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Abstract 

Academics and practitioners have extensively studied Value-at-Risk (VaR) to propose a unique risk 

management technique that generates accurate VaR estimations for long and short trading positions 

and for all types of financial assets. However, they have not succeeded yet as the testing frameworks 

of the proposals developed, have not been widely accepted. A two-stage backtesting procedure is 

proposed to select a model that not only forecasts VaR but also predicts the losses beyond VaR. 

Numerous conditional volatility models that capture the main characteristics of asset returns 

(asymmetric and leptokurtic unconditional distribution of returns, power transformation and 

fractional integration of the conditional variance) under four distributional assumptions (normal, 

GED, Student-t, and skewed Student-t) have been estimated to find the best model for three financial 

markets, long and short trading positions, and two confidence levels. By following this procedure, 

the risk manager can significantly reduce the number of competing models that accurately predict 

both the VaR and the Expected Shortfall (ES) measures. 
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1. Introduction 

The need of major financial institutions to measure their risk started in 1970s after an increase 

in financial instability. Baumol (1963) first attempted to estimate the risk that financial institutions 

faced. He proposed a measure based on standard deviation adjusted to a confidence level parameter 

that reflects the user’s attitude to risk.  However, this measure is not different from the widely known 

Value-at-Risk (VaR), which refers to a portfolio's worst outcome that is likely to occur at a given 

confidence level. According to the Basle Committee, the VaR methodology can be used by financial 

institutions to calculate capital charges in respect of their financial risk. 

Since JP Morgan made available its RiskMetrics system on the Internet in 1994, the 

popularity of VaR and with it the debate among researchers about the validity of the underlying 

statistical assumptions increased. This is because VaR is essentially a point estimate of the tails of 

the empirical distribution. The free accessibility of the RiskMetrics and the plethora of available 

datasets triggered academics and practitioners to find the best-performing risk management 

technique. However, even now, the results are conflicting and confusing.  

Giot and Laurent (2003a) calculated the VaR number for long and short equity trading 

positions and proposed the APARCHi model with skewed Student-t conditionally distributed 

innovations (APARCH-skT) as it had the best overall performance in terms of the proportion of 

failure test.  In a similar study, Giot and Laurent (2003b) suggested the same model to the risk 

managers to estimate the VaR number for six commodities, even if a simpler model (ARCH-skT) 

generated accurate VaR forecasts. Huang and Lin (2004) argued that for the Taiwan Stock Index 

Futures, the APARCH model under the normal (Student-t) distribution must be used by risk 

managers to calculate the VaR number at the lower (higher) confidence level. 

Although the APARCH model comprises several volatility specifications, its superiority has 

not been proved by all researchers. Angelidis and Degiannakis (2005) opined that “a risk manager 

must employ different volatility techniques in order to forecast accurately the VaR for long and short 

trading positions”, whereas Angelidis et al. (2004) considered that “the Arch structure that produces 

the most accurate VaR forecasts is different for every portfolio”. Furthermore, Guermat and Harris 

(2002) applied an exponentially weighted likelihood model in three equity portfolios (US, UK, and 

Japan) and proved its superiority to the GARCH model under the normal and the Student-t 

distributions in terms of two backtesting measures (unconditional and conditional coverage). 

Moreover, Degiannakis (2004) studied the forecasting performance of various risk models to 

estimate the one-day-ahead realized volatility and the daily VaR. He proposed the fractional 

integrated APARCH model with skewed Student-t conditionally distributed innovations 
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(FIAPARCH-skT) that efficiently captures the main characteristics of the empirical distribution. 

Focusing only on the VaR forecasts, So and Yu (2006) argued, on the other hand, that it was more 

important to model the fat tailed underlying distribution than the fractional integration of the 

volatility process. The two papers, one by Degiannakis (2004) and the other by So and Yu (2006), 

among many others, highlight that different volatility techniques are applied for different purposes.  

Contrary to the contention of the previous authors, including Mittnik and Paolella (2000), that 

the most flexible models generate the most accurate VaR forecasts, Brooks and Persand (2003) 

pointed out that the simplest ones, such as the historical average of the variance or the autoregressive 

volatility model, achieve an appropriate out-of-sample coverage rate. Similarly, Bams et al. (2005) 

argued that complex (simple) tail models often lead to overestimation (underestimation) of the VaR. 

VaR, however, has been criticized on two grounds. On the one hand, Taleb (1997) and Hoppe 

(1999) argued that the underlying statistical assumptions are violated because they could not capture 

many features of the financial markets (e.g. intelligent agents). Under the same framework, many 

researchers (see for example Beder, 1995 and Angelidis et al., 2004) showed that different risk 

management techniques produced different VaR forecasts and therefore, these risk estimates might 

be imprecise. Last, but not least, the standard VaR measure presumes that asset returns are normally 

distributed, whereas it is widely documented that they really exhibit non-zero skewness and excess 

kurtosis and, hence, the VaR measure either underestimates or overestimates the true risk. 

On the other hand, even if VaR is useful for financial institutions to understand the risk they 

face, it is now widely believed that VaR is not the best risk measure. Artzner et al. (1997, 1999) 

showed that it was not necessarily sub-additive, i.e., the VaR of a portfolio may be greater than the 

sum of individual VaRs and therefore, managing risk by using it may fail to automatically stimulate 

diversification. Moreover, it does not indicate the size of the potential loss, given that this loss 

exceeds the VaR. To remedy these shortcomings, Delbaen (2002) and Artzner et al. (1997) 

introduced the Expected Shortfall (ES) risk measure, which equals the expected value of the loss, 

given that a VaR violation occurred. Furthermore, Basak and Shapiro (2001) suggested an alternative 

risk management procedure, namely limited expected losses based risk management (LEL-RM), that 

focuses on the expected loss also when (and if) losses occur. They substantiated that the proposed 

procedure generates losses lower than what VaR-based risk management techniques generate.  

ES is the most attractive coherent riskii measure and has been studied by many authors (see 

Acerbi et al. 2001; Acerbi, 2002; and Inui and Kijima, 2005). Yamai and Yoshiba (2005) compared 

the two measures—VaR and ES—and argued that VaR is not reliable during market turmoil as it can 

mislead rational investors, whereas ES can be a better choice overall. However, they pointed out that 

gains on efficient management by using the ES measure are substantial whenever its estimation is 
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accurate. In other cases, they advise the market practitioners to combine the two measures for best 

results. 

Our study sheds light on the issue of volatility forecasting under risk management 

environment and on the evaluation procedure of various risk models. It compares the performances 

of the most well known risk management techniques for different markets (stock exchanges, 

commodities, and exchange rates) and trading positions. Specifically, it estimates the VaR and the 

ES by using 11 ARCH volatility specifications under four distributional assumptions, namely 

normal, Student-t, skewed Student-t, and generalized error distribution. We investigated 44 models 

following a two-stage backtesting procedure to assess the forecasting power of each volatility 

technique and to select one model for each financial market. In the first stage, to test the statistical 

accuracy of the models in the VaR context, we examined whether the average number of violations is 

statistically equal to the expected one and whether these violations are independently distributed. In 

the second stage, we employed standard forecast evaluation methods by comparing the returns of a 

portfolio, whenever a violation occurs with the ES forecast. 

The results of this paper are important for many reasons. VaR summarizes the risk exposure 

of the investor in just one number, and therefore portfolio managers can interpret it quite easilyiii. 

Yet, it is not the most attractive risk measure.  On the other hand, ES is a coherent risk measure and 

hence its utility in evaluating the risk models can be rewarding. Currently, however, most researchers 

judge the models only by calculating the average number of violations. Moreover, even if the risk 

managers hold both long and short trading positions to hedge their portfolios, most of the research 

has been applied only on long positions. Therefore, it is possible to investigate if a model can capture 

the characteristics of both tails simultaneously.  

This study, to best of our knowledge, is the first that estimates the VaR and ES numbersiv for 

three different markets simultaneously and therefore, we can infer if these markets share common 

features in risk management framework. Therefore, we combined the most well-known and 

concurrent parametric models with four distributional assumptions to find out which model has the 

best overall performance. Even though we did not include all ARCH specifications available in the 

literature, we estimated the models that captured the most important characteristics of the financial 

time series and those that were already used or were extensions of specifications that were 

implemented in similar studies. Finally, we employed a two-stage procedure to investigate the 

forecasting power of each volatility technique and to   guide on VaR model selection process. 

