
	

	

		

Barclays	Core	Prime	Brokerage	QA	Automated	
GUI	Testing	Migration	Analysis	

Project	#	KMS	1603	
A	Major	Qualifying	Project	Report	

Submitted	to	the	faculty	of		
Worcester	Polytechnic	Institute	

In	partial	fulfillment	of	the	requirements	of	the		
Degree	of	Bachelor	of	Science	

Submitted	on	17th	December	2016	
	
In	Cooperation	with:	

Barclays	PLC	
Submitted	by:	

Didi	Dai,	Industrial	Engineering	and	Management	Information	System	
Jonathan	Ho	Wu,	Electrical	and	Computer	Engineering	

	
Submitted	to:	

On-site	Liaison:	
Michael	Irving	
Bharat	Rao	

Karlene	Wright	
	

Project	Advisors:	
Professor	Michael	J.	Ciaraldi,	Department	of	Computer	Science	

Professor	Xinming	Huang,	Department	of	Electrical	and	Computer	Engineering	
Professor	Renata	Konrad,	Foisie	School	of	Business	

Professor	Kevin	M.	Sweeney,	Foisie	School	of	Business	
	

	

	 i	|	Dai,	Ho	Wu	

Abstract		

Sponsored	 by	 the	 Core	 Prime	 Brokerage	 (PB)	 Quality	 Assurance	 team	 within	 the	

Investment	Bank	division	of	Barclays	PLC,	this	Major	Qualifying	Project	(MQP)	report	centered	on	

web	applications.	The	goal	of	the	project	was	to	first	identify	free,	open-source	tools	that	would	

serve	 as	 alternatives	 to	 the	 current	 Hewlett-Packard’s	 Quick	 Test	 Professional	 (QTP)/Unified	

Functional	Testing	(UFT)	solution,	while	preserving	the	existing	core	functions	written	in	VBScript	

scripting	 language.	 After	 performing	 thorough	 exploratory	 analysis	 and	 research,	 the	 MQP	

project	 team	 identified	 Selenium	 WebDriver	 as	 the	 best	 tool	 for	 Barclays	 Core	 PB's	 GUI	

automation	 testing	 purposes.	 Our	 recommendations	 not	 only	 aim	 to	 help	 eliminate	 the	UFT	

license	contention	and	execution	issues,	but	also	aim	to	save	the	annual	licensing	cost	spent	by	

the	 Barclays	 Core	 PB	 team	 and	 reduce	 the	 time	 spent	 troubleshooting	 any	 GUI	 automation	

testing	issues.	

	

	

	

	

	

	

	

	

	

	
	

ii	|	Dai,	Ho	Wu	

Acknowledgments	

The	success	of	our	Major	Qualifying	Project	(MQP)	would	not	have	been	possible	without	

the	help	of	many	individuals	inside	and	outside	of	Barclays.	We	would	like	to	start	off	by	thanking	

Barclays	PLC	for	sponsoring	us	and	enabling	us	to	have	this	invaluable	experience.	In	this	regard,	

we	would	like	to	especially	thank	our	direct	boss	and	mentor,	Karlene	Wright,	for	her	exhaustive	

support,	guidance,	and	technological	expertise	throughout	our	tenure	at	Barclays.	Her	oversight	

and	dedication	were	key	to	the	completion	and	success	of	this	project.	Additionally,	we	would	

like	to	thank	our	other	bosses,	Michael	Irving	and	Bharat	Rao,	for	their	support	and	for	making	

this	project	a	possibility.	Furthermore,	we	would	also	like	to	express	our	gratitude	towards	our	

other	 team	members	 in	 Kiev,	Ukraine,	who	helped	 us	 understand	 the	 entire	 automated	GUI	

testing	process	more	thoroughly.	

We	would	also	 like	to	thank	our	school,	Worcester	Polytechnic	 Institute	(WPI)	and	the	

WPI	 Interdisciplinary	 and	 Global	 Studies	 Division	 (IGSD)	 for	 all	 their	 logistical	 support	 and	

planning.	 Finally,	 we	 would	 like	 to	 thank	 our	 advisors,	 Professor	 Kevin	 Sweeney,	 Professor	

Michael	Ciaraldi,	Professor	Xinming	Huang,	and	Professor	Renata	Konrad	for	all	their	continuous	

support	and	guidance	throughout	the	project.		 	 		 		 		 	 	

The	 project	 would	 not	 have	 reached	 this	 point	 if	 it	 was	 not	 for	 their	 countless	

recommendations	and	guidance	in	solidifying	our	project.	We	are	very	proud	to	have	form	part	

of	the	Wall	Street	Project	Center	and	to	have	worked	in	such	with	such	an	amazing	and	talented	

group	of	people	within	a	renowned	multinational	corporation	such	as	Barclays.	

	

	

	
	

iii	|	Dai,	Ho	Wu	

Authorship	
	

Content	 Primary	Author	
Title	Page	 Didi	Dai	

Abstract	

Acknowledgments	

Authorship	
Jonathan	Ho	Wu	

Executive	Summary	 Didi	Dai	
Chapter	1:	Introduction	 Didi	Dai	
Chapter	2:	Background	 Jonathan	Ho	Wu	
Chapter	3:	Methodology	 Didi	Dai	

Chapter	4:	Two	Feasible	Automation	Tools	 Jonathan	Ho	Wu	
Chapter	5:	Recommendations	and	Conclusions	 Didi	Dai,	Jonathan	Ho	Wu	

Chapter	6:	Reflection	 Didi	Dai,	Jonathan	Ho	Wu	
Works	Cited	 Didi	Dai,	Jonathan	Ho	Wu	
Appendix	 Jonathan	Ho	Wu	

All	sections	were	edited	as	a	team,	with	equal	contributions	made	by	every	member.	

	

	
	

	

	

	

	

	

	

	
	

iv	|	Dai,	Ho	Wu	

Executive	Summary		

Barclays,	a	pioneer	 in	the	Fin-Tech	 industry,	drives	technology	 implementations	across	

the	core	prime	brokerage	in	the	United	States	and	the	rest	of	the	world.	This	MQP	project	worked	

with	 the	 Core	 Prime	 Brokerage	 team	 in	 the	 IT	 department	 of	 Barclays	 America.	 Routinely,	

Barclays	IT	department	releases	new	and	updated	web	apps	to	their	customers.	Before	releasing	

the	apps,	the	quality	assurance	team	plays	an	important	role	in	testing	and	inspecting	the	apps.	

However,	the	current	testing	software	presents	a	big	financial	investment	for	Barclays	and	faces	

licensing	issues.		

The	main	 goal	 of	 this	MQP	 project	was	 to	 identify	 for	 a	 no-cost	 replacement	 for	 the	

current	 testing	 software,	 Hewlett-Packard’s	 Quick	 Test	 Professional	 (QTP)/Unified	 Functional	

Testing	(UFT).	To	make	the	new	tool	applicable	in	this	complex	environment,	the	replacement	

needed	to	satisfy	three	constraints:	(i)	open-source;	(ii)	VBScript	scripting	language	support,	and	

(iii)	GUI	Web	Application	Testing	Support.	The	MQP	team	researched	possible	alternatives	in	the	

market.	 By	 identifying	 the	 strengths	 and	 weakness	 of	 each	 alternative,	 we	 conducted	 a	

comparison	analysis	to	support	our	recommendations.	 Identifying	Selenium	WebDriver	as	the	

tool	which	best	satisfies	Barclays	operating	constraints,	we	researched	how	to	embed	the	new	

tool	 into	 Barclays’	 automation	 GUI	 Web	 application	 testing	 framework	 and	 began	 the	

implementation.	In	doing	so,	Barclays	addresses	the	existing	QTP	licenses	issues	and	significantly	

reduces	its	investment	in	testing	software.	The	MQP	team	identified	a	method	to	get	the	object	

from	the	website	by	using	JAVA	and	 linking	JAVA	with	VBScript.	 In	doing	so,	existing	VBScript	

testing	 cases	 can	 be	 preserved	 and	 the	 automation	 testing	migration	 from	QTP	 to	 Selenium	

WebDriver	can	be	realized.	For	easing	the	process	of	getting	an	object,	we	also	researched	on	

	
	

v	|	Dai,	Ho	Wu	

the	object	repository	and	found	three	ways	to	store	objects,	in	the	condition	of	using	Selenium	

WebDriver.		

In	 addition,	 by	 learning	 the	 VBScript	 scripting	 language,	 we	 found	 the	 in-house	

development	tool	could	also	be	a	replacement	of	QTP.	The	in-house	development	tool	is	going	

to	be	developed	by	using	Microsoft	Internet	Explorer	Object.	This	tool	can	be	accomplished	by	

writing	 VBScript	 scripting	 language	 only.	 Tool	 implementation	 and	 object	 storage	 were	 also	

investigated.	

We	recommend	in	the	short	run,	Barclays	should	use	Internet	Explore	Object	to	create	

the	 in-house	 development	 tool,	 as	 it	 is	 simpler	 and	more	 consistent	 since	 it	 uses	 a	 scripting	

language	 that	 the	 employees	 are	 already	 familiar	 with.	 In	 the	 long	 run,	 we	 recommend	

implementing	Selenium	WebDriver,	as	 it	 is	easier	to	debug	and	it	 is	currently	 in	draft	form	to	

become	a	W3C	(World	Wide	Web	Consortium)	Web	Standard.		

	

	

		

	

	

	

	

	

	

	

	
	

vi	|	Dai,	Ho	Wu	

Table	of	Contents	

Abstract	..	i	

Acknowledgments	...	ii	

Authorship	...	iii	

Executive	Summary	..	iv	

Table	of	Figures	..	viii	

List	of	Tables	..	viii	

Chapter	1:	Introduction	..	1	

Chapter	2:	Background	...	2	
2.1	Current	GUI	Web	Application	Automation	Testing	Framework	..	3	

2.1.1	Quality	Center	..	3	
2.1.2	QTP/UFT	..	4	
2.1.3	VBScript	Scripting	Language	..	5	
2.1.4	OR	Translator	..	5	
2.1.5	QTP	Object	Repository	...	5	

2.2	Problem	Statement	...	7	

Chapter	3:	Methodology	...	9	
3.1	Implementation	Criteria	..	9	
3.2	Comparing	Existing	Automation	Tools	...	9	
3.3	Rationale	for	Eliminating	Alternatives	...	12	

3.3.1	Microsoft	Coded	UI	Test	..	12	
3.3.2	Test	Complete	..	13	
3.3.3	Rational	Functional	..	13	
3.3.4	iMacros	..	13	
3.3.5	Oracle	Application	Testing	Suite	..	13	
3.3.6	Eggplant	Functional	...	13	
3.3.7	Sahi	..	14	
3.3.8	Maveryx	...	14	

Chapter	4:	Two	Feasible	Automation	Tools	..	15	
4.1	Alternative	#1:	Selenium	WebDriver	...	15	

4.1.1	Background	...	15	
4.1.2	Browser	Compatibility	...	16	
4.1.3	Calling	Java	by	Using	VBScript	...	17	
4.1.4	Instantiating	a	Specific	Browser	..	18	
4.1.5	Other	Ways	to	Get	the	Elements	by	Using	Selenium	...	18	
4.1.6	How	to	Implement	an	Object	Repository	in	Selenium?	...	19	

4.2	Alternative	#2:	Using	Internet	Explorer	Object	..	26	

	
	

vii	|	Dai,	Ho	Wu	

4.2.1	Background	...	26	
4.2.2	How	Does	It	Work?	..	26	
4.2.3	How	to	Implement	the	Object	Repository	in	the	In-house	Development	Tool?	27	

4.3	Comparing	the	Two	Feasible	Solutions	..	29	
4.3.1	Selenium	WebDriver	..	29	
4.3.2	Internet	Explorer	Object	..	30	

Chapter	5:	Recommendations	and	Conclusions	...	32	
5.1	Conclusion	..	32	
5.2	Recommendations	..	33	

