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Abstract

This work focuses on the, to our best knowledge, first application and backtesting of
the bootstrap methods in GARCH models of Pascual et al. (2006) and Chen et al. (2011)
to the estimation of value-at-risk and expected shortfall, using data from the FTSE 100
index, as well as the comparison of their performance with the ones of the Filtered His-
torical Simulation and Historical Simulation. The accurate estimation of these risk mea-
sures is significantly relevant to the risk management decisions of financial institutions,
as well as to fulfill the regulatory requirements, such as the ones imposed by the Basel II
Accords. Previous existing methods have some limitations, such not including the uncer-
tainty due to parameter estimation. In addition to the computational costs of the method
developed by Chen et al. (2011) being 100 times lower than the one of Pascual et al.
(2006), the former assumes a symmetric conditional return distribution, which, according
to the empirical application developed in this work, seems to have a positive impact on
the accuracy of the risk measures generated. Moreover, both methods seem to outperform
the Historical Simulation and the Filtered Historical Simulation, as the former imposes
unnecessary capital requirements to financial institutions, while the latter fails to predict
extreme losses.

Key-words: Value-at-risk, Expected Shortfall, Bootstrap, GARCH, Backtesting
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1 Introduction
Since the financial crisis of 2007-2008, the importance of risk management has become

increasingly recognized, as shown by the Dodd-Frank Wall Street Reform and Consumer
Protection Act, and the Brown-Vitter bill, among others, with the latter currently under
analysis in the U.S. Congress. In this context, the accurate estimation of the market risk
incurred by financial institutions is essential, both for internal and regulatory purposes. As
a result of the stock market crash that had occurred in the Black Monday of October 19,
1987, a new risk measure was developed known as Value-at-Risk, VaR. Since then, the
adoption of this measure has significantly increased, firstly by option of some financial
institutions in order to summarize different risks, such as the aggregated firm risk (e.g.
JP Morgan’s Risk Metrics), and afterwards by imposition of the Basel II Accords. Later,
Acerbi and Tasche (2002) introduced expected shortfall, ES, a risk measure that unlike
the former is coherent. However, as the backtesting of the latter is harder than that of the
former, value-at-risk remains as the benchmark for regulatory purposes.

There is a wide range of methodologies available in the literature to estimate the men-
tioned risk measures. However, these have some limitations, such as some methods based
on conditional heteroscedastic models, which assume a specific distribution of conditional
returns. Others, such as historical simulation and bootstrap methods directly applied to
returns, do not account for volatility clustering. Lastly, Filtered Historical Simulation and
Extreme Value Theory based methods do not consider the uncertainty due to parameter
estimation. Pascual et al. (2006) proposed a new bootstrap method applied to GARCH
models that overcomes the above mentioned limitations. Later, Chen et al. (2011) devel-
oped a similar methodology but reducing computational costs by a factor of 100. With
the outputs of the former methods, the estimation of point forecasts of value-at-risk and
expected shortfall is straightforward, as Pascual et al. (2006) indicated as a possible ap-
plication of their method, but which, to our best knowledge, has never been done.

Given this background, the purpose of this work is three-fold: to study whether these
methodologies are appropriate for VaR and ES estimation, according to the backtesting
procedures defined by the Basel II Accords, as well as to those proposed in the litera-
ture; to perform a comparative analysis of both methods to assess the impact of reducing
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computational costs in the accuracy of the risk estimation; and lastly, to compare the per-
formance of the methods with the ones of the Filtered Historical Simulation and of the
Historical Simulation. While the former comparison is important to conclude if consid-
ering the uncertainty due to parameter estimation, increases the accuracy of the methods,
the latter is relevant to show the impact of the current trend of returning to the simpler
Historical Simulation for regulatory purposes. As such, the accuracy of the VaR estimates
are tested and compared, using the approaches of the Basel Committee on Banking Su-
pervision (1996), Kupiec (1995), Christoffersen (1998) and Sarma et al. (2003), while the
test proposed by Righi and Ceretta (2013) is applied to the ES estimates. These analysis
are performed using daily closing prices of the FTSE 100 index.

On Section 2, a review of the relevant literature is presented. This includes the defini-
tion and analysis of asset returns and their stylized facts, of the risk measures, of the main
methodologies to estimate them, of the bootstrap methods of Pascual et al. (2006) and
Chen et al. (2011), and lastly of the main VaR and ES backtesting procedures. Section
3 contains the implementation procedures and backtesting results of the four mentioned
methods, as well as an analysis of the data used. Lastly, Section 4 includes the main
conclusions of this work.
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2 Literature Review
In this section, the main studies present in the literature are examined. Firstly, the con-

cept of asset returns is presented, as well as their main empirical stylized facts. Secondly,
the relevant features of the GARCH (1,1) model are described. Then, value-at-risk and
expected shortfall are defined, followed by a discussion of the main methods to estimate
them. Afterwards, the bootstrap methods in GARCH models are analysed. Lastly, the
relevant backtesting procedures defined by the Basel Committee on Banking Supervision
(1996), as well as in the literature are described.

2.1 Asset Returns

The simple return of an asset on a day t, assuming no dividends, is given by

R′t =
Pt

Pt−1
−1, (2.1)

where Pt is the the asset closing price on day t. Another definition of asset return is the
continuously compounded or log return on a day t, which is given by

Rt = ln
(

Pt

Pt−1

)
, (2.2)

where ln is the natural logarithmic function. According to Ruppert (2011), log and simple
returns are approximately equal, as ln(1+ x)≈ x for x close to 0, as are daily returns. In
this context, loss can be defined as the negative of the log return. This second definition
of asset return is the one used throughout the rest of this paper.

According to Tsay (2002) and Taylor (2007), volatility clustering is present in every
long time series of daily asset returns. This phenomenon can be described by the re-
mark of Mandelbrot (1963) on asset prices: ”large changes tend to be followed by large
changes, of either sign, and small changes tend to be followed by small changes”. More-
over, Taylor (2007) states that there are three statistical properties, known as stylized
facts, that can be observed for almost all large datasets of daily returns, independently
of the market or time period under analysis. Firstly, the distribution of daily returns is
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not normal. Despite being approximately symmetric, the former has fat tails and a high
peak, when compared with the latter. The other two stylized facts are that daily returns
of different days are almost not correlated, while there is correlation between absolute or
squared daily returns on nearby days.

