Basic Algorithms in Number Theory

Francesco Pappalardi

\#2 - Discrete Logs, Modular Square Roots \& Euclidean Algorithm.

DECEMBER $3^{\text {RD }} 2014$
Mathematics Department
College of Sciences
University of Salahaddin, Erbil

Yesterday's Problems

1. Multiplication: for $x, y \in \mathbb{Z}$, find $x \cdot y$
2. Exponentiation: for $x \in G$ (group) and $n \in \mathbb{N}$, find x^{n} (Complexity of operations in $\mathbb{Z} / m \mathbb{Z}$)
3. GCD: Given $a, b \in \mathbb{N}$ find $\operatorname{gcd}(a, b)$
4. Primality: Given $n \in \mathbb{N}$ odd, determine if it is prime (Legendre/Jacobi Symbols - Probabilistic Algorithms with probability of error)
5. Quadratic Nonresidues: given an odd prime p, find a quadratic non residue $\bmod p$.
6. Power Test: Given $n \in \mathbb{N}$ determine if $n=b^{k}(\exists k>1)$

PROBLEM 7. FACTORING: Given $n \in \mathbb{N}$, find a proper divisor of n

- A very old problem and a difficult one;
- Trial division requires $O(\sqrt{n})$ division which is an exponential time (i.e. impractical)
- Several different algorithms
- A very important one uses elliptic curves...
- we review the elegant Pollard ρ method.

Suppose n is not a power and consider the function:

$$
f: \mathbb{Z} / n \mathbb{Z} \longrightarrow \mathbb{Z} / n \mathbb{Z}, \quad x \mapsto f(x)=x^{2}+1
$$

The k-th iterate of f is $f^{k}(x)=f^{k-1}(f(x))$ with $f^{1}(x)=f(x)$.
If $x_{0} \in \mathbb{Z} / n \mathbb{Z}$ is chosen "sufficiently randomly", the sequence $\left\{f^{k}\left(x_{0}\right)\right\}$ behaves as a random sequence of elements of $\mathbb{Z} / n \mathbb{Z}$ and we exploit this fact.

Pollard ρ factoring method

```
Input: }n\in\mathbb{N}\mathrm{ odd and not a perfect power (to be factored)
Output: a non trivial factor of }
1. Choose at random }x\in\mathbb{Z}/n\mathbb{Z}={0,1,\ldots,n-1
2. For i=1,2\ldots..
\[
\begin{aligned}
& g:=\operatorname{gcd}\left(f^{i}(x)-f^{2 i}(x), n\right) \\
& \text { If } g=1 \text {, goto next } i \\
& \text { If } 1<g<n \text { then output } g \text { and halt } \\
& \text { If } g=n \text { then go to Step } 1 \text { and choose another } x .
\end{aligned}
\]
```

What is going on here?
Is is obviously a probabilistic algorithm but it is not even clear that it will ever terminate.

But in fact it terminates with complexity $O(\sqrt[4]{n})$ which is attained with high probability, in the worst case (i.e. when n is an RSA module)

THE BIRTHDAY PARADOX

Elementary Probability Question: what is the chance that in a sequence of k elements (where repetitions are allowed) from a set of n elements, there is a repetition?
Answer: The chance is $1-\frac{n!}{n^{k}(n-k)!} \approx 1-e^{-k(k-1) / 2 n}$
In a party of 23 friends there 50.04% chances that 2 have the same birthday!!
Relevance to the ρ-Factoring method:

If d is a divisor of n, then in $O(\sqrt{d})=O(\sqrt[4]{n})$ steps there is a high chance that in the sequence $\left\{f^{k}\left(x_{0}\right) \bmod d\right\}$ there is a repetition modulo d.

REMARK (WHY ρ). If $y_{1}, \ldots, y_{m}, y_{m+1}, \ldots, y_{m+k}=y_{m}, y_{m+k+1}=y_{m+1}, \ldots$ and i is the smallest multiple of k with $i \geq m$, then $y_{i}=y_{2 i}$ (the Floyd's cycle trick).

Contemporary Factoring

Contemporary records in factoring are obtained by the Number Field Sieve (NFS) which is an evolution of the Quadratic Sieve (QS). These (together with the ECM-factoring) have sub-exponential heuristic complexity.

