BASIC CHEMICAL BONDING

Condition of ionic bond

1. When metals combine with non-metals, the metal atom tends to
(1) Lose electrons
(2) Gain electrons
(3) Remain electrically neutral
(4) None of these
2. Which does not favour the formation of ionic compound:
(1) the ionization energy of the metal atom should be low.
(2) the lattice energy of the compound formed must be low.
(3) the electron affinity of the non-metal should be high.
(4) the lattice energy of the compound formed must be high.
3. Electrovalent bond formation depends on
(1) Ionization energy
(2) Electron affinity
(3) Lattice energy
(4) All the three above
4. The lattice energy of sodium chloride crystal is the energy released when one mole of $\mathrm{NaCl}(\mathrm{s})$ is formed from:
(1) $\mathrm{Na}(\mathrm{g})$ and $\mathrm{Cl}(\mathrm{g})$ atoms
(2) $\mathrm{Na}^{+}(\mathrm{g})$ and $\mathrm{Cl}^{-}(\mathrm{g})$ ions
(3) Na (s) and $\mathrm{Cl}_{2}(\mathrm{~g})$
(4) crystallization from aqueous solution of sodium chloride.
5. Lattice energy of BeCO_{3} (I), MgCO_{3} (II) and CaCO_{3} (III) are in the order
(1) I $>$ II $>$ III
(2) I $<$ II $<$ III
(3) I $<$ III $<$ II
(4) II $<$ I $<$ III
6. Lattice energy of an ionic compound depends upon
(1) Charge on the ion only
(2) Size of the ion only
(3) Packing of ions only
(4) Charge on the ion and size of the ion
7. Which of the following substance has the largest negative lattice enthalpy?
(1) NaCl
(2) CaBr_{2}
(3) NaBr
(4) CaCl_{2}
8. Indicate the nature of bonding in CCl_{4} and CaH_{2}
(1) Covalent in CCl_{4} and electrovalent in CaH_{2}
(2) Electrovalent in both CCl_{4} and CaH_{2}
(3) Covalent in both CCl_{4} and CaH_{2}
(4) Electrovalent in CCl_{4} and covalent in CaH_{2}
9. Which forms a crystal of NaCl
(1) NaCl molecules
(2) Na^{+}and Cl^{-}ions
(3) Na and Cl atoms
(4) None of the above
10. When sodium and chlorine react then
(1) Energy is released, and ionic bond is formed
(2) Energy is released, and a covalent bond is formed
(3) Energy is absorbed, and ionic bond is formed
(4) Energy is absorbed, and covalent bond is formed
11. Which of the following is an electrovalent linkage
(1) CH_{4}
(2) MgCl_{2}
(3) SiCl_{4}
(4) BF_{3}
12. From the following which group of elements easily forms cation
(1) $\mathrm{F}, \mathrm{Cl}, \mathrm{Br}$
(2) Li, Na, K
(3) O, S, Se
(4) N, P, As
13. Which of the following ionic compound has high lattice energy?
(1) NaF
(2) NaCl
(3) AlF_{3}
(4) $\mathrm{Al}_{2} \mathrm{O}_{3}$
14. Which of the following has the highest lattice energy?
(1) NaF
(2) MgF_{2}
(3) AlF_{3}
(4) CaF_{2}
15. Compound having least lattice energy is:
(1) NaF
(2) KF
(3) RbF
(4) CsF
16. The lattice energies of the oxides of $\mathrm{Mg}, \mathrm{Ca} \mathrm{Sr}$ and Ba follow the order
(1) $\mathrm{BaO}>\mathrm{SrO}>\mathrm{CaO}>\mathrm{MgO}$
(2) $\mathrm{CaO}>\mathrm{BaO}>\mathrm{SrO}>\mathrm{MgO}$
(3) $\mathrm{MgO}>\mathrm{CaO}>\mathrm{SrO}>\mathrm{BaO}$
(4) $\mathrm{MgO}>\mathrm{SrO}>\mathrm{CaO}>\mathrm{BaO}$
17. Which of the following has highest lattice energy?
(1) MgO
(2) SrO
(3) BaO
(4) CaO
18. Select the pair of compounds in which first compound has more lattice energy as compared to second compound, but solubility is less.
(1) $\mathrm{BeCl}_{2}, \mathrm{BaCl}_{2}$
(2) LiF, CsF
(3) $\mathrm{KHCO}_{3}, \mathrm{NaHCO}_{3}$
(4) $\mathrm{BeSO}_{4}, \mathrm{BaSO}_{4}$

Properties of ionic compund

19. Molten sodium chloride conducts electricity due to the presence of
(1) Free electrons
(2) Free ions
(3) Free molecules
(4) Atoms of sodium and chlorine
20. Ionic compounds do not have
(1) Hard and brittle nature
(2) High melting and boiling point
(3) Directional properties
(4) Soluble in polar solvents
21. Which of the following statements is wrong regarding ionic compounds -
(1) These are generally in solid state at room temperature
(2) The force of attraction between ions is non directional
(3) Ionic compounds are soluble in all solvents
(4) They conduct electricity in molten and solution state
22. Electrovalent compound's
(1) Melting points are low
(2) Boiling points are low
(3) Conduct current in fused state
(4) Insoluble in polar solvent
23. Element X is strongly electropositive, and Y is strongly electronegative. Both elements are univalent, the compounds formed from their combination will be
(1) $X^{+} Y^{-}$
(2) $\mathrm{X}^{-} \mathrm{Y}^{+}$
(3) $\mathrm{X}-\mathrm{Y}$
(4) $\mathrm{X} \rightarrow \mathrm{Y}$
24. In the formation of NaCl from Na and Cl
(1) Sodium and chlorine both give electrons
(2) Sodium and chlorine both accept electrons
(3) Sodium loses electron and chlorine accepts electron
(4) Sodium accepts electron and chlorine loses electron
25. Electrovalent compounds do not have
(1) High M.P. and Low B.P.
(2) High dielectric constant
(3) High M.P. and High B.P.
(4) High polarity
26. Many ionic crystals dissolve in water because
(1) Water is an amphiprotic solvent
(2) Water is a high boiling liquid
(3) The process is accompanied by a positive heat of solution
(4) Water decreases the interionic attraction in the crystal lattice due to salvation
27. The electronic structure of four elements $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ are
(1) $1 \mathrm{~s}^{2}$
(2) $1 s^{2}, 2 s^{2}, 2 p^{2}$
(3) $1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}, 2 \mathrm{p}^{5}$
(4) $1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}, 2 \mathrm{p}^{6}$

The tendency to form electrovalent bond is largest in
(1) A
(2) B
(3) C
(4) D
28. In the given bonds which one is most ionic
(1) $\mathbf{C s}-\mathrm{Cl}$
(2) $\mathrm{Al}-\mathrm{Cl}$
(3) $\mathrm{C}-\mathrm{Cl}$
(4) $\mathrm{H}-\mathrm{Cl}$
29. Sodium chloride easily dissolves in water. This is because
(1) It is a covalent compound
(2) Salt reacts with water
(3) It is a white substance
(4) Its ions are easily solvated
30. When NaCl is dissolved in water the sodium ion becomes
(1) Oxidized(2) Reduced
(3) Hydrolysed
(4) Hydrated
31. Solid NaCl is a bad conductor of electricity since
(1) In solid NaCl there are no ions
(2) Solid NaCl is covalent
(3) In solid NaCl there is no motion of ions
(4) In solid NaCl there are no electrons
32. Ionic bonds are usually formed by combination of elements with
(1) High ionisation potential and low electron affinity
(2) Low ionisation potential and high electron affinity
(3) High ionisation potential and high electron affinity
(4) Low ionisation potential and low electron affinity
33. Molten sodium chloride conducts electricity due to the presence of
(1) Free electrons
(2) Free ions
(3) Free molecules
(4) Atoms of sodium and chlorine
34. A number of ionic compounds e.g. $\mathrm{AgCl}, \mathrm{CaF}_{2}, \mathrm{BaSO}_{4}$ are insoluble in water. This is because
(1) Ionic compounds do not dissolve in water
(2) Water has a high dielectric constant
(3) Water is not a good ionizing solvent
(4) These molecules have exceptionally high alternative forces in the lattice
35. What is the nature of chemical bonding between Cs and F
(1) Covalent
(2) Ionic
(3) Coordinate
(4) Metallic
36. Which one of the following compounds is ionic
(1) KCl
(2) CH_{4}
(3) Diamond
(4) H_{2}
37. Which of the following compound has electrovalent linkage
(1) $\mathrm{CH}_{3} \mathrm{Cl}$
(2) NaCl
(3) CH_{4}
(4) Cl_{2}
38. An ionic compound is generally a
(1) Good electrolyte
(2) Weak electrolyte
(3) Non-electrolyte
(4) Neutral
39. What metals combine with non-metals, the metal atom tends to
(1) Lose electrons
(2) Gain electrons
(3) Remain electrically neutral
(4) None of these
40. Among the bonds formed by a chlorine atom with atoms of hydrogen, chlorine, sodium and carbon, the strongest bond is formed between
(1) HCl
(2) $\mathrm{Cl}-\mathrm{Cl}$
(3) $\mathrm{Na}-\mathrm{Cl}$
(4) $\mathrm{C}-\mathrm{Cl}$
41. Out of the following, which compound will have electrovalent bonding
(1) Ammonia
(2) Water
(3) Calcium chloride
(4) Chloromethane
42. The force which holds atoms together in an electrovalent bond is
(1) Vander Waal's force
(2) Dipole attraction force
(3) Electrostatic force of attraction
(4) All the above
43. The main reaction during electrovalent bond formation is
(1) Redox reaction
(2) Substitution reaction
(3) Addition reaction
(4) Elimination reaction
44. Electrovalent compounds are
(1) Good conductor of electricity
(2) Polar in nature
(3) Low M.P. and low B.P.
(4) Easily available
45. Ionic compounds do not have
(1) Hard and brittle nature
(2) High melting and boiling point
(3) Directional properties
(4) Soluble in polar solvents
46. Which type of bonding exists in $\mathrm{Li}_{2} \mathrm{O}$ and CaF_{2} respectively
(1) Ionic, ionic
(2) Ionic, covalent
(3) Covalent, ionic
(4) Coordinate, ionic
47. An atom with atomic number 20 is most likely to combine chemically with the atom whose atomic number is
(1) 11
(2) 14
(3) 16
(4) 10
48. Bond formed in crystal by anion and cation is
(1) Ionic
(2) Metallic
(3) Covalent (4) Dipole
49. Atoms or group of atoms which are electrically charged are known
(1) Anions
(2) Cations
(3) Ions
(4) Atoms
50. The interionic attraction depends on interaction of
(1) Solute-Solute
(2) Solvent-Solvent
(3) The charges
(4) Molecular properties
51. Which of the following compounds is ionic
(1) KI
(2) CH_{4}
(3) Diamond
(4) H_{2}
52. The energy that opposes dissolution of a ionic nbond is
(1) Hydration energy
(2) Lattice energy
(3) Internal energy
(4) Bond energy
53. Which of the following statements is not true for ionic compounds
(1) High melting point
(2) Least lattice energy
(3) Least solubility in organic compounds
(4) Soluble in water
54. Electrolytes are compound containing
(1) Electrovalent bond
(2) Covalent bond
(3) Coordinate bond
(4) Hydrogen bond
55. Electricity do not pass-through ionic compounds
(1) In solution
(2) In solid state
(3) In melted state
(4) None of these
56. The order of increasing lattice energy of the following salt is:
(1) $\mathrm{NaCl}<\mathrm{CaO}<\mathrm{NaBr}<\mathrm{BaO}$
(2) $\mathrm{NaBr}<\mathrm{NaCl}<\mathrm{BaO}<\mathrm{CaO}$
(3) $\mathrm{NaCl}<\mathrm{NaBr}<\mathrm{BaO}<\mathrm{CaO}$
(4) $\mathrm{NaBr}<\mathrm{NaCl}<\mathrm{CaO}<\mathrm{BaO}$
57. The electronic structure of four elements a, b, c and d are : $\mathrm{a}=1 \mathrm{~s}^{2}, \mathrm{~b}=1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2}, \mathrm{c}=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2}, \mathrm{~d}=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6}$
The tendency to form electrovalent bond is greatest in:
(1) a
(2) b
(3) c
(4) d
58. Compound with maximum ionic character is formed from:
(1) Na and Cl
(2) Cs and F
(3) Cs and I
(4) Na and F
59. Solid NaCl is a bad conductor of electricity because:
(1) In solid NaCl there are no ions \quad (2) Solid NaCl is covalent
(3) In solid NaCl there is no mobility of ions
(4) In solid NaCl there are no electrons

Polarization and Fazan's Rule

60. Favourable conditions for electrovalency are
(1) Low charge on ions, large cation, small anion
(2) High charge on ions, small cation, large anion
(3) High charge on ions, large cation, small anion
(4) Low charge on ions, small cation, large anion
61. Polarising power is estimated by
A. $\frac{\text { Ionic charge }}{\text { (Ionic radius) }^{3}}$
B. $\frac{\text { Ionic charge }}{(\text { Ionic radius })^{2}}$
C. $\frac{(\text { Ionic charge })^{2}}{\text { Ionic radius }}$
D. $\frac{\text { Ionic radius }}{\text { Ionic charge }}$
62. Out of list I select the cation which has less polarizing power than Ca^{2+} and from list II select the anion having more polarisability than S^{2-}
List I :
$\mathrm{Mg}^{2+}, \mathrm{Sc}^{3+}, \mathrm{K}^{+}$
List II:
$\mathrm{O}^{2-}, \mathrm{Cl}^{-}, \quad \mathrm{P}^{3-}$
(1) $\mathrm{Mg}^{2+}, \mathrm{O}^{2-}$
(2) $\mathrm{K}^{+}, \mathrm{P}^{3-}$
(3) $\mathrm{Sc}^{3+}, \mathrm{P}^{3-}$
(4) $\mathrm{Mg}^{2+}, \mathrm{Cl}^{-}$
63. Which cationic species has more polarising power -
(1) Na^{+}
(2) Mg^{+2}
(3) Al^{+3}
(4) all
64. According to Fajan's rule covalent bond is favoured by -
(1) Large cation and small anion
(2) Large cation and large anion
(3) Small cation and large anion(4) Small cation and small anion
65. Which option is correct for the following order
$\mathrm{LiCl}<\mathrm{NaCl}<\mathrm{KCl}<\mathrm{RbCl}<\mathrm{CsCl}$
(1) Ionic character
(2) Melting point order
(3) Solubility in water
(4) Polarising power of their cations
66. Choose incorrect option:
(1) More distortion of anion, more will be polarisation then covalent character increases.
(2) CsF is 100% ionic compound.
(3) Charge on cation α polarisation.
(4) Size of anion α polarisation
67. Among $\mathrm{LiCl}, \mathrm{BeCl}_{2}, \mathrm{BCl}_{3}$ and CCl_{4}, the covalent bond characteristics follow the order
(1) $\mathrm{LiCl}>\mathrm{BeCl}_{2}>\mathrm{BCl}_{3}>\mathrm{CCl}_{4}$
(2) $\mathrm{LiCl}<\mathrm{BeCl}_{2}<\mathrm{BCl}_{3}<\mathrm{CCl}_{4}$
(3) $\mathrm{LiCl}>\mathrm{BeCl}_{2}>\mathrm{BCl}_{3}>\mathrm{CCl}_{4}$
(4) $\mathrm{LiCl}>\mathrm{BeCl}_{2}<\mathrm{BCl}_{3}>\mathrm{CCl}_{4}$
68. Which among the following has maximum covalent character:
(1) NaCl
(2) MgCl_{2}
(3) $\mathrm{AlCl} l_{3}$
(4) CaCl_{2}
69. Among $\mathrm{LiCl}, \mathrm{BeCl}_{2}, \mathrm{NaCl}, \mathrm{CsCl}$, the compounds with the greatest and the least ionic character respectively are
(1) LiCl and CsCl
(2) NaCl and LiCl
(3) CsCl and NaCl
(4) CsCl and BeCl_{2}
70. The correct order of increasing covalent character is:
(1) $\mathrm{LiCl}, \mathrm{NaCl}, \mathrm{BeCl}_{2}$
(2) $\mathrm{BeCl}_{2}, \mathrm{NaCl}, \mathrm{LiCl}$
(3) $\mathrm{NaCl}, \mathrm{LiCl}, \mathrm{BeCl}_{2}$
(4) $\mathrm{BeCl}_{2}, \mathrm{LiCl}, \mathrm{NaCl}$
71. Choose the compounds of maximum and minimum ionic character from $\mathrm{LiCl}, \mathrm{RbCl}, \mathrm{BeCl}_{2}$ and MgCl_{2} :
(1) LiCl and RbCl
(2) RbCl and BeCl_{2}
(3) RbCl and MgCl_{2}
(4) MgCl_{2} and BeCl_{2}
72. Higher polarisation in case of AgCl compared to KCl is due to
(1) larger size of cation
(2) smaller size of cation
(3) inert gas configuration of cation
(4) Pseudo inert gas configuration of cation.
73. Which of the following is most covalent.
(1) CuCl
(2) NaCl
(3) AgCl
(4) AuCl
74. Out of the following which one has the highest values of covalent character?
(1) ZnCl_{2}
(2) CdCl_{2}
(3) HgCl_{2}
(4) CuCl
75. Which of the following has highest covalent character.
(1) CaCl_{2}
(2) ZnCl_{2}
(3) KCl
(4) CuCl
76. Polarisation may be called as the distortion of the shape of an anion by an adjacently placed cation. Which of the following statements is/are correct?
(1) Lesser polarization is brought about by a cation of low radius
(2) A large cation is likely to bring about a large degree of polarization
(3) Larger polarisation is brought about by a cation of high charge
(4) A small anion is likely to undergo a large degree of polarisation
77. Out of following which one has maximum ionic character -
(1) NaCl
(2) KCl
(3) CaCl_{2}
(4) MgCl_{2}
78. Among $\mathrm{LiCl}, \mathrm{BeCl}_{2}, \mathrm{BCl}_{3}$ and CCl_{4}, the covalent bond character follows the order -
(1) $\mathrm{LiCl}<\mathrm{BeCl}_{2}>\mathrm{BCl}_{3}>\mathrm{CCl}_{4}$
(2) $\mathrm{LiCl}>\mathrm{BeCl}_{2}<\mathrm{BCl}_{3}<\mathrm{CCl}_{4}$
(3) $\mathrm{LiCl}<\mathrm{BeCl}_{2}<\mathrm{BCl}_{3}<\mathrm{CCl}_{4}$
(4) $\mathrm{LiCl}>\mathrm{BeCl}_{2}>\mathrm{BCl}_{3}>\mathrm{CCl}_{4}$
79. Which one is most ionic in the following compounds
(1) AgCl
(2) KCl
(3) BaCl_{2}
(4) CaCl_{2}
80. Which of the following does not conduct electricity in the fused state
(1) BeCl_{2}
(2) MgCl_{2}
(3) SrCl_{2}
(4) BaCl_{2}
81. If the electron pair forming a bond between two atoms A and B is not in the centre, then the bond is
(1) Single bond
(2) Polar bond
(3) Non-polar bond
(4) π-bond
82. Polarization is the distortion of the shape of an anion by an adjacently placed cation. Which of the following statements is correct?
(1) Maximum polarization is brought about by a cation of high charge
(2) Minimum polarization is brought about by a cation of low radius
(3) A large cation is likely to bring about a large degree of polarization
(4) A small anion is likely to undergo a large degree of polarization
83. The bonds between P atoms and Cl atoms in PCl_{5} are likely to be
(1) Ionic with no covalent character
(2) Covalent with some ionic character
(3) Covalent with no ionic character
(4) Ionic with some metallic character
84. Two electrons of one atom A and two electrons of another atom B are utilized to form a compound $A B$. This is an example of
(1) Polar covalent bond
(2) Non-polar covalent bond
(3) Polar bond
(4) Dative bond
85. Which of the following has a high polarising power
(1) Mg^{+2}
(2) $A l^{+3}$
(3) Na^{+}
(4) Ca^{+2}
86. Maximum covalent character is associated with the compound
(1) NaI
(2) MgI_{2}
(3) AlCl_{3}
(4) All_{3}
87. Polarisibility of halide ions increases in the order
(1) $\mathrm{F}^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$
(2) $\mathrm{Cl}^{-}, \mathrm{F}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$
(3) $\mathrm{I}^{-}, \mathrm{Br}^{-}, \mathrm{Cl}^{-}, \mathrm{F}^{-}$
(4) $\mathrm{I}^{-}, \mathrm{Br}^{-}, \mathrm{F}^{-}, \mathrm{Cl}^{-}$
88. According to Fajan's rule, covalent bond is favoured by
(1) Large cation and small anion (2) Large cation and large anion
(3) Small cation and large anion(4) Small cation and small anion
89. Choose the correct statement
(1) Amino polarisation is more pronounced by highly charged cation
(2) Small cation has minimum capacity to polarise an anion.
(3) Small anion has maximum polarizability
(4) None of these
90. Amongst $\mathrm{LiCl}, \mathrm{RbCl}, \mathrm{BeCl}_{2}$ and MgCl_{2} the compounds with the greatest and the least ionic character, respectively, are
(1) LiCl and RbCl
(2) RbCl and BeCl_{2}
(3) RbCl and MgCl_{2}
(4) MgCl_{2} and BeCl_{2}
91. Lattice energy of alkali metal chlorides follows the order
(1) $\mathrm{LiCl}>\mathrm{NaCl}>\mathrm{KCl}>\mathrm{RbCl}>\mathrm{CsCl}$
(2) $\mathrm{CsCl}>\mathrm{NaCl}>\mathrm{KCl}>\mathrm{RbCl}>\mathrm{LiCl}$
(3) $\mathrm{LiCl}>\mathrm{CsCl}>\mathrm{NaCl}>\mathrm{KCl}>\mathrm{RbCl}$
(4) $\mathrm{NaCl}>\mathrm{LiCl}>\mathrm{KCl}>\mathrm{RbCl}>\mathrm{CsCl}$