Chapter	6:	Reflecting	on	our	Experience	at	Barclays	..	35	
6.1	Discussion	of	Design	in	the	Context	of	the	Project	...	35	
6.2	Discussion	of	Constraints	Considered	in	the	Design	...	35	
6.3	Discussion	of	the	Need	for	Life-long	Learning	..	36	

Works	Cited	...	37	

Appendix	1	..	39	

Appendix	2	..	40	

Appendix	3	..	41	

Appendix	4	..	43	

Appendix	5	..	44	

Appendix	6	..	45	

Appendix	7	..	48	

Appendix	8	..	50	

Appendix	9	..	52	
	

	

	

	

	

	

	

	
	

viii	|	Dai,	Ho	Wu	

Table	of	Figures	
FIGURE	1:	CURRENT	GUI	TESTING	FRAMEWORK	WORKFLOW	...	3	
FIGURE	2:	QUALITY	CENTER	...	4	
FIGURE	3:	UFT/QTP	...	5	
FIGURE	4:	WEIGHT	BAR	CHART	FOR	THE	AVAILABLE	AUTOMATION	TESTING	TOOLS	...	12	
FIGURE	5:	SELENIUM	WEBDRIVER	WORKING	PRINCIPLE	..	16	
FIGURE	6:	SAMPLE	PROPERTY	FILE	..	22	
FIGURE	7:	OBJECT	MAP	..	23	
FIGURE	8:	THE	PRINCIPLE	OF	THE	PAGE	OBJECT	MODEL	...	24	
FIGURE	9:	EXAMPLE	OF	A	PAGE	OBJECT	MODEL	IN	ACTION	...	25	
FIGURE	10:	CHILD	ELEMENTS	IN	THE	PRODUCT	..	26	
FIGURE	11:	OBJECT	REPOSITORY	MANAGER	...	28	
FIGURE	12:	EXPORTING	THE	XML	FILE	...	28	
	

List	of	Tables	
TABLE	1:	POTENTIAL	SOFTWARE	COMPARISON	TABLE	..	10	
TABLE	2:	BEST	OPTION	AMONG	ALL	SOFTWARE	TOOLS	...	11	

	

	

	

	

	

	

	

	

	

	

	

	

	
	

1	|	Dai,	Ho	Wu	

Chapter	1:	Introduction	

Our	 goal	 is	 to	 help	 develop	 an	 alternate	 solution	 that	 would	 allow	 the	 Core	 Prime	

Brokerage	Quality	Assurance	team	to	run	their	existing	GUI	automated	tests	without	using	HP	

Enterprise’s	Unified	Functional	Testing	(UFT)	software	too.	

We	 first	 reviewed	 the	 current	 Quality	 Assurance	 framework	 and	 then	 identified	 two	

solutions	capable	of	replacing	the	UFT’s	execution	piece	of	code,	while	maintaining	the	existing	

core	functions	written	in	VBScript	scripting	language.	

By	 the	 end	 of	 our	 project,	 we	 provided	 Barclays	 with	 a	 deliverable	 that	 detailed	 the	

recommendations	on	which	tool	is	the	most	effective	and	how	to	start	implementing	the	most	

suitable	 tool	while	 considering	 the	 future	 testing	of	Barclays	Core	Prime	Brokerage	GUI	Web	

applications.	

	

	

	

	

	

	

	

	
	

2	|	Dai,	Ho	Wu	

Chapter	2:	Background	

Barclays	 Bank	 PLC,	 founded	 in	 1690,	 is	 one	 of	 the	 largest	 multinational	 banking	 and	

financial	services	companies	in	the	United	Kingdom,	and	its	headquarter	is	in	London	(Delaware,	

2016).	 Barclays	 provides	 different	 financial	 services	 in	 retail,	 wholesale,	 investment	 banking,	

wealth	management,	mortgage	lending	and	credit	cards,	which	all	operate	in	multiple	countries	

across	Europe,	the	Americas,	Asia,	and	Africa.	There	are	four	core	business	sectors	of	Barclays:	

Personal	 &	 Corporate	 (Personal	 Banking,	 Corporate	 Banking,	 Wealth	 &	 Investment	

Management),	Barclaycard,	Investment	Banking	and	Africa.	Barclays	has	a	primary	listing	on	the	

London	Stock	Exchange	and	a	secondary	listing	on	the	New	York	Stock	Exchange.	At	the	end	of	

2011,	 Barclays’	 assets	 achieved	 US$2.42	 trillion,	 and	 it	 ranked	 the	 seventh-largest	 bank	

worldwide	(Group,	2014).	

During	 the	 2008	 financial	 crisis,	 Barclays	 announced	 its	 agreement	 to	 purchase	 the	

investment	banking	and	trading	divisions	of	Lehman	Brothers	(White	&	Dash,	2008)	that	same	

year.	 In	 the	 end,	 Barclays	 PLC	 paid	 US$1.35	 billion	 to	 acquire	 the	 core	 business	 of	 Lehman	

Brothers,	 including	 Lehman’s	 US$960	 million	 midtown	Manhattan	 office	 skyscraper	 and	 the	

responsibility	 for	 9,000	 former	 employees	 (BZW	 -	 History	 -	 21st	 Century	 -	 Lehman	 Brothers	

Acquisition,	2017).	

Automated	 regression	 testing	 for	 any	 particular	web	 application	 involves	 using	 a	web	

browser	to	verify	that	the	web	app	is	working	as	expected.	If	done	correctly,	it	can	increase	the	

effectiveness,	efficiency,	and	coverage	of	the	software	testing.	Time	saved	translates	into	cost	

savings.	There	are	different	 types	of	software	 tests	 that	can	be	automated,	 for	example:	unit	

testing,	functional	testing,	integration	testing,	regression	testing,	in	which	functional	testing	and	

	
	

3	|	Dai,	Ho	Wu	

regression	testing	are	what	related	to	this	project.			

2.1	Current	GUI	Web	Application	Automation	Testing	Framework		

The	 framework	 consists	 of	 three	 components,	 quality	 center,	 QTP,	 and	 Excel.	 Quality	

Center	stores	the	test	cases;	QTP	accesses	the	web	browser	(it	executes	the	tests);	Excel	stores	

the	 data	 during	 the	 execution;	 VBScript	 ties	 all	 the	 previous	 components	 together.	 All	 three	

components	are	tied	together	by	VBScript.	The	framework	is	shown	below	in	Figure	1.		

	
Figure	1:	Current	GUI	Testing	Framework	Workflow	

	

2.1.1	Quality	Center	

HP	Quality	Center	is	Hewlett-Packard's	software	quality	management	product,	part	of	the	

company's	application	lifecycle	management	(ALM)	software	suite.	 It	 is	a	web-based	tool	that	

manages	 and	 drives	 efficient	 application	 testing	 processes.	 Quality	 Center	 stores	 all	 the	 test	

cases.	 Following	 by	 descriptions,	 each	 test	 case	 is	 written	 step-by-step	 and	 comes	 with	 a	

command	 function.	 The	 quality	 assurance	 team	 we	 are	 working	 with	 has	 all	 the	 command	

functions	in	VBScript	scripting	language.	Quality	Center	clearly	shows	the	objects	being	used,	the	

object	parents,	 and	 the	value	 that	 is	being	applied	 to	each	 function.	By	 referring	 to	 the	 step	

		

	
Quality	Center	

	

Store	the	test	
cases	

	 	
	
Quick	Test	
Professional	(QTP)	

	

Access	the	
browser	and	the	
objects;	
functions	

	 	
	
Excel		

	

Store	the	test	
data	used	in	
execution	

	
	

4	|	Dai,	Ho	Wu	

names,	the	test	cases	can	be	extracted	from	the	core	functions.	Then,	QTP	can	run	the	extractions	

to	test	the	GUI	Web	application.	Figure	2	is	a	sample	screen	shot	of	Quality	Center.		

	

Figure	2:	Quality	Center	

	

2.1.2	QTP/UFT	

HP	Unified	Functional	Testing,	also	known	as	UFT,	and	previously	known	as	QuickTest	

Professional,	 or	 QTP,	 is	 an	 automation	 testing	 tool.	 Barclays	 relies	 on	 this	 software	 to	 do	

regression	and	functional	test	for	its	GUI	Web	applications.	QTP	executes	one-line	commands	to	

get	 the	 objects.	 After	 getting	 the	 object,	 it	 then	 runs	 the	 test	 cases	 extracted	 from	 the	 core	

functions,	which	 in	 this	 case	are	all	written	 in	VBScript	 scripting	 language.	All	 the	objects	are	

saved	 in	 the	Object	Repository,	which	 is	written	 in	QTP	scripting	 language.	To	get	 the	object,	

testers	can	simply	use	the	function	below:	

Browser(“Google").Page(“Google").WebEdit(“q”)	

This	QTP	 function	will	 then	browse	 the	object	on	 the	GUI	Web	App.	 Finally,	 by	doing	

record	and	playback,	QTP	inspects	the	quality	of	GUI	Web	application.	Figure	3	is	a	sample	screen	

shot	of	QTP:	

	
	

5	|	Dai,	Ho	Wu	

	

Figure	3:	UFT/QTP	

	

2.1.3	VBScript	Scripting	Language		

VBScript	scripting	language	is	used	to	tie	the	entire	framework	together.	Barclays	has	the	

core	 functions	 written	 in	 VBScript	 to	 extract	 the	 design	 steps	 of	 the	 test	 cases.	 After	 the	

extraction,	 the	 command	 set,	which	 is	 also	written	 in	 VBScript,	 then	 executes	 the	 functions.	

Finally,	the	function	“Get_Object”	is	used	in	VBScript	to	call	the	OR	Translator	in	QTP.		

2.1.4	OR	Translator	

The	object	repository	is	a	centralized	location	that	stores	all	test	objects	and	elements	

available	 from	 the	 application	 that	 are	 being	 tested	 along	with	 its	 information	 or	 properties	

(objects’	information).	These	are	later	used	by	the	test	script	to	identify	specific	items	during	the	

execution	of	the	test.	Stored	objects	within	an	object	repository	can	be	any	of	the	elements	that	

are	present	in	the	GUI	Web	applications.	These	objects	can	be	anything	that	is	visible	on	the	GUI	

(i.e.	text	fields,	images,	list	items,	etc.).	

2.1.5	QTP	Object	Repository	

Object	Repositories	are	composed	of	different	components	(Reilly	&	Tupelo-Schneck,	2010):	

● Object	 Identifiers:	 Every	new	object	 that	 is	 added	 to	 the	object	 repository	will	 get	 an	

individual	 identifier.	 The	 identifier	 helps	 the	 test	 scripts	 locate	 a	 specific	 object	more	

	
	

6	|	Dai,	Ho	Wu	

easily.	After	locating	them,	the	test	scripts	proceed	to	work	on	them.		

● Object	Class:	The	object	class	value	is	assigned	based	on	the	object’s	type.	Every	software	

has	its	respective	set	of	object	class	values.	For	example,	QTP/UFT	has	its	own	built-in	list	

of	classes	for	different	categories	(i.e.	list	box,	edit	box,	button,	images,	links,	etc.).	

● Object	Location:	The	object	location	value	defines	where	the	object	is	going	to	be	stored,	

regardless	of	whether	it	is	part	of	a	Local	Object	Repository	or	a	Shared	Object	Repository.	

● Object	Properties:	Object	properties	are	the	properties	and	characteristics	that	are	used	

to	identify	the	objects	in	a	specific	application.		

● Visual	Identifiers:	Visual	identifiers	are	sets	of	definitions	that	help	identify	the	objects	by	

using	the	object’s	relative	location	to	neighboring	objects.	Visual	identifiers	help	enhance	

the	 process	 of	 identifying	 objects,	 which	 then	 helps	 reduce	 the	 probability	 of	 falsely	

recognizing	an	object.		