More precisely let:

$$
L_{n}[a ; c]=\exp \left(\left(\left(c+o(1)(\log n)^{a}(\log \log n)^{1-a}\right)\right)\right.
$$

which is a quantity that oscillates between exponential $(a=1)$ and polynomial $(a=0)$ as a function of $\log n$. Then the complexities are respectively

ECM algorithm with heuristic complexity $L_{n}[1 / 2,1]$
(Lenstra 1987)
NFS algorithm with heuristic complexity $L_{n}\left[1 / 3 ; 4 / 3^{3 / 2}\right]$
(Pollard)
QS algorithm with heuristic complexity $L_{n}[1 / 2,1] \quad$ (Dickson, Pomerance)

PROBLEM 8. Discrete Logarithms:

Given x in a cyclic group $G=\langle g\rangle$, find n such that $x=g^{n}$.

- to make sense one has to specify how to make the operations in G
- If $G=(\mathbb{Z} / n \mathbb{Z},+)$ then discrete logs are very easy.
- If $G=\left((\mathbb{Z} / n \mathbb{Z})^{*}, \times\right)$ then we know that G is cyclic iff $n=2,4, p^{\alpha}, 2 \cdot p^{\alpha}$ where p is an odd prime. This is a famous theorem of Gauß.
- Already in $(\mathbb{Z} / p \mathbb{Z})^{*}$ there is no efficient algorithm to compute DL.
- It is already an interesting problem, given p, to compute a primitive root g modulo p (ie. to determine $g \in(\mathbb{Z} / p \mathbb{Z})^{*}$ such that $\left.\langle g\rangle=(\mathbb{Z} / p \mathbb{Z})^{*}\right)$
- The famous Artin Conjecture for primitive roots stated that any g (except $0, \pm 1$ and perfect squares) is a primitive root for a positive proportion of primes
- Known to be true assuming the GRH. It is also known that one out of 2,3 and 5 is a primitive root for infinitely many primes.

Discrete Logarithms: continues

- Primordial public key cryptography is based on the difficulty of the Discrete Log problem
- Several algorithms to compute discrete logarithms are known. One for all is the Shanks Baby Step Giant Step algorithm.

$$
\begin{aligned}
& \text { Input: A group } G=\langle g\rangle \text { and } a \in G \\
& \text { Output: } k \in \mathbb{Z} /|G| \mathbb{Z} \text { such that } a=g^{k} \\
& \text { 1. } M:=\lceil\sqrt{|G|\rceil} \\
& \text { 2. For } j=0,1,2, \ldots, M . \\
& \quad \text { Compute } g^{j} \text { and store the pair }\left(j, g^{j}\right) \text { in a table } \\
& \text { 3. } A:=g^{-M}, B:=a \\
& \text { 5. For } i=0,1,2, \ldots, M-1 . \\
& \quad \text {-1- Check if } B \text { is the second component }\left(g^{j}\right) \text { of any } \\
& \quad \text { pair in the table } \\
& \\
& \quad \text {-2- If so, return } i M+j \text { and halt. } \\
& \text {-3- If not } B=B \cdot A
\end{aligned}
$$

Discrete Logarithms: continues

- The BSGS algorithm is a generic algorithm.

It works for every finite cyclic group.

- It is based on the fact that any $x \in \mathbb{Z} / n \mathbb{Z}$ can be written as $x=j+i m$ with $m=\lceil\sqrt{n}, 0 \leq j<m$ and $0 \leq i<m-1$
- It is not necessary to know the order of the group G in advance. The algorithm still works if an upper bound on the group order is known.
- Usually the BSGS algorithm is used for groups whose order is prime.
- The running time of the algorithm and the space complexity is $O(\sqrt{|G|})$, much better than the $O(|G|)$ running time of the naive brute force
- The algorithm was originally developed by Daniel Shanks.