92 Which compound is highest covalent
(1) LiCl
(2) LiF
(3) LiBr
(4) LiI
93. Which among the following elements has the tendency to form covalent compounds
(1) Ba
(2) Be
(3) Mg
(4) Ca
94. A bond with maximum covalent character between non-metallic elements is formed
(1) Between identical atoms
(2) Between chemically similar atoms
(3) Between atoms of widely different electronegativities
(4) Between atoms of the same size
95. The correct sequence of increasing covalent character is represented by
(1) $\mathrm{LiCl}<\mathrm{NaCl}<\mathrm{BeCl}_{2}$
(2) $\mathrm{BeCl}_{2}<\mathrm{NaCl}<\mathrm{LiCl}$
(3) $\mathrm{NaCl}<\mathrm{LiCl}<\mathrm{BeCl}_{2}$
(4) $\mathrm{BeCl}_{2}<\mathrm{LiCl}<\mathrm{NaCl}$
96. Highest covalent character is found in
(1) CaF_{2}
(2) CaCl_{2}
(3) CaBr_{2}
(4) Cal_{2}
97. The following salt shows maximum covalent character
(1) ACl_{3}
(2) MgCl_{2}
(3) CsCl
(4) LaCl_{3}
98. Which of the following has covalent bond
(1) $\mathrm{Na}_{2} \mathrm{~S}$
(2) AlCl_{3}
(3) NaH
(4) MgCl_{2}
99. Which of the following compound has maximum covalent character
(1) PbI_{2}
(2) AgI
(3) HgI_{2}
(4) CsI
100. Compound with maximum ionic character is formed from:
(1) Na and Cl
(2) Cs and F
(3) Cs and I
(4) Na and F

Covalent Bond and Covalency

101. The maximum covalency for p -block elements is equal to -
(1) The number of unpaired p-electrons
(2) The number of paired d-electrons
(3) The number of unpaired s-and p-electrons
(4) The actual number of s-and p-electrons in the outermost shell
102. In a triple bond there is sharing of:
(1) 3 electrons
(2) 4 electrons
(3) Several electrons
(4) 6 electrons
103. Which of the following configuration shows second excitation state of Iodine: -

(3) 11 | 1 | 1 | 1 |
| :--- | :--- | :--- |

(2)
(4)

104. Nitrogen does not form NF_{5} because:
(1) Nitrogen is member of V group
(2) It contains no empty d-orbital
(3) The bond energy of N N is very high
(4) It's Inert due to presence of triple bond
105. The maximum covalency can be achieved by Br -atom is
(1) 5
(2) 6
(3) 8
(4) 7
106. If 2 d orbital were possible, which of the following species would exist?
(1) NF_{5}
(2) FH_{5}
(3) $\mathrm{BI}_{6}{ }^{3-}$
(4) SiF_{6}
107. Which pair of elements does not exhibit variable O.S.
(1) Fe, Pb
(2) H, Cl
(3) F, Zn
(4) O, N
108. When two atoms combine to form a molecule?
(1) Energy is released
(2) Energy is absorbed
(3) Energy is neither released nor absorbed
(4) Energy may either released or absorbed
109. Which of the following does not exist -
(1) PCl_{5}
(2) NCl_{3}
(3) NOCl_{3}
(4) NCl_{5}
110. Which of the following ions/ compounds does not exist?
(1) $\mathrm{PCl}_{6}{ }^{-}$
(2) OF_{4}
(3) NCl_{3}
(4) ICl_{3}
111. Which of the ions does not exist?
(1) $\mathrm{PCl}_{6}{ }^{-}$
(2) $\mathrm{NH}_{4}{ }^{+}$
(3) $\mathrm{PBr}_{6}{ }^{-}$
(4) $\mathrm{I}_{3}{ }^{-}$
112. Which of the following molecule does not exist?
(1) PF_{5}
(2) NOF_{3}
(3) FCl_{3}
(4) $\mathrm{NO}_{2} \mathrm{Cl}$
113. The compound which does not exist is:
(1) IBr_{7}
(2) IF_{7}
(3) SF_{6}
(4) PbF_{4}
114. Which type of bond is formed between similar atoms
(1) Ionic
(2) Covalent (3) Coordinate
(4) Metallic
115. Covalent compounds are generally \qquad in water
(1) Soluble
(2) Insoluble (3)
) Dissociated
(4) Hydrolysed
116. Which one is the electron deficient compound
(1) ICl
(2) NH_{3}
(3) BCl_{3}
(4) PCl_{3}
117. Silicon has 4 electrons in the outermost orbit. In forming the bonds
(1) It gains electrons
(2) It loses electrons
(3) It shares electrons
(4) None of these
118. Which of the following occurs when two hydrogen atoms bond with each others
(1) Potential energy is lowered
(2) Kinetic energy is lowered
(3) Electronic motion ceases
(4) Energy is absorbed
119. If the atomic number of element X is 7 , the best electron dot symbol for the element is
(1) x.
(2)
(3) $\dot{x}:$
(4) $: \ddot{x}$.
120. The bond between two identical non-metal atoms has a pair of elec̈trons
(1) Unequally shared between the two
(2) Transferred fully from one atom to another
(3) With identical spins
(4) Equally shared between them
121. A covalent bond between two atoms is formed by which of the following
(1) Electron nuclear attraction
(2) Electron sharing
(3) Electron transfer
(4) Electrostatic attraction
122. Which of the following statements regarding covalent bond is not true
(1) The electrons are shared between atoms
(2) The bond is non-directional
(3) The strength of the bond depends upon the extent of overlapping
(4) The bond formed may or may not be polar
123. Which of the following compounds does not follow the octet rule for electron distribution
(1) PCl_{5}
(2) PCl_{3}
(3) $\mathrm{H}_{2} \mathrm{O}$
(4) PH_{3}
124. Number of electrons in the valence orbit of nitrogen in an ammonia molecules are
(1) 8
(2) 5
(3) 6
(4) 7
125. Hydrogen atoms are held together to form hydrogen molecules by
(1) Hydrogen bond
(2) Ionic bond
(3) Covalent bond
(4) Dative bond
126. Which of the following does not obey the octet rule
(1) CO
(2) NH_{3}
(3) $\mathrm{H}_{2} \mathrm{O}$
(4) PCl_{5}
127. Which of the following statements is correct for covalent bond
(1) Electrons are shared between two atoms
(2) It may be polar or non-polar
(3) Direction is non-polar
(4) Valency electrons are attracted
128. Which of the following does not exist?
(1) SF_{4}
(2) OF_{6}
(3) OF_{2}
(4) SF_{6}
129. The compound which does not exist, is
(1) NCl_{3}
(2) NCl_{5}
(3) PCl_{5}
(4) PH_{3}
130. Only iodine forms hepta-fluoride IF_{7}, but chlorine and bromine give penta-fluorides. The reason for this is
(1) low electron affinity of iodine
(2) unusual pentagonal bipyramidal structure of IF_{7}
(3) that the larger iodine atom can accommodate a greater number of smaller fluorine atom around it
(4) low chemical reactivity of IF_{7}
131. Which of the following is a covalent compound?
(1) $\mathrm{Al}_{2} \mathrm{O}_{3}$
(2) AlF_{3}
(3) AlCl_{3}
(4) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
132. Choose the element which show maximum number of covalencies out of the given elements.
(1) F
(2) N
(3) C
(4) Cl
133. Octet configuration cannot be achieved through:
(1) loss of electrons
(2) gains of electrons
(3) sharing of electrons
(4) exchange of electrons
134. In which of the following molecules, bonding is not taking place in excited state:
(1) CH_{4}
(2) BF_{3}
(3) IF_{7}
(4) PCl_{3}

Octet Rule and Formal Charge

135. Which of the following species does not obey octet rule:
(1) SiF_{4}
(2) PCl_{5}
(3) ICl
(4) $\mathrm{BF}_{4}-$
136. Which can follow the octet rule?
(1) BeCl_{2}
(2) BF_{3}
(3) AlCl_{3}
(4) ${ }^{\mathrm{ND}} \mathrm{NC}_{3}$
137. Octet rule cannot be followed by:
(1) SF_{2}
(2) PCl_{3}
(3) SO_{3}
(4) CO_{2}
138. In which species bonding takes place in ground state?
(1) XeF_{2}
(2) SO_{2}
(3) CH_{4}
(4) PF_{3}
139. Which molecule has odd electron.
(1) NO
(2) NO_{2}
(3) ClO_{3}
(4) All of these
140. The molecule without any lone pair around the central atom is :
(1) XeO_{3}
(2) XeO_{4}
(3) XeF_{6}
(4) $\mathrm{XeO}_{2} \mathrm{~F}_{2}$
141. Species not obeying octet rule is/are:
(1) $\mathrm{CO}_{3}{ }^{2-}$
(2) BF_{3}
(3) NO_{2}^{-}
(4) PCl_{3}
142. What is the covalency of Carbon in $\mathrm{C}_{2} \mathrm{H}_{4}$?
(1) 3
(2) 4
(3) 6
(4) 2
143. The molecule with lone pair around the central atom is:
(1) XeO_{3}
(2) $\mathrm{XeO}_{2} \mathrm{~F}_{2}$
(3) XeF_{6}
(4) all of these
144. In how many of the following species, the central atoms have two lone pairs of electrons?
$\mathrm{XeF}_{4} \quad \mathrm{XeF}_{5}^{-}$
$\mathrm{F}_{2} \mathrm{SeO}_{2}$
$\mathrm{XeF}_{3}{ }^{+}$
$\mathrm{XeOF}_{4} \quad \mathrm{ClOF}_{3}$
ICl_{4}^{-}
SCl_{2}
(1) 5
(2) 6
(3) 7
(4) 4
145. Incorrect statement for SF_{4}
(1) Hypervalent
(2) Number of bond pair is four
(3) it forms in first excited state
(4) lp at central sulphur atom are two
146. An ion without pseudo-inert gas configuration is:
(1) Ag^{+}
(2) Cd^{2+}
(3) Zn^{2+}
(4) Fe^{3+}
147. Which one is the electron deficient compound:
(1) ICl
(2) NH_{3}
(3) BCl_{3}
(4) PCl_{3}
148. The octet rule is not obeyed in:
(1) CO_{2}
(2) BCl_{3}
(3) PCl_{5}
(4) (2) and (3) both
149. Pick out among the following species isoelectronic with CO_{2}.
(1) $\mathrm{N}_{3}{ }^{-}$
(2) $(\mathrm{CNO})^{-}$
(3) $(\mathrm{NCN})^{2-}$
(4) All of these
150. To which of the following species is the octet rule applicable?
(1) BrF_{5}
(2) SF_{6}
(3) IF_{7}
(4) CO_{2}
151. In NO_{3}^{-}ion, the number of bond pair and lone pair of electrons present on Nitrogen atom are:
(1) 2,2
(2) 3,1
(3) 1,3
(4) 4,0
152. How many bonded electron pairs are present in IF_{7} molecule?
(1) 6
(2) 7
(3) 5
(4) None of these
153. Which of the following is the electron deficient molecule?
(1) $\mathrm{C}_{2} \mathrm{H}_{6}$
(2) SiH_{4}
(3) PH_{3}
(4) $\mathrm{BeCl}_{2}(\mathrm{~g})$
154. Which is not an exception to the octet rule?
(1) BF_{3}
(2) SnCl_{4}
(3) XeF_{6}
(4) ClO_{3}
155. The combination of atoms occurs because they want -
(1) To decrease number of electrons in the outermost orbit
(2) To attain an inert gas configuration or to attain stability
(3) To increase number of electrons in the outermost orbit
(4) To attain 18 electrons in the outermost orbit
156. Which of the following is an example of super octet molecule?
(1) ClF_{3}
(2) PCl_{5}
(3) IF_{7}
(4) All the three
157. The octet rule is not followed in
(1) F_{2}
(2) NaF
(3) CaF_{2}
(4) BF_{3}
158. Which of the molecule is not hypo-valent but completes its octet?
(1) AlCl_{3}
(2) AlBr_{3}
(3) AlF_{3}
(4) All are hypo-valent and completes their octet.
159. In which of the following molecules central atom involve expansion of octet.
(1) PCl_{3}
(2) NCl_{3}
(3) ClF_{3}
(4) None of these
160. The number of π-bonds and σ-bonds in the Lewis structure of SO_{3} is
(1) $3 \sigma, 3 \pi$
(2) $3 \sigma, 2 \pi$
(3) $3 \sigma, 1 \pi$
(4) None of these
161. Which of following molecule/specie is having maximum number of lone pairs in Lewis - dot structure.
(1) BH_{4}^{-}
(2) BF_{4}^{-}
(3) CN^{-}
(4) COCl_{2}
162. Which of the following ion has inert gas configuration and having complete octet.
(1) B^{+3}
(2) Al^{+3}
(3) Ga^{+3}
(4) All of these
163. The formal charges on three ' O ' atoms in O_{3} molecule are.
(1) $0,0,0$
(2) $0,0,-1$
(3) $0,0,+1$
(4) $0,+1,-1$
164. Which of the following has incomplete octet?
(1) NH_{3}
(2) BF_{3}
(3) SiCl_{4}
(4) CO_{2}
165. Which of the following is hyper valent compound:
(1) PF_{5}
(2) AlCl_{3}
(3) AlF_{3}
(4) $\mathrm{CH}_{3} \mathrm{Cl}$
166. Which of the following obey's lewis octet rule?
(1) CO
(2) NO
(3) NO_{2}
(4) BF_{3}
167. Which does/do not follow Lewis's octet rule?
(1) BCl_{3}
(2) SF_{4}
(3) XeF_{2}
(4) All of these
168. In following structure if each atom has six valence electrons in their valence shell, then identify the addition of formal charge of x, y, z and p elements according to Lewis.

(1) +1
(2) 0
(3) -1
(4) -2
169. Which of the following doesn't obey Lewis's octet rule?
(1) CO
(2) $\mathrm{NO}_{3}-$
(3) O_{3}
(4) NO
170. In $\mathrm{SnCl}_{3}-$ ion calculate the formal charge on Sn .
(1) +1
(2) -1
(3) 0
(4) -2
171. Octet is completed in which of the following?
(1) AlF_{3}
(2) BF_{3}
(3) PCl_{5}
(4) SF_{6}
172. What is formal charge on ' S ' in $\mathrm{SO}_{4}{ }^{2-}$? (Assuming Lewis Octet theory applicable)
(1) $2+$
(2) $1-$
(3) $2-$
(4) $4+$
173. Which of the following are hypo-valent compound?
(1) BF_{3}
(2) BCl_{3}
(3) BeCl_{2}
(4) All the above
174. In following structure:

If Y element belongs to group number 15 in periodic table and X, Z and P elements belongs to group number 16 then calculate the addition of formal charge of each element [Octet rule is followed]
(1) 0
(2) +1
(3) -1
(4) -2
175. In following figure:

If Q atom has five valence electron and $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and P atom has six valence electrons in their valence shell then calculate the sum of formal charge of $\mathrm{P}, \mathrm{X}, \mathrm{Y}, \mathrm{Z}$ and Q atoms.
(1) -4
(2) -3
(3) +3
(4) -2
176. What is the formal charge on nitrogen in $\mathrm{NO}_{3}{ }^{-}$?
(1) +3
(2) +1
(3) -1
(4) +4
177. The octet rule is not obeyed in -
(1) CO_{2}
(2) BCl_{3}
(3) PCl_{5}
(4) Both (2) and (3)
178. The compound completing its octet by transfer of electrons is
(1) MgO
(2) $\mathrm{H}_{2} \mathrm{~S}$
(3) PH_{3}
(4) CCl_{4}
179. Which of the following compounds is covalent and in which the extension of octet takes place during its formation?
(1) SF_{6}
(2) NO
(3) NH_{3}
(4) HCl

σ, π and δ Bonds

180. In a sigma bond
(1) Sidewise as well as end to end overlap of orbitals take place
(2) Sidewise overlap of orbitals takes place
(3) End to end overlap of orbitals takes place
(4) None of the above
181. Π-bond is formed
(1) By overlapping of atomic orbitals on the axis of nuclei
(2) By mutual sharing of pi electron
(3) By sidewise overlapping of half-filled p-orbitals
(4) By overlapping of s-orbitals with p-orbitals
182. Two p_{Z} orbitals from two atoms can form a σ-bond when they approach along.
(1) x-axis
(2) z-axis
(3) y-axis
(4) None
183. If z - axis is the internuclear axis, π-bond is formed by overlap between:
(1) $d_{z^{2}}$ and $d_{z^{2}}$
(2) p_{Z} and p_{Z}
(3) p_{X} and p_{x}
(4) s and p_{Z}
184. If z-axis is internuclear axis then which of the following d-orbital used in a π-bond formation
(1) $\mathrm{d}_{\mathrm{xy}} \& \mathrm{~d}_{\mathrm{xz}}(2) \mathrm{p}_{\mathrm{z}} \& \mathrm{p}_{\mathrm{z}}$
(3) $d_{x z} \& d_{x z}$
(4) all of these
185. If z-axis be the internuclear axis, which of the following combination of orbitals would not form π-bond?
(1) $p_{x}+p_{x}$
(2) $d_{x y}+d_{x y}$
(3) $d_{x z}+d_{z x}$
(4) $d_{y z}+d_{y z}$
186. If ' y ' is the internuclear axis then by which of the following combination π bond is formed.
(1) $s+p_{z}$
(2) $p_{x}+p_{y}$
(3) $d_{x y}+d_{x y}$
(4) $p_{y}+p_{y}$
187. If internuclear axis is y then π - bond is form by -
(1) $p_{x}+p_{x}$
(2) $s+p_{x}$
(3) $p_{y}+p_{y}$
(4) $p_{x}+p_{y}$
188. Which of the following is the correct representation of orbital orientation diagram, if internuclear axis is ' Y ':
(1)

(2)

s-orbital
(3)

(4)

