
Backpropagation Through Time: What It 
Does and How to Do It 

PAUL J. WERBOS 

Backpropagation is now the most widely used tool in the field 
of artificial neural networks. At the core of backpropagation is a 
method for calculating derivatives exactly and efficiently in any 
large system made up of elementary subsystems or calculations 
which are represented by known, differentiable functions; thus, 
backpropagation has many applications which do not involve 
neural networks as such. 

This paper first reviews basic backpropagation, a simple method 
which is now being widely used in areas like pattern recognition 
and fault diagnosis. Next, it presents the basic equations for back- 
propagation through time, and discusses applications to areas like 
pattern recognition involving dynamic systems, systems identifi- 
cation, and control. Finally, i t  describes further extensions of this 
method, to deal with systems other than neural networks, systems 
involving simultaneous equations or true recurrent networks, and 
other practical issues which arise with this method. Pseudocode is 
provided to clarify the algorithms. The chain rule for ordered deriv- 
atives-the theorem which underlies backpropagation-is briefly 
discussed. 

I. INTRODUCTION 

Backpropagation through time is a very powerful tool, 
with applications to pattern recognition, dynamic model- 
ing, sensitivity analysis, and the control of systems over 
time, among others. It can be applied to neural networks, 
to econometric models, to fuzzy logic structures, to fluid 
dynamics models, and to almost any system built up from 
elementary subsystems or calculations. The one serious 
constraint i s  that the elementary subsystems must be rep- 
resented by functions known to the user, functions which 
are both continuous and differentiable (i.e., possess deriv- 
atives). For example, the first practical application of back- 
propagation was for estimating a dynamic model to predict 
nationalism and social communications in 1974 [I]. 

Unfortunately, the most general formulation of back- 
propagation can only be used by those who are willing to 
work out the mathematics of their particular application. 
This paper will mainly describe a simpler version of back- 
propagation, which can be translated into computer code 
and applied directly by neural network users. 

Section II will review the simplest and most widely used 
form of backpropagation, which may be called "basic back- 
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propagation."The concepts here will already be familiar to 
those who have read the paper by Rumelhart, Hinton, and 
Williams [21 in the seminal book Parallel Distributed Pro- 
cessing, which played a pivotal role in the development of 
the field. (That book also acknowledged the prior work of 
Parker [3] and Le Cun [4], and the pivotal role of Charles 
Smith of the Systems Development Foundation.) This sec- 
tion will use new notation which adds a bit of generality and 
makes it easier to go on to complex applications in a rig- 
orous manner. (The need for new notation may seem 
unnecessary to some, but for thosewho have to apply back- 
propagation to complex systems, it i s  essential.) 

Section Ill will use the same notation to describe back- 
propagation through time. Backpropagation through time 
has been applied to concrete problems by a number of 
authors, including, at least, Watrous and Shastri [5], Sawai 
and Waibel et al. [6], Nguyen and Widrow [A, Jordan [8], 
Kawato [9], Elman and Zipser, Narendra [IO], and myself [I], 
[Ill, [12], [15]. Section IV will discuss what i s  missing in this 
simplified discussion, and how to do better. 

At its core, backpropagation i s  simply an efficient and 
exact method for calculating all the derivatives of a single 
target quantity (such as pattern classification error) with 
respect to a large set of input quantities (such as the param- 
eters or weights in a classification rule). Backpropagation 
through time extends this method so that it applies to 
dynamic systems. This allows one to calculate the deriva- 
tives needed when optimizing an iterative analysis pro- 
cedure, a neural networkwith memory, or a control system 
which maximizes performance over time. 

II. BASIC BACKPROPACATION 

A. The Supervised Learning Problem 

Basic backpropagation is current the most popular 
method for performing the supervised learning task, which 
i s  symbolized in Fig. 1. 

In supervised learning, we try to adapt an artificial neural 
network so that i t s  actual outputs ( P )  come close to some 
target outputs (Y) for a training set which contains T pat- 
terns. The goal i s  to adapt the parameters of the network 
so that it performs well for patterns from outside the train- 
ing set. 

The main use of supervised learning today lies in pattern 
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Fig. 1. Schematic of the supervised learning task. 

recognition work. For example, suppose that we are trying 
to build a neural network which can learn to recognize 
handwritten ZIP codes. (AT&T has actually done this [13], 
although the details are beyond the scope of this paper.) 
We assume that we already have a camera and preprocessor 
which can digitize the image, locate the five digits, and pro- 
vide a19 x 20 grid of ones and zeros representing the image 
of each digit. We want the neural network to input the 19 
x 20 image, and output a classification; for example, we 
might ask the network to output four binary digits which, 
taken together, identify which decimal digit i s  being 
observed. 

Before adapting the parameters of the neural network, 
one must first obtain a training database of actual hand- 
written digits and correct classifications. Suppose, for 
example, that this database contains 2000 examples of 
handwritten digits. In that case, T = 2000. We may give each 
example a label t between 1 and 2000. For each sample t, 
we have a record of the input pattern and the correct clas- 
sification. Each input pattern consistsof 380numbers,which 
may be viewed as a vector with 380 components; we may 
call this vector X(t). The desired classification consists of 
four numbers, which may be treatedAas a vector Y(t). The 
actual output of the network will be Y ( t ) ,  which may differ 
from thedesired output Y ( t ) ,  especially in the period before 
the network has been adapted. To solve the supervised 
learning problem, there aKe two steps: 

We must specify the "topology" (connections and 
equations) for a network which inputs X ( t )  and outputs a 
four-component vector Y ( t ) ,  an approximation to Y(1). The 
relation between the inputs and outputs must depend on 
a set of weights (parameters) W which can be adjusted. 

We must specify a "learning rule"-a procedure for 
adjusting the weights W so as to make the actual outputs 
P(t )  approximate the desired outputs Y ( t ) .  

Basic backpropagation i s  currently the most popular 
learning rule used in supervised learning. It i s  generally 
used with a very simple network design-to be described 
in the next section-but the same approach can be used 
with any network of differentiable functions, as will be dis- 
cussed in Section IV. 

Even when we use a simple network design, the vectors 
X(t) and Y(t) need not be made of ones and zeros. They can 
be made up of any values which the network i s  capable of 
inputting and outputting. Let us denote the components 
of X ( t )  as Xl(t) * . . X,(t) so that there are m inputs to the 
network. Let us denote the components of Y ( t )  as Vl(t) * * * 

Y,,(t) so that we haven outputs. Throughout this paper, the 
components of a vector will be represented by the same 
letter as the vector itself, in the same case; this convention 
turns out to be convenient because x ( t )  will represent a dif- 
ferent vector, very closely related to X ( t ) .  