Following this procedure, we could select a risk model that predicts the VaR number accurately and 

minimizes, if a VaR violation occurs, the difference between the realized and the expected losses In 

contrast to this, earlier research focused mainly on the unconditional coverage of the models. 
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To summarize, this study juxtaposes the performance of the most well-known parametric 

techniques, and shows that under the proposed backtesting procedure, for each financial market, 

there is a small set of models that accurately estimate the VaR number for both long and short 

trading positions and two confidence levels. Moreover, contrary to the findings of the previous 

research, the more flexible models do not necessarily generate the most accurate risk forecasts, as a 

simpler specification can be selected regarding two dimensions: (a) distributional assumption and (b) 

volatility specification. For distributional assumption, standard normal or GED is the most 

appropriate choice depending on the financial asset, trading position, and confidence level. Besides 

the distributional choice, asymmetric volatility specifications perform better than symmetric ones, 

and in most cases, fractional integrated parameterization of volatility process is necessary. 

The rest of the paper is organized as follows: Section 2 describes the ARCH models and 

presents the calculation of VaR and ES, whereas section 3 describes the evaluation framework of 

VaR and ES forecasts. Section 4 presents preliminary statistics for the dataset, explains the 

estimation procedure, and presents the results of the empirical investigation. Section 5 presents the 

conclusions. 

2. ARCH Volatility Models 

To fix notation, let { } ( ){ }T
ttt

T
tt ppy 010 ln =−= =  refer to the continuously compounded return 

series, where tp  is the closing price at trading day t . The return series follows the stochastic process: 
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where ( ) ( )θµttt IyE ≡−1|  denotes the conditional mean, given the information set available at time 

1−t , 1−tI , { }T
tt 0=ε  is the innovation process with unconditional variance ( ) 2σε =tV  and conditional 

variance ( ) ( )θσε 2
1| ttt IV ≡− , ( ).f  is the density function of { }T

ttz 0= , ( ).g  is any of the functional 

forms presented in Table 1 and θ  is the vector of the unknown parameters. 

[Insert Table 1 about here] 

 We take into consideration the following conditional volatility specifications: GARCH ( )qp,  

of Bollerslev (1986), EGARCH ( )qp,  of Nelson (1991), TARCH ( )qp,  of Glosten et al. (1993), 

APARCH ( )qp,  of Ding et al. (1993), IGARCH ( )qp,  of Engle and Bollerslev (1986), 

FIGARCH ( )qp,  of Baillie et al. (1996), FIGARCHC ( )qp,  of Chung (1999), FIEGARCH ( )qp,  of 
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Bollerslev and Mikkelsen (1996), FIAPARCH ( )qp,  of Tse (1998), FIAPARCHC ( )qp,  of Chung 

(1999), and HYGARCH ( )qp,  of Davidson (2004). To summarize, the selected volatility models 

include, besides others, the simplest GARCH model as also the most complex ones, such as 

FIAPARCHC and HYGARCH. All the selected models reflect the most recent developments in 

financial forecasting.   

Similarly, the chosen density functions of { }T
ttz 0=  are widely applied in finance. In seminal 

Engle’s (1982) paper, the density function was assumed the standard normal, which is described as: 

( ) 2

2

2
1 tz

t ezf
−

=
π

. (13) 

However, as the empirical distribution of financial assets is fat-tailed, Bollerslev (1987) introduced 

the Student-t distribution: 
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where ( ).Γ  is the gamma function. As v  tends to infinity, the Student-t tends to the normal 

distribution.  As Student-t is not the only fat tailed distribution available, we also considered the 

generalized error distribution (GED), which is more flexible than the Student-t as it can include both 

fat and thick tailed distributions. It was introduced by Subbotin (1923) and applied in ARCH 

framework by Nelson (1991). Its density function is given in the following equation: 
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where ( ) ( )112 32 −−− ΓΓ≡ vvνλ  and 0>v   are the tail-thickness parameters (i.e. for 2=v , tz  is 

standard normally distributed and for 2<v , the distribution of tz  has thicker tails than the normal 

distribution). Finally, given that in VaR framework both the long and short trading positions are 

important, the skewed Student-t distributionv is also applied: 
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where g  is the asymmetry parameter, 2>v  denotes the degrees of freedom of the distribution, ( ).Γ  

is the gamma function, 1=td  if smzt /−≥ , and 1−=td  otherwise, 1222 −−+= − mggs  and 

( )( ) ( ) ( )( ) ( )11
2221 −−

−Γ−−Γ= ggvvvm π  are the standard deviation and the mean, respectively. 

Having estimated the vector of the unknown parameters, it is straightforward to calculate 

VaR using the following equation: 
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( )( ) tt
t

tttt aFVaR |1|1|1 ; +++ += σθµ , (17) 

where tt |1+µ  and tt |1+σ  are the conditional forecasts of the mean and the standard deviation at time 

1+t , given the information at time t , and ( )( )taF θ;  is the tha  quantile of the assumed distribution, 

which is computed based on the vector of parameters estimated at time t . The functional forms of 

the one-step-ahead conditional variance predictions, 2
|1tt+σ , are presented in Table 2. 

[Insert Table 2 about here] 

As we have already mentioned, ES is defined as the conditional expected loss, given a VaR 

violation. Specifically, for long trading positions, it is calculated as  

( )( )tttttt VaRyyEES |111|1 | ++++ ≤= . (29) 

In particular, ES is a probability-weighted average of tail loss and therefore, to calculate it, we follow 

Dowd (2002) who suggested that for any distributional assumption “slice the tail into a large number 

κ  of slices, each of which has the same probability mass, estimate the VaR associated with each 

slice and take the ES as the average of these VaRs”.  To implement this approach, we set 5000=κ  

to increase the accuracy.  

3. Evaluate VaR and ES Forecasts 

Having presented various risk management techniques, we now discuss their formal 

statistical evaluation. Given that VaR is never observed, not even after violation, we have to first 

calculate the VaR values and then rank the risk models by examining the statistical properties of the 

forecasts. Specifically, in the first stage, a model is deemed adequate only if it has not been rejected 

by both the unconditional and the independence hypotheses. The first hypothesis examines if the 

average number of violations is statistically equal to the excepted one and the second hypothesis if 

these violations are independent. However, risk managers who use these tests cannot rank the 

adequate models, because a model with greater p-value need not be superior to its competitors and 

hence, cannot be the best-performing model.  

    We extended the forecast evaluation approach of Lopez (1999) and Sarma et al. (2003) as 

the ES measure was introduced in the second stage by creating a loss function that calculated the 

difference between the actual and the expected losses when a violation occurred. For all the best-

performing models of the first stage, we implemented Hansen’s (2005) superior predictive ability 

(SPA) test to evaluate their differences statistically. As Yamai and Yoshiba (2005) pointed out, the 

two risk measures must be combined to take the most of them and hence, under the proposed 
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backtesting framework, the selected models not only calculate the VaR number accurately but also 

minimize the difference between the actual loss and the ES. 

3.1. First Stage Evaluation 
The most widely used test, developed by Kupiec (1995), examines whether the observed 

exception rate is statistically equal to the expected one. Under the null hypothesis that the model is 

adequate, the appropriate likelihood ratio statistic is: 

( )( ) 2
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where N  is the number of days over a period T~  that a violation occurred and ρ  is the desired 

coverage rate. Therefore, the risk model is rejected if it generates too many or too few violations, but 

based on it, the risk manager can accept a model that generates dependent exceptions. 

Christofersen (1998) proposed a more elaborate criterion, which simultaneously examines if 

(i) the total number of failures is equal to the excepted one and (ii) the VaR failure process is 

independently distributed. The appropriate likelihood ratio test of the first hypothesis is given by 

equation (30) and that of the second one by the following equation: 

( ) ( )( ) ( )( )( ) 2
10011110101 ~-1ln--1-1ln2 1101100011100100 XLR nnnnnnnn

in
++= ππππππ , (31) 

where ijn  is the number of observations with value i  followed by j , for 1,0, =ji  and 
∑

=
j ij

ij
ij n

n
π  

are the corresponding probabilities. 1, =ji  denotes that a violation has been made, whereas 0, =ji  

indicates the opposite, which implies that the process of  VaR failures must be spread over the entire 

samplevi. The main advantage of using these two tests is that the risk managers can reject a VaR 

model that generates too few or too many clustered violations and thereby identify the reason for its 

failure. However, they cannot rank the models based only on the p-values of these tests. 

