: parallel to the y-axis with pins at their 
left and right boundaries.

• Switchbox: rectangular regions with pins on all four 
sides.

November 3, 2015



32

Backend Design 63

• Points to note:
– Identification of routing regions is a crucial first step to 

global routing.

– Routing regions often do not have pre-fixed capacities.

– The order in which the routing regions are considered 
during detailed routing plays a vital part in determining 
overall routing quality.

November 3, 2015

Backend Design 64

Types of Channel Junctions

• Three types of channel junctions may occur:
– L-type: 

• Occurs at the corners of the layout surface.
• Ordering is not important during detailed routing.
• Can be routed using channel routers.

– T-type:
• The leg of the “T” must be routed before the shoulder.
• Can be routed using channel routers.

– +-type:
• More complex and requires switchbox routers.
• Advantageous to convert +-junctions to T-junctions.

November 3, 2015



33

Backend Design 65

Illustrations

L Type T Type
+ Type

November 3, 2015

Backend Design 66

Graph Models used in Global 
Routing

• Global routing is typically studied as a graph 
problem.
– Routing regions and their relationships modeled as 

graphs.

• Three important graph models:
1. Grid Graph Model

– Most suitable for area routing

2. Channel Intersection Graph Model

– Most suitable for global routing

November 3, 2015



34

Backend Design 67

Grid Graph Model

• A layout is considered to be a collection of unit side 
square cells (grid).

• Define a graph:
– Each cell ci is represented as a vertex vi.
– Two vertices vi and vj are joined by an edge if the 

corresponding cells ci and cj are adjacent.
– A terminal in cell ci is assigned to the corresponding vertex 

vi.
– The occupied cells are represented as filled circles, 

whereas the others as clear circles.
– The capacity and length of each edge is set to one.

• Given a 2-terminal net, the routing problem is to find 
a path between the corresponding vertices in the 
grid graph.

November 3, 2015

Backend Design 68

Grid Graph Model :: Illustration

November 3, 2015



35

Backend Design 69

Channel Intersection Graph

• Most general and accurate model for global routing.

• Define a graph:
– Each vertex vi represents a channel intersection CIi.

– Channels are represented as edges.

– Two vertices vi and vj are connected by an edge if there 
exists a channel between CIi and CIj.

– Edge weight represents channel capacity.

November 3, 2015

Backend Design 70

Illustration

November 3, 2015



36

Backend Design 71

Extended Channel Intersection 
Graph

• Extension of the channel intersection graph.
– Includes the pins as vertices so that  the connections 

between the pins can be considered.

• The global routing problem is simply to find a path 
in the channel intersection graph.
– The capacities of the edges must not be violated.

– For 2-terminal nets, we can consider the nets sequentially.

– For multi-terminal nets, we can have an approximation to 
minimum Steiner tree.

November 3, 2015

Backend Design 72

Illustration

November 3, 2015



37

Detailed Routing

Backend Design 74

Detailed Routing

• Find actual geometric layout of each net within 
assigned routing regions.

• No layouts of two different nets should intersect on 
the same layer.

• Problem is solved incrementally, one region at a 
time in a predefined order.

Detailed Routing

Global Routing

Compaction

November 3, 2015



38

Backend Design 75

A Routing Example

November 3, 2015

Backend Design 76

After Global Routing

• The two-stage routing method is a powerful 
technique for routing in VLSI circuits.

• During the global routing stage
– The routing region is partitioned into a collection of 

rectangular regions.

– To interconnect each net, a sequence of sub-regions to be 
used is determined.

– All nets crossing a given boundary of a routing region are 
called floating terminals.

– Once the sub-region is routed, these floating terminals 
become fixed terminals for subsequent regions.

November 3, 2015



39

Backend Design 77

Order of Routing Regions

• Slicing placement topology
• Nets can be routed by 

considering channels 1, 2 and 3 
in order.

• Non-slicing placement 
topology.

• Channels with cyclic 
constraints.

• Some of the routing regions are 
to be considered as 
switchboxes.

4

32

1

3

2

1

November 3, 2015

Backend Design 78

Channels and Switchboxes

• There are normally two kinds of rectilinear regions.
– Channels: routing regions having two parallel rows of fixed 

terminals.

– Switchboxes: generalizations of channels that allow fixed 
terminals on all four sides of the region.

Channel Switchbox

November 3, 2015



40

Backend Design 79

Channel Routing

• In channel routing, interconnections are made 
within a rectangular region having no obstructions.
– A majority of modern-day ASIC’s use channel routers.

– Algorithms are efficient and simple.

– Guarantees 100% completion if channel width is adjustable.

• Some terminologies:
– Track: horizontal row available for routing.

– Trunk: horizontal wire segment.

– Branch: vertical wire segment connecting trunks to 
terminals.

– Via: connection between a branch and a trunk.

