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Abstract. Risk-limiting post election audits guarantee a high probability of cor-

recting incorrect election results, independent of why the result was incorrect.

Ballot-polling audits select ballots at random and interpret those ballots as ev-

idence for and against the actual recorded result, continuing this process until

either they support the recorded result, or they fall back to a full manual re-

count. Ballot-polling for first-past-the-post elections is well understood, and used

in some US elections. We define a number of approaches to ballot-polling risk-

limiting audits for Instant Runoff Voting (IRV) elections. We show that for almost

all real elections we found, we can perform a risk-limiting audit by looking at

only a small fraction of the total ballots (assuming no errors).

1 Introduction

Instant Runoff Voting (IRV) is a system of preferential voting in which voters rank can-

didates in order of preference. IRV is used for all parliamentary lower house elections in

Australia, parliamentary elections in Fiji and Papua New Guinea, presidential elections

in Ireland and Bosnia/Herzogovinia, and local elections in numerous locations world-

wide, including the UK and United States. Given candidates c1, c2, c3, and c4, each vote

in an IRV election is a (possibly partial) ranking of these candidates. A vote with the

ranking [c1, c2, c3] expresses a first preference for candidate c1, a second preference for

c2, and a third for c3. The tallying of votes proceeds by distributing each vote to its first

ranked candidate. The candidate with the smallest number of votes is eliminated, with

their votes redistributed to subsequent, less preferred candidates. Elimination proceeds

in this fashion, until a single candidate w remains, who is declared the winner.

Risk Limiting Audits [6] (RLAs) provide strong statistical evidence that the reported

outcome of an election is correct, or revert to a manual recount if it is wrong. The

probability that the audit fails to detect a wrong outcome is bounded by a risk limit. An

RLA with a risk limit of 1%, for example, has at most a 1% chance of failing to detect

that a reported election outcome is wrong. In this paper we present several methods for

undertaking ballot-polling RLAs of IRV elections, by adapting a ballot-polling RLA

method (BRAVO) designed for first-past-the-post or k-winner plurality elections [7].

Blom et al [3] demonstrated an efficient algorithm for exact IRV margin computa-

tion. This immediately allows for a risk-limiting comparison audit [6], assuming that

there is infrastructure for comparing ballots with their electronic record. This would

consist of simply assessing the number of discrepancies until the hypothesis that there
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were enough to change the outcome could be rejected. However, that might be very

inefficient because it counts every error equally, including those that help the apparent

winner or rearrange candidates with no hope of winning. It might be possible to extend

Stark’s sharper discrepancy measure [10] to IRV, but this is challenging because it may

be hard to compute the implications of a particular discrepancy.

In this paper we instead consider ballot-polling audits for IRV, by applying BRAVO

to auditing certain facts about an IRV election. In a k-winner plurality contest, BRAVO

maintains a running statistic Twl for each pair of apparent winner w and loser l. These

statistics are updated as ballots are drawn uniformly at random. A ballot that shows

a valid vote for winner w increases the Twl statistic (by an amount dependent on the

reported votes for the two candidates), while a ballot showing a valid vote for the loser

l decreases it. When each statistic exceeds a threshold, dependent on the risk limit, we

know that we have seen enough evidence to reject the hypothesis that l beat w.

Each round of IRV elimination could be regarded as a multiple-winner plurality

election—this idea was explored in [9]. We denote this by IRV, annotated with the

round and eliminated candidates. Adapting BRAVO directly to this is described in Sec-

tion 5.1. This is sound, but wastes a lot of auditing work proving a much stronger result

than necessary—the elimination order may be wrong though the final outcome is cor-

rect. One optimization is to eliminate batches of low-tally candidates at once when this

provably doesn’t affect the final outcome. These batch eliminations can also be easily

audited with BRAVO—this is described in Section 5.2.

An even simpler fact turns out to be very powerful: suppose we wish to reject the

hypothesis that w was eliminated before l. We can apply BRAVO immediately, counting

every ballot with a first preference for w as a vote for w, which is conservative because

w must have at least this tally at every stage. Any vote that mentions l without a higher

preference for w is attributed to l, which is also conservative because l can have at

most this tally. If BRAVO rejects the hypothesis that l can beat w, then we can reject

the hypothesis that w is eliminated before l. We call this the Winner Only hypothesis,

denoted WO(l, w). It can also be conditioned on a set of already-eliminated candidates

C—preferences for those candidates are simply ignored when auditing the w-l pair.

Winner-only audits are described in Section 5.3. A surprising result of this paper

is that WO alone often suffices for an efficient, complete audit. In about half the real

elections we simulated auditing, we found that for the announced winner w, for every

loser l, hypothesis WO(l, w) could be efficiently rejected using BRAVO. This confirms

that w won, while sidestepping almost all the complexity of IRV.

The key contribution of this paper is a good heuristic for choosing which combi-

nation of facts to audit, using BRAVO, in order to provide an efficient risk-limiting

audit of an IRV election result. We present an algorithm, denoted audit-irv, that finds

a sufficient set of facts (e.g., some version of IRV or WO(c1, c2) given that c3 and c4
have been eliminated) to prove that w won. All of these facts can be audited simulta-

neously using BRAVO. If one of the necessary facts is false, this will be detected, with

probability of at least 1− α, by the BRAVO audit at risk limit α.

Ideally we would like to ensure that audit-irv selects the set of facts that produce

an optimally efficient audit, but this is very difficult. When BRAVO is assessing only

a single winner, its average sample number (ASN) can be easily computed, but the
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expected number of samples for eliminating multiple (perhaps related) hypotheses can

(as far as we know) be assessed only by simulation. audit-irv selects the collection of

facts that minimizes the maximum ASN for each fact taken separately—this is what

we mean by the “optimal” auditing program below. However, this may not actually be

an optimally efficient audit, or even the optimal application of BRAVO, because it is

possible that some other combination of facts can be checked together more efficiently.

Our simulations show that audit-irv plans a feasible IRV audit, using BRAVO, for

almost all the real IRV elections we could find. Although some still require large audits,

this is probably inevitable because their margins are small.

Definitions and background are in Section 3. Section 4 introduces the BRAVO

ballot-polling RLA for first-past-the-post elections. Section 5 describes our ballot-polling

approaches, then Section 6 simulates and evaluates them on a suite of IRV instances.

2 Related Work

There is a growing literature on the use of risk-limiting audits for auditing the outcome

of varying types of election [7, 9]. Risk-limiting audits have been applied to a number

of plurality (first-past-the-post) elections, including four 2008 elections in California

[4] and elections in over 50 Colorado counties in 2017. General auditing procedures

designed to enhance electoral integrity have been outlined by [1]. The BRAVO ballot-

polling risk-limiting audit of [7], designed for first-past-the-post elections, forms the

basis of our IRV ballot-polling audits.

Several approaches for designing a risk-limiting comparison audit of an IRV elec-

tion have been proposed [9]. Such audits retrieve paper ballots and compare them to

their corresponding electronic record – an erroneous ballot is one that does not match

its electronic record. The first of these methods determines whether replacing an erro-

neous ballot with its correct representation changes the margin of victory of the election.

The second is based on auditing the elimination order, performing a plurality audit for

each round of counting. The audit performed at round r checks whether the set of can-

didates eliminated prior to r, viewed as a single ‘super candidate’, loses to the set of

remaining candidates (that are still standing). We consider a similar approach, in the

context of a ballot-polling audit, in this paper. We show, however, that we can more

efficiently audit an IRV election outcome by simply verifying that the reported winner

was not defeated by any other candidate. The third method proposed by [9] samples

K ballots, and determines whether the number of erroneous ballots exceeds a defined

threshold, based on the margin of victory of the election.

In parliamentary elections, such as Australian state and federal elections, the overall

outcome is determined by the results of a set of such elections, one for each of a set of

regions or districts. In the context of multi-level elections such as these, [5] present

a linear programming-based method to compute the statistical confidence with which

each district-level election should be audited, given an appropriate risk-limiting auditing

method, while minimising the expected number of ballots that must be checked overall.

Their approach ensures that the overall outcome is audited to a given level of statistical

confidence, while varying the extent to which each district-level election is audited.

For a risk-limiting audit, the margin of victory of the election provides an indica-

tion of how many ballots will need to be sampled. Automatic methods for computing

electoral margins for IRV elections have been presented by [8, 3, 2].
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Initially, all candidates remain standing (are not eliminated)

While there is more than one candidate standing

For every candidate c standing

Tally (count) the ballots in which c is the highest-ranked

candidate of those standing

Eliminate the candidate with the smallest tally

The winner is the one candidate not eliminated

Fig. 1: An informal definition of the IRV counting algorithm.