● Ordinal	Identifiers:	Ordinal	identifiers	are	additional	properties	that	help	differentiate	the	

objects	from	each	other.	There	are	three	kinds	of	ordinal	identifiers:	

1. Index:	This	 indicates	 the	order	 in	which	 the	objects	 show	up	 in	 the	application	

relative	to	other	objects	with	an	identical	description.	It	starts	with	an	index	of	0.	

2. Location:	This	indicates	the	order	of	the	object	in	the	parent	window	or	frame.		

3. Creation	time:	This	indicates	the	sequence	in	which	the	browser	is	opened.		

After	knowing	what	an	object	repository	consists	of,	we	need	to	acknowledge	that	there	

are	 two	 different	 types	 of	 object	 repositories.	 First,	 there	 is	 a	 type	 called	 a	 Local	 Object	

Repository,	which	 is	 just	 available	 to	 a	 particular	 action.	 This	 kind	 of	OR	 employs	 a	 .mtr	 file	

extension.	The	objects	added	to	a	Local	Object	Repository	cannot	be	used	in	any	other	action,	

	
	

7	|	Dai,	Ho	Wu	

even	if	they	are	the	part	of	the	same	test.	In	this	type	of	object	repository,	the	objects	are	stored	

for	a	particular	action	and	only	that	particular	action	can	access	its	respective	stored	objects.	This	

kind	of	repository	is	best	suited	for	backing	up	test	objects	and	for	learning	new	objects.	This	kind	

of	repository	is	preferable	to	test	non-dynamic	applications	with	respect	to	time.	It	is	important	

to	remember	that	all	repositories	are	local	by	default.	The	following	list	is	a	list	of	Local	Object	

Repository	operations:	

● Local	Object	Repositories	highlight	an	object	stored	in	the	repository;	

● Local	Object	Repositories	check	whether	a	particular	object	in	the	Application	Under	Test	

is	stored	in	the	Object	Repository;	

● Local	Object	Repositories	cut,	copy,	paste,	modify,	or	delete	objects;	

● Local	Object	Repositories	update	a	property’s	description	from	the	application	using	the	

update	function,	in	the	rare	case	where	a	property’s	value	was	changed	by	accident.	

The	second	 type	of	object	 repository	 is	 called	a	Shared	Object	 repository,	which	has	a	global	

scope.	This	kind	of	OR	uses	a	.tsr	file	extension	and	can	be	used	by	multiple	actions	in	different	

tests.	This	flexibility	makes	this	the	ideal	repository	type	for	storing	and	preserving	test	objects.	

In	order	to	create	a	Shared	Object	Repository,	one	needs	to	first	export	the	local	objects.	Before	

being	able	to	use	the	.tsr	file,	it	is	necessary	to	associate	the	repository	to	the	test	by	clicking	on	

“Resources”	and	then	“Associate	Repository”.	

2.2	Problem	Statement	

Employees	in	the	Barclays	Core	Prime	Brokerage	have	QTP	license	contention	issues	since	

not	all	of	them	can	access	QTP	at	the	same	time.	This	inhibits	and	affects	their	work	efficiency.	

Moreover,	as	the	cost	of	QTP	license	is	expensive,	Barclays	has	stopped	investing	in	new	licenses	

	
	

8	|	Dai,	Ho	Wu	

for	this	software.	Therefore,	the	current	license	count	is	not	enough.	Due	to	these	issues,	many	

Barclays	employees	have	complained	and	reported	issues	with	the	software.	However,	not	much	

has	been	done	since	they	are	still	working	on	testing	projects	from	GUI	Web	applications	that	

solely	depend	on	QTP.	Meanwhile,	over	1000	GUI	automated	test	cases	were	created	using	QTP,	

so	all	these	test	cases	need	to	be	preserved.	Thus,	the	main	purpose	of	this	project	was	to	look	

for	a	replicable	free	software,	which	can	preserve	the	legacy	test	cases	while	also	solving	the	QTP	

license	issues	by	replacing	it.	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
	

9	|	Dai,	Ho	Wu	

Chapter	3:	Methodology	
	

3.1	Implementation	Criteria	

After	interviewing	our	manager	and	gathering	more	information	about	the	problems	the	

team	has	from	using	QTP,	four	criteria	were	identified,	which	must	be	met	for	a	new	free	GUI	

Web	Application	 automation	 testing	 tool	 to	 be	 implemented	within	 the	 Barclays	 Core	 Prime	

Brokerage	Quality	Assurance	team:	zero-cost,	VBScript	scripting	language	support,	open-source	

software,	and	GUI-web	application	testing	support.	Any	feasible	solutions	have	to	be	free,	open	

source,	while	supporting	both	the	VBScript	scripting	language	and	GUI	web	application	testing.	It	

is	important	to	acknowledge	that	all	criteria	are	equal.	Any	possible	automation	tools	that	may	

have	failed	to	meet	the	standard	of	either	one	of	the	four	criteria	were	eliminated.		

3.2	Comparing	Existing	Automation	Tools	

As	 discussed	 in	 Section	 2.1.2,	 the	QTP	 tool	 is	 costly	 and	 is	 not	 open	 source.	 To	 start	

replacing	 QTP,	 we	 identified	 nine	 alternative	 tools	 which	 could	 be	 used	 to	 test	 GUI	 Web	

applications.	 These	 include	 Selenium	 WebDriver,	 Microsoft	 Coded	 UI	 Test,	 Test	 Complete,	

Rational,	iMacros,	Oracle	Application	Testing	Suite,	Eggplant	Functional,	Sahi,	and	Maveryx.	Our	

findings	are	summarized	in	Table	1.		

	
	

10	|	Dai,	Ho	Wu	

	

Table	1:	Potential	Software	Comparison	Table	

	
To	determine	the	tool	which	best	satisfies	Barclays	criteria,	we	created	an	indicator	as	

seen	below.	For	each	criterion,	a	zero	indicates	that	an	alternative	does	not	meet	the	criterion,	

while	a	one	indicates	that	it	does.	For	example,	a	“1”	in	iMacros	in	the	VBScript	scripting	language	

criterion	indicates	that	it	supports	VBScript.	This	means	that	by	using	this	software,	all	legacy	test	

cases	can	be	preserved.	Each	row,	which	is	the	score	on	each	criterion,	is	summed	at	the	end.	

The	greater	the	score,	the	better	the	tool	is	in	terms	of	being	able	to	meet	Barclays’	requirements.	

The	total	weight	is	then	added	to	the	last	column	on	the	right.	By	comparing	the	total	weight,	we	

boxed	the	highest,	which	in	this	case	is	Selenium	WebDriver.	Selenium	is	the	best	tool	since	it	has	

a	zero	cost	and	is	an	open	source	tool.	It	also	supports	GUI.	And	by	using	Java,	the	VBScript	testing	

scripts	can	also	be	accessed	by	Selenium.		

	
	

11	|	Dai,	Ho	Wu	

	

Table	2:	Best	Option	Among	All	Software	Tools	

	

To	better	illustrate	the	comparison	process,	see	Figure	4.	From	this	figure,	the	blue	bar	

represents	 the	 cost,	 the	 orange	 bar	 represents	 the	 VBScript	 scripting	 language,	 the	 gray	 bar	

denotes	that	it	is	open	source,	and	the	yellow	bar	denotes	GUI	Web	app	testing	support.	The	bar	

chart	shows	the	relationship	of	the	four	criteria	with	each	tool.	With	the	highest	bar,	Selenium	

stands	out.	Since	Selenium	is	the	only	tool	that	fulfills	all	four	criteria,	it	is,	therefore,	the	only	

feasible	solution.	For	the	rest	of	the	tools,	they	did	not	qualify	for	at	least	one	criterion.	The	worst	

options	are	Rational	Functional	and	Eggplant	Functional.	The	ones	close	to	becoming	 feasible	

solutions	 are	 Microsoft	 Coded	 UI	 Test,	 Sahi,	 and	 Maveryx.	 A	 more	 detailed	 reason	 for	 the	

elimination	processes	will	be	written	in	the	next	section.	

	
	

12	|	Dai,	Ho	Wu	

	

Figure	4:	Weight	Bar	Chart	for	the	Available	Automation	Testing	Tools	

	

3.3	Rationale	for	Eliminating	Alternatives			
	

3.3.1	Microsoft	Coded	UI	Test	

Coded	UI	uses	MSAA	and	UIA	technologies	to	identify	objects	in	an	object	repository	(or	

what	most	call	UIMap),	while	UFT	uses	a	coded-injection	approach.	

Coded	UI	conducts	a	test	in	two	ways:	either	by	record	and	playback	or	by	hand	coding.	

It	mostly	 supports	 C#	 language	 and	 not	 VBScript.	We	 looked	 into	 converting	 VBScript	 to	 C#	

(Microsoft,	2015).	However,	going	from	VBScript	to	CodedUI's	object	oriented	C#	is	not	that	easy	

as	 just	adding	a	plug-in.	While	QTP	 is	a	 functional	testing	tool,	CodedUI	 is	used	more	for	unit	

testing;	 thus,	 there	are	many	architectural	differences.	Due	to	 these	reasons,	 this	option	was	

eliminated.		

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Unified	
Functional	
Testing	
(QTP)	

Selenium	
WebDriver	

Microsoft	
Coded	UI	
Test	

Test	
Complete

Rational	
Functional	

iMacros	 Oracle	App	
Testing	
Suite

Eggplant	
Functional	

Sahi	 Maveryx

Weight	Bar	Chart for	the	Available	Automation	Testing	Tools

Cost	 VBScripting	Language	 Open	source	 GUI	support	

	
	

13	|	Dai,	Ho	Wu	

3.3.2	Test	Complete	

Test	 Complete	 is	 one	 of	 the	 few	 existing	 automation	 testing	 software	 that	 supports	

VBScript	language.	However,	it	is	a	proprietary	functional	automated	testing	platform	owned	by	

SmartBear	Software.	The	yearly	cost	is	$7000	for	one	license	(SmartBear,	2017).	We	discarded	

this	option	as	our	focus	is	to	find	tools	that	are	free	and	open-source.		

3.3.3	Rational	Functional	

Rational	Functional	tester	is	from	the	Rational	Software	division	of	IBM.	It	does	provide	

automated	 testing	 capabilities	 for	 functional,	 regression,	 GUI,	 but	 as	 it	 only	 satisfied	 one	

criterion,	it	was	then	eliminated.	This	software	provides	no	support	for	VBScript.		

3.3.4	iMacros	

iMacros	can	record	and	replay	repetitious	work	and	is	the	only	web	automation	software	

that	mostly	works	with	 every	website.	However,	 it	 is	 not	 an	 open	 source	 software	 tool,	 and	

therefore,	not	a	feasible	solution	that	we	can	consider.		

3.3.5	Oracle	Application	Testing	Suite	

The	 Oracle	 Application	 Testing	 Suite	 CD-ROM	 includes	 the	 Microsoft®	 Visual	 Basic®	

Scripting	Edition	(VBScript)	Language	Reference	documentation.	It	is	a	rare	existing	software	that	

supports	VBScript	(Oracle,	2008).	Although	it	supports	both	VBScript	language	and	GUI	Web	app	

testing,	it	is	neither	free	or	an	open	source	tool.	

3.3.6	Eggplant	Functional		

Eggplant	Function	was	eliminated	as	it	only	satisfied	the	criterion	of	GUI	Web	app	testing.	

The	scripting	language	it	uses	is	called	SenseTalk	(TestPlant.com,	2017);	therefore,	it	would	not	

	
	

14	|	Dai,	Ho	Wu	

be	possible	to	use	the	VBScript	testing	cases	currently	in	existence.	

3.3.7	Sahi	

Sahi	is	an	open	source	tool	for	testing	GUI	Web	applications	that	works	on	every	browser.	

It	also	supports	the	VBScript	scripting	language.	However,	the	only	deficiency	is	that	it	is	only	free	

to	access	the	Sahi	OS.	However,	even	though	it	is	free,	Sahi	OS	only	includes	limited	features.	To	

get	the	access	to	all	of	Sahi’s	features,	it	is	mandatory	to	purchase	Sahi	Pro,	which	costs	$695	for	

a	license	(Pro,	2017).	Due	to	its	imminent	cost,	this	option	was	then	eliminated.			