November 3, 2015

Backend Design 80

Channel Routing Problem :: Terminologies

22

11

1

0

30

33

Upper boundary

Lower boundary

Net list::   TOP =  [1  2  0  2  3 ]

BOT =  [3  3  1  1  0 ]

11 033

221 30

November 3, 2015



41

Backend Design 81

Problem Formulation

• The channel is defined by a rectangular region with 
two rows of terminals along its top and bottom 
sides.
– Each terminal is assigned a number between 0 and N.

– Terminals having the same label i belong to the same net i.

– A ‘0’ indicates no connection.

• The netlist is usually represented by two vectors 
TOP and BOT.
– TOP(k) and BOT(k) represents the labels on the grid points 

on the top and bottom sides of the channel in column k, 
respectively.

November 3, 2015

Backend Design 82

Contd.

• The task of the channel router is to:
– Assign horizontal segments of nets to tracks.

– Assign vertical segments to connect

• Horizontal segments of the same net in different tracks.

• The terminals of the net to horizontal segments of the 
net.

• Channel height should be minimized.

• Horizontal and vertical constraints must not be 
violated.

November 3, 2015



42

Backend Design 83

Contd.

• Horizontal constraints between two nets:
– The horizontal span of two nets overlaps each other.

– The nets must be assigned to separate tracks.

• Vertical constraints between two nets:
– There exists a column such that the terminal i on top of the 

column belongs to one net, and the terminal j on bottom of 
the column belongs to the other net.

– Net i must be assigned a track above that for net j.

November 3, 2015

Backend Design 84

Horizontal Constraint Graph (HCG)

• It is a graph where vertices represent nets, and 
edges represent horizontal constraints.

321

01120251

03

043

004352 3

1

2

5

4

November 3, 2015



43

Backend Design 85

Vertical Constraint Graph (VCG)

• It is a directed graph where vertices represent nets, 
and edges represent vertical constraints.

30

04301120251

04352103 2

1

5

4

3

2

November 3, 2015

Backend Design 86

Two-layer Channel Routing

• Left-Edge Algorithms (LEA)
– Basic Left-Edge Algorithm

– Left-Edge Algorithm with Vertical Constraints

– Dogleg Router

• Constraint-Graph Based Algorithm
– Net Merge Channel Router

– Gridless Channel Router

• Greedy Channel Router

• Hierarchical Channel Router

November 3, 2015



44

Backend Design 87

Basic Left Edge Algorithm

• Assumptions:
– Only two-terminal nets.

– No vertical constraints.

– HV layer model.

– Doglegs are not allowed.

• Basic Steps:
– Sort the nets according to the x-coordinate of the leftmost 

terminal of the net.

– Route the nets one-by-one according to the order.

– For a net, scan the tracks from top to bottom, and assign it 
to the first track that can accommodate it.

• In the absence of vertical constraints, the algorithm 
produces a minimum-track solution.

November 3, 2015

Backend Design 88

Contd.

• Extension to Left-Edge Algorithm
– Vertical constraints may exist, but there are no directed 

cycles in the VCG.

– Select a net for routing if
• The x-coordinate of the leftmost terminal is the least.

• There is no edge incident on the vertex corresponding to that 
net in the VCG.

– After routing a net, the corresponding vertex and the 
incident edges are deleted from the VCG.

– Other considerations same as the basic left-edge algorithm.

November 3, 2015



45

Backend Design 89

Illustration
00574524101

7680630320 0 0

8

1 3

2

87

65 VCG
November 3, 2015

Backend Design 90

Dogleg Router

• Drawback of LEA
– The entire net is on a single track.

– Sometimes leads to routing with more tracks than 
necessary.

• Doglegs are used to place parts of the same net on 
different tracks.
– A dogleg is a vertical segment that connects two trunks 

located in two different tracks.

– May lead to a reduction in channel height.

November 3, 2015



46

Backend Design 91

Contd.

• Dogleg router allows multi-terminal nets and vertical 
constraints.
– Multi-terminal nets can be broken into a series of two-

terminal nets.

• Cannot handle cyclic vertical constraints.

November 3, 2015

Backend Design 92

Example

0

3

23211

30002

23211

30002

0

3

No dogleg
3 tracks

With dogleg
2 tracks

November 3, 2015



47

Backend Design 93

Dogleg Router: Algorithm

• Step 1:
– If cycle exists in the VCG, return with failure.

• Step 2:
– Split each multi-terminal net into a sequence of 2-terminal 

nets.
• A net 2 .. 2 .. 2 will get broken as 2a .. 2a 2b .. 2b.

– HCG and VCG gets modified accordingly.

• Step 3:
– Apply the extended left-edge algorithm to the modified 

problem.