189. If x -axis is the internuclear axis, π-bond is formed by overlap between:
(1) p_{y} and $d_{x y}$
(2) p_{x} and $d_{x y}$
(3) p_{x} and $d_{x^{2}-y^{2}}$
(4) None of these
190. Which of the following overlapping is correct [assuming X-axis to be the internuclear axis]:
(1) $2 \mathrm{p}_{z}+2 \mathrm{p}_{z} \rightarrow \sigma$
(2) $2 p_{y}+2 p_{y} \rightarrow \pi$
(3) $1 \mathrm{~s}+2 \mathrm{p}_{\mathrm{y}} \rightarrow \pi$
(4) $2 p_{y}+2 p_{z} \rightarrow \pi$
191. Which of the following overlaps is incorrect [assuming z -axis to be the internuclear axis]?
(1) $2 p_{y}+2 p_{y} \rightarrow \pi 2 p_{y}$
(2) $2 p_{z}+2 p_{z} \rightarrow \sigma 2 p_{z}$
(3) $2 p_{x}+2 p_{x} \rightarrow \pi 2 p_{x}$
(4) $1 \mathrm{~s}+2 \mathrm{p}_{\mathrm{y}} \rightarrow \pi\left(1 \mathrm{~s}-2 \mathrm{p}_{\mathrm{y}}\right)$
(1) ' a ' \& ' b '
(2) 'b' \& 'd'
(3) only 'd'
(4) None of these
192. Which of the following overlaps of atomic orbitals does not form π-bond if z -axis is the internuclear axis?
(1) $d_{z x}+p_{x}$
(2) $p_{y}+p_{y}$
(3) $d_{y z}+p_{y}$
(4) $d_{z^{2}}+d_{z^{2}}$
193. Which of the following set of orbitals cannot form π-bond between them.
(1) $2 \mathrm{p} \& 3 \mathrm{~d}$
(2) $2 \mathrm{~s} \& 2 \mathrm{p}$
(3) $3 \mathrm{p} \& 3 \mathrm{~d}$
(4) $2 p-3 p$
194. Which of the following overlaps of orbitals would lead to formation of σ-bond?
(1) $d_{y z}+d_{z x}$
(2) $d_{x y}+d_{x y}$
(3) $\mathrm{d}_{\mathrm{yz}}+\mathrm{d}_{\mathrm{zx}}(4) d_{\mathrm{z}^{2}}+d_{\mathrm{z}^{2}}$
195. Which of the following orbital cannot form π as well as δ bond.
(1) $d_{x y}$
(2) $d_{z^{2}}$
(3) $d_{x^{2}-y^{2}}$
(4) d_{yz}
196. Assuming the bond direction to be z -axis, which of the overlapping of atomic orbitals of two atom (1) and (2) will result in bonding?
(I) s-orbital of A and p_{X} orbital of B
(II) s-orbital of A and p_{Z} orbital of B
(III) p_{y}-orbital of A and p_{z} orbital of B
(IV) s-orbitals of both (1) and (2)
(1) I and IV
(2) I and II
(3) III and IV
(4) II and IV
197. Which of them can form only one type of bond if INA (Inter nuclear axis) is perpendicular to z -axis.
(1) $d_{x^{2}-y^{2}}+d_{x^{2}-y^{2}}$
(2) $d_{X Z}+d_{X Z}$
(3) $p_{x}+p_{x}$
(4) $d_{X Z}+p_{X}$
198. Which of the following set of orbital overlap cannot form π - bond.
(1) $d_{x^{2}-y^{2}}$ and $p_{y}(2) d_{x y}$ and $p y$
(3) p_{X} and p_{X}
(4) $d_{x y}$
199. Which of the following set of overlap cannot provide π-bond formation.
(1) $3 d$ and $2 p$
(2) $2 p$ and $3 p$
(3) $2 p$ and $2 p$
(4) 3 p and 1 s
200. Which type of overlapping results the formation of a π bond
(1) Axial overlapping of s-s orbitals
(2) Lateral overlapping of $p-p$ orbitals
(3) Axial overlapping of $p-p$ orbitals
(4) Axial overlapping of $s-p$ orbitals
201. In a double bond connecting two atoms, there is a sharing of
(1) 2 electrons
(2) 1 electron
(3) 4 electrons
(4) All electrons
202. Which combination(s) results in formation of π-bonds?
(1) $\left(d_{z^{2}}+p_{z}\right)$ along x -axis
(2) $\left(d_{x y}+d_{x^{2}-y^{2}}\right)$ along z-axis
(3) $\left(\mathrm{d}_{\mathrm{xy}}+p_{y}\right)$ along x -axis
(4) $\left(d_{x^{2}-y^{2}}+P_{y}\right)$ along y-axis
203. If the molecular axis is Z then which of the following overlapping is not possible.
(1) $p_{z}+p_{z}=\sigma$ bond
(2) $p_{x}+p_{y}=\pi$ bond
(3) $p_{x}+p_{x}=\pi$ bond
(4) $p_{y}+p_{y}=\pi$ bond
204. Which of the following is the correct representation of formation of σ bond?
(1)

(2)

(3)

(4)

205. If y-axis is the approaching axis between two atoms, then which of the set of orbitals cannot form the p bond between two atoms in general.
(1) $p_{z}-p_{z}$
(2) $p_{x}-p_{x}$
(3) $p_{x}-p_{y}$
(4) None of these
206. The maximum number of bond and π-bond can be formed between two atoms are respectively.
(1) 4,3
(2) 3,2
(3) 2,3
(4) 3,1

Strength of s, p and d Bonds

207. The strength order of π - bond is
(1) $2 \mathrm{p}-2 \mathrm{p}>2 \mathrm{p}-3 \mathrm{~d}>2 \mathrm{p}-3 \mathrm{p}>3 \mathrm{p}-3 \mathrm{p}$
(2) $2 \mathrm{p}-2 \mathrm{p}<2 \mathrm{p}-3 \mathrm{~d}<2 \mathrm{p}-3 \mathrm{p}<3 \mathrm{p}-3 \mathrm{p}$
(3) $2 \mathrm{p}-2 \mathrm{p}<2 \mathrm{p}-3 \mathrm{~d}<2 \mathrm{p}-3 \mathrm{p}>3 \mathrm{p}-3 \mathrm{p}$
(4) $2 \mathrm{p}-2 \mathrm{p}<2 \mathrm{p}-3 \mathrm{~d}>2 \mathrm{p}-3 \mathrm{p}<3 \mathrm{p}-3 \mathrm{p}$
208. Which is correct order of bond strength?
(1) $1 \mathrm{~s}-1 \mathrm{~s}>2 \mathrm{p}-2 \mathrm{p}$
(2) $2 \mathrm{p}_{\pi}-2 \mathrm{p}_{\pi}<2 \mathrm{p}_{\pi}-3 \mathrm{~d}_{\pi}$
(3) $2 \mathrm{p}_{\pi}-3 \mathrm{p}_{\pi}>2 \mathrm{p}_{\pi}-3 \mathrm{~d}_{\pi}$
(4) $2 \mathrm{~s}-2 \mathrm{~s}>2 \mathrm{p}-2 \mathrm{p}$
209. Choose the correct order of bond strength by overlapping of atomic orbitals
(1) $1 \mathrm{~s}-1 \mathrm{~s}>1 \mathrm{~s}-2 \mathrm{~s}>1 \mathrm{~s}-2 \mathrm{p}$
(2) $2 \mathrm{~s}-2 \mathrm{~s}>2 \mathrm{~s}-2 \mathrm{p}>2 \mathrm{p}-2 \mathrm{p}$
(3) $2 s-2 p>2 s-2 s>2 p-2 p$
(4) $1 \mathrm{~s}-1 \mathrm{~s}>1 \mathrm{~s}-2 \mathrm{p}>1 \mathrm{~s}-2 \mathrm{~s}$
210. Choose the incorrect option for bond strength.
(1) $2 \mathrm{p}_{\pi}-2 \mathrm{p}_{\pi}>2 \mathrm{p}_{\pi}-3 \mathrm{p}_{\pi}$
(2) $2 \mathrm{p}_{\pi}-3 \mathrm{p}_{\pi}>2 \mathrm{p}_{\pi}-3 \mathrm{~d}_{\pi}$
(3) $1 \mathrm{~s}-2 \mathrm{p}>2 \mathrm{~s}-2 \mathrm{p}$
(4) $2 \mathrm{~s}-2 \mathrm{p}>3 \mathrm{~s}-3 \mathrm{p}$
211. The strength of bonds by s-s, s-p, p-p overlap is generally in the order:
(1) $p-p>s-p>s-s$
(2) $s-s>s-p>p-p$
(3) $s-p>s-s>p-p$
(4) $p-p>s-s>s-p$
212. Indicate the correct statement according to VBT:
(1) A sigma bond has no free rotation about the inter-nuclear axis.
(2) p-orbitals always have only sidewise overlapping.
(3) s-orbitals never form π - bonds.
(4) There can be more than one sigma bond between two atoms.
213. Which statement is correct?
(1) one π bond contains four electrons.
(2) π bond is stronger than σ bond.
(3) shape of molecule is determined by sigma bond.
(4) σ bond is formed by sideways overlapping.
214. Indicate the wrong statement according to Valence bond theory:
(1) A sigma bond is stronger than π-bond
(2) p-orbitals always have only sidewise overlapping
(3) s-orbitals never form π-bonds
(4) There can be only one sigma bond between two atoms
215. Which of the following is not correct
(1) A sigma bond is weaker than π-bond
(2) A sigma bond is stronger than π-bond
(3) A double bond is stronger than a single bond
(4) A double bond is shorter than a single bond
216. Which of the following statements is not correct for sigma and pi bond formed between two carbon atoms?
(1) Free rotation of atoms about a sigma - bond is allowed but not in case of a pi-bond
(2) Sigma -bond determines the direction between carbon atoms but a pibond has no
primary effect in this regard
(3) Sigma-bond is stronger than a pi-bond
(4) Bond energies of sigma- and pi-bonds are of the order of $264 \mathrm{~kJ} / \mathrm{mol}$ and $347 \mathrm{~kJ} / \mathrm{mol}$. respectively.
217. Strongest bond formed when atomic orbitals
(1) Maximum overlap
(2) Minimum overlap
(3) Overlapping not done
(4) None of them
218. Which type of overlapping is not present in N_{2} molecule?
(1) $2 s+2 s$
(2) $2 p_{X}+2 p_{X}$
(3) $2 p_{y}+2 p_{y}$
(4) $2 p_{z}+2 p_{Z}$
219. Which overlapping is involved in HCl molecule: -
(1) s-s overlap
(2) $\mathrm{p}-\mathrm{p}$ overlap
(3) s-d overlap
(4) $\mathrm{s}-\mathrm{p}$ overlap
220. In which of the following pair of elements the π-bond formation tendency is maximum.
(1) S and O
(2) Si and O
(3) P and O
(4) Cl and O
221. Select the combination of orbitals having highest strength.
(1) $2 p_{x}-2 p_{x}$
(2) $3 p_{y}-2 p_{y}$
(3) $3 p_{z}-3 p_{z}$
(4) $4 s-4 s$
222. Nodal planes are present in $\mathrm{s}, \mathrm{px}, \mathrm{py}, \mathrm{pz}$ are respectively.
(1) $0,1,1,1$
(2) $0,2,1,1$
(3) $0,2,2,2$
(4) $0,0,0,0$
223. Which of the following is maximum thermal stable?
(1) HF
(2) HCl
(3) HBr
(4) HI
224. Which of the following orbitals does not participate in the hybridisation in IF_{7} ?
(1) $d_{x^{2}-y^{2}}$
(2) $d_{x y}$
(3) p_{Z}
(4) $d_{y z}$
225. Which of the molecule has $\mathrm{p}-\mathrm{p}$ overlapping?
(1) Cl_{2}
(2) HCl
(3) $\mathrm{H}_{2} \mathrm{O}$
(4) NH_{3}
226. Number of σ and π bonds present in: $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{CH}$
(1) $10 \sigma, 3 \pi$
(2) $10 \sigma, 2 \pi$
(3) $9 \sigma, 2 \pi$
(4) $8 \sigma, 3 \pi$
227. The ratio of σ and π bond in benzene is:
(1) 2
(2) 6
(3) 4
(4) 8
228. How many π bonds are present in $\mathrm{SO}_{2} \mathrm{Cl}_{2}$?
(1) 2
(2) 4
(3) 1
(4) π bond is absent
229. The ratio of π - bonds in $\mathrm{NO}_{3}{ }^{-}$and $\mathrm{CO}_{3}{ }^{2-}$ respectively:
(1) $1: 1$
(2) $2: 4$
(3) $1: 2$
(4) $2: 3$
230. Which of the following has the least bond energy?
(1) HF
(2) HCl
(3) HBr
(4) HI
231. Which of the following is maximum thermal stable compound?
(1) HF
(2) HCl
(3) HBr
(4) HI
232. Which of the following gives correct arrangement of compounds involved based on their bond strength
(1) $\mathrm{HF}>\mathrm{HCl}>\mathrm{HBr}>\mathrm{HI}$
(2) $\mathrm{HI}>\mathrm{HBr}>\mathrm{HCl}>\mathrm{HF}$
(3) $\mathrm{HF}>\mathrm{HBr}>\mathrm{HCl}>\mathrm{HI}$
(4) $\mathrm{HCl}>\mathrm{HF}>\mathrm{HBr}>\mathrm{HI}$
233. The ratio of number of σ-bond to π-bond in N_{2} and CO molecules are
(1) $2.0,2.0$
(2) $2,1 / 2$
(3) $1 / 2,1 / 2$
(4) $1 / 2,2$
234. $\mathrm{C}_{3}{ }^{4}$ has:
(1) two σ and two π-bond
(2) three σ and one π-bond
(3) two σ and one π-bond
(4) two σ and three π-bond
235. Which cannot be explained by VBT -
(1) Overlapping
(2) Bond formation
(3) Paramagnetic nature of oxygen
(4) Shapes of molecules
236. How many σ and π bonds are there in the molecule of tetracyanoethylene

(1) Nine σ and nine π
(2) Five σ and nine π
(3) Nine σ and seven π
(4) Five σ and eight π
237. Triple bond in ethyne is formed from
(1)Three sigma bonds
(2) Three pi bonds
(3) One sigma and two pi bonds
(4) Two sigma and one pi bond
238. The bond in the formation of fluorine molecule will be
(1) Due to s-s overlapping
(2) Due to s-p overlapping
(3) Due to p-p overlapping
(4) Due to hybridization
239. Strongest bond is
(1) C-C
(2) $\mathrm{C}=\mathrm{C}$
(3) $\mathrm{C} \equiv \mathrm{C}$
(4) All are equally strong
240. The double bond between the two carbon atoms in ethylene consists of
(1) Two sigma bonds at right angles to each other
(2) One sigma bond and one pi bond
(3) Two pi bonds at right angles to each other
(4) Two pi bonds at an angle of 60° to each other
241. The p-p orbital overlapping is present in the following molecule
(1) Hydrogen
(2) Hydrogen bromide
(3) Hydrogen chloride
(4) Chlorine
242. In N_{2} molecule, the atoms are bonded by
(1) One σ, Two π
(2) One σ, One π
(3) Two σ, One π
(4) Three π bonds
243. Number of bonds in SO_{2}
(1) Two σ and two π
(2) Two σ and one π
(3) Two σ, two π and one lone pair
(4) None of these
244. Which of the following halogens has the highest bond energy
(1) F_{2}
(2) Cl_{2}
(3) Br_{2}
(4) I_{2}

Hybridization

245. In which of the hybridisation sate different quantum No. are used -
(1) $\mathrm{sp}^{3} \mathrm{~d}^{3}$
(2) $\mathrm{sp}^{3} \mathrm{~d}$
(3) $d^{2} s^{3}$
(4) sp
246. The d-orbital involved in $\mathrm{sp}^{3} \mathrm{~d}$ hybridisation in trigonal bipyramidal geometry:
(1) $d_{x^{2}-y^{2}}$
(2) $d_{z^{2}}$
(3) $d_{x y}$
(4) $d_{y z}$
247. The orbital involved in case of $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridisation is
(1) $s+p_{x}+p_{y}+d_{x y}+p_{z}+d_{z^{2}}$
(2) $\mathrm{s}+\mathrm{p}_{\mathrm{x}}+\mathrm{p}_{\mathrm{y}}+d_{x y}+\mathrm{p}_{\mathrm{z}}+\mathrm{d}_{\mathrm{yz}}$
(3) $s+p_{x}+p_{y}+p_{z}+d_{x^{2}-y^{2}}+d_{z^{2}}$
(4) $s+p_{x}+p_{y}+p_{z}+d_{y z}+d_{x z}$
248. The d-orbital which is not involved in $\mathrm{sp}^{3} \mathrm{~d}^{3}$ hybridisation in pentagonal bipyramidal geometry is:
(1) $d_{x y}$
(2) $d_{x^{2}-y^{2}}$
(3) $d_{z^{2}}$
(4) d_{yz}
249. Trigonal bi pyramidal geometry has
(1) $90^{\circ}, 120^{\circ}$
(2) $90^{\circ}, 72^{\circ}$
(3) 90° only
(4) 72° only
250. Statement-1: All adjacent bond angles are equal in $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridisation.

Statement-2: All bond angles are equal in $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridisation.
(1) Statement-1 is true, statement-2 is true, and statement-2 is correct explanation for statement-1.
(2) Statement-1 is true, statement-2 is true, and statement-2 is NOT the correct explanation for statement-1.
(3) Statement- 1 is true, statement- 2 is false.
(4) Statement- 1 is false, statement-2 is true.
251. A sp ${ }^{3}$ hybrid orbital contains: -
(1) $3 / 4 \mathrm{~s}$ - character
(2) $1 / 4 \mathrm{p}$ - character
(3) $3 / 4 \mathrm{p}$ - character
(4) $1 / 2 \mathrm{~s}$ - character
252. orbital is present in which of the following hybridisation.
(1) $\mathrm{sp}^{3} \mathrm{~d}$ (Square pyramidal)
(2) sp^{3}
(3) $s p^{3} d^{2}$
(4) None of these
253. Which of the following d-orbitals is involved in dsp^{3} hybridisation leading to square pyramidal geometry?
(1) $d_{z^{2}}$
(2) $d_{x^{2}-y^{2}}$
(3) $d_{x y}$
(4) $d_{y z}$
254. The d-orbital involved in $\mathrm{sp}^{3} \mathrm{~d}$ (trigonal bipyramidal) hybridisation is:
(1) $d_{z^{2}}$
(2) $d_{x^{2}-y^{2}}$
(3) $d_{x y}$
(4) $d_{z x}$
255. The trigonal bipyramidal geometry results from the hybridisation
(1) dsp^{3} or $\mathrm{sp}^{3} \mathrm{~d}$
(2) dsp^{2} or $\mathrm{sp}^{2} \mathrm{~d}(3) \mathrm{d}^{2} \mathrm{sp}^{3}$ or $\mathrm{sp}^{3} \mathrm{~d}^{2}$.
(4) $d^{3} s p^{3}$ or $s p^{3} d^{3}$
256. In an octahedral structure, the pair of d orbitals involved in $\mathrm{d}^{2} \mathrm{sp}^{3}$ hybridization is
(1) $d_{x y}, d_{x^{2}-y^{2}}$
(2) $\mathrm{d}_{\mathrm{xz}}, d_{z^{2}}$
(3) $d_{x^{2}-y^{2}}, d_{z^{2}}$
(4) $d_{y z}, d_{x z}$
257. A square planar complex is formed by hybridisation of which atomic orbitals
(1) $\mathrm{s}, \mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}, \mathrm{d}_{\mathrm{xz}}$
(2) $\mathrm{s}, \mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}, d_{x^{2}-y^{2}}$
(3) $s, p_{x}, p_{y}, d_{z^{2}}$
(4) $\mathrm{s}, \mathrm{p}_{\mathrm{x}}, \mathrm{p}_{\mathrm{y}}, \mathrm{d}_{\mathrm{xy}}$
258. $\quad \mathrm{sp}^{3} \mathrm{~d}^{2}$ hybrid orbitals are
(1) Linear bipyramidal
(2) Pentagonal
(3) Trigonal bipyramidal
(4) Octahedral
259. The geometry of the molecule with $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridised central atom is
(1) Square planar
(2) Trigonal bipyramidal
(3) Octahedral
(4) Square pyramidal
260. In sp hybridisation, shape is
(1) Angular
(2) Tetrahedral
(3) Bipyramidal
(4) Linear
(E) None of these
261. The bond angle in sp^{2} hybridisation is
(1) 180°
(2) 120^{0}
(3) 90°
(4) $109^{0} 28^{\prime}$
262. sp^{3} hybridization leads to which shape of the molecule
(1) Tetrahedron
(2) Octahedron
(3) Linear
(4) Plane triangle
263. Out of the following hybrid orbitals, the one which forms the bond at angle, 180° is
(1) $d^{2} s^{3}$
(2) sp^{3}
(3) sp^{2}
(4) sp
264. Octahedral molecular shape exists in hybridisation
(1) $\mathrm{sp}^{3} d$
(2) $s p^{3} d^{2}$
(3) $\mathrm{sp}^{3} \mathrm{~d}^{3}$
(4) None of these
265. Which of the following hybridisation results in non-planar orbitals
(1) sp^{3}
(2) dsp^{2}
(3) sp^{2}
(4) sp
266. Which of the following statement is not correct
(1) Hybridization is the mixing of atomic orbitals prior to their combining into molecular orbitals
(2) sp^{2} hybrid orbitals are formed from two p atomic orbitals and one s atomic orbital
(3) $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybrid orbitals are directed towards the corners of a regular octahedron
(4) dsp ${ }^{3}$ hybrid orbitals are all at 90^{0} to one another
267. Compound formed by hybridization $\mathrm{sp}^{3} \mathrm{~d}^{2}$ will have structure
(1) Planar
(2) Pyramidal
(3) Angular
(4) Trigonal bipyramidal
268. The central atom in a molecule is in sp^{2} hybrid state. The shape of molecule will be
(1) Pyramidal
(2) Tetrahedral
(3) Octahedral
(4) Trigonal planar
269. $\mathrm{sp}^{3} \mathrm{~d}$ hybridization is considered to be a combination of two hybridization. They are
(1) $p^{3}+s d$
(2) $\mathrm{sp}^{2}+\mathrm{pd}$
(3) $\mathrm{spd}+\mathrm{p}^{2}$
(4) none of these
270. If the equatorial plane is $x-y$ plane in $s p^{3} d$ hybridisation then the orbital used in pd hybridisation are -
(1) p_{z} and $d_{z^{2}}$
(2) p_{x} and $d_{x y}$
(3) p_{y} and $d_{y z}$
(4) none of these
271. Match List-I (Hybridisation) with List-II (shapes) and select the correct answer using the codes given below the lists -