3 Preliminaries

In a first-past-the-post (FPTP) election, a voter marks a single candidate on their ballot

when casting their vote. The candidate who receives the most votes is declared the win-

ner. The BRAVO risk limiting audits of [7] are designed for k-winner FPTP contests. A

voter may vote for up to k of the candidates on their ballot, and the k candidates with the

highest number of votes are declared winners. IRV, in contrast, is a form of preferential

voting in which voters express a preference ordering over a set of candidates on their

ballot. The tallying of votes in an IRV election proceeds by a series of rounds in which

the candidate with the lowest number of votes is eliminated (see Figure 1) with the last

remaining candidate declared the winner. All ballots in an eliminated candidate’s tally

are distributed to the next most-preferred (remaining) candidate in their ranking.

Let C be the set of candidates in an IRV election B. We refer to sequences of can-

didates π in list notation (e.g., π = [c1, c2, c3, c4]), and use such sequences to represent

both votes and elimination orders. An election B is defined as a multiset1 of ballots,

each ballot b ∈ B a sequence of candidates in C, with no duplicates, listed in order of

preference (most preferred to least preferred). Throughout this paper we use the nota-

tion first(π) = π(1) to denote the first candidate in a sequence π. In each round of

vote counting, there are a current set of eliminated candidates E and a current set of

candidates still standing S = C \ E . The winner cw is the last standing candidate.

Definition 1. Projection pS(π) We define the projection of a sequence π onto a set S
as the largest subsequence of π that contains only elements of S . (The elements keep

their relative order in π). For example:

p{c2,c3}([c1, c2, c4, c3]) = [c2, c3] and p{c2,c3,c4,c5}([c6, c4, c7, c2, c1]) = [c4, c2].

Each candidate c ∈ C has a tally of ballots. Ballots are added to this tally upon the

elimination of a candidate c′ ∈ C \ c, and are redistributed upon the elimination of c.

Definition 2. Tally tS(c) Given candidates S ⊆ C are still standing in an election

B, the tally for a candidate c ∈ C, denoted tS(c), is defined as the number of ballots

b ∈ B for which c is the most-preferred candidate of those remaining. Recall that pS(b)
denotes the sequence of candidates mentioned in b that are also in S .

tS(c) = | [b | b ∈ B, c = first(pS(b))] | (1)

1 A multiset allows for the inclusion of duplicate items.



Ballot-polling Risk Limiting Audits for IRV Elections 5

Ranking Count

[c2, c3] 4000

[c1] 20000

[c3, c4] 9000

[c2, c3, c4] 6000

[c4, c1, c2] 15000

[c1, c3] 6000

(a)

Candidate Rnd1 Rnd2 Rnd3

c1 26000 26000 26000

c2 10000 10000 —

c3 9000 — —

c4 15000 24000 30000

(b)

Table 1: An example IRV election, stating (a) the number of ballots cast with each listed

ranking over four candidates, and (b) the tallies after each round of counting.

The primary vote of candidate c ∈ C, denoted f(c), is the number of votes b ∈ B
for which c is ranked highest. Note that f(c) = tC(c).

f(c) = | [b | b ∈ B, c = first(b)] | (2)

Example 1. Consider the IRV election of Table 1. The tallies of c1, c2, c3, and c4, in

the 1st counting round are 26000, 10000, 9000, and 15000 votes. Candidate c3 is elim-

inated, and 9000 ballots are distributed to c4, who now has a tally of 24000. Candidate

c2, on 10000 votes, is eliminated next with 6000 of their ballots given to c4 (the remain-

der have no subsequent preferences and are exhausted). Candidates c1 and c4 remain

with tallies of 26000 and 30000. Candidate c1 is eliminated and c4 elected. ⊓⊔

4 Ballot-polling risk-limiting audits for FPTP

The aim of ballot-polling risk limiting audits is to be reassured that the results of the

election are valid even if some counting errors occurred. To this end we will consider

two versions of the statistics defined in the previous section. We use the regular defi-

nition for the recorded values made during the election, and add a tilde ˜ to mean the

actual values which should have been calculated. Hence f(c) is the recorded primary

vote for candidate c and f̃(c) is the actual primary vote for the candidate.

For now we consider a simple k-winner from n candidates FPTP election where the

k candidates who have the greatest number of votes are elected. All winners are elected

simultaneously and there is no transfer of votes. Given a set of C candidates (|C| = n)
there will be a set of W winners (|W| = k) and L losers (|L| = n− k).

We now present the BRAVO algorithm [7] for ballot-polling risk-limiting audits

of such elections (Figure 2(a)). BRAVO is applicable in elections where each ballot

may express a vote for one or more candidates. For our proposed IRV audits, we apply

BRAVO in contexts where each ballot represents a vote for a single candidate only (i.e.,

in any round of an IRV count, each ballot belongs to the tally of no more than one

candidate). We describe the BRAVO algorithm in the context where each ballot b is

equivalent to first(b). Then f(c) is the tally of votes for each candidate c ∈ C.

The ballot-polling risk-limiting audit independently tests k(n− k) null hypotheses

{f̃(w) ≤ f̃(l)} for each winner/loser pair. A statistic for each test {Twl} is updated

when a ballot is drawn for either its winner or its loser.
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Given an overall risk limit α we can estimate for each hypothesis the number of

ballot polls we expect will be required to reject the hypothesis assuming the election

counts are perfectly accurate. Let pc be the proportion of recorded votes for candidate

c, i.e. pc = f(c)/|B|. Let swl be the proportion of recorded votes for the winner w of

the votes for the winner and loser, swl = pw/(pw + pl). Clearly swl > 0.5. Then the

Average Sample Number (ASN) [7], that is the expected number of samples to reject the

null hypothesis {p̃w ≤ p̃l} assuming the recorded counts are correct, is given by:

ASN ≃
ln(1/α) + 0.5ln(2swl)

(pwln(2swl) + plln(2− 2swl))
(3)

Example 2. Consider the first round of the IRV election of Example 1. The null hy-

potheses we need to reject are f̃(c1) ≤ f̃(c3), f̃(c2) ≤ f̃(c3), f̃(c4) ≤ f̃(c3). We cal-

culate p1 = 26000/60000, p2 = 10000/60000, p3 = 9000/60000, p4 = 15000/60000
and s13 = 26000/35000, s23 = 10000/19000, and s43 = 15000/24000. The ASN for

rejecting each hypothesis, assuming α = 0.05, is 44.5, 6885, and 246 respectively. ⊓⊔

5 Ballot-polling risk-limiting audits for IRV

5.1 Auditing a particular elimination order

The simplest approach to applying ballot-polling risk limiting auditing to IRV is to

consider the IRV election as a number of simultaneous FPTP elections, one for each IRV

round. This was previously suggested by Sarwate et al [9], although they do not explore

it algorithmically. Note that this may perform much more auditing than required, since

it verifies more than just that the eventual winner is the correct winner, but that every

step in the IRV election was correct (with some confidence).

Given an election B of n candidates C let the computed elimination order of the

candidates be π = [c1, c2, . . . , cn−1, cn] where c1 is the first eliminated candidate, c2
the second, etc, and cn the eventual winner.

Each IRV round corresponds to a FPTP election. In the ith round we have a FPTP

election where l = ci is eliminated. The set of candidates of this election are Cl =
{cj | i ≤ j ≤ n} with recorded tally tCl

(c) for each candidate c ∈ Cl, and loser l = ci
and n− i winners Cl \ {l}.

We can audit all these FPTP elections simultaneously, by simply considering all the

null hypotheses that would violate the computed result. These are {t̃Cl
(c) ≤ t̃Cl

(cl) | 1 ≤
i ≤ n− 1, l = ci, c ∈ Ci \ {l}}. We represent these hypotheses by a pair (w, l) of win-

ner w = c, and loser l = ci. The statistic maintained for this test is Twl. Note each loser

only loses in one round so there is no ambiguity.

The algorithm is shown in Figure 2(b). The set of hypotheses H are again pairs

(w, l) of winner w and loser l, but they are interpreted as a hypothesis for the FPTP

election corresponding to the round where l was eliminated. This means the calculation

of the expected ratio of votes swl must be made using the tallies from this round. It

also means we must consider every ballot to see how it is interesting for that particular

hypothesis. Note that for example a ballot that is exhausted after k rounds will not play

any role in determining statistics for later round hypotheses.
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bravo(B̃,W ,L,α,M )

for(w ∈ W, l ∈ L)

Twl := 1
swl := f(w)/(f(w) + f(l))

H :=W ×L
m := 0

while(m < M ∧H 6= ∅)

randomly draw ballot b from B̃
m := m+ 1
if(first(b) ∈ W)

for((w, l) ∈ H,w = first(b))
Twl := Twl × 2swl

if(Twl ≥ 1/α)

% reject the null hypothesis

H = H − {(w, l)}
elseif(first(b) ∈ L)

for((w, l) ∈ H, l = first(b))
Twl := Twl × 2(1− swl)

if(H = ∅)
% reported results stand

return true

else % full recount required

return false

irvbravo(B̃,π,α,M )

H := ∅
for(i ∈ 1..|π| − 1)

l := π(i)
Cl := {π(i), π(i+ 1), . . . , π(|π|)}
for(j ∈ i+ 1..|π|)

w := π(j)
Twl := 1
swl := tCl

(w)/(tCl
(w) + tCl

(l))
H := H ∪ {(w, l)}

m := 0

while(m < M ∧H 6= ∅)

randomly draw ballot b from B̃
m := m+ 1
for((w, l) ∈ H)

if(w = first(pCl
(b)))

Twl := Twl × 2swl

if(Twl ≥ 1/α)

% reject the null hypothesis

H = H − {(w, l)}
elseif(l = first(pCl

(b)))
Twl := Twl × 2(1− swl)

if(H = ∅)
% reported results stand

return true

else % full recount required

return false

(a) (b)

Fig. 2: (a) BRAVO algorithm for a ballot-polling RLA audit of a FPTP election with

actual ballots B̃, declared winners W , declared losers L, risk limit α and limit on ballots

checked M , and (b) algorithm for a ballot-polling RLA of an IRV election with actual

ballots B̃, order of elimination π, risk limit α and limit on ballots checked M . In both

algorithms, ballots are drawn uniformly at random from B̃.

