Bartle - Introduction to Real Analysis - Chapter 6 Solutions

Section 6.2

Problem 6.2-4. Let $a_{1}, a_{2}, \ldots, a_{n}$ be real numbers and let f be defined on \mathbb{R} by

$$
f(x)=\sum_{i=0}^{n}\left(a_{i}-x\right)^{2} \text { for } x \in \mathbb{R}
$$

Find the unique point of relative minimum for f.

Solution: The first derivative of f is:

$$
f^{\prime}(x)=-2 \sum_{i=1}^{n}\left(a_{i}-x\right)
$$

Equating f^{\prime} to zero, we find the relative extrema $c \in \mathbb{R}$ as follows:

$$
f^{\prime}(c)=-2 \sum_{i=1}^{n}\left(a_{i}-c\right)=-2\left[-n c+\sum_{i=1}^{n} a_{i}\right]=0
$$

Accordingly, the only relative extremum of f on \mathbb{R} is:

$$
c=\frac{1}{n} \sum_{i=1}^{n} a_{i}
$$

or more compactly the mean of the constants a_{i}. By the Interior-Extremum Theorem, this extremum is unique (and therefore global) because there are no other points in \mathbb{R} where f^{\prime} vanishes and the interval on which f is unbounded.

We can use to First Derivative Test for Extrema to determine if f is at a minimum or maximum at c. For $\delta>0$, we have for for $x=c+\delta>c$:

$$
f^{\prime}(x)=f(c+\delta)=-2 \sum_{i=1}^{n}\left(a_{i}-c-\delta\right)=f^{\prime}(c)-2 \sum_{i=1}^{n}(-\delta)=2 \delta>0
$$

where we have relied on $f^{\prime}(c)=0$. For $x=c-\delta<c$:

$$
f^{\prime}(x)=f(c-\delta)=-2 \sum_{i=1}^{n}\left(a_{i}-c+\delta\right)=f^{\prime}(c)-2 \sum_{i=1}^{n} \delta=-2 \delta<0
$$

By the First Derivative Test for Extrema, f is at a minimum at c.

Problem 6.2-6. Use the Mean Value Theorem to prove that $|\sin x-\sin y| \leq|x-y|$.

Solution: Let $f(x)=\sin x$, so $f^{\prime}(x)=\cos x$. For all $x \in \mathbb{R}$, we have $-1 \leq \cos x \leq 1$. Let $x, y \in \mathbb{R}$. We may assume without loss of generality that $x<y$. By the Mean Value Theorem, there is a $c \in(x, y)$ such that:

$$
\sin x-\sin y=(x-y) f^{\prime}(c)=(x-y) \cos c
$$

Because $|\cos c| \leq 1$, it follows that $|\sin x-\sin y| \leq|x-y|$.

Problem 6.2-9. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x):=2 x^{4}+x^{4} \sin (1 / x)$ for $x \neq 0$ and $f(0):=0$. Show that f has an absolute minimum at $x=0$, but that its derivative has both positive and negative values in every neighborhood of 0 .

Solution: By the definition of the derivative:

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{2 x^{4}+x^{4} \sin (1 / x)}{x-0}=\lim _{x \rightarrow 0}\left[2 x^{3}+x^{3} \sin (1 / x)\right]=0
$$

By the Interior Extremum Theorem, there is a relative extremum at $x=0$. Because $|\sin x| \leq 1$ for all $x \in \mathbb{R}$, it follows that $f(x)=x^{4}[2+\sin (1 / x)] \geq x^{4}(2-1) \geq 0$. Therefore, $x=0$ is an absolute minimum on \mathbb{R}.

For $x \neq 0$, we have:

$$
f^{\prime}(x)=8 x^{3}+3 x^{3} \sin \left(\frac{1}{x}\right)-x^{2} \cos \left(\frac{1}{x}\right)
$$

Let $\delta>0$ and $V_{\delta}(0)$ be a δ-neighborhood of zero. By the Archimedean Property, there is an $n^{\prime} \in \mathbb{N}$ such that $0<1 / n^{\prime}<2 \pi \delta$. It follows that there is an $n \in \mathbb{N}$ where $n=n^{\prime}+1$ such that $0<1 / n<2 \pi \delta$. Accordingly, letting $x^{\prime}=1 /(2 \pi n)$, we see that $x^{\prime} \in V_{\delta}(0)$ and:

$$
f^{\prime}\left(x^{\prime}\right)=\frac{8}{8 \pi^{3} n^{3}}+0-\frac{1}{4 \pi^{2} n^{2}}=\frac{4-\pi n}{4 \pi^{3} n^{3}}<0
$$

where, in the last step, we relied upon $n=n^{\prime}+1>1$.
By a similar argument, there is an $n \in \mathbb{N}$ such that $0<1 /(n+1 / 4)<1 / n<2 \pi \delta$. Letting $x^{\prime \prime}=1 /[2 \pi(n+1 / 4)]$, it follows that $x^{\prime \prime} \in V_{\delta}(0)$ and:

$$
f^{\prime}\left(x^{\prime \prime}\right)=\frac{8}{8 \pi^{3}(n+1 / 4)^{3}}+\frac{3}{8 \pi^{3}(n+1 / 4)^{3}}-0=\frac{11}{8 \pi^{3}(n+1 / 4)^{3}}>0 .
$$

Since δ is arbitrary, we conclude that f^{\prime} on any neighborhood of zero attains both positive and negative values.