List-I

(1) dsp^{2}

List-II

(1) Square planar
(2) sp^{3}
(2) Tetrahedral
(3) $d^{2} s p^{3}$
(3) Octahedral
(4) $\mathrm{sp}^{3} \mathrm{~d}$
(4) Trigonal bipyramidal
(1) $\mathrm{a} \rightarrow 1 ; \mathrm{b} \rightarrow 2 ; \mathrm{c} \rightarrow 3 ; \mathrm{d} \rightarrow 4$
(2) $\mathrm{a} \rightarrow 4 ; \mathrm{b} \rightarrow 2 ; \mathrm{c} \rightarrow 3 ; \mathrm{d} \rightarrow 1$
(3) $\mathrm{a} \rightarrow 1 ; \mathrm{b} \rightarrow 3 ; \mathrm{c} \rightarrow 2 ; \mathrm{d} \rightarrow 4$
(4) $\mathrm{a} \rightarrow 1 ; \mathrm{b} \rightarrow 4 ; \mathrm{c} \rightarrow 3 ; \mathrm{d} \rightarrow 3$

Hybrid Of Molecules

272. Which of the following hybridisation results in non-planar orbitals
(1) sp^{3}
(2) dsp ${ }^{3}$
(3) sp^{2}
(4) sp
273. Octahedral molecular shape exists in \qquad hybridisation
(1) $\mathrm{sp}^{3} \mathrm{~d}$
(2) $\mathrm{sp}^{3} \mathrm{~d}^{2}$
(3) $\mathrm{sp}^{3} \mathrm{~d}^{3}$
(4) None of these
274. sp^{3} hybridization leads to which shape of the molecule
(1) Tetrahedron
(2) Octahedron
(3) Linear
(4) Plane triangle
275. The geometry of the molecule with $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridised central atom is
(1) Square planar
(2) Trigonal bipyramidal
(3) Octahedral
(4) Square pyramidal
276. The mode of hybridisation of carbon in CO_{2} is
(1) sp
(2) sp^{2}
(3) sp^{3}
(4) None of these
277. The hybridisation in BF_{3} molecule is
(1) sp
(2) sp^{2}
(3) sp^{3}
(4) $\mathrm{sp}^{3} d$
278. The nature of hybridization in the NH_{3} molecule is
(1) sp
(2) sp^{2}
(3) sp^{3}
(4) $\mathrm{sp}^{3} d$
279. The electronic structure of molecule OF_{2} is a hybrid of
(1) sp
(2) sp^{2}
(3) sp^{3}
(4) sd^{3}
280. The state of hybridisation of B in BCl_{3} is
(1) sp
(2) sp^{2}
(3) sp^{3}
(4) $\mathrm{sp}^{2} \mathrm{~d}^{2}$
281. The hybrid state of sulphur in SO_{3} molecule is
(1) $\mathrm{sp}^{3} \mathrm{~d}$
(2) sp^{3}
(3) $\mathrm{sp}^{3} \mathrm{~d}^{2}$
(4) sp^{2}
282. In XeF_{4} hybridization is
(1) $\mathrm{sp}^{3} \mathrm{~d}^{2}$
(2) sp^{3}
(3) $\mathrm{sp}^{3} d$
(4) $\mathrm{sp}^{2} d$
283. The hybridization in PF_{3} is
(1) sp^{3}
(2) sp^{2}
(3) dsp^{3}
(4) $d^{2} s^{3}$
284. CCl_{4} has the hybridisation
(1) $\mathrm{sp}^{3} \mathrm{~d}$
(2) dsp^{2}
(3) sp
(4) sp^{3}
285. The PCl_{5} molecule is a result of the hybridisation of
(1) $\mathrm{sp}^{2} \mathrm{~d}^{2}$
(2) $\mathrm{sp}^{3} \mathrm{~d}$
(3) spd^{3}
(4) $\mathrm{sp}^{2} \mathrm{~d}^{3}$
286. The structure of $\mathrm{Br}_{3}{ }^{-}$involves hybridisation of the type -
(1) $\mathrm{sp}^{3} \mathrm{~d}$
(2) $s p^{3} d^{2}$
(3) dsp^{3}
(4) $d^{2} s^{3}$
287. What is the hybridisation of central atom of perxenate $\mathrm{XeO}_{6}{ }^{4-}$ ion.
(1) $\mathrm{sp}^{3} \mathrm{~d}$
(2) $\operatorname{sp}^{3} d^{2}$
(3) sp^{3}
(4) No hybridisation
288. What is the hybridisation of XeO_{3}.
(1) sp^{3}
(2) $\mathrm{sp}^{3} d$
(3) $\operatorname{sp}^{3} d^{2}$
(4) sp^{2}
289. $\mathrm{BF}_{3}+\mathrm{F}^{-} \rightarrow \mathrm{BF}_{4}^{-}$

Hybridisation of central atom in NF_{3} is
(1) sp^{3}
(2) sp
(3) sp^{2}
(4) dsp^{2}
290. The hybrdization of IF_{7} is
(1) $\mathrm{sp}^{3} \mathrm{~d}^{3}$
(2) $\mathrm{sp}^{2} \mathrm{~d}$
(3) $d^{2} s p^{3}$
(4) sp^{3}
291. The hybridisation of Xe in $\mathrm{XeF}_{5}-$ is
(1) sp^{3}
(2) $s p^{3} d^{2}$
(3) $s p^{3} d^{3}$
(4) sp^{2}
292. Hybridisation of sulphur in SF_{4} is:
(1) $\mathrm{sp}^{3} \mathrm{~d}^{2}$
(2) sp^{3}
(3) $\mathrm{sp}^{3} \mathrm{~d}$
(4) $\mathrm{sp}^{3} \mathrm{~d}^{3}$
293. In SOCl_{2} hybridisation of central atom is
(1) $\operatorname{sp}^{3} d^{2}$
(2) $\mathrm{sp}^{3} d$
(3) sp^{3}
(4) None of these
294. What is the hybridization of Te in TeCl_{6}
(1) sp
(2) sp^{2}
(3) $\mathrm{sp}^{3} \mathrm{~d}$
(4) $\mathrm{sp}^{3} \mathrm{~d}^{2}$
295. What is the hybridiation state of B in BF_{3} and BF_{4}^{-}:
(1) $\mathrm{sp}^{2}, \mathrm{sp}^{3}$
(2) $\mathrm{sp}^{3}, \mathrm{sp}^{3}$
(3) $\mathrm{sp}^{2}, \mathrm{sp}^{2}$
(4) $\mathrm{sp}^{3}, \mathrm{sp}^{3} \mathrm{~d}$
296. In which of the following the central atom does not use sp^{3} hybrid orbitals in its bonding
(1) BF_{3}^{-}
(2) $\mathrm{OH}_{3}{ }^{+}$
(3) NH_{2}^{-}
(4) NF_{3}
297. Which species do not have sp^{3} hybridization
(1) Ammonia
(2) Methane
(3) Water
(4) Carbon dioxide
298. The species in which the central atom uses sphybrid orbitals in its bonding is
(1) PH_{3}
(2) NH_{3}
(3) $\mathrm{H}_{3} \mathrm{C}^{+}$
(4) SbH_{3}
299. Which has sp^{2} hybridization of central atom
(1) PCl_{3}
(2) SO_{3}
(3) BF_{3}
(4) NO_{3}^{-}
300. Which one has sp^{2-} hybridisation
(1) CO_{2}
(2) $\mathrm{N}_{2} \mathrm{O}$
(3) SO_{2}
(4) CO

301 Which set hydridisation is correct for the following compounds $\mathrm{NO}_{2}, \mathrm{SF}_{4}, \mathrm{PF}_{6}{ }^{-}$
(1) $\mathrm{sp}, \mathrm{sp}^{2}, \mathrm{sp}^{3}$
(2) $\mathrm{sp}, \mathrm{sp}^{3} \mathrm{~d}, \mathrm{sp}^{3} \mathrm{~d}^{2}$
(3) $\mathrm{sp}^{2}, \mathrm{sp}^{3}, \mathrm{~d}^{2} \mathrm{sp}^{3}$
(4) $\mathrm{sp}^{3}, \mathrm{sp}^{3} \mathrm{~d}^{2}, \mathrm{sp}^{3} \mathrm{~d}^{2 S}$
302. In which of the following cases orbital is involved in their hybridisation.
(1) $\mathrm{NO}_{2}{ }^{+}$
(2) $\mathrm{SnCl}_{3}{ }^{-}$
(3) $\mathrm{XeF}_{5}{ }^{+}$
(4) $\mathrm{SO}_{3} \mathrm{Cl}^{-}$
303. In which of the following cases orbital is involved in their hybridisation.
(1) $\mathrm{NO}_{2}{ }^{+}$
(2) $\mathrm{I}_{3}{ }^{-}$
(3) $\mathrm{XeF}_{5}{ }^{+}$
(4) $\mathrm{PCl}_{3} \mathrm{~F}_{2}$
304. In which of the following orbitals will take part in hybridisation?
(1) PCl_{5}
(2) SF_{6}
(3) IF_{7}
(4) All the above
305. The correct order of hybridisation of the central atom in the following species:
$\mathrm{NH}_{3}, \mathrm{XeO}_{2} \mathrm{~F}_{2}, \mathrm{SeF}_{4}, \mathrm{NO}_{2}{ }^{+}$
(1) $\mathrm{sp}^{3}, \mathrm{sp}^{3}, \mathrm{sp}^{3} \mathrm{~d}, \mathrm{sp}$
(2) $\mathrm{sp}^{3}, \mathrm{sp}^{3} \mathrm{~d}, \mathrm{sp}^{3} \mathrm{~d}, \mathrm{sp}$
(3) $\mathrm{sp}^{3}, \mathrm{sp}^{3} \mathrm{~d}^{2}, \mathrm{sp}^{3} \mathrm{~d}, \mathrm{sp}^{2}$
(4) $\mathrm{sp}^{2}, \operatorname{sp}^{3} \mathrm{~d}, \mathrm{sp}^{3} \mathrm{~d}^{2}$, sp
306. What is the correct mode of hybridization of the central atom in the following compounds:
$\mathrm{NO}_{2}{ }^{+}, \mathrm{SF}_{4}, \mathrm{PF}_{6}{ }^{-}$
(1) $\mathrm{sp}^{2}, \mathrm{sp}^{3}, \mathrm{~d}^{2} \mathrm{sp}^{3}$
(2) $\mathrm{sp}^{3}, \mathrm{sp}^{3} \mathrm{~d}^{2}, \mathrm{sp}^{3} \mathrm{~d}^{2}$
(3) $\mathrm{sp}, \mathrm{sp}^{3} \mathrm{~d}, \mathrm{sp}^{3} \mathrm{~d}^{2}$
(4) $\mathrm{sp}, \mathrm{sp}^{2}, \mathrm{sp}^{3}$
307. Which option is correct for hybridisation in $\mathrm{ClO}_{3}-, \mathrm{ClO}_{4}-\& \mathrm{NH}_{3}$.
(1) $\mathrm{sp}^{2}, \mathrm{sp}^{3}, \mathrm{sp}^{3}$
(2) $\mathrm{sp}^{2}, \mathrm{sp}^{2}, \mathrm{sp}^{3}$
(3) $\mathrm{sp}^{3}, \mathrm{sp}^{2}, \mathrm{sp}^{3}$
(4) $\mathrm{sp}^{3}, \mathrm{sp}^{3}, \mathrm{sp}^{3}$
308. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}_{2}$ has hybridisation
(1) $\mathrm{sp}, \mathrm{sp}, \mathrm{sp}^{2}, \mathrm{sp}^{2}$
(2) $\mathrm{sp}^{3}, \mathrm{sp}^{3}, \mathrm{sp}^{2}, \mathrm{sp}$
(3) $\mathrm{sp}^{3}, \mathrm{sp}^{3}, \mathrm{sp}^{2}, \mathrm{sp}^{2}$
(4) $\mathrm{sp}^{3}, \mathrm{sp}^{2}, \mathrm{sp}^{2}, \mathrm{sp}$
309. Consider the compound given below
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{OH}$
The number of sp^{2} hybridised atoms is
(1) 5
(2) 3
(3) 4
(4) 6
310. In which of the following orbital has not participated in its hybridisation?
(1) PCl_{5}
(2) SF_{6}
(3) XeF_{4}
(4) IF_{7}
311. The hybridisation of atomic orbitals of nitrogen in $\mathrm{NO}_{2}^{+}, \mathrm{NO}_{3}^{-}$and NH_{4}^{+} are:
(1) $\mathrm{sp}, \mathrm{sp}^{3}$ and sp^{2} respectively
(2) $\mathrm{sp}, \mathrm{sp}^{2}$ and sp^{3} respectively
(3) $\mathrm{sp}^{2}, \mathrm{sp}$ and sp^{3} respectively
(4) $\mathrm{sp}^{2}, \mathrm{sp}^{3}$ and sp respectively
312. Which one of the following specie is sp^{2} hybridised?
(1) BF_{3}
(2) PCl_{3}
(3) NH_{3}
(4) $\mathrm{H}_{3} \mathrm{O}^{+}$
313. Which of the following molecule has $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridisation.
(1) ClF_{3}
(2) SF_{4}
(3) $\mathrm{XeF}_{5}{ }^{+}$
(4) IF_{7}
314. Which of the following molecule has $\mathrm{sp}^{3} \mathrm{~d}$ hybridisation
(1) SOF_{4}
(2) SF_{4}
(3) $\mathrm{XeF}^{+}{ }_{3}$
(4) All
315. The hybridization of S in $\mathrm{SO}_{4}{ }^{2-}$ is same as in
(1) Xe in XeF_{4}
(2) S in $\mathrm{SO}_{3}{ }^{2-}$
(3) C is $\mathrm{CO}_{3}{ }^{2-}$
(4) As in AsF_{4}^{-}
316. Which of the following compound in which central atom assumes $s p^{3}$ hybridization?
(1) $\mathrm{NH}_{4}{ }^{+}$
(2) $\mathrm{SO}_{4}{ }^{-2}$
(3) CCl_{4}
(4) All of these
317. The hybridization of phosphorous in POCl_{3} is the same as in:
(1) P in PCl_{3}
(2) S in SF_{4}
(3) Cl in CIF_{3}
(4) B in BCl_{3}
318. sp^{3} hybridisation is found in:
(1) $\mathrm{CH}_{3}{ }^{+}$
(2) $\mathrm{CH}_{3}{ }^{-}$
(3) $\mathrm{ClO}_{3}-$
(4) SO_{3}
(1) A \& C
(2) B \& C
(3) $B \& D$
(4) C \& D
319. In which of the following compounds carbon atom undergoes hybridization of more than one type
(i) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$
(ii) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
(iii) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
(iv) $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{H}$
(1) (iii) and (iv)
(2) (i) and (iv)
(3) (ii) and (iii)
(4) Only (ii)
320. The type of hybridization of $\mathrm{Xe}^{\text {in }} \mathrm{XeF}_{6}$ will be the same as that of the central atom in the following molecule:
(1) PCl_{5}
(2) SF_{6}
(3) IF_{7}
(4) CCl_{4}
321. In the compound
${ }_{\mathrm{C}}^{2} \mathrm{H}_{2}={ }_{\mathrm{C}}^{\mathrm{C}} \mathrm{H}-{ }^{3} \mathrm{C}_{2}-\stackrel{4}{\mathrm{C}} \mathrm{H}_{2}-\stackrel{5}{\mathrm{C}} \equiv{ }^{\mathrm{C}} \mathrm{C} \mathrm{H}$
, the $\mathrm{C}^{2}-\mathrm{C}^{3}$ bond is formed by the overlapping of: -
(1) $\mathrm{sp}-\mathrm{sp}^{2}$
(2) $\mathrm{sp}^{3}-\mathrm{sp}^{3}$
(3) $\mathrm{sp}-\mathrm{sp}^{3}$
(4) $\mathrm{sp}^{2}-\mathrm{sp}^{3}$
322. Which of the following elements cannot exhibit $\mathrm{sp}^{3} \mathrm{~d}$ hybridisation state: -
(1) C
(2) P
(3) Cl
(4) B