3.2. Second Stage Evaluation 
The statistical adequacy of the VaR forecasts is obtained by previous backtesting tests: the 

unconditional coverage (equation 30) and the independence test (equation 31). If a model is not 

rejected, it forecasts VaR accurately. However, in most cases, more than one model is deemed 

adequate and hence, the risk manager cannot select a unique risk management technique. 

 To overcome this shortcoming of the backtesting measures, Lopez (1999) proposed a 

forecast evaluation framework based on loss function. The loss function enables the researcher to 
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rank the models and specify a utility function that accommodates the specific concerns of the risk 

manager. Specifically, he suggested the following loss function: 

( )


 −+

=Ψ ++
+ else,0

occurs  violationif1 2
1|1

1
ttt

t
yVaR  (32) 

which accounts for the magnitude of the tail losses ( )( )2
1|1 ++ − ttt yVaR  and adds a score of one 

whenever a violation is observed. The model that minimizes the total loss ∑
=

Ψ
T

t
t

1
, is preferred   to 

other models. 

 Nevertheless, his approach has two drawbacks. First, if the risk management techniques are 

not filtered by the aforementioned unconditional or conditional coverage procedures, a model that 

does not generate any violation is deemed the most adequate as 01 =Ψ +t . Second, the return, 1+ty , 

should be better compared with the ES measure and not with the VaR, as VaR does not give any 

indication about the size of the expected loss, given a VaR violation. Therefore, with these 

limitations, the proposed loss functions can be described by the following equations: 

( )
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 To judge the models in the second stage, we computed for each model i  the mean absolute error 

(MAE), ( )∑
=

− Ψ
T

t

i
tT

~

1
,1

1~ , and the mean squared error (MSE), ( )∑
=

− Ψ
T

t

i
tT

~

1
,2

1~ . 

According to the two-stage backtesting procedure, the best performing model will (i) 

calculate the VaR number accurately, as it will satisfy the prerequisite of correct unconditional and 

conditional coverage and (ii) forecast the expected loss, given a VaR violation, as it minimizes the 

total loss value, ( )∑
=

Ψ
T

t

i
tl

~

1
, .   

The statistical significance of the volatility forecasts is investigated by testing Hansen’s 

(2005) Superior Predictive Ability (SPA) hypothesis. For ( ) ( ) ( )i
tl

i
tl

ii
tlX ,,

,
, Ψ−Ψ=

∗∗

, the null hypothesis, 

that the benchmark model *i  is not outperformed by competing models i , for Mi ,...,1= , is 

investigated against the alternative hypothesis that the benchmark model is inferior to one or more of 
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the competing models. The null hypothesis, ( ) ( )( ) 0... ,
,

1,
,

**

≤
′Mi

tl
i
tl XXE , is tested with the 

statistic ( )il

il

Mi

SPA
l

XMVar

XM
T

,

,

,...,1
max
=

= , where ( )∑
=

− ∗

=
T

t

ii
tlil XTX

~

1

,
,

1
,

~ . The estimation of ( )ilXMVar ,  and  

p-values of the SPA
lT  statistic are obtained by  using the stationary bootstrap of Politis and Romano 

(1994). 

Under the proposed backtesting environment, the risk manager achieves three goals: forecasts 

VaR accurately and thus satisfies the prerequisites of the Basel Committee for Banking Supervision; 

selects one model or a family of models among various candidates following a statistical inference 

procedure; and finally knows in advance the amount that may be needed if a VaR violation occurs, 

and therefore is better prepared to face the future losses by forecasting the ES measure accurately. 

The next figure briefly demonstrates the two-stage backtesting procedure. In the first stage, the 

investor can work with fewer than the available models by applying the two tests (equations 30 and 

31). In the next stage, according to the developed loss functions (equations 33 and 34), the ES 

measure is used to evaluate statistically the best-performing models. 

 

 

4. Empirical Analysis 

To evaluate all the available volatility models, we generated out-of-sample VaR and ES 

forecasts for S&P500 equity index, Gold Bullion $ per Troy Ounce commodity and US dollar/British 

pound exchange rate, obtained from Datastream for the period April 4th 1988 to April 5th 2005. The 

daily prices, the log-returns, and the autocorrelations for the absolute log-returns are presented in 

Figure 1. Volatility clustering is clearly visible and suggests the presence of heteroskedasticity. The 

absolute log-returns are significantly positive serial autocorrelated over long lags, whereas the 

sample autocorrelations decrease too fast at the first lags; at higher lags however, the decrease 

becomes slower, indicating the long-memory property of volatility process and the utility of 

fractionally integrated volatility specifications.  

[Insert Figure 1 about here] 



 11

A question that naturally arises is the order of p  and q  of the conditional volatility 

specifications. We choose to set 1== qp , given that in the majority of empirical volatility 

forecasting studies, the order of one lag has proven to work effectively. So and Yu (2006) concluded 

that “the best fitted model according to AIC (Akaike, 1973) and SBC (Schwarz, 1978) criteria does 

not necessarily lead to better VaR estimates”, whereas Degiannakis and Xekalaki (2006) 

demonstrated that in the volatility forecasting arena, the best-performing model could not be selected 

according to any in-sample model selection criterion. 

Based on a 3000=T
(

 rolling sample, we generated 1435~ =T vii out-of-sample forecasts (the 

parameters are re-estimated each trading day) to calculate the 95% and 99% VaR and ES values for 

long and short trading positions. The parameters of the models were estimated using the G@RCH 

(Laurent and Peters, 2002) package of Ox (Doornik, 2001).  

[Insert Table 3 about here] 

[Insert Table 4 about here] 

[Insert Table 5 about here] 

The MAE and MSE values (equations 33 and 34), the average values of the VaR and ES 

measures, the exception rates, and the p-values of the two backtesting measures are presented in 

Tables 3 to 5 for all the models that survived the first evaluation (equations 30 and 31)viii. 

Irrespective of the volatility models and the financial assets, ARCH specifications under the 

Student-t distribution and its corresponding skewed version overestimate VaR numbers at both 

confidence levels.  A similar observation was made in several earlier studies (see Guermat and 

Harris, 2002 and Billio and Pelizzon, 2000 among others). Even at a 99% confidence level, they did 

not show any major improvement, as the average realized exception rates were significantly lower 

than the expected ones. The introduction of the asymmetry parameter )(ξ  in the underlying 

distribution did not make any significant difference. In most cases, the VaR numbers were 

overestimated, mainly because )log(ξ  was close to zero and therefore, the two distributions in the 

VaR context, were similarix. 

ES is at least 0.25% greater than VaR, which implies that the risk manager must adjust 

accordingly the capital that holds to face the unforeseen losses. Moreover, this adjustment should be 

mainly implemented for equity and commodity assets, as for these assets ES is almost 0.7% greater 

than VaR.  

For each financial asset, there appears to be a different model that forecasts the VaR number 

accurately. For example, So and Yu (2006) favored using different models for stock indexes and 

exchange rates; for stock indexes, they favored an asymmetric specification and for exchange rates, a 

symmetric function was preferred.  
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Specifically, for the S&P500 index, five models (FIEGARCH-N, EGARCH-N, APARCH-N, 

TARCH-N, and FIGARCH-GED) generate adequate VaR forecasts, as the p-values of the 

backtesting measures are greater than 10% for both confidence levels and both trading positions. 

Even if the more complex models generate, in some cases, the most accurate VaR forecasts (i.e. 

FIEGARCH-GED for 95% confidence level and long trading position), they do not give the best 

overall performance. This finding is in line with that of Brooks and Persand (2003) but not with the 

argument of Mittnik and Paolella (2000) that more general ARCH structures are needed. 

Highlighting this conclusion is the observation that the IGARCH-GED model generates exception 

rates that are close to the expected ones only for the short trading positions, whereas it is rejected for 

the long trading positions, because either the model generates clustered violations or the model 

misestimates the true VaR number. As far as the underlying distribution is concerned, there are 

indications that standard normal is the best overall choice, as four out of five models are normally 

distributed.  

