BASIC CHEMICAL BONDING Condition of ionic bond

1.	When metals combine with non-metals, the metal atom tends to					
	(1) Lose electrons	(2) Gain electrons	6			
	(3) Remain electrically neutral	(4) None of these				
2.	Which does not favour the formation of ionic compound:					
	(1) the ionization energy of the metal atom should be low.					
	(2) the lattice energy of the compound formed must be low.					
		finity of the non-metal should be high.				
	(4) the lattice energy of the compound formed must be high.					
3.	Electrovalent bond formation depends on					
	(1) Ionization energy	(2) Electron affini	ity			
	(3) Lattice energy	(4) All the three a	-			
4.	The lattice energy of sodium chloride					
	one mole of NaCl(s) is formed from:					
	(1) Na(g) and Cl(g) atoms					
	(2) $Na^+(g)$ and $Cl^-(g)$ ions					
	(3) Na(s) and $Cl_2(g)$					
	(4) crystallization from aqueous soluti	ion of sodium chlo	ride.			
5.	Lattice energy of BeCO ₃ (I), MgCO ₃ (
	$(1) I > II > III \qquad (2) I < II < III$		(4) II < I < III			
6.	Lattice energy of an ionic compound depends upon					
	(1) Charge on the ion only (2) Size of the ion only					
	(3) Packing of ions only (4) Ch		d size of the ion			
7.	Which of the following substance has	-				
	(1) NaCl (2) $CaBr_2$	(3) NaBr	(4) $CaCl_2$			
8.	Indicate the nature of bonding in CCl4		() -			
	(1) Covalent in CCl ₄ and electrovalent					
	(2) Electrovalent in both CCl ₄ and Cal					
	(3) Covalent in both CCl_4 and CaH_2					
	(4) Electrovalent in CCl_4 and covalent	t in CaH ₂				
9.	Which forms a crystal of NaCl					
	(1) NaCl molecules	(2) Na^+ and	Cl ⁻ ions			
	(3) Na and Cl atoms	(4) None of				
10.	When sodium and chlorine react then					
	(1) Energy is released, and ionic bond	l is formed				
	(2) Energy is released, and a covalent					
	(3) Energy is absorbed, and ionic bond					
	(4) Energy is absorbed, and covalent b					
11.	Which of the following is an electrova					
	(1) CH_4 (2) $MgCl_2$	(3) SiCl ₄	(4) BF ₃			
		(-)	(-) == 3			

12.	From the following which group of eler	ments easily form	s cation		
	(1) F , Cl , Br (2) Li , Na , K (2)	(3) O, S, Se	(4) N, P, As		
13.	Which of the following ionic compound	d has high lattice	energy?		
	$(1) NaF \qquad (2) NaCl \qquad (3)$	(3) AlF ₃	$(4) \operatorname{Al}_2 \operatorname{O}_3$		
14.	Which of the following has the highest lattice energy?				
	• •	(3) AlF3	(4) CaF ₂		
15.	Compound having least lattice energy is	s:			
		3) RbF	(4) CsF		
16.	The lattice energies of the oxides of Mg				
		2) CaO>BaO>Sr			
	· · · · · · · · · · · · · · · · · · ·	4) MgO >SrO>C	-		
17.	Which of the following has highest latti	ice energy?			
	(1) MgO (2) SrO (2)	3) BaO	(4) CaO		
18.	Select the pair of compounds in which	h first compound	has more lattice		
	energy as compared to second compoun	nd, but solubility	is less.		
		2) LiF, CsF			
		4) BeSO ₄ , BaSO ₄	E Contraction of the second seco		
-	perties of ionic compund				
19.	5 1				
		2) Free ions			
•••		4) Atoms of sodi	um and chlorine		
20.	Ionic compounds do not have	(2) II: 1			
		2) High melting a			
21		4) Soluble in pola			
21.	Which of the following statements is wrong regarding ionic compounds - (1) These are generally in solid state at room temperature				
	(1) These are generally in solid state at 1 (2) The force of attraction between ions	-			
	(3) Ionic compounds are soluble in all s		1		
	(4) They conduct electricity in molten a				
22.	Electrovalent compound's				
	(1) Melting points are low	(2) Boiling	points are low		
	(3) Conduct current in fused state	• • •	e in polar solvent		
23.	Element X is strongly electropositive,		-		
_0.	Both elements are univalent, the	• •	-		
	combination will be	1			
	(1) X^+Y^- (2) X^-Y^+ (2)	(3) X-Y	(4) X→Y		
24.	In the formation of NaCl from Na and C				
	(1) Sodium and chlorine both give elect	trons			
	(2) Sodium and chlorine both accept ele				
	(3) Sodium loses electron and chlorine a				
	(4) Sodium accepts electron and chlorin	-			

25.	Electrovalent compounds do not have				
	(1) High M.P. and Low B.P. (2) High dielectric constant				
	(3) High M.P. and High B.P. (4) High polarity				
26.	Many ionic crystals dissolve in water because				
	(1) Water is an amphiprotic solvent				
	(2) Water is a high boiling liquid				
	(3) The process is accompanied by a positive heat of solution				
	(4) Water decreases the interionic attraction in the crystal lattice due to				
27	salvation				
27.	The electronic structure of four elements A, B, C, D are (1) $1s^2$ (2) $1s^2 2s^2 2r^2$ (2) $1s^2 2s^2 2r^5$ (4) $1s^2 2s^2 2r^6$				
	(1) $1s^2$ (2) $1s^2, 2s^2, 2p^2$ (3) $1s^2, 2s^2, 2p^5$ (4) $1s^2, 2s^2, 2p^6$ The tender set of some electronic level is being set in				
	The tendency to form electrovalent bond is largest in (1) $4 = (2) R$ (4) D				
20	(1) A (2) B (3) C (4) D				
28.	In the given bonds which one is most ionic (1) C_2 C_1 (2) A_1 C_2 (2) C_2 C_1 (4) H_1 C_2				
29.	(1) Cs-Cl (2) Al-Cl (3) C-Cl (4) H-Cl Sodium chloride easily dissolves in water. This is because				
29.	(1) It is a covalent compound (2) Salt reacts with water				
	(3) It is a white substance (4) Its ions are easily solvated				
30.	When NaCl is dissolved in water the sodium ion becomes				
50.	(1) Oxidized(2) Reduced (3) Hydrolysed (4) Hydrated				
31.	Solid NaCl is a bad conductor of electricity since				
011	(1) In solid NaCl there are no ions (2) Solid NaCl is covalent				
	(3) In solid NaCl there is no motion of ions				
	(4) In solid NaCl there are no electrons				
32.	Ionic bonds are usually formed by combination of elements with				
	(1) High ionisation potential and low electron affinity				
	(2) Low ionisation potential and high electron affinity				
	(3) High ionisation potential and high electron affinity				
	(4) Low ionisation potential and low electron affinity				
33.	Molten sodium chloride conducts electricity due to the presence of				
	(1) Free electrons (2) Free ions				
	(3) Free molecules (4) Atoms of sodium and chlorine				
34.	A number of ionic compounds e.g. AgCl, CaF ₂ , BaSO ₄ are insoluble in				
	water. This is because				
	(1) Ionic compounds do not dissolve in water				
	(2) Water has a high dielectric constant				
	(3) Water is not a good ionizing solvent				
	(4) These molecules have exceptionally high alternative forces in the				
	lattice				

35.	What is the nature of chemical bonding between Cs and F(1) Covalent(2) Ionic(3) Coordinate(4) Metallic
36.	Which one of the following compounds is ionic
	(1) KCl (2) CH ₄ (3) Diamond(4) H ₂
37.	Which of the following compound has electrovalent linkage
0,1	(1) CH_3Cl (2) $NaCl$ (3) CH_4 (4) Cl_2
38.	An ionic compound is generally a
001	(1) Good electrolyte (2) Weak electrolyte
	(3) Non-electrolyte (4) Neutral
39.	What metals combine with non-metals, the metal atom tends to
	(1) Lose electrons (2) Gain electrons
	(3) Remain electrically neutral (4) None of these
40.	Among the bonds formed by a chlorine atom with atoms of hydrogen,
	chlorine, sodium and carbon, the strongest bond is formed between
	(1) HCl (2) Cl-Cl (3) Na-Cl (4) C-Cl
41.	Out of the following, which compound will have electrovalent bonding
	(1) Ammonia (2) Water
	(3) Calcium chloride (4) Chloromethane
42.	The force which holds atoms together in an electrovalent bond is
	(1) Vander Waal's force (2) Dipole attraction force
	(3) Electrostatic force of attraction (4) All the above
43.	The main reaction during electrovalent bond formation is
	(1) Redox reaction (2) Substitution reaction
	(3) Addition reaction (4) Elimination reaction
44.	Electrovalent compounds are
	(1) Good conductor of electricity (2) Polar in nature
	(3) Low M.P. and low B.P. (4) Easily available
45.	Ionic compounds do not have
	(1) Hard and brittle nature (2) High melting and boiling point
	(3) Directional properties (4) Soluble in polar solvents
46.	Which type of bonding exists in Li ₂ O and CaF ₂ respectively
	(1) Ionic, ionic (2) Ionic, covalent
	(3) Covalent, ionic (4) Coordinate, ionic
47.	An atom with atomic number 20 is most likely to combine chemically with
	the atom whose atomic number is
	(1) 11 (2) 14 (3) 16 (4) 10
48.	Bond formed in crystal by anion and cation is
	(1) Ionic (2) Metallic (3) Covalent (4) Dipole
49.	Atoms or group of atoms which are electrically charged are known
	(1) Anions (2) Cations (3) Ions (4) Atoms

50.	The interionic attraction depends on	interac	tion of		
	(1) Solute-Solute	(2) S	olvent-Solve	nt	
	(3) The charges	(4) N	/lolecular pro	perti	es
51.	Which of the following compounds i	s ionic	;	•	
		Diamon		2	
52.	The energy that opposes dissolution			-	
-	(1) Hydration energy		attice energy	r	
	(3) Internal energy	· · /	Bond energy		
53.	Which of the following statements is	. ,	•••	omna	ounds
55.	(1) High melting point	not it	(2) Least la	-	
	(3) Least solubility in organic compo	unde			
54.	Electrolytes are compound containing		(4) Soluble	III w	ater
Эт.	(1) Electrovalent bond	e 💧	(2) Covaler	t ho	nd
	(1) Electrovalent bond (3) Coordinate bond		(4) Hydrog		
55.	Electricity do not pass-through ionic	compo			Jild
55.	(1) In solution	compe	(2) In solid	state	
	(3) In melted state		(4) None of		
56.	The order of increasing lattice energy	z of the			
50.	(1) NaCl <cao<nabr<bao< td=""><td></td><td>aBr< NaCl <</td><td></td><td></td></cao<nabr<bao<>		aBr< NaCl <		
	(3) NaCl <nabr<bao<cao< td=""><td></td><td>aBr< NaCl <</td><td></td><td></td></nabr<bao<cao<>		aBr< NaCl <		
57.	The electronic structure of four eleme				
	$a = 1s^2$, $b = 1s^2$, $2s^2 2p^2$, $c = 1s^2 2s^2$				
	The tendency to form electrovalent b	-	-		
	(1) a (2) b	(3) c		(4)	d
58.	Compound with maximum ionic chan	racter i	is formed from	m:	
	(1) Na and Cl (2) Cs and F	(3) C	Cs and I	(4)	Na and F
59.	Solid NaCl is a bad conductor of elec	etricity	because:		
	(1) In solid NaCl there are no ions		(2) Solid N	aCl i	s covalent
	(3) In solid NaCl there is no mobility		IS		
пі	(4) In solid NaCl there are no electro	ns			
	rization and Fazan's Rule				
60.	Favourable conditions for electrovale	•			
	(1) Low charge on ions, large cation,				
	(2) High charge on ions, small cation	•			
		charge on ions, large cation, small anion			
(1	(4) Low charge on ions, small cation	, large	anion		
61.	Polarising power is estimated by				
	A. <u>Ionic charge</u> B. <u>Ionic charge</u>	C. (Ionic charge) ²	D.	Ionic radius
	(Ionic radius) ³ (Ionic radius) ²		Ionic radius		Ionic charge

62.	Out of list I select the cation which has less polarizing power than Ca ²⁺ and					
	from list II select the anion having more polarisability than S^{2-}					
	List I : Mg^{2+}, Sc^{3+}, K^+					
	(1) Mg^{2+} , O^{2-} (2) K^+ , P^{3-}					
63.	Which cationic species has more pola					
		(3) Al^{+3} (4) all				
64.	According to Fajan's rule covalent bo					
• • •	C C	nion (2) Large cation and large anion				
	(3) Small cation and large anion(4) S					
65.	Which option is correct for the follow					
	LiCl < NaCl <kcl<rbcl<cscl< th=""><th>5</th></kcl<rbcl<cscl<>	5				
	(1) Ionic character (2) Melting	point order				
	(3) Solubility in water (4) P	-				
66.	Choose incorrect option:					
	(1) More distortion of anion, more wi	Il be polarisation then covalent				
	character increases.					
	(2) CsF is 100% ionic compound.					
	(3) Charge on cation α polarisation.	(4) Size of anion α polarisation				
67.	Among LiCl, BeCl ₂ , BCl ₃ and CCl	BeCl ₂ , BCl ₃ and CCl ₄ , the covalent bond characteristics				
	follow the order					
	(1) $LiCl > BeCl_2 > BCl_3 > CCl_4$	(2) $LiCl < BeCl_2 < BCl_3 < CCl_4$ (4) $LiCl > BeCl_2 < BCl_3 > CCl_4$				
		$(4) LiCl > BeCl_2 < BCl_3 > CCl_4$				
68.	Which among the following has maximum					
	(1) NaCl (2) MgCl ₂					
69.	Among LiCl, BeCl ₂ , NaCl, CsCl, the	compounds with the greatest and the				
	least ionic character respectively are					
	(1) LiCl and CsCl	(2) NaCl and LiCl				
	(3) CsCl and NaCl	(4) CsCl and BeCl ₂				
70.	The correct order of increasing covale					
	(1) LiCl, NaCl, BeCl ₂	(2) BeCl ₂ , NaCl, LiCl				
- 1	(3) NaCl, LiCl, BeCl ₂	(4) BeCl ₂ , LiCl, NaCl				
71.	Choose the compounds of maximum	and minimum ionic character from				
	LiCl, RbCl, BeCl ₂ and MgCl ₂ :					
	(1) LiCl and RbCl	(2) RbCl and BeCl ₂				
	(3) RbCl and MgCl ₂	(4) MgCl ₂ and BeCl ₂				

72.	Higher polarisation in case of AgCl compared to KCl is due to(1) larger size of cation(2) smaller size of cation(3) inert gas configuration of cation				
	(4) Pseudo inert gas configuration of cation.				
73.	Which of the following is most covalent.				
	(1) $CuCl$ (2) $NaCl$ (3) $AgCl$ (4) $AuCl$				
74.	Out of the following which one has the highest values of covalent				
	character?				
	(1) $ZnCl_2$ (2) $CdCl_2$ (3) $HgCl_2$ (4) $CuCl$				
75.	Which of the following has highest covalent character.				
	(1) $\operatorname{CaC} l_2$ (2) $\operatorname{ZnC} l_2$ (3) KCl (4) CuCl				
76.	Polarisation may be called as the distortion of the shape of an anion by an				
	adjacently placed cation. Which of the following statements is/are correct?				
	(1) Lesser polarization is brought about by a cation of low radius				
	(2) A large cation is likely to bring about a large degree of polarization				
	(3) Larger polarisation is brought about by a cation of high charge				
	(4) A small anion is likely to undergo a large degree of polarisation				
77.	Out of following which one has maximum ionic character -				
- 0	(1) NaCl (2) KCl (3) CaCl ₂ (4) MgCl ₂				
78.	Among LiCl, BeCl ₂ , BCl ₃ and CCl ₄ , the covalent bond character follows				
	the order -				
	(1) $\text{LiCl} < \text{BeCl}_2 > \text{BCl}_3 > \text{CCl}_4$ (2) $\text{LiCl} > \text{BeCl}_2 < \text{BCl}_3 < \text{CCl}_4$				
70	(3) $\text{LiCl} < \text{BeCl}_2 < \text{BCl}_3 < \text{CCl}_4$ (4) $\text{LiCl} > \text{BeCl}_2 > \text{BCl}_3 > \text{CCl}_4$				
79.	Which one is most ionic in the following compounds				
00	(1) AgCl (2) KCl (3) $BaCl_2$ (4) $CaCl_2$				
80.	Which of the following does not conduct electricity in the fused state				
0.1	(1) BeCl_2 (2) MgCl_2 (3) SrCl_2 (4) BaCl_2				
81.	If the electron pair forming a bond between two atoms A and B is not in the				
	centre, then the bond is				
0.0	(1) Single bond (2) Polar bond (3) Non-polar bond (4) π -bond				
82.	Polarization is the distortion of the shape of an anion by an adjacently				
	placed cation. Which of the following statements is correct?				
	(1) Maximum polarization is brought about by a cation of high charge				
	(2) Minimum polarization is brought about by a cation of low radius				
	(3) A large cation is likely to bring about a large degree of polarization				
	(4) A small anion is likely to undergo a large degree of polarization				
83.	The bonds between P atoms and Cl atoms in PCl ₅ are likely to be				
	(1) Ionic with no covalent character				
	(2) Covalent with some ionic character				
	(3) Covalent with no ionic character				
	(4) Ionic with some metallic character				

84.	Two electrons of one atom A and two electrons of another atom B are				
	utilized to form a compound AB. This is an example of				
	(1) Polar covalent bond (2) Non-polar covalent bond				
	(3) Polar bond (4) Dative bond				
85.	Which of the following has a high polarising power				
	(1) Mg^{+2} (2) Al^{+3} (3) Na^{+} (4) Ca^{+2}				
86.	Maximum covalent character is associated with the compound				
	(1) NaI (2) MgI ₂ (3) AlCl ₃ (4) A l I ₃				
87.	Polarisibility of halide ions increases in the order				
	(1) F^- , Cl^- , Br^- , I^- (2) Cl^- , F^- , Br^- , I^-				
	(3) $I^{-}, Br^{-}, Cl^{-}, F^{-}$ (4) $I^{-}, Br^{-}, F^{-}, Cl^{-}$				
88.	According to Fajan's rule, covalent bond is favoured by				
	(1) Large cation and small anion (2) Large cation and large anion				
	(3) Small cation and large anion(4) Small cation and small anion				
89.	Choose the correct statement				
	(1) Amino polarisation is more pronounced by highly charged cation				
	(2) Small cation has minimum capacity to polarise an anion.				
	(3) Small anion has maximum polarizability				
	(4) None of these				
90.	Amongst LiCl, $RbCl$, $BeCl_2$ and $MgCl_2$ the compounds with the greatest				
	and the least ionic character, respectively, are				
	(1) $LiCl$ and $RbCl$ (2) $RbCl$ and $BeCl_2$				
	(3) $RbCl$ and $MgCl_2$ (4) $MgCl_2$ and $BeCl_2$				
91.					
	(1) LiCl > NaCl > KCl > RbCl > CsCl				
	(2) $CsCl > NaCl > KCl > RbCl > LiCl$				
	(3) Li Cl > CsCl > NaCl > KCl > RbCl				
	(4) NaCl > LiCl > KCl > RbCl > CsCl				
92	Which compound is highest covalent				
	(1) LiCl (2) LiF (3) LiBr (4) LiI				
93.	Which among the following elements has the tendency to form covalent				
	compounds				
	(1) Ba (2) Be (3) Mg (4) Ca				
94.	A bond with maximum covalent character between non-metallic elements				
	is formed				
	(1) Between identical atoms				
	(2) Between chemically similar atoms				
	(3) Between atoms of widely different electronegativities(4) Determine full				
	(4) Between atoms of the same size				

95.	The correct seque	nce of increasing co	ing covalent character is represented by		
	(1) LiCl < NaCl <	\leq BeCl ₂	(2) $BeCl_2 < NaCl < LiCl$		
	(3) NaCl $<$ LiCl $<$	\leq BeCl ₂	(4) $BeCl_2 < LiCl < NaCl_2$		
96.	Highest covalent	character is found in	n		
	(1) CaF_2	(2) $CaCl_2$	(3) $CaBr_2$	(4) Cal_2	
97.	The following sal	t shows maximum o	covalent character		
	(1) ACl ₃	(2) $MgCl_2$	(3) CsCl	(4) LaCl ₃	
98.	Which of the follo	owing has covalent	nt bond		
	(1) Na ₂ S	(2) AlCl ₃	(3) NaH	(4) MgCl ₂	
99.	Which of the follo	owing compound ha	und has maximum covalent character		
	(1) PbI ₂	(2) AgI	(3) HgI ₂	(4) CsI	
100.	Compound with r	naximum ionic cha	character is formed from:		
	(1) Na and Cl	(2) Cs and F	(3) Cs and I (4) N	la and F	

Covalent Bond and Covalency

101.	The maximum covalency for p-block elements is equal to -				
	(1) The number of unpaired p-electrons				
	(2) The number of paired d-electrons				
	(3) The number of unpaired s-and p-electrons				
	(4) The actual number of s-and p-electro	ons in the outermost shell			
102.	In a triple bond there is sharing of:				
	(1) 3 electrons (2	2) 4 electrons			
	(3) Several electrons (4	4) 6 electrons			
103.	Which of the following configuration	shows second excitation state of			
	Iodine: -				
104.	5				
	(1) Nitrogen is member of V group				
	(2) It contains no empty d-orbital				
	(3) The bond energy of N N is very hig				
	(4) It's Inert due to presence of triple bor				
105.	5	-			
		3) 8 (4) 7			
106.	If 2d orbital were possible, which of the	e following species would exist?			
	(1) NF ₅ (2) FH_5 (3)	B) BI_6^{3-} (4) SiF_6			
107.	Which pair of elements does not exhibit	variable O.S.			
	(1) Fe, Pb (2) H, Cl (3)	(4) O, N			
108.	When two atoms combine to form a mol	lecule?			
	(1) Energy is released (2	2) Energy is absorbed			
	(3) Energy is neither released nor absorbed				
	(4) Energy may either released or absorbed				