3.3.8	Maveryx	

Maveryx	 is	 an	 automated	 functional	 and	 regression	 test	 tool	 for	 Java	 and	 Android	

applications.	We	 researched	 this	 tool	 because	 almost	 all	 the	GUI	Web	 apps	 that	we	 have	 in	

Barclays	are	written	in	Java.	The	software	only	free	when	running	on	a	free-trial	mode,	meaning	

that	it	offers	limited	functions	for	a	limited	time.	For	a	large	firm	like	Barclays,	this	cannot	be	a	

long-term	solution.		

After	researching	each	of	these	tools,	there	is	only	one	remaining	alternative,	which	is	

Selenium	WebDriver.	It	is	the	only	feasible	solution	that	satisfies	all	four	criteria.	The	following	

sections	will	discuss	more	about	how	to	replace	HP’s	QTP/UFT	with	Selenium	WebDriver.		

	

	

	

	

	
	

15	|	Dai,	Ho	Wu	

Chapter	4:	Two	Feasible	Automation	Tools		

This	chapter	will	specifically	explain	how	Selenium	WebDriver	works	and	unveil	another	

feasible	solution	apart	from	using	the	existing	software	tool.	 It	will	cover	the	background,	the	

working	principle	of	each	feasible	tool,	and	numerous	ways	to	replace	the	Object	Repository	that	

is	found	in	QTP.	The	reason	why	it	is	important	to	focus	on	QTP	Object	Repository	is	because	it	is	

the	core	process	that	needs	to	be	replaced.	To	be	specific,	it	is	the	only	part	that	is	not	written	in	

VBScript	and	that	directly	connects	to	QTP.	Additionally,	the	other	parts	of	the	testing	framework	

are	easier	to	fix	if	the	object	repository	implementation	is	solved.	

4.1	Alternative	#1:	Selenium	WebDriver		

4.1.1	Background		

Selenium	is	an	open-source	tool	that	is	commonly	used	for	test	automation	particularly	

in	the	Financial	Services	Industry.	Selenium	WebDriver	was	first	introduced	in	Selenium	2.0	and	

it	directly	calls	 the	browsers	by	using	 the	browser’s	native	support	 for	automation	and	other	

browser-specific	features.	Its	unique	platform	and	language	neutral	interface	allows	for	a	more	

seamless	control	of	a	Web	browser.	How	Selenium	WebDriver	works	is	shown	in	Figure	5	below:	

	
	

16	|	Dai,	Ho	Wu	

	

Figure	5:	Selenium	WebDriver	Working	Principle	

	

4.1.2	Browser	Compatibility	

Browsers	have	different	compatibilities.	For	example,	Mozilla	Firefox	supports	WebDriver	

by	default.	However,	Chrome	and	 IE	 (32-bits	and	64-bits)	 require	a	 specific	executable	driver	

(SeleniumHQ,	2014)	.	To	solve	this	problem,	the	first	step	is	to	download	the	executable	driver	

from	Google’s	Chromium	website		

(https://sites.google.com/a/chromium.org/chromedriver/downloads)		

and	include	the	following	line	of	code	into	Selenium:	

	 System.setProperty("webdriver.chrome.driver",	"/path/to/chromedriver");	

Even	though	Selenium	WebDriver	supports	multiple	browsers,	we	will	be	focusing	more	

on	IE	and	Google	Chrome	as	Barclays	only	supports	these	two.	Having	said	this,	it	is	important	to	

	
	

17	|	Dai,	Ho	Wu	

consider	the	possibility	of	adopting	a	headless	browser	testing	model	or	a	browser	simulator	(i.e.	

HTMLUnit)	since	Selenium	WebDriver	also	supports	this.	Significant	processing	resources	can	be	

saved	by	using	a	headless	browser.	And	since	all	the	functions	would	run	in	the	background,	this	

would	 then	 create	 an	 even	 more	 seamless	 and	 “real”	 automated	 testing	 environment.	

Additionally,	one	could	start	automating	on	a	headless	server	(i.e.	continuous	integration	servers	

such	as	Jenkins).	

4.1.3	Calling	Java	by	Using	VBScript	

To	preserve	the	existing	testing	code	that	is	written	in	VBScript,	we	had	to	find	a	way	to	link	

JAVA	and	VBScript	together	for	the	following	reasons:	

1. Selenium	cannot	use	VBScript	directly,	but	Selenium	can	use	JAVA;	

2. JAVA	is	one	of	the	most	commonly	used	scripting	languages	nowadays;	

3. It	is	possible	to	connect	JAVA	with	VBScript.		

Before	 proceeding,	 we	 have	 to	 identify	 how	 Selenium	 would	 preserve	 VBScript.	 After	

researching,	we	found	that	we	can	use	JAVA	to	get	the	object,	and	then	use	VBScript	to	call	JAVA.		

To	get	the	object,	the	code	we	can	apply	in	JAVA	is	shown	below:	

					WebDriver	driver	=	new	ChromeDriver()	

					WebElement	element	=	driver.findElement(By.name("q"));									

					element.sendKeys(“test”)						

This	specific	code	is	shown	in	Appendix	1.	Appendix	1	is	the	extension	of	the	code	seen	

above.	Whereas	the	code	above	just	contains	the	main	functions	that	perform	the	executions.	

	
	

18	|	Dai,	Ho	Wu	

After	getting	the	object,	we	use	the	code	in	VBScript	to	call	the	JAVA	code	in	order	to	test	the	

objects	founds	in	the	test	cases	that	are	written	in	VBScript.	The	code	to	invoke	JAVA	by	using	

VBScript	is	shown	in	Appendix	2.	All	the	code	found	in	the	Appendices	are	written	with	the	help	

of	our	manager,	Karlene	Wright.			

4.1.4	Instantiating	a	Specific	Browser	

To	install	a	specific	browser,	we	need	to	create	a	browser	name	by	adding	a	new	driver.	

This	piece	of	code	is	written	in	Java.	The	web	browser	names	can	be:	Firefox,	Chrome,	Safari,	or	

InternetExplorer.	The	code	is	shown	below:	

	 WebDriver	driver	=	new	“BrowserName”Driver();	

To	access	a	webpage	in	Selenium,	we	need	to	use	WebDriver	and	HtmlUnit	Driver	

classes:	

	 WebDriver	driver	=	new	HtmlUnitDriver();	

	 WebElement	element;	

More	sample	code	to	open	a	browser,	which	checks	to	see	which	browser	 is	currently	

being	used	is	shown	in	Appendix	3.	The	sample	code	to	run	test	cases	in	Google	Chrome	using	

Selenium	WebDriver	and	the	sample	Java	code	implementing	a	Google	search	in	Selenium	are	

also	included	in	Appendix	3	for	reference.		

4.1.5	Other	Ways	to	Get	the	Elements	by	Using	Selenium		

There	are	multiple	ways	to	get	the	elements	in	Selenium.	Selenium	uses	JAVA	to	get	the	

object,	so	the	most	commonly	used	function	is	the	".FindElement"	function	found	in	JAVA.	The	

	
	

19	|	Dai,	Ho	Wu	

".FindElement"	 function	 can	 be	 used	 in	 different	 ways	 to	 access	 the	 objects.	 In	most	 cases,	

programmers	find	the	element	using	the	object's	name	and	ID.	Sometimes,	the	elements	can	also	

be	found	by	using	ClassName,	Tagname,	LinkText,	partialLinkText,	or	XPath.	The	code	to	find	an	

element	through	the	numerous	aforementioned	ways	can	be	found	in	Appendix	4.		

4.1.6	How	to	Implement	an	Object	Repository	in	Selenium?	

It	is	hard	to	look	for	an	object	every	time	when	we	need	to	test	it.	However,	it's	easy	for	QTP,	

because	it	has	an	integrated	object	repository	that	stores	all	the	objects.	If	we	are	going	to	use	

the	Selenium	WebDriver	to	replace	QTP,	we	had	to	find	a	way	to	store	the	objects	in	order	to	

make	 it	easier	to	find	the	objects.	After	conducting	our	research,	we	found	three	methods	to	

apply	an	object	repository	within	Selenium:	

1. We	can	store	the	OR	in	an	Excel	file	(.xml),	just	like	QTP	does.	

2. We	can	use	properties	files.	

• This	method	uses	key-value	pair	format,	which	tends	to	be	more	readable	by	

the	software.	

3. We	can	apply	the	Page	Object	Model	or	POM.	

• This	method	will	ensure	the	OR’s	structure	is	similar	to	QTP’s	OR	structure.	It	

also	means	that	the	final	command	will	look	exactly	like	a	QTP	command.		

To	further	explain	how	these	three	possible	ways,	how	they	work,	and	how	to	use	them	to	

execute	the	object	repository's	work,	we	detailed	everything	below	step	by	step:	

Excel	file	(.xml)	

An	example	of	an	XML	being	used	as	an	object	repository,	including	code	retrieval	and	

	
	

20	|	Dai,	Ho	Wu	

execution,	is	shown	in	Appendix	5.	

Property	Files	

Background	about	Property	Files	

We	can	create	an	object	repository	by	relying	on	the	properties	file	feature	found	in	Java.	The	

.properties	file	in	Java	is	just	a	basic	collection	of	key-value	pairs.	Therefore,	the	OR	could	then	

be	implemented	as	a	collection	of	key-value	pairs,	with	the	key	being	a	logical	name	identifying	

the	object	and	the	value	containing	unique	objects	properties	used	to	identify	the	object	on	a	

screen.	 This	 can	 be	 achieved	 by	 comparing	 the	 file’s	 properties	 to	 a	 specific	 format	 that	 is	

recognized	by	the	class	java.util.Properties.	The	rules	of	the	Java	Properties	are	as	follows	(ATG,	

2016):	

1. Entries	are	generally	expected	to	be	a	single	line	of	the	form,	either	one	of	the	following	

two:	

o propertyName=propertyValue	

o propertyName:propertyValue	

2. White	space	that	appears	between	the	property	name	and	the	property	value	is	ignored,	

as	exemplified	below:	

o name=Stephen	

o Whitespace	at	the	beginning	of	the	line	is	also	ignored.	

3. Lines	 that	 start	with	 the	 comment	 characters	 !	 or	 #	 are	 ignored.	 Blank	 lines	 are	 also	

ignored.	

	
	

21	|	Dai,	Ho	Wu	

4. The	property	value	is	generally	terminated	by	the	end	of	the	line.	White	space	following	

the	property	value	is	not	ignored	and	is	treated	as	part	of	the	property	value.	

5. A	 property	 value	 can	 span	 several	 lines	 if	 each	 line	 is	 terminated	 by	 a	 backslash	 (‘\’)	

character.	This	can	be	seen	below:	

targetCities=\	

							Detroit,\	

							Chicago,\	

								Los	Angeles	

This	 is	equivalent	 to	 targetCities=Detroit,Chicago,Los	Angeles.	 In	 this	 case,	we	have	 to	

remember	that	the	white	space	at	the	beginning	of	the	lines	has	to	be	ignored.	

6. The	character’s	newline,	carriage	return,	and	tab	can	be	inserted	with	characters	\n,	\r,	

and	\t,	respectively.	

7. The	backslash	character	must	be	escaped	with	a	double	backslash.	This	 is	exemplified	

below:	

path=c:\\docs\\doc1	

One	important	thing	to	note	is	the	fact	that	it	is	not	necessary	to	escape	backslashes	in	

property	 values	 when	 using	 the	 ATG	 Control	 Center	 Components	 window;	 the	 ATG	

Control	Center	will	handle	the	escape	characters	automatically.	

8. UNICODE	characters	can	be	entered	as	they	are	in	a	Java	program,	using	the	\u	prefix.	For	

example,	“\u002c”.	