2.2 The GARCH (1,1) Model

It is well known that financial returns exhibit volatility clusters or, in other words,
their volatility appears to be higher in some periods and lower on others. Moreover, Tsay
(2002) states that volatility is a continuous variable that oscillates between a fixed interval.
Consequently, Bollerslev (1986) introduces the Generalized Conditional Heteroscedastic
(GARCH) models, in which conditional variance depends not only on past returns, but
also on past volatility. The most simple specification of these is the GARCH (1,1) model,
which is widely used to model asset returns and can be defined as follows:

yt = σtεt (2.3)

σ
2
t = ω+αy2

t−1 +βσ
2
t−1, (2.4)

where yt and σt are the conditional return and conditional volatility, respectively, εt is a
sequence of independent and identically distributed random variables with mean 0 and
variance 1, with the conditional distribution of yt coinciding with the one of εt , and α+

β < 1. The latter condition ensures that the unconditional variance is finite, while the
conditional variance changes over time. The conditional variance can also be written as

σ
2
t =

ω

1−α−β
+α

∞

∑
j=0

β
j
(

y2
t− j−1−

ω

1−α−β

)
(2.5)

Tsay (2002) shows that equations (2.3) and (2.4) can be rewritten as an ARMA (1,1)
process, as follows:

y2
t = ω+(α+β)y2

t−1 +νt−βνt−1 (2.6)

where νt = y2
t −σ2

t .
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2.3 Value-at-Risk and Expected Shortfall

Value-at-risk (VaR) is defined as the maximum potential loss that a portfolio can suf-
fer, during a specific time period, in the best 100 (1−α)% scenarios, with 0 ≤ α ≤ 1.
According to Artzner et al. (1999) this can be expressed as

VaR(α)
t =−sup

r∈ℜ

[r|P(Rt ≤ r)≤ α], (2.7)

where Rt is the portfolio return at time t.

Artzner et al. (1999) state that a coherent risk measure should have four properties:
monotonicity, translation invariance, homogeneity and subadditivity. Moreover, those
authors shows that VaR does not have the fourth property, proposing another risk measure
that has all of them: conditional value-at-risk (CVaR). This is equal to the expected loss
in the 100 α% worst scenarios and can be expressed as

CVaR(α)
t =−E[Rt |(Rt ≤−VaR(α)

t )]. (2.8)

Furthermore, Inui and Kijima (2005) mention that VaR ignores the statistical properties
of the return distribution beyond the specified quantile, emphasizing the need for a differ-
ent risk measure. Acerbi and Tasche (2002) show that CVaR only has the subadditivity
property for continuous return distributions and develop another coherent risk measure,
which the authors name expected shortfall (ES). ES is valid for both continuous and dis-
crete distributions and is equal to the CVaR in the former case. This measure can be
expressed as

ES(α)t =CVaR(α)
t +(λ−1)(CVaR(α)

t −VaR(α)
t ), (2.9)

where λ≡ P(Rt≤−VaR(α)
t )

α
≥ 1.
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2.4 Estimation of the Risk Measures

2.4.1 Value-at-Risk Estimation

The vast literature on the main methodologies to estimate VaR can be divided in three
main groups, according to their underlying assumptions: non-parametric methods which
assume that returns are independent and identically distributed (iid); parametric meth-
ods, which assume a distribution for the standardized returns; and lastly extreme value
theory and other methods that do not take into account the uncertainty due to parameter
estimation.

One example of a non-parametric method that relies on the iid assumption is the histo-
rial simulation approach, which is implemented by Hendricks (1996), Vlaar (2000) and
Brandolini and Colucci (2012), among others. This method calculates the VaR(α)

t as the α

quantile of the empirical distribution of past daily losses. Barone-Adesi and Giannopou-
los (2001) implement an alternative non-parametric method, in which VaR is estimated
through a bootstrap procedure directly applied to returns. The authors state that this type
of methods does not consider the existence of volatility clusters, as a consequence of the
iid assumption.

Given the limitations of the non-parametric methods, conditional heteroscedastic mod-
els are introduced in VaR estimation, so that it is possible to take into account volatility
clustering. The first set of these models assume a distribution for the conditional returns
by assuming one for the standardized residuals of the model. An example of these can be
found in Giot and Laurent (2003), who apply IGARCH (1,1) and APARCH (1,1) mod-
els, with normal, student-t and skewed-t distributed standardized residuals. On the other
hand, Sadorsky (2005) and Chang et al. (2011) assume a normal distribution in a stochas-
tic volatility and in a autoregressive jump intensity model, respectively.

McNeil and Frey (2000) use, in the context of conditional heteroscedastic models, an
approach that falls into the Extreme Value Theory category. The authors estimate directly
the quantiles of the tail of the distribution by assuming iid standardized residuals. Accord-
ing to Extreme Value Theory that is an acceptable assumption, on the condition that the
conditional mean and variance are correctly specified. On the other hand, Barone-Adesi
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and Giannopoulos (2001) and Brandolini and Colucci (2012) also implement a bootstrap
method known as Filtered Historical Simulation, random drawing with replacement from
the original sample of standardized residuals, with the parameters being constant in all
bootstrap replicates.

Other approaches include the semi-parametric and non-parametric specifications of the
conditional mean and variance, such as the ones of Fan and Gu (2003) and Cai and Wang
(2008), respectively. Lastly, another group of authors, such as Engle and Manganelli
(2004), Taylor (2008) and Gouriroux and Jasiak (2008), estimate VaR by defining the
evolution of the quantile over time as the dependent variable of their models, with their
methods having some of the previously mentioned limitations.

2.4.2 Expected Shortfall Estimation

The estimation of ES has not received as yet as much attention as VaR in the literature,
as the former is more recent and regulators never gave it as much relevance as they did to
the latter. Acerbi and Tasche (2002), who developed this measure, carry on its calculation
based on the estimation of VaR through historical simulation. Other authors implement
other methods, based on the previously described for VaR estimation, with the ES corre-
sponding to the expected value of the losses that are higher than the VaR. Examples of this
can be found in McNeil and Frey (2000) and Christoffersen and Gonçalves (2005), with
the former adopting an extreme value theory approach and the latter assuming a specific
conditional distribution for the returns. Giannopoulos and Tunaru (2005) implement a
filtered historical simulation method and compute the ES as the bootstrap sample average
of the forecasted losses that are higher than the VaR, while Taylor (2008) estimates ES
through quantile regression.