Discrete Logarithms: continues

In some groups Discrete logs are easy. For example if G is a cyclic group and $\# G=2^{m}$ then we know that there are subgroups:

$$
\langle 1\rangle=G_{0} \subset G_{1} \subset \cdots \subset G_{m}=G
$$

such that G_{i} is cyclic and $\# G_{i}=2^{i}$. Furthermore

$$
G_{i}=\left\{y \in G \text { such that } y^{2^{i}}=1\right\}
$$

Hence if $G=\langle g\rangle$, for any $a \in G$, either $a^{2^{m-1}}=1$ or $(g a)^{2^{m-1}}=1$
From this property we deduce the algorithm:

$$
\begin{aligned}
& \text { Input: A group } G=\langle g\rangle,|G|=2^{m} \text { and } a \in G \\
& \text { Output: } k \in \mathbb{Z} /|G| \mathbb{Z} \text { such that } a=g^{k} \\
& \text { 1. } A:=a, K=2^{m} \\
& \text { 2. For } j=1,2, \ldots, m \text {. } \\
& \quad \text { If } A^{2^{m-j}} \neq 1, A:=g^{2^{j-1}} \cdot A ; K:=K-2^{j-1}
\end{aligned}
$$

3 Output K

Discrete Logarithms: continues

- The above is a special case of the Pohlig-Hellman Algorithm which works when $|G|$ has only small prime divisors
- To avoid this situation one crucial requirement for a DL-resistent group in cryptography is that $\# G$ has a large prime divisor.
- If $p=2^{k}+1$ is a Fermat prime, then DL in $(\mathbb{Z} / p \mathbb{Z})^{*}$ are easy.
- Classical algorithm for factoring have often analogues for computing discrete logs. A very important one is the index calculus algorithm.

PROBLEM 9. Square Roots Modulo a prime:

Given an odd prime p and a quadratic residue a, find x s. t. $x^{2} \equiv a \bmod p$
It can be solved efficiently if we are given a quadratic nonresidue $g \in(\mathbb{Z} / p \mathbb{Z})^{*}$

1. We write $p-1=2^{k} \cdot q$ and we know that $(\mathbb{Z} / p \mathbb{Z})^{*}$ has a (cyclic) subgroup G with 2^{k} elements.
2. Note that $b=g^{q}$ is a generator of G (in fact if it was $b^{2^{j}} \equiv 1 \bmod p$ for $j<k$, then $\left.g^{(p-1) / 2} \equiv 1 \bmod p\right)$ and that $a^{q} \in G$
3. Use the last algorithm to compute t such that $a^{q}=b^{t}$. Note that t is even since $a^{(p-1) / 2} \equiv 1 \bmod p$.
4. Finally set $x=a^{(p-q) / 2} b^{t / 2}$ and observe that

$$
x^{2}=a^{(p-q)} b^{t}=a^{p} \equiv a \bmod p .
$$

The above is not deterministic. However Schoof in 1985 discovered a polynomial time algorithm which is however not efficient.

PROBLEM 10. Modular Square Roots:

$$
\text { Given } n, a \in \mathbb{N}, \text { find } x \text { such that } x^{2} \equiv a \bmod n
$$

If the factorization of n is known, then this problem (efficiently) can be solved in 3 steps:

1. For each prime divisor p of n find x_{p} such that $x_{p}^{2} \equiv a \bmod p$
2. Use the Hensel's Lemma to lift x_{p} to y_{p} where $y_{p}^{2} \equiv a \bmod p^{v_{p}(n)}$
3. Use the Chinese remainder Theorem to find $x \in \mathbb{Z} / n \mathbb{Z}$ such that $x \equiv y_{p} \bmod p^{v_{p}(n)} \forall p \mid n$.
4. Finally $x^{2} \equiv a \bmod n$.

The last two tools (Hensel's Lemma and Chinese Remainder Theorem) will be covered in Lecture 3.

Modular Square Roots: (continues)

On the opposite direction, suppose that for each $a \in \mathbb{Z} / n \mathbb{Z}$ we can solve $X^{2} \equiv a \bmod n$. We want to use this hypothetical algorithm to find a factor of n.

Choose y at random in $\mathbb{Z} / n \mathbb{Z}$ and find x such that $x^{2} \equiv y^{2} \bmod n$.
Any common divisor of x and y also divides n. So we can assume that x and y are coprime.

If $p>1$ is a prime factor of n, then p divides $(x+y)(x-y)$. In addition p divides exactly one of the factors $(x+y)$ or $(x-y)$.

If y is random, then any of the primes that divides $x^{2}-y^{2}$ has 50% chances of $x+y$ of $x-y$.

Finally $\operatorname{gcd}(x-y, n)$ is a proper divisor of n.
If the above fails, then try again choosing a different random y. After k choices, the probability that n is not factored is $O\left(2^{-k}\right)$.