We	can	use	the	Java	interface	in	Selenium	to	read	the	object	properties	into	variables	and	

then	have	the	scripts	reference	the	variables	present	 in	the	 interface.	To	do	so,	we	must	first	

decide	the	format	of	the	properties	file.	After	that,	we	can	store	all	the	element	 locators	 in	a	

	
	

22	|	Dai,	Ho	Wu	

.XML	file	as	an	object	repository.	However,	one	drawback	of	this	method	is	that	it	might	take	a	

long	time	to	manually	create	all	the	property	files.	A	sample	properties	file	format	is	the	following	

one	(Chavan,	2016):	

[logical_name]=[locator_type]~[locator_value]	

The	definition	of	each	term	is	shown	below:	

[logical_name]:	The	logical	name	generally	would	be	label	of	element.	[As	displayed	on	the	UI]	

[locator_type]:	The	locator	type	must	be	one	from	the	following	types:	id,	name,	className,	

linkText,	partialLinkText,	cssSelector,	xpath,	tagName.	

[locator_value]:	This	is	the	locator	value,	or	the	value	of	locator_type	

This	is	how	the	property	file	would	end	up	looking	like,	as	seen	in	Figure	6:	

	
Figure	6:	Sample	Property	File	

	

Creating	the	Object	Repository	in	Selenium	(Code	for	Running	a	Simple	Bing	Search)	

To	create	an	object	repository	in	Selenium	by	using	the	properties	file,	we	need	to	write	

the	code	for	doing	the	Bing	search.	 In	this	particular	case,	a	Bing	search	script	would	need	to	

manipulate	three	screen	objects:	

● The	textbox	where	the	search	string	is	typed;	

● The	search	button	that	is	clicked	to	submit	the	search	query;	

	
	

23	|	Dai,	Ho	Wu	

● The	text	field	that	displays	the	number	of	search	results	

The	object	map	will	be	a	simple	.properties	text	file	that	we	can	add	to	our	Selenium	project,	

as	seen	in	Figure	7:	

	

Figure	7:	Object	Map	

	
The	key	for	each	object,	i.e.	bing.homepage.textbox,	is	a	logical	name	for	the	object	that	

we	will	use	in	our	script.	The	corresponding	value	consists	of	two	parts:	the	attribute	type	used	

for	uniquely	identifying	the	object	on	screen	and	the	corresponding	attribute	value.	For	example,	

the	 aforementioned	 text	 box	 is	 uniquely	 identified	 by	 its	 id	 attribute,	 which	 has	 the	 value	

sb_form_q.	

Retrieving	and	Fetching	Objects	from	the	Object	Repository	

To	retrieve	objects	from	a	newly	created	object	map,	we	would	need	to	define	a	class,	

ObjectMap,	with	a	constructor	that	takes	a	single	argument,	which	is	the	path	to	the	.properties	

file.	 Details	 on	 how	 to	 write	 an	 object	 map	 can	 be	 referred	 to	 Appendix	 5.	 Objects	 can	 be	

identified	 using	 a	 number	 of	 different	 properties	 (i.e.	 object	 IDs,	 CSS	 selectors	 and	 XPath	

expressions).	

How	Can	We	Use	the	Objects	from	an	Object	Map?	

After	being	able	to	retrieve	objects	from	the	class	object	map,	we	can	start	using	these	

	
	

24	|	Dai,	Ho	Wu	

objects	in	the	script	as	part	of	the	functions.	The	code	to	execute	the	method	of	accessing	an	

object	requires	a	very	easy	and	simple	step:	This	step	involves	referring	to	the	key	in	the	object	

map.	This	is	also	called	as	logical	name	and	this	code	is	shown	in	Appendix	6.	

Page	Object	Model	

Background	

A	better	approach	to	script	maintenance	is	to	create	a	separate	class	file,	which	can	then	

find	web	elements,	fill	them,	or	verify	them.	This	class	can	be	reused	in	all	the	scripts	that	use	the	

same	element.	In	the	future,	if	there	is	any	change	in	the	web	element,	we	would	then	need	to	

make	change	in	just	one	class	file	and	not	in	all	ten	different	scripts.	This	approach	is	called	Page	

Object	Model	(POM).	This	approach	helps	make	code	more	readable,	maintainable,	and	reusable.	

The	 principle	 of	 POM	 is	 showed	 below,	 in	 Figure	 8.	 If	 implemented	 properly,	 POM	 can	 help	

organize	the	code,	reduce	maintenance	efforts,	and	reduce	script	creation	time.	

	

Figure	8:	The	Principle	of	the	Page	Object	Model	

	

● In	a	POM	model,	each	web	page	in	the	application	must	have	a	corresponding	page	class.	

● This	page	class	will	find	the	web	elements	of	that	web	page	and	will	also	contain	a	function	

	
	

25	|	Dai,	Ho	Wu	

that	will	perform	operations	on	the	web	elements.	

Advantages	of	the	Page	Object	Model	

The	code	is	cleaner	and	easier	to	understand	because	the	structure	requires	that	all	the	

UI	 operations	 and	 flows	 be	 separated	 from	 verification.	 In	 addition,	 the	Object	 Repository	 is	

independent	of	the	test	cases.	The	same	OR	can	be	used	for	numerous	purposes	and	numerous	

tools.	Last	but	not	the	 least,	given	the	fact	that	the	OR	can	be	reused,	the	amount	of	code	 is	

thereby	reduced	and	optimization	can	thereby	be	attained.		

How	to	Set	POM	Up?	

Follow	the	steps	below	to	set	the	POM	up	and	the	code	can	be	found	in	Appendix	7:	

1. Right	click	on	‘x‘	package	then	select	New	>	Class	and	name	it	as	“ProductListing_Page”.		

2. Create	another	public	static	class	inside	the	above	class	‘x‘	and	name	it	as	Product_1.		

3. Now	create	different	Static	Methods	for	each	child	element	of	Product	_1.	These	

methods	will	need	an	Argument	(WebDriver)	and	a	Return	value	(WebElement).		

To	test	the	code:	Type	ProductListing_Page	in	the	test	script	and	press	dot.	This	will	display	

all	the	products	we	have	specified	in	the	class,	as	seen	in	Figure	9.

	

Figure	9:	Example	of	a	Page	Object	Model	in	Action	

Select	Product_1	and	press	dot	again.	This	will	now	display	all	the	child	elements	

	
	

26	|	Dai,	Ho	Wu	

associated	with	the	parent	Product_1,	as	seen	below	in	Figure	10:

	

Figure	10:	Child	Elements	in	the	Product	

The	resulting	command	line	is	QTP-like:	

ductListing_Page.Product_1.btn_AddToCart(driver).click();	

	

4.2	Alternative	#2:	Using	Internet	Explorer	Object	

4.2.1	Background		

Internet	 Explorer	 Objects	 contains	 three	 types	 of	 members:	 Events,	 Methods	 and	

Properties.	Visual	Basic	can	access	this	functionality	since	Internet	Explorer	supports	automation.	

For	example,	the	function	“CreateObject”	can	be	used	in	Visual	Basic	to	launch	an	instance	of	

Internet	Explorer.	

4.2.2	How	Does	It	Work?	

For	example,	let’s	create	a	VBScript	that	can	be	used	to	test	a	Google	webpage.	To	access	

the	Google	website	URL,	we	have	two	pieces	of	codes	in	VBScript	that	are	attached	in	Appendix	

8.	Specifically,	we	use	the	Internet	Explorer	Object	to	control	an	instance	of	Windows	Internet	

	
	

27	|	Dai,	Ho	Wu	

Explorer	through	automation.	Then	.application	gets	the	automation	object	for	the	application	

that	is	hosting	the	web	browser	control.	Finally,	we	use	the	“Navigate”	function	to	navigate	the	

resource	identified	by	a	URL.	In	addition	to	grabbing	objects	through	the	URL,	we	also	researched	

the	way	to	get	objects	by	ID.	These	codes	are	shown	in	Appendix	8.	Additionally,	we	can	also	get	

the	web	button	and	the	web	table	by	using	a	similar	code	in	VBScript,	which	 is	also	shown	in	

Appendix	8.		

4.2.3	How	to	Implement	the	Object	Repository	in	the	In-house	Development	Tool?	

There	are	two	methods	to	store	the	objects:	Using	either	Excel	or	the	reference	dialog	box	

method.	

Excel	(.XML)	

Similar	to	the	object	repository,	which	is	originally	introduced	in	QTP,	we	can	create	our	

own	object	repository	by	creating	an	XML	file.	To	create	our	own	object	repository,	there	are	two	

methods	 that	 can	 be	 used:	 Either	 using	 "ObjectRepositoryUtil	 Object"	 or	 using	 the	 object	

repository	manager.	Then,	we	can	work	with	object	repository	files	(Local/Shared)	from	outside	

of	UFT.	

For	the	first	method,	to	convert	an	object	repository	into	.XML	format,	we	either	enter	

"ObjectRepositoryUtil"	 in	 the	 search	box	underneath	 the	 Index	 tab	or	 use	 the	 code	 found	 in	

Appendix	8.		

For	the	second	method,	we	can	simply	export	the	.XML	file,	by	using	the	object	

repository	manager.	We	do	so	by:	

1. To	open	the	object	repository	manager,	click	on	Resources		

	
	

28	|	Dai,	Ho	Wu	

and	then	clicking	on	Object	Repository	Manager	

	

Figure	11:	Object	Repository	Manager	

2. Opening	the	Object	Repository,	then	clicking	on	File,	and	then	open	

3. To	export	to	.XML	format,	click	on	File	and	then	on	Export	to	XML	

	

Figure	12:	Exporting	the	XML	File	

To	add	the	object	by	using	VBScript,	we	load	an	existing	object	repository	and	use	the	

AddObject	function	to	add	an	object	to	it.	This	is	an	example	of	how	we	can	add	the	object	by	

using	VBScript.	So	reversely,	it	is	also	possible	to	get	the	object	by	using	VBScript.	The	detailed	

code	is	attached	to	Appendix	9.		

Additionally,	there	is	another	way	that	can	be	used	to	get	the	object	from	XML	file.	The	

code	for	this	way	is	also	attached	to	Appendix	8.		

	
	

29	|	Dai,	Ho	Wu	

Reference	Dialog	Box	

We	can	make	the	objects	in	the	Internet	Explorer	available	to	Visual	Basic	4.0	through	the	

reference	dialog	box.	The	reference	dialog	box	lists	all	the	objects	available	to	Visual	Basic.	The	

dialog	box	 can	be	 accessed	by	 selecting	 Tools/References	 from	 the	menu	bar.	 The	 reference	

dialog	box	has	a	reference	set	to	the	 Internet	Explorer	object	 library.	The	proper	reference	 is	

described	in	the	dialog	box	as	"Microsoft	Internet	Controls."	

Once	a	reference	is	set	in	Visual	Basic,	we	can	start	exploiting	the	objects	in	the	code.	For	

example,	to	get	an	instance	of	the	Internet	Explorer	browser,	which	can	be	accessed	from	Visual	

Basic,	we	could	use	the	following	code:	

	 Dim	MyBrowser	As	SHDocVw.InternetExplorer	

	 Set	MyBrowser	=	New	SHDocVw.InternetExplorer	

The	reference	dialog	box	allows	us	to	select	another	application's	objects	that	we	want	

available	in	our	code	by	setting	a	reference	to	that	application's	object	library.	