2.5 Bootstrap methods in GARCH (1,1)

2.5.1 Filtered Historical Simulation

The Filtered Historical Simulation (FHS), implemented by Barone-Adesi and Giannopou-
los (2001) and Brandolini and Colucci (2012), includes a bootstrap method in a GARCH
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(1,1) model that does not take into consideration the uncertainty due to parameter estima-
tion. This procedure includes the following steps:

• Step 1: Estimate the parameters of the GARCH (1,1) model, θ̂T = (ω̂, α̂, β̂) for a
sequence of T returns, yt , for t = 1, ...,T ;

• Step 2: Compute the standardized residuals ε̂t , for t = 1, ...,T , with

ε̂t =
yt

σ̂t
(2.10)

where σ̂t is the fitted conditional volatility of the estimated GARCH (1,1) model;

• Step 3: Estimate bootstrap forecasts of future returns and volatilities K periods
using the following recursions

σ̂
∗2
T+k = ω̂+ α̂y∗2T+k−1 + β̂σ̂

∗2
T+k−1 (2.11)

y∗T+k = σ̂
∗
T+kε̂

∗
T+k,k = 1, ...,K, (2.12)

where y∗t = yt , ε̂∗T+k are random draws with replacement from the original standard-
ized residuals series and

σ̂
∗2
T =

ω̂

1− α̂− β̂
+ α̂

T−2

∑
j=0

β̂
j
(

y2
T− j−1−

ω̂

1− α̂− β̂

)
; (2.13)

• Step 4: Repeat step 3, B times, where B is the number of bootstrap replicates.

For each k period ahead, the bootstrap conditional distribution of future returns and
volatilities is determined by the B forecasts obtained for each period, assuming equal
probability of occurrence of each of the computed future scenarios.

2.5.2 Bootstrap in GARCH (1,1) under uncertainty

Pascual et al. (2006) propose a bootstrap method (PRR) to estimate densities of future
conditional returns and volatilities in GARCH models that takes into account the under-
tainty due to parameter estimation. This procedure is described the following steps:

• Step 1: Estimate the parameters of the GARCH (1,1) model, θ̂T = (ω̂, α̂, β̂) for a
sequence of T returns, yt , for t = 1, ...,T ;
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• Step 2: Compute the standardized residuals ε̂t , for t = 1, ...,T , with

ε̂t =
yt

σ̂t
(2.14)

where σ̂t is the fitted conditional volatility of the GARCH (1,1) model estimated;

• Step 3: Obtain a y∗t , for t = 1, ...,T , replicate sample with size equal to the original
sample from the following recursions

σ̂
∗2
t = ω̂+ α̂y∗2t−1 + β̂σ̂

∗2
t−1 (2.15)

y∗t = σ̂
∗
t ε̂
∗
t , t = 1, ...,T, (2.16)

where σ̂∗21 = ω̂

1−α̂−β̂
and ε̂∗t is a random draws with replacement from the original

standardized residuals series;

• Step 4: Re-estimate the GARCH (1,1) model for the replicate sample, resulting in
a new set of parameters, θ̂∗T = (ω̂∗, α̂∗, β̂∗);

• Step 5: Estimate bootstrap forecasts of future returns and volatilities K periods
ahead using the following recursions

σ̂
∗2
T+k = ω̂

∗+ α̂
∗y∗2T+k−1 + β̂

∗
σ̂
∗2
T+k−1 (2.17)

y∗T+k = σ̂
∗
T+kε̂

∗
T+k,k = 1, ...,K, (2.18)

where y∗t = yt , ε̂∗T+k are random draws with replacement from the original standard-
ized residuals series and

σ̂
∗2
T =

ω̂∗

1− α̂∗− β̂∗
+ α̂

∗
T−2

∑
j=0

β̂
∗ j
(

y2
T− j−1−

ω̂∗

1− α̂∗− β̂∗

)
; (2.19)

• Step 6: Repeat steps 3 to 5, B times, where B is the number of bootstrap replicates.

For each k period ahead, the bootstrap conditional distribution of future returns and
volatilities is determined by the B forecasts obtained for each period, assuming equal
probability of occurrence of each of the computed future scenarios.
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2.5.3 Sieve Bootstrap in GARCH (1,1) under uncertainty

The ARMA(1,1) representation in equation (2.6) allows to implement the unconditional
sieve bootstrap procedure (USB) proposed by Chen et al. (2011). This procedure includes
consists of the following steps:

• Step 1: Estimate the ARMA(1,1) parameters, θ̂T = (ω̂, α̂+β, β̂) for a sequence of
T squared returns, y2

t , for t = 1, ...,T ;

• Step 2: Estimate the residuals ν̂t , for t = 2, ...,T with ν̂1=0 and

ν̂t = y2
t − ω̂− ̂(α+β)y2

t−1 + β̂ν̂t−1; (2.20)

• Step 3: Compute the centered residuals ν̃t , t = 2, ...,T , with

ν̃t = ν̂t−
1

T −1

T

∑
t=2

ν̂t (2.21)

• Step 4: Obtain a y∗2t , for t = 1, ...,T replicate with size equal to the original sample
from the following recursion:

y∗2t = ω̂+ ̂(α+β)y∗2t−1 + ν̃
∗
t − β̂ν̃

∗
t−1, (2.22)

where ν̃∗t are random draws with replacement from the original centred residuals
series, ν̃∗0 = 0 and y∗20 = ω

1− ̂(α+β)
;

• Step 5: Re-estimate the ARMA (1,1) model for the replicate, resulting in a new set
of parameters, θ̂∗T = (ω̂∗, ̂(α+β)

∗
, β̂∗);

• Step 6: Obtain the bootstrap sample volatility, σ̂∗2t , for t = 2, ...,T , with the follow-
ing recursion:

σ̂
∗2
t = ω̂

∗+ α̂
∗y∗2t−1 + β̂

∗
σ̂
∗2
t−1 (2.23)

where σ̂∗21 = ω̂∗

1−(α̂∗+β̂∗)
;

• Step 7: Estimate bootstrap forecasts of future returns and volatilities K periods
ahead using the following recursions

ŷ∗2T+k = ω̂
∗+ ̂(α+β)

∗
y∗2T+k−1 + ν̃

∗
T+k− β̂

∗
ν̃
∗
T+k−1 (2.24)
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σ̂
∗2
T+k = ω̂

∗+ α̂
∗y∗2T+k−1 + β̂

∗
σ̂
∗2
T+k−1,k = 1, ...,K, (2.25)

where ŷ∗2T = y2
T and ν̃∗T+k are random draws with replacement from the original

centred residuals series;

• Step 8: Repeat steps 4 to 7, B times, where B is the number of bootstrap replicates.

For each k period ahead, the bootstrap conditional distribution of future squared re-
turns and volatilities is determined by the B forecasts obtained for each period, assuming
equal probability of occurrence of each of the computed future scenarios. Moreover, for
each k period ahead, the α/2 and 1−α/2 quantiles of the bootstrap conditional distribu-
tion of future returns are equal to -1 and 1 times the square root of the 1−α quantile of
the one of future squared returns, respectively.