Problem 6.2-11. Give an example of a uniformly continuous function on $[0,1]$ that is differentiable on $(0,1)$ but whose derivative is not bounded on $(0,1)$.

Solution: Suppose $f:[0,1] \rightarrow \mathbb{R}$ and $f(x)=\sqrt{x}$. If $c \in[0,1]$, then $\lim _{x \rightarrow c} \sqrt{x}=\sqrt{c}=f(c)$; therefore, f is continuous on $[0,1]$. By the Uniform Continuity Theorem, f is uniformly continuous on $[0,1]$.

On $(0,1)$, the derivative of f is $f^{\prime}(x)=1 /(2 \sqrt{x})$. Assume that f^{\prime} is bounded by $M>0$ on $(0,1)$. Then $|1 /(2 \sqrt{x})| \leq M$ for any $x \in(0,1)$. However, if $x<1 /\left(4 M^{2}\right)$, then $|1 /(2 \sqrt{x})|>\left|1 /\left(2 \sqrt{\left(1 / 4 M^{2}\right)}\right)\right|=M$, contradicting our assumption that f^{\prime} is bounded. It follows that f^{\prime} is unbounded on $(0,1)$.

Problem 6.2-13. Let I be an interval and let $f: I \rightarrow \mathbb{R}$ be differentiable on I. Show that if f^{\prime} is positive on I, then f is strictly increasing on I.

Solution: Suppose $f^{\prime}(x)>0$ for all $x \in I$. Let $x_{0}, x_{1} \in I$ where $x_{0}<x_{1}$. Because f is differentiable on I by hypothesis (and therefore is continuous on I by Theorem 6.1.2), it follows from the Mean Value Theorem that there is a $c \in I$ such that:

$$
f\left(x_{1}\right)-f\left(x_{0}\right)=f^{\prime}(c)\left(x_{1}-x_{0}\right)
$$

Because $f^{\prime}(c)>0$ and $x_{1}-x_{0}>0$, the difference $f\left(x_{1}\right)-f\left(x_{0}\right)$ must be positive. Since $x_{0}<x_{1}$ are arbitrary points in I, the function f is strictly increasing on I.

Problem 6.2-14. Let I be an interval and let $f: I \rightarrow \mathbb{R}$ be differentiable on I. Show that if f^{\prime} is never 0 on I, then either $f^{\prime}(x)>0$ for all $x \in I$ or $f^{\prime}(x)<0$ for all $x \in I$.

Solution: Suppose $f^{\prime}(x) \neq 0$ for all $x \in I$. Now assume that there are $x_{0}, x_{1} \in I$ where $f^{\prime}\left(x_{0}\right)<0$ and $f^{\prime}\left(x_{1}\right)>0$. Because $f^{\prime}\left(x_{0}\right)<0<f^{\prime}\left(x_{1}\right)$, by Darboux's Theorem, there is a $c \in I$ such $f^{\prime}(c)=0$, which contradicts our hypothesis that f^{\prime} is never zero on I. Therefore, either $f^{\prime}(x)>0$ for all $x \in I$ or $f^{\prime}(x)<0$ for all $x \in I$.

Problem 6.2-16. Let $f:[0, \infty) \rightarrow \mathbb{R}$ be differentiable on $(0, \infty)$ and assume $f^{\prime}(x) \rightarrow b$ as $x \rightarrow \infty$. (a) Show that for any $h>0$, we have $\lim _{x \rightarrow \infty}(f(x+h)-f(x)) / h=b$. (b) Show that if $f(x) \rightarrow a$ and $x \rightarrow \infty$, then $b=0$. (c) Show that $\lim _{x \rightarrow \infty}(f(x) / x)=b$.

Solution: Part (a) Because f is differentiable on $(0, \infty)$, it is continuous on $(0, \infty)$. For x, y in $(0, \infty)$ where $y=x+h$ for any $h>0$, the Mean Value Theorem ensures that there is a $c_{x} \in(x, x+h)$ such that:

$$
f(x+h)-f(x)=f^{\prime}\left(c_{x}\right)(x+h-x)=h f^{\prime}\left(c_{x}\right)
$$

