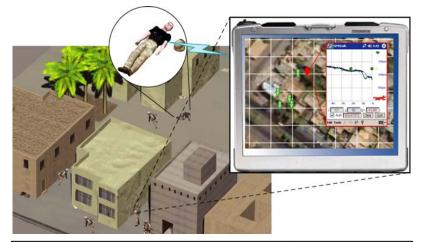


CONNECTION STATUS		RECEIVER INFORMATION		PHYSIOLOGY DATA		SENSOR DATA MESSAGE	
USB		Receiver ID	50	Heart Rate	75	Source	Internal USB Receiver
BALSM Receiver Unit		Firmware Version	3.500	Resp Rate Sp 02 Level	13	Filename	0
		Comm Port	N/A		100		
				Sensor Temp	28.0		Load Start Halt
PAIRING STATUS		PULSE OX INFORMA		Body Temp			
Pulse Oximeter		Sensar ID	3001			RECORD ME	SSAGE
Cupsule 1		Firmware Version	3.040	Perfusion Index	2	BRU	2009_0609_152042_eaw.txt Time
Capsule 2		Battery-On (Hours)	0	Health State m	amal	PPG	2009_0609_152042_ppg.txt Time
SENSOR STATUS		CAPSULE INFORMATION		ACTIVITY DAT.	A	Pulse Ox	2009_0609_152042_epo2.cev
Pulse Oximeter		Capsule 1 ID		Posture st	anding	Capsule	2009 0609 152042 cap.csv
Capsule 1	Г	Capsule 1 Temp		Motility la	w		
Capsule 2	Г	Capcule 2 ID		Frequency la	w	CeT	2009_0609_152042_CoT.tet
		Capsule 2 Temp	_	Ambulation			Record Stop
MESSAGE DISPLAT	1	a 🔲 Show PPG Dat					Show All

BALSM Battlefield Automatic Life Status Monitor

A Presentation at the WPI Workshop on Precision Indoor Personnel Location and Tracking for Emergency Responders

August 3rd, 2009


Peter Neumann QinetiQ North America – Technology Solutions Group

BALSM Project Objectives (May '07)

- Development and fielding of a product to remotely monitor physiological signs for the purpose of triage, rescue or recovery and provide a health status history over time for each member of a Special Forces team.
 - Wearable device
 - Communicate individual's physiologic status through existing data links
 - Wireless sensors should be battery powered
 - Receiver for sensors powered by ruggedized PC through USB connection

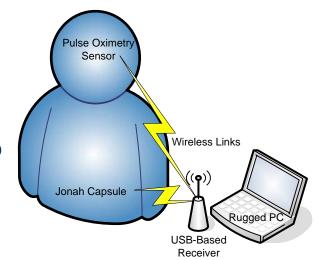
Technology Solutions Group

What Physiological Parameters Should Be Measured?

- How useful (valuable) is the sensor data to PJ's?
 - Feedback in call with PJ's in June 2007 ranked physiological parameters in the following order of importance:
 - 1. Heart rate
 - 2. Respiration rate
 - 3. Blood pressure
 - 4. Pulse oximetry level
 - 5. Core body temperature
 - 6. Raw ECG waveform