2.5.4 Critical Analysis of the Methods

Despite considering the existence of volatility clusters and not assuming a particular
distribution, the Extreme Value Theory and the Filtered Historical Simulation do not con-
sider the uncertainty due to parameter estimation. In fact, the former assumes that the
conditional mean and variance are correctly specified and the latter keeps the parameters
fixed for all bootstrap replicates. On the other hand, the bootstrapping methods of Pascual
et al. (2006) and Chen et al. (2011) to predict densities of future returns and volatilies in
GARCH (1,1), not only take into account the same features as do the previously method-
ologies, but also consider the stated uncertainty. Consequently, it is relevant to study the
performance of these methods to VaR estimation.

Inui and Kijima (2005) state that the ES estimator may suffer from the same limitations
as does the underlying VaR estimator. As such, it is also relevant to study the applicability
of the mentioned bootstrap methods of Pascual et al. (2006) and Chen et al. (2011) to
ES estimation, as these do not suffer from the already stated limitations of the previous
approaches.

According to Chen et al. (2011), the sieve bootstrap is one of the most efficient and
used bootstrap techniques for linear time-series and is already extensively studied in the
literature. Moreover, the authors state that this procedure decreases computational time
by a factor of 100, relatively to other bootstrap techniques for GARCH models, such as
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the one proposed by Pascual et al. (2006). This results from the ability to estimate the
model linearly, using for example Least Squares, after representing the GARCH model,
as a linear ARMA model.

Chen et al. (2011) also defend that this method does not rely on any underlying assump-
tion on the distribution of the standardized residuals. However, from their computation
of the quantiles of the conditional distribution of future returns, this seems to be at least
questionable. The mentioned methodology divides evenly the 1−α quantile of the con-
ditional distribution of future squared returns between the first and last α/2 quantiles of
the one of future returns. Consequently, this assumes that the values corresponding to
the mentioned quantiles are symmetric. Given that this must be true for all values of α,
this method relies on the assumption that the conditional distribution of future returns is
symmetric.

Following this, it is relevant to study the absolute, as well as the relative, performance
of PRR and USB in the estimation of VaR and ES, in order to observe if the theoretical
limitations of the sieve bootstrap method in GARCH models proposed by Chen et al.
(2011) constrains its applicability to risk management. Moreover, the performance of
these methods should be compared with the one of FHS, to conclude if the inclusion of
the uncertainty to parameter estimation increases the accuracy of the bootstrap method.

2.6 Value-at-Risk Backtesting

Given the wide range of methods that can be used to estimate VaR and ES, a procedure,
known as backtesting, is defined to determine whether a specific model is appropriate for
the mentioned goal. All backtesting procedures rely on comparing the risk measures esti-
mated by the model under analysis with the actual trading results. The cases in which the
actual loss exceeds the VaR estimate are called exceptions. According to Christoffersen
(1998), the exception sequence, I(α)t , can be defined mathematically as follows:

I(α)t =

1, if Rt < −VaR(α)
t

0, otherwise
(2.26)
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for t = T +1, ...,T +n, where T is the number of return observations used to estimate the
VaR of the day T +1 and n is the number of one-step ahead estimates of that risk measure
included in the test. Consequently, VaR backtesting consists in determining whether the
probability of occurrence of an exception is significantly different from the defined α, or
testing the hypothesis:

H0 : E[I(α)t |I
(α)
t−1] = α (2.27)

2.6.1 Testing the Accuracy of a Model

The Basel Committee on Banking Supervision (1996) outlines a framework for back-
testing methods used by financial institutions to estimate VaR, known as traffic light ap-
proach. This methodology is based on the method that was used by a considerable number
of banks to test their internal models. According to this framework, the backtesting should
include approximately 250 daily return observations and the corresponding 250 one-step
ahead estimates of the 99% (α = 1%) VaR.

If the number of exceptions generated is equal or lower than four, the model is con-
sidered accurate (green zone), while the opposite is concluded if the model generates ten
or more exceptions (red zone). The latter scenario results in an automatic increase of the
financial institution’s capital requirements by 33.33% and in the need to develop a new
model. Lastly, if the number of exceptions is between 5 and 9, the model falls in the yel-
low zone and the financial institution must demonstrate that the model is accurate. Failing
to do so results in an increase of the capital requirements proportionally to the number of
exceptions above 4 and, in the most problematic cases, in a mandatory redesign of the
model.

Another approach is proposed by Kupiec (1995). This author develops an unconditional
coverage test to determine whether the probability of an exception occurring under a
specific VaR model is α, or in other words to test the null hypothesis H0 : E[I(α)t ] =α, with
the m exceptions observed in the n trials, using the following likelihood ratio statistic:

LRuc = 2ln
[(

1− m
n

)n−m(m
n

)m
]
−2ln

[
(1−α)n−m

α
m]∼asy

χ
2
(1), (2.28)
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where m =
T+n
∑

t=T+1
I(α)t . If the proportion of exceptions is significantly higher or lower than

α, the likelihood ratio statistic will be high and so the H0 hypothesis will be rejected.

As the previous test, checks whether the unconditional expectation of I(α)t is α, and not
the conditional one as stated in equation (2.21), Christoffersen (1998) proposes another
test, in which the latter case is analysed. The author combines Kupiec (1995)’s uncon-
ditional coverage test with another, in which the serial independence of the exception
sequence is checked, obtaining a complete conditional coverage test, or in other words
testing the null hypothesis H0 : E[I(α)t |I

(α)
t−1] = α. The likelihood ratio statistic of the serial

independence test is the following:

LRind = 2ln
[
(1−π01)

n00 π
n01
01 (1−π11)

n10 π
n11
11
]
−2ln

[
(1−π)n00+n10 π

n01+n11
]
∼
asy

χ
2
(1),

(2.29)
where ni j is the number of observations of the exception sequence with value i that are
followed by another with value j, π01 =

n01
n00+n01

and π11 =
n11

n10+n11
. If the exceptions are

concentrated in specific periods of the backtesting sample, the likelihood ratio statistic
will be high and so the hypothesis of serial independence will be rejected. Lastly, the
likelihood ratio statistic for the complete conditional coverage test is the following:

LRcc = LRuc +LRind ∼
asy

χ
2
(2). (2.30)

2.6.2 Choosing between Accurate Models

The tests described above allow to infer whether a specific method generates accurate
VaR estimates. However, using just them, it is not possible to decide which of the two
accurate models is better for the mentioned purpose. Lopez (1999) proposes a methodol-
ogy to do this that the author denominates loss function evaluation method, that consists
in choosing the model with lower Cm, given by:

Cm =
T+n

∑
t=T+1

Cm,t , (2.31)

where

Cm,t =

 f (Rt ,VaR(α)
m,t ), if Rt < −VaR(α)

m,t

g(Rt ,VaR(α)
m,t ), if Rt ≥−VaR(α)

m,t

(2.32)
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where the index m assumes a different identifier for each estimation method and f (x,y)

and g(x,y) are functions such that f (x,y)≥ g(x,y), for a given y.