Accordingly, $(f(x+h)-f(x)) / h=f^{\prime}\left(c_{x}\right)$.
By hypothesis, $\lim _{x \rightarrow \infty} f^{\prime}(x)=b$. Therefore, for any $\epsilon>0$, there is a $K(\epsilon)>0$ such that if $x>K(\epsilon)$, then $\left|f^{\prime}(x)-b\right|<\epsilon$. For any such x, it follows that $c_{x}>x>K(\epsilon)$. Consequently, for any $x>K(\epsilon)$:

$$
\left|f^{\prime}\left(c_{x}\right)-b\right|=\left|\frac{f(x+h)-f(x)}{h}-b\right|<\epsilon,
$$

from which it follows that $\left.\lim _{x \rightarrow \infty}(f(x+h)-f(x)) / h\right)=b$.
Part (b) If $\lim _{x \rightarrow \infty} f(x)=a$, then for any $\epsilon>0$, there is a $K^{\prime}(\epsilon)$ such that if $x>K^{\prime}(\epsilon)$, then $|f(x)-a|<\epsilon$. Because $x+h>x$, it follows that $|f(x+h)-a|<\epsilon$, and therefore, $\lim _{x \rightarrow \infty} f(x+h)=a$. Consequently, $\lim _{x \rightarrow \infty}[f(x+h)-f(x)]=$ $a-a=0$. It is then obvious that:

$$
b=\lim _{x \rightarrow \infty} \frac{f(x+h)-f(x)}{h}=\frac{1}{h}(0)=0 .
$$

Part (c) $\left[{ }^{* * * *}{ }^{*}\right.$ IGNORE, NOT VALID SOLUTION ${ }^{* * *}$] It suffices to show that for $\epsilon>0$, there is a $K^{\prime \prime}(\epsilon)>0$ such that if $x>\sup \left\{0, K^{\prime \prime}(\epsilon)\right\}$, then:

$$
\begin{equation*}
|f(2 x)-b|<\epsilon \tag{1}
\end{equation*}
$$

where the argument of f is permissible because $x>0$ ensures that $2 x>x$.
From part (a) with $h=x$, we infer that for $0<\epsilon<b$, there is a $K(\epsilon)>0$ such that if $x>\sup \{0, K(\epsilon)\}$, then:

$$
\left|\frac{f(2 x)-f(x)}{x}-b\right|<\epsilon .
$$

Note that the upper bound on ϵ is acceptable because we are only concerned about small ϵ. As a result:

$$
-\epsilon<\frac{f(2 x)-f(x)}{x}-b<\epsilon
$$

from which we have:

$$
\frac{f(x)}{x}-b<\frac{f(x)}{x}-\epsilon<\frac{f(2 x)}{x}-b .
$$

THIS STEP IS ERRONEOUS Substituting this inequality into equation (1) and letting $K^{\prime \prime}(\epsilon)=\sup \{0,1 / 2 K(\epsilon)\}$, we have, for $\epsilon>0$ and $x>K^{\prime \prime}(\epsilon)$:

$$
\left|\frac{f(x)}{x}-b\right|<\left|\frac{f(2 x)}{x}-b\right|<\epsilon
$$

Consequently, $\lim _{x \rightarrow \infty} f(x) / x=b$, as we sought to prove.

Problem 6.2-17. Let f, g be differentiable on \mathbb{R} and suppose that $f(0)=g(0)$ and $f^{\prime}(x) \leq g^{\prime}(x)$ for all $x \geq 0$. Show that $f(x) \leq g(x)$ for all $x \geq 0$.

Solution: Let $\phi(x)=g(x)-f(x)$. Therefore, $\phi^{\prime}(x)=g^{\prime}(x)-f^{\prime}(x)$. Because $f^{\prime}(x) \leq g^{\prime}(x)$ for all $x \geq 0$, it follows that $\phi^{\prime}(x) \geq 0$ for all $x \geq 0$. By Theorem 6.2.7, ϕ^{\prime} is increasing on $[0, \infty)$. Therefore, if $x_{0}, x_{1} \in[0, \infty)$ and $x_{0}<x_{1}$, then $\phi\left(x_{0}\right) \leq \phi\left(x_{1}\right)$. Since $\phi(0)=0$, it follows that if $x \geq 0$, then $\phi(x)=g(x)-f(x) \geq 0$ and therefore $f(x) \leq g(x)$.

Problem 6.2-18. Let $I:=[a, b]$ and let $f: I \rightarrow \mathbb{R}$ be differentiable at $c \in I$. Show that for every $\epsilon>0$ there exists $\delta>0$ such that if $0<|x-y|<\delta$ and $a \leq x \leq c \leq y \leq b$, then

$$
\left|\frac{f(x)-f(y)}{x-y}-f^{\prime}(c)\right|<\epsilon
$$

Solution: First note that $x \neq y$ because, by hypothesis, $|x-y|>0$. Because f is differentiable at c, for $\epsilon / 2>0$, we have $\delta^{\prime}>0$ where for $x \in[a, c)$ and $0<|x-c|<\delta^{\prime}$:

$$
\begin{equation*}
\left|\frac{f(x)-f(c)}{x-c}-f^{\prime}(c)\right|<\frac{\epsilon}{2} \tag{2}
\end{equation*}
$$

and, for $y \in(c, b]$ where $0<|y-c|<\delta^{\prime}$:

$$
\begin{equation*}
\left|\frac{f(y)-f(c)}{y-c}-f^{\prime}(c)\right|<\frac{\epsilon}{2} . \tag{3}
\end{equation*}
$$