4.3	Comparing	the	Two	Feasible	Solutions		
	

4.3.1	Selenium	WebDriver	

Using	 Selenium’s	 WebDriver	 would	 be	 beneficial	 in	 the	 long	 run	 given	 the	 fact	 that	

Selenium’s	WebDriver	specification	is	currently	in	draft	form	to	become	a	W3C	(World	Wide	Web	

Consortium)	Web	Standard.	 This	will	mean	 that	 any	web	browser	 software	 vendor	would	be	

required	 to	 support	Selenium	WebDriver	by	having	 their	own	 implementation	of	 it.	Although	

Selenium	has	its	own	scripting	language,	it	is	not	restricted	to	write	in	that	language	since	it	can	

work	 with	 other	 language	 bindings	 to	 support	 whatever	 scripting	 language	 the	 testers	 are	

	
	

30	|	Dai,	Ho	Wu	

comfortable	 with,	 including	 C#,	 Java,	 JavaScript,	 PHP,	 Python,	 among	 others.	 Additionally,	

Selenium	offers	 record-and-playback	capabilities.	Because	of	 the	 rapid	 test	development	 that	

Selenium	enables,	it	is	quite	popular	for	quick-cycle	development	methodologies	such	as	Agile	or	

Extreme	Programming.	Moreover,	Selenium	is	also	popular	with	IT	staff	who	automate	repetitive,	

web-based	 administrative	 tasks.	 Furthermore,	 Selenium	 supports	 most	 operating	 systems,	

among	them	Windows,	Macintosh,	Linux,	Unix,	and	etc.	Also,	Selenium	can	be	integrated	with	

Jenkins	or	Hudson	 for	 continuous	 integration	 (Kumykov,	 Luo,	 Shoop,	&	Zhang,	 2016).	 Finally,	

Selenium	can	be	used	for	Android,	iPhone,	Blackberry,	and	etc.	based	application	testing,	which	

means	that	it	will	be	useful	should	Barclays	start	adopting	mobile	GUI	web	apps.	

Despite	 its	numerous	features,	Selenium	is	not	a	complete,	comprehensive	solution	to	

fully	 automate	 the	 testing	 of	 web	 applications.	 It	 requires	 third-party	 frameworks,	 language	

bindings,	and	so	on	 to	be	 truly	effective.	Because	native	“Selenese”	 test	 scripts	are	not	user-

friendly	in	terms	of	readability,	they	are	difficult	to	modify.	Additionally,	Selenium	has	technical	

issues	 with	 browsers	 which	 are	 not	 Mozilla	 Firefox.	 Furthermore,	 it	 does	 not	 support	

conditionals,	loops,	and	has	trouble	finding	locators	without	the	help	of	additional	tools	such	as	

Firebug.	

4.3.2	Internet	Explorer	Object		

On	the	other	hand,	all	of	Barclays’	test	cases	are	easier	to	debug	using	Internet	Explorer	

Object,	because	everything	would	be	built	in-house.	It	is	very	user-friendly	to	choose	to	apply	in-

house	development	 tool	because	all	 codes	will	be	written	 in	one	 language,	which	 is	VBScript	

language.	Since	VBScript	is	very	similar	to	QTP	language,	it	is	easier	to	translate	the	QTP	part	of	

	
	

31	|	Dai,	Ho	Wu	

code.	It	would	also	be	easier	for	the	VBScript	experienced	staff	to	handle	the	new	tool	since	they	

already	know	how	to	write	in	VBScript.	Additionally,	the	codes	to	get	different	objects	in	QTP	are	

similar	to	the	codes	used	in	Internet	Explorer	Object,	so	it	would	be	more	simple	to	manage.			

However,	 there	 are	 also	disadvantages	of	 using	 this	 in-house	development	 tool.	 First,	

Barclays	would	have	to	manually	write	all	the	functions	to	operate	the	entire	testing	framework.	

This	would	indirectly	cost	the	company	money	as	they	need	to	hire	and	train	people	to	write	all	

the	functions	and	build	the	entire	library.	It	will	also	take	time	to	develop	a	new	in-house	tool,	

even	though	we	have	a	general	idea	on	how	to	get	this	done.	Finally,	it	is	harder	to	debug	the	

code	due	to	the	lack	of	wider	online	user	community.	In	order	to	check	the	bug,	we	would	have	

to	run	the	code	and	then	check	for	the	error	manually.	

	

	
	

	

	

	

	

	

	

	

	

	
	

32	|	Dai,	Ho	Wu	

Chapter	5:	Recommendations	and	Conclusions	

5.1	Conclusion		

After	comparing	the	ten	alternatives,	there	is	only	one	tool	satisfies	all	 four	criteria	⎯	

Selenium	Webdriver.	By	using	Selenium	Webdriver	as	an	automation	testing	software,	we	first	

need	to	write	code	to	use	the	programming	language	JAVA	to	get	objects.	Then,	we	need	to	link	

JAVA	to	VBScript	by	invoking	JAVA	files	by	using	code	that	would	be	written	in	VBScript.	To	fully	

replace	the	current	Barclays	testing	tool,	QTP/UFT,	we	researched	three	ways	to	replace	object	

repository	to	maintain	the	functionality	of	storing	objects	present	in	QTP.		

However,	 the	 main	 disadvantage	 of	 Selenium	 is	 the	 inconsistency	 of	 obtaining	 the	

objects.	Thus,	we	continued	researching	and	found	a	way	to	develop	an	in-house	development	

tool	by	using	Internet	Explorer	Object.	In	this	way,	we	can	use	VBScript	to	get	the	object	instead	

of	using	QTP/UFT.	There	is	no	need	of	any	plugins	to	connect	the	“get	element”	functions	with	

the	 testing	 cases	 since	 all	 test	 cases	 are	written	 in	 VBScript.	 This	would	 largely	 increase	 the	

system	consistency	and	save	the	team	time	to	study	new	programming	languages.	This	would	be	

the	best	solution	in	the	short	run.		

In	 comparing	 Selenium	WebDriver	 against	 Internet	 Explorer	Object,	 Selenium	has	 the	

advantages	 of	 increasing	 the	 efficiency	 of	 web	 application	 testing,	 having	 a	 function	 library,	

supporting	multiple	operating	system,	and	drafting	to	be	the	standard	of	the	World	Wide	Web	

Consortium,	which	 outweigh	 the	 advantages	 of	 Internet	 Explorer	 Objects,	 which	 is	 easier	 to	

debug	and	more	consistent	to	run	the	VBScript	test	cases.	

	
	

33	|	Dai,	Ho	Wu	

5.2	Recommendations	

In	the	short	run,	we	suggest	to	create	an	in-house	development	tool	by	using	the	VBScript	

scripting	 language,	 because	 it	 ties	 better	 to	 our	 current	 testing	 framework.	 In	 addition,	 the	

VBScript	language	is	the	QTP-liked	scripting	language.	It	is	easier	to	convert	the	QTP/UFT	piece	

of	code	to	VBScript	language.	No	other	programming	language	would	interfere	with	the	changes.	

As	 a	 consequence,	 the	 migration	 from	 QTP	 to	 the	 in-house	 development	 tool	 can	 happen	

smoothly.		

However,	 in	 the	 long	 run,	 we	 suggest	 replacing	 QTP/UFT	 with	 Selenium	 WebDriver,	

because	it	 is	a	trend	that	all	manual	tests	are	going	to	be	automated.	Especially	for	doing	the	

regression	test	that	needs	to	be	executed	over	and	over	again.	The	selenium	would	be	useful	in	

the	long	term.	If	Barclays	will	develop	the	mobile	GUI	web	app	in	the	future,	Selenium	WebDriver	

would	 also	be	useful	 for	 the	 testing	purposes.	 In	 addition,	we	 recommend	 the	 team	 to	 start	

writing	testing	cases	in	Java	and	use	Selenium	WebDriver	for	GUI	Web	app	testing	purposes	in	

future	new	projects.		

Even	though	Selenium	WebDriver	supports	multiple	browsers,	we	will	be	focusing	more	

on	IE	and	Google	Chrome	since	Barclays	only	supports	these	two.	Having	said	this,	it	is	important	

to	consider	the	possibility	of	adopting	a	headless	browser	testing	model,	or	a	browser	simulator	

(i.e.	HTMLUnit)	since	Selenium	WebDriver	also	supports	this.	Significant	processing	resources	can	

be	saved	by	using	a	headless	browser.	And	since	everything	would	run	in	the	background,	this	

would	 then	 create	 an	 even	 more	 seamless	 and	 “real”	 automated	 testing	 environment.	

Additionally,	one	could	start	automating	on	a	headless	server	(i.e.	continuous	integration	servers	

	
	

34	|	Dai,	Ho	Wu	

such	as	Jenkins).	

Through	these	recommendations,	we	hope	that	it	would	save	the	team	the	yearly	cost	of	

their	UFT	licenses	and	prevent	any	other	execution	issues	that	they	are	currently	facing	when	

dealing	with	UFT.	These	recommendations	could	eventually	be	useful	to	other	Barclays	teams,	

should	Barclays	decide	not	to	use	UFT	in	the	future.	

	

	

	

	

	

	

	

	

	

	

	

	

	
	

35	|	Dai,	Ho	Wu	

Chapter	6:	Reflecting	on	our	Experience	at	Barclays	

6.1	Discussion	of	Design	in	the	Context	of	the	Project		

Our	project	at	Barclays	was	an	opportunity	for	us	to	apply	what	we	have	learned	at	WPI.	

WPI	challenged	us	to	think	critically	and	to	work	in	a	fast-paced	environment.	This	allowed	us	to	

adapt	more	easily	into	Barclay's	challenging	working	environment.	As	a	major	global	investment	

bank	with	a	long	history,	Barclays	continuously	strives	to	be	a	forward-thinking	organization	in	a	

highly	competitive	 industry.	Due	to	demanding	nature	of	the	business,	Barclays	places	a	 large	

emphasis	 on	 employing	 cutting-edge	 technologies,	 while	 still	 striving	 to	maintain	 the	 legacy	

systems	they	have	in	place.	In	order	to	further	Barclays'	cutting-edge	technologies,	we	worked	

with	the	quality	assurance	team	to	improve	their	current	GUI	automation	testing	framework.		

6.2	Discussion	of	Constraints	Considered	in	the	Design		

At	the	beginning	of	the	project,	we	were	tasked	to	find	an	alternative	automation	tool	

that	could	replace	the	current	testing	software	in	order	to	reduce	costs	and	increase	usability.	To	

achieve	this,	we	had	to	developed	several	potential	solutions	to	the	issue.	Before	we	started	our	

research,	 we	 had	 to	 better	 understand	 the	 demands	 and	 constraints	 of	 this	 project.	 After	

consulting	subject	matter	experts,	we	devised	four	constraints	that	helped	us	come	up	with	a	

solution	that	would	not	only	satisfy	their	needs,	but	also	be	fully	compatible	with	their	legacy	

code.		

We	explored	software	tools	that	were	open	source	and	easily	modifiable.	By	using	a	free	

and	open-source	software,	we	potentially	saved	the	company	tens	of	thousands	of	dollars	in	their	

web	 application	 development.	 Additionally,	 we	 ensured	 that	 our	 solutions	 would	 support	

VBScript	scripting	language	because	existing	test	cases	were	written	in	this	language.	

	
	

36	|	Dai,	Ho	Wu	

6.3	Discussion	of	the	Need	for	Life-long	Learning			

Embedded	 within	 WPI's	 motto,	 "Lehr	 und	 Kunst",	 is	 the	 idea	 of	 embracing	 lifelong	

learning.	Learning	doesn't	have	to	stop	after	graduation.	It	is	not	confined	to	academic	learning,	

since	it	also	means	applying	what	we	have	learned	in	order	to	improve	our	lives	and	the	lives	of	

those	around	us.	

For	the	project,	after	reviewing	the	original	framework	of	the	testing	process,	we	were	

able	to	come	up	with	solutions	that	would	satisfy	the	constraints	given	to	us	while	still	achieving	

the	 intended	goal.	We	 learned	that	 in	such	a	complex	environment,	 it	 is	hard	to	eradicate	all	

legacy	code.		

Despite	the	fact	that	we	could	not	upgrade	the	entire	GUI	automation	testing	framework,	

we	feel	that	our	project	was	a	success	nonetheless.	All	in	all,	we	were	able	to	grow	and	see	the	

importance	of	applying	the	knowledge	and	skills	instilled	on	us	by	WPI.	We	were	able	to	witness	

firsthand	the	importance	of	a	project-based	curriculum	and	its	effects	in	fostering	effective	career	

development.		