The GED and normal distribution are the best overall choices for Gold. Between the two, 

GED is considered more appropriate for the commodity market. For example, if the risk manager is 

interested only in the higher confidence level and for short trading positions, he/she should use the 

GED distribution. Any other model would generate inaccurate risk forecasts. To summarize, five 

models (GARCH-GED, IGARCH-GED, FIAGARCH-GED, FIAGARCHC-GED, and 

FIAPARCHC-GED) generated accurate predictions for both confidence levels and both trading 

positions. The risk manager can select any of these models, irrespective of the trading position, and 

satisfy the requirements of the Basel Committee. 

 For $/£ exchange rate, the choice of the most appropriate distribution is not straightforward, 

even if the Student-t and skewed Student-t distributions are rejected. For long (short) trading position 

and at 99% confidence level, the best overall distribution is the GED (normal), whereas for the other 

two cases, the results are mixed. EGARCH under the normal distribution appears to have the best 

overall performance, as only this model generates adequate VaR forecasts for long and short trading 

positions and for both confidence levels. At the lower confidence level and for long (short) trading 

position, the exception rate of the model equals 4.67% (4.25%), whereas the corresponding rates at 

the higher confidence level are 1.39% (0.91%). Furthermore, according to the two loss functions, the 

EGARCH under the normal distribution model is always ranked first except for higher confidence 

level and long trading position. Therefore, it is plausible to consider this model, which forecasts the 

VaR number accurately for trading positions and confidence levels, the most appropriate 

specification.  
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Τhe difference among the VaR models cannot be evaluated statistically as neither the greatest 

p-value of the backtesting criteria nor the lowest value of the loss functions indicates the superiority 

of a model. Therefore, to evaluate the reported differences statistically, we implemented the SPA test 

taking the following as benchmark models: FIEGARCH-N, EGARCH-N, APARCH-N, TARCH-N, 

and FIGARCH-GED for S&P500, GARCH-GED, IGARCH-GED, FIGARCH-GED, FIGARCHC-

GED, and FIAPARCHC-GED for Gold and EGARCH-N for US dollar to British pound. These 

models predicted the VaR number accurately for all cases (long and short trading positions, and at 

95% and 99% confidence levels). 

[Insert Table 6 about here] 

Table 6 presents the p-values of the SPA test for the null hypothesis that the benchmark 

model *i  outperforms all the competing models. For example, in the case of S&P500 index and for 

all cases, the benchmark model (FIEGARCH-N) has superior forecasting ability, as the p-value of 

the test is always greater than 10%. All other benchmark models, at least in one case, have equal 

predictive power and therefore, there are indications that among the various candidate techniques 

only one survived the proposed evaluation framework.  In the case of Gold, the GARCH-GED and 

the IGARCH-GED models are statistically superior to their competitors, whereas at least for 95% 

confidence level and short trading position, FIGARCH-GED, FIGARCHC-GED, and FIAPARCHC-

GED models do not generate significantly better forecasts. Finally, for the US $ to UK £ exchange 

rate, the forecasting ability of EGARCH-N model is superior to those of other models.  Also, it is to 

be noted that the evaluation of the models is robust to the choice of the used loss function, because 

irrespective of the measurement method, we select the same models as the most appropriatesx.  

According to the two-stage backtesting procedure, the risk manager  has two choices: (a)  to 

select one model for each trading position and each confidence level from those models that have not 

been rejected by the backtesting measures  and (b) to use the model that forecasts the VaR number 

accurately for both trading positions and both confidence levels. Naturally, the second choice is 

better, because it reduces the complexity and computational costs.  Consequently, the researcher 

focuses only on one model for each financial asset. Moreover, by employing the two-stage 

backtesting procedure, the researcher evaluates statistically the differences between the models, and 

selects, in most cases, only one volatility specification. 

In summary, only some models can forecast the VaR number accurately in all cases. 

Specifically, in the case of S&P500 index, the FIEGARCH-N generates adequate forecasts for both 

confidence levels and both trading positions, whereas in the case of Gold, two models (GARCH-

GED and IGARCH-GED) give the best overall performance. Lastly, for the US $ to UK £ exchange 

rate, EGARCH-N is considered the best specification. 
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5. Conclusions 

We examined the performance of the most recently developed risk management techniques 

utilizing a proposed combined backtesting procedure. Specifically, for S&P500 equity index, Gold 

commodity and US $ to UK £ exchange rate, we computed the VaR and ES measures for two 

confidence levels (95% and 99%) and for two (long and short) trading positions. We investigated 

whether the models forecast accurately the expected number of violations, generate independent 

violations, and predict the ES number. As Hansen (2005) rightly suggested, a filtering procedure 

must be accounted for the full data exploration, before a legitimate statement of the statistical 

differences among the candidate models. The reduction of the under consideration models was 

achieved because the evaluation was made in two stages. In the first stage, the framework developed 

by Kupiec (1995) and Christofersen (1998) was implemented and in the second, the SPA hypothesis 

testing was applied. 

Different volatility models achieve accurate VaR and ES forecasts for each dataset. In 

summary, the proposed models are the following: 

Market Model 
S&P500 FIEGARCH-N  

Gold Bullion $ per Troy Ounce GARCH-GED/ IGARCH-GED 
US dollar / British pound EGARCH-N 

Although the most appropriate conditional volatility models are not the same for the three financial 

assets, they share some common characteristics. The Student-t and skewed Student-t distributions 

overestimate the true VaR. Asymmetry in volatility specification is inevitable, as all the selected 

models incorporate some form of asymmetry, whereas fractional integration is also important in 

forecasting the one-day-ahead VaR and ES numbers. 

A VaR model selection procedure is proposed. As multiple risk management techniques 

exhibit unconditional and conditional coverage, the utility function of risk management must be 

brought into picture to evaluate statistically the differences among the adequate VaR models. Since 

the investor is also interested on the loss function, given a VaR violation, we introduce the ES 

measure to the loss function. According to the SPA test, the risk manager can select, for each 

financial asset, a separate model that forecasts both the risk measures accurately. Therefore, the 

number of under consideration techniques is reduced to a smaller set of competing models. 
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Table 1. Panel A. Conditional volatility model specifications. 
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Table 2. Panel B. One-step-ahead conditional variance predictions. 

Model  Eq. 

GARCH ( ) ( ) ( ) 2
|

2
|

2
|1 tt

t
tt

tt
tt σβεαωσ ++=+  (18) 

EGARCH ( ) ( )( ) ( )( ) ( ) ( ) ( )













+

























−+++−=+

2
|

|

|

|

|
2

|

|
1

2
|1 ln11exp tt

t

tt

tt

tt

ttt

tt

tttttt
tt EL σβ

σ
ε

σ
ε

γ
σ
ε

γαβωσ  (19) 

TARCH ( ) ( ) ( ) ( ) 2
|

2
|

2
|

2
|1 tt

t
ttt

t
tt

tt
tt d σβεγεαωσ +++=+  (20) 

APARCH ( ) ( ) ( )( ) ( )
( ) ( )

( )t
tt

tt
t

tt
t

tt
tt

tt

δ
δδ

σβεγεαωσ
2

|||
2

|1 




 +−+=+  (21) 

IGARCH ( ) ( ) ( )( ) 2
|

2
|

2
|1 1 tt

t
tt

tt
tt σαεαωσ −++=+  (22) 

FIGARCH ( ) ( ) ( )( )
( ) ( )( )

( )( ) ( )
( )( ) ( ) 2

|
1

2
|

2
|1

2
|

2
|1 11 tt

t

i
itt

t
itt

i
t

tt

tt
ttt

tt aL
id

dida σβεεεβωσ +







−

+Γ−Γ
−Γ

+−+= ∑
∞

=
++++  (23) 

FIGARCHC ( ) ( )( )
( ) ( )( )

( )( ) ( )
( )( ) ( ) 2

|
1

2
|

2
|1

2
|

2
|1 11 tt

t

i
itt

t
itt

i
t

tt

tt
tt

tt aL
id

dida σβεεεβσ +







−

+Γ−Γ
−Γ

+−= ∑
∞

=
++++  (24) 