Lopez (1999) only considers the point of view of the regulator by considering g(x,y) =

0, or in other words just penalizing the scenarios in which the actual returns were higher
than the estimated VaR, proportionally to the difference. Consequently, Sarma et al.
(2003) call the loss function defined by Lopez (1999) the Regulatory Loss function, and
defines it as follows:

Cm,t =

(Rt−VaR(α)
m,t )

2, if Rt < −VaR(α)
m,t

0, if Rt ≥−VaR(α)
m,t

(2.33)

Moreover, according to Sarma et al. (2003), financial institutions that use VaR estima-
tion models that overestimate the risk, will be imposed higher capital requirements than
they should actually hold. As such, these authors propose an additional loss function,
called the firm’s loss function, that penalizes not only the scenarios in which exceptions
occur, representing a failure of the bank’s risk management policy, but also the ones in
which the actual returns were lower than the estimated VaR:

Cm,t =

(Rt− (−VaR(α)
m,t ))

2, if Rt < −VaR(α)
m,t

−γ(−VaR(α)
m,t ), if Rt ≥−VaR(α)

m,t

(2.34)

where γ measures the opportunity cost of capital.

Angelidis et al. (2004) propose the Quantile Loss function, which also penalizes for
higher capital requirements:

Cm,t =

(Rt− (−VaR(α)
m,t ))

2, if Rt < −VaR(α)
m,t

(q(α)[Rt ]
T+n
T+1− (−VaR(α)

m,t ))
2, if Rt ≥−VaR(α)

m,t

(2.35)

where q(α)[Rt ]
T+n
T+1 is the quantile α of the empirical distribution of the daily returns used

for backtesting the model.

Sarma et al. (2003) also propose an one-sided sign hypothesis test to infer whether
model i is significantly superior than another model j for VaR estimation, relatively to a
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given loss function. The null hypothesis of this test is H0 : θ = 0, against the alternative
hypothesis H0 : θ<0, where θ is the median of the distribution of zt , with

zt =Ci,t−C j,t . (2.36)

As the variable Cm,t is defined in such a way that higher values of Cm are obtained for
worse models, negative values of zt mean that model i is superior to model j.

Sarma et al. (2003) define another two variables, ψt and Si j, with the former corre-
sponding to the number of non-negative zt’s and the latter to the sum of all the observa-
tions of the former:

ψt =

1, if zt ≥ 0

0, if zt <0
(2.37)

Si j =
T+n

∑
t=T+1

ψt (2.38)

According to Diebold and Mariano (2002), the standardized statistic Si j is asymptoti-
cally standard normal:

Si j−0.5n√
0.25n

∼
asy

N(0,1). (2.39)

Consequently, if Si j is too low, the H0 hypothesis is rejected, or in other words the
model i is significantly better than the model j for VaR estimation purposes. This is
aligned with the idea that underlies the test, as a low value of Si j is equivalent to model i

outperforming model j more often than the opposite occurs.

2.7 Expected Shortfall Backtesting

According to Wong (2008), ES is not considered in Basel II Accords, more specif-
ically by the Basel Committee on Banking Supervision (1996), because its backtesting
is significantly harder that of VaR. Nevertheless, different approaches can be found in
the literature, such as the residual of McNeil and Frey (2000), the censored gaussian of
Berkowitz (2001) and the functional delta of Kerkhof and Melenberg (2004).
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Wong (2008) and Righi and Ceretta (2013) state that the previously mentioned method-
ologies can be inaccurate in samples, such as the ones used in practice and for regulation
purposes, as these tend to be small, while the former depend on asymptotic test statistics
or, in other words, on samples large enough so that the test statistic actual distribution
converges to the one considered in the test. Moreover, they consider the full sample size
to perform the test, and not just the observations in which exceptions occurred. This is a
limitation as ES focus only on the return behaviour that represents a loss higher than the
VaR.

As a result, Wong (2008) proposes another test that overcomes these limitations and
so that is accurate even in small samples of exceptions. As the previously mentioned
test assumes that the returns, which breach the computed VaR level, follow a normal
distribution, Righi and Ceretta (2013) develop a different test that does not rely on any
distribution. The authors propose to test whether an exception that occurs in a given day
n is significantly worse than the one that is expected for the computed VaR, with the
following test statistic:

BTT+n =
RT+n−ES(α)T+n

SD(α)
T+n

, (2.40)

where

SD(α)
T+n = (Var[RT+n|(RT+n ≤−VaR(α)

T+n)])
1/2 (2.41)

As the authors defend that the probability distribution of RT+n is not known, they use
instead the following equivalent test statistic:

BTT+n =
ε̂T+n−E[ε̂T+n|ε̂T+n <F−1(α)]

Var[ε̂T+n|ε̂T+n <F−1(α)]1/2 (2.42)

where ε̂t is the standardized residual of a return series that follows a GARCH process as
the one defined in equations (2.3) and (2.4), and F−1(α) is the α quantile of the former’s
distribution, which is known.

In order to compute the p-value of the test without assuming a specific distribution for
the test statistic, Righi and Ceretta (2013) propose the following Monte Carlo simulation:
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• Step 1: Draw n observations ui from the distribution F ;

• Step 2: Calculate E[ui|ui<G−1(α)] and Var[ui|ui<G−1(α)], where G−1(α)] is the
α quantile of the ui sample;

• Step 3: For every ui <G−1(α) compute BTi:

BTi =
ui−E[ui|ui <G−1(α)]

Var[ui|ui <G−1(α)]1/2 (2.43)

• Step 4: Calculate P(BTi <BTT+n);

• Step 5: Repeat steps 1 to 5, N times;

• Step 6: Compute the p-value as the median of the probabilities calculated in the N

steps 5, and the critical value as the median of the α quantile of each BTi series,
obtained in the N steps 3.

If the p-value leads to the rejection of the hypothesis, then it can be concluded that
the loss is significantly higher than the ES. This methodology allows to test its exception
individually, with Righi and Ceretta (2013) stating that this is necessary, as models that
fail to predict extreme losses should not be used for risk estimation.
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3 Empirical Application
In this section, one-step ahead VaR and ES estimates of the FTSE 100 index, for the 253

trading days of 2013 are obtained, with α= 1%, using PRR and USB, as well as Historical
Simulation (HS) and FHS, for comparison purposes. In order to backtest these estimates,
the tests proposed by the Basel Committee on Banking Supervision (1996), Kupiec (1995)
and Christoffersen (1998) are performed to test the accuracy of the model, while the test
implemented by Sarma et al. (2003), using both the Regulatory Loss function of Lopez
(1999) and the Quantile Loss function of Angelidis et al. (2004), is used to choose the best
model. Lastly, the method of Righi and Ceretta (2013) is used to backtest the obtained ES
estimates.