Fig. 1 illustrates the supervised learning task in the gen- 

' 

eral case. Given a history of X(1) * * X(T) and Y(1) . . . Y(T), 
we want to find a mapping from X to Y which will perform 
well when we encounter new vectors Xoutside the training 
set. The index "t" may be interpreted either as a time index 
or as a pattern number index; however, this section will not 
assume that the order of patterns i s  meaningful. 

B. Simple Feedforward Networks 

Before we specify a learning rule, we have to define 
exactly how theoutputs of a neural net depend on i t s  inputs 
and weights. In basic backpropagation, we assume the fol- 
lowing logic: 

x ,=X, ,  I s i s m  (1 ) 

(2) 

x, = s(net,), (3) 

Y, = x , + ~ ,  1 5 i I n (4) 

1 - 1  

net, = C w,/x,, m < i I N + n 
/ = I  

m < i I N + n 

where the functions in (3) i s  usually the following sigmoidal 
function: 

s(z) = 1/(1 + e-') (5) 

and where N is  a constant which can be any integer you 
choose as long as it i s  no less than m. The value of N + n 
decides how many neurons are in the network (if we include 
inputs as neurons). Intuitively, net, represents thetotal level 
of voltage exciting a neuron, and x, represents the intensity 
of the resulting output from the neuron. (x, i s  sometimes 
called the "activation level" of the neuron.) It i s  conven- 
tional to assume that there is a threshold or constant weight 
W,, added to the right side of (2); however, we can achieve 
the same effect by assuming that one of the inputs (such 
as X,) i s  always 1 .  

The significance of these equations i s  illustrated in Fig. 
2. There are N + n circles, representing all of the neurons 

X Input 

... - 
1 m m + l  i - 1  i N + l  N+n 

I ... 1 
4 Output 

Fig. 2. Network design for basic backpropagation. 

in the network, including the input neurons. The first rn 
circles are really just copies of the inputs XI . . . X,; they 
are included as part of the vector x only as a way of sim- 
plifying the notation. Every other neuron in the network- 
such as neuron numberi,which calculates net, and x,-takes 
input from every cell which precedes it in the network. Even 
the last output cell, which generates pn, takes inpu; from 
other output cells, such as the one which outputs Y,-l. 

In neural networkterminology, this network is"ful1ycon- 
nected" in the extreme. As a practical matter, it i s  usually 
desirable to limit the connections between neurons. This 
can bedone bysimplyfixingsomeof theweights W,,tozero 
so that they drop out of all calculations. For example, most 
researchers prefer to use "layered" networks, in which all 
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connection weights W,, are zeroed out, except for those 
going from one"layer" (subset of neurons) to the next layer. 
Ingenera1,onemayzerooutasmanyorasfewoftheweights 
as one likes, based on one's understanding of individual 
applications. For those who first begin this work, it is con- 
ventional todefineonlythree layers-an input layer, a"hid- 
den" layer, and an output layer. This section will assume 
the full range of allowed connections, simply for the sake 
of generality. 

In computer code, we could represent this network as a 
Fortran subroutine (assuming a Fortran which distin- 
guishes upper case from lower case): 

SUBROUTINE NET(X, W, x, Yhat) 
REAL X(m), W(N +n, N+n),x(N +n),  Yhat(n), net 
INTEGER, i, j,m,n,N 

DO 1 i = l ,m  
C First insert the inputs, as per equation (1) 

1 x(i) = X(i) 
C Next implement (2)  and (3) together for each value 
c of i 

C 
DO 1000 i = m+l ,N+n 
calculate net, as a running sum, based on (2) 
net = 0 
DO IO/ = 1,;-I 

10 net = net + W(i, j ) * x ( j )  
C 

1000 x(i) = l/(l+exp(-net)) 
C Finally, copy over the outputs, as per (4) 

DO 2000; = l,n 
2000 Yhat(i) = x(i+N); 

finally, calculate x, based on (3) and (5)  

In the pseudocode, note that Xand Ware technically the 
inputs to the subroutine, while x and Yhat are the outputs. 
Yhat is usually regarded as"the"output of the network, but 
x may also have its uses outside of the subroutine proper, 
as will be seen in the next section. 

C. Adapting the Network: Approach 

as to minimize square error over the training set: 

E = c E(t) = c c (1/2)(Vl(t) - Y,(t))2. (6) 

This is simply a special case of the well-known method of 
least squares, used very often in statistics, econometrics, 
and engineering; the uniqueness of backpropagation lies 
in how this expression i s  minimized. The approach used 
here is illustrated in Fig. 3. 

In basic backpropagation, we choose the weights W,, so 

T T n  

i = 1  i = 1  , = 1  

Fig. 3. Basic backpropagation (in pattern learning). 

In basic backpropagation, we start with arbitrary values 
for the weights W. (It is usual to choose random numbers 
in the range from -0.1 to 0.1, but it may be better to guess 
the weights based on prior information, in cases where prior 
information i s  available.) Next, we calculate the outputs 
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Y(t) and the errors E(t) for that set of weights. Then we cal- 
culate the derivatives of Ewith respect to all of the weights; 
this i s  indicated by the dotted lines in Fig. 3. If increasing 
a given weight would lead to more error, we adjust that 
weight downwards. If increasing a weight leads to less error, 
we adjust it upwards. After adjusting all the weights up or 
down, we start all over, and keep on going through this pro- 
cess until the weights and the error settle down. (Some 
researchers iterate until the error i s  close to zero; however, 
if the number of training patterns exceeds the number of 
weights in the network-as recommended by studies on 
generalization-it may not be possiblefortheerror to reach 
zero.) The uniqueness of backpropagation lies in the 
method used to calculate the derivatives exactly for all of 
the weights in only one pass through the system. 

D. Calculating Derivatives: Theoretical Background 

Many papers on backpropagation suggest that we need 
only use the conventional chain rule for partial derivatives 
to calculate the derivatives of €wi th  respect to all of the 
weights. Under certain conditions, this can be a rigorous 
approach, but its generality i s  limited, and it requires great 
care with the side conditions (which are rarely spelled out); 
calculations of this sort can easily become confused and 
erroneous when networks and applications grow complex. 
Even when using (7) below, it is a good idea to test one's 
gradient calculations using explicit perturbations in order 
to be sure that there i s  no bug in one's code. 

