
BARRY KISSANE and personal technology

Until recently, the school algebra curriculum was

rarely influenced by either computers or calcula

tors. There are now many powerful, interesting and

enticing technologies presently available for school

mathematics in general, and algebra in particular.

These include educational computer software such

as Derive and Cabri Geometry, powerful new devel

opments in telecommunications such as

multimedia pages accessible via Internet web

browsers, and mixtures of the two such as

LiveMath. Exciting and important as such develop

ments are, they share the common weakness of

requiring relatively expensive computer and

telecommunications facilities, so that it will be

some time before they can be genuinely regarded

as accessible to pupils at large in a particular state

or country.

In this paper, the focus is on personal tech

nology, here regarded as technology that is likely to

be available at the personal level to essentially all

pupils involved in studying mathematics lKissane,

1995). The significance of such technology is that

it is unreasonable and unrealistic to expect the

official and classroom-realised mathematics

curriculum to routinely use technology that is not

personal in this sense, Indeed, although great

strides have been made in technology generally

over the past generation, the influence of these

developments have not been felt in school curricula

because the technology has not been personally

accessible to enough pupils to be taken seriously

by curriculum developers and examination boards,

as has been argued elsewhere (e.g. Kissane, 2000).

The term 'algebra' has a range of meanings

within mathematics, But for the present purpose,

focusstng on secondary school mathematics, three

aspects of algebra seem to be of key significance:

representing situations and objects using algebraic

symbols, dealing with functions and their graphs,

and solving equations and inequalities. These

same three aspects were highlighted in the

analysis of algebra provided by A national state

ment on mathematics for Australian schools

(Australian Education Council, 1990), where the

first of these was described as 'expressing gener

ality'.

Algebra is of particular interest in the consider

ation of technology and the curriculum for a

number of reasons. One of these concerns the

development over the last decade of powerful

computer software with algebraic capabilities

exceeding those of most professtonal mathemati

cians, such as Mathematica and Maple. A second

concerns the central role algebra has long played

in school mathematics, beautifully described

recently by Kennedy (1995) using the metaphor of

a very large and difficult to climb tree trunk. A

third reason concerns the fact that the best exam

ples of personal technology at present, graphics

calculators, contain several capabilities of partic

ular importance to algebra, some of which will be

briefly described and considered in this paper.

This paper focuses on the teaching of learning

of algebra under the assumption that all students

have access to a graphics calculator whenever they

might wish to use one, including situations of

teaching, learning and assessment. Such an

assumption demands some reconsideration of

what aspects of algebra are of key importance.

Without claiming to treat this question in full, the

paper offers some perspectives on different aspects

of the algebra curriculum and their Significance for

the next few years.
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Symbolising

An important aspect of algebra concerns repre

senting situations and objects symbolically. A

graphics calculator has an inbuilt notion of a vari

able as a placeholder in the form of storage

memories. which are named alphabetically in the

same way that variables usually are.
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The syntax of the Casio cfX-9850GB PLUS

calculator. reflected in the screen above, follows

conventional mathematical syntax. so that pupils

can interact with variable quantities on their calcu

lator in the same way that they do on the printed

page. The calculator screen shows A;: 3 and B;: 7.

two particular values of the variables A and B. For

these values, the calculator determines that

2A2B;: 126. Notice that there is no multiplication

sign after the 2 or between the variable expressions.

Graph Func :y=
Y1BX2
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Y3aXi!+2X-2
~:
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The table suggests that the two expressions

always have the same value and the graph of the

two expressions is seen to be a single graph, unex

pectedly so for many young pupils. These ideas.

along with others, are explored for pupils by

Kissane & Harradine (2000).

Functions and graphs

It is clear that a graphics calculator has capabili

ties for efficiently representing functions in three

ways: symbolically. graphically and numerically.

The screens below show that the symbolic repre

sentation uses (mostly] conventional mathematical

syntax. For example. a multiplication sign between

numerals and variables is unnecessary.
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5~X

X+4~X

The screen above shows how an important idea

of a recursive relationship can be represented

symbolically and powerfully on the calculator: each

press of the calculator's EXE key executes the

recursive step x + 4 ~ x another time, with imme

diate and understandable results, in this case

providing successive terms of an arithmetic

progression.