Example 3. Consider the IRV election shown in Example 1. The null hypotheses we

need to reject are f̃(c1) ≤ f̃(c3), f̃(c2) ≤ f̃(c3), and f̃(c4) ≤ f̃(c3) from the first

round election, t̃{c1,c2,c4}(c1) ≤ t̃{c1,c2,c4}(c2) and t̃{c1,c2,c4}(c3) ≤ t̃{c1,c2,c4}(c2)

from the second round election and t̃{c1,c4}(c4) ≤ t̃{c1,c4}(c1) from the final round.

Assuming α = 0.05 the ASNs for the first round are the same as calculated in Exam-

ple 2. The ASNs for the remaining elections are 51.8, 64.0 and 1186 respectively. ⊓⊔

Example 4. The weakness of this naive approach is that inconsequential earlier elim-

ination rounds can be difficult to audit even if they are irrelevant to the winner. Con-

sider an election with five candidates c1, c2, c3, c4, c5 and ballots (with multiplicity)

[c1] : 10000, [c2] : 6000, [c3, c2] : 3000, [c3, c1] : 2000, [c4] : 500, [c5] : 499. The

elimination order is [c5, c4, c3, c2, c1]. Assuming α = 0.05 then rejecting the null hy-

pothesis that c5 beat c4 in the first round gives an ASN of 13, 165, 239 indicating a full

hand audit is required. But it is irrelevant to the election result. ⊓⊔
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5.2 Simultaneous elimination

It is common in IRV elections to eliminate multiple candidates in a single round if it can

be shown that the order of elimination cannot affect later rounds. Given an elimination

order π we can simultaneously eliminate candidates E = {π(i)..π(i + k)} if the sum

of tallies of these candidates is less than the tally of the next lowest candidate. Let

C = {π(i), π(i + 1), . . . π(k), π(k + 1), . . . π(n)} be the set of candidates standing

after the first i− 1 have been eliminated. We can simultaneously eliminate E if:

tC(c) >
∑

c′∈E

tC(c
′) ∀c ∈ C \ E (4)

This is because no matter which order the candidates in E are eliminated no candidate

could ever garner a tally greater than one of the candidates in C \E. Hence they will all

be eliminated in any case. Note that since the remainder of the election only depends on

the set of eliminated candidates and not their order, the simultaneous elimination can

have no effect on later rounds of the election.

We can model the simultaneous elimination for auditing by considering all the si-

multaneously eliminated candidates E as as single loser l and rejecting hypotheses

t̃C(c) ≤ t̃C(l) for each c ∈ C \ E. The statistic Twl in this case is increased when we

draw a ballot where w is the highest-ranked of remaining candidates C, and decreased

when we draw a ballot where c′ ∈ E is the highest-ranked of remaining candidates C.

The elimination of all these null hypotheses is sufficient to prove that the multiple

elimination is correct. This can then be combined with the audit of the rest of the elim-

ination sequence, as described in Section 5.1, to test whether the election’s announced

winner is correct. Like the audit of a particular elimination sequence in Section 5.1, we

are proving a stronger result than necessary, i.e. that a particular sequence of (possibly

multiple) eliminations is valid, though there may be another way of getting the same

candidate to win even if the multiple elimination isn’t correct.

This often results in a much lower ASN, though not necessarily: sometimes the

combined total of first preferences in E is very close to the next tally, so a lot of auditing

is required. It may be better to audit each elimination individually in this case. It is

possible to compute the ASN for each approach and choose the method that requires

the least auditing, assuming the outcome is correct.

Example 5. Consider the election in Example 4. We can multiply eliminate the candi-

dates E = {c5, c4} since the sum of their tallies 499 + 500 < 5000 which is the lowest

tally of the other candidates. If we do this the difficult first round elimination auditing

disappears. This shows the benefit of multiple elimination. The ASNs required for the

joint elimination of E are 17.0, 36.2 and 49.1 as opposed to requiring a full hand audit.

Note that after this simultaneous elimination, the tallies for the three candidate elec-

tion {c1, c2, c3} are c1 : 10000, c2 : 6000 and c3 : 5000 and the ASNs to reject the

hypotheses t̃C(c1) ≤ t̃C(c3) and t̃C(c2) ≤ t̃C(c3) are 77.6 and 1402 respectively.

Note we could also simultaneously eliminate the candidates E = {c5, c4, c3} since

the sum of their tallies 499 + 500 + 5000 < 6000 which is the lowest tally of the other

candidate (that of c2). But this will lead to a very difficult hypothesis to reject, t̃C(c2) ≤
t̃C({c5, c4, c3}) since the tallies are almost identical! The ASN is 158,156,493! This

illustrates that multiple elimination may not always be beneficial. ⊓⊔
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5.3 Winner only auditing

Up until now we consider auditing the entire IRV process to ensure that we are confident

on all its outcomes. This is too strong since even if earlier eliminations happened in a

different order it may not have any effect on the eventual winner.

Example 6. Consider an election with ballots [c1, c2, c3] : 10000, [c2, c1, c3] : 6000
and [c3, c1, c2] : 5999. No simultaneous elimination is possible, and auditing that c3
is eliminated before c2 will certainly require a full hand audit. But even if c2 were

eliminated first it would not change the winner of the election. ⊓⊔

An alternate approach to ballot-polling RLAs for IRV elections is to simply reject

the n−1 null hypotheses {f̃(w) ≤ t̃{w,l}(l)} where w is the declared winner of the IRV

election, and l ∈ C \ {w}. This hypothesis states that l gets more votes than w where

l is given the maximal possible votes it could ever achieve before w is eliminated, and

w gets only its first round votes (the minimal possible votes it could ever hold). When

we reject this hypothesis we are confident that there could not be any elimination order

where w is eliminated before l. If all these hypotheses are rejected then we are assured

that w is the winner of the election, independent of a particular elimination order.

Example 7. Consider the election of Example 6. We must reject the hypotheses that

{f̃(c1) ≤ t̃{c1,c2}(c2)} (c1 is eliminated before c2) and {f̃(c1) ≤ t̃{c1,c2}(c3)} (c1 is

eliminated before c3). The primary votes for c1 are 10000, while the maximum votes

that c2 can achieve before c1 is eliminated are 6000. Simultaneously the maximum votes

that c3 can achieve before c1 is eliminated are 5999. Auditing to reject these hypotheses

is not difficult. The ASNs are 98.4 and 98.3 ballots.

Note however that if the [c2, c1, c3] ballots were changed to be [c2, c3, c1] then the

maximum votes that c3 can achieve are 12000, and the hypothesis that (c1 is eliminated

before c3) could not be rejected. Indeed in this case just changing a single vote could

result in c3 winning the election, so this election will need a full recount. ⊓⊔

There are, of course, some circumstances in which this does not work efficiently

even though the margin of victory is large, for example if there are two runners-up who

mostly (but not exclusively) preference each other.

Example 8. Consider an election with ballots [c1, c2, c3] : 10000, [c2, c3, c1] : 5000
[c2, c1, c3] : 1500, [c3, c2, c1] : 5000 and [c3, c1, c2] : 500, and winner c2. We cannot

validate that c2 won the election by a winner-only audit as we cannot reject the hy-

potheses that {f̃(c2) ≤ t̃{c2,c1}(l)}. The winner’s first preference tally is 6,500, while

the total number of votes c1 could have prior to c2 being eliminated is 10,500. ⊓⊔

5.4 A general algorithm for finding efficient RLAs for IRV

This idea can be generalised to a method of choosing the set of facts that can be checked

most efficiently (assuming no errors are found). We present an algorithm that achieves

this by finding the easiest way to show that all election outcomes in which a candidate

other than cw won, did not arise, with a given level of statistical confidence.
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Our algorithm, audit-irv, outlined in Figure 3, explores the tree of alternate elimi-

nation sequences, ending in a candidate c′ 6= cw. Each node is a partial (or complete)

elimination sequence. For each node π, we consider the set of hypotheses that (i) can be

proven with an application of BRAVO and (ii) any one of which disproves the outcome

that π represents. We label each node π with the hypothesis h from this set that requires

the least number of anticipated ballot polls (ASN) to prove, denoted asn(h). We use

the notation h(π) and asn(π) to represent the hypothesis assigned to π and the ASN for

this hypothesis, respectively. Our algorithm finds a set of hypotheses to prove, denoted

audits, that: validates the correctness of a given election outcome, with risk limit α; and

for which the largest ASN of these hypothesis is minimised.