When the idea of backpropagation was first presented to 
the Harvard faculty in 1972, they expressed legitimate con- 
cern about the validity of the rather complex calculations 
involved. To deal with this problem, I proved a new chain 
rule for ordered derivatives: 

a+ TARGET a TARGET + a+ TARGET az, 
82, aZ, , > I  az, az, 

* - (7) -~ - 

where the derivatives with the superscript represent 
ordered derivatives, and the derivatives without subscripts 
represent ordinary partial derivatives. Thischain rule isvalid 
only for ordered systems where the values to be calculated 
can be calculated one by one (if necessary) in the order zl, 
22, . . . , zn, TARGET. The simple partial derivatives repre- 
sent the direct impact of z, on z, through the system equa- 
tion which determines z,. The ordered derivative repre- 
sents the total impact of z, on TARGET, accounting for both 
the direct and indirect effects. For example, suppose that 
we had a simple system governed by the following two 
equations, in order: 

22 = 4 * 21 
z3 = 3 * z1 + 5 * z2. 

The "simple" partial derivative of z3 with respect to z1 (the 
directeffect) is3; tocalculate thesimpleeffect,weonlylook 
at the equation which determines z3. However, theordered 
derivative of z3 with respect to z, is 23 because of the indi- 
rect impact by way of z2. The simple partial derivative mea- 
sures what happens when we increase z1 (e.g., by l, in this 
example) and assume that everything else (like z2) in the 
equation which determines z3 remains constant. The 
ordered derivative measures what happens when we 
increase zl, and also recalculate all other quantities-like 
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z,-which are later than z, in thecausal ordering we impose 
on the system. 

This chain rule provides a straightforward, plodding, 
”linear“ recipe for how tocalculate thederivatives of agiven 
TARGET variable with respect to a// of the inputs (and 
parameters) of an ordered differentiable system in onlyone 
pass through the system. This paper will not explain this 
chain rule in detail since lengthy tutorials have been pub- 
lished elsewhere [I], [Il l .  But there i s  one point worth not- 
ing: because we are calculating ordered derivatives of one 
target variable, we can use a simpler notation, a notation 
which works out to be easier to use in complex practical 
examples [Il l .  We can write the ordered derivative of the 
TARGETwith respecttoz,as “F-z,,”which may bedescribed 
as “the feedback toz,.” In basic backpropagation, the TAR- 
GET variable of interest i s  the error €. This changes the 
appearance of our chain rule in that case to 

For purposesof debugging, one can calculate the truevalue 
of anyordered derivativesimply byperturbingz,atthe point 
in the program where z, i s  calculated; this i s  particularly 
useful when applying backpropagation to a complex net- 
work of functions other than neural networks. 

E. Adapting the Network: Equations 

For a given set of weights W, it i s  easy to use (1)-(6) to 
calculate Y ( t )  and E ( t )  for each pattern t. The trick is  in how 
we then calculate the derivatives. 

Let us use the prefix “F-” to indicate the ordered deriv- 
ative of € with respect to whatever variable the “F-” pre- 
cedes. Thus, for example, 

which follows simply by differentiating (6). Bythechain rule 
for ordered derivatives as expressed in (8), 

N + n  

F-x,(t) = f - ? l - N ( t )  + C w,, * F-net,(t), 
/ = , + 1  

I = N + n ; . . , m + I  (10) 

F-net,(t) = s’(net,) * F-x,(t), i = N + n, * * , m + 1 

T 

F-w,, = C F-net,(t) * x,(t) 
t = l  

(11) 

(1 2) 

where s’ i s  the derivative of s(z) as defined in (5) and F-Yk 
i s  assumed to be zero for k 5 0. Note how (IO) requires us 
to run backwards through the network in order to calculate 
the derivatives, as illustrated in Fig. 4; this backwards prop- 

- Calculation o f t  

I - X Input I Hidden Cells I ?Output ] 
1 m m + l  N N + l  N + n  

c_ Calculation of F x 

Map o f 1  

Fig. 4. Backwards flow of derivative calculation. 

agation of information i s  what gives backpropagation i t s  
name. A little calculus and algebra, starting from (5), shows 
us that 

5’(z) = s(z) * (1 - s(z)), (1 3) 

which we can use when we implement (11). Finally, to adapt 
the weights, the usual method is  to set 

New W,, = W,, - learning-rate * F-W,, (14) 

where the learningrate i s  some small constant chosen on 
an ad hoc basis. (The usual procedure i s  to make it as large 
as possible, up to 1, until the error starts to diverge; how- 
ever, there are more analytic procedures available [Ill.) 

F. Adapting the Network: Code 

be coded up into a ”dual” subroutine, as follows. 
The key part of basic backpropagation-(l0)-(13)-may 

SUBROUTINE f-NET(F-Yhat, W, x, f-W) 
REAL F-Y hat(n),W (N +n, N + n), x (N + n),  

INTEGER i,j,n,m,N 

DO 1 i = l , N  

DO 2 i  = l,n 

F-W(N + n, N + n), F-net(N +n), F-x (N+ n) 

C Initialize equation (IO) 

1 F-x(i) = 0 

2 F-x(i+ N )  =F-Yhat(i) 
C 
C FOR i RUNNING BACKWARDS 

DO 1000 i = N + n , m + l , - I  
C 

C 
C 

C 

C 
C value of i 

RUN THROUGH (10)-(12) AS A SET, 

complete (IO) for the current value of i * I  
DO 10 j = i + l ,N+n  
modify ”DO IO” if needed to be sure 

nothing i s  done if i=N+n 
10 F-x(i) = F-x(i)+W(j,i)*f-net(j) 

next implement (II), exploiting (13) 
F-net(i) = f-x(i)*x(i)*(l.-x(i)) 
then implement (12) for the current 

DO 1 2 j  = 1,;-I 
12 F-W(i, j)=F-net(i)*x(j) 

1000 CONTINUE 

Note that the array F-W i s  the only output of this sub- 
routine. 

Equation (14) represented ”batch learning,” in which 
weights are adjusted only after a / /  Tpatterns are processed. 
It i s  more common to use pattern learning, in which the 
weights are continually updated after each observation. 
Pattern learning may be represented as follows: 

C PATTERN LEARNING 
DO 1000 pass-num ber = 1, maximum-passes 

DO 100t  =1,T 
CALL NET&@), W, x ,  Yhat) 

C Next implement equation (9) 
DO 9 i  = l , n  

9 F-Yhat(i)= Yhat(i)- Y ( t ,  i )  
C Next Implement (10)-(12) 

C Next Implement (14) 
C 
C 

CALL F-NET(F-Yhat, W, x, F-W) 

Note how weights are updated 
within the “DO 100” loop. 
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I 

14 

100 
1000 

DO 14 i = m+l ,N+n 
DO 1 4 j  = I , ; - I  

W(i, j )=W(i , j ) -  
learn i ng-rate* 
F-W(i, j ) 

CONTl NUE 
CONTINUE 

The key pair.- here is that the weights Ware adjustec in 
response to the current vector F-W, which only depends on 
the current pattern t; the weights are adjusted after each 
pattern i s  processed. (In batch learning, by contrast, the 
weights are adjusted only after the "DO 100" loop i s  com- 
pleted.) 