Because $x \leq c$ and $y \geq c$ and $x \neq y$ by hypothesis, it follows that $|x-y|>|x-c|$ and $|x-y|>|y-c|$. Consequently, for equation (2), we have:

$$
\begin{equation*}
\frac{\epsilon}{2}>\frac{1}{|x-c|}\left|f(x)-f(c)-(x-c) f^{\prime}(c)\right|>\frac{1}{|x-y|}\left|f(c)-f(x)+(x-c) f^{\prime}(c)\right| . \tag{4}
\end{equation*}
$$

Similarly, for equation (3), we have:

$$
\begin{equation*}
\frac{\epsilon}{2}>\frac{1}{|y-c|}\left|f(y)-f(c)-(y-c) f^{\prime}(c)\right|=\frac{1}{|x-y|}\left|f(y)-f(c)-(y-c) f^{\prime}(c)\right| \tag{5}
\end{equation*}
$$

Taking the sum of equations (4) and (5) and using the Triangle Inequality, we have:

$$
\begin{align*}
& \epsilon>\frac{1}{|x-y|}\left(\left|f(y)-f(c)-(y-c) f^{\prime}(c)\right|+\mid f(c)-f(x)+(x-c) f^{\prime}(c)\right) \\
& =\frac{1}{|x-y|}\left|f(y)-f(x)-f(c)+f(c)-y f^{\prime}(c)+x f^{\prime}(c)+c f^{\prime}(c)-c f^{\prime}(c)\right| \\
& \quad=\frac{1}{|x-y|}\left|f(y)-f(x)+f^{\prime}(c)(x-y)\right|=\left|\frac{f(x)-f(y)}{x-y}-f^{\prime}(c)\right| \tag{6}
\end{align*}
$$

which is true for $0<|x-c|<\delta^{\prime}$ and $0<|y-c|<\delta^{\prime}$. From these relationships, we infer that $0<|x-y|<2 \delta^{\prime}$. If we let $\delta=2 \delta^{\prime}$, we conclude that for any $\epsilon>0$, the relationship in (6) holds for any $0<|x-y|<\delta$ where $a \leq x \leq c \leq y \leq b$.

Section 6.3

Problem 6.3-4. Let $f(x):=x^{2}$ for x rational and let $f(x):=0$ for x irrational, and let $g(x)=\sin x$ for $x \in \mathbb{R}$. Use Theorem 6.3.1 to show that $\lim _{x \rightarrow 0} f(x) / g(x)=0$. Explain why Theorem 6.3.3 cannot be used.

Solution: The desired limit is in $0 / 0$ indeterminate form. Theorem 6.3 .1 requires both f and g to be differentiable at 0 . The function g is obviously differentiable at 0 , where $g^{\prime}(0)=\cos 0=1$. By the definition of the derivative of f at 0 :

$$
\left|\frac{f(x)-f(0)}{x-0}-0\right|=\left|\frac{f(x)}{x}\right|=\left\{\begin{array}{ll}
\left|\frac{x^{2}}{x}\right|=|x| & \text { for } \\
x \in \mathbb{Q} \\
\left|\frac{0}{x}\right|=0 & \text { for }
\end{array} \quad x \in \mathbb{R} \backslash \mathbb{Q}\right.
$$

For any $\epsilon>0$, let $\delta(\epsilon)<\epsilon$. If $0<|x-0|=|x|<\delta(\epsilon)$, then $|f(x) / x| \leq|x|<\epsilon$. It follows that $f^{\prime}(0)=0$.
Because $f(0)=g(0)=0$ and $g(x) \neq 0$ for $x \neq 0$, we can use Theorem 6.3.1 to find the limit:

$$
\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\frac{f^{\prime}(0)}{g^{\prime}(0)}=\frac{0}{1}=0
$$

We cannot avail ourselves of Theorem 6.3.3 because f is discontinuous (and therefore is not differentiable) everywhere on \mathbb{R} except at 0 . Let $c \in \mathbb{R}$ where $c \neq 0$. Suppose $\left(x_{n}\right)$ is a sequence that converges to c where $x_{n} \in \mathbb{Q}$ for all $n \in \mathbb{N}$. It follows that $\lim f\left(x_{n}\right)=\lim x_{n}^{2}=c^{2} \neq 0$. Now suppose $\left(y_{n}\right)$ is a sequence that converges to c where $y_{n} \in \mathbb{R} \backslash \mathbb{Q}$ for all $n \in \mathbb{N}$. We see that $\lim f\left(y_{n}\right)=0$. If c is rational, $\left(f\left(y_{n}\right)\right)$ does not converge to $f(c)=c^{2} \neq 0$. On the other hand, if c is irrational, $\left(f\left(x_{n}\right)\right)$ does not converge to $f(c)=0$. By the Discontinuity Criterion (5.1.4), f is not continuous at any $c \in \mathbb{R}$ where $c \neq 0$.

Problem 6.3-13. Show that if $c>0$, then $\lim _{c \rightarrow c} \frac{x^{c}-c^{x}}{x^{x}-c^{c}}=\frac{1-\ln c}{1+\ln c}$.