In addition to symbolic representations of these

kinds, a graphics calculator offers ways for pupils

to make sense of some symbolic statements. For

example. the algebraic equivalence of different

expressions such as xix - 1) and 2'- x can be expe

rienced by considertng a table of values or a graph

related to each.

Tab 1eo FI..me : y-
Y1aX(X-1)
Y2aXi!-X

Once represented symbolically. graphs can be

drawn on a suitable part of the coordinate plane,
called a window. and can then be explored by

pupils in various ways.

Such possibilities make it imperative that
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pupils understand aspects of the scaling of graphs.

previously given less attention in elementary

algebra. Unless care is taken (and suitable exper

tise developed), a graph may be drawn by pupils on

axes With different scales. resulting in a kind of

distortion. For example, the graphs drawn below

each show the two linear functions, fiX! ;; x + 1 and

g(X! ;; 3 - x. In the first screen the graphs are drawn

on axes with equal scales, while those below are

drawn on axes Without equal scales (but on a

common calculator default screen of -10 :S x :S 10

and -10 :S Y :S 1O). While each graph shows a line.

within the screen limitations, only those in the first

screen are perpendicular. With each line inclined at

45 degrees to the x-axis, as expected.

A major advantage of these automatic func

tional representations is that pupils can easily

generate and study many examples of functions

from a particular family. The experience provided

by this activity, if carefully structured by the

teacher, can provide pupils With important Instghts

about functions and their graphical representa

tions. For example, translation properties of

graphs are readily experienced: the graph offix- k)

is congruent to that of J{X! moved k units to the

right. Prior to the avallabiltty of personal tech

nology. it was usually difficult to provide pupils

with adequate experience of the vartous families of

functions. Since a great deal of time was needed for

plotting individual points in order to see a graph,

correspondingly less time was available to think

about the results of these labours, or even about

graphs as representations at all.

Apart from representing functions graphically.

a graphics calculator allows pupils to generate

many numerical values for a function. Prior to the

avatlabthty of technology. pupils needed to do this

for themselves (in order to produce a graph). Now,

they can use the table of values to reinforce and

understand the nature of the function represented
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graphically. For example. a table of values for a

linear function shows a constant increase in the y
values associated With equally spaced x-values, a

reflection of the critical idea of a gradient of the

function - and of a linear function in particular;

quadratic and exponential functions have different

patterns of change. This powerful possibility of

thinking about a function symbolically, graphically

and numerically is sometimes referred to as the

rule oJ three.

Having ready access to a graph of a function

demands a good answer to the reasonable question

of what purpose is served by drawtng a graph. In

my experience, such a question was rarely asked

prior to the avallablltty of graphics calculators;

indeed, drawing (or 'plotting' or 'sketching') a graph

of a function frequently has seemed to be an end in

itself in school algebra. Once a decent graph is

available, however, pupils can be expected to use it

for some purpose, such as to seek maxima or

minima of a function on an interval, or relate it to

the solutions of associated equations. The first of

these tasks was until recently regarded as a major

purpose of the calculus (except for the particular

case of quadratic functions), while the second of

these was until recently not regarded as a practical

purpose of graphing at all. It has become necessary

to reconsider these views of algebra in the light of

an accessible technology.

Equations

The idea of solving an equation is absolutely funda

mental to school algebra, and arguably provided its

strongest justification for inclusion in the common

curriculum, A generation ago, prior to the so-called

'New Mathematics', the use of symbols in algebra

was mostly for the purpose of representing and

solving equations. Indeed, generations of pupils

learned to think of x as 'the unknown' and of

algebra as a ritual of some kind for 'finding' the

unknown. The formal study of functions and their

representations in school algebra seems rather

more recent.

With the benefit of hindsight, it is now perhaps

surprtstng to realise how limited was the repertoire

of equations that pupils encountered for which

solutions were possible. Indeed, most pupils never

advanced beyond the solution of linear and
quadratic equations, all of which could be solved.

and the few particular species of indicial equations

and polynomial equations for which exact solu-



tions were possible. The reason for these limita

tions, of course, was that the only technology for

solving equations was that associated with exact

solutions. In the senior secondary years, some

exponential equations could be solved (exactly),

but required a knowledge of logarithms.