In practice, maximum-passes is usually set to an enor- 
mous number; the loop is  exited only when a test of con- 
vergence is passed, a test of error size or weight change 
which can be injected easily into the loop. True real-time 
learning is like pattern learning, but with only one pass 
through the data and no memory of earlier times t .  (The 
equations above could be implemented easily enough as 
a real-time learning scheme; however, this will not be true 
for backpropagation through time.) The term "on-line 
learning" i s  sometimes used to represent a situation which 
could be pattern learning or could be real-time learning. 
Most people using basic backpropagation now use pattern 
learning rather than real-time learning because, with their 
data sets, many passes through the data are needed to 
ensure convergence of the weights. 

The reader should be warned that I have not actually 
tested the code here. It i s  presented simply as a way of 
explaining more precisely the preceding ideas. The C 
implementations which I have worked with have been less 
transparent, and harder to debug, in part because of the 
absence of range checking in that language. It i s  often 
argued that people "who knowwhat they are doing" do not 
need range checking and the like; however, people who 
think they never make mistakes should probably not be 
writing this kind of code. With neural network code, espe- 
cially, good diagnostics and tests arevery important because 
bugs can lead to slow convergence and oscillation-prob- 
lems which are hard to track down, and are easily misat- 
tributed to the algorithm in use. If one must use a language 
without range checking, it i s  extremely important to main- 
tain a version of the code which is highly transparent and 
safe, however inefficient it may be, for diagnostic purposes. 

Ill. BACKPROPAGATION THROUGH TIME 

A. Background 

Backpropagation through time-like basic backpropa- 
gation-is used most often in pattern recognition today. 
Therefore, this section will focuson such applications, using 
notation like that of the previous section. See Section IV for 
other applications. 

In someapplications-such as speech recognition or sub- 
marine detection-our classification at time twi l l  be more 
accurate if we can account for what we saw at earlier times. 
Even though the training set still fits the same format as 
above, we want to use a more powerful class of networks 
to do the classification; we want the output of the network 
at time t to account for variables at earlier times (as in Fig. 
5). 

- ?IT1 

X(T-11 i ( T - 1 )  

&IT-21 - ?(T-21 

Fig. 5. Generalized network design with time lags. 

The Introduction cited a number of exampleswhere such 
"memory" of previous time periods is very important. For 
example, it is easier to recognize moving objects if our net- 
work accounts for changes in the scene from the time t - 
1 to time t, which requires memory of time t - 1. Many of 
the best pattern recognition algorithms involve a kind of 
"relaxation" approach where the representation of the 
world at time t i s  based on an adjustment of the represen- 
tation at time t - 1; this requires memory of the internal 
network variables for time t - 1. (Even Kalman filtering 
requires such a representation.) 

B. Example of a Recurrent Network 

Backpropagation can be applied to any system with a well- 
defined order of calculations, even i f  those calculations 
depend on past calculations within the network itself. For 
the sake of generality, I will show how this works for the 
network design shown in Fig. 5 where every neuron is 
potentially allowed to input values from any of the neurons 
at the two previous time periods (including, of course, the 
input neurons). To avoid excess clutter, Fig. 5 shows the 
hidden and output sections of the network (parallel to Fig. 
2)onlyfortime T, but they are presentat othertimesaswell. 
To translate this network into a mathematical system, we 
can simply replace (2) above by 

net,(t) = C W,,x,(t) + C ~ ; , x , ( t  - I )  + C w;X,(t - 2). 

(1 5) 

1-1 N + n  N + i l  

/ = I  / = I  j = 1  

Again, we can simply fix some of the weights to be zero, i f  
we so choose, in order to simplify the network. In most 
applications today, the W weights are fixed to zero (i.e., 
erased from all formulas), and all the W weights are fixed 
to zero as well, except for W;,. This is done in part for the 
sake of parsimony, and in part for historical reasons. (The 
"time-delay neural networks" of Watrous and Shastri [5] 
assumed that special case.) Here, I deliberately include extra 
terms for the sake of generality. I allow for the fact that a l l  
active neurons (neurons other than input neurons) can be 
allowed to input the outputs of any other neurons i f  there 
i s  a time lag in the connection. The weights W and W are 
the weights on those time-lagged connections between 
neurons. [Lags of more than two periods are also easy to 
manage; they are treated just as one would expect from 
seeing how we handle lag-two terms, as a special case of 

These equations could be embodied in a subroutine: 
( 7 ~  

SUBROUTINE NETZ(X(t), W', W", x(t - 2), 

x(t - I), XU), Yhat), 
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which is programmed just like the subroutine NET, with the 
modifications one would expect from (15). The output arrays 
are x(t) and Yhat. 

When we call this subroutine for the first time, at t = 1, 
we face a minor technical problem: there i s  no value for 
x(-1)or x(O), both of which we need as inputs. In principle, 
we can use any values we wish to choose; the choice of x( -1) 
and x(0) i s  essentially part of the definition of our network. 
Most people simply set these vectors to zero, and argue that 
their network will start out with a blank slate in classifying 
whatever dynamic pattern is at hand, both in the training 
set and in later applications. (Statisticians have been known 
to treat these vectors as weights, in effect, to be adapted 
alongwith the otherweights in the network. Thisworks fine 
in the training set, but opens up questions of what to do 
when one applies the network to new data.) 

In this section, I will assume that the data run from an 
initial time t = 1 through to a final time t = T, which plays 
a crucial role in the derivative calculations. Section IV will 
show how this assumption can be relaxed somewhat. 

C. Adapting the Network: Equations 

equations as before, except that ( IO)  i s  replaced by 
To calculate the derivatives of F-W,,, we use the same 

N + ”  

F-x,(t) = F-) i r -N( t )  + c W,, * F-net,(t) 
1 = , + l  

N + n  

I = r n + l  

N + n  

+ W;, * F-net,(t + 1) 

+ c W;; * F-net,(t + 2). (16) 

Once again, if one wants to fix the W” terms to zero, one 
can simply delete the rightmost term. 

Notice that this equation makes it impossible for US to 
calculate F-x,(t) and F-net,(t) until after F-net,(t + 1) and 
F-net,(t + 2) are already known; therefore, we can only use 
this equation by proceeding backwards in time, calculating 
F-net for time T, and then working our way backwards to 
time 1. 