FIEGARCH 

( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( )

( )( )
( )( ) ( )

( )( ) ( ) ( )





















































−++








+ΓΓ

+Γ
+

+






















−++























−++−

=

∑
∞

= +

+

+

+

+

++

−

−

−

−

−

−
+

1 |

|

|

|
2

|

|
1

1

2
|

|1

|1

|1

|1
2

|1

|1
1

|

|

|

|
2

|

|
1

2
|1

1

ln

1

exp

i itt

itt

itt

ittt

itt

itttiti
t

t

tt
t

tt

tt

tt

ttt

tt

tttt

tt

tt

tt

ttt

tt

ttttt

tt

ELaL
id

di

Ea

E

σ
ε

σ
ε

γ
σ
ε

γ

σβ
σ
ε

σ
ε

γ
σ
ε

γ

σ
ε

σ
ε

γ
σ
ε

γβω

σ  (25) 

FIAPARCH 

( ) ( ) ( )( ) ( )( ) ( )
( )

( ) ( )( )
( )( ) ( )

( )( ) ( )
( ) ( )( ) ( )

( )t

tt

t

i
itt

t
itt

t
itt

t
itt

i
t

tt
tt

t
tt

t
tt

ttt

tt
aL

id
did

a
δ

δδ

δδ

εγεεγε

σβεγεβω
σ

2

1
|||1|1

|||
2

|1

11 























−−−

+Γ−Γ
−Γ

+

+−−+
=

∑
∞

=
++++++

+  (26) 

FIAPARCHC 

( ) ( )( ) ( )( ) ( )
( )

( ) ( )( )
( )( ) ( )

( )( ) ( )
( ) ( )( ) ( )

( )t

tt

t

i
itt

t
itt

t
itt

t
itt

i
t

tt
tt

t
tt

t
tt

tt

tt
aL

id
did

a
δ

δδ

δδ

εγεεγε

σβεγεβ
σ

2

1
|||1|1

|||
2

|1

11 























−−−

+Γ−Γ
−Γ

+

+−−
=

∑
∞

=
++++++

+  (27) 

HYGARCH 

( ) ( ) ( )( ) ( )

( ) ( )( )
( )( ) ( )

( ) ( )( ) 






















−

+Γ−Γ
−Γ

+

+−+
=

∑
∞

=
+++

+

1

2
|

2
|1

2
|

2
|

2
|1

11i
itt

t
itt

ti
t

tt
tt

t
tt

ttt

tt aL
id

did
a

εεζ

σβεβω
σ  (28) 

Panel A presents the Conditional volatility model specifications, where GARCH = Generalized ARCH, EGARCH = Exponential 
GARCH, TARCH = Threshold ARCH, APARCH = Asymmetric Power ARCH, IGARCH = Integrated ARCH, FIGARCH = 
Fractionally Integrated GARCH, FIGARCHC = Chung’s FIGARCH, FIEGARCH = Fractionally Integrated EGARCH, 
FIAPARCH Fractionally Integrated APARCH, FIAPARCHC = Chung’s FIAPARCH, HYGARCH = Hyperbolic GARCH. In 
TARCH model, 1=td  if 0<tε  and 0=td  otherwise. 
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Panel B presents One-step-ahead conditional variance predictions, where: 
1. L  denotes the lag operator, i.e. itt

iL −= εε . 

2. EGARCH model: πσε 21
|| =−
ttttE  for normal, 

( ) ( )21
22

2
11

|| vv
vvE tttt
Γ−
−







 +

Γ=−

π
σε  for Student-t, 

( ) ( )( ) 11111
|| 22 −−−−− ΓΓ= vvE v
tttt λσε  for GED, and 

( ) ( )21

2
2

1
4

1

2
1

|| vv

vv

gg
gE tttt

Γ−

−





 +

Γ

+
=

−

−

π
σε  for skewed Student-t distribution. 

3. Fractionally Integrated Models: ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ...21!31!2!1

11
31211

1

+−−+−+=







+Γ−Γ

−Γ −−−
∞

=
∑ LdddLdddLL

id
did

i

i , 0>d  

 and ( )
( ) ( ) ( ) ( )( ) ...21

!3
11

!2
1

!1
1

1
32

1

+++++++=







+ΓΓ

+Γ∑
∞

=

LdddLdddLL
id
di

i

i , 0>d . 



 22

 

Table 3. The S&P500 case. Column 1 presents the models that have not been rejected by 
the backtesting criteria (unconditional coverage and the independence test). Columns 2 and 
3 present the values of the MAE and the MSE loss functions multiplied by 103 (in 
parentheses the ranking of the models is presented). The average values of the VaR and ES 
forecasts are presented in 4th and 5th columns, respectively. The percentage of violations is 
presented in 6th column, whereas the 7th and 8th columns present the Kupiec’s and 
Christofersen’s p-values, respectively. 

Model MAE (Rank) MSE (Rank) Av.Var Av.ES Rate Kupiec Chr/sen
Panel A. Long Position - 95% VaR 

FIEGARCH-GED 19.209 (1) 18.642(1) -1.964 -2.664 4.18% 14.35% 14.41%
EGARCH-N 19.868 (2) 24.350(12) -1.848 -2.324 5.16% 78.62% 54.10%
FIEGARCH-N 20.028 (3) 21.554(3) -1.879 -2.365 5.16% 78.62% 27.33%
TARCH-N 20.195 (4) 24.638(13) -1.830 -2.302 5.30% 61.00% 32.97%
APARCH-N 20.230 (5) 23.944(10) -1.870 -2.352 5.23% 69.59% 58.03%
HYGARCH-N 20.269 (6) 23.767(9) -1.894 -2.389 4.95% 92.75% 43.06%
FIAPARCH-N 20.681 (7) 25.742(14) -1.890 -2.377 5.09% 88.00% 50.28%
FIAPARCHC-N 21.112 (8) 27.365(15) -1.942 -2.441 4.46% 33.93% 50.20%
IGARCH-N 21.473 (9) 24.213(11) -1.883 -2.374 5.23% 69.59% 30.07%
FIAPARCHC-GED 21.537 (10) 22.817(5) -1.967 -2.668 4.25% 18.19% 79.73%
HYGARCH-GED 21.598 (11) 22.799(4) -1.907 -2.616 4.88% 83.15% 17.99%
EGARCH-GED 21.833 (12) 21.407(2) -1.952 -2.659 4.53% 40.64% 54.01%
FIGARCHC-N 22.221 (13) 27.486(17) -1.837 -2.317 5.37% 52.95% 36.03%
TARCH-GED 22.279 (14) 22.944(7) -1.856 -2.534 5.09% 88.00% 50.28%
APARCH-GED 22.376 (15) 22.903(6) -1.901 -2.588 4.88% 83.15% 74.62%
FIAPARCH-GED 22.388 (16) 23.726(8) -1.912 -2.591 4.81% 73.75% 70.33%
FIGARCH-N 23.691 (17) 28.718(18) -1.799 -2.269 5.64% 27.19% 49.82%
FIGARCH-GED 25.598 (18) 27.420(16) -1.820 -2.494 5.71% 22.43% 13.61%

Panel B. Long Position - 99% VaR 
APARCH-GED 3.938 (1) 4.635(2) -3.015 -3.651 0.63% 12.75% 73.60%
EGARCH-GED 4.383 (2) 3.914(1) -3.097 -3.751 0.70% 22.22% 70.78%
GARCH-GED 4.711 (3) 5.412(3) -3.003 -3.658 0.63% 12.75% 73.60%
FIAPARCH-GED 4.855 (4) 6.221(4) -3.014 -3.637 0.63% 12.75% 73.60%
FIEGARCH-N 5.450 (5) 7.381(5) -2.672 -3.066 0.91% 71.59% 62.58%
FIGARCH-GED 6.322 (6) 8.158(6) -2.913 -3.540 0.77% 35.40% 68.01%
HYGARCH-N 6.456 (7) 10.304(8) -2.701 -3.103 1.12% 66.73% 54.79%
APARCH-N 6.813 (8) 10.057(7) -2.656 -3.046 0.98% 92.57% 59.93%
FIAPARCHC-N 6.836 (9) 12.936(11) -2.756 -3.161 0.98% 92.57% 12.42%
EGARCH-N 6.965 (10) 10.323(9) -2.625 -3.011 1.05% 86.41% 57.33%
TARCH-N 7.487 (11) 10.782(10) -2.600 -2.983 1.18% 49.45% 52.30%
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Table 3. Continued 