Correct answer is: -
(1) a, c
(2) a, d
(3) b, c
(4) b, d
323. Which among the following molecules have $\mathrm{sp}^{3} \mathrm{~d}$ hybridisation with one lone pair of electrons on the central atom ?
(i) SF_{4}
(ii) $\left[\mathrm{PCl}_{4}\right]^{+}$
(iii) $\mathrm{XeO}_{2} \mathrm{~F}_{2}$
(iv) ClOF_{3}
(1) (i), (ii) and (iii) only
(2) (i), (iii) and (iv) only
(3) (i) and (iii) only
(4) (iii) and (iv) only.
$324 \mathrm{~S}_{1}:\left[\mathrm{XeF}_{7}\right]^{+}$has $\mathrm{sp}^{3} \mathrm{~d}^{3}$ hybridisation
$\mathrm{S}_{2}:\left[\mathrm{PCl}_{4}\right]^{+}$has $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridisation
$\mathrm{S}_{3}:\left[\mathrm{SF}_{6}\right]$ has $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridisation
$\mathrm{S}_{4}:\left[\mathrm{PF}_{4}\right]^{+}$has sp^{3} hybridisation
(1) T F F T
(2) T T F T
(3) T F T T
(4) F F F T
325. sp^{3} hybridisation is found in
(1) $\mathrm{CO}_{2}{ }^{3-}$
(2) BF_{3}
(3) $\mathrm{NO}_{3}{ }^{-}$
(4) NH_{3}
326. The hybridisation of P in phosphate ion $\left(\mathrm{PO}_{4}{ }^{3-}\right)$ is the same as :
(1) $\mathrm{I} \mathrm{in} \mathrm{ICl}_{4}^{-}$
(2) S in SO_{3}
(3) N in NO_{3}^{-}
(4) S in $\mathrm{SO}_{3}{ }^{2-}$
327. Molecule in which central atom has $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridization is present.
(1) IF_{7}
(2) $\mathrm{IO}_{6}{ }^{-5}$
(3) XeF_{2}
(4) XeO_{4}
328. The hybridization of atomic orbitals of nitrogen in $\mathrm{NO}_{2}{ }^{+}, \mathrm{NO}_{3}{ }^{-}$and $\mathrm{NH}_{4}{ }^{+}$ are:
(1) $\mathrm{sp}, \mathrm{sp}^{3}$ and sp^{2} respectively
(2) $\mathrm{sp}, \mathrm{sp}^{2}$ and sp^{3} respectively
(3) sp^{2}, sp and sp^{3} respectively
(4) $\mathrm{sp}^{2}, \mathrm{sp}^{3}$ and sp respectively
329. The hybrid orbitals used by central atoms in $\mathrm{BeCl}_{2}, \mathrm{BeCl}_{3}$ and CCl_{4} molecules are respectively
(1) $\mathrm{sp}^{2}, \mathrm{sp}^{3}$ and sp
(2) $\mathrm{sp}, \mathrm{sp}^{2}$ and sp^{3}
(3) $\mathrm{sp}^{3}, \mathrm{sp}$ and sp^{2}
(4) $\mathrm{sp}^{2}, \mathrm{sp}$ and sp^{3}
330. The structural formula of a compound is $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{C}=\mathrm{CH}_{2}$ The type Of hybridization at the four carbons from left to right are
(1) $\mathrm{sp}^{2}, \mathrm{sp}, \mathrm{sp}^{2}, \mathrm{sp}^{3}$
(2) $\mathrm{sp}^{2}, \mathrm{sp}^{3}, \mathrm{sp}^{2}, \mathrm{sp}$
(3) $\mathrm{sp}^{3}, \mathrm{sp}^{2}, \mathrm{sp}, \mathrm{sp}^{2}$
(4) $\mathrm{sp}^{3}, \mathrm{sp}^{2}, \mathrm{sp}^{2}, \mathrm{sp}^{2}$
331. The hybridization of carbon atoms in $\mathrm{C}_{2}-\mathrm{C}_{3}$ single bond of $H \stackrel{4}{\mathrm{C}}=\stackrel{3}{\mathrm{C}}-{ }^{2} \mathrm{C} H={ }_{\mathrm{C}}^{\mathrm{C}} \mathrm{C}_{2}$ is:
(1) $\mathrm{sp}^{3}-\mathrm{sp}^{3}$
(2) $\mathrm{sp}^{2}-\mathrm{sp}$
(3) $\mathrm{sp}-\mathrm{sp}^{2}$
(4) $\mathrm{sp}^{3}-\mathrm{sp}$
332. The bond between carbon atom (1) and carbon atom (2) in compound, $\mathrm{N} \equiv \mathrm{C}_{(1)}-\mathrm{C}_{(2)}=\mathrm{CH}_{2}$ involves the hybrid as-
(1) sp and sp^{2}
(2) sp^{2} and sp^{3}
(3) sp and sp^{3}
(4) sp and sp
333. Specify the hybridisations of central atom in the following species respectively $\left\{\mathrm{N}_{3}{ }^{-}, \mathrm{NOCl}, \mathrm{N}_{2} \mathrm{O}\right\}$
(1) $\mathrm{sp}, \mathrm{sp}^{2}, \mathrm{sp}$
(2) $\mathrm{sp}, \mathrm{sp}, \mathrm{sp}^{3}$
(3) $\mathrm{sp}^{2}, \mathrm{sp}, \mathrm{sp}$
(4) $\mathrm{sp}^{2}, \mathrm{sp}^{2}, \mathrm{sp}$.
334. In which of the following, ' N ' atom is sp^{2} hybridised:
(1) NH_{3}
(2) $\mathrm{NH}_{4}{ }^{+}$
(3) NH_{2}
(4) NOCl
335. Choose the molecules in which hybridisation occurs in the ground state Among the compounds, $\mathrm{BF}_{3}, \mathrm{NCl}_{3}, \mathrm{~F}_{2} \mathrm{~S}, \mathrm{SF}_{4}$ and BeCl_{2}, identify the ones in which the central atom has the same type of hybridisation
(1) BF_{3} and NCl_{3}
(2) $\mathrm{F}_{2} \mathrm{~S}$ and BeCl_{2}
(3) NCl_{3} and $\mathrm{F}_{2} \mathrm{~S}$
(4) SF_{4} and BeCl_{2}

Shape Of Molecules

336. Percentage of s-character in sp^{3} hybrid orbital is
(1) 25
(2) 50
(3) 66
(4) 75
337. s-character in sp hybridised orbitals is
(1) $\frac{1}{3}$
(2) $\frac{1}{2}$
(3) $\frac{1}{4}$
(4) $\frac{2}{3}$
338. Which of the following hybridisation has maximum s-characters
(1) sp^{3}
(2) sp^{2}
(3) sp
(4) None of these
339. For which of the following hybridisation the bond angle is maximum
(1) sp^{2}
(2) sp
(3) sp^{3}
(4) dsp^{3}
340. Hybrid orbitals, the one which forms the bond at angle 120°, is
(1) $d_{2} s p^{3}$
(2) sp^{3}
(3) sp^{2}
(4) sp
341. The minimum number of 90° angles between hybrid orbitals is observed in
(1) $\mathrm{sp}^{3} \mathrm{~d}^{2}$
(2) $d^{2} s p^{3}$
(3) dsp^{2}
(4) $\mathrm{sp}^{3} \mathrm{~d}$
342. A sp ${ }^{3}$ hybrid orbital contains:
(1) $1 / 4$ s-character
(2) $1 / 2$ s-character
(3) $2 / 3$ s-character
(4) $3 / 4 \mathrm{~s}$-character
343. For which of the hybridisation the given statement is true for maximum number of angles and the statement is "hybrid orbitals are at the angle of x° to one another".
(1) $\mathrm{sp}^{3} \mathrm{~d}^{2}$
(2) sp^{3}
(3) sp^{2}
(4) $\mathrm{sp}^{3} \mathrm{~d}$
344. Which one of the following molecular geometries (i.e., shapes) is not possible for the $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridisation?
(1) See-saw
(2) Octahedral
(3) Square planar
(4) Square pyramidal
345. The central atom in a molecule is in sp^{2} hybrid state. The shape of molecule will be
(1) Pyramidal
(2) Tetrahedral
(3) Octahedral
(4) Trigonal planar
346. Compound formed by $\mathrm{sp}^{3} \mathrm{~d}$ hybridization will have structure
(1) Planar
(2) Pyramidal
(3) Angular
(4) Trigonal bipyramidal
347. Shape of methane molecule is
(1) Tetrahedral
(2) Pyramidal
(3) Octahedral
(4) Square planer
348. The structure of PF_{5} molecule is
(1) Tetrahedral
(2) Trigonal bipyramidal
(3) Square planar
(4) Pentagonal bipyramidal
349. The bent or V-shape of the molecule can be resulted from which of the following hybridization.
(1) sp^{3}
(2) sp^{2}
(3) Both (1) and (2)
(4) None of these
350. Structure of ammonia is
(1) Trigonal
(2) Tetrahedral
(3) Pyramidal
(4) Trigonal pyramidal
351. The shape of $\mathrm{CH}_{3}{ }^{+}$species is:
(1) Tetrahedral
(2) Square planar
(3) Trigonal planar
(4) Linear
352. The shape of $\mathrm{SO}_{4}{ }^{2-}$ ion is:
(1) Square planar
(2) Tetrahedral
(3) Trigonal bipyramidal
(4) Hexagonal
353. XeF_{2} molecule is :
(1) Linear
(2) Triangular planar
(3) Pyramidal
(4) Square planar
354. Which is the right structure of XeF_{4} ?
(1)

(2)

(3)

(4)

355. The structure of ICl_{2}^{-}is -
(1) Trigonal
(2) Octahedral
(3) Square planar
(4) Linear
356. The geometry of sulphur trioxide molecule is
(1) Tetrahedral
(2) Trigonal planar
(3) Pyramidal
(4) Square planar
357. The ammonium ion is
(1) Tetrahedral (2) Octahedral
(3) Square planar
(4) Linear
358. Which of the following molecule is linear
(1) SO_{2}
(2) $\mathrm{NO}_{2}{ }^{+}$
(3) $\mathrm{NO}_{2}{ }^{-}$
(4) SCl_{2}
359. Pyramidal shape would be of
(1) NO_{3}^{-}
(2) $\mathrm{H}_{2} \mathrm{O}$
(3) $\mathrm{H}_{3} \mathrm{O}^{+}$
(4) $\mathrm{NH}_{4}{ }^{+}$
360. Which of the following molecule does not show tetrahedral shape
(1) CCl_{4}
(2) SiCl_{4}
(3) SF_{4}
(4) CF_{4}
361. Which of the following compounds is not linear
(1) SnCl_{2}
(2) HCl
(3) CO_{2}
(4) HgCl_{2}
362. The shape of IF_{7} molecule is
(1) Octahedral
(2) Pentagonal bipyramidal
(3) Trigonal bipyramidal
(4) Tetrahedral
363. Be in BeCl_{2} undergoes
(1) Diagonal hybridization
(2) Trigonal hybridization
(3) Tetrahedral hybridization
(4) No hybridization
364. Which of the following molecules has pyramidal shape
(1) PCl_{3}
(2) SO_{3}
(3) $\mathrm{CO}_{3}{ }^{2-}$
(4) NO_{3}^{-}
365. Geometry of ammonia and the hybridization of nitrogen involved in it are
(1) sp^{3}-hybridization and tetrahedral geometry
(2) sp^{3}-hybridization and distorted tetrahedral geometry
(3) sp^{2}-hybridization and triangular geometry
(4) None of these
366. Which of the following is non-linear molecule
(1) CO_{3}
(2) CO_{2}
(3) CS_{2}
(4) BeCl_{2}
367. The linear structure is assumed by
(1) SnCl_{2}
(2) NCO^{-}
(3) CS_{2}
(4) NO_{2}^{-}
368. The pair having similar geometry is
(1) $\mathrm{PCl}_{3}, \mathrm{NH}_{3}$
(2) $\mathrm{BeCl}_{2}, \mathrm{H}_{2} \mathrm{O}$
(3) $\mathrm{CH}_{4}, \mathrm{CCl}_{4}$
(4) $\mathrm{IF}_{5}, \mathrm{PF}_{5}$
369. The shape of $\mathrm{H}_{3} \mathrm{O}^{+}$ion is
(1) Linear
(2) Angular
(3)
3) Trigonal planar
(4) Triangular pyramidal
370. The geometry of $\mathrm{ClO}_{3}{ }^{-}$according to valence shell electron pair repulsion (VSEPR) theory will be
(1) Planar triangle
(2) Pyramidal (3) Tetrahedral
(4) Square planar
371. The geometry of $\mathrm{AlF}_{6}{ }^{-3}$ is as follows:
(1) Tetrahedral
(2) Hexagonal
(3) Pyramidal
(4) Octahedral
372. Which of the following two are isostructural?
(1) $\mathrm{XeF}_{2} \mathrm{IF}_{2}{ }^{-}$
(2) $\mathrm{NH}_{3}, \mathrm{BF}_{3}$
(3) $\mathrm{CO}_{3}{ }^{2-}, \mathrm{SO}_{3}{ }^{2-}$
(4) $\mathrm{PCl}_{5}, \mathrm{ICl}_{5}$
373. Amongst the following the molecule that is linear, is:
(1) CO_{2}
(2) NO_{2}
(3) SO_{2}
(4) SiO_{2}
374. Which of the following is that molecule whose shape is pyramidal?
(1) PCl_{3}
(2) SO_{2}
(3) $\mathrm{CO}_{3}{ }^{-2}$
(4) $\mathrm{NO}_{3}{ }^{-}$
375. Which molecule has linear structure?
(1) CO_{2}
(2) NO_{2}
(3) SO_{2}
(4) SiO_{2}
376. CO_{2} is iso structural with:
(1) HgCl_{2}
(2) SnCl_{2}
(3) SO_{2}
(4) NO_{2}^{-}
377. The bonding and lone pairs of electrons present in CIF_{3} are arranged in the following shape:
(1) Square pyramidal
(2) Trigonal planar
(3) Trigonal bipyramidal
(4) Octahedral
378. Ammonia molecule is formed by the following type of hybrid orbitals :
(1) dsp^{2}
(2) sp^{3}
(3) $s p^{3} d$
(4) $d^{2} s p$
379. XeF_{6} is:
(1) Octahedral
(2) distorted octahedral
(3) Planar
(4) Tetrahedral

380 Mark out the correct match of shape?
(1) XeOF_{2} - Trigonal planar
(2) $\mathrm{ICl}_{4}{ }^{-}$- Square planar
(3) $\left[\mathrm{SbF}_{5}\right]^{2-}$ - Pentagonal
(4) $\mathrm{NH}_{2}{ }^{\Theta}$ - Pyramidal
381. Shape of a molecule having 4 bond pairs and two lone pairs of electrons, will be
(1) Square planar
(2) Tetrahedral
(3) Linear
(4) Octahedral
382. Hybridisation in $\mathrm{XeOF}_{2}, \mathrm{XeO}_{2} \mathrm{~F}_{2}$ is $\mathrm{sp}^{3} \mathrm{~d}$. But shape will be respectively: -
(1) T, 'V' shape
(2) T shape, (See-Saw)
(3) Both have T shape
(4) T shape, irregular octahedral
383. Which of the following has pyramidal shape?
(1) BF_{3}
(2) $\mathrm{H}_{3} \mathrm{O}^{+}$
(3) $\mathrm{NO}_{3}{ }^{-}$
(4) $\mathrm{CO}_{3}{ }^{2-}$
384. In BrF_{3} molecule, the lone pairs occupy equatorial positions to minimize
(1) Lone pair- lone pair repulsion and lone pair-bond pair repulsion
(2) Lone pair- lone pair repulsion only
(3) Lone pair- bond pair repulsion only
(4) Bond pair- bond pair repulsion only
385. Which of the following having a square planar structure is
(1) $\mathrm{NH}_{4}{ }^{+}$
(2) BF_{4}
(3) XeF_{4}
(4) CCl_{4}
386. The shape of I_{3}-is
(1) Tetrahedral
(2) Linear
(3) T-shape
(4) Trigonal
387. $\mathrm{I}_{3}{ }^{+}$and $\mathrm{I}_{3}{ }^{-}$have same:
(1) Geometry
(2) Number of lone pair (s)
(3) Bond angle
(4) None of these
388. Which of the following will be octahedral?
(1) SF_{6}
(2) $\mathrm{BF}_{4}-$
(3) PCl_{5}
(4) XeF_{6}
389. The electronic geometrical arrangement and shape of $\mathrm{I}_{3}{ }^{-}$are respectively
(1) Trigonal bipyramidal geometry, linear shape
(2) Hexagonal geometry, T-shape
(3) Triangular planar geometry, triangular shape
(4) Tetrahedral geometry, pyramidal shape
390. The shapes of $\mathrm{XeF}_{4}, \mathrm{XeF}_{5}^{-}$and SnCl_{2} are -
(1) octahedral, trigonal bipyramidal and bent
(2) Sq. pyramidal, pentagonal planar and linear
(3) Sq. Planar, pentagonal planar and angular
(4) See-saw, T-shaped and linear
391. Which of the following pairs are iso-structural?
(1) $\mathrm{CH}_{3}{ }^{-}$and $\mathrm{CH}_{3}{ }^{+}$
(2) $\mathrm{NH}_{4}{ }^{+}$and BH_{4}^{-}
(3) $\mathrm{SO}_{4}{ }^{2-}$ and BF_{3}
(4) $\mathrm{NH}_{2}{ }^{-}$and BeF_{2}
392. Molecular shape of $\mathrm{ClF}_{3}, \mathrm{I}_{3}{ }^{-}$and XeO_{3} respectively are
(1) T-shape, Linear, Pyramidal
(2) Planar, Linear, Tetrahedral
(3) T-shape, Planar, Pyramidal
(4) Trigonal bipyramidal, Linear, Tetrahedral
393. The type of hybrid orbitals used by chlorine atom in $\mathrm{ClO}_{2}{ }^{-}$is
(1) $s p^{3}$
(2) $s p^{2}$
(3) $s p$
(4) $s p^{3} d$
394. In case of $\mathrm{XeO}_{2} \mathrm{~F}_{2}$ and XeF_{6}, Xe is with
(1) Same hybridization but with different geometry
(2) Different hybridization with same geometry
(3) Different hybridization and different geometry
(4) Same geometry and same hybridization
395. Which of the following molecule is of T shape?
(1) $\mathrm{I}_{3}{ }^{-}$
(2) ClF_{3}
(3) SF_{4}
(4) XeF_{4}
396. The molecule which has pyramidal shape is
(1) SO_{3}
(2) NO_{3}^{-}
(3) CO_{3}^{-2}
(4) PF_{3}
397. Molecules with see-saw shape is
(1) SF_{4}
(2) XeOF_{4}
(3) $\mathrm{XeO}_{2} \mathrm{~F}_{2}$
(4) HgCl_{2}
398. Isostructural group of molecules is
(1) $\mathrm{NH}_{3}, \mathrm{NF}_{3}, \mathrm{BF}_{3}$
(2) $\mathrm{NO}_{3}^{-}, \mathrm{NO}_{2}^{+}, \mathrm{SF}_{4}$
(3) $\mathrm{XeO}_{4}, \mathrm{NH}_{4}^{+}, \mathrm{CH}_{4}$
(4) $\mathrm{CH}_{3}{ }^{-}, \mathrm{NH}_{3}, \mathrm{NF}_{3}$
399. The structure of IF_{5} can be best described as :-
(1)

(2)

(3)