Note that our risk-limit follows directly from BRAVO: if the election outcome is

wrong, then one of the facts in h must be false—a BRAVO audit with risk limit α will

detect this with probability of at least 1−α. However, our estimate of efficiency is only

heuristic: ASNs for testing a single fact can be derived analytically, but the expected

number of samples required to reject multiple hypothesis at once is very hard to com-

pute, even if there are no discrepancies. We make a best guess based on the maximum

ASN for any single fact—this is what we meant by “optimal” in this section, though it

may not guarantee an optimally efficient audit overall. In Section 6 we describe simu-

lated sample numbers for the results of our algorithm applied to real elections (assuming

no discrepancies).

Consider a partial elimination sequence π = [c, . . . , w] of at least two candidates,

leading to an alternate winner w. This sequence represents the suffix of a complete

order – an outcome in which the candidates in C \ π have been previously eliminated,

in some order. We define a function FindBestAudit(π, C, B, α) that finds the easiest

to prove hypothesis (or fact) h, with the smallest ASN, which disproves the outcome π
given risk limit α. For the outcome π = [c| . . .], FindBestAudit considers the following

hypotheses:

WO(c,c′): Hypothesis that c beats c′ ∈ π, for some c′ ∈ π, c′ 6= c, in a winner only au-

dit of the form described in Section 5.3, with winner c and loser c′, thus invalidating

the sequence since c cannot be eliminated before c′;
WO(c′′,c): Hypothesis that c′′ ∈ C \ π beats c in a winner only audit with winner c′′

and loser c, thus invalidating the sequence since c′′ cannot be eliminated before c;
IRV(c,c′,{c′′ | c′′ ∈ π}): Hypothesis that c beats some c′ 6= c ∈ π in a BRAVO audit

with winner c and loser c′, under the assumption that the only candidates remaining

are those in π (i.e. the set {c′′ | c′′ ∈ π}) with other candidates eliminated with their

votes distributed to later preferences, thus invalidating the sequence since then c is

not eliminated at this stage in an IRV election.

We assume that if no hypothesis exists with ASN less than |B| the function returns a

dummy INF hypothesis with ASN(INF) = +∞.

For an election with candidates C and winner cw, audit-irv starts by adding |C| − 1
partial elimination orders to an initially empty priority queue F , one for each alternate

winner c 6= cw (Steps 4 to 9). The set audits is initially empty. For orders π containing

a single candidate c, FindBestAudit considers the hypotheses WO(c′′,c), candidate

c′′ 6= c beats c in a winner only audit of the form described in Section 5.3, with winner

c′′ and loser c, for each c′′ ∈ C \ {c}. The hypothesis h with the smallest ASN(h)



Ballot-polling Risk Limiting Audits for IRV Elections 11

audit-irv(C, B, cw, α)

1 audits← ∅

2 F ← ∅ ⊲ F is a set sequences to expand (the frontier)

3 LB ← 0
⊲ Populate F with single-candidate sequences

4 for each(c ∈ C \ {cw}):
5 π ← [c]
6 h← FindBestAudit(π, C, B, α)

7 hy[π]← h ⊲ Record best hypothesis for π
8 ba[π]← π ⊲ Record best ancestor sequence for π
9 F ← F ∪ {π}

⊲ Repeatedly expand the sequence with largest ASN in F
10 while(|F | > 0):

11 π ← argmax{ASN(hy[π]) | π ∈ F}
12 F ← F \ {π}
13 if(ASN(hy[ba[π]]) ≤ LB):

14 audits← audits ∪ {hy[ba[π]]}
15 F ← F \ {π′ ∈ F | ba[π] is a suffix of π′}
16 continue

17 for each(c ∈ C \ π):

18 π′ ← [c] ++π
19 h← FindBestAudit(π′, C, B, α)

20 hy[π′]← h
21 ba[π′]← if ASN(h) < ASN(hy[ba[π]]) then π′ else ba[π]
22 if(|π′| = |C|):
23 if(ASN(hy[ba[π′]]) =∞):

24 terminate algorithm, full recount necessary

25 else:

26 audits← audits ∪ {hy[ba[π′]]}
27 LB←max(LB, ASN(hy[ba[π′]]))
28 F ← F \ {π′ ∈ F | ba[π] is a suffix of π′}
29 continue

30 else:

31 F ← F ∪ {π′}
32 return audits with maximum ASN equal to LB

Fig. 3: The audit-irv algorithm for searching for a collection of hypothesis to audit,

with parallel applications of BRAVO, that validate the outcome of an IRV election with

candidates C, ballots B, and winner cw, with a given risk limit α.

is recorded in hy[π]. The best ancestor for π is recorded in ba[π], for these singletons

sequences it is always the sequence itself.

We repeatedly find and remove a partial sequence π in F for expansion (Steps 11

and 12). This is the sequence with the (equal) highest ASN. If the best ancestor for

this sequence has an ASN lower than the current lower bound LB (Steps 13 to 16) we

simply add the corresponding hypothesis to audits and remove any sequences in F
which are subsumed by this ancestor (have it as a suffix), and restart the main loop.

Otherwise (Steps 17 to 31) we create a new elimination sequence π′ with c appended

to the start of π ([c] ++π) for each c ∈ C \ π. For a new sequence π′, FindBestAudit
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[c1, c3] [c1, c2, c3]

IRV (c1,c3,{c1,c3}) 0.5% IRV (c1,c3,{c1,c2,c3}) 0.1%

[c3]

22

//

,,

[c2, c3]

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐

**❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

❯❯

INF IRV (c2,c3,{c2,c3}) 13.3%

[c4, c3] [c4, c2, c3]

WO(c1,c4)0.4% WO(c1,c4) 0.4%

[c1, c2]

**❯❯
❯❯

❯❯
❯❯

❯❯
❯❯

❯❯

// [c3, c1, c2] // [c4, c3, c1, c2]

IRV (c1,c2,{c1,c2}) 1% INF INF

◦

DD

//

��✺
✺
✺
✺
✺
✺
✺
✺
✺
✺
✺
✺
✺

[c2]

22

//

))❙❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙
❙ [c4, c2] [c4, c1, c2]

INF WO(c1,c4) 0.4% WO(c3,c4) 25%

[c3, c2] //

,,

[c1, c3, c2]

INF IRV (c1,c3,{c1,c2,c3}) 0.1%

[c4] [c4, c3, c2]

WO(c1,c4) 0.4% WO(c1,c4) 0.4%

Fig. 4: Tree formed by audit-irv for the election of Example 9. The best hypoth-

esis for each sequence is shown below the sequence, together with the ASN. The

selected frontier is shown in bold which requires the audits: IRV (c1, c3, {c1, c3}),
IRV (c1, c3, {c1, c2, c3}), WO(c1, c4), IRV (c1, c2, {c1, c2}).

finds the hypothesis h requiring the least auditing effort to prove. We record (Step 20)

this as the hypothesis for hy[π′] = h. We calculate (Step 21) the best ancestor of π′ by

comparing the ASN for its hypothesis with that of its ancestor.

If the sequence π′ is complete, then we known one of its ancestors (including itself)

must be audited. If the best of these is infinite, we terminate, a full recount is necessary.

Otherwise we add the hypothesis of its best ancestor to audits and remove all sequences

in F which are subsumed by this ancestor. If the sequence is not complete we simply

add it into the set of sequences to be expanded F .

Example 9. Consider an election with ballots [c1, c2, c3] : 5000, [c1, c3, c2] : 5000
[c2, c3, c1] : 5000, [c2, c1, c3] : 1500, [c3, c2, c1] : 5000, [c3, c1, c2] : 500, and [c4, c1] :
5000, and candidates c1 to c4. The initial tallies are: c1: 10000; c2: 6500; c3: 5500; c4:

5000. Candidates c4, c3, and c2 are eliminated, in that order, with winner c1. In a winner

only audit (α = 0.05), we cannot show that c1 beats c3, or that c1 beats c2, as c1’s first

preference tally (of 10000 votes) is less than the total number of ballots that we could

attribute to c2 and c3 (11500 and 10500, respectively). Simultaneous elimination is not

applicable in this instance, as no sequences of candidates can be eliminated in a group.