To adapt this network, of course, we need to calculate 
F-W:, and F-W; as well as F-W,,: 

/ = m + l  

’ 

T 

F-W;, = c F-net,(t + 1) * x,(t) (1 7) 
I l l  

r 
F-W; = F-net,(t + 2) * x,(t). (18) 

t = l  

In all of these calculations, F-net(T + 1) and F-net(T + 2) 
should be treated as zero. For programming convenience, 
I will later define quantities like F-net;(t) = F-net,(t + I), but 
this i s  purely a convenience; the subscript “ i ”  and the time 
argument are enough to identify which derivative i s  being 
represented. (In other words, net,(f) represents a specific 
quantity z, as in (8), and F-net,(t) represents the ordered 
derivative of E with respect to that quantity.) 

D. Adapting the Network: Code 

To fully understand the meaning and implications of 
these equations, it may help to run through a simple (hypo- 
thetical) implementation. 

First, to calculate the derivatives, we need a new sub- 
routine, dual to NET2. 

SUBROUTINE F_NET2(F_Yhat, W, W ,  W ” ,  x, F-net, 
F-net’, F-net“, F-W, F - W ,  F - W )  

REAL F-Yhath), W(N+n, N+n), 

REAL x(N+ n), F-net(N + n), F-net’(N + n),  

REAL F- W(N + n, N + n), F-W(N + n, N + n),  

INTEGER i ,  j ,  n, rn, N 

DO l i = l , N  
1 F-x(i) =O. 

DO 2 i =  l,n 
2 F-x(i+ N)=F-Yhat(i) 

W(N+n,N+n), W”(N+n, N+n) 

F-net”(N + n)  

F- W”(N + n, N + n),  F- x (N + n)  

C Initialize equation (16) 

C RUN THROUGH (16), (II), AND (12) AS A SET, 
C RUNNING BACKWARDS 

C first complete (16) 
DO 1000 i=N+n,rn+l,-I 

DO 161 j = i+l,N+n 

DO 162; = rn+l,N+n 
161 

162 

F-x(i)=F-x(i)+ W (  j,i)*F-net( j ) 

F- x ( i  ) = F- x ( i  ) + W ’( j ,  i ) * F-n e t ’ ( j ) 
+ W”(j,i)*F-net”( j )  

C next implement (11) 

C 
F-net(i) = F-x( i )*x( i )*( l  - x ( i ) )  
implement (12), (17), and (18) 

DO 1 2 j  = 1,;-I 
(as running sums) 

12 F-W(i,j)=F-W(i,j) 
+ F-net(i)*x ( j ) 

F - W ( i , j ) = F - W ( i , j )  
+ F-net’(i )*x ( ; 

F - W ( i ,  j ) = F - W ( i ,  j ) 
+F-net”(i)*x(j) 

DO 1718 j =I,N+n 

1718 

1000 CONTINUE 

199 
200 

Notice that the last two DO loops have been set up to 
perform running sums, to simplify what follows. 

Finally, we may adapt the weights as follows, by batch 
learning, where I use theabbreviation x(i,), to represent the 
vector formed by x(i , j )  across all j .  

REAL x(-l:T,N+n),Yhat(T,n) 
DATA x(O,),X(-I,) / (2*(N+n)) * 0.01 
DO 1000 pass-number=l, maximum-passes 

C 
C a forward pass 

First calculate outputs and errors in 

DO 100t=I,T 
100 CALL NET2(X(t), W, W’, W ,  x (t  - 21, 

x(t-l),x(t,),Yhat(t,)) 
C 
C 

Initialize the running sums to 0 and 

DO 200 i = m+l ,N+n 
F-net’(i)=O. 
F-net”(i)=O. 
DO 199j = l,N+n 

set F-net(T), F-netfT+I) to 0 

F-W(i, j ) = O .  
F - W ( i ,  j ) =O. 
F- W ( i ,  j ) =O. 

CONTl N UE 
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C NEXT CALCULATE THE DERIVATIVES IN A SWEEP 
BACKWARDS THROUGH TIME 

DO 500 t = T,l,-I 
C 
C current time t 

DO 410; = 1,n 

First, calculate the errors at the 

41 0 F-Yhat(i)= Yhat(t,i)- Y ( t ,  i) 
Next, calculate F-net(t) for time t and 

update the F-W running sums 
call F_NET2(F_Yhat,W,w',W,X(t,), 
F-net, +net', F-net", F-W, 
F-W', F-W") 

to prepare for a new t value 
DO 420 i = m+l ,N+n 

F-net"(i) = F-net'(i) 

C 
C 

C 
C 

Move F-net(t+l) to F-net(t), in effect, 

420 F-net'(i)= F-net(i) 
500 CONTINUE 

C FINALLY, UPDATE THE WEIGHTS BY 
STEEPEST DESCENT 

DO 999 i = m+l,N+n 
DO 998 j = I,N+n 

W(i, j )= W(i, j )- 

W ( i ,  j )=W'( i , j ) -  
learning-rate*F-W(i, j ) 

learning-rate*F-W(i, j )  

F - W ( i ,  j); 
998 W ( i ,  j)-learningrate* 

999 CONTl N UE 
1000 CONTINUE 

Once again, note that we have to go backwards in time 
in order to get the required derivatives. (There are ways to 
do these calculations in forward time, but exact results 
require the calculation of an entire lacobian matrix, which 
i s  far more expensive with large networks.) For backprop- 
agation through time, the natural way to adapt the network 
i s  in one big batch. Also note that we need to store a lot of 
intermediate information (which is inconsistent with real- 
timeadaptation).This storagecan be reduced by clever pro- 
gramming if w' and w" are sparse, but it cannot be elim- 
inated altogether. 

In using backpropagation through time, we usually need 
to use much smaller learning rates than wedo in basic back- 
propagation if we use steepest descent at all. In my expe- 
rience [20], it may also help to start out by fixing the w' 
weights to zero (or to 1 when we want to force memory) in 
an initial phase of adaptation, and slowly free them up. 

In some applications, we may not really care about errors 
in classification at all times t .  In speech recognition, for 
example, we mayonlycareabout errorsattheendof aword 
or phoneme; we usually do output a preliminary classifi- 
cation before the phoneme has been finished, but we usu- 
ally do not care about the accuracy of that preliminary clas- 
sification. In such cases, we may simply set F-Yhat to zero 
in thetimeswedonot careabout.To be moresophisticated, 
we may replace (6) by a more precise model of what we do 
care about; whatever we choose, it should be simple to 
replace (9) and the F-Yhat loop accordingly. 

Iv. EXTENSIONS OF THE METHOD 

Backpropagation through time is  a very general method, 
with many extensions. This section will try to describe the 
most important of these extensions. 