Model MAE (Rank) MSE (Rank) Av.Var Av.ES Rate Kupiec Chr/sen
Panel C. Sort Position - 95% VaR 

APARCH-N 15.106 (1) 9.702(1) 1.921 2.402 4.53% 40.64% 17.32%
EGARCH-N 16.357 (2) 12.342(5) 1.902 2.378 4.53% 40.64% 17.32%
FIEGARCH-N 16.541 (3) 12.115(4) 1.951 2.438 4.25% 18.19% 79.73%
TARCH-N 17.550 (4) 11.554(2) 1.890 2.362 4.81% 73.75% 12.08%
IGARCH-GED 17.715 (5) 12.351(6) 1.972 2.683 4.11% 11.15% 28.27%
GARCH-N 17.790 (6) 15.400(10) 1.948 2.429 4.32% 22.71% 22.29%
GARCH-GED 18.061 (7) 12.732(7) 1.949 2.650 4.18% 14.35% 26.16%
FIGARCHC-N 18.267 (8) 14.966(9) 1.944 2.424 4.32% 22.71% 65.03%
APARCH-GED 18.314 (9) 11.614(3) 1.956 2.643 4.39% 27.95% 20.52%
EGARCH-GED 19.484 (10) 13.706(8) 1.993 2.699 4.11% 11.15% 71.09%
FIGARCH-N 20.041 (11) 16.353(12) 1.906 2.376 4.81% 73.75% 41.42%
FIGARCHC-GED 21.789 (12) 16.574(13) 1.936 2.621 4.39% 27.95% 61.29%
TARCH-GED 23.007 (13) 16.134(11) 1.917 2.595 5.02% 97.59% 33.23%
FIGARCH-GED 23.649 (14) 17.524(14) 1.904 2.579 4.95% 92.75% 78.97%

Panel D. Sort Position - 99% VaR 
APARCH-N 1.968 (1) 0.963(1) 2.707 3.097 0.77% 35.40% 68.01%
IGARCH-GED 2.669 (2) 1.600(5) 3.124 3.790 0.63% 12.75% 73.60%
FIGARCH-GED 2.726 (3) 1.564(4) 2.997 3.624 0.63% 12.75% 73.60%
TARCH-N 2.747 (4) 1.200(2) 2.661 3.044 0.98% 92.57% 59.93%
FIGARCHC-GED 2.829 (5) 1.702(6) 3.046 3.682 0.63% 12.75% 73.60%
FIEGARCH-N 2.874 (6) 1.436(3) 2.745 3.139 0.98% 92.57% 59.93%
GARCH-GED 3.212 (7) 1.745(7) 3.084 3.739 0.77% 35.40% 68.01%
EGARCH-N 3.380 (8) 2.441(10) 2.679 3.065 0.98% 92.57% 59.93%
IGARCH-N 3.473 (9) 2.002(8) 2.786 3.184 1.05% 86.41% 57.33%
HYGARCH-N 3.600 (10) 2.231(9) 2.811 3.212 0.98% 92.57% 59.93%
FIAPARCH-N 3.702 (11) 2.959(13) 2.740 3.135 0.98% 92.57% 59.93%
FIGARCHC-N 3.828 (12) 2.622(12) 2.727 3.116 1.05% 86.41% 57.33%
GARCH-N 4.337 (13) 2.597(11) 2.733 3.124 1.18% 49.45% 52.30%
FIGARCH-N 4.683 (14) 3.263(14) 2.673 3.055 1.25% 35.16% 49.87%
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Table 4. The Gold Bullion $ per Troy Ounce case. Column 1 presents the models that have not 
been rejected by the backtesting criteria (unconditional coverage and the independence test). 
Columns 2 and 3 present the values of the MAE and the MSE loss functions multiplied by 103

(in parentheses the ranking of the models is presented). The average values of the VaR and ES 
forecasts are presented in 4th and 5th columns, respectively. The percentage of violations is 
presented in 6th column, whereas the 7th and 8th columns present the Kupiec’s and 
Christofersen’s p-values, respectively. 

Model MAE (Rank) MSE (Rank) Av.Var Av.ES Rate Kupiec Chr/sen
Panel A. Long Position - 95% VaR 

FIGARCHC-N 18.342 (1) 17.047(8) -1.426 -1.785 4.11% 11.15% 71.09%
FIGARCH-N 18.581 (2) 17.317(9) -1.425 -1.783 4.11% 11.15% 76.84%
EGARCH-N 20.169 (3) 21.477(10) -1.436 -1.801 4.18% 14.35% 75.38%
FIAPARCHC-GED 20.296 (4) 15.772(6) -1.415 -2.054 4.18% 14.35% 75.38%
APARCH-GED 20.311 (5) 15.128(2) -1.450 -2.113 4.11% 11.15% 71.09%
TARCH-GED 20.355 (6) 15.094(1) -1.464 -2.133 4.11% 11.15% 71.09%
FIGARCHC-GED 20.430 (7) 15.652(3) -1.394 -2.027 4.39% 27.95% 88.53%
FIGARCH-GED 20.657 (8) 15.710(4) -1.397 -2.030 4.39% 27.95% 88.53%
GARCH-GED 21.165 (9) 15.753(5) -1.438 -2.104 4.32% 22.71% 65.03%
IGARCH-GED 21.272 (10) 16.043(7) -1.442 -2.109 4.32% 22.71% 65.03%

Panel B. Long Position - 99% VaR 
EGARCH-GED 2.012 (1) 0.916(1) -2.692 -3.431 0.70% 22.22% 70.78%
TARCH-GED 2.463 (2) 1.469(2) -2.540 -3.224 0.70% 22.22% 70.78%
FIEGARCH-GED 3.011 (3) 1.626(3) -2.659 -3.388 0.70% 22.22% 70.78%
FIAPARCH-GED 3.040 (4) 1.862(4) -2.479 -3.136 0.84% 52.11% 65.27%
FIAPARCHC-GED 3.136 (5) 1.926(5) -2.442 -3.091 0.84% 52.11% 65.27%
HYGARCH-GED 3.292 (6) 1.927(6) -2.509 -3.187 0.91% 71.59% 62.58%
GARCH-GED 3.299 (7) 2.452(8) -2.508 -3.191 0.77% 35.40% 68.01%
IGARCH-GED 3.412 (8) 2.563(10) -2.514 -3.200 0.77% 35.40% 68.01%
FIGARCH-GED 3.565 (9) 2.214(7) -2.415 -3.061 0.91% 71.59% 62.58%
APARCH-GED 4.019 (10) 2.811(11) -2.516 -3.194 0.84% 52.11% 65.27%
FIGARCHC-GED 4.077 (11) 2.505(9) -2.412 -3.057 0.98% 92.57% 59.93%
TARCH-N 6.038 (12) 5.005(12) -2.120 -2.428 1.25% 35.16% 49.87%
APARCH-N 6.317 (13) 5.158(13) -2.100 -2.406 1.32% 23.99% 47.50%
IGARCH-N 6.440 (14) 5.685(15) -2.093 -2.396 1.32% 23.99% 47.50%
GARCH-N 6.742 (15) 5.788(16) -2.086 -2.387 1.39% 15.71% 45.19%
FIAPARCH-N 6.859 (16) 6.215(17) -2.075 -2.376 1.25% 35.16% 49.87%
HYGARCH-N 6.860 (17) 5.635(14) -2.085 -2.386 1.39% 15.71% 45.19%
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Table 4. Continued 