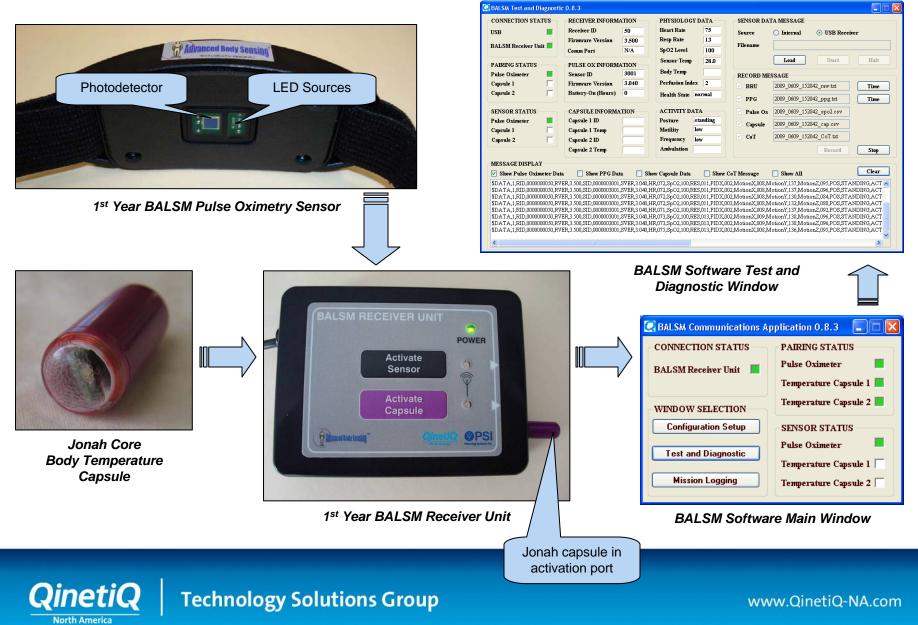
Are the PJ's trained to use the provided sensor data?

 PJ's are trained to utilize all six items listed above but do not normally carry the drugs needed to treat issues that would be diagnosed with an ECG waveform

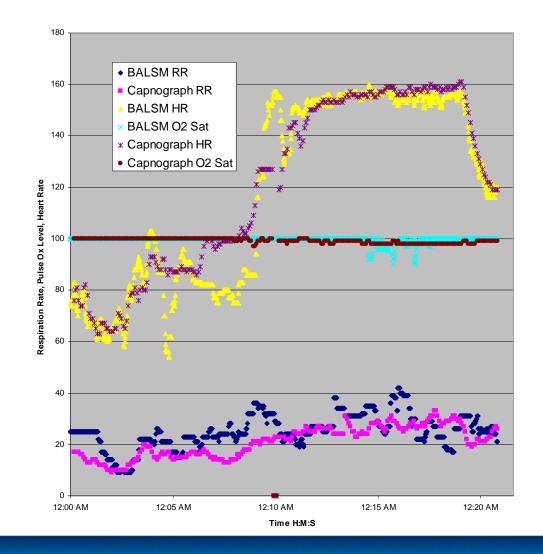


www.QinetiQ-NA.com

Slide 3 - 7/29/2009


BALSM 1st Year Design

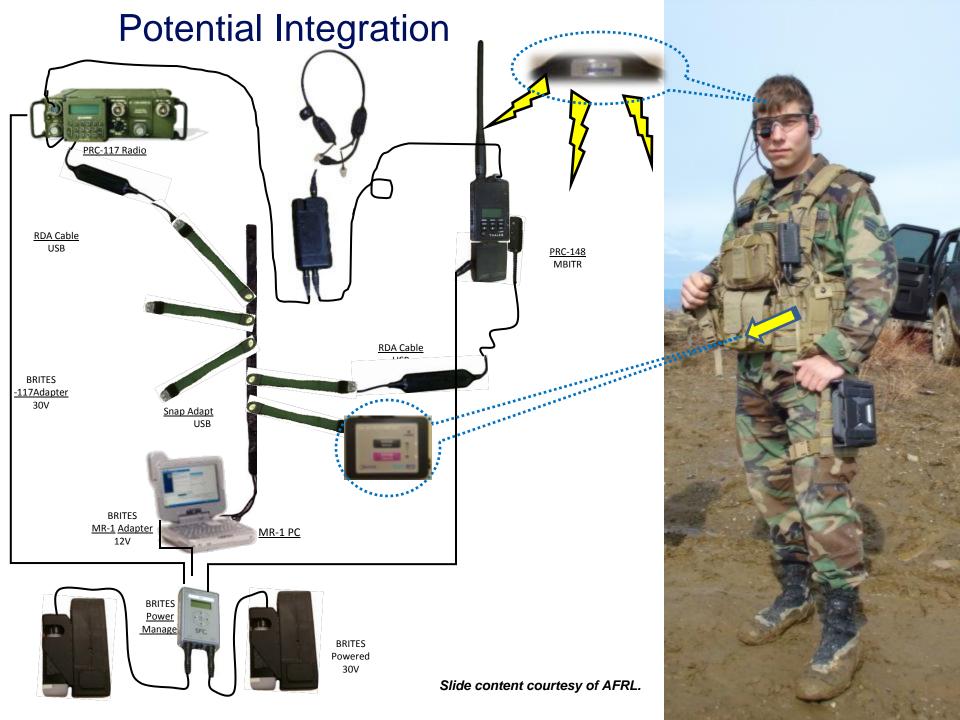
- Physiologic Sensors
 - Forehead worn pulse oximetry sensor (902 928 MHz ISM band)
 - SpO2 level
 - Heart rate and respiration rate derived from pulse oximetry (PPG) waveform
 - Activity level, ambulation, posture and frequency from three-axis accelerometer
 - Ingestible core body temperature capsule (40.66 40.70 MHz ISM band)
- BALSM receiver unit (BRU)
- BALSM software on PC platform
 - CoT physiological messages published by BALSM software to UDP data socket for transmission over PRC-148 (intra-squad) radio
 - GPS location handled by independent GPS receiver on CCT