109.	Which of the foll	owing does not exis	t -	
	(1) PCl ₅	(2) NCl ₃	(3) NOCl ₃	(4) NCl ₅
110.		owing ions/ compou		
		(2) OF ₄	(3) NCl ₃	(4) ICl ₃
111.	Which of the ions	s does not exist?		
		(2) NH_4^+		(4) I_3^{-}
112.		owing molecule doe		
	$(1) \operatorname{PF}_5$			$(4) NO_2Cl$
113.		hich does not exist	is:	
	(1) IBr ₇		(3) SF_6	$(4) PbF_4$
114.	• •	nd is formed betwee		
	(1) Ionic	(2) $Covalent(3) C$	coordinate (4) M	Ietallic
115.	Covalent compou	inds are generally	in water	
	(1) Soluble	(2) Insoluble(3) D	Dissociated (4) H	lydrolysed
116.		electron deficient co	ompound	
	(1) IC1	(2) NH ₃	(3) BCl ₃	(4) PCl ₃
117.	Silicon has 4 elec	ctrons in the outerm	ost orbit. In formin	g the bonds
	(1) It gains electro	ons	(2) It loses electro	ons
	(3) It shares elect	rons	(4) None of these	
118.	Which of the foll	owing occurs when	two hydrogen atom	s bond with each
	others			
	(1) Potential ener	gy is lowered	(2) Kinetic energy	is lowered
		tion ceases		
119.		ber of element X is		
117.	the element is		,, and e est energien	
	(1) ×.	(2) · X ·	(3) . <i>x</i> :	(4) $\vdots X$
120		n two identical non-		
120.		ared between the tw	-	
		illy from one atom t		
		-		1 hatres on them
101	(3) With identical	-	(4) Equally shared	
121.		between two atoms	•	
	(1) Electron nucle (2) Electron (2)		(2) Electror	-
100	(3) Electron trans		, , , , , , , , , , , , , , , , , , ,	static attraction
122.		owing statements re		ond is not true
		are shared between	atoms	
	(2) The bond is n			
		of the bond depends		overlapping
		ned may or may not	-	
123.	Which of the folle	owing compounds c	loes not follow the	octet rule for
	electron distributi	on		
	(1) PCl ₅	(2) PCl ₃	(3) H_2O	(4) PH ₃

124.	Number of electrons in the valence orbit of nitrogen in an ammonia molecules are					
	(1) 8	(2) 5	(3) 6	(4) 7		
125.	Hydrogen atoms	are held together to	form hydrogen mo	olecules by		
	(1) Hydrogen bond (2) Ionic bond					
	(3) Covalent bone	d	(4) Dative bond			
126.	Which of the foll	owing does not obe	ey the octet rule			
	(1) CO	(2) NH ₃	$(3) H_2O$	(4) PCl ₅		
127.	Which of the foll	owing statements is	s correct for covaler	nt bond		
	(1) Electrons are	shared between two	o atoms			
	(2) It may be pola	ar or non-polar				
	(3) Direction is n	-				
	(4) Valency elect					
128.		owing does not exi				
1.00	(1) SF ₄	$(2) OF_6$	(3) OF ₂	(4) SF_6		
129.	-	hich does not exist				
120	(1) NCl ₃	(2) NCl ₅		$(4) PH_3$		
130.			7, but chlorine and	bromme give		
	penta-fluorides. The reason for this is					
	(1) low electron affinity of iodine					
	(2) unusual pentagonal bipyramidal structure of IF ₇					
	(3) that the larger iodine atom can accommodate a greater number of					
	smaller fluorine atom around it (4) low chemical reactivity of IF ₇					
101		- ,	10			
131.		owing is a covalent	-	(A) A1 (CO)		
	$(1) \operatorname{Al}_2 \operatorname{O}_3$		(3) AlCl ₃	$(4) \operatorname{Al}_2(\operatorname{SO}_4)_3$		
132.			aximum number of	covalencies out of		
	the given elemen		(2)	$(A) \subset I$		
122	(1) F Ootot configurati	(2) N	(3) C	$(4) \operatorname{Cl}$		
133.	(1) loss of electro	on cannot be achiev	_	falactrons		
	(1) loss of electre (3) sharing of ele		(2) gains o (4) exchan	ge of electrons		
134.	• • •		, bonding is not taki	•		
10 11	state:					
	(1) CH ₄	(2) BF_3	(3) IF ₇	(4) PCl ₃		
Octe	et Rule and For	-				
135.		e	not obey octet rule	:		
	(1) SiF ₄	(2) PCl ₅	(3) ICI	(4) BF_{4}^{-}		
136.	Which can follow	v the octet rule?				
	(1) $BeCl_2$	(2) BF ₃	(3) AlCl ₃	(4) NCl_3		
		(2) D13	(J) AICI3	י (ד)		

137.	Octet rule cannot	•	(2)	
120	(1) SF_2	$(2) \operatorname{PCl}_3$		(4) CO_2
138.	_	bonding takes place	-	(A) DE
120	(1) XeF ₂		(3) CH ₄	$(4) \operatorname{PF}_3$
139.	Which molecule		(2) ClO	(4) A 11 C 1
140	(1) NO		$(3) \operatorname{ClO}_3$	
140.			around the central at (2) N Γ	
1 / 1	(1) XeO ₃		(3) XeF_6	$(4) \operatorname{XeO}_2 F_2$
141.		ng octet rule is/are:		(A) DC1.
1/12		(2) BF ₃ ency of Carbon in ($(4) PCl_3$
142.	(1) 3	(2) 4		(4) 2
143.		h lone pair around		(+) 2
175.	(1) XeO_3		(3) XeF_6	(4) all of these
144			ies, the central ator	
1 1 1 1	pairs of electrons		ies, the contrar ator	
		$F_2 SeO_2$	XeF ₃ ⁺	
	XeOF ₄ ClO		SCl ₂	
	(1) 5	(2) 6	(3) 7	(4) 4
145.	Incorrect stateme			
	(1) Hypervalent		(2) Number of bor	nd pair is four
	(3) it forms in first	st excited state		-
	(4) lp at central su	ulphur atom are two)	
146.		seudo-inert gas con		
	(1) Ag^+		(3) Zn^{2+}	(4) Fe^{3+}
147.		electron deficient c	-	
	(1) ICl		(3) BCl ₃	$(4) PCl_3$
148.	The octet rule is n			
	$(1) \operatorname{CO}_2$		(3) PCl_5 (4) (2)	· · · ·
149.			s isoelectronic with	
1.50	(1) N_3^-		$(3) (NCN)^{2-}$	
150.			the octet rule applic	
151	$(1) \operatorname{BrF}_5$	(2) SF_6		(4) CO ₂
151.			r and lone pair of ele	ectrons present on
	Nitrogen atom are (1) 2.2		(2) 1 2	(4) 4,0
152	(1) 2,2	(2) 3,1	(3) 1,3	
192.	How many hands	nd electron noire are	nrecent in IH- molo	
153	How many bonde	-	-	
	(1) 6	(2) 7	(3) 5 (4) N	one of these
155.	(1) 6 Which of the foll	(2) 7 owing is the electro	(3) 5 (4) N on deficient molecule	one of these e?
	(1) 6 Which of the follo (1) C_2H_6	(2) 7 owing is the electro (2) SiH ₄	(3) 5 (4) N on deficient molecule (3) PH ₃	one of these
155.	(1) 6 Which of the follo (1) C_2H_6	(2) 7 owing is the electro	(3) 5 (4) N on deficient molecule (3) PH ₃	one of these e?

155.	The combination of atoms occurs because they want -	
	(1) To decrease number of electrons in the outermost orbit	
	(2) To attain an inert gas configuration or to attain stability	
	(3) To increase number of electrons in the outermost orbit	
	(4) To attain 18 electrons in the outermost orbit	
156.		
	(1) ClF_3 (2) PCl_5 (3) IF_7 (4) All the three	
157.	The octet rule is not followed in	
	(1) F_2 (2) NaF (3) CaF ₂ (4) BF ₃	
158.	Which of the molecule is not hypo-valent but completes its octet?	
	$(1) AlCl_3 \qquad (2) AlBr_3$	
	(3) AlF ₃ (4) All are hypo-valent and completes their	
159.		on of
	octet.	
	(1) PCl_3 (2) NCl_3 (3) ClF_3 (4) None of these	
160.		
	(1) 3σ , 3π (2) 3σ , 2π (3) 3σ , 1π (4) None of these	
161.	Which of following molecule/specie is having maximum number of	lone
	pairs in Lewis - dot structure.	
1.60	(1) BH_4^- (2) BF_4^- (3) CN^- (4) $COCl_2$	
162.		
	complete octet. (1) D^{+3}	1
1.60	(1) \dot{B}^{+3} (2) Al^{+3} (3) Ga^{+3} (4) All of the function of the fu	nese
163.	The formal charges on three 'O' atoms in O_3 molecule are.	1
164	(1) 0, 0, 0 (2) 0, 0, -1 (3) 0, 0, +1 (4) 0, +1, -	1
164.		
165	(1) NH_3 (2) BF_3 (3) $SiCl_4$ (4) CO_2	
165.	Which of the following is hyper valent compound: (1) PE (2) AIE (4) $CII CI$	
166	(1) PF_5 (2) $AlCl_3$ (3) AlF_3 (4) CH_3Cl	
166.		
167	(1) CO (2) NO (3) NO ₂ (4) BF ₃ Which decode not follow Lewis's acted rule? (4) BF_3	
167.		
160	(1) BCl ₃ (2) SF ₄ (3) XeF ₂ (4) All of the following structure if each stern has six values electrons in	
168.	6	
	valence shell, then identify the addition of formal charge of x, y, z a elements according to Lewis.	ina p
	/ ^y	

(1) +1 (2) 0
$$z p$$
 (3) -1 (4) -2

If Y element belongs to group number 15 in periodic table and X, Z and P elements belongs to group number 16 then calculate the addition of formal charge of each element [Octet rule is followed]

(1) 0 (2) +1 (3) -1 (4) -2175. In following figure:

If Q atom has five valence electron and X, Y, Z and P atom has six valence electrons in their valence shell then calculate the sum of formal charge of P, X, Y, Z and Q atoms.

(4) - 2

(4) + 4

$$(1) -4 \qquad (2) -3 \qquad (3) +3$$

176. What is the formal charge on nitrogen in NO₃⁻? (1) + 3 (2) +1 (3) -1

- 177. The octet rule is not obeyed in -(1) CO_2 (2) BCl_3 (3) PCl_5 (4) Both (2) and (3)
- 178. The compound completing its octet by transfer of electrons is (1) MgO (2) H₂S (3) PH₃ (4) CCl₄
- 179. Which of the following compounds is covalent and in which the extension of octet takes place during its formation?
 (1) SF₆
 (2) NO
 (3) NH₃
 (4) HCl

σ,π and δ Bonds

190.	Which of the following overlapping is correct [assuming X-axis to be the
	internuclear axis]: (1) $2n + 2n \rightarrow \pi$
	(1) $2p_z + 2p_z \rightarrow \sigma$ (3) $1s + 2p_y \rightarrow \pi$ (4) $2p_y + 2p_y \rightarrow \pi$
191	Which of the following overlaps is <u>incorrect</u> [assuming z-axis to be the
171.	internuclear axis]?
	(3) $2p_x + 2p_x \rightarrow \pi 2p_x$ (4) $1s + 2p_y \rightarrow \pi (1s - 2p_y)$
	$\begin{array}{ll} (1) \ 2p_{y} + 2p_{y} \rightarrow \pi 2p_{y} \\ (3) \ 2p_{x} + 2p_{x} \rightarrow \pi 2p_{x} \\ (1) \ `a' \ \& \ `b' \qquad (2) \ `b' \ \& \ `d' \\ \end{array} \qquad \begin{array}{ll} (2) \ 2p_{z} + 2p_{z} \rightarrow \sigma 2p_{z} \\ (4) \ 1s + 2p_{y} \rightarrow \pi \ (1s - 2p_{y}) \\ (3) \ only \ `d' \qquad (4) \ None \ of \ these \end{array}$
192.	Which of the following overlaps of atomic orbitals does not form π -bond
	if z-axis is the internuclear axis?
	(1) $d_{zx} + p_x$ (2) $p_y + p_y$ (3) $d_{yz} + p_y$ (4) $d_{z^2} + d_{z^2}$
193.	Which of the following set of orbitals cannot form π -bond between them.
	(1) $2p \& 3d$ (2) $2s \& 2p$ (3) $3p \& 3d$ (4) $2p - 3p$
194.	Which of the following overlaps of orbitals would lead to formation of
	σ-bond?
	(1) $d_{yz} + d_{zx}$ (2) $d_{xy} + d_{xy}$ (3) $d_{yz} + d_{zx}(4) d_{z^2} + d_{z^2}$
195.	Which of the following orbital cannot form π as well as δ bond.
	(1) d_{XY} (2) d_{z^2} (3) $d_{x^2-y^2}$ (4) d_{YZ}
196.	
	atomic orbitals of two atom (1) and (2) will result in bonding?
	(I) s-orbital of A and p _X orbital of B
	(II) s-orbital of A and p _Z orbital of B
	(III) py-orbital of A and pz orbital of B
	(IV) s-orbitals of both (1) and (2)
	(1) I and IV (2) I and II (3) III and IV (4) II and IV
197.	Which of them can form only one type of bond if INA (Inter nuclear axis)
	is perpendicular to z-axis.
	(1) $d_{x^2-y^2} + d_{x^2-y^2}$ (2) $d_{XZ} + d_{XZ}$ (3) $p_X + p_X$ (4) $d_{XZ} + p_X$
198.	Which of the following set of orbital overlap cannot form π - bond.
	(1) $d_{x^2-y^2}$ and $p_y(2) d_{Xy}$ and p_y (3) p_X and p_X (4) d_{Xy}
199.	Which of the following set of overlap cannot provide π -bond formation.
	(1) 3d and 2p (2) 2p and 3p (3) 2p and 2p (4) 3p and 1s
200.	Which type of overlapping results the formation of a π bond
	(1) Axial overlapping of s-s orbitals
	(2) Lateral overlapping of p-p orbitals
	 (3) Axial overlapping of p-p orbitals (4) Axial overlapping of a p orbitals
201.	(4) Axial overlapping of s-p orbitals In a double bond connecting two atoms, there is a sharing of
201.	In a double bond connecting two atoms, there is a sharing of (1) 2 electrons (2) 1 electron (3) 4 electrons (4) All electrons
	(1) 2 electrons (2) relectron (3) + electrons (4) All electrons

- 202. Which combination(s) results in formation of π -bonds? (1) ($d_{z^2} + p_z$) along x-axis (3) ($d_{xy} + p_y$) along x-axis (4) ($d_{x^2-y^2} + P_y$) along y-axis
- **203.** If the molecular axis is Z then which of the following overlapping is not possible.
 - (1) $p_z + p_z = \sigma$ bond (2) $p_x + p_y = \pi$ bond
 - (3) $p_x + p_x = \pi$ bond (4) $p_y + p_y = \pi$ bond
- 204. Which of the following is the correct representation of formation of σ bond?

- **205.** If y-axis is the approaching axis between two atoms, then which of the set of orbitals cannot form the p bond between two atoms in general. (1) $p_z - p_z$ (2) $p_x - p_x$ (3) $p_x - p_y$ (4) None of these
- **206.** The maximum number of bond and π -bond can be formed between two atoms are respectively.
 - (1) 4, 3 (2) 3, 2 (3) 2, 3 (4) 3, 1

Strength of s, p and d Bonds

The strength order of π - bond is	
(1) $2p-2p > 2p-3d > 2p-3p > 3p-3p$	
(2) $2p-2p < 2p-3d < 2p-3p < 3p-3p$	
(3) $2p-2p < 2p-3d < 2p-3p > 3p-3p$	
(4) $2p-2p < 2p-3d > 2p-3p < 3p-3p$	
Which is correct order of bond strength?	
(1) $1s - 1s > 2p - 2p$	(2) $2p_{\pi} - 2p_{\pi} < 2p_{\pi} - 3d_{\pi}$
(3) $2p_{\pi} - 3p_{\pi} > 2p_{\pi} - 3d_{\pi}$	(4) $2s - 2s > 2p - 2p$
Choose the correct order of bond strength by	overlapping of atomic orbitals
(1) $1s-1s > 1s-2s > 1s-2p$	(2) $2s-2s > 2s-2p > 2p-2p$
(3) $2s-2p > 2s-2s > 2p-2p$	(4) $1s-1s > 1s-2p > 1s-2s$
Choose the incorrect option for bond strengt	th.
(1) $2p_{\pi} - 2p_{\pi} > 2p_{\pi} - 3p_{\pi}$	(2) $2p_{\pi} - 3p_{\pi} > 2p_{\pi} - 3d_{\pi}$
(3) $1s - 2p > 2s - 2p$	(4) $2s - 2p > 3s - 3p$
	(1) $2p-2p > 2p-3d > 2p-3p > 3p-3p$ (2) $2p-2p < 2p-3d < 2p-3p < 3p-3p$ (3) $2p-2p < 2p-3d < 2p-3p > 3p-3p$ (4) $2p-2p < 2p-3d > 2p-3p < 3p-3p$ Which is correct order of bond strength? (1) $1s - 1s > 2p - 2p$ (3) $2p_{\pi} - 3p_{\pi} > 2p_{\pi} - 3d_{\pi}$ Choose the correct order of bond strength by (1) $1s-1s > 1s-2s > 1s-2p$ (3) $2s-2p > 2s-2s > 2p-2p$ Choose the incorrect option for bond strength (1) $2p_{\pi} - 2p_{\pi} > 2p_{\pi} - 3p_{\pi}$

- 211. The strength of bonds by s-s, s-p, p-p overlap is generally in the order:

 (1)p-p>s-p>s-s
 (2) s-s >s-p > p-p
 (3) s-p > s-s > p-p
 (4) p-p > s-s > s-p
- **212.** Indicate the correct statement according to VBT:
 - (1) A sigma bond has no free rotation about the inter-nuclear axis.
 - (2) p-orbitals always have only sidewise overlapping.
 - (3) s-orbitals never form π bonds.
 - (4) There can be more than one sigma bond between two atoms.
- **213.** Which statement is correct?
 - (1) one π bond contains four electrons.
 - (2) π bond is stronger than σ bond.
 - (3) shape of molecule is determined by sigma bond.
 - (4) σ bond is formed by sideways overlapping.
- **214.** Indicate the wrong statement according to Valence bond theory:
 - (1) A sigma bond is stronger than π -bond
 - (2) p-orbitals always have only sidewise overlapping
 - (3) s-orbitals never form π -bonds
 - (4) There can be only one sigma bond between two atoms
- **215.** Which of the following is not correct
 - (1) A sigma bond is weaker than π -bond
 - (2) A sigma bond is stronger than π -bond
 - (3) A double bond is stronger than a single bond
 - (4) A double bond is shorter than a single bond
- **216.** Which of the following statements is not correct for sigma and pi bond formed between two carbon atoms?

(1) Free rotation of atoms about a sigma - bond is allowed but not in case of a pi-bond

(2) Sigma -bond determines the direction between carbon atoms but a pibond has no

primary effect in this regard

(3) Sigma-bond is stronger than a pi-bond

(4) Bond energies of sigma- and pi-bonds are of the order of 264 kJ/mol and 347 kJ/mol. respectively.

- **217.** Strongest bond formed when atomic orbitals
 - (1) Maximum overlap (2) Minimum overlap
 - (3) Overlapping not done (4) None of them
- 218. Which type of overlapping is not present in N₂molecule?

(1) 2s + 2s (2) $2p_X + 2p_X$ (3) $2p_y + 2p_y$ (4) $2p_Z + 2p_Z$ Which conclusions is increased in HCl we benefit

219. Which overlapping is involved in HCl molecule: – (1) s-s overlap (2) p-p overlap (3) s-d overlap (4) s-p overlap

220.	In which of the fol is maximum.	lowing pair of eler	nents the π -bo	ond formation tendency
		(2) Si and O	(3) P and O	(4) Cl and O
221.			• •	
	(1) $2p_{X} - 2p_{X}$	(2) $3p_V - 2p_V$	(3) $3p_{Z} - 3p_{Z}$	$e_{\rm Z}$ (4) 4s - 4s
222.	Nodal planes are p			
	(1) 0, 1, 1, 1			-
223.	Which of the follo	wing is maximum	thermal stable	e?
	(1) HF			(4) HI
224.		wing orbitals does	not participat	e in the hybridisation in
	IF ₇ ?			
	(1) $d_{x^2-y^2}$	(2) d_{XY}	$(3) p_{\mathbf{Z}}$	$(4) d_{yz}$
225.	Which of the mole			
	(1) Cl_2	(2) HCl	(3) H ₂ O	(4) NH ₃
226.				
	• •	(2) 10σ, 2π		(4) 8σ, 3π
227.	The ratio of σ and			
220	(1) 2	(2) 6	(3) 4	(4) 8
228.	How many π bond			(1) = hand is absorb
220	(1) 2 The ratio of π - box	(2) 4 $MO_{a^{-}}$ and $C(a^{-})$		(4) π bond is absent
229.	(1) 1: 1	(2) 2: 4	(3) 1:2	(4) 2 : 3
230.	Which of the follo			
	(1) HF	(2) HCl	(3) HBr	(4) HI
231.				
	(1) HF		(3) HBr	(4) HI
232.	Which of the follo	wing gives correct	arrangement	of compounds
	involved based on	Ŭ		
	(1) HF > HCl > HE			Br > HCl > HF
•••	(3) HF > HBr > H		• •	F > HBr > HI
233.				1 CO molecules are
724	(1) 2.0, 2.0 C_3^{4-} has:	(2) 2, $\frac{1}{2}$	$(3) \frac{1}{2}, \frac{1}{2}$	$(4) \frac{1}{2}, 2$
234.	(1) two σ and two	π-bond	(2) three σ	and one π -bond
	(1) two of and two (3) two σ and one a			and three π -bond
235.	Which cannot be e		· /	
	(1) Overlapping		(2)	Bond formation
	(3) Paramagnetic r	nature of oxygen	(-) (4)	Shapes of molecules
	.		~ /	-

236. How many σ and π bonds are there in the molecule of tetracyanoethylene N≡C、 ·C≡N $\dot{C} = C$ N≡C C=N(1) Nine σ and nine π (2) Five σ and nine π (3) Nine σ and seven π (4) Five σ and eight π **237.** Triple bond in ethyne is formed from (1)Three sigma bonds (2) Three pi bonds (3) One sigma and two pi bonds (4) Two sigma and one pi bond The bond in the formation of fluorine molecule will be 238. (2) Due to s-p overlapping (1) Due to s-s overlapping (3) Due to p-p overlapping (4) Due to hybridization 239. Strongest bond is (4) All are equally strong (1) C-C (2) C=C(3) C≡C 240. The double bond between the two carbon atoms in ethylene consists of (1) Two sigma bonds at right angles to each other (2) One sigma bond and one pi bond (3) Two pi bonds at right angles to each other (4) Two pi bonds at an angle of 60° to each other 241. The p-p orbital overlapping is present in the following molecule (2) Hydrogen bromide (1) Hydrogen (4) Chlorine (3) Hydrogen chloride **242.** In N_2 molecule, the atoms are bonded by (1) One σ , Two π (2) One σ , One π (3) Two σ , One π (4) Three π bonds **243.** Number of bonds in SO₂ (1) Two σ and two π (2) Two σ and one π (3) Two σ , two π and one lone pair (4) None of these Which of the following halogens has the highest bond energy 244. $(1) F_2$ (2) Cl_2 (3) Br_2 (4) I₂ **Hybridization** 245. In which of the hybridisation sate different quantum No. are used -(1) $sp^{3}d^{3}$ (2) $sp^{3}d$ (3) d^2sp^3 (4) sp