In order to implement and backtest the methods presented in this work, code was writ-
ten in the R programming language. The packages f Garch and tseries are used to estimate
the GARCH (1,1) model in the representation used by PRR and FHS, and in the one used
by USB, respectively. The package moments supplies the functions required to perform
the Jarque-Bera test for normality, D’Agostino test of skewness and Anscombe-Glynn
test of kurtosis. Lastly, the package Per f ormanceAnalytics is used for plotting.

3.1 Data and Sample

The data under analysis includes 1262 observations of the daily closing prices of the
FTSE 100 index, from 31 December 2008 to 31 December 2013. This data is extracted
from the Datastream database. Daily continuously compounded returns are calculated,
using equation (2.2), and scaled by a factor of 100. The first four years of data (1009
observations) are used to obtain the one-step ahead VaR and ES estimates for the first
backtesting day. The remaining year (253 observations) is used to backtest the PRR, USB,
FHS and HS risk estimates. Rolling windows, with the same number of observations as
the original sample, are used to estimate the risk measures for the second backtesting day
onwards, with the backtesting sample providing each day the additional required daily
observation. The plot of these returns, shown on Figure 3.1, suggests the existence of
volatility clustering.
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Figure 3.1: FTSE 100 daily continuously compounded returns from January 01, 2009 to
December 31, 2013, totaling 1262 observations.

Plot (a) of Figure 3.2 shows the empirical density of the daily returns, as well as a
normal distribution with the same mean and variance. Despite being approximately sym-
metric, the empirical density of the daily returns has a higher peak and seems to have
fatter tails. The latter is confirmed in the normal quantile-quantile plot (b), in which can
be seen that the first and last quantiles of the empirical distribution of the daily returns are
respectively significantly lower and higher than the ones of the normal distribution.

Figure 3.2: FTSE 100 daily returns empirical distribution (solid), normal distribution with
the same mean and standard deviation (dotted) (a) and normal quantile-quantile plot (b).
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Table 3.1 summarizes some descriptive statistics of the daily returns sample used both
for estimation of the risk measures and for backtesting of the methods. The sample kur-
tosis above 3 suggests that the daily return distribution is leptokurtic, suggesting that this
variable is not normally distributed. On the other hand, the skewness estimate is close to
0. In order to observe the statistical significance of the kurtosis and skewness estimates,
the Jarque-Bera test for normality, D’Agostino test for skewness and Anscombe-Glynn
test for kurtosis of the daily returns sample are performed. The results of these are shown
in Table 3.2 and lead to the rejection of the hypothesis of normality, as well as the hy-
pothesis of no excess kurtosis, for a 5% significance level. Nonetheless, the hypothesis
of no skewness is not rejected, for the same significance level. As such, despite not being
normal and showing evidence of excess kurtosis, the sample return distribution is approx-
imately symmetric, confirming the conclusions previously derived from plotting.

Table 3.1: Descriptive statistics of the FTSE 100 daily continuously compounded returns
from January 01, 2009 to December 31, 2013, totaling 1262 observations.

Mean Median Minimum Maximum Std. Deviation Skewness Kurtosis

0.0333 0.0592 −5.4805 5.0322 1.1437 −0.1722 5.2625

Table 3.2: Jarque-Bera test for normality, D’Agostino test of skewness and Anscombe-
Glynn test of kurtosis of the FTSE 100 daily continuously compounded returns from
January 01, 2009 to December 31, 2013, totaling 1262 observations.

Jarque-Bera test D’Agostino test Anscombe-Glynn test

Statistic p-value Statistic p-value Statistic p-value

277.19 0.0000 −1.6447 0.1000 8.4226 0.0000

Before applying the GARCH (1,1) model, described in section 2.2, some additional
steps are required, as stated by Tsay (2002). According to the author, significant auto-
correlation must be removed from the data, before applying a conditional heteroscedastic
model, such as the GARCH (1,1). As such, significant autocorrelation was tested through
a Ljung-Box test. This is equivalent to test H0 : ρ1 = ...= ρm = 0, against the alternative
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hypothesis H1 : ρl 6= 0, l ∈ {1, ...,m}, where ρl is the lag-l autocorrelation of the returns.
If H0 is rejected, the returns are significantly autocorrelated. Following the results of the
simulation studies mentioned by Tsay (2002), m≈ ln(T ), where T is the number of daily
return observations included in the estimation of the risk measures. As the sample size
is reduced by one when the daily returns are calculated, m ≈ ln(1008) = 7. This test is
performed for the whole sample, as well as for every rolling window of data used, with
their p-values being indicated in Table 3.3 and plotted in Figure 3.3, respectively. These
do not indicate rejection of the hypothesis of no autocorrelation in either the sample or its
sub-samples.

Table 3.3: Ljung-Box test and Lagrange Multiplier test of the FTSE 100 daily continu-
ously compounded returns from January 01, 2009 to December 31, 2013, totaling 1262
observations.

Ljung-Box test Lagrange Multiplier test

Statistic p-value Statistic p-value

4.4967 0.7211 124.213 0.0000

Following this, it is necessary to observe whether the squared residuals are serially cor-
related, as this is a requirement for applying a conditional heteroscedastic model, such
as the GARCH (1,1). Therefore, the daily returns of the whole sample and of each
rolling window are tested for autocorrelation in their squares, also known as ARCH ef-
fects, through a Lagrange Multiplier test. This is equivalent to perform the Wald test
H0 : α1 = ...= αm = 0, against the alternative hypothesis H1 : αi 6= 0, i ∈ {1, ...,m}, in the
following linear regression:

y2
t = α0 +α1y2

t−1 + ...++αmy2
t−m + et , t = m+1, ...T, (3.1)

where et is the error term. The p-values for the whole sample and each rolling window are
indicated in Table 3.3 and plotted in Figure 3.3, with the hypothesis of no autocorrelation
in the squared returns being rejected for all the considered time frames. As such, given the
presence of ARCH effects, the application of a conditional heteroscedastic model, such as
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Figure 3.3: p-values of Ljung-Box test (a) and Lagrange Multiplier test (b) applied to the
FTSE 100 daily continuously compounded returns sub-samples. The p-values of a given
trading day result from performing the tests, on the data used to estimate the one-step
ahead VaR and ES of that day.

the GARCH (1,1), is suitable. It is also worth noting that this daily returns sample shows
all the stylized facts identified in the literature.