Model MAE (Rank) MSE (Rank) Av.Var Av.ES Rate Kupiec Chr/sen
 

Panel C. Sort Position - 95% VaR 
FIEGARCH-GED 21.571 (1) 31.570(1) 1.523 2.230 4.18% 14.35% 73.22%
APARCH-N 22.838 (2) 39.708(15) 1.480 1.857 4.53% 40.64% 52.08%
TARCH-N 23.160 (3) 39.281(14) 1.492 1.872 4.67% 56.09% 59.93%
IGARCH-N 23.802 (4) 42.209(19) 1.454 1.828 4.67% 56.09% 59.93%
HYGARCH-N 23.940 (5) 38.789(13) 1.448 1.820 4.95% 92.75% 76.78%
FIAPARCH-N 23.964 (6) 37.328(5) 1.455 1.826 4.88% 83.15% 72.46%
FIAPARCHC-N 23.992 (7) 38.619(12) 1.430 1.794 4.88% 83.15% 72.46%
EGARCH-N 24.157 (8) 45.752(21) 1.439 1.803 4.53% 40.64% 52.08%
GARCH-N 24.287 (9) 42.504(20) 1.449 1.821 4.81% 73.75% 68.20%
APARCH-GED 24.547 (10) 37.366(6) 1.450 2.113 4.74% 64.69% 64.02%
GARCH-GED 24.576 (11) 38.025(11) 1.439 2.104 4.88% 83.15% 72.46%
IGARCH-GED 24.672 (12) 37.849(10) 1.442 2.109 4.88% 83.15% 72.46%
TARCH-GED 24.781 (13) 36.966(3) 1.464 2.133 4.74% 64.69% 91.62%
FIEGARCH-N 25.078 (14) 41.954(18) 1.382 1.738 4.81% 73.75% 34.85%
HYGARCH-GED 25.455 (15) 36.201(2) 1.444 2.106 5.02% 97.59% 81.16%
FIAPARCH-GED 26.332 (16) 37.076(4) 1.437 2.084 5.09% 88.00% 85.58%
FIGARCHC-N 26.620 (17) 41.097(17) 1.397 1.755 5.71% 22.43% 75.06%
FIGARCH-N 26.706 (18) 41.083(16) 1.396 1.754 5.71% 22.43% 75.06%
FIGARCH-GED 27.028 (19) 37.510(8) 1.396 2.030 5.44% 45.51% 92.20%
FIGARCHC-GED 27.081 (20) 37.477(7) 1.393 2.026 5.44% 45.51% 92.20%
FIAPARCHC-GED 27.445 (21) 37.599(9) 1.415 2.054 5.30% 61.00% 98.94%

Panel D. Sort Position - 99% VaR 
FIAPARCH-GED 7.017 (1) 13.462(1) 2.478 3.136 1.05% 86.41% 14.57%
FIAPARCHC-GED 8.003 (2) 14.782(2) 2.442 3.091 1.12% 66.73% 16.92%
FIGARCH-GED 8.131 (3) 15.040(3) 2.415 3.060 1.05% 86.41% 14.57%
GARCH-GED 8.162 (4) 17.210(6) 2.508 3.191 0.98% 92.57% 12.42%
IGARCH-GED 8.176 (5) 16.925(5) 2.514 3.199 0.98% 92.57% 12.42%
EGARCH-GED 8.635 (6) 20.424(7) 2.692 3.431 0.91% 71.59% 10.44%
FIGARCHC-GED 8.909 (7) 15.308(4) 2.411 3.056 1.18% 49.45% 19.44%
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Table 5. The US $ to UK £ case. Column 1 presents the models that have not been rejected 
by the backtesting criteria (unconditional coverage and the independence test). Columns 2 
and 3 present the values of the MAE and the MSE loss functions multiplied by 103 (in 
parentheses the ranking of the models is presented). The average values of the VaR and ES 
forecasts are presented in 4th and 5th columns, respectively. The percentage of violations is 
presented in 6th column, whereas the 7th and 8th columns present the Kupiec’s and 
Christofersen’s p-values, respectively. 

Model MAE (Rank) MSE (Rank) Av.VarAv.ES Rate Kupiec Chr/sen
Panel A. Long Position - 95% VaR 

EGARCH-N 8.402 (1) 2.606(1) -0.886 -1.112 4.67% 56.09% 61.97%
FIEGARCH-N 8.757 (2) 2.762(2) -0.895 -1.123 4.74% 64.69% 44.41%
IGARCH-N 9.172 (3) 2.824(3) -0.864 -1.084 5.09% 88.00% 68.64%
FIAPARCHC-GED 9.976 (4) 2.876(4) -0.833 -1.167 5.44% 45.51% 50.29%
FIGARCHC-N 9.987 (5) 3.173(7) -0.834 -1.047 5.44% 45.51% 20.36%
FIAPARCH-N 10.150 (6) 3.282(12) -0.831 -1.043 5.64% 27.19% 40.80%
HYGARCH-GED 10.181 (7) 3.059(5) -0.842 -1.180 5.37% 52.95% 53.72%
FIGARCH-N 10.265 (8) 3.288(13) -0.835 -1.048 5.57% 32.61% 17.04%
HYGARCH-N 10.400 (9) 3.362(15) -0.830 -1.041 5.57% 32.61% 17.04%
FIAPARCHC-N 10.568 (10) 3.410(18) -0.823 -1.033 5.78% 18.32% 68.94%
GARCH-N 10.570 (11) 3.391(16) -0.832 -1.045 5.64% 27.19% 77.13%
FIGARCHC-GED 10.581 (12) 3.260(11) -0.835 -1.170 5.51% 38.72% 47.00%
FIGARCH-GED 10.584 (13) 3.230(10) -0.844 -1.183 5.44% 45.51% 50.29%
TARCH-N 10.592 (14) 3.393(17) -0.834 -1.047 5.71% 22.43% 72.99%
EGARCH-GED 10.644 (15) 3.161(6) -0.903 -1.272 4.67% 56.09% 61.97%
FIAPARCH-GED 10.694 (16) 3.218(9) -0.842 -1.180 5.51% 38.72% 47.00%
IGARCH-GED 10.777 (17) 3.212(8) -0.863 -1.213 5.16% 78.62% 64.74%
GARCH-GED 11.255 (18) 3.360(14) -0.843 -1.181 5.51% 38.72% 85.65%
TARCH-GED 11.646 (19) 3.482(19) -0.845 -1.183 5.64% 27.19% 77.13%
APARCH-GED 12.052 (20) 4.656(20) -0.830 -1.161 5.71% 22.43% 72.99%

Panel B. Long Position - 99% VaR 
FIGARCHC-GED 1.340 (1) 0.360(1) -1.376 -1.701 0.77% 35.40% 68.01%
IGARCH-GED 1.397 (2) 0.381(4) -1.428 -1.769 0.70% 22.22% 70.78%
GARCH-GED 1.453 (3) 0.382(5) -1.389 -1.716 0.84% 52.11% 65.27%
FIAPARCH-GED 1.488 (4) 0.377(3) -1.388 -1.715 0.84% 52.11% 65.27%
EGARCH-GED 1.545 (5) 0.402(6) -1.499 -1.858 0.70% 22.22% 70.78%
HYGARCH-GED 1.546 (6) 0.407(7) -1.388 -1.714 0.84% 52.11% 65.27%
FIGARCH-GED 1.569 (7) 0.411(8) -1.391 -1.719 0.84% 52.11% 65.27%
EGARCH-N 1.572 (8) 0.364(2) -1.254 -1.437 1.39% 15.71% 45.19%
TARCH-GED 1.616 (9) 0.433(9) -1.391 -1.718 0.91% 71.59% 62.58%
FIEGARCH-GED 1.658 (10) 0.543(11) -1.586 -1.975 0.63% 12.75% 73.60%
FIAPARCHC-GED 1.669 (11) 0.464(10) -1.373 -1.696 0.77% 35.40% 68.01%
APARCH-GED 2.020 (12) 1.171(12) -1.364 -1.684 0.91% 71.59% 62.58%
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Table 5. Continued 

Model MAE (Rank) MSE (Rank) Av.VarAv.ES Rate Kupiec Chr/sen 
Panel C. Sort Position - 95% VaR 