246. The d-orbital involved in sp³d hybridisation in trigonal bipyramidal geometry:

(1) $d_{x^2-y^2}$ (2) d_{z^2} (3) d_{xy} (4) d_{yz} 247. The orbital involved in case of sp³d² hybridisation is (1) $s + p_x + p_y + d_{xy} + p_z + d_{z^2}$ (2) $s + p_x + p_y + d_{xy} + p_z + d_{yz}$ (3) $s + p_x + p_y + p_z + d_{x^2-y^2} + d_{z^2}$ (4) $s + p_x + p_y + p_z + d_{yz} + d_{xz}$

248.	The d-orbital which is not involved in bipyramidal geometry is:	n sp ³ d ³ hybridisat	ion in pentagonal
	(1) d_{XY} (2) $d_{x^2-y^2}$	(3) d_{z^2}	(4) d _{yz}
249.	Trigonal bi pyramidal geometry has (1) 90°, 120° (2) 90°, 72°		
250.	Statement-1: All adjacent bond angle		
	 Statement-2: All bond angles are equ (1) Statement-1 is true, statement-2 is explanation for statement-1. (2) Statement-1 is true, statement-2 is correct explanation for statement-1. 	s true, and stateme	nt-2 is correct
	(3) Statement-1 is true, statement-2 is		
	(4) Statement-1 is false, statement-2	is true.	
251.	1 5	(2) $\frac{1}{4}$ p - character	
	(1) $\frac{3}{4}$ s- character (3) $\frac{3}{4}$ p - character	(2) $\frac{1}{2}$ s - character (4) $\frac{1}{2}$ s - character	
252.	orbital is present in which of the foll	owing hybridisatio	
	 (1) sp³d (Square pyramidal) (3) sp³d² 	(2) sp³(4) None of these	
253.			
233.	leading to square pyramidal geometry		ondisation
	(1) d_{z^2} (2) $d_{x^2-y^2}$		
254.		(3) d_{xy} (4) (4)	
255.	The trigonal bipyramidal geometry re	• • •	
	(1) dsp^3 or sp^3d (2) dsp^2 or sp^2d (3)		
256.	In an octahedral structure, the pair of hybridization is	<i>d</i> orbitals involve	d in d ² sp ³
	(1) d_{xy} , $d_{x^2-y^2}$ (2) d_{xz} , d_{z^2}	(3) $d_{x^2-y^2}, d_{z^2}$	(4) d_{yz} , d_{xz}
257.	A square planar complex is formed b	•	
	orbitals		1
	(1) s, p_x, p_y, d_{xz}	(2) s, p_x, p_y ,	5
258.	(3) s,p _x ,p _y , d_{z^2} sp ³ d ² hybrid orbitals are	(4) $s, p_x, p_y,$	u _{xy}
	(1) Linear bipyramidal	(2) Pentag	onal
250	(3) Trigonal bipyramidal	(4) Octahe	
259.	The geometry of the molecule with sp (1) Square planar		ntral atom 1s al bipyramidal
	(1) Square planar (3) Octahedral		pyramidal
		· / I	

260.	In sp hybridisation, shap	be is	
	(1) Angular	(2) Tetrahedral	(3) Bipyramidal
	(4) Linear	(E) None of these	
261.	The bond angle in sp^2 hy	ybridisation is	
		20^0 (3) 9	0^0 (4) 109°28'
262.	sp ³ hybridization leads t	o which shape of th	
	(1) Tetrahedron	-	(2) Octahedron
	(3) Linear		(4) Plane triangle
263.	Out of the following hyb	orid orbitals, the one	which forms the bond at angle,
	180 ⁰ is		
	(1) d^2sp^3 (2) s		
264.	Octahedral molecular sh	ape exists in	hybridisation
			p^3d^3 (4) None of these
265.	Which of the following	hybridisation result	s in non-planar orbitals
	(1) sp^3 (2) d	sp^2 (3) s	p^2 (4) sp
266.	Which of the following	statement is not con	rect
	(1) Hybridization is the	mixing of atomic o	rbitals prior to their combining
	into molecular orbitals		
	(2) sp^2 hybrid orbitals a	re formed from tw	o p atomic orbitals and one s
	atomic orbital		
		s are directed tow	ards the corners of a regular
	octahedron		
	(4) dsp^3 hybrid orbitals		
267.	1 2		
	(1) Planar		yramidal
200	(3) Angular		rigonal bipyramidal
268.	will be	blecule is in sp ² hybi	rid state. The shape of molecule
	(1) Pyramidal	(2) T	etrahedral
	(3) Octahedral		rigonal planar
269.			nbination of two hybridization.
207.	They are		
		$p^2 + pd$ (3) s	$pd + p^2$ (4) none of these
270.			hybridisation then the orbital
	used in pd hybridisation	• •	
	(1) p_z and d_{z^2} (2) p_z	$x and d_{xy}$ (3) p	$_{y}$ and d_{yz} (4) none of these

271. Match List-I (Hybridisation) with List-II (shapes) and select the correct answer

using the codes given below the lists -

List-I

List-II (1) dsp^2 (1) Square planar (2) sp^{3} (2) Tetrahedral (3) d^2sp^3 (3) Octahedral (4) Trigonal bipyramidal (4) $sp^{3}d$ (1) $a \rightarrow 1$; $b \rightarrow 2$; $c \rightarrow 3$; $d \rightarrow 4$ (2) $a \rightarrow 4$; $b \rightarrow 2$; $c \rightarrow 3$; $d \rightarrow 1$ (3) $a \rightarrow 1$; $b \rightarrow 3$; $c \rightarrow 2$; $d \rightarrow 4$ (4) $a \rightarrow 1$; $b \rightarrow 4$; $c \rightarrow 3$; $d \rightarrow 3$ **Hybrid Of Molecules** 272. Which of the following hybridisation results in non-planar orbitals (2) dsp^3 (3) sp^2 (1) sp^{3} (4) sp 273. Octahedral molecular shape exists in hybridisation (1) sp^3d (2) $sp^{3}d^{2}$ (3) $sp^{3}d^{3}$ (4) None of these **274.** sp^3 hybridization leads to which shape of the molecule (1) Tetrahedron (2) Octahedron (3) Linear (4) Plane triangle The geometry of the molecule with sp^3d^2 hybridised central atom is 275. (2) Trigonal bipyramidal (1) Square planar (4) Square pyramidal (3) Octahedral 276. The mode of hybridisation of carbon in CO₂is (1) sp (2) sp^2 (3) sp^{3} (4) None of these 277. The hybridisation in BF₃ molecule is (2) sp^{2} (3) sp^{3} (4) $sp^{3}d$ (1) sp 278. The nature of hybridization in the NH₃ molecule is (2) sp^2 (3) sp^{3} (4) $sp^{3}d$ (1) sp The electronic structure of molecule OF₂ is a hybrid of 279. (3) sp^{3} (2) sp^2 (4) sd^3 (1) sp 280. The state of hybridisation of B in BCl₃ is (2) sp^2 (3) sp^{3} (4) sp^2d^2 (1) sp The hybrid state of sulphur in SO₃ molecule is 281. (2) sp^{3} (1) sp^3d (3) $sp^{3}d^{2}$ (4) sp^2 282. In XeF₄ hybridization is (3) sp^3d (1) $sp^{3}d^{2}$ (2) sp^{3} (4) sp^2d 283. The hybridization in PF_3 is (3) dsp^3 (4) d^2sp^3 (1) sp^{3} (2) sp^2

284.	CCl ₄ has the hybridisation	
205	(1) $sp^{3}d$ (2) dsp^{2} (3) sp (4) sp^{3}	
285.	The PCl ₅ molecule is a result of the hybridisation of (1) an^2d^2 (2) an^3d (4) an^2d^3	
186	(1) sp^2d^2 (2) sp^3d (3) spd^3 (4) sp^2d^3 The structure of Br_3^- involves hybridisation of the type -	
200.	(1) sp^3d (2) sp^3d^2 (3) dsp^3 (4) d^2sp^3	
287.	What is the hybridisation of central atom of perxenate XeO_6^{4-} ion.	
	(1) sp^3d (2) sp^3d^2 (3) sp^3 (4) No hybridisation	
288.	What is the hybridisation of XeO ₃ .	
	(1) sp^3 (2) sp^3d (3) sp^3d^2 (4) sp^2	
289.	$BF_3 + F^- \rightarrow BF_4^-$	
	Hybridisation of central atom in NF ₃ is	
	(1) sp^3 (2) sp (3) sp^2 (4) dsp^2 The hybridization of IF ₇ is	
290.	The hybrdization of IF ₇ is (1)	
	The hybrdization of IF ₇ is (1) sp^3d^3 (2) sp^2d (3) d^2sp^3 (4) sp^3	
291.	The hybridisation of Xe in XeF_5^- is	
202	(1) sp^3 (2) sp^3d^2 (3) sp^3d^3 (4) sp^2 Hybridisation of sulphur in SF ₄ is :	
292.	Hybridisation of sulphur in SF ₄ is : (1) sp^3d^2 (2) sp^3 (3) sp^3d (4) sp^3d^3	
293.		
275.	(1) sp^3d^2 (2) sp^3d (3) sp^3 (4) None of these	
294.	What is the hybridization of Te in TeCl ₆	
	(1) sp (2) sp ² (3) sp ³ d (4) sp ³ d ²	
295.	What is the hybridiation state of B in BF_3 and BF_4^- :	
200	(1) sp^2 , sp^3 (2) sp^3 , sp^3 (3) sp^2 , sp^2 (4) sp^3 , sp^3d	
296.	In which of the following the central atom does not use sp ³ hybrid orbitals in its banding	
	in its bonding (1) BF_3^{-} (2) OH_3^{+} (3) NH_2^{-} (4) NF_3	
297.	Which species do not have sp^3 hybridization	
_,,,	(1) Ammonia (2) Methane (3) Water (4) Carbon dioxide	
298.	The species in which the central atom uses sp hybrid orbitals in its bonding	
	is	
	(1) PH_3 (2) NH_3 (3) H_3C^+ (4) SbH_3	
299.	Which has sp ² hybridization of central atom	
200	(1) PCl_3 (2) SO_3 (3) BF_3 (4) NO_3^-	
300.	Which one has sp^2 hybridisation (1) CO ₂ (2) N ₂ O (2) SO ₂ (4) CO	
201	(1) CO_2 (2) N_2O (3) SO_2 (4) CO Which set hydridization is connect for the following common de	
301	Which set hydridisation is correct for the following compounds	
	NO ₂ , SF ₄ , PF ₆ ⁻ (1) sp, sp ² , sp ³ (2) sp, sp ³ d, sp ³ d ²	
	(1) sp, sp , sp (2) sp, sp d, sp d (3) sp ² , sp ³ , d^2sp^3 (4) sp ³ , sp ³ d ² , sp ³ d ^{2S}	
	(J) sp, sp, u sp	

302.	In which of the fo	llowing cases orbi	tal is involved in the	eir hybridisation.
	(1) NO_2^+	(2) $SnCl_3^-$	(3) XeF_5^+	(4) SO_3Cl^-
303.	In which of the fo	llowing cases orbi	tal is involved in the	eir hybridisation.
	(1) NO_2^+	(2) I_3^{-}	(3) XeF_5^+	(4) PCl_3F_2
304.	In which of the foll	owing orbitals will	l take part in hybrid	isation?
	(1) PCl ₅	(2) SF ₆	(3) IF ₇ (4) A	All the above
305.	The correct order species:	of hybridisation of	T the central atom in	the following
	NH_3 , XeO_2F_2 , $Second Second S$	eF_4 , NO_2^+		
	(1) sp^3 , sp^3 , sp^3d	, sp	(2) sp^3 , sp^3	³ d, sp ³ d, sp
	(3) sp^3 , sp^3d^2 , sp	3 d, sp ²	(4) sp^2 , sp^2	3 d, sp 3 d 2 , sp
306.	What is the correct	et mode of hybridiz	ation of the central	atom in the
	following compou	unds:		
	NO_2^+, SF_4, PF_6^-			
	(1) sp^2 , sp^3 , d^2sp^3 (2) $sp^3 = sp^3 d^2 sp^3 d^2 sp^3$		(2) sp^3 , sp^3	· · •
207	(3) sp, sp ³ d, sp ³ d ²		$(4) \text{ sp, sp}^2,$	-
307.		orrect for hybridisa	ation in ClO_3 , Cl	
	(1) sp^2 , sp^3 , sp^3		(2) sp^2 , sp^2	· 1
• • • •	(3) sp^3 , sp^2 , sp^3		(4) sp^3 , sp^3	³ , sp ³
308.	CH ₃ -CH ₂ -CH=C			
	(1) sp, sp, sp^2 , sp^2		(2) sp^3 , sp^3	
• • • •	(3) sp^3 , sp^3 , sp^2 ,	1	(4) sp^3 , sp^3	2 , sp ² , sp
309.		pound given below	7	
		= CH – CH ₂ – OH ² hybridised atoms	15	
	(1) 5	(2) 3	(3) 4	(4) 6
310.		ollowing orbital has	not participated in	
	(1) PCl_5		(3) XeF_4	
311.		of atomic orbitals	of nitrogen in NO ₂	$^{\prime}$, NO ₃ ⁻ and NH ₄ ⁺
	are: (1) sp sp^3 and sp^2	respectively	(2) sp, sp^2 and sp	³ respectively
			(4) sp^2 , sp^3 and sp^2	
312.		following specie is		
010	$(1) BF_3$	• •	$(3) \text{ NH}_3$	
313.		-	s sp ³ d ² hybridisation (2) $\mathbf{X}_{2}\mathbf{F}_{2}^{+}$	
314	(1) ClF ₃ Which of the follo	(2) SF ₄ owing molecule ha	(3) XeF5 ⁺ s sp ³ d hybridisation	
~ 1 11	(1) SOF_4	(2) SF_4		(4) All
		- *	- *	- *

315.		of S in SO ₄ ^{2–} is sar (2) S in SO ₃ ^{2–}		(4) Δs in $\Delta s E_{4}$
316.		owing compound in		
	•	(2) SO_4^{-2}	$(3) CCl_4$	(4) All of these
317		of phosphorous in		
017.	•	in SF_4 (3) C		
318	sp ³ hybridisation			
510.		(2) CH_3^{-}	$(3) ClO_2^{-}$	$(4) SO_{2}$
	(1) A & C	(2) $B \& C$	(3) B & D	(4) C & D
319.		ollowing compounds		
		nore than one type		
	(i) CH ₃ CH ₂ CH ₂ C	H ₃	(ii) CH ₃ —CH=C	H–CH ₃
	(iii) CH ₂ =CH–CH	I ₂ –CH ₃	(iv) H–C≡C–H	
	(1) (iii) and (iv)	(2) (i) and (iv)	(3) (ii) and (iii)	(4) Only (ii)
320.	The type of hybrid	dization of Xe in Xe	eF6 will be the sam	e as that of the
	central atom in th	e following molecu	le:	
	(1) PCl ₅	(2) SF_6	(3) IF ₇	(4) CCl ₄
321.	In the compound			
	$\overset{1}{C}H_2 = \overset{2}{C}H - \overset{3}{C}H_2 - \overset{4}{C}H_2 - \overset{4}{$			
		d is formed by the c		
		(2) $sp^3 - sp^3$		
322.	Which of the follo	owing elements can		bridisation state: -
	(1) C	(2) P	(3) Cl	(4) B
	Correct answer is			
272	(1) a, c Which among the	(2) a, d	(3) b, c log have an^3d hybr	
525.		e following molecu ons on the central a		Idisation with one
	(i) SF ₄		(iii) XeO ₂ F ₂	(iv) ClOF ₃
	(1) (i), (ii) and (iii)			and (iv) only
	(3) (i) and (iii) on	•	(4) (iii) and	d (iv) only.
324	$S_1: [XeF_7]^+$ has sp	•		
	S ₂ : $[PCl_4]^+$ has sp S ₃ : $[SF_6]$ has sp ³ d	•		
	S ₃ : $[SF_6]$ has sp d S ₄ : $[PF_4]^+$ has sp ³	-		
		T T F T (3) T	FTT (4)	FFFT
325.	sp ³ hybridisation			
			(3) NO ₃ -	(4) NH ₃
326.		of P in phosphate i		()
	(1) I in ICl ₄ ⁻	(2) S in SO ₃ (3) N	$V \text{ in NO}_3^-$ (4) S	S in SO_3^{2-}

327.	Molecule in which central atom has sp (1) IF ₇ (2) IO ₆ ⁻⁵ (3) X		
328.			
	are:	(2) (2) (2) (3)	
	 (1) sp, sp³ and sp² respectively (3) sp², sp and sp³ respectively 		
329.	The hybrid orbitals used by central at		
0 _ > .	molecules are respectively		
	(1) sp^2 , sp^3 and sp	(2) sp, sp^2 and sp^3	
	(3) sp^3 , sp and sp^2	(4) sp^2 , sp and sp^3	
330.	The structural formula of a compound	$l \text{ is } CH_3 - CH = C =$	$= CH_2$ The type
	Of hybridization at the four carbons fi		
	(1) sp^2 , sp , sp^2 , sp^3	(2) sp^2 , sp^3 , sp^2 , sp^2)
		(4) sp^3 , sp^2 , sp^2 , sp^2	
331.	The hybridization of carbon atoms in	$C_2 - C_3$ single bond	d of
	$HC^{4} \equiv C - CH^{2} = CH^{2} + CH^{2}$ is:		
	(1) $sp^3 - sp^3$ (2) $sp^2 - sp$	(3) $sp - sp^2$	(4) $sp^3 - sp$
332.			in compound,
(1	$N \equiv C_{(1)} - C_{(2)} = CH_2$ involves the hybrid		1
333.) sp and sp ² (2) sp ² and sp ³ (3) sp Specify the hybridisations of centr		
555.	respectively $\{N_3^-, NOCl, N_2O\}$		onowing species
	(1) sp, sp ² , sp (2) sp, sp, sp ³	(3) sp^2 , sp, sp	(4) sp^2 , sp^2 , sp .
334.	In which of the following, 'N' atom is	s sp ² hybridised:	
~~-	(1) NH ₃ (2) NH_4^+		(4) NOCl
335.	Choose the molecules in which hybrid		-
	Among the compounds, BF ₃ , NCl ₃ , F ₂		-
	in which the central atom has the sam	(2) F_2S and	
	(1) BF₃ and NCl₃(3) NCl₃ and F₂S	(2) Γ_{2} S and (4) SF ₄ and	
Sha		(+) 51 ⁻⁴ and	DCC12
	pe Of Molecules	1	
336.	Percentage of s-character in sp^3 hybrid (1) 25 (2) 50	(3) 66	(A) 75
337.	(1) 25 (2) 50 s-character in sp hybridised orbitals is		(4) 75
557.	$(1)\frac{1}{3} \qquad (2)\frac{1}{2}$	$(3)\frac{1}{4}$	$(4)\frac{2}{2}$
220	5 2	4	3
338.	Which of the following hybridisation $(1) \text{ sp}^3$ $(2) \text{ sp}^2$		aracters one of these
339.	For which of the following hybridisat		
557.	(1) sp^2 (2) sp	(3) sp^3	(4) dsp^3
		× / 1	× / I

340.	Hybrid orbitals, the one which forms (1) d_2sp^3 (2) sp^3	the bond at angle120 ⁰ , is (3) sp^2 (4) sp
341.		
342.	(1) sp^3d^2 (2) d^2sp^3 A sp^3 hybrid orbital contains:	$(3) dsp^2 \qquad (4) sp^3 d$
	(1) 1/4 s-character	(2) 1/2 s-character
	(3) 2/3 s-character	(4) 3/4 s-character
343.	For which of the hybridisation the ginnumber of angles and the statement is x° to one another".	
	(1) sp^3d^2 (2) sp^3	(3) sp^2 (4) sp^3d
344.	Which one of the following molecula possible for the sp^3d^2 hybridisation?	ar geometries (i.e., shapes) is not
	(1) See-saw	(2) Octahedral
	(3) Square planar	(4) Square pyramidal
345.		sp ² hybrid state. The shape of
	molecule will be	
	(1) Pyramidal	(2) Tetrahedral
	(3) Octahedral	(4) Trigonal planar
346.	1 5 1 5	
	(1) Planar	(2) Pyramidal
	(3) Angular	(4) Trigonal bipyramidal
347.	1	
	(1) Tetrahedral	(2) Pyramidal
	(3) Octahedral	(4) Square planer
348.	The structure of PF ₅ molecule is	
	(1) Tetrahedral	(2) Trigonal bipyramidal
	(3) Square planar	(4) Pentagonal bipyramidal
349.	-	le can be resulted from which of the
	following hybridization.	
250	(1) sp^3 (2) sp^2 (3) Both (1) and (2) (4) None of these
350.		
	(1) Trigonal	(2) Tetrahedral
0.51	(3) Pyramidal	(4) Trigonal pyramidal
351.	The shape of CH_3^+ species is:	
	(1) Tetrahedral	(2) Square planar
250	(3) Trigonal planar The share of SO $\frac{2}{3}$ ion is:	(4) Linear
352.	1	(2) Tatrohadral
	(1) Square planar (2) Trigonal binyramidal	(2) Tetrahedral
	(3) Trigonal bipyramidal	(4) Hexagonal

353. XeF_2 molecule is :

(1) Linear

(3) Pyramidal

(2) Triangular planar

(4) Square planar

354. Which is the right structure of XeF_4 ?

366.	Which of the following is non-linear $(1) \text{ CO}_3$ $(2) \text{ CO}_2$	molecule (3) CS_2	(4) BeCl ₂		
367.	The linear structure is assumed by	(0) OO_2			
0071	(1) SnCl_2 (2) NCO^-	(3) CS_2	(4) NO_2^-		
368.	The pair having similar geometry is	() -	() -		
	(1) PCl_3 , NH_3 (2) $BeCl_2$, H_2O	(3) CH ₄ , CCl ₄	(4) IF ₅ , PF ₅		
369.	The shape of H_3O^+ ion is				
	(1) Linear (2) Angular (3) Trigona				
370.					
	repulsion (VSEPR) theory will be		1		
271	(1) Planar triangle (2) Pyramidal (3) The geometry of $A = \frac{-3}{2}$ is as follows:		quare planar		
371.	The geometry of AlF_6^{-3} is as follows: (1) Tetrahedral (2) Hexagonal		1) Octobedral		
272	· · · · · ·		4) Octalleural		
572.	Which of the following two are isostr (1) $XeF_2 IF_2^-$ (2) NH ₃ , BF ₃		(A) DC1, IC1,		
272			(4) PC15, IC15		
373.	0 0		$(A) \in \mathcal{O}$		
274	(1) CO_2 (2) NO_2	(3) SO ₂	$(4) \operatorname{SiO}_2$		
3/4.	Which of the following is that molecular		•		
	$(1) PCl_3 \qquad (2) SO_2$	(3) CO_3^{-2}	(4) NO ₃ ⁻		
375.	Which molecule has linear structure?				
. – .	(1) CO_2 (2) NO_2	$(3) SO_2$	(4) SiO_2		
376.	CO ₂ is iso structural with:				
	(1) $HgCl_2$ (2) $SnCl_2$	(3) SO ₂	(4) NO_2^-		
377.	The bonding and lone pairs of electro the following shape:	ons present in CIF ₃	are arranged in		
	(1) Square pyramidal	(2) Trigonal plana	r		
	(3) Trigonal bipyramidal	(4) Octahedral			
378.	Ammonia molecule is formed by the	following type of h	ybrid orbitals :		
	(1) dsp^2 (2) sp^3	(3) $sp^{3}d$	(4) d^2sp		
379.	XeF ₆ is:	· · ·			
	(1) Octahedral (2) distorted octahe	dral (3) Planar (4	4) Tetrahedral		
380	Mark out the correct match of shape?				
	(1) XeOF ₂ - Trigonal planar	(2) ICl_4^- - Square	planar		
	(3) $[SbF_5]^{2-}$ - Pentagonal				
381.	Shape of a molecule having 4 bond p will be	airs and two lone p	airs of electrons,		
	(1) Square planar	(2) Tetrahedral			
	(3) Linear	(4) Octahedral			