In an audit of the whole elimination order (as per Section 5.1), the loss of c4 to c1, c2,

and c3 is the most challenging to audit. The ASN for this audit is 25% of all ballots.
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Our audit-irv algorithm, however, finds a set of hypotheses that can be proven with

a maximum ASN of 1% (with α = 0.05), and that consequently rule out all elimina-

tion sequences that end in a candidate other than c1. This audit proves the hypotheses:

c1 beats c2 if c3 and c4 have been eliminated (ASN of 1%); c1 beats c3 if c2 and c4
have been eliminated (ASN 0.5%); c1 beats c4 in a winner only audit (ASN 0.4%); and

that c1 beats c3 if c4 has been eliminated (ASN 0.1%). Figure 4 shows the final state

of the tree explored by audit-irv. We record, under each sequence, the easiest hypothe-

sis that, if proven, disproves an outcome ending in that sequence (alongside its ASN).

The hypotheses underneath each leaf node (excluding duplicates) form our audit. Once

audit-irv creates the node [c4, c3, c1, c2] and finds that it cannot disprove this hypothe-

sis, all descendants of [c1, c2] are pruned from the tree. At this stage, LB is equal to 1%,

and all leaves can be disproved with an ASN ≤ LB and the algorithm terminates. ⊓⊔

6 Computational Results

We have simulated the audits described in Section 5.1 (auditing the elimination order,

EO), Section 5.2 (auditing with simultaneous elimination, SE), and Section 5.3 (winner

only auditing, WO), on 21 US IRV elections held between 2007 and 2014, and on

the IRV elections held across 93 electorates in the 2015 state election in New South

Wales (NSW), Australia. We report the average number of ballot polls (expressed as a

percentage of ballots cast) required to complete each of these audits, for varying risk

limits, in Table 2, alongside the ASN of each audit. Each audit is run 10 times, using

10 different random seeds to control the sequence of ballots polled, and the number of

ballots polled averaged over those runs. The margin of victory (MOV) for each election

is computed using the algorithm of [3].

All experiments have been conducted on a machine with an Intel Xeon Platinum

8176 chip (2.1GHz), and 1TB of RAM.

Table 2 shows that performing a winner only audit can be much easier than auditing

the full elimination order (with or without the use of simultaneous elimination). This is

the case for the 2013 Minneapolis Mayor, 2014 Oakland Mayor, and the 2010 Oakland

D4 City Council elections. In some cases, winner only audits are more challenging (or

not possible) as we seek to show that a candidate c (on just their first preference votes)

could have beaten another c′ (who is given all votes in which they appear before c or

in which they appear, but c does not). Even if c does beat c′ in the true outcome of the

election, this audit may not be able to prove this (see Pierce 2008 County Executive,

Oakland 2012 D5 City Council, and Aspen 2009 Mayor for examples). Auditing with

simultaneous elimination (grouping several eliminated candidates into a single ‘super’

candidate) can be more efficient than auditing each individual elimination (see Berke-

ley 2010 D8 City Council, Berkeley 2012 Mayor, Oakland 2010 Mayor, San Francisco

2007 Mayor, and Sydney NSW). In some instances, however, the tally of the super can-

didate is quite close to that of the next eliminated candidate, resulting in a challenging

audit (see Campbelltown NSW, and Berkeley 2010 D4 City Council).

Table 3 reports the maximum ASN of the audit found by audit-irv for each of the

26 elections examined in Table 2, alongside the ASN and average actual ballot polls

required across 10 simulations of the best alternative audit (elimination order EO, si-
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Table 2: Average ballot polls performed (as a percentage of ballots cast) over 10 simulated audits of 26 IRV elections using a series of

different auditing methods (with an α of 0.01 and 0.05): auditing the elimination order (EO); auditing with simultaneous elimination (SE);

and winner only auditing (WO). Also reported is each elections margin of victory (MOV). The notation ∞ indicates a percentage of ballots

(or ASN) greater than 100%. CC, CE, CAD, and CAS denote City Council, County Executive, County Auditor, and County Assessor.

EO SE WO

α 0.01 α 0.05 α 0.01 α 0.05 α 0.01 α 0.05

Election |C| |B| MOV Polls % ASN % Polls % ASN % Polls % ASN % Polls % ASN % Polls % ASN % Polls % ASN %

Berkeley 2010 D7 CC 4 4,682 364 (7%) 6.7 7.2 3.9 4.7 7.5 7.2 4 4.7 8.7 22.4 4.9 14.7

Berkeley 2010 D8 CC 4 5,333 878 (16%) ∞ ∞ ∞ ∞ 2.9 4.2 2 2.8 1.3 1.8 0.8 1.2

Oakland 2010 D6 CC 4 14,040 2,603 (19%) 4.0 4.4 3 2.9 0.7 0.9 0.5 0.6 0.4 0.5 0.3 0.3

Pierce 2008 CC 4 43,661 2,007 (5%) 3.1 2.2 1.8 1.4 3.1 2.2 1.8 1.4 3.2 4.1 1.8 2.7

Pierce 2008 CAD 4 159,987 8,396 (5%) 0.3 0.5 0.2 0.3 0.3 0.5 0.2 0.3 0.5 1.2 0.3 0.8

Aspen 2009 Mayor 5 2,544 89 (4%) 62.4 71.8 52.7 46.9 62.4 71.8 54.8 46.9 ∞ ∞ ∞ ∞
Berkeley 2010 D1 CC 5 6,426 1,174 (18%) 2.4 1.7 1.6 1.1 2.4 1.7 1.6 1.1 1.1 1.1 0.8 0.7

Berkeley 2010 D4 CC 5 5,708 517 (9%) 7.5 7 6 4.7 28.7 40.7 17.8 26.6 4.9 7.3 3.8 4.8

Oakland 2012 D5 CC 5 13,482 486 (4%) 11.2 10.3 7.3 6.7 15.1 10.3 11.8 6.7 ∞ ∞ ∞ ∞
Pierce 2008 CE 5 312,771 2,027 (1%) 11.6 15.1 7.6 9.8 11.6 15.1 7.6 9.8 ∞ ∞ ∞ ∞
San Leandro 2012 D4 CC 5 28,703 2,332 (8%) 9.3 9.7 6.3 6.3 9.3 9.7 6.3 6.3 1.1 4.4 0.8 2.9

Oakland 2012 D3 CC 7 26,761 386 (1%) ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
Pierce 2008 CAS 7 312,771 1,111 (0.4%) ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
San Leandro 2010 Mayor 7 23,494 116 (0.5%) ∞ ∞ 92.9 ∞ ∞ ∞ 92.9 ∞ ∞ ∞ ∞ ∞
Berkeley 2012 Mayor 8 57,492 8,522 (15%) 94.6 ∞ 77 ∞ 2.3 2.6 1.6 1.7 0.2 0.2 0.1 0.2

Oakland 2010 D4 CC 8 23,884 2,329 (10%) ∞ ∞ 76.4 ∞ ∞ ∞ ∞ ∞ 0.9 3.1 0.6 2

Aspen 2009 CC 11 2,544 35 (1%) ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
Oakland 2010 Mayor 11 122,268 1,013 (1%) ∞ ∞ ∞ ∞ 21.5 23.8 15 15.5 ∞ ∞ ∞ ∞
Oakland 2014 Mayor 11 101,431 10,201 (10%) ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0.8 19.8 0.5 12.9

Continued
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EO SE WO

α 0.01 α 0.05 α 0.01 α 0.05 α 0.01 α 0.05

Election |C| |B| MOV Polls % ASN % Polls % ASN % Polls % ASN % Polls % ASN % Polls % ASN % Polls % ASN %

San Francisco 2007 Mayor 18 149,465 50,837 (34%) ∞ ∞ ∞ ∞ 0.03 0.03 0.02 0.02 0.01 0.01 0.01 0.01

Minneapolis 2013 Mayor 36 79,415 6,949 (9%) ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0.5 3.1 0.3 2.1

NSW 2015 State Election

Albury 5 46,335 5,840 (12.6%) 27.4 33.9 20.0 22.2 0.5 0.8 0.3 0.5 0.2 0.4 0.1 0.2

Auburn 6 43,781 2,265 (5.2%) ∞ ∞ ∞ ∞ 1.3 1.7 0.9 1.1 1.5 4.7 1.0 3.0

Ballina 7 47,454 1,130 (2.4%) 56.6 63.8 23.8 41.7 8.3 5.8 6.7 3.8 ∞ ∞ ∞ ∞
Balmain 7 46,952 1,731 (3.7%) ∞ ∞ ∞ ∞ 83.8 ∞ 65.4 82.0 5.2 31.6 3.7 20.6

Bankstown 6 42,899 5,542 (12.9%) 80.9 ∞ 66.3 72.8 1.2 1.4 0.7 0.9 0.3 0.4 0.2 0.2

Barwon 6 47,707 5,229 (11.0%) 5.4 5.8 3.9 3.8 2.1 1.3 1.6 0.9 0.3 0.5 0.2 0.3

Bathurst 5 48,632 7,267 (14.9%) 30.5 24.2 17.8 15.9 0.5 0.5 0.3 0.3 0.2 0.2 0.2 0.2