Modular Square Roots: (continues)

The Factoring and Modular square roots are in practice equivalent in difficulty.

The difficulty of solving the analogue problem for e-th roots modulo n
i.e. Given e, C, n, find $x \in \mathbb{Z} / n \mathbb{Z}$ such that $x^{e} \equiv C \bmod n$
is the base of the security of RSA

PROBLEM 11. Diophantine Equations:

PROBLEM 11. Diophantine Equations: Given

$f\left(X_{1}, \ldots, X_{n}\right) \in \mathbb{Z}\left[X_{1}, \ldots, X_{n}\right]$, find $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}^{n}$ such that $f(x)=0$.
For a general f this is an undecidable problem (Matijasevic, Robinson, Davis, Putnam).

Although the problem might be easy for some specific f, there is no algorithm (efficient or otherwise) that takes f as input and always determines whether $f(x)=0$ has a solution in integers.

Hilbert's tenth problem is the tenth on the list of Hilbert's problems of 1900.
Given a Diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: To devise a process according to which it can be determined in a finite number of operations whether the equation is solvable in rational integers.

La Scuola di Atene (Raffaello Sanzio)

Extended Euclidean Algorithm

Let $a, b \in \mathbb{N}$ (not both zero), we will also assume that $a \geq b$. The $\operatorname{gcd}(a, b)$ is greatest common divisor of a and b.

Clearly $\operatorname{gcd}(a, 0)=a$. If the factorization of a and b is known the it is easy to compute $\operatorname{gcd}(a, b)$. In fact

$$
\operatorname{gcd}(a, b)=\prod_{p \text { prime }} p^{\min \left\{v_{p}(a), v_{p}(b)\right\}} .
$$

The p-adic valuation $v_{p}(n)$ of an integer n is

$$
v_{p}(n)=\max \left\{\alpha \geq 0 \text { such that } p^{\alpha} \text { divides } n\right\}
$$

so that the product above is indeed finite.
Furthermore

$$
\operatorname{gcd}(a, b)=\min \{|x a+y b|>0 \text { such that } x, y \in \mathbb{Z}\} .
$$

Extended Euclidean Algorithm

From the above identity it follows immediately that $\operatorname{gcd}(a, b)$ exists and that $\operatorname{gcd}(a, b)=x a+b y$ for appropriate $x, y \in \mathbb{Z}$. In many applications it is crucial to compute x, y that realize the above identity and they are called the Bezout coefficients.

Theorem. Given $a, b \in \mathbb{N}, 0<b \leq a$, then there exists x, y, z such that $z=\operatorname{gcd}(a, b)$ and $z=a x+b y$. Furthermore they can be computed with an algorithm (EEA) with bit complexity $O\left(\log ^{2} a\right)$.

Extended Euclidean Algorithm

It is based on successive divisions:

$$
\begin{array}{rlrl}
a & =b \cdot q_{0} & & +r_{1} \\
b & =r_{1} \cdot q_{1} & & +r_{2} \\
r_{1} & =r_{2} \cdot q_{2} & & +r_{3} \\
r_{2} & =r_{3} \cdot q_{3} & & +r_{4} \\
& \vdots & & \vdots \\
r_{k-2} & =r_{k-1} \cdot q_{k-1} & +r_{k} \\
r_{k-1} & =r_{k} \cdot q_{k} & &
\end{array}
$$

Note that

$$
\begin{aligned}
a=b q_{0}+r_{1} \geq b q_{0} \geq\left(r_{1} q_{1}+r_{2}\right) q_{0} & \geq r_{1} q_{1} q_{0} \geq \cdots \\
\cdots & \geq r_{k} q_{k} q_{k-1} \cdots q_{0} \geq q_{k} q_{k-1} \cdots q_{0}
\end{aligned}
$$

Extended Euclidean Algorithm

The $j+1$-th division requires time $O\left(\log r_{j} \log q_{j}\right)$ and using the fact that $\log r_{i} \leq \log b$, we obtain that the total time for running the EEA is

$$
O\left(\log b \sum_{j=0}^{k} \log q_{k}\right)=O\left(\log b \log \left(q_{0} \cdots q_{k}\right)\right)=O(\log b \log a)
$$