382.	2	eOF2, XeO2F2 is sp	³ d. But shape will l (2) T shape, (See-	
	(1) T, 'V' shape(3) Both have T sha	ane	(4) T shape, irregu	,
383.	· /	-	•	
505.		(2) H_3O^+	$(3) NO_3^{-}$	(4) CO_3^{2-}
384.				
	(1) Lone pair- lone			
	(2) Lone pair- lone	pair repulsion only	y	
	(3) Lone pair- bond pair repulsion only			
	(4) Bond pair- bond	l pair repulsion on	ly	
385.		• • •	-	is
	(1) $\rm NH_4^+$	(2) BF_{4}^{-}	(3) XeF_4	(4) CCl ₄
386.	1 -			
	(1) Tetrahedral		(3) T-shape	(4) Trigonal
387.	I_3^+ and I_3^- have sa	ime:		
	(1) Geometry		(2) Number of lon	e pair (s)
	(3) Bond angle		(4) None of these	
388.		-		
200		$(2) BF_4^-$		(4) XeF_6
389.	The electronic geor			are respectively
	(1) Trigonal bipyramidal geometry, linear shape(2) Hexagonal geometry, T-shape			
			ular chana	
	(3) Triangular plana(4) Tetrahedral geo		-	
390.	The shapes of XeF_4		-	
570.	(1) octahedral, trigo			
	(2) Sq. pyramidal, p			
	(3) Sq. Planar, pent			
	(4) See-saw, T-shap	-	ungunun	
391.			structural?	
571.	(1) CH_3^- and CH_3^+	ing pans are iso i	(2) NH_4^+ and BH_4^-	_
	(1) OH_{3}^{2} and OH_{3}^{2} (3) SO_{4}^{2} and BF_{3}		(4) NH_2^- and BeF_2	
392.		CIF2 Ist and XeO		2
572.	-			Tatrohadral
	(1) T-shape, Linear	-	(2) Planar, Linear,	
	(3) T-shape, Planar	•		
	(4) Trigonal bipyra			
393.	The type of hybrid		nlorine atom in ClO	_
	(1) sp^3	(2) sp^2	(3) <i>sp</i>	$(4) sp^3d$

394.	In case of XeO ₂ F ₂ and XeF ₆ , Xe is	with		
	(1) Same hybridization but with different geometry			
	(2) Different hybridization with same geometry			
	(3) Different hybridization and diff	cerent geometry		
	(4) Same geometry and same hybri	c .		
395.	Which of the following molecule is			
	(1) I_3^- (2) ClF ₃	(3) SF ₄	(4) XeF ₄	
396.	The molecule which has pyramidal	shape is		
	(1) SO_3 (2) NO_3^-	(3) CO_3^{-2}	(4) PF ₃	
397.	Molecules with see-saw shape is			
	(1) SF_4 (2) $XeOF_4$	(3) XeO_2F_2	(4) $HgCl_2$	
398.	Isostructural group of molecules is			
	(1) NH ₃ , NF ₃ , BF ₃	(2) NO_3^- , NO_2^+ , 3	SF4	
	$(3) XeO_4, NH_4^+, CH_4$	(4) CH ₃ ⁻ , NH ₃ , N	IF ₃	
399.	The structure of IF_5 can be best des	scribed as :-		
	$F = \begin{bmatrix} 90^{\circ} & F & F \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$	F		
	90°C 1 72°C F			
	F (.) F F			
	(1) F (2) F) none of these	
400.	The shapes of PCl_4^+ , PCl_4^- and As(-	
	 (1) square planar, tetrahedral and see-saw (2) tetrahedral see saw and trigonal binyramidal 			
	(2) tetrahedral, see-saw and trigonal bipyramidal(3) tetrahedral, square planar and pentagonal bipyramidal			
	(4) trigonal bipyramidal, tetrahedra			
401.	The shapes of IF ₅ and IF ₇ are respe	1 10		
	(1) tetragonal pyramidal and pentagonal bipyramidal			
	(2) octahedral and pyramidal			
	(3) trigonal bipyramidal and square	e antiprismatic		
	(4) distorted square planar and dist			
402.	The geometry and the type of hybri	d orbital present abo	ut the central atom	
	in BF ₃ is (1) Linear, sp	(2) Trigonal plan	$ar sn^2$	
	(1) Ellicar, sp (3) Tetrahedral, sp^3	(4) Pyramidal, sp	-	
403.	Shape of NH_3 is very similar to:	(+) i yrannaai, sp	,	
	(1) BF ₃ (2) CH_3^-	(3) SO ₃	(4) CH ₃ ⊕	
408.	The number of 90° angle in SF ₆ are	2:	· ·	
407	(1) 4 (2) 8 Which 6 th 6 th 7	(3) 12	(4) 16	
405.	Which of the following statement i	s/are not correct -		

	(1) CH_3^+ shows sp ² -hybridisation whereas CH_3^- shows sp ³ -hybridisation (2) NH_4^+ has a regular tetrahedral geometry			
	(3) sp^2 -hybridised orbitals have equal s and p character.			
406.	(4) Hybridised orbitals always form of In sp hybridisation, shape is	5-bonds		
400.	(1) Angular	(2) Tetrahedral		
	(3) Bipyramidal	(4) Linear		
407.	The structure and hybridisation of Si			
	(1) Bent, sp	(2) Trigonal, sp^2		
	(3) Octahedral, sp ³ d	(4) Tetrahedral, sp^3		
408.	Which of the following statement is t	rue for $IO_2F_2^-$:		
		corners of a trigonal bipyramidal but		
	one of the equatorial pairs is unshared (2) It has $ar^{3}d$ hybridization and is T			
	 (2) It has sp³d hybridisation and is T- (3) Its structure is analogous to SF₄ 	snaped.		
	(4) (1) and (3) both			
409.	Which of the following structure is m	nost expected for molecule XeOF4?		
	(1) Tetrahedral	(2) Square pyramidal		
	(3) Square planar	(4) Octahedral		
410.	Which of the following is not correct	ly match?		
	(1) ICl_2^- – Linear	(2) XeF_6 – Distorted Octahedral		
	(3) ICl ₃ –Trigonal bipyramidal	(4) SF ₄ – See-Saw		
411.	How many bond angles of 90° are pre-	esent in trigonal bipyramidal shape		
	of PCl ₅ ?			
412.	(1) 9 (2) 6 (3) 4 Which of the following has square py	(4) None of these		
712.	(1) XeF_5^- (2) PF_6^-	Taimuai geometry.		
		naving square pyramidal geometry		
413.	Select pair of compounds in which be	•		
	but have same molecular geometry: -			
<i>A</i> 1 <i>A</i>	(1) BF ₃ , BrF ₃ (2) ICl_2^{Θ} , BeCl ₂ The AsF ₅ molecule is trigonal bipyra			
414.	the As atoms for bonding are: -	initial. The hybrid orbitals used by		
	(1) $d_x^2 - y^2$, d_z^2 , s, p _x , p _y	(2) d_{xy} , s, p_x , p_y , p_z		
	(3) s, p_x , p_y , p_z , dz^2	(4) $d_x^2 - y^2$, s, p _x , p _y		
415.	The pair of compounds having similar (1) DE (2) D E (1)			
416	(1) BF ₃ , NF ₃ (2) BeF ₂ , H ₂ O The shape of IF ₄ ⁻ will be: -	(3) BCl ₃ , PCl ₃ (4) BF ₃ , CH ₃ ⁺		
ч10 .	(1) Square planar	(2) Tetrahedral		
	(3) Pentagonal bipyramidal	(4) Distorted tetrahedral		
417.	XeOF ₄ contains: -			

	(1) six electron pairs forming an octahedron with two positions occupied by lone pairs			
	(2) two π -bonds and the remaining six electron pairs, forming an octahedron			
		and the remaining f	our electron pairs fo	orming an
		nd the remaining six ne position occupie	x electron pairs form d by a lone pair	ning an
418.				
	(1) NH_2^+ shows sp	$p^2 - hybridisation w$	hereas NH ₂ ⁻ shows	$sp^3 -$
	hybridisation	-		
	(2) Al (OH) ₄ ^{$-$} has	a regular tetrahedra	l geometry	
	(3) sp ² -hybridized	l orbitals have equa	l s-and p-character	
	(4) usually hybrid	ized orbitals form o	-bonds	
419.	H ₂ O is:			
	(1) A linear triaton	nic molecule		
		r) triatomic molecu		
	(3) Both of these		(4) None of these	
420.			t probable shape of	
		-	e outer shell of the	
100	(1) Linear	(2) Tetrahedral	(3) Hexahedral	(4) Octahedral
422.	Which molecule is		(2) CO	
400	(1) BeF_2	(2) BeH_2	$(3) \operatorname{CO}_2$	(4) H ₂ O
423.	Which molecule is		(2) CO	(A) II C
424	(1) NO_2^-		$(3) \operatorname{CO}_2$	(4) H ₂ S
424.			s trigonal planer geo	
125			(3) NH ₃	(4) DF ₃
423.		wing will be octabe		(4) DO 3-
176	(1) SF_6	(2) BF_4^-	(3) PCl ₅	(4) BO_3^{3-}
420.	(1) Triangular	l ₃ , PCl ₃ and ICl ₃ mo		
			(2) Pyramidal	naarraat
427.	(3) T-shaped Which of the follo	wing pairs has sam	(4) All above are i	liconect
⊣ ∠/.	(1) PH ₃ and BCl ₃	fwilig pairs has sain	(2) SO ₂ and NH ₃	
	(1) Γ Π_3 and DCI_3 (3) PCI_5 and SF_6		(4) NH_4^+ and SO_4^2	2-
428.		wing compounds d	oesn't have linear s	
7 20.	(1) CO_2	(2) SO_2	(3) BeCl ₂	$(4) C_2H_2$
429.		ch is pyramid shape		
127.	(1) PCl ₃	(2) CO_3^{2-}	(3) SO ₃	(4) NO ₃ -
	(-)	(-)		(.) 1.05

430. The species which is not tetrahedral in shape is

421	(1) NF ₄ ^{\oplus}		$(3) BF_4^{-}$	• •	
431.					
	accordingly which is incorrect statement. (1) l.p. will go to the axial position of PBP geometry.				
	· · ·	-	on of TBP geometry	V	
			longer than equator		
			ry is shorter than ax		
432.	· · ·	-	below have shape		
	(1) XeO ₃	(2) IOF_4^+	-	(4) $\operatorname{XeF_5}^{\oplus}$	
433.			es is not isostructura		
		<u> </u>	(3) CO_3^{2-} , BO_3^{3-}		
434.	Find the pair of sp	ecies having same	shape but different	hybridisation.	
	(1) SO ₃ , CO_3^{2-}		$(2) \operatorname{NO}_2$, ClO_2		
	(3) BeCl ₂ , HCN		(4) XeF ₂ , SnCl ₂		
435.	1				
	(1) Tetrahedral &		(2) Pyramidal & T		
	(3) Square planar		(4) Tetrahedral &	Trigonal planar	
436.					
107	$(1) PCl_3$	(2) BCl_3	(3) NH_3	(4) ClF_3	
437.	Which of the follo	-	(2) NO $+$		
120		(2) BeCl ₂	(3) NO_2^+	(4) All of these	
438.		ounds having simila		(A) DE: CIL ⁺	
439.		(2) BeF_2 , H_2O	$(3) BCl_3, PCl_3$	(4) BF ₃ , CH_3^+	
437.	· · · · · ·		ot describe to any o	f the above	
	Which of the following shape does not describe to any of the above species?				
	(1) Square pyrami	dal	(2) Square	planar	
	(3) Trigonal plana		(4) Linear	[-··	
440.	The hybridisation				
	(1) sp^{3} and tetrahe	=	(2) sp^3d and see-s	aw	
	(3) sp^3d and TBP		(4) sp^3d^2 and octa	hedral	
441.	1 2 1				
			(3) NO_3^{-}		
442.			wing options regard	ling the	
		entral atom and sha	pe.		
	(1) SnCl ₂ , sp ² , line	ear	pe. (2) AlCl4 ⁻ , sp ³ , sc (4) COF ₂ , sp ² , pla	luare planar	
442	(3) SOCl ₂ , sp ² , pla	nar	(4) COF_2 , sp_2 , pla	nar	
443.	-	is not tetrahedral i	-	(A) IC1 -	
111	(1) NF4 \oplus	(2) AlH4 ⁻	(3) BF_{4}	(4) ICl ₄ -	
444.		-	$(3) V_{2} O_{2} E_{2}$	(A) HaCla	
	$(1) \operatorname{CH}_2 \operatorname{F}_2$	(2) $XeOF_4$	$(3) \operatorname{XeO}_2 F_2$	(4) $HgCl_2$	

445. Find the pair of species having same shape but different hybridisation.

	(1) SO ₂ CO_2^{2-}	$(2) NO_2^{-} ClO_2^{-}$	(3) BeCl_2 HCN (4)	4) XeF2 SnCl2	
446	(1) SO_3 , CO_3^{2-} (2) NO_2^- , CIO_2^- (3) $BeCl_2$, HCN (4) XeF_2 , $SnCl_2$ Which of the following compounds are having same shape.				
	(1) SF_4		-	-	
447.	(1) SF_4 (2) XeF_4 (3) $[AsF_4]^-$ (4) $[SnCl_3]^-$ Which of the following is linear shape?				
	(1) SO_2	(2) NO_2^+		$[O_{2}^{-}]$	
448.		wing has linear sha			
	(1) NO ₂ ⁻	-	$(3) H_2O$ (4) C)F ₂	
449.			shapes for molecul		
	is:		I		
	(1) CF ₄ , SF ₄	(2) XeF_2 , CO_2	(3) BF ₃ , PCl ₃	(4) PF_5 , IF_3	
450.					
	(1) both linear	5	(2) Linear and ber	nt respectively	
	(3) both bent		(4) Bent and linea		
451.		t set from the follo	wing options regard		
		central atom and Sh			
	(i) $SnCl_2 \rightarrow sp^2$, I		(ii) $\operatorname{SnCl}_3^- \to \operatorname{sp}^3$,	Pyramidal	
	(iii) $COF_2 \rightarrow sp^2$,		(iv) SOCl ₂ \rightarrow sp ³ ,	-	
	(1) (ii), (iii) & (iv)		(2) (ii) & (iii)		
	(3) (i), (ii) & (iii)		(4) (i) & (ii)		
452.	The geometry of a	ammonia molecule	can be best describe	ed as	
	(1) nitrogen at one vertex of a regular tetrahedron, the other three vertices				
	being occupied by the three hydrogens				
	(2) nitrogen at the centre of the tetrahedron, three of the vertices being				
	occupied by three hydrogens				
	(3) nitrogen at the centre of an equilateral triangle, three corners being				
	occupied by three hydrogens				
	(4) nitrogen at the junction of a T, three open ends being occupied by				
452	three hydrogens	$(\cdot, \cdot, \cdot, \cdot, \cdot)$. 1	
453.		-	kely to result from a	a trigonal	
	bipyramidal electr (1) trigonal planar	-	$(2) \lim_{n \to \infty} a_n (n) = a_n (n) + $	(1) T shaped	
151	· · · ·		(3) linear (3) linear oth have different h		
434.	have same molect	-		yonuisation out	
			(3) BCl3, PCl3	(4) PC12 NC12	
455.		-			
455.	electron geometry		likely to result, from		
	••••		idal (III) linear	(IV) V_shaped	
	Choose the correct			(IV) V-shaped	
			(3) I, III & IV	(4) All	
461	What is the shape	. ,	(5) 1, 111 & 11	(1) / 111	
1011	(1) Linear	—	(3) T.B. P	(4) See-Saw	
457	Which is not corre		(<i>J</i>) 1. D . 1	(T) 500-5aw	
ч <i>у</i> / .		sony matched:			

	(1) XeO ₃ ; Trigonal bipyramidal (2	2) ClF ₃ ; bent T-shape				
	(3) XeOF ₄ ; Square pyramidal (4	C .				
458.						
1201	(1) NO_2^+ and NO_2^- (2) PCl_2^+	-				
	(3) XeF_4 and ICl_4^- (4) $TeCl$					
450	• • • • • • • • • • • • • • • • • • • •					
459.	Among the following the pair in which the two species are not isostructural is:					
		2) PF_6^- and SF_6				
		10^{-1} and 31^{-6} 10^{-3} and 32^{-6}				
160						
460.	hybridisation.	obtained from sp d				
	•	2) Square pyramidal				
		b) Octahedral				
461.) Soumourur				
	(1) IOF ₄ ⁺ ; Trigonal bipyra	amidal				
	(2) IO_2F_2 ; T-shape					
	(3) XeO_6^{4-} ; Square bipyram	nidal				
	(4) XeF_2 ; Linear					
462.	. $S_1: I_3^+$ is a linear molecule with two lone	pairs of electrons on central atom.				
	S_2 : I_3^- is a linear molecule with three lone	e pair of electrons on central atom.				
	S_3 : Br_3^+ is a bent molecule with two lone					
	S ₄ : ICl ₄ ⁻ is a pyramidal molecule with on	e lone pair of electrons on central				
	atom.					
463.	(1) T F T F (2) F T F T (3) Which one of the following is the correct					
405.	. Which one of the following is the correc hybridization, and shape?	t set with respect to molecule,				
		2) BeCl ₂ , sp ² , triangular planar				
	(1) $BCO12$, Sp^2 , finded (3) BCl_3 , sp^2 , triangular planar (4)					
464.	. Of the following species the one having	· -				
	(1) NH_4^+ (2) BF_4^- (3) XeF_4					
465.	. T-type of shape is exhibited by the mole	cule				
	(1) ICl_3 (2) $CHCl_3$ (3)	$CCl_4 \qquad (4) PCl_5$				
466.	. Which of the following molecular geome	etry is not possible from a				
	octahedron electron geometry.					
		2) Square pyramidal				
) Linear				
467.		_				
	central atom is having sp^3d hybridisation					
100	(1) TBP (2) Trigonal planer (3)	· · · · ·				
468.	e	are naving square pyramidal and				
	pyramidal shape respectively.					

	(1) IOF_4^+	(2) IOF_2^-	(3) XeO ₆ 4–	(4) XeF ₂			
478.	Which of the follo	owing is isoelectron	ic and isostructura	l with CO ₂ ?			
	(1) NO ₂	(2) NO_3^{-}	(3) NO ₂ ⁻	(4) N ₂ O			
479.	Which of the follo	owing is sp ² hybrid	ised and bent in sha	ape?			
	(1) H ₂ O	(2) NO_3^-	(3) BF ₃	(4) NO ₂ ⁻			
480.	Which of the follo	owing is linear?					
	(1) XeF ₂	(2) XeF 5^{-}	$(3) C_2 O_2^{2-} (4)$	both (1) and (3)			
481.	How many molecules are linear in following compounds but does not have any lone pair on central atom.						
	CO_2 , XeF ₂ , [I(C	$N)_2]^{-}, [I_2(CN)]^+,$	I ₃ ⁻ , C ₂ H ₂ , SnCl	2, OF ₂ , HgCl ₂			
	(1) 4	(2) 2	(3) 5	(4) 3			
482.		owing is V-shaped:					
483.	(1) S_3^{2-}	(2) I_3^- le which has Seen-S	(3) N_3^- (4) n	ione of these			
405.		(2) $[O_2IF_2]^-$	_	(4) POCl ₃			
484.		ound that are iso-structure	·				
404.	respectively			and Drog			
		nd pyramidal XeO3					
	· · · —	l pyramidal XeO3					
	(3) bent XeF_2 and	-					
	(4) linear XeF ₂ and	nd tetrahedral XeO3					
485.	Which of the follo	owing molecules ha	ve perfect octahed	ral structure?			
	(1) XeOF ₄	(2) XeF ₆	$(3) \operatorname{BrF_6}^-$	(4) SbF_6^{3-}			
486.	Which of the follo	owing ClF ₃ geomet	ry has maximum 9	0° lone pair -			
	bond pair repulsio	on?		F			
		(2) F (2)	$(3) \underbrace{F}_{F}$				
487.	What is the shape						
	(1) trigonal bipyra	amidal (2) See-Sav	v (3) T- shape (4) s	quare planar			
488.	-	olecule of NH ₃ , in w	which central atoms	contains			
	lone pair of electr (1) Tetrahedral	ons, 1s	(2) Planar	trigonal			
	(3) Square planar		(4) Pyrami	-			
489.	· · ·	pyramidal structure					
	(1) CH ₄	(2) NH ₃	(3) H ₂ O	(4) CO ₂			
490.	BCl ₃ is a planar m	olecule while NCl ₃	is pyramidal, beca	use			