A. Use of Other Networks 

The network shown in (1)-(5) is a very simple, basic net- 
work. Backpropagation can be used to adapt a wide variety 
of other networks, including networks representing econ- 
ometric models, systems of simultaneous equations, etc. 
Naturally, when one writes computer programs to imple- 
ment a different kind of network, one must either describe 
which alternative network one chooses or else put options 
into the program to give the user this choice. 

In the neural network field, users areoften given achoice 
of network "topology." This simply means that they are 
asked to declare which subset of the possible weightslcon- 
nections will actually be used. Every weight removed from 
(15)should be removedfrom (16)aswell,alongwith(12)and 
(14) (or whichever apply to that weight); therefore, simpli- 
fying the network by removing weights simplifies all the 
other calculations as well. (Mathematically, this is the same 
as fixing these weights to zero.) Typically, people will 
remove an entire block of weights, such that the limits of 
the sums in our equations are all shrunk. 

In a truly brain-like network, each neuron [in (15)] will 
only receive input from a small number of other cells. Neu- 
roscientists do not agree on how many inputs are typical; 
somecite numbersontheorderof lOOinputspercell,while 
others quote 10 000. In any case, all of these estimates are 
small compared to the billions of cells present. To imple- 
ment this kind of network efficiently on a conventional 
computer, one would use a linked list or a list of offsets to 
represent the connections actually implemented for each 
cell; the same strategy can be used to implement the back- 
wards calculations and keep the connection costs low. Sim- 
ilar tricks are possible in parallel computers of all types. 
Many researchers are interested in devising ways to auto- 
matically make and break connections so that users will not 
have to specify all this information in advance [20]. The 
research on topology is hard to summarize since it is a mix- 
ture of normal science, sophisticated epistemology, and 
extensive ad hoc experimentation; however, the paper by 
Guyon et al. [I31 is an excellent example of what works in 
practice. 

Even in the neural network field, many programmers try 
to avoid thecalculation of the exponential in (5). Depending 
on what kind of processor one has available, this calcula- 
tion can multiply run times by a significant factor. 

In the first published paper which discussed backprop- 
agation at length as a way to adapt neural networks [14], I 
proposed the use of an artificial neuron ("continuous logic 
unit," CLU) based on 

s(z) = 0, 

s(z) = 2, 

s(z) = 1, 

z < 0 

0 < z < 1 

z > 1. 

This leadstoaverysimplederivativeaswell. Unfortunately, 
thesecondderivativesof this function are not well behaved, 
which can affect the efficiency of some applications. Still, 
many programmers are now using piecewise linear approx- 
imations to (3, along with lookup tables, which can work 
relatively well in some applications. In earlier experiments, 
I have also found good uses for a Taylor series approxi- 
mation: 

S ( Z )  = 1/(1 - z + 0.5 * z'), z < o  

1556 

I 

PROCEEDINGS OF THE IEEE, VOL. 78, NO. 10, OCTOBER 1990 

1 



U 

. 

S ( Z )  = 1 - 1/(1 + z + 0.5 * z2), z > 0. 

In a similar spirit, it is  common to speed up learning by 
“stretching out” s(z) so that it goes from -1 to 1 instead 
of 0 to 1. 

Backpropagation can also be used without using neural 
networks at all. For example, it can be used to adapt a net- 
work consisting entirely of user-specified functions, rep- 
resenting something like an econometric model. In that 
case, the way one proceeds depends on who one i s  pro- 
gramming for and what kind of model one has. 

If one i s  programming for oneself and the model consists 
of a sequence of equations which can be invoked one after 
the other, then one should consider the tutorial paper [ I l l ,  
which alsocontains a more rigorous definition of what these 
”F-x,” derivatives really mean and a proof of the chain rule 
for ordered derivatives. If one i s  developing a tool for oth- 
ers, then one might set it up to look like a standard econ- 
ometric package (like SAS or Troll) where the user of the 
system types in the equations of his or her model; the back- 
propagation would go inside the package as a way to speed 
up these calculations, and would mostly be transparent to 
the user. If one’s model consists of a set of simultaneous 
equations which need to be solved at each time, then one 
must use more complicated procedures [15]; in neural net- 
work terms, one would call this a ”doubly recurrent net- 
work.” (The methods of Pineda [I61 and Almeida [I71 are 
special cases of this situation.) 

Pearlmutter [I81 and Williams [I91 have described alter- 
native methods,designed toachieve results similartothose 
of backpropagation through time, using a different com- 
putational strategy. For example, the Williams-Zipser 
method is  a special caseof the“conventiona1 perturbation” 
equation cited in [14], which rejected this as a neural net- 
work method on the grounds that i ts  computational costs 
scale as the square of the network size; however, the 
method does yield exact derivatives with a time-forward 
calculation. 

Supervised learning problems or forecasting problems 
which involve memory can also be translated into control 
problems [15, p. 3521, [20], which allows the use of adaptive 
critic methods, to be discussed in the next section. Nor- 
mally, this would yield only an approximate solution (or 
approximate derivatives), but it would also allow time-for- 
ward real-time learning. If the network itself contains cal- 
culation noise (due to hardware limitations), the adaptive 
critic approach might even be more robust than back- 
propagation through time because it i s  based on mathe- 
matics which allow for the presence of noise. 

B. Applications Other Than Supervised Learning 

Backpropagation through time can also be used in two 
other major applications: neuroidentification and neuro- 
control. (For applications to sensitivity analysis, see [14] and 
[151.) 

In neuroidentification, we try to do with neural nets what 
econometricians do with forecasting models. (Engineers 
would call this the identification problem or the problem 
of identifying dynamic systems. Statisticians refer to it as 
the problem of estimating stochastic time-series models.) 
Ourtrainingsetconsistsof vectorsX(t) and u(t) ,  notX(t) and 
Y( t ) .  Usually, X(t) represents a set of observations of the 
external (sic) world, and u(t )  represents a set of actions that 

we had control over (such as the settings of motors or actua- 
tors), The combination of X ( t )  and u(t )  is input to the net- 
work at each time t .  Our target, at time t ,  i s  the vector XU 
+ 1). 

We could easily build a network to input these inputs, 
and aim at these targets. We could simply collect the inputs 
and targets into the format of Section II, and then use basic 
backpropagation. But basic backpropagation contains no 
“memory.” The forecast of X(t + 1) would depend on X(t), 
but not on previous time periods. If human beings worked 
like this, then they would be unable to predict that a ball 
might roll outthefarsideof atableafter rollingdown under 
the near side; as soon as the ball disappeared from sight 
[from the current vector X(t)], they would have no way of 
accounting for i t s  existence. (Harold Szu has presented a 
more interesting example of this same effect: i f  a tiger 
chased after such a memoryless person, the person would 
forget about the tiger after first turning to run away. Natural 
selection has eliminated such people.) Backpropagation 
through time permits more powerful networks, which do 
have a “memory,” for use in the same setup. 