Solution: Because $c>0$, let:

$$
f(x)=x^{c}-c^{x}=x^{c}-e^{x \ln c},
$$

and

$$
g(x)=x^{x}-c^{c}=e^{x \ln x}-c^{c} .
$$

Since $f(c)=g(c)=0$, the desired limit is in $0 / 0$ indeterminate form. The derivatives of f and g are:

$$
f^{\prime}(x)=c x^{c-1}-(\ln c) e^{x \ln c}
$$

and

$$
g^{\prime}(x)=e^{x \ln x}(1+\ln c) .
$$

For $x>0$, the derivatives of f and g exist and $g^{\prime}(x) \neq 0$. Accordingly, we may apply L'Hôpital's Rule to find the desired limit of f / g at $c>0$. We then have:

$$
\begin{gathered}
\lim _{x \rightarrow c} \frac{x^{c}-c^{x}}{x^{x}-c^{c}}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}=\lim _{x \rightarrow c} \frac{c x^{c-1}-(\ln c) e^{x \ln c}}{e^{x \ln x}(1+\ln c)} \\
=\frac{c c^{c-1}-(\ln c) e^{c \ln c}}{e^{c \ln c}(1+\ln c)}=\frac{c^{c}-c^{c} \ln c}{c^{c}+c^{c} \ln c} \\
=\frac{1-\ln c}{1+\ln c},
\end{gathered}
$$

as we set out to show.

Section 6.4

Problem 6.4-3. Use induction to prove Leibniz's rule for the nth derivative of a product:

$$
(f g)^{(n)}=\sum_{k=0}^{n}\binom{n}{k} f^{(n-k)} g^{(k)} .
$$

Solution: The base case of $n=1$ is trivial. Using the product rule, we have:

$$
(f g)^{\prime}=f^{\prime} g+f g^{\prime}=\sum_{k=0}^{1}\binom{1}{k} f^{(1-k)} g^{(k)}
$$

Now we assume the inductive hypothesis holds for $n \geq 1$, and we will show that the inductive hypothesis also holds for $n+1$. From the inductive hypothesis and the product rule, we have:

$$
\begin{aligned}
& (f g)^{(n+1)}=\left[(f g)^{(n)}\right]^{\prime}=\left[\sum_{k=0}^{n}\binom{n}{k} f^{(n-k)} g^{(k)}\right]^{\prime} \\
& =\sum_{k=0}^{n}\binom{n}{k}\left[f^{(n+1-k)} g^{(k)}+f^{(n-k)} g^{(k+1)}\right] . \\
& =\sum_{k=0}^{n}\binom{n}{k} f^{(n+1-k)} g^{(k)}+\sum_{k=0}^{n}\binom{n}{k} f^{(n-k)} g^{(k+1)} .
\end{aligned}
$$

By changing the index variable of the second sum to $l=k+1$, we then have:

$$
\begin{gathered}
\left.(f g)^{(n+1}\right)=\sum_{k=0}^{n}\binom{n}{k} f^{(n+1-k)} g^{(k)}+\sum_{l=1}^{n+1}\binom{n}{l-1} f^{(n+1-l)} g^{(l)} . \\
=f^{(n+1)} g+f g^{(n+1)}+\sum_{k=1}^{n}\binom{n}{k} f^{(n+1-k)} g^{(k)}+\sum_{l=1}^{n}\binom{n}{l-1} f^{(n+1-l)} g^{(l)}
\end{gathered}
$$

$$
=f^{(n+1)} g+f g^{(n+1)}+\sum_{k=1}^{n}\left[\binom{n}{k} f^{(n+1-k)} g^{(k)}+\binom{n}{k-1} f^{(n+1-k)} g^{(k)}\right] .
$$

Pascal's Rule states that $\binom{n}{k-1}+\binom{n}{k}=\binom{n+1}{k}$. Applying this to the sum above, we find:

$$
\begin{gathered}
(f g)^{(n+1)}=f^{(n+1)} g+f g^{(n+1)}+\sum_{k=1}^{n}\binom{n+1}{k} f^{(n+1-k)} g^{(k)} \\
=\sum_{k=0}^{n+1}\binom{n+1}{k} f^{(n+1-k)} g^{(k)},
\end{gathered}
$$

which is what we sought to show for $n+1$. Therefore, by the principle of mathematical induction, the inductive hypothesis holds for all $n \in \mathbb{N}$.

Problem 6.4-8. If $f(x)=e^{x}$, show that the remainder term in Taylor's Theorem coverges to zero as $n \rightarrow \infty$ for each fixed x_{0} and x.

Solution: For any x_{0} and x, the remainder term of the nth Taylor polynomial is:

$$
R_{n}\left(x, x_{0}\right)=\frac{1}{(n+1)!} e^{c}\left(x-x_{0}\right)^{n+1}
$$

for some c between x and x_{0}. Let $y_{n}=R_{n}\left(x, x_{0}\right)$. For $x \neq x_{0}$, the quotient of y_{n+1} and y_{n} is:

$$
\frac{y_{n+1}}{y_{n}}=\frac{\frac{1}{(n+2)!} e^{c}\left(x-x_{0}\right)^{n+2}}{\frac{1}{(n+1)!} e^{c}\left(x-x_{0}\right)^{n+1}}=\frac{x-x_{0}}{n+2}
$$

For all $n \in \mathbb{N}$, we have $0<1 /(n+2)<1 / n$. By the Squeeze Theorem, $\lim 1 /(n+2)=0=\left(x-x_{0}\right) \lim 1 /(n+2)$. Because this limit is less than one, it follows from Theorem 3.2.1 that $\lim y_{n}=0$. Therefore, as $n \rightarrow \infty$, the remainder term $R_{n}\left(x, x_{0}\right) \rightarrow 0$. This shows that the Taylor polynomial of e^{x} with an infinite number of terms equals e^{x}.