491.	 (2) B-Cl bond is r (3) Nitrogen atom (4) N-Cl bond is r Match the items r answers from the List (1) molecule 	nore polar than is smaller than nore covalent t under list (1) v sets (1), (2), (3	n boron atom than B-Cl bond vith items under list (2 b) and (4) - List (2) shape	-
	(1) PCl ₅		(i) V-shaped	
	(2) F_2O		(ii) Triangular planar	
	$(3) BCl_3$		(iii) Trigonal bipyrami	
	$(4) NH_3$		(iv) Trigonal pyramida	ıl
	(1) • 1		(v) Tetrahedral	
	(1) $a - i, b - v, c - (2) = i - i - i - i - i - i - i - i - i - i$			
492.			(4) a - iii, b - i, c	
492.	given below the li		ect the correct answer	using the codes
	List I		(shape)	
	$(1) CS_2$	1. Ben		
	(2) SO_2	2. Lin		
	(3) BF ₃	3. Trig	gonal planar	
	(4) NH ₃	4. Tet	rahedral	
			gonal pyramidal	
	(1) $a \rightarrow 2; b \rightarrow 1;$	$c \rightarrow 3; d \rightarrow 5$	(2) $a \rightarrow 1; b \rightarrow 2$	$2; c \to 3; d \to 5$
D		$c \rightarrow 5; d \rightarrow 4$	$(4) a \rightarrow 1; b \rightarrow 2$	$2; \mathbf{c} \to 5; \mathbf{d} \to 4$
	ts Rule			
493.		-	e has regular geometry	
	(1) H_2O		$(3) SF_6$	(4)XeF ₆
494.		edral molecule	e, MX ₆ , the number X-	M-X bonds at 180°
	is			
405	$\begin{array}{c} (1) \text{ Six} \\ W_1 \cdot 1 C_1 C_1 \end{array}$	(2) Four 1	(3) Three	(4) Two
495.		-	t have regular tetrahedr	
106	(1) CH ₄	(2) BF_4^-		
496.	(I) H ₂ O	(II) NH ₃	torted according to VS (III) XeF ₂	EPR theory for -
	(1) II ₂ O (1) I, III,	. ,	(11) Xer 2 (3) I, II, III	(4) I, II
497.	The regular geom	. ,	· · /	(+) 1, 11
ч)/,	(1) Plane triangul	-	(2) Trigonal bip	vramidal
	(3) Square planar	ai	(4) Tetrahedral	yrannuar
498.		wing bag gum	metrical structure:	
770.				(A) CC1
	(1) PCl_3	$(2) \operatorname{CH}_2 \operatorname{Cl}_2$	(3) $CHCl_3$	$(4) \operatorname{CCl}_4$

Planar And Nonplanar

499.	Which of the following is planar?							
500			(3) NH ₃	$(4) \mathrm{NF}_3$				
500.		wing has not plana (2) L^+						
501	(1) CH_3^+							
501.		num numbers of ato	oms are prese	nt in single plane of Al				
	$(CH_3)_3$ molecule.							
	(1) 7	(2) 4	(3) 10	(4) 6				
502.			$\langle \mathbf{a} \rangle$ Let $$					
	$(1) SF_4$		• •	(4) $\rm NH_4^+$				
503.		owing molecule is p						
		(2) PCl_3F_2		(4) SF_4				
504.		owing molecules is	-					
	$(1) NF_3$	(2) NCl ₃		$(4) BF_3$				
505.	-	ape is possessed by		_				
	(1) ClF ₃			(4) NO ₂ ⁻				
506.		a-atomic species co	ontains two lo	one pair on central atom				
	and planar?		_					
	. ,	$(2) XeF_4$	· · /					
507.	Amongst CO ₃ ^{2–} , 2	AsO ₃ ^{3–} , XeO ₃ , ClO	3 , BO ₃ ³ at	nd SO_3^{2-} the non-planar				
	species are:							
	(1) XeO_3 , ClO_3^- , S	SO_3^{2-} , AsO_3^{3-}	(2) AsO_3^{3-} ,	XeO_3, CO_3^{-2}				
	$(3) BO_3^{3-}, CO_3^{2-},$	SO_{3}^{2-}	(4) AsO_3^{3-} ,	BO ₃ ^{3–} , CO ₃ ^{2–}				
508.	Which of the follo	owing species is pla						
		(2) NH_2^-		(4) None of these				
509.				nd its principal quantum				
			number for last electron is 2 and element B has 7 electrons in valence shell					
	and its principal quantum number for last electron is 3. Which option is							
		-						
	true for compound	d of element A and	B.?	on is 3. Which option is				
	true for compound (1) Compound is	d of element A and AB3 type	B.? (2) C	on is 3. Which option is ompound is nonplanar				
510	true for compound (1) Compound is (3) Compound ha	d of element A and AB3 type s 107° bond angle.	B.? (2) C (4) A	on is 3. Which option is ompound is nonplanar Il are correct				
510.	true for compound (1) Compound is (3) Compound ha Which of the follo	d of element A and AB3 type s 107° bond angle. owing species are e	B.? (2) C (4) A xpected to be	on is 3. Which option is ompound is nonplanar Il are correct planar: -				
510.	true for compound (1) Compound is (3) Compound ha Which of the follo (1) NH ₃	d of element A and AB ₃ type s 107° bond angle. owing species are en (2) CH ₃ ⁺	B.? (2) C (4) A	on is 3. Which option is ompound is nonplanar Il are correct planar: -				
510.	true for compound (1) Compound is (3) Compound ha Which of the follo (1) NH ₃ the correct answer	d of element A and AB ₃ type s 107° bond angle. owing species are ex (2) CH ₃ ⁺ r is: -	B.? (2) C (4) A xpected to be (3) NH ₂ ⁻	on is 3. Which option is ompound is nonplanar Il are correct planar: - (4) PCl ₃				
	true for compound (1) Compound is (3) Compound ha Which of the follo (1) NH ₃ the correct answer (1) b and c	d of element A and AB ₃ type s 107° bond angle. owing species are end (2) CH ₃ ⁺ r is: - (2) c and d	B.? (2) C (4) A xpected to be (3) NH ₂ ⁻ (3) b and d	on is 3. Which option is ompound is nonplanar Il are correct planar: -				
	true for compound (1) Compound is (3) Compound ha Which of the follo (1) NH ₃ the correct answer (1) b and c In which molecule	d of element A and AB ₃ type s 107° bond angle. owing species are et (2) CH ₃ ⁺ r is: - (2) c and d e are all atoms copl	 B.? (2) C (4) A (4) A (3) NH₂⁻ (3) b and d (3) anar 	on is 3. Which option is ompound is nonplanar Il are correct planar: - (4) PCl ₃ (4) a and d				
	true for compound (1) Compound is . (3) Compound ha Which of the follo (1) NH ₃ the correct answer (1) b and c In which molecule (1) CH ₄	d of element A and AB ₃ type s 107° bond angle. owing species are ex (2) CH ₃ ⁺ r is: - (2) c and d e are all atoms copl (2) BF ₃	B.? (2) C (4) A xpected to be (3) NH ₂ ⁻ (3) b and d	on is 3. Which option is ompound is nonplanar Il are correct planar: - (4) PCl ₃				
511.	true for compound (1) Compound is (3) Compound ha Which of the follo (1) NH ₃ the correct answer (1) b and c In which molecule (1) CH ₄ $p\pi - p\pi$ and $p\pi$	d of element A and AB ₃ type s 107° bond angle. wing species are end (2) CH_3^+ r is: - (2) c and d e are all atoms copl (2) BF ₃ r - d π Bonds	 B.? (2) C (4) A (4) A (3) NH₂⁻ (3) b and d (3) PF₃ 	on is 3. Which option is ompound is nonplanar Il are correct planar: - (4) PCl ₃ (4) a and d				
	true for compound (1) Compound is (3) Compound ha Which of the follo (1) NH ₃ the correct answer (1) b and c In which molecule (1) CH ₄ $p\pi - p\pi$ and $p\pi$ How many π bond	d of element A and AB ₃ type s 107° bond angle. wing species are et (2) CH_3^+ r is: - (2) c and d e are all atoms copl (2) BF ₃ t - d\pi Bonds ds are present in SC	B.? (2) C (4) A xpected to be (3) NH ₂ ⁻ (3) b and d anar (3) PF ₃	on is 3. Which option is ompound is nonplanar Il are correct planar: - (4) PCl ₃ (4) a and d (4) NH ₃				
511.	true for compound (1) Compound is (3) Compound ha Which of the follo (1) NH ₃ the correct answer (1) b and c In which molecule (1) CH ₄ $p\pi - p\pi$ and $p\pi$	d of element A and AB ₃ type s 107° bond angle. wing species are end (2) CH_3^+ r is: - (2) c and d e are all atoms copl (2) BF ₃ r - d π Bonds	 B.? (2) C (4) A (4) A (3) NH₂⁻ (3) b and d (3) PF₃ 	on is 3. Which option is ompound is nonplanar Il are correct planar: - (4) PCl ₃ (4) a and d				

513. In SO₂ molecule, there are two σ -bonds and two π -bonds. The two π -bonds are formed by:

	(1) $p\pi - p\pi$ overlap between S and O atoms (2) $sp^2 - p$ overlaps between S and O atoms				
	(2) sp = p overlaps between S and O atoms (3) one by $p\pi - p\pi$ overlap and other by $p\pi - d\pi$ overlap				
	(4) both by $p\pi - d\pi$ overlap				
514.	Example of $p\pi$ - $p\pi$ bonding is - (1) BF ₃ (2) SO ₂ (3) SO ₃ (4) All of these				
515.	The nature of π -bond in perchlorate (ClO ⁻⁴) ion is: -				
516.	(1) $O_{(d\pi)}$ — $Cl_{(p\pi)}$ (2) $O_{(p\pi)}$ — $Cl_{(p\pi)}$ (3) $O_{(p\pi)}$ — $Cl_{(d\pi)}$ (4) $O_{(d\pi)}$ — $Cl_{(d\pi)}$ Which of the following compound having number of $p\pi$ - $p\pi$ bond is equal to $p\pi$ - $d\pi$ bonds?				
	(1) SO_2 (2) SO_3 (3) O_3 (4) $POCl_3$				
517.	The structure of the SO ₃ molecule in the gaseous phase contains: -				
	(1) only σ -bonds between sulphur and oxygen				
	(2) σ -bonds and a ($p\pi$ - $p\pi$) bonds between sulphur and oxygen				
	(3) σ -bonds and a ($d\pi$ -p π) bonds between sulphur and oxygen				
	(4) σ -bonds, and a ($p\pi$ - $p\pi$) and a ($p\pi$ - $d\pi$) bonds between sulphur and				
518.	oxygen Which of the following statements regarding the structure of SOCl ₂ is not				
310.	correct?				
	(1) The sulphur is sp^3 hybridised and it has a tetrahedral shape.				
	(2) The sulphur is sp^3 hybridised and it has a trigonal pyramid shape.				
	(3) The oxygen-sulphur bond is $p\pi$ -d π bond.				
	(4) It contains one lone pair of electrons in the sp ³ hybrid orbital of sulphur.				
519.	-				
	(1) The central carbon is sp hybridized				
	(2) The terminal carbon atoms are sp^2 hybridized				
	(3) The planes containing the CH_2 groups are mutually perpendicular to				
	permit the formation of two separate p-bonds. (4) All correct				
520.	Which of the following molecule is planar?				
	(1) $F_2C = C = C = CF_2$ (2) $H_2C = C = CH_2$				
501	(3) C_2H_2 (4) All of these Which of the following statements are correct:				
521.	Which of the following statements are correct: (1) The number of sigma bonds in $CH_2 = C = C = CH_2$ is 7.				
	(2) All the hydrogen atoms in $CH_2 = C = C = CH_2$ lie in the same plane.				
	(1) Only (1) (2) Only (2)				
	(3) Both (1) and (2) (4) Neither (1) nor (2)				
522.	The nodal plane in the π -bond of ethene is located in				
544.	(1) the molecular plane				

(2) a plane parallel to the molecular plane

(3) a plane perpendicular to the molecular plane which bisects the carboncarbon σ bond at right angle.

(4) a plane perpendicular to the molecular plane which contains the carbon-carbon bond.

523. Nodal planes of π -bonds (s) in CH₂ = C = C = CH₂ are located in:

(1) all are in molecular plane

(2) two in molecular plane and one in a plane perpendicular to molecular plane which contains $C-C\ \sigma\text{-bond}$

(3) one in molecular plane and two in a plane perpendicular to molecular plane which contains $C-C\ \sigma\text{-bonds}$

(4) two in molecular plane and one in a plane perpendicular to molecular plane which bisects $C - C \sigma$ -bonds at right angle

Polar and Nonpolar Molecules

- 524. The electronegativity of C, H, O, N and S are 2.5, 2.1, 3.5, 3.0 and 2.5 respectively. Which of the following bond is most polar?
 - (1) O-H (2) S-H (3) N-H (4) C-H
- 525. Which of the following bond has the most polar character?(1) C-O(2) C-Br(3) C-S(4) C-F
- 526. Select the correct statement for H_2 molecule

(1) On time average the molecule is non-polar but at the particular moment it may act as a dipole which is equally probable in all directions

(2) On time average the molecule is polar but at the particular moment it does not act as a dipole.

(3) On time average the molecule is non-polar and the particular moment it does not act as dipole.

- (4) All are incorrect
- 527. Which of the following are incorrect for dipole moment?

(1) Lone pair of elements present on central atom can give rise to dipole moment

- (2) Dipole moment is vector quantity
- (3) PF₅ (g) molecule has nonzero dipole moment

(4) Difference in electronegativities of combining atom can lead to dipole moment

528. Which of the following bond is more polar.

(1) $H-F$ (2) $H-Cl$ (3) $H-Br$ (4)) H–I
-------------------------------------	-------

- 529. Which of the following molecule / ion has zero dipole moment. (1) ClF_3 (2) ICl_2^- (3) SF_4 (4) None of these
- 530. Which of the following has non-zero dipole moment? (1) CCl₄ (2) C₂H₆ (3) CO₂ (4) SO₂
- 531. Which of the following compounds are planar as well as non-polar. (1) XeF_4 (2) XeF_2 (3) XeF_5^- (4) XeF_5^+

532.	e i					
500	(1) CCl ₄ (2) C ₂ H ₆ (3) CO ₂	(4) SO ₂				
533.	e	-				
521	(1) $P(CH_3)_3(CF_3)_2$ (2) PF_3Cl_2 (3) BF_3 , Which of the following has zero direct moment?	$(4) \operatorname{CCl}_4$				
534.	C 1					
525		(4) SO_2				
535.	5. BF ₃ and NF ₃ both molecules are covalent, but BF ₃ is non-polar and NF ₃ polar. Its reason is:					
	(1) in uncombined state boron is metal and nitrogen is gas					
	(2) B–F bond has no dipole moment whereas N–	_				
	moment					
	(3) the size of boron atom is smaller than nitroger	n				
	(4) BF ₃ is planar whereas NF ₃ is pyramidal					
536.		e moment?				
	(1) BF ₃ (2) SnCl ₂ (3) H ₂ O					
537.						
557.	(1) H_2O (2) CO_2 (3) HF	(4) HBr				
538.						
		(4) All of these				
539.		× /				
	(1) NH_3 (2) H_2O (3) BCl_3	(4) SO ₂				
541.	1. Which one of the following is having zero dipole	moment				
	(1) CCl ₄ (2) CH ₃ Cl (3) CH ₃ F	(4) CHCl ₃				
542.	2. Which of the following has zero dipole moment					
	(1) CH_2Cl_2 (2) CH_4 (3) NH_3	(4) PH ₃				
543.	1					
	(1) BF_3 (2) NH_3 (3) CCl_4	(4) CH ₄				
544.	4. Which of the following has zero dipole moment?					
	(1) CO_2 (2) NH_3 (3) NF_3	(4) H_2O				
545.	5. PCl ₅ is nonpolar because: -					
	(1) $P - Cl$ bond is non-polar (2) Its dipole model (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)	ment is zero				
	(3) P - Cl bond is polar (4) P & Cl have d	equal electronegativity				
546.	5. Dipole moment of CO_2 is zero which implies that	t:				
	(1) Carbon and oxygen have equal electronegative	ities				
	(2) Carbon has no polar bond					
	(3) CO_2 is a linear molecule					
	(4) Carbon has bond moments of zero value					

547. Species having zero dipole moment:

	(1) XeF ₄	(2) SO ₂	(3) SF_4 (4)) CH_2Cl_2		
548.		X ₄ is having zero d				
	probable geometr	-				
540	• •	(2) Square planar		. ,		
549.	dipole moment.	geometry of molec		ule has holi-zelo		
	-	ar (2) Bent T-shape	(3) Pyramidal (4) Both (2) and (3)		
550.	If the measured dipole moment for the molecule is zero then for which or given formula the shape of the molecule cannot predicted.					
	-	-	-			
551.	(1) AX ₃ If the measured d	(2) AX_4	$(3) AX_5 \qquad (4)$	then for which of		
551.		e shape of the molec				
	(1) AX_3	(2) AX ₄	_	AX_2		
552.	-	ole moment wherea				
	(1) Water is linea		(2) H_2O is bent			
		tronegative than O				
552	· · ·	nding is present in H		mont.		
553.		owing molecule hav	-) SO ₂		
554	(1) BF ₃ Which of the foll	(2) CH ₂ Cl ₂ owing pair of moleo				
554.	in polarity (Polar		eules have same s	nape out uniferent		
		(2) SnCl_2 & SO_2	(3) CO ₂ & N ₂ O	(4) $SO_2 \& SO_3$		
555.	-	ent is zero for the m				
	(1) Ammonia (2) S_{1} 1 1 1 \cdot	1	(2) Boron triflue	oride		
556.	(3) Sulphur dioxi	ae H2S and its dipole 1	(4) Water			
550.	(1) angular and n		(2) angle and ze	ero		
557.	(3) linear and nor	n-zero	(4) linear and z			
	Which of the foll	n-zero owing is non-polar				
				ero		
558.	Which of the foll (1) PCl ₅	owing is non-polar	 (4) linear and z (3) SF₆ (4) 	ero		
558.	Which of the foll (1) PCl ₅	owing is non-polar (2) PCl ₃	 (4) linear and z (3) SF₆ (4) 	ero		
558. 559.	Which of the foll (1) PCl ₅ Which of the foll (1) CCl ₄ Which of the foll	owing is non-polar (2) PCl ₃ owing compound is (2) CH ₂ Cl ₂ owing is nonpolar a	 (4) linear and ze (3) SF₆ (4) (4) (4) (4) (5) SF₆ (4) (4)	ero) IF7 (4) CH3Cl anar species?		
559.	Which of the foll (1) PCl ₅ Which of the foll (1) CCl ₄ Which of the foll (1) XeF ₆	owing is non-polar (2) PCl ₃ owing compound is (2) CH ₂ Cl ₂ owing is nonpolar a (2) XeOF ₄	 (4) linear and ze (3) SF₆ (4) (4) (4) (4) (5) Non-polar? (3) CHCl₃ (3) CHCl₃ (3) XeF₅ 	ero) IF ₇ (4) CH ₃ Cl		
	Which of the foll (1) PCl ₅ Which of the foll (1) CCl ₄ Which of the foll (1) XeF ₆ Which of the foll	owing is non-polar (2) PCl ₃ owing compound is (2) CH ₂ Cl ₂ owing is nonpolar a (2) XeOF ₄ owing is non-polar	 (4) linear and ze (3) SF₆ (4) (3) CHCl₃ (3) CHCl₃ (3) XeF₅ molecule? 	ero) IF ₇ (4) CH ₃ Cl anar species? (4) XeF ₄		
559. 560.	Which of the foll (1) PCl ₅ Which of the foll (1) CCl ₄ Which of the foll (1) XeF ₆ Which of the foll (1) BF ₃	owing is non-polar (2) PCl ₃ owing compound is (2) CH ₂ Cl ₂ owing is nonpolar a (2) XeOF ₄ owing is non-polar (2) ClF ₃	 (4) linear and ze (3) SF₆ (4) (4) (4) (4) (5) Non-polar? (3) CHCl₃ (3) CHCl₃ (3) XeF₅ 	ero) IF7 (4) CH3Cl anar species?		
559.	Which of the foll (1) PCl ₅ Which of the foll (1) CCl ₄ Which of the foll (1) XeF ₆ Which of the foll (1) BF ₃ Which set of mol	owing is non-polar (2) PCl ₃ owing compound is (2) CH ₂ Cl ₂ owing is nonpolar a (2) XeOF ₄ owing is non-polar (2) ClF ₃ ecules is polar:	(4) linear and zero (3) SF ₆ (4) a non-polar? (3) CHCl ₃ and pentagonal plat (3) XeF ₅ molecule? (3) PCl ₃	ero) IF ₇ (4) CH ₃ Cl anar species? (4) XeF ₄ (4) SO ₂		
559. 560.	Which of the foll (1) PCl ₅ Which of the foll (1) CCl ₄ Which of the foll (1) XeF ₆ Which of the foll (1) BF ₃ Which set of mol (1) XeF ₄ , IF ₇ , SO	owing is non-polar (2) PCl ₃ owing compound is (2) CH ₂ Cl ₂ owing is nonpolar a (2) XeOF ₄ owing is non-polar (2) ClF ₃ ecules is polar: ³	(4) linear and zero (3) SF ₆ (4) a non-polar? (3) CHCl ₃ and pentagonal plat (3) XeF ₅ molecule? (3) PCl ₃ (2) PCl ₅ , C ₆ H ₆ ,	ero) IF ₇ (4) CH ₃ Cl anar species? (4) XeF ₄ (4) SO ₂ SF ₆		
559. 560.	Which of the foll (1) PCl ₅ Which of the foll (1) CCl ₄ Which of the foll (1) XeF ₆ Which of the foll (1) BF ₃ Which set of mol (1) XeF ₄ , IF ₇ , SO (3) SnCl ₂ , SO ₂ , N	owing is non-polar (2) PCl ₃ owing compound is (2) CH ₂ Cl ₂ owing is nonpolar a (2) XeOF ₄ owing is non-polar (2) ClF ₃ ecules is polar: ³	(4) linear and zero (3) SF ₆ (4) a non-polar? (3) CHCl ₃ and pentagonal plat (3) XeF ₅ molecule? (3) PCl ₃	ero) IF ₇ (4) CH ₃ Cl anar species? (4) XeF ₄ (4) SO ₂ SF ₆		

	(1) All the compounds having polar bond, have dipole moment (2) SO_2 is non-polar				
	(3) H₂O molecule is nonpolar, having polar bonds(4) PH₃ is polar molecule having nonpolar bonds				
563.	Which contains be				
	(1) NH4Cl	(2) HCN	-	H_2O_2	(4) CH ₄
564.	Which of the follo	owing species	are polar:		
	$(1) C_6 H_6$	(2) XeF ₂	(3) SO ₂	(4) SF ₄	(E) SF_6
	correct answer is:				
	(1)(2)&(4)(2)(1)	l), (2) & (E)	(3) (1) &	(E) (4)	(3) & (4)
565.	Which of the follo	owing molecul	es has pola	r character	
	(1) CO ₂	(2) CH ₄	(3) H	PF5	(4) NH ₃
566.	Which set of mole	ecules is polar:	: -		
	(1) XeF ₄ , IF ₇ , SO ₃	3	(2) H	PCl_5, C_6H_6, S	SF ₆
	(3) SnCl ₂ , SO ₂ , N			CO_2, CS_2, C_2	
567.	1 5	covalent bond			
	(1) Atomic size			Electronegati	-
	(3) Ionic size		· · ·	None of the a	
568.	(5) <i>cis</i> 1, 2-dichlo Which of the follo			rans 1, 2-dic	chloroethene
508.	(1) CCl_4	(2) $CHCl_3$	-	CH3OH	(4) CH ₃ Cl
569.			(5) (
	(1) Dimethyl sulp		(2) (Carbon tetrac	chloride
	(3) Ammonia		(4) H	Ethyl alcohol	l
570.	Which of the follo	owing is a non-	-polar com	pound	
	(1) HCl	(2)H ₂ Se	(3) ((4) H1
571.	Which of the follo		-	-	
572.	(1) NO_3^{Θ} Which of the foll	(2) NO_2^{Θ}	(3) I ules does n		(4) NH ₃ h permanent dipole
572.	moment	lowing molect		or possess a	i permanent dipole
	(1) H ₂ S	(2) SO_2	(3) (CS_2	(4) SO ₃
573.	What conclusion		om the fact	that BF ₃ has	s no dipole
	moment but PF ₃ is				
	(1) BF_3 is not sym		PF ₃ is symm	netrical	
	(2) BF_3 molecule				
	(3) Atomic radius	-			
	(4) BF ₃ molecule	-	-		1.
574.		bit geometrica	Il isomerisi	n, Geometri	cal isomers are as
	follows:				

dipole moment. (where "A" is the central atom).