Even this approach to the neuroidentification problem 
has i t s  limitations. Like the usual methods of econometrics 
[15], it may lead to forecasts which hold up poorly over mul- 
tiple time periods. It does not properly identify where the 
noise comes from. It does not permit real-time adaptation. 
In an earlier paper [20], I have described some ideas for 
overcomingthese limitations, but more research i s  needed. 
The first phase of Kawato’s cascade method [9] for con- 
trollinga robot arm isan identification phase,which i s  more 
robust over time, and which uses backpropagation through 
timeinadifferentway; it isaspecia1caseofthe”purerobust 
method,” which also worked well in the earliest applica- 
tions which I studied [I], [20]. 

After we have solved the problem of identifying a dynamic 
system, we are then ready to move on to controlling that 
system. 

In neurocontrol, we often start out with a model or net- 
work which describes the system or plant we are trying to 
control. Our problem is to adapt a second network, the 
action network, which inputs X(t) and outputs the control 
u(t) .  (In actuality, we can allow the action network to “see” 
or input the entire vector x ( t )  calculated by the model net- 
work; this allows it to account for memories such as the 
recent appearance of a tiger.) Usually, we want to adapt the 
action network so as to maximize some measure of per- 
formance or utility U(X, t )  summed over time. Performance 
measures used in past applications have included every- 
thing from the energy used to move a robot arm [8], [9] 
through to net profits received bythegas industry[ll].Typ- 
ically, we are given a set of possible initial states XU), and 
asked to train the action network so as to maximize the sum 
of utility from time 1 to a final time T. 

To solve this problem using backpropagation through 
time, we simply calculate the derivatives of our perfor- 
mance measure with respect to all of the weights in the 
action network. “Backpropagation” refers to how we cal- 
culate the derivatives, notto anything involving pattern rec- 
ognition or error. We then adapt the weights according to 
these derivatives, as in (121, except that the sign of the 
adjustment term i s  now positive (because we are maxirniz- 
ing rather than minimizing). 

The easiest way to implement this approach i s  to merge 
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the utility function, the model network, and the action net- 
work into one big network. We can then construct the dual 
to this entire network, as described in 1974 [I] and illus- 
trated in my recent tutorial [ I l l .  However, if wewish to keep 
the three component networks distinct, then the book- 
keeping becomes more complicated. The basic idea is illus- 
trated in Fig. 6, which maps exactly into the approach used 
by Nguyen and Widrow [A  and by Jordan [8]. 

Fig. 6. Backpropagating utilitythrough time. (Dashed lines 
represent derivative calculations.) 

Insteadof workingwith asinglesubroutine, NET,we now 
need three subroutines: 

UTILITY(X; t; x”; U )  
MODEL(X(t), u(t); x ( t ) ;  X(t + 1)) 

ACTION(x(t); W; x’(t); u(t)). 

Ineachofthesesubroutines,thetwoargumentsonthe right 
are technically outputs, and the argument on the far right 
is what we usually think of as the output of the network. 
We need to know the full vector x produced inside the 
model network so that the action network can ”see” impor- 
tant memories. The action network does not need to have 
its own internal memory, but we need to save its internal 
state (x’) so that we can later calculate derivatives. For sim- 
plicity, I will assume that MODEL does not contain any lag- 
two memory terms (i.e., W weights). The primes after the 
x’s indicate that we are looking at the internal states of dif- 
ferent networks; they are unrelated to the primes repre- 
senting lagged values, discussed in Section I l l ,  which we 
will also need in what follows. 

To use backpropagation through time, we need to con- 
struct dual subroutines for a l l  three of these subroutines: 

F-UTILITY(x”; t; F-X) 

F-MODEL(F-net’, F-X(t + 1); x (0; F-net, F-U) 

F-ACTION(F-u; x’(t); F-W). 

The outputs of these subroutines are the arguments on the 
far right (including F-net), which are represented by the 
broken lines in Fig. 4. The subroutine F-UTILITY simply 
reports out the derivatives of U(x, t) with respect to the 
variables)(,. The subroutine F-MODEL i s  like the earlier sub- 
routine F-NET2, except that we need to output F-U instead 
of derivatives to weights. (Again, we are adapting only the 
action network here.)The subroutine F-ACTION isvirtually 
identical to the old subroutine F-NET, except that we need 
to calculate F-W as a running sum (as we did in F-NET2). 

Of these three subroutines, F-MODEL is  by far the most 
complex. Therefore, it may help to consider some possible 
code. 

SUBROUTINE F-MODEL(F-net’, F - X ,  x, F-net, F-U) 
C The weights inside this subroutine are those 
C used in MODEL, analogous to those in NET2, and are 
C unrelated to the weights in ACTION 

1 

2 

91 0 

920 
1000 

2000 

REAL F-net ’( N; n), F- X‘( n), x (N + n), 
F-net(N+n), F-u ( p ) ,  F-x(N+n) 

INTEGER i ,  j,n,m, N,p 
DO l i = l , N  

F-x(i) =O. 
DO 2 i =  1,n 

F- x (i + N ) = F- X(i ) 
DO 1000 i = N+n,l, -1 

DO 91Oj = i+l,N+n 

DO 920j = m+l ,N+n 

F-net(i) =F-x(i)*x(i)*(l -x(i)); 

F-u ( i )  =F-x(n + i )  

F-x(i)=F-x(i) + W( j ,  i)*F-net(j 1 

F-x(i)=F-x(i)+ W (  j,i)*F-net’(j ) 

DO 2000; = l,p 

The last small DO loop here assumes that u(t) was part 
of the input vector to the original subroutine MODEL, 
inserted into the slots between x(n + 1) and x(m). Again, 
a good programmer could easily compress all this; my goal 
here i s  only to illustrate the mathematics. 

Finally, in order to adapt the action network, we go 
through multiple passes,each startingfrom oneofthestart- 
ing values of XU). In each pass, we call ACTION and then 
MODEL, one after the other, until we have built up a stream 
of forecasts from time 1 up to time T. Then, for each time 
t going backwards from T to 1, we call the UTILITY sub- 
routine, then F-UTILITY, then F-MODEL, and then F-AC- 
TION. At the end of the pass, we have the correct array of 
derivatives F-W, which wecan then usetoadjust theweights 
of the action network. 