(4) none of these
400. The shapes of $\mathrm{PCl}_{4}{ }^{+}, \mathrm{PCl}_{4}^{-}$and AsCl_{5} are respectively: -
(1) square planar, tetrahedral and see-saw
(2) tetrahedral, see-saw and trigonal bipyramidal
(3) tetrahedral, square planar and pentagonal bipyramidal
(4) trigonal bipyramidal, tetrahedral and square pyramidal
401. The shapes of IF_{5} and IF_{7} are respectively: -
(1) tetragonal pyramidal and pentagonal bipyramidal
(2) octahedral and pyramidal
(3) trigonal bipyramidal and square antiprismatic
(4) distorted square planar and distorted octahedral
402. The geometry and the type of hybrid orbital present about the central atom in BF_{3} is
(1) Linear, sp
(2) Trigonal planar, sp^{2}
(3) Tetrahedral, sp^{3}
(4) Pyramidal, sp^{3}
403. Shape of NH_{3} is very similar to:
(1) BF_{3}
(2) $\mathrm{CH}_{3}{ }^{-}$
(3) SO_{3}
(4) $\mathrm{CH}_{3}{ }^{\oplus}$
408. The number of 90° angle in SF_{6} are:
(1) 4
(2) 8
(3) 12
(4) 16
405. Which of the following statement is/are not correct -
(1) $\mathrm{CH}_{3}{ }^{+}$shows sp^{2}-hybridisation whereas $\mathrm{CH}_{3}{ }^{-}$shows sp^{3}-hybridisation
(2) $\mathrm{NH}_{4}{ }^{+}$has a regular tetrahedral geometry
(3) sp^{2} hybridised orbitals have equal s and p character.
(4) Hybridised orbitals always form σ-bonds
406. In sp hybridisation, shape is
(1) Angular
(2) Tetrahedral
(3) Bipyramidal
(4) Linear
407. The structure and hybridisation of $\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{4}$ is
(1) Bent, sp
(2) Trigonal, sp^{2}
(3) Octahedral, $\mathrm{sp}^{3} \mathrm{~d}$
(4) Tetrahedral, sp^{3}
408. Which of the following statement is true for $\mathrm{IO}_{2} \mathrm{~F}_{2}^{-}$:
(1) The electrons are located at the corners of a trigonal bipyramidal but one of the equatorial pairs is unshared.
(2) It has $\mathrm{sp}^{3} \mathrm{~d}$ hybridisation and is T -shaped.
(3) Its structure is analogous to SF_{4}
(4) (1) and (3) both
409. Which of the following structure is most expected for molecule XeOF_{4} ?
(1) Tetrahedral
(2) Square pyramidal
(3) Square planar
(4) Octahedral
410. Which of the following is not correctly match?
(1) ICl_{2}^{-}- Linear
(2) $\mathrm{XeF}_{6}-$ Distorted Octahedral
(3) $\mathrm{ICl}_{3}-$ Trigonal bipyramidal
(4) SF_{4} - See-Saw
411. How many bond angles of 90° are present in trigonal bipyramidal shape of PCl_{5} ?
(1) 9
(2) 6
(3) 4
(4) None of these
412. Which of the following has square pyramidal geometry.
(1) XeF_{5}
(2) PF_{6}
(3) IF_{5}
(4) All are having square pyramidal geometry
413. Select pair of compounds in which both have different hybridization but have same molecular geometry: -
(1) $\mathrm{BF}_{3}, \mathrm{BrF}_{3}$
(2) $\mathrm{ICl}_{2}{ }^{\ominus}, \mathrm{BeCl}_{2}$
(3) $\mathrm{BeCl}_{3}, \mathrm{PCl}_{3}$
(4) $\mathrm{PCl}_{3}, \mathrm{NCl}_{3}$
414. The AsF 5 molecule is trigonal bipyramidal. The hybrid orbitals used by the As atoms for bonding are: -
(1) $d_{x}^{2}-y^{2}, d_{z}^{2}, s, p_{x}, p_{y}$
(2) $d_{x y}, s, p_{x}, p_{y}, p_{z}$
(3) $s, p_{x}, p_{y}, p_{z}, d z^{2}$
(4) $d_{x}{ }^{2}-y^{2}, s, p_{x}, p_{y}$
415. The pair of compounds having similar geometry.
(1) $\mathrm{BF}_{3}, \mathrm{NF}_{3}$
(2) $\mathrm{BeF}_{2}, \mathrm{H}_{2} \mathrm{O}$
(3) $\mathrm{BCl}_{3}, \mathrm{PCl}_{3}$
(4) $\mathrm{BF}_{3}, \mathrm{CH}_{3}{ }^{+}$
416. The shape of $\mathrm{IF}_{4}{ }^{-}$will be: -
(1) Square planar
(2) Tetrahedral
(3) Pentagonal bipyramidal
(4) Distorted tetrahedral
417. XeOF_{4} contains: -
(1) six electron pairs forming an octahedron with two positions occupied by lone pairs
(2) two π-bonds and the remaining six electron pairs, forming an octahedron
(3) three π-bonds and the remaining four electron pairs forming an tetrahedron
(4) one π-bonds and the remaining six electron pairs forming an octahedron with one position occupied by a lone pair
418. Which of the following statements is/are correct?
(1) $\mathrm{NH}_{2}{ }^{+}$shows sp ${ }^{2}$ - hybridisation whereas NH_{2}^{-}shows $\mathrm{sp}^{3}-$ hybridisation
(2) $\mathrm{Al}(\mathrm{OH})_{4}^{-}$has a regular tetrahedral geometry
(3) sp^{2}-hybridized orbitals have equal s -and p -character
(4) usually hybridized orbitals form σ-bonds
419. $\mathrm{H}_{2} \mathrm{O}$ is:
(1) A linear triatomic molecule
(2) A bent (angular) triatomic molecule
(3) Both of these
(4) None of these
420. According to VSEPR theory, the most probable shape of the molecule having 4 electron pairs in the outer shell of the central atom is:
(1) Linear
(2) Tetrahedral
(3) Hexahedral
(4) Octahedral
422. Which molecule is not linear
(1) BeF_{2}
(2) BeH_{2}
(3) CO_{2}
(4) $\mathrm{H}_{2} \mathrm{O}$
423. Which molecule is linear
(1) NO_{2}^{-}
(2) $\mathrm{CIO}_{2}{ }^{-}$
(3) CO_{2}
(4) $\mathrm{H}_{2} \mathrm{~S}$
424. Which of the following molecules has trigonal planer geometry
(1) IF_{3}
(2) PCl_{3}
(3) NH_{3}
(4) BF_{3}
425. Which of the following will be octahedral
(1) SF_{6}
(2) BF_{4}^{-}
(3) PCl_{5}
(4) $\mathrm{BO}_{3}{ }^{3-}$
426. The shapes of $\mathrm{BCl}_{3}, \mathrm{PCl}_{3}$ and ICl_{3} molecules are all
(1) Triangular
(2) Pyramidal
(3) T-shaped
(4) All above are incorrect
427. Which of the following pairs has same structure
(1) PH_{3} and BCl_{3}
(2) SO_{2} and NH_{3}
(3) PCl_{5} and SF_{6}
(4) $\mathrm{NH}_{4}{ }^{+}$and $\mathrm{SO}_{4}{ }^{2-}$
428. Which of the following compounds doesn't have linear structure
(1) CO_{2}
(2) SO_{2}
(3) BeCl_{2}
(4) $\mathrm{C}_{2} \mathrm{H}_{2}$
429. The molecule which is pyramid shape is
(1) PCl_{3}
(2) $\mathrm{CO}_{3}{ }^{2-}$
(3) SO_{3}
(4) NO_{3}^{-}
430. The species which is not tetrahedral in shape is
(1) $\mathrm{NF}_{4}{ }^{\oplus}$
(2) AlH_{4}^{-}
(3) BF_{4}^{-}
(4) ICl_{4}^{-}
431. The orbitals occupy more space will have more "s" character and accordingly which is incorrect statement.
(1) l.p. will go to the axial position of PBP geometry.
(2) l.p. will go to the equitorial position of TBP geometry.
(3) Axial orbital of PBP geometry is longer than equatorial.
(4) Equatorial orbital of TBP geometry is shorter than axial.
432. Which of the following species given below have shape similar to XeOF_{4} ?
(1) XeO_{3}
(2) IOF_{4}^{+}
(3) PCl_{5}
(4) $\mathrm{XeF}_{5}{ }^{\oplus}$
433. Which of the following pair of species is not isostructural?
(1) $\mathrm{KrF}_{2}, \mathrm{ICl}_{2}{ }^{-}$
(2) $\mathrm{SO}_{3}, \mathrm{SO}_{3}{ }^{2-}$
(3) $\mathrm{CO}_{3}{ }^{2-}, \mathrm{BO}_{3}{ }^{3-}$
(4) $\mathrm{SiO}^{4-}, \mathrm{IO}_{4}^{-}$
434. Find the pair of species having same shape but different hybridisation.
(1) $\mathrm{SO}_{3}, \mathrm{CO}_{3}{ }^{2-}$
(2) $\mathrm{NO}_{2}{ }^{-}, \mathrm{ClO}_{2}{ }^{-}$
(3) $\mathrm{BeCl}_{2}, \mathrm{HCN}$
(4) $\mathrm{XeF}_{2}, \mathrm{SnCl}_{2}$
435. Shape of NH_{4}^{+}and BF_{4}^{-}are:
(1) Tetrahedral \& Tetrahedral
(2) Pyramidal \& Tetrahedral
(3) Square planar \& Tetrahedral
(4) Tetrahedral \& Trigonal planar
436. Which of the following is T-shaped?
(1) PCl_{3}
(2) BCl_{3}
(3) NH_{3}
(4) ClF_{3}
437. Which of the following is linear?
(1) CO_{2}
(2) BeCl_{2}
(3) $\mathrm{NO}_{2}{ }^{+}$
(4) All of these
438. The pair of compounds having similar geometry.
(1) $\mathrm{BF}_{3}, \mathrm{NF}_{3}$
(2) $\mathrm{BeF}_{2}, \mathrm{H}_{2} \mathrm{O}$
(3) $\mathrm{BCl}_{3}, \mathrm{PCl}_{3}$
(4) $\mathrm{BF}_{3}, \mathrm{CH}_{3}{ }^{+}$
439. $\mathrm{TeF}_{5}^{-}, \mathrm{XeF}_{2}, \mathrm{I}_{3}{ }^{+}, \mathrm{XeF}_{4}, \mathrm{PCl}_{3}$

Which of the following shape does not describe to any of the above species?
(1) Square pyramidal
(2) Square planar
(3) Trigonal planar
(4) Linear
440. The hybridisation and shape of $\mathrm{XeO}_{3} \mathrm{~F}_{2}$ molecule is
(1) sp^{3} and tetrahedral
(2) $\mathrm{sp}^{3} d$ and see-saw
(3) $\mathrm{sp}^{3} \mathrm{~d}$ and TBP
(4) $\mathrm{sp}^{3} \mathrm{~d}^{2}$ and octahedral
441. The pyramidal species / molecule is
(1) SnCl_{3}^{-}
(2) $\mathrm{CO}_{3}{ }^{2-}$
(3) $\mathrm{NO}_{3}{ }^{-}$
(4) SO_{3}
442. Choose the correct set from the following options regarding the hybridisation of central atom and shape.
(1) $\mathrm{SnCl}_{2}, \mathrm{sp}^{2}$, linear
(2) $\mathrm{AlCl}_{4}^{-}, \mathrm{sp}^{3}$, square planar
(3) $\mathrm{SOCl}_{2}, \mathrm{sp}^{2}$, planar
(4) $\mathrm{COF}_{2}, \mathrm{sp}^{2}$, planar
443. The species which is not tetrahedral in shape is
(1) $\mathrm{NF}_{4}{ }^{\oplus}$
(2) AlH_{4}^{-}
(3) BF_{4}^{-}
(4) ICl_{4}^{-}
444. Molecules with See-Saw shape is
(1) $\mathrm{CH}_{2} \mathrm{~F}_{2}$
(2) XeOF_{4}
(3) $\mathrm{XeO}_{2} \mathrm{~F}_{2}$
(4) HgCl_{2}
445. Find the pair of species having same shape but different hybridisation.
(1) $\mathrm{SO}_{3}, \mathrm{CO}_{3}{ }^{2-}$
(2) $\mathrm{NO}_{2}{ }^{-}, \mathrm{ClO}_{2}^{-}$
(3) $\mathrm{BeCl}_{2}, \mathrm{HCN}$
(4) $\mathrm{XeF}_{2}, \mathrm{SnCl}_{2}$
446. Which of the following compounds are having same shape.
(1) SF_{4}
(2) XeF_{4}
(3) $\left[\mathrm{AsF}_{4}\right]$
(4) $\left[\mathrm{SnCl}_{3}\right]^{-}$
447. Which of the following is linear shape?
(1) SO_{2}
(2) $\mathrm{NO}_{2}{ }^{+}$
(3) O_{3}
(4) NO_{2}^{-}
448. Which of the following has linear shape?
(1) NO_{2}^{-}
(2) CO_{2}
(3) $\mathrm{H}_{2} \mathrm{O}$
(4) OF_{2}
449. The pair of species having identical shapes for molecules of both species is:
(1) $\mathrm{CF}_{4}, \mathrm{SF}_{4}$
(2) $\mathrm{XeF}_{2}, \mathrm{CO}_{2}$
(3) $\mathrm{BF}_{3}, \mathrm{PCl}_{3}$
(4) $\mathrm{PF}_{5}, \mathrm{IF}_{3}$
450. The structure of O_{3} and $\mathrm{N}_{3}{ }^{-}$are
(1) both linear
(2) Linear and bent respectively.
(3) both bent
(4) Bent and linear respectively.
451. Choose the correct set from the following options regarding the hybridisation of central atom and Shape.
(i) $\mathrm{SnCl}_{2} \rightarrow \mathrm{sp}^{2}$, Linear
(ii) $\mathrm{SnCl}_{3}{ }^{-} \rightarrow \mathrm{sp}^{3}$, Pyramidal
(iii) $\mathrm{COF}_{2} \rightarrow \mathrm{sp}^{2}$, Planar
(iv) $\mathrm{SOCl}_{2} \rightarrow \mathrm{sp}^{3}$, Pyramidal
(1) (ii), (iii) \& (iv)
(2) (ii) \& (iii)
(3) (i), (ii) \& (iii)
(4) (i) \& (ii)
452. The geometry of ammonia molecule can be best described as
(1) nitrogen at one vertex of a regular tetrahedron, the other three vertices being occupied by the three hydrogens
(2) nitrogen at the centre of the tetrahedron, three of the vertices being occupied by three hydrogens
(3) nitrogen at the centre of an equilateral triangle, three corners being occupied by three hydrogens
(4) nitrogen at the junction of a T, three open ends being occupied by three hydrogens
453. Which molecular geometry is least likely to result from a trigonal bipyramidal electron geometry?
(1) trigonal planar
(2) see-saw
(3) linear
(4) T-shaped
454. Select pair of compounds in which both have different hybridisation but have same molecular geometry.
(1) $\mathrm{BF}_{3}, \mathrm{BrF}_{3}$
(2) BeCl_{2}
(3) $\mathrm{BCl}_{3}, \mathrm{PCl}_{3}$
(4) $\mathrm{PCl}_{3}, \mathrm{NCl}_{3}$
455. Which molecular geometry are most likely to result, from a octahedral electron geometry?
(I) square planar
(II) square pyramidal
(III) linear (IV) V-shaped

Choose the correct code:
(1) I \& II
(2) I, II \& III
(3) I, III \& IV
(4) All
461. What is the shape of SF_{2} molecule.
(1) Linear
(2) Bent
(3) T.B. P
(4) See-Saw
457. Which is not correctly matched?
(1) $\mathrm{XeO}_{3} \quad$; Trigonal bipyramidal
(2) ClF_{3}; bent T-shape
(3) XeOF_{4}; Square pyramidal
(4) XeF_{2}; Linear shape
458. Which of the following pairs of species have identical shapes?
(1) $\mathrm{NO}_{2}{ }^{+}$and $\mathrm{NO}_{2}{ }^{-}$
(2) PCl_{5} and BrF_{5}
(3) XeF_{4} and ICl_{4}^{-}
(4) TeCl_{4} and XeO_{4}
459. Among the following the pair in which the two species are not isostructural is:
(1) BH_{4}^{-}and NH_{4}^{+}
(2) $\mathrm{PF}_{6}{ }^{-}$and SF_{6}
(3) SiF_{4} and SF_{4}
(4) $\mathrm{IO}_{3}{ }^{-}$and XeO_{3}
460. Which of the following shape cannot be obtained from $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridisation.
(1) Square planar
(2) Square pyramidal
(3) Tetrahedral
(4) Octahedral
461. Which is not correctly matched?
(1) $\mathrm{IOF}_{4}{ }^{+}$; Trigonal bipyramidal
(2) $\mathrm{IO}_{2} \mathrm{~F}_{2}$
T-shape
(3) $\mathrm{XeO}_{6}{ }^{4-} \quad$; Square bipyramidal
(4) XeF_{2}; Linear
462. $\mathrm{S}_{1}: \mathrm{I}_{3}{ }^{+}$is a linear molecule with two lone pairs of electrons on central atom.
$\mathrm{S}_{2}: \mathrm{I}_{3}{ }^{-}$is a linear molecule with three lone pair of electrons on central atom.
$\mathrm{S}_{3}: \mathrm{Br}_{3}{ }^{+}$is a bent molecule with two lone pair of electrons on central atom.
$\mathrm{S}_{4}: \mathrm{ICl}_{4}^{-}$is a pyramidal molecule with one lone pair of electrons on central atom.
(1) T F T F
(2) F T F T
(3) T F F T
(4) F T T F
463. Which one of the following is the correct set with respect to molecule, hybridization, and shape?
(1) $\mathrm{BeCl}_{2}, \mathrm{sp}^{2}$, linear
(2) $\mathrm{BeCl}_{2}, \mathrm{sp}^{2}$, triangular planar
(3) $\mathrm{BCl}_{3}, \mathrm{sp}^{2}$, triangular planar
(4) $\mathrm{BCl}_{3}, \mathrm{sp}^{3}$, tetrahedral
464. Of the following species the one having a square planar structure is
(1) NH_{4}^{+}
(2) BF_{4}^{-}
(3) XeF_{4}
(4) SCl_{4}
465. T-type of shape is exhibited by the molecule
(1) ICl_{3}
(2) CHCl_{3}
(3) CCl_{4}
(4) PCl_{5}
466. Which of the following molecular geometry is not possible from a octahedron electron geometry.
(1) Square planar
(2) Square pyramidal
(3) Octahedron
(4) Linear
467. Which of the following geometry the molecule is not possible when the central atom is having $\mathrm{sp}^{3} \mathrm{~d}$ hybridisation:
(1) TBP
(2) Trigonal planer
(3) Linear
(4) T-shaped
468. Which of the following set of molecules are having square pyramidal and pyramidal shape respectively.
(1) ICl_{4}^{-}and SiF_{4}
(2) NF_{3} and IF_{5}
(3) XeOF_{4} and $\mathrm{H}_{3} \mathrm{O}^{+}$
(4) BrF_{5} and NF_{4}^{+}
469. Select the correct statement.
(1) $\mathrm{SF}_{4}, \mathrm{CH}_{4}, \mathrm{SiCl}_{4}$ and CCl_{4} have tetrahedral structure.
(2) $\mathrm{BF}_{3}, \mathrm{ClF}_{3}$ and ICl_{3} have trigonal planar structure.
(3) $\mathrm{XeF}_{2}, \mathrm{BeCl}_{2}$ and ICl_{2}^{-}have linear structure.
(4) All are correct
470. Which of the following pair has same geometry but different hybridisation?
(1) $\mathrm{BeCl}_{2}, \mathrm{C}_{2} \mathrm{H}_{2}$
(2) $\mathrm{SnCl}_{2}, \mathrm{XeF}_{2}$
(3) $\mathrm{ICl}_{2}{ }^{-}, \mathrm{CO}_{2}$
(4) $\mathrm{CCl}_{4}, \mathrm{NH}_{4}{ }^{+}$
471. Which of the following compounds or ions have bent shape?
(1) $\mathrm{I}_{3}{ }^{+}, \mathrm{I}_{3}{ }^{-}, \mathrm{H}_{2} \mathrm{O}, \mathrm{O}_{3}$
(2) $\mathrm{H}_{2} \mathrm{O}, \mathrm{O}_{3}, \mathrm{H}_{2} \mathrm{~F}^{+}$
(3) $\mathrm{I}_{3}{ }^{+}, \mathrm{H}_{2} \mathrm{O}, \mathrm{N}_{3}{ }^{-}, \mathrm{O}_{3}$
(4) $\mathrm{H}_{2} \mathrm{~F}^{+}, \mathrm{H}_{2} \mathrm{O}, \mathrm{N}_{3}{ }^{-}, \mathrm{I}_{3}{ }^{+}$
472. Shape of XeF_{4} is:
(1) tetrahedral
(2) square planar
(3) See-saw
(4) trigonal pyramidal
473. The correct structure of $\mathrm{XeO}_{2} \mathrm{~F}_{2}$ is
(1)

(2)

(3)

(4)

474. Which of the following has T-shape structure?
(1) ClF_{3}
(2) SF_{4}
(3) PCl_{5}
(4) SF_{6}
475. Indicate for ClF_{3} molecule, the shape \& the type of hybridisation of the Cl -atom respectively are
(1)

(2)

(3)

(4)

476. Which of the following pair of species having different hybridisation but similar in shape?
(1) $\mathrm{CO}_{2} \& \mathrm{XeF}_{2}$
(2) $\mathrm{SO}_{3} \& \mathrm{SO}_{2}$
(3) $\mathrm{CF}_{4} \& \mathrm{XeF}_{4}$
(4) $\mathrm{N}_{2} \mathrm{O} \& \mathrm{CO}_{2}$
477. Which of the following is ' T ' shaped?
(1) $\mathrm{IOF}_{4}{ }^{+}$
(2) $\mathrm{IOF}_{2}{ }^{-}$
(3) $\mathrm{XeO}_{6}{ }^{4-}$
(4) XeF_{2}
478. Which of the following is isoelectronic and isostructural with CO_{2} ?
(1) NO_{2}
(2) $\mathrm{NO}_{3}{ }^{-}$
(3) $\mathrm{NO}_{2}{ }^{-}$
(4) $\mathrm{N}_{2} \mathrm{O}$
479. Which of the following is sp^{2} hybridised and bent in shape?
(1) $\mathrm{H}_{2} \mathrm{O}$
(2) $\mathrm{NO}_{3}-$
(3) BF_{3}
(4) $\mathrm{NO}_{2}{ }^{-}$
480. Which of the following is linear?
(1) XeF_{2}
(2) XeF_{5}^{-}
(3) $\mathrm{C}_{2} \mathrm{O}_{2}{ }^{2-}$
(4) both (1) and (3)
481. How many molecules are linear in following compounds but does not have any lone pair on central atom.
$\mathrm{CO}_{2}, \mathrm{XeF}_{2},\left[\mathrm{I}(\mathrm{CN})_{2}\right]^{-},\left[\mathrm{I}_{2}(\mathrm{CN})\right]^{+}, \mathrm{I}_{3}{ }^{-}, \mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{SnCl}_{2}, \mathrm{OF}_{2}, \mathrm{HgCl}_{2}$
(1) 4
(2) 2
(3) 5
(4) 3
482. Which of the following is V-shaped:
(1) $\mathrm{S}_{3}{ }^{2-}$
(2) $\mathrm{I}_{3}{ }^{-}$
(3) $\mathrm{N}_{3}{ }^{-}$
(4) none of these
483. Select the molecule which has Seen-Saw shape.
(1) XeOF_{4}
(2) $\left[\mathrm{O}_{2} \mathrm{IF}_{2}\right]^{-}$
(3) SOF_{4}
(4) POCl_{3}
484. The xenon compound that are iso-structural with $\mathrm{IBr}_{2}{ }^{-}$and BrO_{3} respectively
(1) linear XeF_{2} and pyramidal XeO_{3}
(2) bent XeF_{2} and pyramidal XeO_{3}
(3) bent XeF_{2} and planar XeO_{3}
(4) linear XeF_{2} and tetrahedral XeO_{3}
485. Which of the following molecules have perfect octahedral structure?
(1) XeOF_{4}
(2) XeF_{6}
(3) BrF_{6}^{-}
(4) $\mathrm{SbF}_{6}{ }^{3-}$
486. Which of the following ClF_{3} geometry has maximum 90° lone pair -
bond pair repulsion?
(1)