The availability of personal technology has

changed this situation considerably. A calculator

such as Caste's cfx-9850GB PLUS offers users a

variety of ways of finding numerical approxima

tions to solutions of elementary equations, and

thereby provides an alternative mechanism to deal

with the problems that appeared to motivate the

study of equations in the first place. For example.

pupils can readily find an approximate solution to

almost any equation understandable to them using

a process of numerical 'trial and adjustment' on a

graphics calculator.

10
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a function, using tracing and zooming as a mecha

nism to flnd, and improve. an approximation.

Although a little tedious, such methods offer a

conceptual understanding of the nature of the solu

tion to an equation that was frequently missing in

standard, exact, symbolic routines.

It is important to distinguish strategies like

these from more efficient versions that might be

used after pupils have a confident sense of the

concepts involved. In the case of the Casio cfx

9850GB PLUS calculator, automated versions of

these kinds of approximation procedures are avail

able. Importantly, there are a variety of alternatives

available, requiring pupils to exercise discretion

and thoughtfulness when solving an equation,

rather than using the one, standard, guaranteed

method of the past. The screens below illustrate

three of the alternatives in this case.

Solve(X"'3+X-11.1)
2.074340759

~=i!.1l'l~~~1l'l511& V=II
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I I MOT
~=i!.D'I~~~1l'l511& V=1l

Three of the many possible paths towards

solving on this calculator are suggested by the

screens above. The first of these mechanisms illus

trates the ease with which pupils can 'guess, check

and improve' a potential solution to the equation

]3 + x = 11 using a calculator with a screen that

allows them to see their previous work. The

powerful strategy of 'guess, check and improve' is

one of the first introduced into the Access to Algebra

course (Lowe et al., 1993-4). The second screen

illustrates how a tabulation of a suitable function

allows for easy identification of good approxima

tions to a solution, which can be followed by some

tracing and zooming to improve an approximation.

The third screen represents the relationship

between an equation and a corresponding graph of

The first screen shows a solve command used in

the calculator's home computational screen (in

which it is essentially being used as a scientific

calculator). To use such a command, pupils need

to interpret the calculator's syntax requirements,

and understand the equivalence of solving the

equation ]3 + x = 11 and finding roots of the func

tionJ{xl =]3 + x- 11. The second screen essentially

automates the earlier procedures involving

repeated tracing and zooming. The calculator's G

Solve mechanism performs the automation

automatically, to locate the x-value for which the

function fix) = J? + x has a val~e of 11. The third

screen indicates that there are variations on the

graphical approximation theme. The one illus

trated here concerns finding the root of the
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function J{x) = 2 + x - 11, which requires a similar

transformation to that needed for the numerical

solution. Still other possibilities exist, such as

looking for points of intersection of the graphs of

the function J{x) = 2 and the function g(x) = 11 - x.

As if these possibilities were not enough, the

calculator also allows for automated solving by

entering the equation into the Solver, as shown on

the next screen. The screen suggests how the

calculator reinforces the important conceptual fact

that the value obtained makes the left and right

sides of the equation equivalent (at least within the

limits of accuracy of the calculator).

Eq: X"'3+X=11
X=2.074340759

L ft=l1
R9t=11

Alternatively, as the equation used to illustrate

these ideas here is a cubic, it can also be tackled

using the Polynomial Solver on this calculator,

providing the additional information that there are

two complex roots as well as the real root. The two

screens below show this process.

aX3+bXi!+cX+d=0
a 1.0 C o:l

C-- --0 --I -.JJ

-11

aX3+bXi!+cX+d=0
:f

I -1.03'+i!.05&i]
i! -1.03'-i!.05&i
3 I

2.074340759

Before the advent of personal technology of this

kind, pupils could solve a restricted range of equa

tions exactly in essentially two ways. Successive

transformations using the field properties of

equality are called do the same thing to both sides

in Lowe et al. (1993-94); alternatively, solutions

relied on the multiplication property of zero, useful

for solving polynomial equations for which linear

factors could be found. Important as these two

techniques are for exact solutions of equations,

their limitations have become clearer in the light of

calculators offering a range of alternatives in addi

tion. Access to technology demands a

reconsideration of the balance.
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Symbolic manipulation

For many pupils in the past. algebra has been seen

as mainly concerned with symbolic manipulation.

generally devoid of a context, which seems to have

been an end in itself. At least, this is the impres

sion created when looking at typical pupil texts

and typical pupil assessment.