- (1) AX₃ (having one lone pair on central atom)
- (2) AX₄ (Tetrahedral)

575.

- (3) AX₄Y (having no lone pair on central atom)
- (4) Can't be predicted

576. Carbon tetrachloride has no net dipole moment because of

- (1) Its planar structure
- (2) Its regular tetrahedral structure
- (3) Similar sizes of carbon and chlorine atoms
- (4) Similar electron affinities of carbon and chlorine
- 577. Fluorine is more electronegative than either boron or phosphorus. What conclusion can be drawn from the fact that BF₃ has no dipole moment but PF₃ does
 - (1) BF₃ is not spherically symmetrical but PF₃ is
 - (2) BF₃molecule must be linear
 - (3) The atomic radius of P is larger than the atomic radius of B
 - (4) The BF₃ molecule must be planar triangular
- 578. Which of the following has no dipole moment
 - (1) CO_2 (2) SO_3 (3) O_3 (4) H_2O
- 579. Of the following molecules, the one, which has permanent dipole moment, is -

	(1) SiF ₄	$(2) BF_3$	(3) PF_3	$(4) \mathrm{PF}_5$
580.	Dipole moment i	s highest in:		
	(1) CHCl ₃	(2) CH ₄	(3) CHF ₃	(4) CCl ₄
581.	The polar and pla	anar compound is :		

- (1) SF_4 (2) BF_2Cl (3) CH_2F_2 (4) O_2F_2
- 582. Choose the incorrect statement.
 - (1) Electronegativity of Cl is less than F
 - (2) Electron affinity of Cl is greater than F
 - (3) Bond energy of σ -bond is greater than π bond.
 - (4) The net dipole moment direction of NF₃ is towards l.p. of N-atom.
- 583. The correct order of dipole moment is:
 - $(1) CH_3Cl < CH_3F < CH_3Br < CH_3I$

	(2) $CH_3Cl > CH_3F > CH_3Br > CH_3I$ (3) $CH_3F > CH_3Cl > CH_3Br > CH_3I$	
	$(4) CH_3F < CH_3Cl < CH_3Br < CH_3I$	
584.		mpounds, the first one is more polar
	than the second one?	
	(1) SO_3 , SO_2 (2) NF_3 , NH_3 (3)	
585.	e i	H_2O , NH_3 , NF_3 and CCl_4 is
	$(1) \operatorname{CCl}_4 < \operatorname{NF}_3 < \operatorname{NH}_3 < \operatorname{H}_2\operatorname{O}$	(2) $CCl_4 > NF_3 > NH_3 > H_2O$
	(3) NF ₃ > H ₂ O > CCl ₄ > H ₂ O	
506	(4) all the four have equal dipole mo	
586.	1 0	
	(1) $BF_3 > NF_3 > NH_3$	(2) NF ₃ > BF ₃ > NH ₃
507	(3) $NH_3 > NF_3 > BF_3$	(4) $NH_3 > BF_3 > NF_3$
587.	1	
	(1) $CH_4 < NF_3 < NH_3 < H_2O$	(2) $NF_3 < CH_4 < NH_3 < H_2O$
7 00	$(3) \text{ NH}_3 < \text{NF}_3 < \text{CH}_4 < \text{H}_2\text{O}$	(4) $H_2O < NH_3 < NF_3 < CH_4$
588.	1	
	(1) Less than dipole moment of NCl	
	(2) Higher than dipole moment of No.	
590	(3) Equal to the dipole moment of N	
589.		
	(1) $\text{HF} > \text{NH}_3 > \text{PH}_3$	(2) $CH_4 > NH_3 > H_2O$
500	$(3) CH_3Cl < CH_2Cl_2 < CHCl_3$	(4) $BF_3 > BeF_2 > F_2$
590.	1	
-01	$(1) CHCl_3 \qquad (2) CH_4$	$(3) CHF_3 \qquad (4) CCl_4$
591.	I	-
	$(1) CH_4 \qquad (2) CHCl_3$	(3) CCl_4 (4) CO_2
592.	In the compounds CH ₃ OH, CH ₄ , CF ₄	4, CO ₂ , which has maximum dipole
	moment: -	
	(1) CH_3OH (2) CF_4 (3) CH_4	(4) CF_4 and CO_2 have equally more
593.	Which of the following order of pola	r molecules is correct: -
	(1) $HF > NH_3 > PH_3$	(2) $CH_4 > NH_3 > H_2O$
	$(3) CH_3Cl < CH_2Cl_2 < CHCl_3$	(4) $BF_3 > BeF2 > F_2$
594.	The order of increasing polarity in H	Cl CO ₂ H ₂ O and HF molecules is:
571.	(1) CO_2 , HCl, H ₂ O, HF	(2) HF, H ₂ O, HCl, CO ₂
	(3) CO ₂ , HCl, HF, H ₂ O	$(4) \operatorname{CO}_2, \operatorname{HF}, \operatorname{H}_2\operatorname{O}, \operatorname{HCl}$
595.	In terms of polar character, which of	the following order is correct?

 $\begin{array}{ll} \mbox{595.} & \mbox{In terms of polar character, which of the following order is correct?} \\ & (1) \ NH_3 < H_2O < HF < H_2S \\ & (2) \ H_2S < NH_3 < H_2O < HF \\ \end{array}$

607. Write order of dipole moment of following compounds: -

(1) (iii) > (ii) > (iv) > (vv) > (vi) (2) (iii) > (iv) > (iv) > (vv) (3) (ii) > (i) = (ivi) = (ivi) > (vv) = (vvi) (4) (ivi) > (iv) > (vv) > (ivi) > (vvi) = (vvi) (4) (ivi) > (vvi) > (vvi) > (vvi) > (vvi) = (vvi) (4) (vvi) = (vvi

609. Which of the following molecule is polar as well as planar.

610. Choose the correct option for the following molecule in view of chemical bonding $CI_{H} = C = C = C = C_{CI}^{H}$

(1) non-planar

(2) $\mu \neq 0$ (3) A & B both (4) $\mu = 0$

- 611. The dipole moment of the ammonia molecule is 1.48D. The length of the dipole is:
 - (1) 3.08×10^{-11} m (2) 5×10^2 m (3) 308 m (4) None
- 612. The dipole moment of LiH is 1.964×10^{-29} C × m and the interatomic distance between Li and H in this molecule is 1.596Å. Calculate the percent ionic character in LiH:
 - (1) 76.8 (2) 70 (3) 65.5 (4) 72
- 613. The dipole moment of chlorobenzene is 1.73 D. The dipole moment of P-dichlorobenzene is expected to be
 (1) 3.46 D
 (2) 0.00 D
 (3) 1.73 D
 (4) 1.00 D
- 614. The dipole moment of *HBr* is $1.6 \ge 10^{-30}$ cm and interatomic spacing is 1Å. The % ionic character of *HBr* is (1) 7 (2) 10 (3) 15 (4) 27
- 615. Which of the following statements is incorrect for the dipole moment

measurement of the compound.

- (1) It helps to predict the percentage ionic character in a bond.
- (2) It helps to predict the shape of the molecule.
- (3) It helps to predict the particular cis trans isomer.
- (4) It helps to predict the bond energies of all bonds within the molecule.
- 616. Statement-1: Dipole moment of H_2O is more than that of OF_2 .

Statement-2: In H_2O , the resultant bond dipole of O - H bond and the resultant lone pair moment are in opposite direction.

(1) Statement-1 is true, statement-2 is true, and statement-2 is correct explanation for statement-1.

(2) Statement-1 is true, statement-2 is true, and statement-2 is NOT the correct explanation for statement-1.

(3) Statement-1 is true, statement-2 is false.

(4) Statement-1 is false, statement-2 is true.

617. Statement-1: Allene is a non-polar molecule.

Statement-2: Allene is nonplanar molecule.

(1) Statement-1 is true, statement-2 is true, and statement-2 is correct explanation for statement 1.

(2) Statement-1 is true, statement-2 is true, and statement-2 is NOT the correct explanation for statement 1.

(3) Statement-1 is true, statement-2 is false.

(4) Statement-1 is false, statement-2 is true.

Solid State Hybridization

- 618. What is the hybridisation of Xe in cationic part of solid XeF₆.
 (1) sp³d³
 (2) sp³d
 (3) sp³d²
 (4) sp³
- 619. What will be the hybridisation of anionic part of solid PCl₅? (1) sp^3 (2) sp^3d^2 (3) sp^3d (4) sp^2
- 620. Which of the following compounds does not have polyatomic anion in the solid state?

(1) I Cl (2) I (CN) (3) PCl_5

- 621. Which of the following compounds in solid state has both cation and anion with same hybridisation of central atom?
- (1) PCl₅ (2) N_2O_5 (3) (NH₄)₂SO₄ (4) NH₄NO₃ 622. Polyatomic anion in solid state is present in:
 - (1) PBr_5 (2) PCl_5 (3) PI_5 (4) XeF_6

(4) PBr₅

- 623. What is the state of hybridisation of anionic part of solid N_2O_5 (1) sp (2) sp² (3) sp³ (4) Not applicable
- 624. What is the state of hybridisation for the anionic part of solid Cl_2O_6 . (1) sp^2 (2) sp^3 (3) sp^3d (4) sp^3d
- 625. The hybridisation of the central atom of anionic part and cationic part of solid N₂O₅ are ______ and _____ respectively. (1) sp and sp² (2) sp² and sp³ (3) sp² and sp² (4) sp² and sp
- 626. In which of the following molecule, the number of possible $\angle XAX$ angles

is maximum in the anionic part of their solid state. [A: Central atom; X: Surrounding atom]						
			O ₅	(3) PCl ₅		(4) Cl_2O_6
62'	7. All possible bond a					(-) C12O ₆
02	(1) 109° 28' only	•	-			2° 00° 180°
629	3. What is the different					
020	PBr ₅ in solid state.		ween oonu	angles in cat	ionic spe	cies of r C15 and
		(2) 10	no no /	$(2) 0^{\circ}$	(4) 000)
()(· · ·		$(3) 0^{\circ}$		
023	9. What is hybridisation			i or amonic p	ball of PE	515 III crystallille
state. (1) sp^2 (2) sp^3 (3) sp (at analia	ahla
620						
03(). Which of the follow	wing c	compounds	in the solid	state has	innear snape of
	anion?	()		(2) ICN		(1) N ₂ O ₂
	$(1) \operatorname{PCl}_5$	(2) PB	r5	(3) ICN		(4) N ₂ O ₅
	[Sol. ICN(s) exists	s as [I ₂	$(CN)]^{+}[I(0)]^{+}$	CN)2]-		
63	I. Which of the follow	ving h	as tetrahedr	al in shape?		
	(1) PCl ₅ (solid)	-		(3) IF_{7}		(4) IF3
632	2. Identify the correct		0			
				tom has sp ³	hybridis	ation and bent
(i)	XeF ₂	(1)	(1) geometry.			
			Ŭ,		$n^3 d^2$ hyb	oridisation and
(ii)	N_3^-	(2)	octahedral	-	, a nje	indibution und
					vbridisa	tion and linear
(iii)	$PCl_6^{-}(PCl_5(s) anion)$	(3) Central atom has sp hybridisation and linear geometry.				
					hybridisa	ation and linear
(iv)	$\mathrm{ICl}_{2}^{+}(\mathrm{I}_{2}\mathrm{Cl}_{6}(\ell) \text{ cation})$) (4)	geometry.	-		
	(1) $(i - a), (ii - b), (ii - b),$	(iii – c), $(iv - d)$	(2) (i – d).	(ii - b), ((iii - d), $(iv - c)$
	(3) (i – b), (ii – c), ((iii – a), $(iv - d)$	(4) (i – d),	(ii - c), ((iv - a)
Dr	agos's Rule					
	3. Which one of the fo	ollowi	ng compour	nds has bond	anole as	nearly 90°
05.		$(2) H_2$		$(3) H_2O$	-	(4) CH ₄
63/	4. The percentage s -cl	< /				
05-	-		I OI IIIC IIY			ne, emerie and
	ethyne are respectiv	very		(2) 25 50	75	
	$(1) 25, 33, 50 \\ (2) 50, 75, 100$			(2) 25, 50,		
	(3) 50, 75, 100			(4) 10, 20,		
635	5. Which of the follow	-		• •		
()		(2) PH		(3) SbH ₃		(4) AsH ₃
636			-	s-character i	s tound t	to be maximum
	in lone pair present					
<u></u>		(2) H_2		(3) SF ₂		(4) AsH ₃
637	7. Two hybrid orbitals	s have	a bond ang	le of 120° . T	ne percei	ntage of s-

		character in the hybrid orbital is nearly
		character in the hybrid orbital is nearly: $(1) 25\%$ $(2) 33\%$ $(3) 50\%$ $(4) 66\%$
6	538.	% s-character of bonding orbital of sulphur in H_2S is -
U	50.	(Bond angle H–S–H = 92° ; cos $92^{\circ} = -0.035$)
		$\begin{array}{c} \text{(bold alight II 5 II 52, 60352 \\ \text{(1)} 25\% \\ \text{(2)} 20\% \\ \text{(3)} 3.38\% \\ \text{(4)} 33.33\% \end{array}$
6	539	Choose the correct statement:
C C		(1) NH ₃ is having bond angle of $109^{\circ}28'$.
		(2) The direction of the dipole moment of NF_3 is as shown in the
		diagram
		(\bullet)
		$_{\rm F}$ $^{\rm N}$ $_{\rm F}$ $^{\rm L}$
		F / F +
		(2) In the Lewis structure of SO $^{2-}$ there is no - hand
		 (3) In the Lewis structure of SO₃²⁻, there is no π-bond. (4) sp² hybrid orbital is consisting of 33.33 % 'p' character.
6	540	In AsH ₃ , H – As – H bond angle is 91.8°, % s and % p character in as–
U	JTU.	H bond approximately will be:
		(1) 33% s & 66% p (2) 25% s & 75% p
		(3) 33.3% s & 66.6% p (4) 3% s & 97% p
6	541.	Calculate the % p character in the orbital occupied by the lone pairs in
		water molecule.
		[Given: bond angle HOH is 104.5° and $\cos(104.5^{\circ}) = -0.25$]
		(1) 80% (2) 20% (3) 70% (4) 75%
6	542.	It has been observed that % 's' character in Sb–H bond in SbH ₃ is 0.5% .
		Predict the % 's' character in the orbital occupied by the lone pair is
	- 10	(1) 99.5% (2) 99.0% (3) 98.5% (4) 98.0%
6	943.	Average bond order of C–C bond in C_6H_6 is (1) 1 (2) 2 (4) 1.22
Dand	0	(1) 1 (2) 2 (3) 1.5 (4) 1.33
Bond		
0)44.	Which set of formal charge on oxygen and bond order is correct for SO_4^{-2} (1) 0.5 and 1.5 (2) 1.5 and 3 (3) 2 and 3 (4) 1.5 and 1.5
6	545.	In PO_4^{3-} , the formal charge on each oxygen atom and the P–O bond order
		respectively are:
		(1) - 0.75, 0.6 $(2) - 0.75, 1.0$ $(3) - 0.75, 1.25$ $(4) - 3, 1.253$
6	646.	Choose the correct option for following statements:
		(I) sp ³ hybrid orbitals are at 90° to one another
		(II) sp^3d^2 adjacent hybrid orbitals are at 90° to one another
		(III) sp^2 hybrid orbitals are at 120° to one another
		(IV) Bond order of N–O bond in $NO_3^{1/3}$ is
		$(1) TFTF \qquad (2) TTFF \qquad (3) FTTT (4) FTFT$
6	647.	
	-	

in IO_6^{5-} is:	
(1) - 1 and 1.67	(2) - 5/6 and 1.67
(3) - 5/6 and 1.33	(4) - 5/6 and 1.167

Bond length

 $\frac{d^2}{z} = 0^{-1}$ The relation between x, y and z in bicarbonate ion with respect H-O-648. to bond length is -(1) x > y > z(2) x > z > y(3) z = y > x (4) x > y = z649. Choose the correct code for incorrect statements. I: All S – O distance in SO_4^{2-} are not equal II: All S – O distance in H_2SO_4 is equal III: All B - O distance in H_3BO_3 is not equal IV: All B – O distance in BO_3^{3-} are equal (3) I, II, III (1) I. II. IV (2) II, III & IV (4) I, II, III, IV Which of the following molecule is having shortest bond length of C–O 650 bond. (4) Na₂CO₃ $(1) CH_3OH$ (2) H₂CO (3) CO 651. In benzene molecule all C - C bond lengths are equal because (1) All carbon atoms are equivalent (2) All carbon atoms are sp^2 hybridised (3) All C-C bonds in benzene, have same order (4) All C-C bonds are single covalent bond 652. The correct order of bond length is $(1) C - C < C \equiv C < C = C$ (2) $C = C < C \equiv C < C - C$ (3) $C \equiv C < C = C < C - C$ (4) $C \equiv C < C - C < C = C$ Which has the shortest C-C bond length 653. $(1) C_2H_5OH$ (2) C_2H_6 $(3) C_2 H_2$ (4) C_2H_4 654. The single, double, and triple bond lengths of carbon in carbon dioxide are respectively (1) 1.15, 1.22 and 1.10 Å (2) 1.22, 1.15 and 1.10 Å (3) 1.10, 1.15 and 1.22 Å (4) 1.15, 1.10 and 1.22 Å 655. The correct order of bond length (C - O) is (1) $CO_2 < CO < CO_3^{2-}$ (2) $CO_3^{2-} < CO < CO_2$ (4) $CO < CO_3^{2-} < CO_2$ (3) $CO < CO_2 < CO_3^{2-}$ **656.** Bond length of C - O is minimum in – (1) CO (2) CO_2 (3) CO_3^{-2} $(4) \text{HCOO}^{-}$

^{657.} Which of the following statements is not correct?

(1) In PF ₅ ,	all the five	P–F bonds	have equal	bond length.
			1	0

(2) In,
$$H_2C = S = Cl = Cl = F$$
 bond is longer than S–Cl bond length.

(3) XeF₆ has perfect octahedron shape and hybridisation of Xe is p^3d^3 .

(4) All of these

- **658.** The correct order in which the O O bond length increases in the following is
 - (1) $H_2O_2 < O_2 < O_3$ (3) $O_2 < O_3 < H_2O_2$ (2) $O_2 < H_2O_2 < O_3$ (4) $O_3 < H_2O_2 < O_2$
- **659.** Which of the following is correct order of bond length? (1) $BF_4^- < BF_3$ (2) $NO_2^+ < NO_2^-$ (3) $CCl_4 < CF_4$ (4) $^+CH_3 > CH_4$
- **660.** O–O bond length in H–O–O–H and F–O–O–F respectively are -(1) 1.22 Å, 1.48 Å (2) 1.48 Å, 1.22 Å (3) 1.22 Å, 1.22 Å (4) 1.48 Å, 1.48 Å
- 661. Which of the following statement is correct for $F_3C CF_2 CF_3$?
 - (1) All C–F bond lengths are identical.

(2) Two C–F bond attached to middle carbon atom are longer as compared to the other C–F bond at the terminal carbon.

(3) Two C–F bonds attached to the middle carbon atom are shorter as compared to the other C–F bond at the terminal carbon.(4) None of these

- 662. The correct order of d_{C-H} in the following option is (1) CHF₃ = CH₂F₂ = CH₃F (3) CH₂F₂ > CH₃F > CHF₃ (4) CH₃F > CH₂F₂ > CHF₃
- **663.** The strongest P–O bond is found in the molecule (1) F_3PO (2) Cl_3PO (3) Br_3PO (4) $(CH_3)_3PO$
- **664.** Out of C₂H₆, C₂H₄ and C₂H₂. Compound which has highest C-C bond length is: -

(1) C_2H_4 (2) C_2H_2 (3) C_2H_6 665. Correct order of bond length is

- (4) All have equal C-C bond length
- (2) $SO_4^{2-} > SO_3^{2-} > SO_3$
- (3) $SO_3 > SO_3^{2-} > SO_4^{2-}$ (4) None of these.
- **666.** N₂H₄ reacts with conc. H₂SO₄ to produce a salt $[NH_3 NH_3]^{+2}SO_4^{-2}$ in which.

(1) d_{N-N} (salt) > d_{N-N} (N₂H₄)

(1) $SO_3^{2-} > SO_4^{2-} > SO_3$

(3) d_{N-N} (salt) = d_{N-N} (N₂H₄)

- (2) d_{N-N} (salt) < d_{N-N} (N₂H₄)
- (4) Cannot be predicted
- 667. What is correct order of bond order of Cl–O bond. (1) $ClO_4^- > ClO_3^- > ClO_2^- > ClO^-$ (2) $ClO^- < ClO_2^- > ClO_3^- < ClO_4^-$ (3) $ClO_3^- < ClO_2^- < ClO_4^- < ClO^-$ (4) $ClO_2^- < ClP_3^- < ClO_4^- < ClO^-$
- 668 Incorrect order of N–N bond length is:

- In which of the following option, all bond lengths are not equal. 669 (1) BF₃ (2) NF₃ (3) XeF₄ (4) ClF₃
- **670.** Which of the following statements are correct for the SO_4^{2-} ion? (1) it is tetrahedral

(2) all the S–O bond length are equal, and shorter than expected

(3) it contains four σ -bonds between the S and the O atoms, two π -bonds delocalized over the S and the four O atoms, and all the S–O bonds have a bond order of 1.5

(4) Oxidation state of sulphur is +6 and all oxygen in -2

- 671. Which of the following has the shortest N–H bond length? (1) H₂N – NH₂ (2) H-N = N-H (3) NH_3 $(4) CH_3 - NH_2$
- In which of following cases C–C bond length will be highest. 672. (2) FCH_2 -CH₂F (3) F_2CH -CHF₂ (1) CH₃–CF₃ $(4) CF_3 - CF_3$
- The bond length of the S–O bond is maximum in which of the following 673. compound. SOBr₂, SOCl₂, SOF₂ (1) $SOCl_2$ (2) $SOBr_2$ (3) SOF₂

(4) All have same length

- 674. Which of the following molecules or ions has different bond lengths? (1) XeF₄ $(2) BF_4$ (3) SF₄ (4) SiF₄
- Which of the following statement is not correct regarding SF₂Cl₂ 675. molecule?