Problem 6.4-10. If $x \in[0,1]$ and $n \in \mathbb{N}$, show that:

$$
\left|\ln (1+x)-\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}+\cdots+(-1)^{n-1} \frac{x^{n}}{n}\right)\right|<\frac{x^{n+1}}{n+1}
$$

Use this to approximate $\ln 1.5$ with an error less than 0.01. Less than 0.001.

Solution: Let $f(x)=\ln (1+x)$. First, we will prove by induction that:

$$
f^{(n)}(x)=\frac{(-1)^{n-1}(n-1)!}{(1+x)^{n}}
$$

For the base case $n=1$, we have $f^{(1)}(x)=1 /(1+x)=\left((-1)^{0} 0!\right) /(1+x)^{1}$. Now we will assume the inductive hypothesis is true for $n \geq 1$. For $n+1$, we have:

$$
f^{(n+1)}(x)=\left(f^{(n)}\right)^{\prime}=(-1)^{n-1}(n-1)!\frac{(-1) n}{(1+x)^{n+1}}=\frac{(-1)^{n} n!}{(1+x)^{n+1}}
$$

Therefore, the inductive hypothesis is true for all $n \in \mathbb{N}$.
The nth Taylor polynomial $P_{n}(x)$ for $x_{0}=0$ is:

$$
\begin{aligned}
P_{n}(x)=f(0) & +f^{\prime}(0) x+\frac{1}{2!} f^{\prime \prime}(0) x^{2}+\frac{1}{3!} f^{\prime \prime \prime}(0) x^{3}+\cdots+\frac{1}{n!} f^{(n)} \\
& =x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}
\end{aligned}
$$

The remainder term $R_{n}(x)$ is:

$$
R_{n}(x)=(-1)^{n} \frac{x^{n+1}}{(n+1)(1+c)^{n+1}}
$$

for some c is between x and x_{0}. Because $x \in[0,1]$ by hypothesis and $x_{0}=0$, it follows that $c \in(0,1)$ and:

$$
\left|R_{n}(x)\right|=\frac{x^{n+1}}{(n+1)(1+c)^{n+1}}
$$

By Taylor's Theorem, $\ln (1+x)=P_{n}(x)+R_{n}(x)$, from which it follows that $\ln (1+x)-P_{n}(x)=R_{n}(x)$. Taking the absolute value of both sides, we have:

$$
\left|\ln (1+x)-\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}\right)\right|=\frac{x^{n+1}}{(n+1)(1+c)^{n+1}}
$$

Because $c \in(0,1)$, there is an upper bound on $R_{n}(x)$ of $x^{n+1} /(n+1)$. We infer:

$$
\left|\ln (1+x)-\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\cdots+(-1)^{n-1} \frac{x^{n}}{n}\right)\right|<\frac{x^{n+1}}{(n+1)}
$$

as we sought to show.
We will now estimate $\ln 1.5$. We see that $\ln 1.5=f(0.5)$. For an estimation error of less than 0.01 , we must have $R_{n}(0.5)=0.5^{n+1} /(n+1)<0.01$. By trial and error, we find that $R_{3}(0.5)=0.015625$ and $R_{4}(0.5)=0.00625$. Consequently, we need at least a fourth-order Taylor polynomial to meet the estimation error. We find that $P_{4}(0.5) \approx$ 0.40104 , which has an error within the sought tolerance of approximately 0.004425 .

We will now refine the estimate with an error less than 0.001. Again by trial and error, we find that $R_{6}(0.5)=0.00116$ and $R_{7}(0.5)=0.000458$. A seventh-order Taylor polynomial will meet the estimation error. We see that $P_{7}(0.5) \approx 0.4058$, which has an error of approximately 0.0003349 .

Problem 6.4-17. Suppose that $I \subseteq \mathbb{R}$ is an open interval and that $f^{\prime \prime}(x) \geq 0$ for all $x \in I$. If $c \in I$, show that the part of the graph of f on I is never below to tangent line to the graph at $(c, f(c))$.

Solution: Because $f^{\prime}(c)$ is the slope of the tangent line to f at c, we can express the tangent line as $g(x)=f(c)+$ $f^{\prime}(c)(x-c)$.