In general, backpropagation through time has theadvan- 
tage of being relatively quick and exact. That is why I chose 
it for my natural gas application [ I l l .  However, it cannot 
account for noise in the process to the controlled. To 
account for noise in maximizing an arbitrary utility func- 
tion, we must rely on adaptive critic methods [21]. Adaptive 
critic methods do not require backpropagation through 
time in any form, and are therefore suitable for true real- 
time 1earning.Thereareotherformsof neurocontrol aswell 
[21] which are not based on maximizing a utility function. 

C. Handling Strings of Data 

In most of the examples above, I assumed that the train- 
ingdataform one lonetime series, from tequalsl to tequals 
T. Thus, in adapting the weights, I always assumed batch 
learning (except in the code in Section 11); the weights were 
always adapted after a complete set of derivatives was cal- 
culated, based on a complete pass through all the data. 
Mechanically, one could use pattern learning in the back- 
wards pass through time; however, this would lead to a host 
of problems, and it i s  difficult to see what it would gain. 

Data in the real world are often somewhere between the 
two extremes represented by Sections II and Ill. Instead of 
having a set of unrelated patterns or one continuous time 
series, we often have aset of time series or strings. For exam- 
ple, in speech recognition, our training set may consist of 
a set of strings, each consisting of one word or one sen- 
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tence. In robotics, our training set may consist of a set of 
strings, where each string represents one experiment with 
a robot. 

In these situations, we can apply backpropagation 
through time to a single string of data at a time. For each 
string, we can calculate complete derivatives and update 
the weights. Then we can go on to the next string. This i s  
like pattern learning, in that the weights are updated incre- 
mentally before the entire data set i s  studied. It requires 
intermediate storage for only one string at a time. To speed 
things up even further, we might adapt the net in stages, 
initially fixing certain weights (like W j j )  to zero or one. 

Nevertheless, string learning i s  notthe samething as real- 
time learning. To solve problems in neuroidentification and 
supervised learning, the only consistent way to have inter- 
nal memory terms and to avoid backpropagation through 
time i s  to use adaptive critics in a supporting role [15]. That 
alternative is complex, inexact, and relatively expensive for 
these applications; it may be unavoidable for true real-time 
systems like the human brain, but it would probably be bet- 
ter to live with string learning and focus on otherchallenges 
in neuroidentification for the time being. 

D. Speeding Up Convergence 

For those who are familiar with numerical analysis and 
optimization, it goes without saying that steepest descent- 
as in (12)-is a very inefficient method. 

There is a huge literature in the neural network field on 
how to speed up backpropagation. For example, Fahlman 
and Touretzky of Carnegie-Mellon have compiled and 
tested avarietyof intuitive insights which can speed upcon- 
vergence a hundredfold. Their benchmark problems may 
be very useful in evaluating other methods which claim to 
do the same. A few authors have copied simple methods 
from the field of numerical analysis, such as quasi-Newton 
methods (BFGS) and Polak-Ribiere conjugate gradients; 
however, the former works only on small problems (a 
hundred or so weights) [22], while the latter works well only 
with batch learningandverycareful linesearches.The need 
for careful line searches i s  discussed in the literature [23], 
but I have found it to be unusually importantwhen working 
with large problems, including simulated linear mappings. 

In my own work, I have used Shanno's more recent con- 
jugate gradient method with batch learning; for a dense 
training set-made up of distinctly different patterns-this 
method worked better than anything else I tried, including 
pattern learning methods [12]. Many researchers have used 
approximate Newton's methods, without saying that they 
are using an approximation; however an exact Newton's 
method can also be implemented in O(N)  storage, and has 
worked reasonably well in early tests [12]. Shanno has 
reported new breakthroughs in function minimization 
which may perform still better [24]. Sti l l ,  there i s  clearly a 
lot of room for improvement through further research. 

Needless to say, it can be much easier to converge to a 
setofweightswhichdonot minimizeerrororwhichassume 
a simpler network; methods of that sort are also popular, 
but are useful only when they clearly fit the application at 
hand for identifiable reasons. 

E. Miscellaneous Issues 

Minimizing square error and maximizing likelihood are 
often taken for granted as fundamental principles in large 

parts of engineering; however, there i s  a large literature on 
alternative approaches [12], both in neural network theory 
and in robust statistics. 

These literatures are beyond the scope of this paper, but 
a few related points may be worth noting. For example, 
instead of minimizing square error, we could minimize the 
1.5 power of error; al l  of the operations above still go 
through. We can minimize E of (5) plus some constant k 
times the sum of squares of theweights; as kgoes to infinity 
and the network i s  made linear, this converges to Koho- 
nen's pseudoinverse method, a common form of associ- 
ative memory. Statisticians like Dempster and Efron have 
argued that the linear form of this approach can be better 
than the usual least squares methods; their arguments cap- 
ture the essential insight that people can forecast by anal- 
ogyto historical precedent, instead of forecasting byacom- 
prehensive model or network. Presumably, an ideal 
network would bring together both kinds of forecasting 
[121, [201. 

Many authors worry a lot about local minima. In using 
backpropagation through time in robust estimation, I found 
it important to keep the "memory" weights near zero at 
first, and free them up gradually in order to minimize prob- 
lems. When T i s  much larger than m-as statisticians rec- 
ommend for good generalization-local minima are prob- 
ably a lot less serious than rumor has it. Still, with T larger 
than m, it is very easy to construct local minima. Consider 
the example with m = 2 shown in Table I. 

Table 1 Training Set for Local Minima 

t X ( t )  Y ( t )  

1 0 1  .1 
2 1 0  .I 
3 1 1  .9 

The error for each of the patterns can be plotted as a con- 
tour map as a function of the two weights w, and w2. (For 
this simple example, no threshold term is  assumed.) Each 
map i s  made up of straight contours, defining a fairly sharp 
trough about a central line. The three central lines for the 
three patterns form a triangle, the vertices of which cor- 
respond roughly to the local minima. Even when Tis much 
larger than m, conflicts like this can exist within the training 
set. Again, however, this may not be an overwhelming prob- 
lem in practical applications [19]. 

U. SUMMARY 

Backpropagation through time can be applied to many 
different categories of dynamical systems-neural net- 
works, feedforward systems of equations, systems with time 
lags, systems with instantaneous feedback between vari- 
ables (as in ordinary differential equations or simultaneous 
equation models), and so on. The derivatives which it cal- 
culates can be used in pattern recognition, in systems iden- 
tification, and in stochastic and deterministic control. This 
paper has presented the keyequationsof backpropagation, 
as applied to neural networks of varying degrees of com- 
plexity. It has also discussed other papers which elaborate 
on the extensions of this method to more general appli- 
cations and some of the tradeoffs involved. 
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