(1) Two axial bond lengths are longer compared to two equilateral bond lengths.

(2) Two S–F bond lengths are identical.

(3) Two S–Cl bond lengths are identical.

- (4) Lone pair is not changing its position.
- 676. Select the correct statement(s) regarding $ICl_4(-)()$ ion.

	(3) All adjacent an	gles are equal	ll bond lengths are (4) All of these	equal
677.		-		
<	$(1) \operatorname{CO}_2$		(3) NH ₃	(4) H ₂ O
678.	1	-	_	
		(2) SO_4^{2-}	(3) SOF ₄	(4) $SOCl_2$
	ND ANGLE		_	
679.		owards bond angle	-	2
	(1) $sp^3 < sp^2 < sp$		(2) $sp < sp^2$	1
	(3) sp2 < sp < sp3		$(4) sp^2 < sp$	-
680.	-	water molecule is	nearly or Directed l	oonds in water
	forms an angle of	<u>^</u>		
		(2) 180°	(3) 109 ⁰ 28'	(4) 104 ⁰ 30'
681.				
	$(1) 180^{0}$	(2) 90°	$(3) 120^{\circ}$	$(4) 109^{0}$
682.	The bond angle in	carbon tetrachloric	le is approximately	
	$(1) 90^{0}$	(2) 109°	(3) 120°	$(4) 180^{0}$
683.	The angle between	^{sp²} orbitals in ethy	lene are	
	$(1) 90^{0}$	(2) 120°	$(3) 180^{0}$	(4) 109°
684.	CO_3^{2-} anion has wl	hich of the followi	ng characteristics	
	(1) Bonds of unequ	al length	(2) sp ² hybridizati	on of C atom
	(3) Resonance stab	oilization	(4) Same bond an	gles
685.	The bond angle in	sp ² hybridisation is	S	
	(1) 180°	(2) 120°	$(3) 90^0$	$(4) 109^{0}2'$
686.	The correct order t	owards bond angle	2 18	
	(1) $\operatorname{sp} < \operatorname{sp}^2 < \operatorname{sp}^3$	(2) $sp^2 < sp$	$< sp^{3}$ (3) $sp^{3} < sp^{3}$	$^2 < sp$
	(4) Bond angle doe	es not depend on hy	ybridisation	
687.	When the hybridisa	ation state of carbo	on atom changes fro	m sp ³ to sp ² to sp
	the angle between	the hybridised orbi	itals	
	(1) Decreases grad		(2) Increase	es gradually
	(3) Decreases cons	•	(4) All of th	
688.	The bond angle in	-		
	(1) Much less than		(2) Equal to that o	of NH3
	(3) Much greater th		(4) Slightly greate	
689.	The bond angle is a		(-)~	
007.	(1) H_2Te	(2) H_2Se	(3) H ₂ O	(4) H_2S
690.	The smallest bond		(-)	(-)
	(1) IF_7	(2) CH ₄	(3) BeF_2	(4) BF ₃
			(-) 2	() == 3

691. As the s-character of hybridisation orbital increases, the bond angle

	(1) Increases	(2) Decreases	
	(3) Becomes zero	(4) Does not change	
692	In which of the following species is	-	
	(1) NH ₃ , (BF ₄) ⁻¹	(2) $(NH_4)^+$, BF ₃	
	(3) NH ₃ , BF ₄	(4) $(NH_2)^{-1}$, BF ₃	
693.	The molecule of CO_2 has 180° bond a	angle. It can be explained on the basis	
	of		
	(1) sp^3 hybridisation	(2) sp^2 hybridisation	
	(3) sp hybridisation	(4) $d^2 sp^3$ hybridisation	
694.	Among the following orbital/bonds, t	he angle is minimum between:	
	(1) sp^3 bonds	(2) p_x and p_y orbitals	
	(3) H—O—H in water	(4) sp bonds	
695.	The compound MX ₄ is tetrahedral. T		
	compound is		
<i></i>	(1) Three (2) Four	$(3) Five \qquad (4) Six$	
696.	Select the correct order of bond angle	e in SeOCl ₂	
	()		
	Se		
		×0	
	(1) $x > y$ (2) $x < y$	(3) $x = y$ (4) Can't predict	
697.	Which compound has the smallest be		
0711	(i) (P) OSF_2 (Q) $OSCl_2$ (R) C	-	
	(ii) (P) $SbCl_3$ (Q) $SbBr_3$ (R) $SbBr_3$		
	(iii) (P) PI ₃ (Q) AsI ₃ (R) S		
	(1) P, P, R (2) P, R, R	(3) P, P, P (4) P, R, P	
698.	e	correct about PCl ₃ ?	
	(1) P–Cl _{ax} is longer than P–Cl _{eq} .	1 • 1 1 • • • 1 /• 1/	
	(2) All the hybrid orbitals of P-atom each other	having bond pairs are identical to	
	(3) P–Cl _{ax} is shorter than P–Cl _{eq.}		
	(4) Maximum 4 atoms in a plane and	4 such planes are present	
699	The element A has 3 electrons in vale		
	number for last electron is 2 and element B has 7 electrons in valence		
	shell and its principal quantum numb	er for last electron is 3. Which	
	option is true for compound of eleme	nt A and B.	
	(1) Compound is AB ₃ type	(2) Compound is nonplanar	
	(3) Compound has 107° bond angle.	(4) All are correct	
700	Salast the convect statement recording	a Value and II -	

700 Select the **correct** statement regarding XeO_4 and IO_4^- .

 701. The correct statement for the reaction – NH₃ + H⁺ → NH₄⁺: - (1) Hybridisation state is changed (2) Bond angle increases (3) NH₃ act as a Lewis acid (4) Regular geometry is changed 702. In compounds X, all the bond angles are exactly 109°28'. X is: (1) Chloromethane (2) Carbon tetrachloride (3) Iodoform (4) Chloroform 703. When p-character of hybridised orbital (formed by s and p orbitals) increases. Then the bond angle (1) Decreases (2) Increases (3) Becomes twice (4) Remains unaltered 704. Which of the following molecules has two lone pairs and bond angle (need not be all bond angles) < 109.5°? (1) SF₂ (2) KrF₄ (3) ICl₄⁻ (4) All of these 705. The correct order of bond angle is: (1) H₂S < NH₃ < BF₃ < CH₄ (2) NH₃ < H₂S < CH₄ < BF₃ (3) H₂S < NH₃ < CH₄ < BF₃ (4) H₂S < CH₄ < NH₃ < BF₃ 706. In which of the following molecules are all the bonds nequal? (1) NF₃ (2) CIF₃ (3) BF₃ (4) AlF₃ 707. Which of the following order of bond angle is CORRECT. (1) NH₃ < PH₃ < AsH₃ < SbH₃ (2) H₂O < H₂S < H₂S < H₂Te (3) OF₂ < H₂O < Cl₂O (4) SiF₄ < SiL₄ < SiB₄ < SiL₄ 708. Consider the following compounds: (1) ClF₃ (1) BF₃ The order of the angles between axial and equatorial bond pairs is (1) ClF₃ (1) CO₂ (2) CH₄ (3) NH₃ (4) H₂O 710. The bond angle in PH₃ would be expected to be close to (1) 90° (2) 105° (3) 109° (4) 120° 711. Which of the following is the correct reducing order of bond-angle (1) NH₃ < CH		 (1) both are isoelectronic. (2) both have equal number of pp-dp b (3) both have different shapes. (4) ∠OXeO and ∠OIO are different bor 		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	701.		_	
(3) NH ₃ act as a Lewis acid (4) Regular geometry is changed 702. In compounds X, all the bond angles are exactly 109°28'. X is: (1) Chloromethane (2) Carbon tetrachloride (3) Iodoform (4) Chloroform 703. When p-character of hybridised orbital (formed by s and p orbitals) increases. Then the bond angle (1) Decreases (2) Increases (3) Becomes twice (4) Remains unaltered 704. Which of the following molecules has two lone pairs and bond angle (need not be all bond angles) < 109.5°? (1) SF ₂ (2) KrF ₄ (3) ICl ₄ (4) All of these 705. The correct order of bond angle is: (1) H ₂ S < NH ₃ < BF ₃ < CH ₄ (2) NH ₃ < H ₂ S < CH ₄ < BF ₃ (3) H ₂ S < NH ₃ < CH ₄ < BF ₃ (4) H ₂ S < CH ₄ < NH ₃ < BF ₃ 706. In which of the following molecules are all the bonds not equal? (1) NF ₃ (2) CIF ₃ (3) BF ₃ (4) AIF ₃ 707. Which of the following order of bond angle is CORRECT. (1) NH ₃ < PH ₃ < AsH ₃ < SbH ₃ (2) H ₂ O < H ₂ S < H ₂ Se < H ₂ Te (3) OF ₂ < H ₂ O < Cl ₂ O (4) SiF ₄ < SiCl ₄ < SiBr ₄ < SiI ₄ 708. Consider the following compounds: (1) CIF ₃ (II) BrF ₃ The order of the angles between axial and equatorial bond pairs is (1) I > II (2) I < II (3) I = II (4) none 709. In which of the following is the angle between the two covalent bonds greatest: (1) CO ₂ (2) CH ₄ (3) NH ₃ (4) H ₂ O 710. The bond angle in PH ₃ would be expected to be close to (1) 90° (2) 105° (3) 109° (4) 120° 711. Which of the following is the correct reducing order of bond-angle			(2) D = $(1 + 1)^{-1}$	
702. In compounds X, all the bond angles are exactly $109^{\circ}28'$. X is:(1) Chloromethane(2) Carbon tetrachloride(3) Iodoform(4) Chloroform703. When p-character of hybridised orbital (formed by s and p orbitals) increases. Then the bond angle(1) Decreases(1) Decreases(2) Increases(3) Becomes twice (4) Remains unaltered704. Which of the following molecules has two lone pairs and bond angle (need not be all bond angles) < 109.5°?(1) SF2(1) SF2(2) KrF4(3) ICl4 (4) All of these705. The correct order of bond angle is:(1) H ₂ S < NH ₃ < BF ₃ < CH ₄ (1) H ₂ S < NH ₃ < GH ₄ < BF3(4) H ₂ S < CH ₄ < NH ₃ < BF3706. In which of the following molecules are all the bonds not equal?(1) NF3(1) NF3(2) CIF3(3) BF3(4) AlF3707. Which of the following order of bond angle is CORRECT.(1) NH ₃ < PH ₃ < AsH ₃ < SbH3(2) H ₂ O < H ₂ S < H ₂ Se < H ₂ Te(3) OF ₂ < H ₂ O < Cl ₂ O(4) SiF ₄ < SiCl ₄ < SiBr ₄ < Sil ₄ 708. Consider the following compounds:(1) CF3(II) BrF3The order of the angles between axial and equatorial bond pairs is(1) I > II(2) I < II(1) CO2(2) CH4(3) NH3(4) H ₂ O710. The bond angle in PH3 would be expected to be close to(1) 90°(2) 105°(3) 109°(4) 120°711. Which of the following is the correct reducing order of bond-angle				
(1) Chloromethane (2) Carbon tetrachloride (3) Iodoform (4) Chloroform 703. When p-character of hybridised orbital (formed by s and p orbitals) increases. Then the bond angle (1) Decreases (2) Increases (3) Becomes twice (4) Remains unaltered 704. Which of the following molecules has two lone pairs and bond angle (need not be all bond angles) < 109.5°? (1) SF ₂ (2) KrF ₄ (3) ICl ₄ (4) All of these 705. The correct order of bond angle is: (1) H ₂ S < NH ₃ < BF ₃ < CH ₄ (2) NH ₃ < H ₂ S < CH ₄ < BF ₃ (3) H ₂ S < NH ₃ < CH ₄ < BF ₃ (4) H ₂ S < CH ₄ < BF ₃ (3) H ₂ S < NH ₃ < CH ₄ < BF ₃ (4) H ₂ S < CH ₄ < BF ₃ (1) NF ₃ (2) CIF ₃ (3) BF ₃ (4) AIF ₃ 706. In which of the following molecules are all the bonds not equal? (1) NF ₃ (2) CIF ₃ (3) BF ₃ (4) AIF ₃ 707. Which of the following order of bond angle is CORRECT. (1) NH ₃ < PH ₃ < AsH ₃ < SbH ₃ (2) H ₂ O < H ₂ S < H ₂ Se < H ₂ Te (3) OF ₂ < H ₂ O < Cl ₂ O (4) SiF ₄ < SiBr ₄ < SiI ₄ 708. Consider the following compounds: (1) CIF ₃ (II) BF ₃ The order of the angles between axial and equatorial bond pairs is (1) I > II (2) I < II (3) I = II (4) none 709. In which of the following is the angle between the two covalent bonds greatest: (1) CO ₂ (2) CH ₄ (3) NH ₃ (4) H ₂ O 710. The bond angle in PH ₃ would be expected to be close to (1) 90° (2) 105° (3) 109° (4) 120° 711. Which of the following is the correct reducing order of bond-angle				
 (3) Iodoform (4) Chloroform 703. When p-character of hybridised orbital (formed by s and p orbitals) increases. Then the bond angle (1) Decreases (2) Increases (3) Becomes twice (4) Remains unaltered 704. Which of the following molecules has two lone pairs and bond angle (need not be all bond angles) < 109.5°? (1) SF2 (2) KrF4 (3) ICl4⁻ (4) All of these 705. The correct order of bond angle is: (1) H₂S < NH₃ < BF₃ < CH₄ (2) NH₃ < H₂S < CH₄ < BF₃ (3) H₂S < NH₃ < CH₄ < BF₃ (4) H₂S < CH₄ < BF₃ (3) H₂S < NH₃ < CH₄ < BF₃ (4) H₂S < CH₄ < BF₃ 706. In which of the following molecules are all the bonds not equal? (1) NF₃ (2) CIF₃ (3) BF₃ (4) AlF₃ 707. Which of the following order of bond angle is CORRECT. (1) NH₃ < PH₃ < AsH₃ < SbH₃ (2) H₂O < H₂S < H₂Se < H₂Te (3) OF₂ < H₂O < Cl₂O (4) SiF₄ < SiCl₄ < SiBr₄ < SiI₄ 708. Consider the following compounds: (1) CIF₃ (11) BF₃ The order of the angles between axial and equatorial bond pairs is (1) CI₂ (2) CH₄ (3) NH₃ (4) H₂O 710. The bond angle in PH₃ would be expected to be close to (1) 90° (2) 105° (3) 109° (4) 120° 711. Which of the following is the correct reducing order of bond-angle 	702.	I × E		
703. When p-character of hybridised orbital (formed by s and p orbitals) increases. Then the bond angle(1) Decreases (2) Increases (3) Becomes twice (4) Remains unaltered 704. Which of the following molecules has two lone pairs and bond angle (need not be all bond angles) < 109.5°? (1) SF2(1) SF2(2) KrF4(3) ICl4-(4) All of these 705. The correct order of bond angle is: (1) H ₂ S < NH ₃ < BF ₃ < CH4(2) NH ₃ < H ₂ S < CH ₄ < BF3(3) H ₂ S < NH ₃ < CH ₄ < BF3(4) H ₂ S < CH ₄ < NH ₃ < BF3 706. In which of the following molecules are all the bonds not equal? (1) NF ₃ (1) NF3(2) CIF ₃ (3) BF ₃ (4) AlF ₃ 707. Which of the following order of bond angle is CORRECT. (1) NH ₃ < PH ₃ < AsH ₃ < SbH ₃ (2) H ₂ O < H ₂ S < H ₂ Se < H ₂ Te (3) OF ₂ < H ₂ O < Cl ₂ O(4) SIF ₄ < SiCl ₄ < SiBr ₄ < SiL ₄ 708. Consider the following compounds: (1) CIF ₃ (11) BrF ₃ The order of the angles between axial and equatorial bond pairs is (1) I > II (2) I < II (3) NH ₃ (4) H ₂ O 710. The bond angle in PH ₃ would be expected to be close to (1) 90° (2) 105° (3) 109° (4) 120° 711. Which of the following is the correct reducing order of bond-angle		(1) Chloromethane	(2) Carbon tetrach	loride
increases. Then the bond angle (1) Decreases (2) Increases (3) Becomes twice (4) Remains unaltered Which of the following molecules has two lone pairs and bond angle (need not be all bond angles) < 109.5°? (1) SF ₂ (2) KrF ₄ (3) ICl ₄ (4) All of these 705. The correct order of bond angle is: (1) H ₂ S < NH ₃ < BF ₃ < CH ₄ (2) NH ₃ < H ₂ S < CH ₄ < BF ₃ (3) H ₂ S < NH ₃ < CH ₄ < BF ₃ (4) H ₂ S < CH ₄ < NH ₃ < BF ₃ 706. In which of the following molecules are all the bonds not equal? (1) NF ₃ (2) CIF ₃ (3) BF ₃ (4) AIF ₃ 707. Which of the following order of bond angle is CORRECT. (1) NH ₃ < PH ₃ < AsH ₃ < SbH ₃ (2) H ₂ O < H ₂ S < H ₂ S = KH ₂ Te (3) OF ₂ < H ₂ O < Cl ₂ O (4) SiF ₄ < SiCl ₄ < SiBr ₄ < SiI ₄ 708. Consider the following compounds: (1) CIF ₃ (II) BrF ₃ The order of the angles between axial and equatorial bond pairs is (1) I > II (2) I < II (3) I = II (4) none 709. In which of the following is the angle between the two covalent bonds greatest: (1) CO ₂ (2) CH ₄ (3) NH ₃ (4) H ₂ O 710. The bond angle in PH ₃ would be expected to be close to (1) 90° (2) 105° (3) 109° (4) 120° 711. Which of the following is the correct reducing order of bond-angle		(3) Iodoform	(4) Chloroform	
 704. Which of the following molecules has two lone pairs and bond angle (need not be all bond angles) < 109.5°? (1) SF₂ (2) KrF₄ (3) ICl₄ (4) All of these 705. The correct order of bond angle is: (1) H₂S < NH₃ < BF₃ < CH₄ (2) NH₃ < H₂S < CH₄ < BF₃ (3) H₂S < NH₃ < CH₄ < BF₃ (4) H₂S < CH₄ < NH₃ < BF₃ 706. In which of the following molecules are all the bonds not equal? (1) NF₃ (2) CIF₃ (3) BF₃ (4) AlF₃ 707. Which of the following order of bond angle is CORRECT. (1) NH₃ < PH₃ < AsH₃ < SbH₃ (2) H₂O < H₂S < H₂Se < H₂Te (3) OF₂ < H₂O < Cl₂O (4) SiF₄ < SiCl₄ < SiBr₄ < SiI₄ 708. Consider the following compounds: (1) CIF₃ (II) BrF₃ The order of the angles between axial and equatorial bond pairs is (1) I > II (2) I < II (3) I = II (4) none 709. In which of the following is the angle between the two covalent bonds greatest: (1) CO₂ (2) CH₄ (3) NH₃ (4) H₂O 710. The bond angle in PH₃ would be expected to be close to (1) 90° (2) 105° (3) 109° (4) 120° 711. Which of the following is the correct reducing order of bond-angle 	703.		l (formed by s and	p orbitals)
705. The correct order of bond angle is: (1) $H_2S < NH_3 < BF_3 < CH_4$ (2) $NH_3 < H_2S < CH_4 < BF_3$ (3) $H_2S < NH_3 < CH_4 < BF_3$ (4) $H_2S < CH_4 < NH_3 < BF_3$ 706. In which of the following molecules are all the bonds not equal? (1) NF_3 (2) CIF_3 (3) BF_3 (4) AIF_3 707. Which of the following order of bond angle is CORRECT. (1) $NH_3 < PH_3 < AsH_3 < SbH_3$ (2) $H_2O < H_2S < H_2Se < H_2Te$ (3) $OF_2 < H_2O < Cl_2O$ (4) $SiF_4 < SiCl_4 < SiBr_4 < SiI_4$ 708. Consider the following compounds: (1) CIF_3 (11) BFF_3 The order of the angles between axial and equatorial bond pairs is (1) $I > II$ (2) $I < II$ (3) $I = II$ (4) none 709. In which of the following is the angle between the two covalent bonds greatest: (1) CO_2 (2) CH_4 (3) NH_3 (4) H_2O 710. The bond angle in PH_3 would be expected to be close to (1) 90° (2) 105° (3) 109° (4) 120° 711. Which of the following is the correct reducing order of bond-angle	704.	Which of the following molecules has		
$(1) H_2S < NH_3 < BF_3 < CH_4$ $(2) NH_3 < H_2S < CH_4 < BF_3$ $(3) H_2S < NH_3 < CH_4 < BF_3$ $(4) H_2S < CH_4 < NH_3 < BF_3$ 706. In which of the following molecules are all the bonds not equal? $(1) NF_3$ $(2) CIF_3$ $(3) BF_3$ $(4) AIF_3$ 707. Which of the following order of bond angle is CORRECT. $(1) NH_3 < PH_3 < AsH_3 < SbH_3$ $(2) H_2O < H_2S < H_2Se < H_2Te$ $(3) OF_2 < H_2O < Cl_2O$ $(4) SiF_4 < SiCl_4 < SiBr_4 < SiI_4$ 708. Consider the following compounds: $(1) CIF_3$ $(II) BFF_3$ The order of the angles between axial and equatorial bond pairs is (1) I > II $(2) I < II$ $(3) I = II$ $(4) none$ 709. In which of the following is the angle between the two covalent bonds greatest: $(1) CO_2$ $(2) CH_4$ $(3) NH_3$ $(4) H_2O$ 710. The bond angle in PH_3 would be expected to be close to $(1) 90^{\circ}$ $(2) 105^{\circ}$ $(3) 109^{\circ}$ $(4) 120^{\circ}$ 711. Which of the following is the correct reducing order of bond-angle			(3) ICl ₄ ⁻	(4) All of these
(3) $H_2S < NH_3 < CH_4 < BF_3$ (4) $H_2S < CH_4 < NH_3 < BF_3$ 10. In which of the following molecules are all the bonds not equal? (1) NF_3 (2) ClF_3 (3) BF_3 (4) AlF_3 707. Which of the following order of bond angle is CORRECT . (1) NH_3 < PH_3 < AsH_3 < SbH_3 (2) H_2O < H_2S < H_2Se < H_2Te (3) OF_2 < H_2O < Cl_2O (4) SiF_4 < SiCl_4 < SiBr_4 < SiI_4 708. Consider the following compounds: (1) ClF_3 (II) BrF_3 The order of the angles between axial and equatorial bond pairs is (1) I > II (2) I < II (3) I = II (4) none 709. In which of the following is the angle between the two covalent bonds greatest: (1) CO ₂ (2) CH ₄ (3) NH ₃ (4) H ₂ O 710. The bond angle in PH ₃ would be expected to be close to (1) 90° (2) 105° (3) 109° (4) 120° 711. Which of the following is the correct reducing order of bond-angle	705.			
 706. In which of the following molecules are all the bonds not equal? (1) NF₃ (2) ClF₃ (3) BF₃ (4) AlF₃ 707. Which of the following order of bond angle is CORRECT. (1) NH₃ < PH₃ < AsH₃ < SbH₃ (2) H₂O < H₂S < H₂Se < H₂Te (3) OF₂ < H₂O < Cl₂O (4) SiF₄ < SiCl₄ < SiBr₄ < SiI₄ 708. Consider the following compounds: (1) ClF₃ (11) BrF₃ The order of the angles between axial and equatorial bond pairs is (1) I > II (2) I < II (3) I = II (4) none 709. In which of the following is the angle between the two covalent bonds greatest: (1) CO₂ (2) CH₄ (3) NH₃ (4) H₂O 710. The bond angle in PH₃ would be expected to be close to (1) 90° (2) 105° (3) 109° (4) 120° 711. Which of the following is the correct reducing order of bond-angle 				
(1) NF ₃ (2) ClF ₃ (3) BF ₃ (4) AlF ₃ 707. Which of the following order of bond angle is CORRECT. (1) NH ₃ < PH ₃ < AsH ₃ < SbH ₃ (2) H ₂ O < H ₂ S < H ₂ Se < H ₂ Te (3) OF ₂ < H ₂ O < Cl ₂ O (4) SiF ₄ < SiCl ₄ < SiBr ₄ < SiI ₄ 708. Consider the following compounds: (I) ClF ₃ (II) BrF ₃ The order of the angles between axial and equatorial bond pairs is (1) I > II (2) I < II (3) I = II (4) none 709. In which of the following is the angle between the two covalent bonds greatest: (1) CO ₂ (2) CH ₄ (3) NH ₃ (4) H ₂ O 710. The bond angle in PH ₃ would be expected to be close to (1) 90° (2) 105° (3) 109° (4) 120° 711. Which of the following is the correct reducing order of bond-angle	706			
 707. Which of the following order of bond angle is CORRECT. (1) NH₃ < PH₃ < AsH₃ < SbH₃ (2) H₂O < H₂S < H₂Se < H₂Te (3) OF₂ < H₂O < Cl₂O (4) SiF₄ < SiCl₄ < SiBr₄ < SiI₄ 708. Consider the following compounds: (1) ClF₃ (II) BrF₃ The order of the angles between axial and equatorial bond pairs is (1) I > II (2) I < II (3) I = II (4) none 709. In which of the following is the angle between the two covalent bonds greatest: (1) CO₂ (2) CH₄ (3) NH₃ (4) H₂O 710. The bond angle in PH₃ would be expected to be close to (1) 90° (2) 105° (3) 109° (4) 120° 711. Which of the following is the correct reducing order of bond-angle 	/06.			
(1) $NH_3 < PH_3 < AsH_3 < SbH_3$ (2) $H_2O < H_2S < H_2Se < H_2Te$ (3) $OF_2 < H_2O < Cl_2O$ (4) $SiF_4 < SiCl_4 < SiBr_4 < SiI_4$ 708. Consider the following compounds: (I) CIF_3 (II) BrF_3 The order of the angles between axial and equatorial bond pairs is (1) $I > II$ (2) $I < II$ (3) $I = II$ (4) none 709. In which of the following is the angle between the two covalent bonds greatest: (1) CO_2 (2) CH_4 (3) NH_3 (4) H_2O 710. The bond angle in PH ₃ would be expected to be close to (1) 90° (2) 105° (3) 109° (4) 120° 711. Which of the following is the correct reducing order of bond-angle	707.			
 (3) OF₂ < H₂O < Cl₂O (4) SiF₄ < SiCl₄ < SiBr₄ < SiI₄ 708. Consider the following compounds: (I) ClF₃ (II) BrF₃ The order of the angles between axial and equatorial bond pairs is (1) I > II (2) I < II (3) I = II (4) none 709. In which of the following is the angle between the two covalent bonds greatest: (1) CO₂ (2) CH₄ (3) NH₃ (4) H₂O 710. The bond angle in PH₃ would be expected to be close to (1) 90° (2) 105° (3) 109° (4) 120° 711. Which of the following is the correct reducing order of bond-angle 		_		
 (I) ClF₃ (II) BrF₃ The order of the angles between axial and equatorial bond pairs is (1) I > II (2) I < II (3) I = II (4) none 709. In which of the following is the angle between the two covalent bonds greatest: (1) CO₂ (2) CH₄ (3) NH₃ (4) H₂O 710. The bond angle in PH₃ would be expected to be close to (1) 90° (2) 105° (3) 109° (4) 120° 711. Which of the following is the correct reducing order of bond-angle 				
The order of the angles between axial and equatorial bond pairs is (1) I > II (2) I < II (3) I = II (4) none 709. In which of the following is the angle between the two covalent bonds greatest: (1) CO ₂ (2) CH ₄ (3) NH ₃ (4) H ₂ O 710. The bond angle in PH ₃ would be expected to be close to (1) 90° (2) 105° (3) 109° (4) 120° 711. Which of the following is the correct reducing order of bond-angle	708.			
 (1) I > II (2) I < II (3) I = II (4) none 709. In which of the following is the angle between the two covalent bonds greatest: (1) CO₂ (2) CH₄ (3) NH₃ (4) H₂O 710. The bond angle in PH₃ would be expected to be close to (1) 90° (2) 105° (3) 109° (4) 120° 711. Which of the following is the correct reducing order of bond-angle 				
 709. In which of the following is the angle between the two covalent bonds greatest: (1) CO₂ (2) CH₄ (3) NH₃ (4) H₂O 710. The bond angle in PH₃ would be expected to be close to (1) 90° (2) 105° (3) 109° (4) 120° 711. Which of the following is the correct reducing order of bond-angle 			-	-
greatest: (1) CO_2 (2) CH_4 (3) NH_3 (4) H_2O 710. The bond angle in PH ₃ would be expected to be close to (1) 90° (2) 105° (3) 109° (4) 120° 711. Which of the following is the correct reducing order of bond-angle	709			
$(1) CO_2$ $(2) CH_4$ $(3) NH_3$ $(4) H_2O$ 710. The bond angle in PH3 would be expected to be close to $(1) 90^\circ$ $(2) 105^\circ$ $(3) 109^\circ$ $(4) 120^\circ$ 711. Which of the following is the correct reducing order of bond-angle	707.	0 0		Valent bonds
 710. The bond angle in PH₃ would be expected to be close to (1) 90° (2) 105° (3) 109° (4) 120° 711. Which of the following is the correct reducing order of bond-angle 		e	(3) NH ₃	(4) H ₂ O
711. Which of the following is the correct reducing order of bond-angle	710.			
$(1) NH_3 < CH_4 < C_2H_2 < H_2O $ $(2) H_2O < NH_3 < CH_4 < C_2H_2$	711.	-	-	-
(2) $C_1 U_1 < C_1 U_2 < M U_1 < M U_2 < M U_2 < C_1 U_2 < C_1 U_2 < C_1 U_2 < C_1 U_2 < C_2 U_$				
(3) $C_2H_2 < CH_4 < H_2O < NH_3$ (4) $NH_3 < H_2O < CH_4 < C_2H_2$ 712. Maximum bond angle is present in	712		(4) INIT3 < H	$20 < C\Pi 4 < C_2\Pi_2$
(1) BCl_3 (2) BBr_3 (3) BF_3 (4) Same for all	/14•	• •	(3) BF ₃	(4) Same for all
713. Select the correct order for bond angle.	713.			()