A good deal of symbolic manipulation in schools

has been necessary in order to deal with the

limited mechanisms available for solving equa

tions. The main practical justification for the very

considerable emphasis on techniques such as

expanding, stmpllfytng. collecting llke terms and

factortstng has been that these provided the sole

mechanisms for the exact solution of equations

and the theoretical verification of the solutions. As

noted above, some of the capabilities of graphics

calculators offer opportunities to reconsider the

emphasis on exact solution methods. at least at the

early stages of algebraic education, since viable

alternatives exist, provided all pupils have reason

able access to them,

Additionally. recent manifestations of personal

technology have introduced the new dimension of

performing symbolic manipulation with the

support of a graphics calculator. The resulting

devices have come to be called algebraic calcula

tors, and are essentially graphics calculators with

the addition of symbolic manipulation software of

various kinds. They are, and are intended to be.

examples of personal technology in the sense that

the term has been used in this paper. Indeed, it

seems likely that such devices will become the

standard for secondary school mathematics educa

tion before much longer, especially if the

affordability issues are addressed (as they seem to

have been in some countries already).

The significance of such devices for the algebra

curriculum is still being determined internation

ally, even though they have been available now for

at least six or seven years. A brief description of a

continuum of possible responses is provided in

Kissane (l999) , in which parallels are drawn with

the case of the arithmetic calculator in the mathe

matics curriculum of the primary school, It seems

entirely unreasonable to expect, however, that the

algebra curriculum will be impervious to such

developments. Whilst it might be argued that a

graphics calculator is limited algebraically because
it does not offer exact solutions and the cosy reas

surance of symbolic mathematical reasoning and

justification, it is much harder to resist the alge-



braic calculator on the same grounds.

There is space here to give only a few examples

of the substantial capacity of one current algebraic

calculator, Caste's Algebra FX 2.0, arguably the

first model developed specifically for secondary

school pupils. (Earlier algebraic calculators were

principally developed with the needs of early

undergraduate mathematics in mind.)

fact.or(XA6+1)

CX2+1)(X4-x2+d

TPitis:Ic.ALdEQUAI E'''IYJ ~RPHI [> I

s:olve(X~<2X+5)

-..f6+1 <>«..f6+1 D

TF;tis:Ic.ALdEQIJAI","In ~RPHI [> I

As readers know, both factorising polynomials

and solving quadratic inequalities usually require a

series of symbolic manipulations. These have many

steps and are thus quite error-prone. requiring

lengthy time periods for pupils to develop expertise.

On this calculator, both operations are performed

with a single command. located provocatively in a

menu labelled 'transformation', Indeed, both

factortsing and solving require chains of successive

transformations from one expression to an equiva

lent one.

The next example involves a pair of operations

(summation. followed by factorisation) in order to

find an expression for the sum of the first k

squares. Although such an algebraic task is

beyond most of secondary school algebra, it is

readily accessible using thiS hand-held device,

fact.or(~(><~,X,l,K»

(2K+1)K(K+1)
2·3

TF;ti$ iCALdEQUAI ","In ~RPHI f> I

A distinctive difference between this calculator

and others of similar species is that it offers pupils

both a full-fledged computer algebra system (CAS)

as well as a more cumbersome, slower, but more

completely understandable alternative for some
kinds of symbolic manipulation. To illustrate this

difference, the next three screens show an elemen

tary example in the calculator's Algebra mode.