3.2 Model Implementation

After the previous tests, the parameters of a GARCH (1,1) model are estimated for each
rolling window, and the corresponding standardized residuals computed. The latter are
then tested for autocorrelation and ARCH effects, using the previously mentioned Ljung-
Box test and Lagrange Multiplier test, respectively. The p-values of these can be found
in Figure 3.4, indicating that the hypothesis of no autocorrelation in the standardized
residuals and in their squares is not rejected. Consequently, the daily returns of each
rolling window seem to be adequately described by a GARCH (1,1) process.
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Figure 3.4: Ljung-Box test p-values (a) and Lagrange Multiplier test p-values (b) of
GARCH (1,1) standardized residuals. The p-values of a given trading day result from
performing the tests on the standardized residuals of the GARCH (1,1) model, estimated
with the data used to estimate the one-step ahead VaR and ES of that day.

The FHS, PRR and USB bootstrap methods are then implemented. Regarding PRR
and USB, instead of obtaining y∗t or y∗2t , for t = 1, ...,T , in the respective step of section
2.5 that includes equation (2.16) or (2.22), they are generated for t = 1, ...,T + 150 and
the first 150 are discarded in the end of the process. This is done to reduce the effect of
the initial values, which does not have a significant influence asymptotically, as stated by
Chen et al. (2011). 1000 bootstrap replicates of y∗T+1 and y∗2T+1 are then generated or, in
other words, B and K, mentioned in the description of the methods in section 2.5, were
equal to 1000 and 1, respectively.

After sorting the bootstrap replicates in ascending order, the VaR estimates obtained
with FHS and PRR are equal to the 1th quantile of the empirical distribution of the boot-
strap replicates, while the ES ones are the average of the quantiles up to the first. All
of these are multiplied by -1 to obtain the risk measure expressed as a loss and not as a
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Figure 3.5: FTSE 100 PRR (a) and USB (b) VaR (solid) and ES (dotted) estimates, for
the trading days from January 01, 2013 to December 31, 2013.

return. In the USB case, the VaR corresponds to the square root of the 98th quantile of the
empirical distribution of the bootstrap replicates and the ES to the average of the square
root of the last 20 replicates. Figure 3.5 represents the VaR and ES estimates obtained
with PRR and USB, for the 253 trading days under analysis, for α = 1%.

The risk measures were also estimated using Historical Simulation (HS). On this case,
the VaR corresponds to the 1th quantile of the empirical distribution of the past daily
continuously compounded returns, while the ES one is the average of the quantiles up to
the first. Figure 3.6 shows the VaR and ES estimates obtained with FHS and HS, for the
253 trading days under analysis, for α = 1%.
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Figure 3.6: FTSE 100 FHS (a) and HS (b) VaR (solid) and ES (dotted) estimates, for the
trading days from January 01, 2013 to December 31, 2013.

3.3 Backtesting Results

3.3.1 Accuracy Backtesting

After obtaining the VaR and ES estimates, their backtesting is required. As such, the
backtest methodology proposed by the Basel Committee on Banking Supervision (1996)
is firstly performed. After comparing the actual daily returns of the considered 253 trading
days with the VaR estimates, it can be concluded that the number of exceptions generated
by PRR and USB are 1 each. This can be observed on Figure 3.7. Regarding FHS and
HS, the number of exceptions are 2 and 1, respectively, as shown in Figure 3.8. As
the number of exceptions of the four methods is below 4, these are considered accurate
for estimating VaR, according to the backtesting framework of the Basel Committee on
Banking Supervision (1996).

Regarding the Unconditional Coverage Test of Kupiec (1995), the unconditional cov-
erage hypothesis, H0 : E[I(α)t ] = α, is never rejected for any of the methods. The serial
independence of the exceptions is then tested, through the Serial Independence Test of
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Figure 3.7: FTSE 100 daily continuously compounded returns from January 01, 2013 to
December 31, 2013 (solid), PRR (a) and USB (b) VaR estimates (dotted).

Christoffersen (1998), with the hypothesis of serial independence not being rejected for
any of the VaR estimates, given any significance level. Lastly, the Conditional Coverage
Test of Christoffersen (1998), which combines the previous two, is performed. The condi-
tional coverage hypothesis, H0 : E[I(α)t |I

(α)
t−1] = α, is not rejected for any of the mentioned

methods. Consequently, the four methods are considered accurate for VaR estimation,
according to the previous three tests. These results are shown in Table 3.4.

3.3.2 Model Comparison

As all four methods estimate VaR accurately, it is then necessary to determine which
of them is better in doing so. Regarding the Regulatory Loss Function (RLF) of Lopez
(1999), PRR and FHS have in 252 and 253 trading days, respectively, a similar or worse
performance than the other three methods. USB has in 252 trading days a similar or worse
performance than FHS and HS, and in 253 than PRR. Lastly, HS has in 253 trading days
a similar or worse performance than PRR and USB, and in 252 than FHS. Nevertheless,
these differences are not significant as, using Sarma et al. (2003) hypothesis test, the
hypothesis of equal performance of both methods is not rejected, for any significance
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Figure 3.8: FTSE 100 daily continuously compounded returns from January 01, 2013 to
December 31, 2013 (solid), FHS (a) and HS (b) VaR estimates (dotted).

level, independently of the alternative hypothesis. Consequently, regarding the regulatory
side of risk or, in other words, just avoiding its underestimation, it is not significantly
different to use one method or the other, for VaR estimation. These results are shown in
Table 3.5.

On the other hand, regarding the Quantile Loss Function (QLF) of Angelidis et al.
(2004), the difference is much wider. While, PRR has in 185, 24 and 56 trading days a
similar or worse performance than USB, FHS and HS, USB has in 68, 230 and 14 days
a similar or worse performance than PRR, FHS and HS, respectively. Regarding FHS
and HS, these models have in 13, 23 and 13 trading days, and in 197, 239 and 240 trad-
ing days a similar or worse performance than PRR, USB, and HS and PRR, USB, and
FHS, respectively. Using Sarma et al. (2003) hypothesis test, it is possible to reject some
hypothesis of equal performance, with the alternative hypothesis being that PRR has a
better performance than HS, USB has a better performance than PRR and HS, and lastly
that FHS has a better performance than all the other methods. As such, the difference in
performance of methods was deemed significant for any significance level, as the p-value
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Table 3.4: Unconditional Coverage, Serial Independence and Conditional Coverage tests
of VaR estimates

LRuc LRind LRcc

Method Statistic p-value Statistic p-value Statistic p-value

PRR 1.2129 0.2707 0.0080 0.9289 1.2209 0.5431

USB 1.2129 0.2707 0.0080 0.9289 1.2209 0.5431

FHS 0.1208 0.7281 0.0320 0.8580 0.1528 0.9264

HS 1.2129 0.2707 0.0080 0.9289 1.2209 0.5431

of the mentioned hypothesis tests was equal to 0. These results are shown in Table 3.6.
The last mentioned fact leads to the conclusion that the worst performing methods sig-
nificantly overestimate risk, and so their implementation over the better performers could
result in higher unnecessary capital requirements for financial institutions.