	(1) $PH_3 < AsH_3 < NH_3 < SbH_3$	(2) $F_2O < H_2O < Cl_2O$
=1.4	(3) $SbI_3 < SbBr_3 < SbCl_3$	$(4) BF_3 > BCl_3 > BBr_3$
714.	CO_3^{2-} anion does not have which of	-
	(1) Bonds of unequal length	
-1-	(3) Resonance stabilization	· · · · · · · · · · · · · · · · · · ·
715.	Which order of decreasing bond any	-
	(1) CCl4 > BF3 >	(2) NH3 > NC13 > NBr3
	(3) Br2O > Cl2O > OF2	(4) PC13 > PBr3 > PI3
716.	The correct order of bond angles (sr	nallest first) in H ₂ S, NH ₃ , BF ₃ and SiH ₄
	is	
	$(1) H_2S < NH_3 < SiH_4 < BF_3$	(2) $NH_3 < H_2S < SiH_4 < BF_3$
	$(3) H_2S < SIH_4 < NH_3 < BF_3$	
717.	e ,	
	(1) $NH_2^- > NH_3 > NH_4^+$	(2) $\rm NH_4^+ > \rm NH_3 > \rm NH_2^-$
	(3) $NH_3 > NH_2^- > NH_4^+$	(4) $NH_3 > NH_4^+ > NH_2^-$
718.	e	
	(1) 104.5° (2) 101°	(3) 109°28' (4) 110.8°
719.	Correct order of bond angles is -	
	$(1) PF_3 < PCI_3 < PBr_3 < PI_3 \qquad (2)$	
	$(3) PCl_3 < PF_3 < PBr_3 < PI_3$	$(4) PCl_3 < PBr_3 < PF_3 < PI_3$
720.	ε	
	(1) $PF_3 < PH_3$	(2) $PH_3 < PF_3$
501	$(3) PF_3 = PH_3$	(4) Cannot be predicted
721.		
	(1) It is bent molecule	(2) Bond angle is $< 120^{\circ}$
700	(3) Central atom is sp^2 hybridized	(4) None of these
122.	Consider the following molecules.	
	H ₂ O H ₂ S H ₂ Se H ₂ Te I II III IV	
	Arrange these molecules in increasi	ng order of bond angles
	(1) $I < II < III < IV$	(2) $IV < III < II < I$
	(1) I < II < III < IV $(3) I < II < IV < III$	(4) II < IV < III < I
723.	In which of the following bond ang	
123.	(1) NH_3 (2) NH_4^+	$(3) PCl_3 \qquad (4) SCl_2$
724.	In which of the following central at	
/ 2 - 1 •	(1) $S(CH_3)_2$ (2) SO_2	$(3) SiH_4 \qquad (4) PCl_3$
725.	The order of bond angle in NH ₃ , PH	
/ _0.	(1) $NH_3 > PH_3 > AsH_3$	(2) $PH_3 > NH_3 > AsH_3$
	$(3) AsH_3 > PH_3 > NH_3$	(4) $PH_3 = NH_3 < AsH_3$
726.	The bond angle in water molecule i	s nearly:
	(1) 120° (2) 180°	$(3) 109^{\circ}28' \qquad (4) 104^{\circ}30'$
727.	A molecule is formed by sp ³ d ² hybr	idisation. Bond angle in it is:

	(1) 90°	(2) 109°28'	(3) 90° and 120°	(4) 120°	
728.	In which of the fo exactly equal to 1	• •	angle around the co	entral atom is	
	(1) SF ₄	(2) NH ₃	(3) NH4 ⁺	(4) None	
729.	The bond angles of	of NH ₃ , and NH ₄ ⁺ a	re in the order:		
	(1) $NH_3 > NH_4^+ >$		(2) $NH_3 > NH_2^- > 1$		
5 20	(3) $NH_4^+ > NH_3 >$	-	(4) $NH_2 > NH_3 > 1$	-	
730.	which of the follo central atom:	owing set contains s	species having same	e angle around the	
	(1) SF ₄ , CH ₄ , NH ₂		(2) NF ₃ , BCl ₃ , NF	L.	
	(1) BF 4, CH4, NH (3) BF3, NF3, AlC		(4) $BF_3 BCl_3, BB_1$		
731.			the molecules BeC		
	and SF_6 is:				
	(1) $SF_6 < CCl_4 < 1$	$BCl_3 < BeCl_2$	(2) $BeCl_2 < BCl_3$	< CCl ₄ $<$ SF ₆	
	(3) $SF_6 < CCl_4 < J_4$	$BeCl_2 < BCl_3$	(4) $BCl_3 < BeCl_2$	< SF ₆ $<$ CCl ₄	
732.	In compounds X,	all the bond angles	are exactly 109°28	'. X is -	
	(1) Chloromethan	e	(2) Carbon tetrach	lloride	
	(3) Iodoform		(4) Chloroform		
733.	_	_	the angle is minimu		
) H—O—H in wate		
734.	-		al (formed by s and	p orbitals)	
	increases. Then the	-	omes twice (4) Re	mains unaltered	
735.	Which is not corre		onies twice (4) Re	manis unattered	
100.	(1) Bond angle $H-S-H < H-OH$ (2) Bond angle $F-O-F < CI-O-C$				
	(3) Bond angle $H-P-H < H-N-H$				
		-Sn-Cl > Cl-Hg-Cl	C1		
736.	When NH ₃ is trea	ted with HCl, H–N	–H bond angle		
	(1) Increases		(2) Decreases		
	(3) Remains same	;	(4) Depends upon	temperature	
737.	The correct order of the bond angles is: -				
	(1) $NH_3 > H_2O > 1$	$PH_3 > H_2S$	(2) $NH_3 > PH_3 > I$	$H_2O > H_2S$	
		$PH_3 > H_2O$			
738.	The correct increation order: -	using bond angle an	nong BF ₃ , PF ₃ and C	ClF ₃ follows the	
	(1) $BF_3 < PF_3 < C$	lF ₃	(2) $PF_3 < BF_3 < C$	1F3	
	(3) $ClF_3 < PF_3 < H$	3F3	(4) $BF_3 = PF_3 = C$	lF ₃	

739. Among the following orbital bonds, the angle is minimum between: -

	(1) sp^3 bonds	(2) p_x and p_y orbitals
	(3) H–O–H in water	(4) sp bonds
740.	The correct order of increasing $X - O$	-X bond angle is (X = H, F or Cl)
	(1) $H_2O > Cl_2O > F_2O$	(2) $Cl_2O > H_2O > F_2O$
	(3) $F_2O > Cl_2O > H_2O$	(4) $F_2O > H_2O > Cl_2O$
741	Which of the following has maximum	
/ 110	(1) $H - O - H$ (2) $H - S - H$	
742	Which of the following hypothesis just	
/ 121	92°?	stilles that the bolid angle of 1120 is
	(1) Lewis's structure	(2) Valence bond theory
	(3) Valance bond concept of hybrid o	
743.	If s character decreases in hybrid orbi	
	(1) decreases	(2) increases
	(3) remains uncertain	(4) all are wrong
744.	Incorrect information about Cl_2O is	
	(1) angular structure	(2) 110° bond angle
	(3) four lone pairs	(4) two σ bonds
745.	• • •	
	ClO ₃ ⁻ , BrO ₃ ⁻ , IO ₃ ⁻	
	(1) $BrO_3^- > IO_3^- > ClO_3^-$	(2) $ClO_3^- > BrO_3^- > IO_3^-$
	(3) $IO_3^- > BrO_3^- > ClO_3^-$	$(4) IO_3^- < BrO_3^- > ClO_3^-$
746.	The total right angled ∠ClPCl are pre	sent in PCl ₅ , PCl ₄ ⁺ , PCl ₆ ⁻
	respectively.	
	$(1) 0, 1, 4 \qquad (2) 6, 0, 4$	(3) 2, 4, 0 (4) 6, 0, 12
747.	If hybridisation is absent in NH ₃ and 1	pure orbitals involved in bonding
	then select the incorrect statement.	
	(1) All bonds have equal strength	
	(2) Shape of NH ₃ will be pyramidal	
	e e e e e e e e e e e e e e e e e e e	(4) All \angle HNH angles are 107°
748.	Which of the following has 90° bond	-
	(1) IF_7 (2) SF_6	$(3) PCl_5 \qquad (4) All$
749.	e	
	(1) $POF_3 > POCl_3 > POBr_3$	(2) $POF_3 < POCl_3 < POBr_3$
750	$(3) POF_3 = POCl_3 = POBr_3$	$(4) \operatorname{POCl}_3 > \operatorname{POF}_3 > \operatorname{POBr}_3$
750.	Which of the following has maximum (1) NE (2) NC1	-
751	(1) NF ₃ (2) NCl ₃ Which of the following has minimum	(3) PCl_3 (4) OF_2
751.	Which of the following has minimum $(1) \text{ OF}_2$ $(2) \text{ OCl}_2$	
752	The correct order of bond angle is	(3) $(CH_3)_2O$ (4) H_2O
132.	•	(2) $PF_3 < PCl_3 < PBr_3 < PI_3$
		(4) $PCl_3 > PF_3 > PBr_3 > PI_3$
753	Which of the following has all equal l	
,	, men of the following has an equal of	ungion.

	(1) CU Cl		(2) NH	
751		(2) CH_2F_2		$(4) \text{ NH}_2-\text{OH}$
754.	(1) NO_2^+	-	nd angle is highest (3) NO ₂ ⁻	
755.			anar species have be	
755.			n perfectly tetrahedr	
	(1) OCl_2	(2) NH_3	(3) OF_2	(4) OH_2
756.	\angle HBH is BH ₄ is		$(3) 01_2$	(4) 0112
750.	(1) 180°	(2) 120°	(3) 109°	(4) 90°
757.			- O bond angle is h	
750	(1) N_2O_4	$(2) \operatorname{NO}_{2^{+}}$		
758.		(II) NO_2^-	ling to their bond an (III) FNO	igle order.
	(I) O_3 (1) I > II > III	$(\Pi) \Pi O_2$	(11) FNO (2) $II > I > III$	
	(1) I > II > II (3) III > II > I		(2) II > II > III (4) II > III > I	
759.		wing species accord	ling to their bond ar	ngle order
1091	(I) O ₃	(II) NO_2^-	(III) FNO	
	(1) I > II > III		[> I > III	
	(3) III > II > I		I < III < I	
760.	Which of following	ng statements is/are	correct regarding I	F5 molecule.
	(I) There is only o	one lone pair presen	t in equatorial posit	ion.
	(II) All ∠ FIF ang	les are identical.		
	(III) There are eig	tht faces in this mol	ecule.	
		∠ FIF angles less th		
			(3) III and IV	•
761.			pure orbitals involv	ved in bonding
	then select the inc			
	(1) All bonds hav			
		will be pyramidal		
	(3) All \angle HNH an	-		
760	(4) All ∠HNH ang		angle in its structure	nal
762.	(1) IF ₇	(2) SF ₆	angle in its structur (3) PCl ₅	(4) All
763.		$^{\circ}$ angle in SF ₆ are:	(3) 1 C15	(+) All
705.	(1) 4	(2) 8	(3) 12 (4) 1	6
764.		owing has maximur		•
	(1) NF_3	(2) NCl_3	$(3) PCl_3$	(4) OF_2
765.	Which of the follo		n bond angle about	oxygen?
	(1) OF_2	(2) OCl ₂	$(3) (CH_3)_2O$	
766.	In compound X, a	Ill the bond angles a	are exactly 109 ⁰ ,28'	X is
	(1) Chloromethan		(2) Iodoform	
	(3) Carbon tetrach	loride	(4) Chloroform	

767.	Select the property $(X = halogen)$.	which do(es) not NF3 < NCl3 < NB		llowing order for NX3
	(1) XNX bond ang		(2) NX bone	d length
	(3) N–X bond pola		(4) All of th	-
768.	The bond angle in	•	• •	
,	(1) 90^0	(2) 105°	(3) 109 ⁰	(4) 120°
769.			(\mathbf{c})	(.) 120
	(1) NH ₃	(2) BeF_2	(3) H ₂ O	(4) CH ₄
770.		· /	(-) -	
	(1) CHF ₃	-	CHCl ₃	
	(3) CHBr ₃			mum bond angle
771.				two covalent bonds
	greatest	0 0		
	(1) CO_2	(2) CH ₄	(3) NH ₃	(4) H_2O
772.	As the <i>s</i> -character	of hybridized orbi	tal decreases,	the bond angle
	(1) Decreases		(2) In	icreases
	(3) Does not chang	ge	(4) B	ecomes zero
773.	The bond angle be	tween H-O-H in ic	e is closest to	
	$(1) 120^{0}28'$	$(2) 60^{\circ}$	$(3) 90^{0}$	$(4) 105^{\circ}$
774.	Which of the follo	wing is the correct	reducing ord	er of bond-angle
	$(1) \mathrm{NH}_3 < \mathrm{CH}_4 < \mathrm{C}_2 \mathrm{H}_3$			H ₃ >H ₂ O <ch<sub>4</ch<sub>
	(3) NH ₃ >H ₂ O>CH			$H_3 > CH_4 < C_2H_2$
775.	Which compound	-	-	
77((1) H_2O	(2) H_2S	(3) NH_3	(4) CH_4
776.	The bond angle of			
	(1) Repulsion betw (2) SD^3 hydridizati	-	bond pair	
	 (2) SP³ hybridizati (2) Ponding of Hol 		ligher algotro	nagativity of O
777	(3) Bonding of H ₂ The correct sequer		-	negativity of O
///.	hybrids is	ice of decrease in t	ine bond angle	e of the following
	$(1) \text{ NH}_3 > \text{PH}_3 > \text{AsH}_3$	H2>ShH2	(2) NH ₂ >As	sH ₃ >PH ₃ >SbH ₃
	(1) SbH_3 AsH ₃ >P			H ₃ >AsH ₃ >SbH ₃
778.				19 115119 00119
110.	(1) $H_2O>H_2S>H_2S$	e	(2) H2Te>H	$[_2Se>H_2S>H_2O]$
	(1) H ₂ O H ₂ O H ₂ O (3) H ₂ S>H ₂ O>H ₂ S			$_{2}S>H_{2}Te>H_{2}Se$
779.	Maximum bond ar		(1) 1120 112	
	(1) BeCl ₃	$(2) BBr_3$	(3) BF ₃	(4) Same for all
780.	The largest bond a			() Sunte for an
, 00.	(1) AsH ₃	$(2) \mathrm{NH}_3$	(3) H ₂ O	(4) PH ₃
781.	The bond angle in	· /		()5
	(1) $91^{0}8'$	$(2) 93^{0}3'$		$(4) 109^{0}28'$
			× /	× /

- 782. The maximum number of 90° angles between bond pair-bond pair of electrons are observed in
 - (1) dsp^2 hybridization

(2) sp³d hybridization
(4) sp³d² hybridization

- (3) dsp^3 hybridization
- 783. Among the following molecules which one have smallest bond angle
 - (1) NH_3 (2) PH_3 (3) H_2O (4) H_2S
- 784. As the P-character increases, the bond angle in hybrid orbitals formed by s and atomic orbitals
 - (1) Decreases

(2) Increases

(3) Doubles

(4) Remains unchanged