The 1st Taylor polynomial $P_{1}(x)$ is:

$$
P_{1}(x)=f(c)+f^{\prime}(c)(x-c),
$$

which is equal to g. The remainder term is:

$$
R_{1}(x)=\frac{1}{2} f^{\prime \prime}(d)(x-c)^{2}
$$

for some d between c and x. Because $f^{\prime \prime}(d) \geq 0$ by hypothesis, $R_{1}(x) \geq 0$ for all $x \in I$.
From Taylor's Theorem, if $x \in I$, then $f(x)=P_{1}(x)+R_{1}(x)=g(x)+R_{1}(x)$. Since $R_{1}(x) \geq 0$, necessarily $f(x) \geq g(x)$, from which it follows that no point on I is below the tangent line to f at c.

As an aside, note that f is convex on I by Theorem 6.4.6.

Problem 6.4-15. Let f be continuous on $[a, b]$ and assume the second derivative $f^{\prime \prime}$ exists on (a, b). Suppose that the graph of f and the line segment joining the points $(a, f(a))$ and $(b, f(b))$ intersect at a point $\left(x_{0}, f\left(x_{0}\right)\right)$ where $a<x_{0}<b$. Show that there exists a point $c \in(a, b)$ such that $f^{\prime \prime}(c)=0$.

Solution: Let g be the line segment between $p_{a}=(a, f(a))$ and $p_{b}=(b, f(b))$, where $g(x)=g(a)+m(x-a)$ and $m=(g(b)-g(a)) /(b-a)$. Because $p_{x 0}=\left(x_{0}, f\left(x_{0}\right)\right)$ is on the line segment given by g, the line segment between p_{a} and $p_{x 0}$ and the line segment between $p_{x 0}$ and p_{b} each have slope m. By the Intermediate Value Theorem, there is a point $d_{1} \in\left(a, x_{0}\right)$ and a point $d_{2} \in\left(x_{0}, b\right)$ such that:

$$
f^{\prime}\left(d_{1}\right)=\frac{f\left(x_{0}\right)-f(a)}{x_{0}-a}=m
$$

and

$$
f^{\prime}\left(d_{2}\right)=\frac{f(b)-f\left(x_{0}\right)}{b-x_{0}}=m .
$$

Let $\phi:(a, b) \rightarrow \mathbb{R}$ where $\phi(x)=f^{\prime}(x)-m$. Because $f^{\prime \prime}$ exists everywhere on (a, b), by Theorem 6.1.2 f^{\prime} (and therefore ϕ) is necessarily continuous and differentiable on (a, b). Given that $\phi\left(d_{1}\right)=\phi\left(d_{2}\right)=0$, by Rolle's Theorem there is a point $c \in\left(d_{1}, d_{2}\right)$ such that $\phi^{\prime}(c)=0$. Since $\phi^{\prime}(x)=f^{\prime \prime}(x)$, it follows that $f^{\prime \prime}(c)=\phi^{\prime}(c)=0$. Because $\left(d_{1}, d_{2}\right) \subset(a, b)$, there is a point c on (a, b) where $f^{\prime \prime}(c)=0$.

Problem 6.4-16. Let $I \subseteq \mathbb{R}$ be an open interval, let $f: I \rightarrow \mathbb{R}$ be differentiable on I, and suppose $f^{\prime \prime}(a)$ exists at $a \in I$. Show that

$$
f^{\prime \prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-2 f(a)+f(a-h)}{h^{2}}
$$

Give an example where this limit exists but the function does not have a second derivative at a.

Solution: The second-order Taylor polynomial for f at $x_{0}=a$ is:

$$
P_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}
$$

Applying Taylor's Theorem for $f(a+h)$ and $f(a-h)$, we have:

$$
\begin{equation*}
f(a+h)=P_{2}(a+h)+R_{2}(a+h)=f(a)-f^{\prime}(a) h+\frac{1}{2} f^{\prime \prime}(a) h^{2}-\frac{1}{6} f^{\prime \prime \prime}\left(d_{1}\right) h^{3}, \tag{7}
\end{equation*}
$$

for some $d_{1} \in(a, a+h)$ and:

$$
\begin{equation*}
f(a-h)=f(a)+f^{\prime}(a) h+\frac{1}{2} f^{\prime \prime}(a) h^{2}+\frac{1}{6} f^{\prime \prime \prime}\left(d_{2}\right) h^{3} \tag{8}
\end{equation*}
$$

for some $d_{2} \in(a-h, a)$.
Adding (7) and (8), we have:

$$
f(a+h)+f(a-h)=2 f(a)+f^{\prime \prime}(a) h^{2}-\frac{1}{6} f^{\prime \prime \prime}\left(d_{1}\right) h^{3}+\frac{1}{6} f^{\prime \prime \prime}\left(d_{2}\right) h^{3} .
$$

from which we have:

$$
f^{\prime \prime}(a)-\frac{1}{6} f^{\prime \prime \prime}\left(d_{1}\right) h+\frac{1}{6} f^{\prime \prime \prime}\left(d_{2}\right) h=\frac{f(a+h)-2 f(a)+f(a-h)}{h^{2}}
$$

Taking the limit of both sides as $h \rightarrow 0$ achieves the desired result:

$$
f^{\prime \prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-2 f(a)+f(a-h)}{h^{2}}
$$

Now we will turn to an example where this limit exists for a function, but that function has no second derivative. Specifically, this limit exists for $f(x)=\operatorname{signum}(x)$ at $a=0$, where:

$$
f^{\prime \prime}(0)=\lim _{h \rightarrow 0} \frac{\operatorname{signum}(0+h)-2(0)+\operatorname{signum}(0-h)}{h^{2}}=\lim _{h \rightarrow 0} \frac{0}{h^{2}}=0
$$

Clearly the limit exists, but we know that f is not differentiable at $x=0$ because it is not continuous at that point. Therefore f cannot have a second derivative.