	

	

	

	

	

	

	
	

37	|	Dai,	Ho	Wu	

Works	Cited	

ATG,	O.	(2016).	Oracle	ATG	Programming	Guide.	Retrieved	1	5,	2017,	from	
https://docs.oracle.com/cd/E23095_01/Platform.93/ATGProgGuide/html/s0204propertiesfilefo
rmat01.html	

BZW	-	History	-	21st	Century	-	Lehman	Brothers	Acquisition.	(2017).	Retrieved	1	5,	2017,	from	Wikipedia	
Acquisition	(Creative	Commons):	
http://www.liquisearch.com/bzw/history/21st_century/lehman_brothers_acquisition	

Chavan,	A.	(2016,	7	16).	Saturday,	July	16,	2016	Highlight	Element	in	Selenium	WebDriver.	Retrieved	12	
14,	2016,	from	Quality	Perspective:	
https://qaperspective.blogspot.com/2016_07_01_archive.html	

Delaware,	B.	B.	(2016).	Barclays	banking	history.	Retrieved	1	2,	2017,	from	Barclays	:	
https://www.banking.barclaysus.com/our-history.html	

Group,	C.	O.	(2014).	Barclays.	Retrieved	1	2,	2017,	from	OMICS	International:	
http://research.omicsgroup.org/index.php/Barclays	

IBM.	(2016,	3).	Rational	Functional	Tester.	Retrieved	11	2,	2016,	from	IBM	Software:															
http://www-03.ibm.com/software/products/en/functional	

Kumykov,	K.,	Luo,	T.,	Shoop,	A.	K.,	&	Zhang,	B.	(2016,	1).	Development	of	an	Operational	Process	for	
Continuous	Delivery.	Retrieved	1	2,	2017,	from	WPI:	https://web.wpi.edu/Pubs/E-
project/Available/E-project-012216-150216/unrestricted/WallSt_Barclays2_MQP.pdf	

Microsoft.	(2015).	Use	UI	Automation	To	Test	Your	Code.	Retrieved	11	12,	2016,	from	Microsoft	
Developer	Network:	https://msdn.microsoft.com/en-us/library/dd286726.aspx	

Oracle.	(2008).	Oracle	Application	Testing	Suite.	Retrieved	11	25,	2016,	from	Oracle	Technology	
Network:	http://www.oracle.com/technetwork/oem/app-test/index.html	

Pro,	S.	(2017).	The	Tester's	Web	Automation	Tool.	Retrieved	1	3,	2017,	from	Sahi:	http://sahipro.com/	

Reilly,	S.,	&	Tupelo-Schneck,	R.	(2010,	1).	Digital	Object	Repository	Server:	A	Component	of	the	Digital	
Object	Architecture.	Retrieved	12	21,	2016,	from	D-Lib	Magazine:	
http://www.dlib.org/dlib/january10/reilly/01reilly.html	

SeleniumHQ.	(2014).	SeleniumHQ	Browswer	Automation.	Retrieved	11	25,	2016,	from	
http://www.seleniumhq.org/about/platforms.jsp	

Software,	S.	(2017).	Automated	Software	Testing	TestComplete	Platform:	Testing	For	Desktop,	Mobile,	
Web,	&	Paged	Applications.	Retrieved	1	01,	2017,	from	SmartBear:	
https://smartbear.com/product/testcomplete/overview/	

	
	

38	|	Dai,	Ho	Wu	

TestPlant.com.	(2017).	eggPlant	Functional.	Retrieved	1	03,	2017,	from	TestPlant:	
http://www.testplant.com/eggplant/testing-tools/eggplant-developer/	

White,	B.,	&	Dash,	E.	(2008,	9	17).	Barclays	Reaches	$1.75	Billion	Deal	for	a	Lehman	Unit	.	Retrieved	12	
23,	2016,	from	New	York	Times:	
http://www.nytimes.com/2008/09/18/business/worldbusiness/18barclays.html	

	

	

	

	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
	

39	|	Dai,	Ho	Wu	

Appendix	1	

Using	JAVA	to	get	the	object:	

package	mypackage;	

import	org.openqa.selenium.By;		

import	org.openqa.selenium.WebDriver;	

import	org.openqa.selenium.WebElement;		

import	org.openqa.selenium.support.ui.ExpectedCondition;	

import	org.openqa.selenium.chrome.ChromeDriver;		

import	org.openqa.selenium.support.ui.WebDriverWait;	

public	class	myclass	{	

				public	static	void	main(String[]	args)	{	

System.setProperty("webdriver.chrome.driver",	"C:\\selenium-java-
2.35.0\\chromedriver_win32_2.2\\chromedriver.exe");	

											WebDriver	driver	=	new	ChromeDriver();		

											driver.get("http://www.google.com");		

											WebElement	element	=	driver.findElement(By.name("q"));	

											element.sendKeys("Cheese!");	

											element.submit();	

											//driver.close();	

				}	

}	

	

	

	

	

	

	
	

40	|	Dai,	Ho	Wu	

Appendix	2	

VBScript	code	invoking	JAVA:	

call	PerformSearch("qtpvbsdemojar.jar",	"Search",	"C:/wpiintern/IEDriverServer.exe",	
"http://www.google.com",	"Google",	"test")	

Public	Sub	PerformSearch(sJarFile,	sFunction,	sPath,	sURL,	sTitle,	sInput)	

sCmdString	=	"java	-jar	"	&	Chr(34)	&	sJarFile	&	Chr(34)	&	"	"	&	trim(sFunction)	&	"	"	
&_Chr(34)	&	sPath	&	Chr(34)	&	"	"	&	Chr(34)	&	sURL	&	Chr(34)_&	"	"	&	Chr(34)	&	sTitle	
&	Chr(34)	&	"	"	&	Chr(34)	&	sInput	&	Chr(34)	

												sError	=	ExecCmdString(sCmdString)	

End	Sub	

Public	Sub	PerformSearch2(sFunction,	sJarFile,	sMainFunction,	sFunc,	sPath,	sTitle,	sInput)	

sCmdString	=	"java	-cp	"	&	Chr(34)	&	sJarFile	&	Chr(34)	&	"	"	&	trim(sMainFunction)	&	"	"	
&_Chr(34)	&	sFunc	&	Chr(34)	&	"	"	&	Chr(34)	&	sPath	&	Chr(34)	&	"	"	&	Chr(34)	&	sURL	
&	Chr(34)_&	"	"	&	Chr(34)	&	sTitle	&	Chr(34)	&	"	"	&	Chr(34)	&	sInput	&	Chr(34)	

												sError	=	ExecCmdString(sCmdString)	

End	Sub	

Private	Function	ExecCmdString(sCmdString)	

													Set	oExec	=	CreateObject("WScript.Shell")	

													Set	oOutExec	=	oExec.Exec(sCmdString)	

													ExecCmdString	=	oOutExec.StdErr.ReadAll	

													If	InStr(ExecCmdString,	"FAIL")	=	0	and	InStr(ExecCmdString,	"Exception")	=	0		

Then	

													ExecCmdString	=	""	

													End	If	

													Set	oOutExec	=	Nothing	

													Set	oExec	=	Nothing	

End	Function	

	
	

41	|	Dai,	Ho	Wu	

Appendix	3	

Sample	code	to	open	a	browser	(it	checks	to	see	which	browser	to	use):	

public		String	openBrowser(String	object,	String	data,	String	configPath)	{											
												APP_LOGS.debug("Opening	browser");	
												if	(CONFIG.getProperty(data).equals("Mozilla"))	
																driver	=new	FirefoxDriver();	
												else	if	(CONFIG.getProperty(data).equals("IE"))	
																driver	=new	InternetExplorerDriver();	
												else	if	(CONFIG.getProperty(data).equals("Chrome"))	
																driver	=new	ChromeDriver();	
												else	if	(CONFIG.getProperty(data).equals("Safari"))	
																driver	=new	SafariDriver();	
	
												driver.manage().window().maximize()	;	
	
								}	
	
public		String	clickButton(String	object,	String	data,String	configPath){	
								OR=new	ObjectRepLocator(ObjectRepo);	
								APP_LOGS.debug("Clicking	on	Button");	
								try{	
												driver.findElement(By.xpath(OR.getLocator(object,configPath))).click();	
								}catch	(Exception	e){	
												return	Constants.KEYWORD_FAIL+	"	Not	able	to	click	on	button"+e.getMessage();	
								}					
								return	Constants.KEYWORD_PASS;	
				}	

Sample	code	to	run	test	cases	in	Google	Chrome	using	the	Selenium	WebDriver:		
import	java.io.IOException;	
import	org.openqa.selenium.WebDriver;	
import	org.openqa.selenium.chrome.ChromeDriver;	
	
public	class	ChromeTest	{	
	
				/**	
					*	@param	args	
					*	@throws	InterruptedException	
					*	@throws	IOException		
					*/	
				public	static	void	main(String[]	args)	throws	InterruptedException,	IOException	{	
								//	Telling	the	system	where	to	find	the	Chrome	driver	

	
	

42	|	Dai,	Ho	Wu	

								System.setProperty(
																"webdriver.chrome.driver",	
																"E:/chromedriver_win32/chromedriver.exe");	
	
								WebDriver	webDriver	=	new	ChromeDriver();	
	
								//	Opening	google.com	
								webDriver.navigate().to("http://www.google.com");	
	
								String	html	=	webDriver.getPageSource();	
	
								//	Printing	result	here.	
								System.out.println(html);	
	
								webDriver.close();	
								webDriver.quit();	
				}	
}	

Sample	Java	code	implementing	a	Google	search	in	Selenium:	
//	Initialize	an	instance	of	WebDriver		
	 WebDriver		driver		=		new		HtmlUnitDriver	();		
	 //	Load	Google.com		
	 driver	.	get	("https://www.google.com");		
	 //	Proceed	to	print	the	title		
	 System	.	out	.	println	("Page	title:	"		+		driver	.	getTitle	());		
	 //	Enter	the	search	word	into	the	query	box	and	submit	the	search		
	 WebElement		element		=		driver	.	findElement	(By	.	name	("q"));		
	 element	.	sendKeys	("Test");		
	 element	.	submit	();		
	 //	Print	the	page	title		
	 System	.	out	.	println	("Page	title:	"		+		driver	.	getTitle	());		
	 //	Proceed	to	quit	the	WebDriver		
	 driver	.	quit	();	
	
	
	
	
	
	
	

	
	

43	|	Dai,	Ho	Wu	

Appendix	4	

The	find	element	by	ID	function	can	be	written	in	either	way:		
WebElement	Username	=	driver.	findElement	(By.	Id(“Username”));	
//Action	can	be	performed	on	Input	Button	element		
element.	Submit();	
	
or	
	
By	locator	=	By.id(“UserName”);	
WebElement	UserName		=	driver.	findElement	(locator);		
By	name		
	
The	function	to	get	the	element	by	name	can	be	written	as:	
WebElement		element	=	driver.	findElement	(By.name(“firstname”));	
//Action	can	be	performed	on	Input	test	element		
Element	.sendKeys	(“ToolsQA”);	
	
The	function	to	get	the	element	by	class	name	can	be	written	as:	
WebElement	parentElement	=	driver.findElement	(By.className	(“button”));	
WebElement	childElement	=	parentElement.findElement	(By.id(“submit”));	
childElement.submit();	
	
The	function	to	get	the	element	by	tag	name:	
WebElement	parentElement	=	driver.findElement	(By.tagName	(“button”));	
//Action	can	be	performed	on	Input	Button	element		
Element.submit();	
	
The	function	to	get	the	element	by	linktext	and	partial	link	text:	
WebElement	parentElement	=	driver.findElement	(By.LinkText(“Partial	Link	Test”));	
Element.clear();	
//Or	can	be	identified	as	
WebElement	element	=	driver.findElement(By.partialLinkText(“Partial”));	
Element.clear();	
	
The	function	to	get	the	element	by	xpath:	
WebElement	Username	=	driver.findElement(By.xpath(“Element	XPATHEXPRESSION”));	
element.	Submit();	
	