A variation of the EEC with the same complexity but other advantages is
Binary gcd-algorithm (J. Stein - 1967)

$$
\begin{array}{rllrr}
(a, b)= & \text { if } & a<b & \text { then } & (b, a) \\
& \text { if } & b=0 & \text { then } & a \\
& \text { if } & 2|a, 2| b & \text { then } & 2(a / 2, b / 2) \\
& \text { if } & 2 \mid a, 2 \nmid b & \text { then } & (a / 2, b) \\
& \text { if } & 2 \nmid a, 2 \mid b & \text { then } & (a, b / 2) \\
& & & \text { else } & ((a-b) / 2, b) \\
\hline
\end{array}
$$

that can be written in matrix form as:

$$
\left(\begin{array}{cc}
\alpha_{0} & \alpha_{1} \\
\beta_{0} & \beta_{1}
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
1 & -q_{0}
\end{array}\right), \quad\binom{\alpha_{i}}{\beta_{i}}=\left(\begin{array}{cc}
\alpha_{i-2} & \alpha_{i-1} \\
\beta_{i-2} & \beta_{i-1}
\end{array}\right)\binom{1}{-q_{i-1}} .
$$

Example. $(1547,560)=7$

EEC:

$$
\begin{aligned}
1547 & =2 \cdot 560+427 \\
560 & =1 \cdot 427+133 \\
427 & =3 \cdot 133+28 \\
133 & =4 \cdot 28+21 \\
28 & =1 \cdot 21+7 \quad \leftarrow \mathrm{GCD} \\
21 & =3 \cdot 7
\end{aligned}
$$

So that $\left(q_{0}, q_{1}, q_{2}, q_{3}, q_{4}, q_{5}\right)=(2,1,3,4,1,3)$.

Analysis of EEC on $a, b \in \mathbb{N}$

Assume that $a>b$. We want to show that the number of iterations (i.e. the number of divisions needed) during the EEA is (in the worst case) $O(\log a)$.

Fibonacci Numbers: $F_{1}=F_{2}=1$ and $F_{n}=F_{n-1}+F_{n-2}$.
In the very special case when $a=F_{n}$ and $b=F_{n-1}$ then $r_{1}=F_{n-2}$, $r_{2}=F_{n-3}, \ldots r_{n-2}=F_{1}=1$ and $r_{n-1}=0$.
From this we deduce that

1. $\operatorname{gcd}\left(F_{n}, F_{n-1}\right)=1$
2. The number of divisions required by EEA is $O(n)$.

Proposition. Let $\theta=(\sqrt{5}+1) / 2$. Then

$$
F_{n}=\frac{\theta^{n}+(1-\theta)^{n}}{\sqrt{5}}
$$

Hence $\log F_{n} \sim n \theta\left(\right.$ so that $\left.n=O\left(\log F_{n}\right)\right)$.
Proof. By induction.

Analysis of EEC on $a, b \in \mathbb{N}$

Consequence. If $a=F_{n}$ and $b=F_{n-1}$, then EEA requires $O(\log a)$ divisions!

Proposition. Assume that $a>b \geq 1$. If the $E E A$ to compute $\operatorname{gcd}(a, b)$ requires k divisions, Then $a \geq F_{k+2}$ and $b \geq F_{k+1}$.

Proof. Let us first show that $r_{k-j} \geq F_{j+1}$. Indeed by induction or j :

- $r_{k}=\operatorname{gcd}(a, b) \geq 1=F_{1}, r_{k-1} \geq 1=F_{2}$
- $r_{k-j}=q_{k-(j-1)} r_{k-(j-1)}+r_{k-(j-2)} \geq F_{j}+F_{j-1}=F_{j+1}$.

Hence $b=r_{0} \geq F_{k+1}$ and $a=q_{0} b+r_{1} \geq F_{k+1}+F_{k}=F_{k+2}$.
Consequence. The number of divisions $k=O\left(\log F_{k+2}\right)=O(\log a) \forall a, b$.
A more careful analysis (the fact that the size of the integers decreases exponentially) of EEA shows that the bit complexity is $O\left(\log ^{2} a\right)$.

Geometric GCD algorithm (probably the original one)

- To compute (a, b) with $a \geq b>0$, consider the rectangle with base a and height b.
- Remove from it a square of maximal area obtaining a rectangle of sizes a and $a-b$.
- Reorder them (if needed) and then repeat the process of removing a square.
- Keep on removing squares till it is left a square.
- The edge of the final square is the gcd.