BALSM 1st Year Sensors, Receiver and Software

BALSM 1st Year System – Treadmill Testing

- Treadmill testing with BALSM system and capnograph (with finger-tip pulse ox sensor) produced elevated heart rate and respiration rate with test subjects
 - Heart rate and pulse ox levels compare favorably
 - Respiration rate from BALSM system does not track the capnograph respiration rate data as closely
 - Respiration rate accuracy varies between test subject



Technology Solutions Group

www.QinetiQ-NA.com

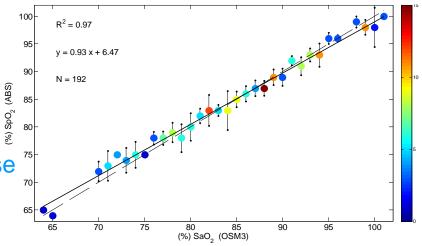
Slide 6 - 7/29/2009

Mock-up of Vest Integration of BALSM Receiver

Technology Solutions Group

www.QinetiQ-NA.com

Slide 8 - 7/29/2009


BALSM 2nd Year System Improvements

- Dual-capsule support
 - Allows operator to ingest 2nd capsule and maintain continuous monitoring of core body temperature
- Clinical calibration of BALSM pulse oximetry sensor
 - Conducted in Nov '08 at UCSF* by Advanced Body Sensing
- Change to USBXpress from VCP for interface between BRU and PC
- Investigation of rechargeable battery option for BALSM pulse ox sensor
- End-user friendly BRU and BALSM pulse ox sensor firmware upgrade capability
- BALSM software upgrades

QinetiQ

Photograph of the calibration study showing the BALSM Receiver Unit.

^{*} University of California San Francisco

Technology Solutions Group

BALSM Pulse Oximetry Sensor Redesign

- Sponsor guidance to redesign BALSM pulse ox sensor so that it can be integrated into the brow pad of a helmet (ACH helmet)
 - Criteria for sensor was a maximum thickness of 10 mm (prefer 5 mm)
 - 2nd year alpha prototype sensor is ~ 8.5 mm thick with pad
 - Rechargeable battery integrated into sensor
 - Sensor uses a Li-Ion rechargeable pouch battery
 - Rechargeable battery with 24 hour endurance
 - ✓ Testing has shown 2nd year sensor battery life of 40-60 hours
 - Sensor recharging handled by BALSM Receiver Unit (BRU) preferred
 - × 2nd year systems have a separate USB powered recharger/programmer
 - Idea for optical sensor to be vertically off-center to allow for sensor to be worn inverted allowing some additional flexibility in sensor location
 - 2nd year alpha prototype has vertically offset optical sensor which allow for about 1 cm of adjustment in vertical location

BALSM Pulse Oximetry Sensor Redesign (cont'd)