	

	
	

44	|	Dai,	Ho	Wu	

Appendix	5	

<ObjRep>	
<url>http://www.google.com</url>	
<search_TxtFld>q</search_TxtFld>	
<submt>btnG</submt>	
</ObjRep>	
	
To	retrieve	this	particular	instance:	
public	void	objRepository(String	eleName){	
				try{	
				File	file=new	File("F:\\Test.xml");	
				DocumentBuilderFactory	dbf=DocumentBuilderFactory.newInstance();	
				DocumentBuilder	db=dbf.newDocumentBuilder();	
				Document	doc=db.parse(file);	
				doc.getDocumentElement().normalize();	
				//System.out.println("The	node	name	is:	"+doc.getDocumentElement().getNodeName());				
	
				NodeList	nList=doc.getElementsByTagName("ObjRep");	
				//System.out.println("The	length	is:	"+nList.getLength());	
				for(int	i=0;	i<nList.getLength();	i++){	
								Node	nNode=nList.item(i);	
								if(nNode.getNodeType()==Node.ELEMENT_NODE){	
										Element	ele=(Element)	nNode;	
										System.out.println(ele.getElementsByTagName(eleName).item(i).getTextContent());	
										}	
				}	
	
				}catch(Exception	e){	
								e.printStackTrace();	
				}	
}	
	
To	utilize	the	Object	Repository:	
WebDriver	d	=	new	FirefoxDriver();	
d.get(objRepository(url));	
d.findelement(by.name(objRepository(search_TxtFld)).sendkeys("test");	
d.findelement(by.name(search_TxtFld(submt)).click();	
	
	
	

	
	

45	|	Dai,	Ho	Wu	

Appendix	6	

public	class	ObjectMap	{						
				Properties	prop;					
				public	ObjectMap	(String	strPath)	{	
								prop	=	new	Properties();	
								try	{	
												FileInputStream	fis	=	new	FileInputStream(strPath);	
												prop.load(fis);	
												fis.close();	
								}catch	(IOException	e)	{	
												System.out.println(e.getMessage());	
								}	
				}	
	
The	class	contains	a	single	method	getLocator,	which	returns	a	By	object	that	is	used	by	the	
Selenium	browser	driver	object	(such	as	a	HtmlUnitDriver	or	a	FirefoxDriver):	
	
public	By	getLocator(String	strElement)	throws	Exception	{				
								//	retrieve	the	specified	object	from	the	object	list	
								String	locator	=	prop.getProperty(strElement);	
										
								//	extract	the	locator	type	and	value	from	the	object	
								String	locatorType	=	locator.split(":")[0];	
								String	locatorValue	=	locator.split(":")[1];	
										
								//	for	testing	and	debugging	purposes	
								System.out.println("Retrieving	object	of	type	'"	+	locatorType	+	"'	and	value	'"	+	
locatorValue	+	"'	from	the	object	map");	
										
								//	return	a	instance	of	the	By	class	based	on	the	type	of	the	locator	
								//	this	By	can	be	used	by	the	browser	object	in	the	actual	test	
								if(locatorType.toLowerCase().equals("id"))	
												return	By.id(locatorValue);	
								else	if(locatorType.toLowerCase().equals("name"))	
												return	By.name(locatorValue);	
								else	if((locatorType.toLowerCase().equals("classname"))	||	
(locatorType.toLowerCase().equals("class")))	
												return	By.className(locatorValue);	
								else	if((locatorType.toLowerCase().equals("tagname"))	||	
(locatorType.toLowerCase().equals("tag")))	
												return	By.className(locatorValue);	
								else	if((locatorType.toLowerCase().equals("linktext"))	||	
(locatorType.toLowerCase().equals("link")))	

	
	

46	|	Dai,	Ho	Wu	

												return	By.linkText(locatorValue);	
								else	if(locatorType.toLowerCase().equals("partiallinktext"))	
												return	By.partialLinkText(locatorValue);	
								else	if((locatorType.toLowerCase().equals("cssselector"))	||	
(locatorType.toLowerCase().equals("css")))	
												return	By.cssSelector(locatorValue);	
								else	if(locatorType.toLowerCase().equals("xpath"))	
												return	By.xpath(locatorValue);	
								else	
												throw	new	Exception("Unknown	locator	type	'"	+	locatorType	+	"'");	
				}	
	
Getting	the	objects	from	the	objects	map:		
public	static	void	main	(String	args[])	{	
		
//	Create	a	new	instance	of	the	object	map	
								ObjectMap	objMap	=	new	ObjectMap("objectmap.properties");	
		
//	Start	a	browser	driver	and	navigate	to	Google	
								WebDriver	driver	=	new	HtmlUnitDriver();	
								driver.get("http://www.bing.com");	
		
//	Execute	our	test	
								try	{	
														
//	Retrieve	search	text	box	from	object	map	and	type	search	query	
												WebElement	element	=	
driver.findElement(objMap.getLocator("bing.homepage.textbox"));	
												element.sendKeys("Alfa	Romeo");	
														
//	Retrieve	search	button	from	object	map	and	click	it	
												element	=	driver.findElement(objMap.getLocator("bing.homepage.searchbutton"));	
												element.click();	
														
//	Retrieve	number	of	search	results	using	results	object	from	object	map	
												element	=	driver.findElement(objMap.getLocator("bing.resultspage.results"));	
												System.out.println("Search	result	string:	"	+	element.getText());	
														
//	Verify	page	title	
												Assert.assertEquals(driver.getTitle(),	"Alfa	Romeo	-	Bing");	
														
	
	
	

	
	

47	|	Dai,	Ho	Wu	

								}	catch	(Exception	e)	{	
												System.out.println("Error	during	test	execution:\n"	+	e.toString());	
								}	
					
				}	

	
	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	
	

48	|	Dai,	Ho	Wu	

Appendix	7	

1)		Right	click	on	‘x‘	package	then	select	New	>	Class	and	name	it	as	“ProductListing_Page”.		

	
public	class	ProductListing_Page	{	
}	
	

2)	Create	another	public	static	class	inside	the	above	class	‘x‘	and	name	it	as	Product_1.		
public	class	ProductListing_Page	{	
				public	static	class	Product_1		
						}	
	}	
	
3)	Now	create	different	Static	Methods	for	each	child	element	of	Product	_1.		These	methods	
will	need	an	Argument	(WebDriver)	and	a	Return	value	(WebElement).		
package	x;	
import	org.openqa.selenium.WebDriver;	
import	org.openqa.selenium.WebElement;	
public	class	ProductListing_Page	{	
		
	public	static	class	Product_1{	
	public	static	WebElement	txt_Price(WebDriver	driver){	
	WebElement	element	=	null;	
//	Write	Code	to	find	element	here	
	return	element;	
}	
		
	public	static	WebElement	txt_SalesPrice(WebDriver	driver){	
	WebElement	element	=	null;	
//	Write	Code	to	find	element	here	
return	element;	
}		
		
	public	static	WebElement	img_Product(WebDriver	driver){		
	WebElement	element	=	null;	
//	Write	Code	to	find	element	here	
return	element;	
}	
		
	public	static	WebElement	txt_Name(WebDriver	driver){	
	WebElement	element	=	null;		
//	Write	Code	to	find	element	here	
	return	element;	
}		
		

	
	

49	|	Dai,	Ho	Wu	

	public	static	WebElement	txt_Desc(WebDriver	driver){	
	WebElement	element	=	null;		
//	Write	Code	to	find	element	here	
	return	element;		
}		
		
	public	static	WebElement	btn_AddToCart(WebDriver	driver){		
	WebElement	element	=	null;	
//	Write	Code	to	find	element	here	
	return	element;		
}		
}	
}	
This	piece	of	code	for	Selenium	is	similar	to	QTP’s	intelligent	code	completion	structure.	

	

	
	

	

	

	

	

	

	

	

	
	

	

	

	
	

50	|	Dai,	Ho	Wu	

Appendix	8	

Accessing	the	website	URL:	
Dim	URL		
Dim	IE		
Set	IE	=	CreateObject("internetexplorer.application")	
URL	=	"https://www.google.com"		
IE.Visible	=	True	
IE.Navigate	URL	
	
WScript.Quit	Main	
	
Function	Main	
		Set	IE	=	WScript.CreateObject("InternetExplorer.Application",	"IE_")	
		IE.Visible	=	True	
		IE.Navigate	"http://google.com"	
	
End	Function	
	
Using	VBS	to	access	the	web	by	getelement	or	by	ID:	
Dim	objWshShell,IE,searchStr	
Set	objWshShell	=	Wscript.CreateObject("Wscript.Shell")	
Set	IE	=	CreateObject("InternetExplorer.Application")	
searchStr	=	"test"	
With	IE	
		.Visible	=	True	
		.Navigate	"http://www.google.com"	
'Wait	for	Browser	
		Do	While	.Busy	
				WScript.Sleep	100	
		Loop	
	.document.getElementById("lst-ib").Value	=	searchStr	
End	With	
objWshShell.SendKeys	"{ENTER}"	
	
	
Using	VBS	to	load	a	web	button	(return	values	by	click):	
Dim	objWshShell,IE,searchStr	
Set	objWshShell	=	Wscript.CreateObject("Wscript.Shell")	
Set	IE	=	CreateObject("InternetExplorer.Application")	
With	IE	
		.Visible	=	True	
		.Navigate	"https://www.wpi.edu/"	

	
	

51	|	Dai,	Ho	Wu	

'Wait	for	Browser	
		Do	While	.Busy	
				WScript.Sleep	100	
		Loop	
.document.getElementById("search-dropdown-button").Click	
End	With	
	
Usig	VBS	to	load	a	web	table:	
Dim	Browser,strOut	
Set	Browser	=	CreateObject("InternetExplorer.Application")	
With	Browser	
		.Visible	=	False	
		.Navigate	"http://anees.amoeba.co.in/table.html"	
'Wait	for	Browser	
		Do	While	.Busy	
				WScript.Sleep	100	
		Loop	
End	With	
Set	daTable	=	Browser.Document.getElementById("daTable")	
strOut	=	""	
For	i	=	0	To	daTable.rows.length	-	1	
		For	j	=	0	To	daTable.rows.item(i).cells.length	-	1	
				strOut	=	strOut	&	daTable.rows.item(i).cells.item(j).innerText	&	Chr(9)	
		Next	
		strOut	=	strOut	&	Chr(13)	&	Chr(10)	
Next	
Browser.Quit	
Browser	=	Null	
Msgbox	"Table	Data:	"	&	Chr(13)	&	Chr(10)	&	strOut	
	

	
	

	

	

	

	

	
	

52	|	Dai,	Ho	Wu	

Appendix	9	

Code	to	convert	object	repository	into	XML	format:	
Creating	the	ObjectRepositoryUtil	to	work	with	OR	
Set	objORU	=	CreateObject("Mercury.ObjectRepositoryUtil")	
	
Exporting	the	OR	into	new	XML	file:	
objORU.ExportToXML"C:\Users\TestMe.tsr","C:\Users\TestMe.XML"	
	
'Destroying	the	object	
Set	objORU	=	Nothing	
how	to	add	the	object	by	using	VBScript	
Set	myRepository	=	CreateObject("Mercury.ObjectRepositoryUtil")	
myRepository.Load	"C:\QuickTest\Tests\Flights.tsr"	
myRepository.AddObject	myLink,	Browser("B").Page("P"),	"myLinkName"	
	
Another	way	that	can	be	used	to	get	the	object	from	XML	file,	we	use	the	following	functions:	
Set	objExcel	=	GetObject(,	"Excel.Application")	
	
For	Each	objWorkbook	In	objExcel.Workbooks	
				WScript.Echo	objWorkbook.Name	
Next	
	
ObjExcel.Quit	
Notice	the	comma	before	'Excel.Application'.	The	script	gets	a	reference	to	a	running	Excel	
application,	lists	open	workbooks	names	and	quits	Excel.	