November 3, 2015

Backend Design 94

Illustration
00342210

44033021

003b4a2b
2a
2b10

4b4a
4b

03a
3b

3a02a1

1

3

2

4

1 2a

2b 3a

4a 3b

November 3, 2015



48

Backend Design 95

003b4a2b
2a
2b10

4b4a
4b

03a
3b

3a02a1

1

2a

2b

3a       3b

4b4a

November 3, 2015

Clock Routing



49

Backend Design 97

Problem Formulation

• Specialized algorithms are required for clock (and 
power nets) due to strict specifications for routing 
such nets.
– Better to develop specialized routers for these nets.

– Do not over-complicate the general router.

– In many designs, both these nets are manually routed.

• Sophisticated and accurate clock routing tools are a 
must for high-performance designs.

November 3, 2015

Backend Design 98

Clock Routing

• Clock synchronization is one of the most critical 
considerations in designing high-performance VLSI 
circuits.
– Data transfer between functional elements is synchronized 

by the clock.

– It is desirable to design a circuit with the fastest possible 
clock.

• The clock signal is typically generated external to 
the chip.
– Provided to the chip through “clock pin”.

November 3, 2015



50

Backend Design 99

Contd.

– Each functional unit which needs the clock is connected to 
clock pin by the clock net.

– Ideally, the clock must arrive at all the functional units 
precisely at the same time.

– In practice, clock skew exists.

• Maximum difference in the arrival time of a clock at two 
different components.

• Forces the designer to be conservative.

– Use a large time period between clock pulses, i.e. lower 
clock frequency.

November 3, 2015

Backend Design 100

Clocking Schemes

• The clock is a simple pulsating signal 
alternating between 0 and 1.

• Digital systems use a number of clocking 
schemes:

1. Single-phase clocking with latches
2. Single-phase clocking with flip-flops
3. Two-phase clocking

Clock period t

CLK

November 3, 2015



51

Backend Design 101

Clocking Schemes:: Contd.

• As a rule of thumb, most systems cannot tolerate a 
clock skew of more than 10% of the system clock 
period.
– A good clock distribution strategy is necessary.

– Also a requirement for designing high-performance 
circuits.

November 3, 2015

Backend Design 102

Clock Buffering Mechanisms

• Clock signal is global in nature.
– Clock lines are typically very long.
– Long wires have large capacitances, which limit the 

performance of the system.
– RC delay plays a big factor.

• RC delay cannot be reduced by making the wires 
wider.
– Resistance reduces, but capacitance increases.

• To reduce RC delay, buffers are used.
– Also helps to preserve the clock waveform.
– Significantly reduces the delay.
– May occupy as much as 5% of the total chip area.

November 3, 2015



52

Backend Design 103

Clock Buffering:: Approach 1

• Use a big, centralized buffer.
– Better from skew minimization point of view.

November 3, 2015

Backend Design 104

Clock Buffering:: Approach 2

• Distribute buffers in the branches of the clock tree.
– Use identical buffers so that the delay introduced by the 

buffers is equal in all branches.

• Regular layout of the clock tree, and equalization of 
the buffer loads help to reduce clock skew.

November 3, 2015



53

Backend Design 105November 3, 2015

Backend Design 106

Clock Routing Algorithms

• How to minimize skew?
– Distribute the clock signal in such a way that the 

interconnections carrying the clock signal to functional 
sub-blocks are equal in length.

• Several clock routing algorithms exist which try to 
achieve this goal.
– H-tree based algorithm

– X-tree based algorithm

– MMM algorithm

– Weighted center algorithm

– Zero clock skew routing

November 3, 2015



54

Backend Design 107

H-tree based Algorithm

• Consider that all clock terminals are arranged in a 
symmetrical fashion, as in the case of gate arrays.

November 3, 2015

Backend Design 108

Contd.

– In (a), all points are exactly 7 units from the point P0, and 
hence the skew is zero.

– This ensures minimum-delay routing as well.
• P0 and P3 are at a distance 7 (rectilinear distance).

– Can be generalized to n points, where n is a power of 4.

November 3, 2015



55

Power and Ground Routing

Backend Design 110

Basic Problem

• In a design, almost all blocks require power and 
ground connections.

• Power and ground nets are usually laid out entirely 
on the metal layer(s) of the chip.
– Due to smaller resistivity of metal.

– Planar single-layer implementation is desirable since 
contacts (via’s) also significantly add to the parasitics.

• Routing of power (VDD) and ground (GND) nets 
consists of two main tasks:
– Construction of interconnection topology.

– Determination of the widths of the various segments.

November 3, 2015



56

Backend Design 111

Contd.

• Requirement:
– Find two non-intersecting interconnection trees.

– The width of the trees at any particular point must be 
proportional to the amount of current being drawn by the 
points in that sub-tree.

November 3, 2015

Backend Design 112

Using Grid Structure

• Several rows of horizontal wires for both VDD and 
GND run parallel to each other on one metal layer.

• The vertical wires run in another metal layer and 
connect the horizontal wires.

• A block simply connects to the nearest VDD and 
GND wire.

November 3, 2015



57

Backend Design 113November 3, 2015