BALSM 2nd Year Pulse Ox Sensor Prototype - Sensor Side

Charger/Programmer Connector Cover Removed

BALSM 2nd Year Pulse Ox Sensor Prototype - Top Side

Technology Solutions Group

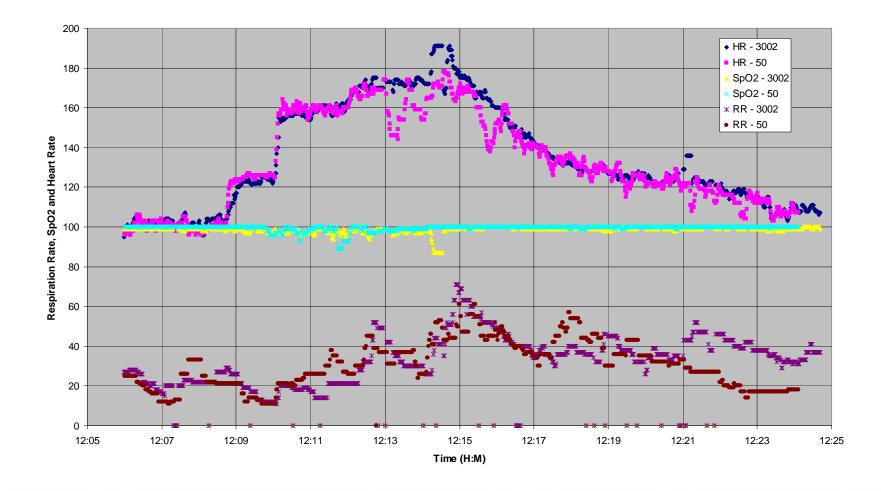
www.QinetiQ-NA.com

Slide 11 - 7/29/2009

Comparison Between 1st and 2nd Year Sensors

 Data from 1st and 2nd year sensors worn by a single test subject were recorded on separate PCs through separate BRUs

Testing with both 1st and 2nd year BALSM pulse ox sensors.



Technology Solutions Group

www.QinetiQ-NA.com

Slide 12 - 7/29/2009

Comparison Between 1st and 2nd Year Sensors

Technology Solutions Group

www.QinetiQ-NA.com

Slide 13 - 7/29/2009

Brow Pad Integration of 2nd Year BALSM Sensor

- Custom brow pad for ACH helmet fabricated to accommodate 2nd year BALSM pulse oximetry sensor
- Testing with custom brow pad begun in last week of July to determine effectiveness of sensor in this mounting configuration

Photo of custom brow pad with BALSM 2nd year pulse oximetry sensor model.

Technology Solutions Group

www.QinetiQ-NA.com

Slide 14 - 7/29/2009

Potential Future Hardware/Software Upgrades to the BALSM System

- Hardware Upgrades
 - Integration of a higher G accelerometer could allow for detection of TBI (Traumatic Brain Injury) events
 - Potential to replace ingestible core body temperature with a helmet mounted thermistor to measure temperature at the temporal artery
 - Would remove the per use cost associated with the capsule and significantly reduce the receiver size
 - Significant questions in the literature about the accuracy of such approaches
- Software/Firmware Upgrades
 - Hypovolemia (low blood volume) detection through the PPG waveform
 - LBNP (Lower Body Negative Pressure) testing can simulate hypovolemia in a test subject and allow the effectiveness of the approach to be determined
 - Integration of hypovolemia detection algorithm into sensor firmware would be the eventual goal
 - Improvements to health state algorithm incorporating fuzzy logic

Non-DOD Applications of BALSM Project Technology

http://www.wpi.edu/Academics/Research/2008/seconds.html

Technology Solutions Group

www.QinetiQ-NA.com

Slide 16 - 7/29/2009

Contact Information for BALSM Project

Peter Neumann BALSM Program Manager for QNA-TSG

QinetiQ North America Technology Solutions Group 7658 Paddock View Ct. Clarksville, OH 45113 Phone: 513-228-0073 Cell: 513-331-0984 Email: peter.neumann@plansys.com

Technology Solutions Group