Baulkham Hills 5 49,266 10,023 (20.3%) 4.5 4.9 2.7 3.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.1

Bega 5 47,658 3,663 (7.7%) 7.5 8.3 3.9 5.4 4.3 4.6 2.7 3.0 0.7 0.9 0.6 0.6

Blacktown 5 46,262 5,565 (12.0%) 71.2 81.4 42.9 53.1 3.0 3.4 2.4 2.2 0.3 0.4 0.2 0.3

Blue Mountains 6 47,608 3,614 (7.6%) ∞ ∞ ∞ ∞ 1.3 0.8 0.9 0.5 2.0 19.0 1.3 12.4

Cabramatta 5 47,691 7,613 (16.0%) 16.1 14.0 9.8 9.2 0.5 0.5 0.3 0.3 0.2 0.2 0.1 0.1

Camden 5 48,152 8,217 (17.1%) ∞ ∞ 95.5 ∞ 0.4 0.4 0.3 0.2 0.2 0.2 0.1 0.1

Campbelltown 5 45,124 3,096 (6.9%) 13.6 12.2 8.4 8.0 ∞ ∞ ∞ ∞ 1.3 1.7 0.9 1.1

Canterbury 5 47,631 6,610 (13.9%) 68.3 ∞ 49.3 65.3 ∞ ∞ ∞ ∞ 0.2 0.4 0.1 0.3

Castle Hill 5 48,092 13,160 (27.4%) 83.9 ∞ 65.8 74.3 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0

Cessnock 5 45,822 9,187 (20.0%) 96.4 ∞ 85.5 ∞ 0.2 0.3 0.1 0.2 0.1 0.1 0.1 0.1

Charlestown 7 48,919 5,532 (11.3%) 44.3 41.9 34.9 27.4 1.4 1.3 1.1 0.8 0.3 0.6 0.2 0.4

Clarence 8 47,181 4,069 (8.6%) ∞ ∞ ∞ ∞ ∞ ∞ 93.4 ∞ 0.6 0.8 0.4 0.5

Coffs Harbour 5 45,162 5,824 (12.9%) 1.6 1.7 0.9 1.1 2.5 2.4 1.8 1.6 0.2 0.4 0.2 0.2

Coogee 5 46,322 1,243 (2.7%) 37.1 45.7 23.5 30.0 5.2 6.4 3.1 4.2 6.2 16.4 4.3 10.7

Cootamundra 5 47,160 9,247 (19.6%) ∞ ∞ ∞ ∞ 0.3 0.2 0.2 0.1 0.1 0.1 0.1 0.1

Cronulla 5 50,333 9,674 (19.2%) 1.6 1.6 1.1 1.1 0.3 0.3 0.2 0.2 0.1 0.1 0.1 0.1

Continued
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EO SE WO

α 0.01 α 0.05 α 0.01 α 0.05 α 0.01 α 0.05

Election |C| |B| MOV Polls % ASN % Polls % ASN % Polls % ASN % Polls % ASN % Polls % ASN % Polls % ASN %

Davidson 5 49,147 12,960 (26.4%) ∞ ∞ ∞ ∞ 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.0

Drummoyne 6 46,818 8,099 (17.3%) ∞ ∞ 99.7 ∞ 0.4 0.4 0.2 0.3 0.1 0.2 0.1 0.1

Dubbo 7 46,582 8,680 (18.6%) ∞ ∞ 93.7 ∞ 0.6 0.5 0.5 0.3 0.2 0.2 0.1 0.1

East Hills 5 47,449 189 (0.4%) 95.8 ∞ 79.5 ∞ 95.8 ∞ 79.5 ∞ ∞ ∞ ∞ ∞
Epping 6 49,532 7,156 (14.4%) 4.1 2.6 3.2 1.7 1.8 2.5 1.4 1.6 0.2 0.3 0.1 0.2

Fairfield 5 45,921 6,998 (15.2%) 9.3 7.0 7.0 4.6 4.1 3.7 3.5 2.4 0.2 0.2 0.1 0.2

Gosford 6 48,259 102 (0.2%) ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
Goulburn 6 48,663 2,945 (6.1%) 8.4 6.9 5.8 4.6 1.6 1.2 1.3 0.8 1.6 2.0 1.2 1.3

Granville 6 45,212 837 (1.9%) 69.8 97.3 56.7 63.6 11.3 13.1 7.5 8.5 ∞ ∞ ∞ ∞
Hawkesbury 8 46,856 7,311 (15.6%) 55.3 38.5 44.5 25.2 1.3 1.1 1.0 0.7 0.2 0.2 0.1 0.1

Heathcote 6 51,128 3,560 (7.0%) 27.8 27.8 16.0 18.2 0.6 0.9 0.4 0.6 0.5 1.3 0.3 0.9

Heffron 5 46,367 5,824 (12.6%) 6.9 7.8 4.7 5.2 7.5 8.1 4.5 5.3 0.3 1.0 0.2 0.7

Holsworthy 6 47,126 2,902 (6.2%) ∞ ∞ 95.7 ∞ 1.0 1.2 0.6 0.8 1.1 1.9 0.6 1.2

Hornsby 6 49,834 8,577 (17.2%) 4.4 3.3 3.0 2.2 0.8 0.7 0.5 0.4 0.2 0.2 0.1 0.1

Keira 5 50,599 8,164 (16.1%) 3.8 3.9 1.9 2.6 5.7 4.6 3.7 3.0 0.2 0.3 0.1 0.2

Kiama 5 47,686 3,856 (8.1%) 10.8 9.7 7.4 6.4 16.0 18.5 12.1 12.0 0.7 1.0 0.4 0.7

Kogarah 6 46,421 2,782 (6.0%) 20.1 14.5 14.4 9.5 1.3 1.2 0.8 0.8 1.1 2.8 0.8 1.8

Ku-ring-gai 5 48,436 10,061 (20.8%) 92.1 ∞ 66.1 ∞ 0.3 0.3 0.2 0.2 0.1 0.1 0.1 0.1

Lake Macquarie 7 47,698 4,253 (8.9%) 27.7 22.8 14.5 15.0 6.9 7.8 3.2 5.1 0.7 1.6 0.5 1.0

Lakemba 5 44,728 8,235 (18.4%) 2.1 1.5 1.7 1.0 1.1 1.0 0.7 0.6 0.1 0.2 0.1 0.1

Lane Cove 6 48,622 7,740 (15.9%) 16.5 18.1 9.3 11.9 0.6 0.9 0.3 0.6 0.1 0.2 0.1 0.1

Lismore 6 47,046 209 (0.4%) 75.7 ∞ 60.5 86.8 75.7 ∞ 60.5 86.8 ∞ ∞ ∞ ∞
Liverpool 5 45,291 8,495 (18.8%) 67.1 92.9 51.9 60.6 0.6 0.5 0.4 0.3 0.1 0.2 0.1 0.1

Londonderry 5 45,928 3,736 (8.1%) ∞ ∞ ∞ ∞ 66.2 69.7 39.7 45.4 0.6 1.1 0.4 0.7

Macq. Fields 7 47,183 3,519 (7.5%) ∞ ∞ 91.4 ∞ 52.6 74.8 41.7 48.7 0.7 1.2 0.5 0.8

Maitland 6 47,826 4,012 (8.4%) 84.7 81.7 59.1 53.2 84.7 81.7 59.1 53.2 0.7 0.9 0.4 0.6
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α 0.01 α 0.05 α 0.01 α 0.05 α 0.01 α 0.05

Election |C| |B| MOV Polls % ASN % Polls % ASN % Polls % ASN % Polls % ASN % Polls % ASN % Polls % ASN %

Manly 5 47,287 10,806 (22.9%) 77.6 90.6 55.9 59.3 0.1 0.2 0.1 0.1 0.1 0.1 0.1 0.1

Maroubra 5 46,492 4,717 (10.1%) 27.2 24.5 16.4 16.1 10.6 8.7 6.0 5.7 0.4 0.7 0.3 0.5

Miranda 6 49,454 5,881 (11.9%) 13.9 16.0 10.4 10.5 1.6 1.7 0.8 1.1 0.3 0.4 0.1 0.2

Monaro 5 46,202 1,122 (2.4%) 97.3 ∞ 69.4 ∞ 7.1 8.2 4.7 5.3 9.1 19.2 5.6 12.5

Mount Druitt 5 44,948 6,343 (14.1%) ∞ ∞ 99.3 ∞ 1.2 1.2 0.7 0.8 0.2 0.3 0.1 0.2

Mulgoa 5 48,257 4,336 (9.0%) 94.8 ∞ 85.2 ∞ 4.0 4.5 3.0 2.9 0.6 0.7 0.5 0.5

Murray 8 46,387 8,574 (18.5%) 90.1 ∞ 71.0 ∞ 1.4 1.7 1.1 1.1 0.1 0.1 0.1 0.1

Myall Lakes 6 48,252 3,627 (7.5%) 4.3 3.8 3.1 2.5 10.7 13.4 8.6 8.8 0.8 1.2 0.6 0.8