Problem 6.4-18. Let $I \subseteq \mathbb{R}$ be an interval and let $c \in I$. Suppose that f and g are defined on I and that the derivatives $f^{(n)}, g^{(n)}$ exist and are continuous on I. If $f^{(k)}(c)=0$ and $g^{(k)}(c)=0$ for $k=0,1, \ldots, n-1$, but $g^{(n)}(c) \neq 0$, show that

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{f^{(n)}(c)}{g^{(n)}(c)}
$$

Solution: There is a straightforward proof involving Taylor's Theorem, using the remainder of f and g to show the limit. To get some practice with proving the existence of neighborhoods with certain properties, I will prove the proposition using L'Hôpital's Rule.

Because $f(c)=g(c)=0$, the desired limit is in $0 / 0$ indeterminate form. Applying L'Hôpital's Rule iteratively—if we can-will clearly result in the desired solution. To avail ourselves of the rule, however, we must show that for each $g^{(k)}$, there is a neighborhood of c on which $g^{(k)}$ exists and is zero only at c.

First, we will prove by induction for $l \in \mathbb{N}$ where $l<n$, if $g^{(n-l)}(c)=0$ (which is the case by hypothesis), there is a neighborhood U_{l} of c on which $g^{(n-1)}$ is differentiable and, if $x \in U_{l}$ and $x \neq c$, then $g^{(n-1)}(x) \neq 0$. Let $L=g^{(n)}(c)$, which must be non-zero by hypothesis. For $l=1$, suppose $\epsilon<|L|$. Because $g^{(n)}$ exists at c, there is a $\delta_{1}>0$ such that if $x \in I$ and $0<|x-c|<\delta_{1}$, then:

$$
\left|\frac{g^{(n-1)}(x)-g^{(n-1)}(c)}{x-c}-L\right|=\left|\frac{g^{(n-1)}(x)}{x-c}-L\right|<\epsilon .
$$

If we assume $g^{(n-1)}(x)=0$, then

$$
\left|\frac{g^{(n-1)}(x)}{x-c}-L\right|=|-L|=|L|>\epsilon,
$$

which contradicts the requirement that this value must be less than ϵ. Therefore, $g^{(n-1)}(x) \neq 0$. We conclude that there is a δ_{1}-neighborhood U_{1} of c such that if $x \in U_{1} \backslash\{c\}$, then $g^{(n-1)}(x) \neq 0$.

Assume that the inductive hypothesis holds for l. If $l+1<n$, then by the inductive hypothesis, there is a U_{l} of c such that if $x \in U_{l} \backslash\{c\}$, then $g^{(n-l)}(x) \neq 0$. Because $g^{(n-l)}$ is the derivative of $g^{(n-l-1)}$, we infer that $g^{(n-l-1)}$ is differentiable and therefore continuous on U_{l}. Let $G=g^{(n-l-1)}$ and $G^{\prime}=g^{(n-l)}$. Then suppose $x_{1} \in U_{l}$ where $x_{1}<c$. By the Mean Value Theorem, there is a $d_{1} \in\left(x_{1}, c\right)$ such that $G(c)-G\left(x_{1}\right)=-G\left(x_{1}\right)=G^{\prime}\left(d_{1}\right)\left(c-x_{1}\right)$. Clearly, $d_{1} \neq c$ and $d_{1} \in U_{l}$; therefore, $G^{\prime}\left(d_{1}\right) \neq 0$ and $c-x_{1} \neq 0$. It follows that $G\left(x_{1}\right) \neq 0$. By a similar argument, we see that if $x_{2} \in U_{l}$ where $x_{2}>c$, then $G\left(x_{2}\right) \neq 0$. Because this is true for all $x \in U_{l} \backslash\{c\}$, there is a neighborhood $U_{l+1}=U_{l}$ of c where if $x \in U_{l+1} \backslash\{c\}$, then $g^{(n-l-1)}(x) \neq 0$.

Accordingly, by the principle of mathematical induction, the inductive hypothesis holds for all $l \in \mathbb{N}$ where $l<n$.
It is now a trivial matter to solve the limit. By hypothesis and the proof above, if $1 \leq k<n$, then $g^{(k)}(c)=0$ and $g^{(k)}(x) \neq 0$ for $x \in U_{n-k} \backslash\{c\}$. L'Hôpital's Rule therefore applies for $1 \leq k<n$. Because $g^{(n)}(c) \neq 0$ and f and g are continuous at c, the desired result follows:

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{(n)}(x)}{g^{(n)}(x)}=\frac{f^{(n)}(c)}{g^{(n)}(c)}
$$