Example. $(1547,560)=(987,560)=(427,560)=(427,133)=(294,133)=$ $(161,133)=(28,133)=(105,28)=(77,28)=(49,28)=(21,28)=(21,7)=$ $(14,7)=(7,7)=7$

Extended GCD algorithm (EEA)

$$
\begin{aligned}
& \text { Input: } \quad a, b \in \mathbb{N}, a>b \\
& \text { Output: } \quad x, y, z \text { where } z=\operatorname{gcd}(a, b) \text { and } z=a x+b y \\
& \text { 1. }(X, Y, Z)=(1,0, a) \\
& \text { 2. } \quad(x, y, z)=(0,1, b) \\
& \text { While } Z>0 \\
& \quad q:=\lfloor Z / z\rfloor \\
& \quad(X, Y, Z)=(x, y, z) \\
& \quad(x, y, z)=(X-q x, Y-q y, Z-q z) \\
& \text { Output } X, Y, Z
\end{aligned}
$$

To show that it is correct it is enough to check that after one iteration $\left(X_{1}, Y_{1}, Z_{1}\right)=\left(1,-q_{0}, r_{1}\right)$ and after k iterations
$\left(X_{k}, Y_{k}, Z_{k}\right)=\left(X_{k-2}-q_{k-1} X_{k-1}, Y_{k-2}-q_{k-2} Y_{k-2}, Z_{k-2}-q_{k-1} Z_{k-1}\right)=\left(\alpha_{k}, \beta_{k}, r_{k}\right)$.

The Euler φ-function

A first important application of EEA is to determine the inverses in $\mathbb{Z} / m \mathbb{Z}$
Theorem. Let $a \in \mathbb{Z}$ and $m \in \mathbb{N}$ with $m>1$. Then $a \bmod m$ is invertible (i.e. $\exists b \in \mathbb{Z} / m \mathbb{Z}$ with $a b \equiv 1 \bmod m$) iff $\operatorname{gcd}(a, m)=1$. Furthermore the "arithmetic inverse" b can be computed with time $O\left(\log m^{2}\right)$.
Proof. If $\operatorname{gcd}(a, m)=1$ then in time $O\left(\log m^{2}\right)$ we can compute $x, y \in \mathbb{Z}$ such that $1=x a+y m$. Hence $b=x \bmod m$ has the required property.
Conversely if $a b \equiv 1 \bmod m$, then $1=a b+k m$ for an appropriate $k \in \mathbb{Z}$. This implies that $\operatorname{gcd}(a, m)$ divides 1 and finally $\operatorname{gcd}(a, m)=1 \quad \square$.

Corollary. The set $U(\mathbb{Z} / m \mathbb{Z})$ of invertible elements of $\mathbb{Z} / m \mathbb{Z}$ coincides with

$$
\{a \in \mathbb{N} \text { s.t. } 1 \leq a \leq m, \operatorname{gcd}(a, m)=1\}
$$

We define the Euler φ function as

$$
\varphi(n)=\# U(\mathbb{Z} / m \mathbb{Z})=\#\{a \in \mathbb{N} \text { s.t. } 1 \leq a \leq m, \operatorname{gcd}(a, m)=1\}
$$

The Euler φ-function continues

- $\varphi(1)=1, \quad \varphi(p)=p-1, \quad \varphi\left(p^{\alpha}\right)=p^{\alpha-1}(p-1)$
- $\varphi(m n)=\varphi(m) \varphi(n)$ if $\operatorname{gcd}(m, n)=1$.

This is a consequence of the Chinese Remainder Theorem (we shall meet it later).

- Hence if we can factor $n=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}$, then $\varphi(n)$ is easy to compute. it is enough to compute $n \prod_{p \mid n} 1-1 / p$.
- If we know that $k=\varphi(n)$ and that $n=q \times p$ then we can factor n

In fact $\{p, q\}=\left\{\frac{\varphi(n)-n-1 \pm \sqrt{(\varphi(n)-n-1)^{2}-4 n}}{2}\right\}$.

- An important Theorem of Euler:

$$
\text { If } a \in U(\mathbb{Z} / m \mathbb{Z}) \text { then } a^{\varphi(n)} \equiv 1 \bmod n
$$

The latter is crucial in RSA encryption and decryption