Newcastle 7 48,136 3,132 (6.5%) ∞ ∞ ∞ ∞ 1.3 1.0 1.0 0.7 2.6 23.9 1.8 15.5

Newtown 7 45,392 3,536 (7.8%) 93.8 ∞ 74.7 ∞ 2.0 2.2 1.3 1.4 0.8 1.3 0.5 0.8

North Shore 7 46,247 8,517 (18.4%) ∞ ∞ ∞ ∞ 0.8 0.8 0.6 0.5 0.1 0.2 0.1 0.1

Northern Tablelands 6 48,340 11,969 (24.8%) 79.7 ∞ 51.1 86.9 0.2 0.2 0.1 0.1 0.1 0.1 0.0 0.1

Oatley 5 48,119 3,006 (6.2%) 5.8 6.0 3.2 3.9 30.5 36.5 23.8 23.8 1.1 1.7 0.7 1.1

Orange 5 48,784 10,048 (20.6%) 12.6 10.8 9.3 7.1 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1

Oxley 5 46,514 4,591 (9.9%) 70.1 62.0 45.2 40.5 5.4 6.9 3.9 4.5 0.6 0.6 0.4 0.4

Parramatta 7 47,447 5,509 (11.6%) ∞ ∞ ∞ ∞ 3.5 3.3 1.5 2.2 0.3 0.4 0.2 0.3

Penrith 8 47,577 2,576 (5.4%) 34.7 34.0 21.8 22.4 1.6 1.4 1.3 0.9 1.6 2.8 1.1 1.8

Pittwater 5 48,345 11,430 (23.6%) 73.7 83.3 45.4 54.5 0.1 0.2 0.1 0.1 0.1 0.1 0.0 0.1

Port Macquarie 5 49,231 8,715 (17.7%) 3.5 4.3 2.1 2.8 0.4 0.3 0.3 0.2 0.2 0.2 0.1 0.1

Port Stephens 5 47,037 2,088 (4.4%) 73.4 68.6 49.3 44.8 3.4 2.4 2.4 1.5 3.5 8.7 2.3 5.7

Prospect 5 47,195 1,458 (3.1%) ∞ ∞ ∞ ∞ 5.3 4.7 4.0 3.1 7.0 30.0 4.9 19.5

Riverstone 5 46,945 5,324 (11.3%) ∞ ∞ ∞ ∞ 2.1 1.8 1.0 1.2 0.3 0.4 0.2 0.3

Rockdale 6 46,240 2,004 (4.3%) 68.7 84.1 38.6 54.9 2.5 2.4 1.8 1.6 3.1 8.2 2.2 5.4

Ryde 5 48,286 5,153 (10.7%) 1.8 1.7 1.1 1.2 4.8 3.4 3.2 2.2 0.5 0.5 0.4 0.3

Seven Hills 7 47,874 3,774 (7.9%) 83.7 86.1 51.6 56.2 0.8 0.7 0.5 0.5 0.7 1.1 0.5 0.7

Shellharbour 7 50,995 7,519 (14.7%) 88.3 ∞ 72.8 91.1 6.4 6.0 4.4 3.9 0.2 0.3 0.1 0.2
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Election |C| |B| MOV Polls % ASN % Polls % ASN % Polls % ASN % Polls % ASN % Polls % ASN % Polls % ASN %

South Coast 5 45,788 4,054 (8.9%) 8.2 7.1 5.9 4.7 9.2 8.1 6.9 5.3 0.8 0.8 0.5 0.5

Strathfield 5 46,559 770 (1.7%) 17.8 16.8 12.2 11.0 16.9 16.8 11.3 11.0 ∞ ∞ ∞ ∞
Summer Hill 7 47,073 3,854 (8.2%) ∞ ∞ ∞ ∞ 6.7 7.3 4.4 4.8 0.8 0.9 0.5 0.6

Swansea 8 48,200 4,974 (10.3%) ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 0.4 0.6 0.2 0.4

Sydney 8 42,747 2,864 (6.7%) ∞ ∞ ∞ ∞ 3.3 4.6 2.2 3.0 1.6 6.9 1.0 4.5

Tamworth 7 49,004 4,643 (9.5%) ∞ ∞ ∞ ∞ 1.7 1.8 1.0 1.2 0.4 0.6 0.3 0.4

Terrigal 5 48,871 4,053 (8.3%) 5.5 5.0 3.2 3.3 10.3 15.2 7.0 9.9 0.4 0.9 0.2 0.6

The Entrance 5 47,953 171 (0.4%) ∞ ∞ 97.5 ∞ ∞ ∞ 97.5 ∞ ∞ ∞ ∞ ∞
Tweed 5 44,185 1,291 (2.9%) 7.2 8.6 4.7 5.7 3.9 5.6 2.7 3.7 4.4 10.5 2.8 6.8

Upper Hunter 6 47,296 866 (1.8%) 19.0 24.3 13.2 15.9 14.8 12.1 8.9 7.9 ∞ ∞ ∞ ∞
Vaucluse 5 46,145 9,783 (21.2%) 5.3 5.3 3.8 3.5 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1

Wagga Wagga 6 46,610 5,475 (11.7%) 4.3 4.2 3.4 2.8 4.3 3.5 2.7 2.3 0.6 0.4 0.3 0.3

Wakehurst 6 47,894 10,770 (22.5%) 13.1 12.0 9.7 7.9 0.2 0.3 0.2 0.2 0.1 0.1 0.0 0.1

Wallsend 5 49,631 9,418 (19.0%) 19.3 21.2 14.9 13.9 0.5 0.7 0.3 0.4 0.1 0.2 0.1 0.1

Willoughby 6 47,302 10,160 (21.5%) ∞ ∞ ∞ ∞ 0.3 0.3 0.3 0.2 0.1 0.1 0.1 0.1

Wollondilly 6 47,182 7,401 (15.7%) 21.9 25.8 14.9 16.9 0.8 0.8 0.4 0.5 0.1 0.2 0.1 0.1

Wollongong 7 49,702 3,367 (6.8%) ∞ ∞ 87.4 ∞ ∞ ∞ 87.4 ∞ 0.8 1.6 0.6 1.1

Wyong 7 46,070 3,720 (8.1%) ∞ ∞ 93.9 ∞ 40.4 37.9 24.8 24.7 0.7 1.1 0.5 0.7
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multaneous elimination SE, and winner only WO). Also reported is the runtime (in

seconds) of audit-irv and the number nodes expanded (note that this does not include

the creation of nodes forming the initial queue). Our audit-irv algorithm finds an audit

(a collection of facts to prove by simultaneous applications of BRAVO) with an ASN

that is equal to or lower than the ASN of the best alternative. The Oakland 2012 D3

City Council and Pierce 2008 County Assessor elections are particularly interesting.

We are able to find a method of auditing the outcome of these elections that is signif-

icantly easier than the EO, SE, and WO methods, which suggest a full recount. The

ASN is just an estimate, however, and the actual auditing effort required may deviate

from this. For the Balmain NSW election, for example, the ASN of the best alternative

audit (WO) is 20.6%. The average actual number of ballot polls required is 3.7% of

the total, across 10 simulations of the audit. The ASN and actual audit effort required

for the audit-irv audit in this instance is 1.9% and 3.2%, respectively. For the Oakland

2014 Mayor election, the ASN of the best alternative audit (WO) is 12.9% while the

average actual auditing effort required is 0.5%. In contrast, the ASN of the audit found

by audit-irv is 0.1% while the average actual effort required is 5.4%.

Table 3: ASN, and average ballot polls required across 10 simulations, of audit found by

audit-irv for 26 IRV elections, alongside best known alternative (EO, SE, or WO) given

a risk limit α of 0.05. Notation ∞ indicates a percentage of ballots (or ASN) greater

than 100%. ‘Exp’ denotes the number of node expansions performed by audit-irv.

Best Alt. audit-irv (α = 0.05)

Election Audit Polls % ASN % Polls % ASN % Time (s) Exp.