Decisions about which algebraic transformations

to employ, and in what sequence. are left to the

puptl, with the mechanics of the manipulation left

to the machine.

e~pand«2A 5B)A3)
(2A)3+3·(2A)2·(-5)B+3

..
TRNSlcALdEClUAI "'''In ~RPHI f> I

e::l::pand(Ans
23A3+3·22A2(-5)B+3.2A

..
TF;tiS ICALdEClUAI E'''In ~RPHI f> I

collect.(Ans:
8A3-6eA2B+15eAB2-125B~

..
TRNsfCALdEClUAI E'''In ~RF"HI f> I

This is in stark contrast to the same task in the

CAS mode of the calculator, where the result is

produced immediately without any need for inter

action by the pupil, as the next screen shows.

e::l::pand«2A-5B)A3
8A3-60A 2S+150AS2-125S:

..
TF;tis:IcALdEQUAI "'''In ~RF"HI f> I

Whilst the CAS is convenient in practice, it will

worry some of us that such a machine may become

a black box for producing answers in a mysterious

way without any need for pupils to understand

what is happening in the process. Of course, as for

the earlier examples of slower and faster means of

solving an equation, it will require educational

expertise and care to avoid the thoughtless use of

the more efficient CAS, without some under

standing of the kind engendered by the less

efflctent, but more developmental. procedures. But

that is why we need mathematics teachers in class

rooms, not just pieces of technology. A calculator

like this, with very powerful CAS and algebraic

capabilities, would seem to demand some kind of

reconsideration of the status of paper-and-pencil
symbolic manipulation. It is indeed ironic that the

same calculator also contains within it a Tutor

mode. the express purpose of which is to develop
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and practice traditional pupil skill at such manip

ulation.

The development of algebraic calculators may

allow us to see clearly that extenstve skill in

symbolic manipulation is necessartly of limited

value. since a machine can be programmed to

perform it fairly well, The task of the algebra

curriculum Is partly to make sure that the results

of such manipulations are sensible to pupils and.

most critically. that they develop the necessary

expertise to decide what to do. In the past. our

focus has necessarily been upon lww to do things

such as factorise expressions and solve equations,

since there was no alternative. We might now be

able to pay more attention to helping pupils to

decide when and why it might be a good idea to

factorise an expression and when it might be inap

propriate or Just plain unhelpful. Similarly, we may

be able to give more attention to constructing,

inventing. abstracting and interpreting equations.

as well as thoughtfully constdertng the meaning(s)

of any solutions. Whtle such mathematical

thinking has always been central to the algebra

curriculum. it has frequently been neglected in

practice because so much time has been needed to

develop the relevant symbolic manipulation skills.

Making transitions of these kinds is unlikely to

be an easy task, especially for a generation of us

who have learned the very skills that an algebraic

calculator can perform with ease, and thus natu

rally assume that our pupils ought follow the same

paths. Whtle it is clear that pupils need to know a

good deal about algebra before they can exploit the

symbolic capabilities of an algebraic calculator to

their fullest. it is less clear now exactly what things.

are important. and precisely when they are needed.

A concluding comment

The significance of a personal technology is that

it may be reasonable to construct an algebra

curriculum that takes it into account, rather than

more adventurous curricula reliant on more

powerful technologies (which too easily become

exercises in optimism in the real world of most

classrooms and education systems), or the algebra

curricula of the 1950's (for which such technolo

gies were never imagined). This is especially so in

countries such as Australia for which equity and
social justice are important guiding principles, so

that curricula are likely to accommodate only tech

nologies that are genuinely available to the masses.
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In this paper, some of the connections between

the personal technology of the graphics calculator

and the algebra curriculum, in urgent need of revi

talisation, have been made. Around Australia. the

use of graphics calculators of vartous makes and

levels of sophistication has increased substantially

over the past few years. although there have not

been many corresponding substantial changes in

official curricula. Exploratory work of these kinds

has been patchy, too. both within and between

states. The next few years should allow us to accu

mulate more experience and more evidence across

a range of settings. in order to understand better

the nature of our algebra curriculum, located

within the technology of the day, despite the rapid

changes in the latter.

Note

An earlier version of this paper was presented to

the New Ideas in Mathematics Education confer

ence, Palm Cove. Queensland. 2001.
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