(2)

(3)

(4)

487. What is the shape of $\left[\mathrm{F}_{2} \mathrm{IO}_{2}\right]^{-}$ion?
(1) trigonal bipyramidal
(2) See-Saw
(3) T- shape (4) square planar
488. The shape of a molecule of NH_{3}, in which central atoms contains lone pair of electrons, is
(1) Tetrahedral
(2) Planar trigonal
(3) Square planar
(4) Pyramidal
489. Which one has a pyramidal structure
(1) CH_{4}
(2) NH_{3}
(3) $\mathrm{H}_{2} \mathrm{O}$
(4) CO_{2}
490. BCl_{3} is a planar molecule while NCl_{3} is pyramidal, because
(1) BeCl_{3} has no lone pair of electrons but NCl_{3} has a lone pair of electrons
(2) $\mathrm{B}-\mathrm{Cl}$ bond is more polar than $\mathrm{N}-\mathrm{Cl}$ bond
(3) Nitrogen atom is smaller than boron atom
(4) $\mathrm{N}-\mathrm{Cl}$ bond is more covalent than $\mathrm{B}-\mathrm{Cl}$ bond
491. Match the items under list (1) with items under list (2) select the correct answers from the sets (1), (2), (3) and (4) -
List (1) molecule
List (2) shape
(1) PCl_{5}
(i) V-shaped
(2) $\mathrm{F}_{2} \mathrm{O}$
(ii) Triangular planar
(3) BCl_{3}
(iii) Trigonal bipyramidal
(4) NH_{3}
(iv) Trigonal pyramidal
(v) Tetrahedral
(1) $a-i, b-v, c-i v, d-i i i$
(2) a -ii, b-iii, c-i, d-ii
(3) a - iv, b-iii, c-ii, d-v
(4) $a-i i i, b-i, c-i i, d-i v$
492. Match List-I with List-II and select the correct answer using the codes given below the lists -

List I

(1) CS_{2}
(2) SO_{2}
(3) BF_{3}
(4) NH_{3}

List II (shape)

1. Bent
2. Linear
3. Trigonal planar
4. Tetrahedral
5. Trigonal pyramidal
(1) $\mathrm{a} \rightarrow 2 ; \mathrm{b} \rightarrow 1 ; \mathrm{c} \rightarrow 3 ; \mathrm{d} \rightarrow 5$
(2) $\mathrm{a} \rightarrow 1 ; \mathrm{b} \rightarrow 2 ; \mathrm{c} \rightarrow 3 ; \mathrm{d} \rightarrow 5$
(3) $\mathrm{a} \rightarrow 2 ; \mathrm{b} \rightarrow 1 ; \mathrm{c} \rightarrow 5 ; \mathrm{d} \rightarrow 4$
(4) $\mathrm{a} \rightarrow 1 ; \mathrm{b} \rightarrow 2 ; \mathrm{c} \rightarrow 5 ; \mathrm{d} \rightarrow 4$

Bents Rule

493. Which of the following molecule has regular geometry -
(1) $\mathrm{H}_{2} \mathrm{O}$
(2) PF_{3}
(3) SF_{6}
(4) XeF_{6}
494. In a regular octahedral molecule, MX_{6}, the number $\mathrm{X}-\mathrm{M}-\mathrm{X}$ bonds at 180° is
(1) Six
(2) Four
(3) Three
(4) Two
495. Which of the following does not have regular tetrahedral geometry?
(1) CH_{4}
(2) BF_{4}^{-}
(3) PCl_{4}^{+}
(4) $\mathrm{CH}_{2} \mathrm{~F}_{2}$
496. Geometry of the molecule is distorted according to VSEPR theory for -
(I) $\mathrm{H}_{2} \mathrm{O}$
(II) NH_{3}
(III) XeF_{2}
(1) I, III,
(2) II, III,
(3) I, II, III
(4) I, II
497. The regular geometry of $\mathrm{XeO}_{2} \mathrm{~F}_{2}$ is: -
(1) Plane triangular
(2) Trigonal bipyramidal
(3) Square planar
(4) Tetrahedral
498. Which of the following has symmetrical structure:
(1) PCl_{3}
(2) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(3) CHCl_{3}
(4) CCl_{4}

Planar And Nonplanar

499. Which of the following is planar?
(1) BCl_{3}
(2) SOCl_{2}
(3) NH_{3}
(4) NF_{3}
500. Which of the following has not planar structure?
(1) $\mathrm{CH}_{3}{ }^{+}$
(2) $\mathrm{I}_{3}{ }^{+}$
(3) XeF_{4}
(4) XeF_{6}
501. How many maximum numbers of atoms are present in single plane of Al $\left(\mathrm{CH}_{3}\right)_{3}$ molecule.
(1) 7
(2) 4
(3) 10
(4) 6
502. The molecule which is planar.
(1) SF_{4}
(2) BrF_{5}
(3) ICl_{4}^{-}
(4) $\mathrm{NH}_{4}{ }^{+}$
503. Which of the following molecule is planar.
(1) $\left[\mathrm{I}(\mathrm{CN})_{2}\right]^{-}$
(2) $\mathrm{PCl}_{3} \mathrm{~F}_{2}$
(3) PCl_{5}
(4) SF_{4}
504. Which of the following molecules is planar?
(1) NF_{3}
(2) NCl_{3}
(3) PH_{3}
(4) BF_{3}
505. The non-planar shape is possessed by
(1) ClF_{3}
(2) BF_{4}^{-}
(3) SnCl_{2}
(4) NO_{2}^{-}
506. Which of the hexa-atomic species contains two lone pair on central atom and planar?
(1) $\mathrm{XeF}_{5}{ }^{+}$
(2) XeF_{4}
(3) $\mathrm{XeF}_{5}{ }^{-}$
(4) XeF_{6}
507. Amongst $\mathrm{CO}_{3}{ }^{2-}, \mathrm{AsO}_{3}{ }^{3-}, \mathrm{XeO}_{3}, \mathrm{ClO}_{3}{ }^{-}, \mathrm{BO}_{3}{ }^{3-}$ and $\mathrm{SO}_{3}{ }^{2-}$ the non-planar species are:
(1) $\mathrm{XeO}_{3}, \mathrm{ClO}_{3}^{-}, \mathrm{SO}_{3}{ }^{2-}, \mathrm{AsO}_{3}{ }^{3-}$
(2) $\mathrm{AsO}_{3}{ }^{3-}, \mathrm{XeO}_{3}, \mathrm{CO}_{3}{ }^{-2}$
(3) $\mathrm{BO}_{3}{ }^{3-}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{SO}_{3}{ }^{2-}$
(4) $\mathrm{AsO}_{3}{ }^{3-}, \mathrm{BO}_{3}{ }^{3-}, \mathrm{CO}_{3}{ }^{2-}$
508. Which of the following species is planar
(1) $\mathrm{CO}_{3}{ }^{2-}$
(2) $\mathrm{NH}_{2}{ }^{-}$
(3) PCl_{3}
(4) None of these
509. The element A has 3 electrons in valence shell and its principal quantum number for last electron is 2 and element B has 7 electrons in valence shell and its principal quantum number for last electron is 3 . Which option is true for compound of element A and B.?
(1) Compound is AB_{3} type
(2) Compound is nonplanar
(3) Compound has 107° bond angle.
(4) All are correct
510. Which of the following species are expected to be planar: -
(1) NH_{3}
(2) $\mathrm{CH}_{3}{ }^{+}$
(3) $\mathrm{NH}_{2}{ }^{-}$
(4) PCl_{3}
the correct answer is: -
(1) b and c
(2) cand d
(3) b and d
(4) a and d
511. In which molecule are all atoms coplanar
(1) CH_{4}
(2) BF_{3}
(3) PF_{3}
(4) NH_{3}

$p \pi-p \pi$ and $p \pi-d \pi$ Bonds

512. How many π bonds are present in $\mathrm{SO}_{2} \mathrm{Cl}_{2}$?
(1) 2
(2) 4
(3) 1
(4) π bond is absent
513. In SO_{2} molecule, there are two σ-bonds and two π-bonds. The two π-bonds are formed by:
(1) $p \pi-p \pi$ overlap between S and O atoms
(2) $\mathrm{sp}^{2}-\mathrm{p}$ overlaps between S and O atoms
(3) one by $\mathrm{p} \pi-\mathrm{p} \pi$ overlap and other by $\mathrm{p} \pi-\mathrm{d} \pi$ overlap
(4) both by $p \pi-d \pi$ overlap
514. Example of $\mathrm{p} \pi-\mathrm{p} \pi$ bonding is -
(1) BF_{3}
(2) SO_{2}
(3) SO_{3}
(4) All of these
515. The nature of π-bond in perchlorate $\left(\mathrm{ClO}_{4}^{-}\right)$ion is: -
(1) $\mathrm{O}_{(\mathrm{d} \pi)}-\mathrm{Cl}_{(\mathrm{p} \pi)}$
(2) $\mathrm{O}_{(\mathrm{p} \pi)}-\mathrm{Cl}_{(\mathrm{p} \pi)}$
(3) $\mathrm{O}_{(\mathrm{p} \pi)}-\mathrm{Cl}_{(\mathrm{d} \pi)}$ (4) $\mathrm{O}_{(\mathrm{d} \pi)}-\mathrm{Cl}_{(\mathrm{d} \pi)}$
516. Which of the following compound having number of $\mathrm{p} \pi-\mathrm{p} \pi$ bond is equal to $\mathrm{p} \pi-\mathrm{d} \pi$ bonds?
(1) SO_{2}
(2) SO_{3}
(3) O_{3}
(4) POCl_{3}
517. The structure of the SO_{3} molecule in the gaseous phase contains: -
(1) only σ-bonds between sulphur and oxygen
(2) σ-bonds and a (p $\pi-p \pi$) bonds between sulphur and oxygen
(3) σ-bonds and a (d $\pi-p \pi$) bonds between sulphur and oxygen
(4) σ-bonds, and a ($\mathrm{p} \pi-\mathrm{p} \pi$) and a ($\mathrm{p} \pi-\mathrm{d} \pi$) bonds between sulphur and oxygen
518. Which of the following statements regarding the structure of SOCl_{2} is not correct?
(1) The sulphur is sp^{3} hybridised and it has a tetrahedral shape.
(2) The sulphur is sp^{3} hybridised and it has a trigonal pyramid shape.
(3) The oxygen-sulphur bond is $\mathrm{p} \pi-\mathrm{d} \pi$ bond.
(4) It contains one lone pair of electrons in the sp^{3} hybrid orbital of sulphur.
519. Which of the following statements is correct in the context of the allene molecule, $\mathrm{C}_{3} \mathrm{H}_{4}$?
(1) The central carbon is sp hybridized
(2) The terminal carbon atoms are sp^{2} hybridized
(3) The planes containing the CH_{2} groups are mutually perpendicular to permit the formation of two separate p-bonds.
(4) All correct
520. Which of the following molecule is planar?
(1) $\mathrm{F}_{2} \mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{C}=\mathrm{CF}_{2}$
(2) $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$
(3) $\mathrm{C}_{2} \mathrm{H}_{2}$
(4) All of these
521. Which of the following statements are correct:
(1) The number of sigma bonds in $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$ is 7 .
(2) All the hydrogen atoms in $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$ lie in the same plane.
(1) Only (1)
(2) Only (2)
(3) Both (1) and (2)
(4) Neither (1) nor (2)
522. The nodal plane in the π-bond of ethene is located in
(1) the molecular plane
(2) a plane parallel to the molecular plane
(3) a plane perpendicular to the molecular plane which bisects the carboncarbon σ bond at right angle.
(4) a plane perpendicular to the molecular plane which contains the carbon-carbon bond.
523. Nodal planes of π-bonds (s) in $\mathrm{CH}_{2}=\mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$ are located in:
(1) all are in molecular plane
(2) two in molecular plane and one in a plane perpendicular to molecular plane which contains $\mathrm{C}-\mathrm{C} \sigma$-bond
(3) one in molecular plane and two in a plane perpendicular to molecular plane which contains $\mathrm{C}-\mathrm{C}$ o-bonds
(4) two in molecular plane and one in a plane perpendicular to molecular plane which bisects $\mathrm{C}-\mathrm{C} \sigma$-bonds at right angle

Polar and Nonpolar Molecules

524. The electronegativity of $\mathrm{C}, \mathrm{H}, \mathrm{O}, \mathrm{N}$ and S are $2.5,2.1,3.5,3.0$ and 2.5 respectively. Which of the following bond is most polar?
(1) $\mathrm{O}-\mathrm{H}$
(2) S-H
(3) $\mathrm{N}-\mathrm{H}$
(4) $\mathrm{C}-\mathrm{H}$
525. Which of the following bond has the most polar character?
(1) C-O
(2) $\mathrm{C}-\mathrm{Br}$
(3) C-S
(4) C-F
526. Select the correct statement for H_{2} molecule
(1) On time average the molecule is non-polar but at the particular moment it may act as a dipole which is equally probable in all directions
(2) On time average the molecule is polar but at the particular moment it does not act as a dipole.
(3) On time average the molecule is non-polar and the particular moment it does not act as dipole.
(4) All are incorrect
527. Which of the following are incorrect for dipole moment?
(1) Lone pair of elements present on central atom can give rise to dipole moment
(2) Dipole moment is vector quantity
(3) PF_{5} (g) molecule has nonzero dipole moment
(4) Difference in electronegativities of combining atom can lead to dipole moment
528. Which of the following bond is more polar.
(1) $\mathrm{H}-\mathrm{F}$
(2) $\mathrm{H}-\mathrm{Cl}$
(3) $\mathrm{H}-\mathrm{Br}$
(4) $\mathrm{H}-\mathrm{I}$
529. Which of the following molecule / ion has zero dipole moment.
(1) ClF_{3}
(2) $\mathrm{ICl}_{2}{ }^{-}$
(3) SF_{4}
(4) None of these
530. Which of the following has non-zero dipole moment?
(1) CCl_{4}
(2) $\mathrm{C}_{2} \mathrm{H}_{6}$
(3) CO_{2}
(4) SO_{2}
531. Which of the following compounds are planar as well as non-polar.
(1) XeF_{4}
(2) XeF_{2}
(3) $\mathrm{XeF}_{5}{ }^{-}$
(4) XeF_{5}^{+}
532. Which of the following has non-zero dipole moment?
(1) CCl_{4}
(2) $\mathrm{C}_{2} \mathrm{H}_{6}$
(3) CO_{2}
(4) SO_{2}
533. Which of the following molecule have nonzero dipole moment?
(1) $\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}\left(\mathrm{CF}_{3}\right)_{2}$
(2) $\mathrm{PF}_{3} \mathrm{Cl}_{2}$
(3) BF_{3},
(4) CCl_{4}
534. Which of the following has zero dipole moment?
(1) NH_{3}
(2) $\mathrm{H}_{2} \mathrm{O}$
(3) BCl_{3}
(4) SO_{2}
535. BF_{3} and NF_{3} both molecules are covalent, but BF_{3} is non-polar and NF_{3} is polar. Its reason is:
(1) in uncombined state boron is metal and nitrogen is gas
(2) B-F bond has no dipole moment whereas N-F bond has dipole moment
(3) the size of boron atom is smaller than nitrogen
(4) BF_{3} is planar whereas NF_{3} is pyramidal
536. Which of the following compound has zero dipole moment?
(1) BF_{3}
(2) SnCl_{2}
(3) $\mathrm{H}_{2} \mathrm{O}$
(4) NH_{3}
537. Which molecules has zero dipole moment
(1) $\mathrm{H}_{2} \mathrm{O}$
(2) CO_{2}
(3) HF
(4) HBr
538. In the following which one has zero dipole moment
(1) BF_{3}
(2) CCl_{4}
(3) BeCl_{2}
(4) All of these
539. Pick out the molecule which has zero dipole moment
(1) NH_{3}
(2) $\mathrm{H}_{2} \mathrm{O}$
(3) BCl_{3}
(4) SO_{2}
540. Which one of the following is having zero dipole moment
(1) CCl_{4}
(2) $\mathrm{CH}_{3} \mathrm{Cl}$
(3) $\mathrm{CH}_{3} \mathrm{~F}$
(4) CHCl_{3}
541. Which of the following has zero dipole moment
(1) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(2) CH_{4}
(3) NH_{3}
(4) PH_{3}
542. Which molecule does not show zero dipole moment
(1) BF_{3}
(2) NH_{3}
(3) CCl_{4}
(4) CH_{4}
543. Which of the following has zero dipole moment?
(1) CO_{2}
(2) NH_{3}
(3) NF_{3}
(4) $\mathrm{H}_{2} \mathrm{O}$
544. PCl_{5} is nonpolar because: -
(1) $\mathrm{P}-\mathrm{Cl}$ bond is non-polar
(2) Its dipole moment is zero
(3) $\mathrm{P}-\mathrm{Cl}$ bond is polar
(4) $\mathrm{P} \& \mathrm{Cl}$ have equal electronegativity
545. Dipole moment of CO_{2} is zero which implies that:
(1) Carbon and oxygen have equal electronegativities
(2) Carbon has no polar bond
(3) CO_{2} is a linear molecule
(4) Carbon has bond moments of zero value
546. Species having zero dipole moment:
(1) XeF_{4}
(2) SO_{2}
(3) SF_{4}
(4) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
547. If the molecule AX_{4} is having zero dipole moment value, then the probable geometry is
(1) Tetrahedral
(2) Square planar
(3) (1) \& (2) both
(4) None
548. What may be the geometry of molecule if AX_{3} molecule has non-zero dipole moment.
(1) Trigonal planar
(2) Bent T-shape
(3) Pyramidal
(4) Both (2) and (3)
549. If the measured dipole moment for the molecule is zero then for which of given formula the shape of the molecule cannot predicted.
(1) AX_{3}
(2) AX_{4}
(3) $A X_{5}$
(4) None of these
550. If the measured dipole moment for the molecule is zero then for which of given formula the shape of the molecule can be predicted.
(1) AX_{3}
(2) AX_{4}
(3) $A X_{5}$
(4) AX_{2}
551. BeF_{2} has zero dipole moment whereas $\mathrm{H}_{2} \mathrm{O}$ has dipole moment because:
(1) Water is linear
(2) $\mathrm{H}_{2} \mathrm{O}$ is bent
(3) F is more electronegative than O
(4) Hydrogen bonding is present in $\mathrm{H}_{2} \mathrm{O}$
552. Which of the following molecule have zero dipole moment:
(1) BF_{3}
(2) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(3) NF_{3}
(4) SO_{2}
553. Which of the following pair of molecules have same shape but different in polarity (Polar or nonpolar)
(1) $\mathrm{H}_{2} \mathrm{O} \& \mathrm{NH}_{3}$
(2) $\mathrm{SnCl}_{2} \& \mathrm{SO}_{2}$
(3) $\mathrm{CO}_{2} \& \mathrm{~N}_{2} \mathrm{O}$
(4) $\mathrm{SO}_{2} \& \mathrm{SO}_{3}$
554. The dipole moment is zero for the molecule
(1) Ammonia
(2) Boron trifluoride
(3) Sulphur dioxide
(4) Water
555. The geometry of $\mathrm{H}_{2} \mathrm{~S}$ and its dipole moment are -
(1) angular and non-zero
(2) angle and zero
(3) linear and non-zero
(4) linear and zero
556. Which of the following is non-polar
(1) PCl_{5}
(2) PCl_{3}
(3) SF_{6}
(4) IF_{7}
557. Which of the following compound is non-polar?
(1) CCl_{4}
(2) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(3) CHCl_{3}
(4) $\mathrm{CH}_{3} \mathrm{Cl}$
558. Which of the following is nonpolar and pentagonal planar species?
(1) XeF_{6}
(2) XeOF_{4}
(3) $\mathrm{XeF}_{5}{ }^{-}$
(4) XeF_{4}
559. Which of the following is non-polar molecule?
(1) BF_{3}
(2) ClF_{3}
(3) PCl_{3}
(4) SO_{2}
560. Which set of molecules is polar:
(1) $\mathrm{XeF}_{4}, \mathrm{IF}_{7}, \mathrm{SO}_{3}$
(2) $\mathrm{PCl}_{5}, \mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{SF}_{6}$
(3) $\mathrm{SnCl}_{2}, \mathrm{SO}_{2}, \mathrm{NO}_{2}$
(4) $\mathrm{CO}_{2}, \mathrm{CS}_{2}, \mathrm{C}_{2} \mathrm{H}_{6}$
561. Which statement is correct
(1) All the compounds having polar bond, have dipole moment
(2) SO_{2} is non-polar
(3) $\mathrm{H}_{2} \mathrm{O}$ molecule is nonpolar, having polar bonds
(4) PH_{3} is polar molecule having nonpolar bonds
562. Which contains both polar and non-polar bonds?
(1) $\mathrm{NH}_{4} \mathrm{Cl}$
(2) HCN
(3) $\mathrm{H}_{2} \mathrm{O}_{2}$
(4) CH_{4}
563. Which of the following species are polar:
(1) $\mathrm{C}_{6} \mathrm{H}_{6}$
(2) XeF_{2}
(3) SO_{2}
(4) SF_{4}
(E) SF_{6}
correct answer is:
(1) (2) \& (
4)(2) (1), (2) \& (E)
(3) (1) \& (E)
(4) (3) \& (4)
564. Which of the following molecules has polar character
(1) CO_{2}
(2) CH_{4}
(3) PF_{5}
(4) NH_{3}
565. Which set of molecules is polar: -
(1) $\mathrm{XeF}_{4}, \mathrm{IF}_{7}, \mathrm{SO}_{3}$
(2) $\mathrm{PCl}_{5}, \mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{SF}_{6}$
(3) $\mathrm{SnCl}_{2}, \mathrm{SO}_{2}, \mathrm{NO}_{2}$
(4) $\mathrm{CO}_{2}, \mathrm{CS}_{2}, \mathrm{C}_{2} \mathrm{H}_{6}$
566. The polarity of a covalent bond between two atoms depends upon
(1) Atomic size
(2) Electronegativity
(3) Ionic size
(4) None of the above
(5) cis 1, 2-dichloroethene
(6) trans 1, 2-dichloroethene
567. Which of the following is the most polar
(1) CCl_{4}
(2) CHCl_{3}
(3) $\mathrm{CH}_{3} \mathrm{OH}$
(4) $\mathrm{CH}_{3} \mathrm{Cl}$
568. Non-polar solvent is
(1) Dimethyl sulphoxide
(2) Carbon tetrachloride
(3) Ammonia
(4) Ethyl alcohol
569. Which of the following is a non-polar compound
(1) HCl
(2) $\mathrm{H}_{2} \mathrm{Se}$
(3) CH_{4}
(4) Hl
570. Which of the following molecule/ion is planar and polar both; -
(1) $\mathrm{NO}_{3}{ }^{\mathrm{e}}$
(2) $\mathrm{NO}_{2}{ }^{-}$
(3) PF_{5}
(4) NH_{3}
571. Which of the following molecules does not possess a permanent dipole moment
(1) $\mathrm{H}_{2} \mathrm{~S}$
(2) SO_{2}
(3) CS_{2}
(4) SO_{3}
572. What conclusion can be draw from the fact that BF_{3} has no dipole moment but PF_{3} is does:
(1) BF_{3} is not symmetrical but PF_{3} is symmetrical
(2) BF_{3} molecule must be linear
(3) Atomic radius of P is larger than that of B
(4) BF_{3} molecule must be planar triangular
573. $\mathrm{PBr}_{2} \mathrm{Cl}_{3}$ can exhibit geometrical isomerism, Geometrical isomers are as follows:
I.