Berkeley 2010 D7 CC EO 3.9 4.7 5.4 4.7 0.003 3

Berkeley 2010 D8 CC WO 0.8 1.2 0.9 0.9 0.01 6

Oakland 2010 D6 CC WO 0.3 0.3 0.3 0.3 0.01 3

Pierce 2008 CC EO,SE 1.8 1.4 1.5 1.4 0.03 3

Pierce 2008 CAD EO,SE 0.2 0.3 0.3 0.3 0.1 3

Aspen 2009 Mayor EO 52.7 46.9 28.1 46.9 0.01 9

Berkeley 2010 D1 CC WO 0.8 0.7 0.6 0.6 0.01 5

Berkeley 2010 D4 CC WO 3.8 4.8 1.6 2.7 0.01 5

Oakland 2012 D5 CC EO 7.3 6.7 5.2 6.7 0.02 5

Pierce 2008 CE EO,SE 7.6 9.8 13.9 9.8 0.9 10

San Leandro 2012 D4 CC WO 0.8 2.9 0.8 0.6 0.06 8

Oakland 2012 D3 CC – ∞ ∞ 14.2 13.1 0.2 20

Pierce 2008 CAS – ∞ ∞ 17 22.7 3.4 28

San Leandro 2010 Mayor EO,SE 92.9 ∞ 87.6 ∞ 0.08 8

Berkeley 2012 Mayor WO 0.1 0.2 0.1 0.1 0.3 14

Oakland 2010 D4 CC WO 0.6 2 0.6 0.5 0.3 15

Aspen 2009 CC – ∞ ∞ ∞ ∞ 0.4 172

Oakland 2010 Mayor SE 15 15.5 15.3 15.5 2.7 44

Oakland 2014 Mayor WO 0.5 12.9 5.4 0.1 106 606

San Francisco 2007 Mayor WO 0.01 0.01 0.01 0.01 23 130

Continued
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Best Alt. audit-irv (α = 0.05)

Election Audit Polls % ASN % Polls % ASN % Time (s) Exp.

Minneapolis 2013 Mayor WO 0.3 2.1 0.2 0.2 10.8 43

Albury WO 0.1 0.2 0.2 0.2 0.06 4

Auburn SE 0.9 1.1 1.3 1.1 0.09 6

Ballina SE 6.7 3.8 4.9 3.8 0.27 12

Balmain WO 3.7 20.6 3.2 1.9 0.17 8

Bankstown WO 0.2 0.2 0.3 0.2 0.08 5

Barwon WO 0.2 0.3 0.2 0.2 0.10 5

Bathurst WO 0.2 0.2 0.2 0.1 0.07 5

Baulkham Hills WO 0.1 0.1 0.1 0.1 0.06 4

Bega WO 0.6 0.6 0.7 0.5 0.06 4

Blacktown WO 0.2 0.3 0.3 0.2 0.06 4

Blue Mountains SE 0.9 0.5 0.5 0.5 0.12 6

Cabramatta WO 0.1 0.1 0.1 0.1 0.06 4

Camden WO 0.1 0.1 0.1 0.1 0.05 4

Campbelltown WO 0.9 1.1 0.8 0.7 0.07 5

Canterbury WO 0.1 0.3 0.2 0.1 0.07 4

Castle Hill WO 0.0 0.0 0.0 0.0 0.05 4

Cessnock WO 0.1 0.1 0.1 0.1 0.05 4

Charlestown WO 0.2 0.4 0.3 0.2 0.15 7

Clarence WO 0.4 0.5 0.6 0.4 0.60 34

Coffs Harbour WO 0.2 0.2 0.2 0.2 0.06 4

Coogee SE 3.1 4.2 4.6 4.2 0.06 4

Cootamundra WO 0.1 0.1 0.1 0.1 0.07 5

Cronulla WO 0.1 0.1 0.1 0.1 0.07 5

Davidson WO 0.0 0.0 0.0 0.0 0.10 7

Drummoyne WO 0.1 0.1 0.2 0.1 0.08 5

Dubbo WO 0.1 0.1 0.1 0.1 0.24 14

East Hills EO,SE 79.5 ∞ 87.0 ∞ 0.08 8

Epping WO 0.1 0.2 0.2 0.1 0.11 6

Fairfield WO 0.1 0.2 0.2 0.1 0.06 5

Gosford – ∞ ∞ ∞ ∞ 0.12 6

Goulburn SE 1.3 0.8 0.9 0.8 0.15 11

Granville SE 7.5 8.5 12.5 8.5 0.12 9

Hawkesbury WO 0.1 0.1 0.2 0.1 0.20 9

Heathcote SE 0.4 0.6 0.6 0.6 0.10 5

Heffron WO 0.2 0.7 0.3 0.2 0.10 7

Holsworthy SE 0.6 0.8 1.1 0.8 0.11 7

Hornsby WO 0.1 0.1 0.1 0.1 0.11 6

Keira WO 0.1 0.2 0.1 0.1 0.07 4

Kiama WO 0.4 0.7 0.4 0.5 0.06 4

Kogarah SE 0.8 0.8 1.0 0.8 0.17 15

Ku-ring-gai WO 0.1 0.1 0.1 0.1 0.07 5

Lake Macquarie WO 0.5 1.0 0.5 0.3 0.17 8

Continued
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Best Alt. audit-irv (α = 0.05)

Election Audit Polls % ASN % Polls % ASN % Time (s) Exp.

Lakemba WO 0.1 0.1 0.1 0.1 0.06 4

Lane Cove WO 0.1 0.1 0.2 0.1 0.10 6

Lismore EO,SE 60.5 86.8 76.1 86.8 0.12 7

Liverpool WO 0.1 0.1 0.1 0.1 0.05 4

Londonderry WO 0.4 0.7 0.4 0.5 0.07 5

Macq. Fields WO 0.5 0.8 0.6 0.5 0.19 10

Maitland WO 0.4 0.6 0.5 0.3 0.17 9

Manly WO 0.1 0.1 0.1 0.1 0.05 4

Maroubra WO 0.3 0.5 0.3 0.3 0.06 5

Miranda WO 0.1 0.2 0.2 0.2 0.13 8

Monaro SE 4.7 5.3 4.8 5.3 0.08 7

Mount Druitt WO 0.1 0.2 0.4 0.2 0.05 4

Mulgoa WO 0.5 0.5 0.3 0.4 0.06 5

Murray WO 0.1 0.1 0.1 0.1 0.26 14

Myall Lakes WO 0.6 0.8 0.4 0.5 0.11 6

Newcastle SE 1.0 0.7 0.7 0.7 0.16 8

Newtown WO 0.5 0.8 0.5 0.5 0.18 9

North Shore WO 0.1 0.1 0.2 0.1 0.29 15

Northern Tablelands WO 0.0 0.1 0.1 0.0 0.10 6

Oatley WO 0.7 1.1 0.7 0.8 0.07 6

Orange WO 0.1 0.1 0.1 0.1 0.07 5

Oxley WO 0.4 0.4 0.4 0.3 0.06 4

Parramatta WO 0.2 0.3 0.2 0.2 0.16 8

Penrith SE 1.3 0.9 1.2 0.9 0.22 11

Pittwater WO 0.0 0.1 0.0 0.1 0.05 4

Port Macquarie wO 0.1 0.1 0.1 0.1 0.06 4

Port Stephens SE 2.4 1.5 1.5 1.5 0.06 4

Prospect SE 4.0 3.1 3.0 3.1 0.07 5

Riverstone WO 0.2 0.3 0.2 0.2 0.06 5

Rockdale SE 1.8 1.6 1.5 1.6 0.10 7

Ryde WO 0.4 0.3 0.2 0.3 0.06 4

Seven Hills SE 0.5 0.5 0.6 0.5 0.33 22

Shellharbour WO 0.1 0.2 0.2 0.1 0.21 11

South Coast WO 0.5 0.5 0.4 0.4 0.05 4

Strathfield SE 11.3 11.0 17.7 11.0 0.08 7

Summer Hill WO 0.5 0.6 0.4 0.4 0.17 8

Swansea WO 0.2 0.4 0.3 0.2 0.19 9

Sydney SE 2.2 3.0 1.3 0.7 0.22 11

Tamworth WO 0.3 0.4 0.3 0.3 0.23 13

Terrigal WO 0.2 0.6 0.7 0.4 0.06 4

The Entrance EO,SE 97.5 ∞ 96.2 ∞ 0.07 5

Tweed SE 2.7 3.7 3.3 3.7 0.06 4

Upper Hunter SE 8.9 7.9 8.8 7.9 0.09 5

Continued
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Best Alt. audit-irv (α = 0.05)

Election Audit Polls % ASN % Polls % ASN % Time (s) Exp.

Vaucluse WO 0.1 0.1 0.1 0.1 0.05 4

Wagga Wagga WO 0.3 0.3 0.2 0.2 0.12 7

Wakehurst WO 0.0 0.1 0.1 0.1 0.09 5

Wallsend WO 0.1 0.1 0.1 0.1 0.06 4

Willoughby WO 0.1 0.1 0.1 0.1 0.14 9

Wollondilly WO 0.1 0.1 0.2 0.1 0.11 7

Wollongong WO 0.6 1.1 0.5 0.5 0.25 11

Wyong WO 0.5 0.7 0.6 0.5 0.19 11

7 Conclusion

This paper provides a comprehensive, practical method of conducting risk-limiting

ballot-polling audits for IRV. We use Stark’s BRAVO as a black box, and show how to

combine facts together to audit an IRV outcome. Most can be audited very efficiently.

This algorithm dominates other approaches to auditing IRV elections. Over a collection

of parliamentary seats or council races, most outcomes could be confirmed quickly with

very little effort, while others would require some more careful auditing, and those with

very small margins could be identified immediately and sent for a full manual recount.
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