EGARCH-N 7.754 (1) 2.839(1) 0.894 1.120 4.25% 18.19% 79.73%
IGARCH-N 8.369 (2) 3.057(5) 0.872 1.092 4.53% 40.64% 54.01%
FIGARCHC-N 8.499 (3) 3.046(4) 0.842 1.055 4.81% 73.75% 70.33%
TARCH-N 8.639 (4) 3.013(2) 0.844 1.057 4.88% 83.15% 74.62%
FIGARCH-N 8.926 (5) 3.107(8) 0.843 1.056 4.95% 92.75% 78.97%
HYGARCH-N 8.950 (6) 3.107(9) 0.838 1.050 5.02% 97.59% 83.37%
GARCH-N 8.966 (7) 3.085(7) 0.842 1.055 5.02% 97.59% 83.37%
FIAPARCH-N 9.016 (8) 3.220(14) 0.839 1.051 4.95% 92.75% 78.97%
FIAPARCHC-N 9.083 (9) 3.245(15) 0.830 1.040 5.23% 69.59% 96.72%
FIAPARCH-GED 9.273 (10) 3.013(3) 0.847 1.185 4.46% 33.93% 22.58%
APARCH-N 9.545 (11) 3.344(16) 0.823 1.031 5.37% 52.95% 94.40%
FIGARCH-GED 9.659 (12) 3.084(6) 0.848 1.187 4.60% 48.04% 57.94%
HYGARCH-GED 9.693 (13) 3.116(10) 0.846 1.184 4.67% 56.09% 61.97%
FIGARCHC-GED 9.818 (14) 3.153(12) 0.839 1.174 4.74% 64.69% 66.11%
GARCH-GED 10.029 (15) 3.134(11) 0.848 1.186 4.60% 48.04% 57.94%
TARCH-GED 10.033 (16) 3.183(13) 0.850 1.188 4.53% 40.64% 54.01%
FIAPARCHC-GED 10.345 (17) 3.427(19) 0.837 1.172 4.88% 83.15% 39.66%
IGARCH-GED 10.376 (18) 3.392(17) 0.867 1.217 4.46% 33.93% 50.20%
APARCH-GED 10.668 (19) 3.407(18) 0.835 1.166 4.88% 83.15% 39.66%

Panel D. Sort Position - 99% VaR 
EGARCH-N 1.922 (1) 0.623(1) 1.262 1.446 0.91% 71.59% 10.44%
FIEGARCH-N 1.999 (2) 0.650(2) 1.273 1.458 0.98% 92.57% 12.42%
TARCH-N 2.175 (3) 0.695(3) 1.192 1.364 1.05% 86.41% 14.57%
IGARCH-N 2.246 (4) 0.730(5) 1.231 1.410 1.05% 86.41% 14.57%
GARCH-N 2.256 (5) 0.701(4) 1.189 1.362 1.12% 66.73% 16.92%
HYGARCH-N 2.501 (6) 0.786(6) 1.184 1.355 1.25% 35.16% 22.13%
FIAPARCH-N 2.511 (7) 0.852(9) 1.185 1.357 1.12% 66.73% 16.92%
FIGARCH-N 2.585 (8) 0.816(7) 1.190 1.363 1.25% 35.16% 22.13%
APARCH-N 2.614 (9) 0.849(8) 1.162 1.330 1.25% 35.16% 22.13%
FIAPARCHC-N 2.647 (10) 0.908(11) 1.172 1.343 1.25% 35.16% 22.13%
FIGARCHC-N 2.753 (11) 0.877(10) 1.189 1.362 1.32% 23.99% 25.00%
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Table 6. The p-values of the SPA test for the null hypothesis that the 
benchmark model is the best model. 

Loss 
Function 

Long Position
95% VaR 

Long Position
99% VaR 

Short Position
95% VaR 

Short Position 
99% VaR 

S&P500 
(Benchmark Model: FIEGARCH-N) 

  

MAE 0.81390 0.12790 0.61030 0.26370 
MSE 0.34780 0.17080 0.28250 0.38550 

(Benchmark Model: EGARCH-N)   

MAE 0.89750 0.08000b 0.59720 0.20970 
MSE 0.32300 0.11730 0.33850 0.43500 

(Benchmark Model: APARCH-N)   

MAE 0.87810 0.04360a 0.97800 0.89900 
MSE 0.34690 0.11450 0.99820 0.99050 

(Benchmark Model: TARCH-N)   

MAE 0.88740 0.02690a 0.16050 0.48620 
MSE 0.35010 0.12440 0.07160b 0.69910 

(Benchmark Model: FIGARCH-GED)   

MAE 0.01340a 0.09190b 0.00600a 0.79410 
MSE 0.06970b 0.19970 0.00330a 0.77080 
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Table 6. Continued   

Loss 
Function 

Long Position
95% VaR 

Long Position
99% VaR 

Short Position
95% VaR 

Short Position 
99% VaR  

  

Gold Bullion $ per Troy Ounce 
(Benchmark Model: GARCH-GED) 

  

MAE 0.36750 0.34000 0.34680 0.56090 
MSE 0.84510 0.32590 0.43570 0.34920 

(Benchmark Model: IGARCH-GED)   

MAE 0.31350 0.35870 0.32110 0.53350 
MSE 0.23210 0.32260 0.43330 0.43680 

(Benchmark Model: FIGARCH-GED)   

MAE 0.26480 0.21560 0.06820b 0.38710 
MSE 0.81200 0.11440 0.20400 0.47350 

(Benchmark Model: FIGARCHC-GED)   

MAE 0.32250 0.11250 0.06840b 0.10370 
MSE 0.84020 0.07850b 0.19470 0.28370 

(Benchmark Model: FIAPARCHC-GED)   

MAE 0.37010 0.41260 0.02870a 0.12790 
MSE 0.83110 0.37380 0.05430b 0.05330b 

US $ to UK £ 
(Benchmark Model: EGARCH-N) 

  

MAE 0.95180 0.72780 0.96560 0.78310 
MSE 0.97730 0.89700 0.97300 0.91270 

a Indicates that the null hypothesis is rejected at 5% level of significance. 
b Indicates that the null hypothesis is rejected at 10% level of significance. 
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Figure 1. Daily closing prices, log-returns and the lag 1 through 1000 autocorrelations for the absolute 

log-returns from April 4th, 1988 through April 5th, 2005. 
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* The vertical lines present the 95% confidence interval of no serial dependence, T/96.1± . 
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iMittnik and Paoella (2000) also used the APARCH model to accommodate the time varying skewness of the exchange rate market.  
iiA coherent risk measure is defined as one that satisfies the following four properties: (a) sub-additivity, (b) homogeneity, (c) 
monotonicity, and (d) risk-free condition.  These are described in the following equations: (a) )()()( yxyx +≤+ ρρρ , (b) 

)()( xttx ρρ = , (c) y xif )()( ≤≥ yx ρρ , and (d) n-)()( xnx ρρ =+ . For more details on coherent risk measures, see Artzner et 
al. (1997).  
iiiAs the 4:15 report JP Morgan did.  
ivBali and Theodosiou (2006) suggested either the TS-GARCH, proposed by Taylor (1986) and Schwert (1989), or the EGARCH 
model, introduced by Nelson (1991), as they estimate the VaR and ES measures accurately and give the best overall performance. 
vThe skewed Student-t distribution was introduced by Fernandez and Steel (1998) and was applied by Lambert and Laurent (2000) in 
ARCH framework. Moreover, Kuester et al. (2006) argued that compared to the normal distribution, substantial improvement in 
predicting VaR was achieved when asymmetrical fat tailed distribution was used.  
viThe log-likehood ratio statistic of the combined hypothesis is computed as: 

( )( ) ( ) ( )( ) 2
2

11
11

10
11

01
01

00
01

N-T ~-1-1ln21ln2- XLR nnnnN
cc ππππρρ +−= , under the null hypothesis of an independence failure 

process with failure probability ρ . 
vii TTT

(
+=

~ . 
viiiWe set the cut off point to 10% to ensure that the successful models will neither over nor underestimate the true VaR and the 
sequence of violations will be independent.  Detailed results for all the models are available upon request.  
ixThe rolling parameters are available   upon request. 
xHansen and Lunde (2006) and Patton (2005) noted that not all the loss functions rank the volatility forecasting models consistently. 
Specifically, Hansen and Lunde noted that some loss functions, including the MAE criterion, can be distorted by the substitution of a 
proxy for the latent population measure of volatility. Hence, if we take under consideration only the MSE loss function, we would add 
to the appropriate models the EGARCH-N and APARCH-N volatility specifications for the S&P500, as well as the FIGARCH-GED 
model for the Gold case. 