Table 3.5: Regulatory Loss Function (RLF) hypothesis tests of VaR estimates. For each
Si j statistic and corresponding p-value, the models i and j are the one in the same column
and row of the table, respectively.

PRR USB FH HS

Si j p-value Si j p-value Si j p-value Si j p-value

PRR 253 1.0000 252 1.0000 252 1.0000 253 1.0000

USB 253 1.0000 253 1.0000 252 1.0000 253 1.0000

FHS 252 1.0000 252 1.0000 253 1.0000 252 1.0000

HS 252 1.0000 252 1.0000 252 1.0000 253 1.0000

3.3.3 Expected Shortfall Backtesting

Lastly, as in some of the trading days the actual daily return is lower than the VaR
estimates, the hypothesis of no significant difference between the former (in loss form)
and the ES estimate obtained for that day has to be tested. This is performed using the test
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Table 3.6: Quantile Loss Function (QLF) hypothesis tests of VaR estimates. For each Si j
statistic and corresponding p-value, the models i and j are the one in the same column
and row of the table, respectively.

PRR USB FH HS

Si j p-value Si j p-value Si j p-value Si j p-value

PRR 253 1.0000 77 0.0000 20 0.0000 198 1.0000

USB 176 1.0000 253 1.0000 23 0.0000 239 1.0000

FHS 233 1.0000 230 1.0000 253 1.0000 240 1.0000

HS 55 0.0000 14 0.0000 13 0.0000 253 1.0000

proposed by Righi and Ceretta (2013), with the alternative hypothesis of the test being
that the loss is higher than the ES estimate.

Table 3.7: Bootstrap ES test of exceptions

Critical Value

Method Trading Day Statistic 1% 5% 10% p-value

PRR 118 0.1771 −2.1575 −2.1394 −1.8239 0.5400

USB 118 0.1827 −2.0429 −1.9841 −1.9128 0.3400

FHS 99 −0.4560 −0.9641 −0.9641 −0.9638 0.4300

FHS 118 −2.1403 −1.0820 −1.0820 −1.0808 0.0000

HS 118 0.8153 −2.0144 −2.0109 −1.8855 0.8600

In order to do so, a bootstrap method with 1000 simulations is performed, in which a
sample with 10000 observations is randomly drawn from the estimated conditional dis-
tribution of daily returns obtained for that day. In other words, the statistic of the test
is calculated with equation (2.40), with the corresponding changes on the ”Monte Carlo
simulation” proposed by the authors, which is in this case a bootstrap method, as in each
iteration the sample is randomly drawn from the original one. This change is possible
because PRR, USB, FHS and HS generate a conditional distribution of daily returns that
allows the computation of equation (2.40), as well as the performance of the bootstrap.
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Furthermore, in step 1 of this test, described in section 2.7, n is equal to 10000 and F

corresponds to the estimated conditional distribution of the daily returns, while N is equal
to 1000, in step 4.

The results of this test presented in Table 3.7 show that this hypothesis is not rejected
for any of the exceptions observed, given any significance level, with the exception of the
one generated on the 118th trading day of 2013 by FHS. As such, FHS should not be used
for risk estimation, as it fails to forecast extreme losses. Regarding the other methods, it
can be inferred that they are accurate for ES estimation.
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4 Conclusions
In this work, the bootstrap methods in GARCH models of Pascual et al. (2006) and

Chen et al. (2011) are analysed and extended to the estimation of VaR and ES for, to our
best knowledge, the first time. Moreover, the previously implemented Filtered Historical
Simulation and Historical Simulation are also considered in order to assess the relative
performance of the two former methods. The applicability of these methods to risk esti-
mation is then backtested, following the methodology required by the Basel Committee,
as well as others present in the literature.

Regarding the assumptions underlying the different methods described in the litera-
ture, the methods of Pascual et al. (2006) and Chen et al. (2011) are not affected by
the limitations of others, such as not taking into consideration the volatility clustering
phenomenom, assuming a distribution for the conditional returns and not including the
uncertainty due to parameter estimation. However, despite Chen et al. (2011) not spec-
ifying in their paper any assumption regarding the conditional return distribution, this
method seems to require that the latter is symmetric.

From the empirical application presented in this work, it can be concluded that the
methods proposed by Pascual et al. (2006) and Chen et al. (2011) are appropriate for risk
estimation, with the confidence level required by Basel Committee on Banking Supervi-
sion (1996), as it was considered accurate by all VaR backtests and the exceptions that its
estimates generated do not differ significantly from the ES estimated by the model. Nev-
ertheless, despite their equal performance in avoiding risk underestimation, the method
proposed by Chen et al. (2011) significantly outperforms the one of Pascual et al. (2006),
when risk overestimation is also considered, as the latter overestimates risk more than
the former, in the days in which exceptions do not occur. Consequently, it appears to be
evident that the underlying assumption of the method of Chen et al. (2011) does not influ-
ence the risk estimation accuracy and leads to lower capital requirements for the financial
institutions, which implement it over the one of Pascual et al. (2006), without having any
significant disadvantage regarding avoiding risk underestimation, specially for the confi-
dence level required by the Basel Committee on Banking Supervision (1996). As such,
the method of Chen et al. (2011) seems to over perform the one of Pascual et al. (2006)
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both in speed and accuracy of the risk estimates.

Moreover, the Filtered Historical Simulation and Historical Simulation are deemed ac-
curate methods by all VaR backtests applied in this work. However, the Filtered Histor-
ical Simulation is rejected as an accurate model by the ES backtest of Righi and Ceretta
(2013). As such, this method should not be used for risk estimation, as it fails to forecast
extreme losses. This fact reinforces the importance of considering the uncertainty due to
parameter estimation, on the bootstrap methods used to estimate risk. On the other hand,
despite being completely accurate, the Historical Simulation imposes significantly higher
capital requirements than the methods of Pascual et al. (2006) and Chen et al. (2011),
showing that the current simplicity trend may in fact be a cost for financial institutions,
without any apparent benefit.

Alternatively to the GARCH(1,1) process presented in this paper, different ones can be
used to model financial returns, such as the GJR-GARCH model, which takes into account
the fact that returns below their distribution mean have a higher impact on the volatility
than do returns above it. As such, the analysis of the applicability to risk estimation
of different models, such as the previous one, in the context of the described bootstrap
techniques is one line of future research.
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