II.

III.

Which of the above-mentioned geometrical isomer(s) has/have no dipole(s)?
(1) Only II and III
(2) Only III
(3) Only I and III
(4) Only I
575. Which of the possible molecule / species is having maximum values for dipole moment. (where " A " is the central atom).
(1) AX_{3} (having one lone pair on central atom)
(2) AX_{4} (Tetrahedral)
(3) $\mathrm{AX}_{4} \mathrm{Y}$ (having no lone pair on central atom)
(4) Can't be predicted
576. Carbon tetrachloride has no net dipole moment because of
(1) Its planar structure
(2) Its regular tetrahedral structure
(3) Similar sizes of carbon and chlorine atoms
(4) Similar electron affinities of carbon and chlorine
577. Fluorine is more electronegative than either boron or phosphorus. What conclusion can be drawn from the fact that BF_{3} has no dipole moment but PF_{3} does
(1) BF_{3} is not spherically symmetrical but PF_{3} is
(2) BF_{3} molecule must be linear
(3) The atomic radius of P is larger than the atomic radius of B
(4) The BF_{3} molecule must be planar triangular
578. Which of the following has no dipole moment
(1) CO_{2}
(2) SO_{3}
(3) O_{3}
(4) $\mathrm{H}_{2} \mathrm{O}$
579. Of the following molecules, the one, which has permanent dipole moment, is -
(1) SiF_{4}
(2) BF_{3}
(3) PF_{3}
(4) PF_{5}
580. Dipole moment is highest in:
(1) CHCl_{3}
(2) CH_{4}
(3) CHF_{3}
(4) CCl_{4}
581. The polar and planar compound is :
(1) SF_{4}
(2) $\mathrm{BF}_{2} \mathrm{Cl}$
(3) $\mathrm{CH}_{2} \mathrm{~F}_{2}$
(4) $\mathrm{O}_{2} \mathrm{~F}_{2}$
582. Choose the incorrect statement.
(1) Electronegativity of Cl is less than F
(2) Electron affinity of Cl is greater than F
(3) Bond energy of σ-bond is greater than π bond.
(4) The net dipole moment direction of NF_{3} is towards 1.p. of N -atom.
583. The correct order of dipole moment is:
(1) $\mathrm{CH}_{3} \mathrm{Cl}<\mathrm{CH}_{3} \mathrm{~F}<\mathrm{CH}_{3} \mathrm{Br}<\mathrm{CH}_{3} \mathrm{I}$
(2) $\mathrm{CH}_{3} \mathrm{Cl}>\mathrm{CH}_{3} \mathrm{~F}>\mathrm{CH}_{3} \mathrm{Br}>\mathrm{CH}_{3} \mathrm{I}$
(3) $\mathrm{CH}_{3} \mathrm{~F}>\mathrm{CH}_{3} \mathrm{Cl}>\mathrm{CH}_{3} \mathrm{Br}>\mathrm{CH}_{3} \mathrm{I}$
(4) $\mathrm{CH}_{3} \mathrm{~F}<\mathrm{CH}_{3} \mathrm{Cl}<\mathrm{CH}_{3} \mathrm{Br}<\mathrm{CH}_{3} \mathrm{I}$
584. In which of the following pairs of compounds, the first one is more polar than the second one?
(1) $\mathrm{SO}_{3}, \mathrm{SO}_{2}$
(2) $\mathrm{NF}_{3}, \mathrm{NH}_{3}$
(3) $\mathrm{CH}_{3} \mathrm{Cl}, \mathrm{CH}_{3} \mathrm{~F}$
(4) $\mathrm{PF}_{2} \mathrm{Cl}_{3}, \mathrm{PF}_{3} \mathrm{Cl}_{2}$
585. Increasing order of dipole moment in $\mathrm{H}_{2} \mathrm{O}, \mathrm{NH}_{3}, \mathrm{NF}_{3}$ and CCl_{4} is
(1) $\mathrm{CCl}_{4}<\mathrm{NF}_{3}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}$
(2) $\mathrm{CCl}_{4}>\mathrm{NF}_{3}>\mathrm{NH}_{3}>\mathrm{H}_{2} \mathrm{O}$
(3) $\mathrm{NF}_{3}>\mathrm{H}_{2} \mathrm{O}>\mathrm{CCl}_{4}>\mathrm{H}_{2} \mathrm{O}$
(4) all the four have equal dipole moments
586. The dipole moment of given molecules is such that -
(1) $\mathrm{BF}_{3}>\mathrm{NF}_{3}>\mathrm{NH}_{3}$
(2) $\mathrm{NF}_{3}>\mathrm{BF}_{3}>\mathrm{NH}_{3}$
(3) $\mathrm{NH}_{3}>\mathrm{NF}_{3}>\mathrm{BF}_{3}$
(4) $\mathrm{NH}_{3}>\mathrm{BF}_{3}>\mathrm{NF}_{3}$
587. The correct order of dipole moment is:
(1) $\mathrm{CH}_{4}<\mathrm{NF}_{3}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}$
(2) $\mathrm{NF}_{3}<\mathrm{CH}_{4}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}$
(3) $\mathrm{NH}_{3}<\mathrm{NF}_{3}<\mathrm{CH}_{4}<\mathrm{H}_{2} \mathrm{O}$
(4) $\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{NF}_{3}<\mathrm{CH}_{4}$
588. The dipole moment of NH_{3} is:
(1) Less than dipole moment of NCl_{3}
(2) Higher than dipole moment of NCl_{3}
(3) Equal to the dipole moment of NCl_{3}
(4) None of these
589. Which of the following order of polarity of molecules is correct -
(1) $\mathrm{HF}>\mathrm{NH}_{3}>\mathrm{PH}_{3}$
(2) $\mathrm{CH}_{4}>\mathrm{NH}_{3}>\mathrm{H}_{2} \mathrm{O}$
(3) $\mathrm{CH}_{3} \mathrm{Cl}<\mathrm{CH}_{2} \mathrm{Cl}_{2}<\mathrm{CHCl}_{3}$
(4) $\mathrm{BF}_{3}>\mathrm{BeF}_{2}>\mathrm{F}_{2}$
590. Dipole moment is highest in -
(1) CHCl_{3}
(2) CH_{4}
(3) CHF_{3}
(4) CCl_{4}
591. The compound which has maximum dipole moment is:
(1) CH_{4}
(2) CHCl_{3}
(3) CCl_{4}
(4) CO_{2}
592. In the compounds $\mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{4}, \mathrm{CF}_{4}, \mathrm{CO}_{2}$, which has maximum dipole moment:
(1) $\mathrm{CH}_{3} \mathrm{OH}$
(2) CF_{4}
(3) CH_{4}
(4) CF_{4} and CO_{2} have equally more
593. Which of the following order of polar molecules is correct: -
(1) $\mathrm{HF}>\mathrm{NH}_{3}>\mathrm{PH}_{3}$
(2) $\mathrm{CH}_{4}>\mathrm{NH}_{3}>\mathrm{H}_{2} \mathrm{O}$
(3) $\mathrm{CH}_{3} \mathrm{Cl}<\mathrm{CH}_{2} \mathrm{Cl}_{2}<\mathrm{CHCl}_{3}$
(4) $\mathrm{BF}_{3}>\mathrm{BeF} 2>\mathrm{F}_{2}$
594. The order of increasing polarity in $\mathrm{HCl}, \mathrm{CO}_{2}, \mathrm{H}_{2} \mathrm{O}$ and HF molecules is:
(1) $\mathrm{CO}_{2}, \mathrm{HCl}, \mathrm{H}_{2} \mathrm{O}, \mathrm{HF}$
(2) $\mathrm{HF}, \mathrm{H}_{2} \mathrm{O}, \mathrm{HCl}, \mathrm{CO}_{2}$
(3) $\mathrm{CO}_{2}, \mathrm{HCl}, \mathrm{HF}, \mathrm{H}_{2} \mathrm{O}$
(4) $\mathrm{CO}_{2}, \mathrm{HF}, \mathrm{H}_{2} \mathrm{O}, \mathrm{HCl}$
595. In terms of polar character, which of the following order is correct?
(1) $\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{HF}<\mathrm{H}_{2} \mathrm{~S}$
(2) $\mathrm{H}_{2} \mathrm{~S}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{HF}$
(3) $\mathrm{H}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{HF}$
(4) $\mathrm{HF}<\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{~S}$
596. Which molecule has the largest dipole moment
(1) HCl
(2) Hl
(3) HBr
(4) HF
597. Find out the incorrect order of the dipole moment among the following pair of compounds
(1) $\mathrm{NH}_{3}>\mathrm{NF}_{3}$
(2) p-dichloro benzene $>$ o-dichloro benzene
(3) $\mathrm{CH}_{3} \mathrm{Cl}>\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(4) $\mathrm{SiF}_{4}<\mathrm{SF}_{4}$
598. Which of the following molecules shows maximum dipole moment -
(1)

(2)

(3)

Br (4) All have the same
599. Which one has minimum (nearly zero) dipole moment
(1) Butene-1
(2) cis butene-2
(3) trans butene-2
(4) 2-methyl-1-propene
600. Which has maximum dipole moment?
(1)

(2)

(3)

(4)

601. Which of the following molecule will be most polar:
(1) 1, 3,5 trichloro benzene
(2) Trans 1, 2 - dichloro ethene
(3) Cis - 1 - fluoro propene
(4) Trans 1- fluoro propene
603. Species having dipole moment:
(1) XeF_{4}
(2) 1,2,4 trichloro benzene
(3) SF_{4}
(4) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
604. Decreasing order of dipole moment of the following compounds is -

(A)

(B)

(C)
(1) A $>$ B $>$ C
(2) $\mathrm{C}>\mathrm{A}>\mathrm{B}$
(3) $C>B>A$
(4) $\mathrm{A}>\mathrm{C}>\mathrm{B}$
605. Arrange the following compounds in order of increasing dipole moment m-dichlorobenzene (I), o-dichlorobenzene (II), p-dichlorobenzene (III)
(1) I $<$ II $<$ III
(2) II $<$ III $<$ I
(3) I $<$ III $<$ II
(4) III $<$ I $<$ II
606. Which of the given compound has highest dipole moment?
(1)

(2)

(3)

(4)

607. Write order of dipole moment of following compounds: -
(i)

(ii)

(v)

(iii)

(iv)

(vi)

(1) (iii) $>$ (ii) $>$ (i) $>$ (iv) $>($ v) $>$ (vi)
(2) (iii) $>$ (i) $>$ (ii) $=$ (vi) $>$ (iv) $>$ (v)
(3) (ii) $>$ (i) $=$ (iii) $=($ iv $)>($ v $)=($ vi)
(4) (iii) $>$ (i) $>$ (iv) $>$ (v) $>$ (ii) $>$ (vi)
608. Which of the following would be non-polar?
(1)

(2)

(3)

(4) All of these
609. Which of the following molecule is polar as well as planar.
(1)

(2)

(3)

(4) None of these
610. Choose the correct option for the following molecule in view of chemical bonding

(1) non-planar
(2) $\mu \neq 0$
(3) A \& B both
(4) $\mu=0$
611. The dipole moment of the ammonia molecule is 1.48 D . The length of the dipole is:
(1) $3.08 \times 10^{-11} \mathrm{~m}$
(2) $5 \times 10^{2} \mathrm{~m}$
(3) 308 m
(4) None
612. The dipole moment of LiH is $1.964 \times 10^{-29} \mathrm{C} \times \mathrm{m}$ and the interatomic distance between Li and H in this molecule is $1.596 \AA$. Calculate the percent ionic character in LiH :
(1) 76.8
(2) 70
(3) 65.5
(4) 72
613. The dipole moment of chlorobenzene is 1.73 D . The dipole moment of $\mathrm{P}-$ dichlorobenzene is expected to be
(1) 3.46 D
(2) 0.00 D
(3) 1.73 D
(4) 1.00 D
614. The dipole moment of $H B r$ is $1.6 \times 10^{-30} \mathrm{~cm}$ and interatomic spacing is $1 A$. The \% ionic character of HBr is
(1) 7
(2) 10
(3) 15
(4) 27
615. Which of the following statements is incorrect for the dipole moment
measurement of the compound.
(1) It helps to predict the percentage ionic character in a bond.
(2) It helps to predict the shape of the molecule.
(3) It helps to predict the particular cis trans isomer.
(4) It helps to predict the bond energies of all bonds within the molecule.
616. Statement-1: Dipole moment of $\mathrm{H}_{2} \mathrm{O}$ is more than that of OF_{2}.

Statement-2: $\mathrm{In}_{2} \mathrm{O}$, the resultant bond dipole of $\mathrm{O}-\mathrm{H}$ bond and the resultant lone pair moment are in opposite direction.
(1) Statement- 1 is true, statement-2 is true, and statement- 2 is correct explanation for statement-1.
(2) Statement- 1 is true, statement-2 is true, and statement-2 is NOT the correct explanation for statement-1.
(3) Statement- 1 is true, statement- 2 is false.
(4) Statement- 1 is false, statement- 2 is true.
617. Statement-1: Allene is a non-polar molecule.

Statement-2: Allene is nonplanar molecule.
(1) Statement-1 is true, statement-2 is true, and statement-2 is correct explanation for statement 1 .
(2) Statement-1 is true, statement-2 is true, and statement-2 is NOT the correct explanation for statement 1.
(3) Statement-1 is true, statement-2 is false.
(4) Statement-1 is false, statement-2 is true.

Solid State Hybridization

618. What is the hybridisation of Xe in cationic part of solid XeF_{6}.
(1) $\mathrm{sp}^{3} \mathrm{~d}^{3}$
(2) $\mathrm{sp}^{3} \mathrm{~d}$
(3) $\mathrm{sp}^{3} \mathrm{~d}^{2}$
(4) sp^{3}
619. What will be the hybridisation of anionic part of solid PCl_{5} ?
(1) sp^{3}
(2) $\mathrm{sp}^{3} \mathrm{~d}^{2}$
(3) $\mathrm{sp}^{3} \mathrm{~d}$
(4) sp^{2}
620. Which of the following compounds does not have polyatomic anion in the solid state?
(1) I Cl
(2) I (CN)
(3) PCl_{5}
(4) PBr_{5}
621. Which of the following compounds in solid state has both cation and anion with same hybridisation of central atom?
(1) PCl_{5}
(2) $\mathrm{N}_{2} \mathrm{O}_{5}$
(3) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$
(4) $\mathrm{NH}_{4} \mathrm{NO}_{3}$
622. Polyatomic anion in solid state is present in:
(1) PBr_{5}
(2) PCl_{5}
(3) PI_{5}
(4) XeF_{6}
623. What is the state of hybridisation of anionic part of solid $\mathrm{N}_{2} \mathrm{O}_{5}$
(1) sp
(2) sp^{2}
(3) sp^{3}
(4) Not applicable
624. What is the state of hybridisation for the anionic part of solid $\mathrm{Cl}_{2} \mathrm{O}_{6}$.
(1) sp^{2}
(2) sp^{3}
(3) $\mathrm{sp}^{3} \mathrm{~d}$
(4) $\mathrm{sp}^{3} \mathrm{~d}$
625. The hybridisation of the central atom of anionic part and cationic part of solid $\mathrm{N}_{2} \mathrm{O}_{5}$ are \qquad and \qquad respectively.
(1) sp and sp^{2}
(2) sp^{2} and sp^{3}
(3) sp^{2} and sp^{2}
(4) sp^{2} and sp
626. In which of the following molecule, the number of possible $\angle \mathrm{XAX}$ angles
is maximum in the anionic part of their solid state. [A: Central atom; X : Surrounding atom]
(1) PBr_{5}
(2) $\mathrm{N}_{2} \mathrm{O}_{5}$
(3) PCl_{5}
(4) $\mathrm{Cl}_{2} \mathrm{O}_{6}$
627. All possible bond angles in anionic part of PCl_{5} are.
(1) $109^{\circ} 28^{\prime}$ only
(2) $90^{\circ}, 180^{\circ}$
(3) $90^{\circ}, 120^{\circ}, 180^{\circ}$
(4) $72^{\circ}, 90^{\circ}, 180^{\circ}$
628. What is the difference between bond angles in cationic species of PCl_{5} and PBr_{5} in solid state.
(1) 60°
(2) $109^{\circ} 28^{\prime}$
(3) 0°
(4) 90°
629. What is hybridisation of central atom of anionic part of PBr_{5} in crystalline state.
(1) sp^{2}
(2) sp^{3}
(3) sp (4) not applicable
630. Which of the following compounds in the solid state has linear shape of anion?
(1) PCl_{5}
(2) PBr_{5}
(3) ICN
(4) $\mathrm{N}_{2} \mathrm{O}_{5}$
[Sol. ICN(s) exists as $\left[\mathrm{I}_{2}(\mathrm{CN})\right]^{+}\left[\mathrm{I}(\mathrm{CN})_{2}\right]^{-}$
631. Which of the following has tetrahedral in shape?
(1) PCl_{5} (solid)
(2) SF_{6}
(3) IF_{7}
(4) IF_{3}
632. Identify the correct match.

(i)	XeF_{2}	(1)	Central atom has sp ${ }^{3}$ hybridisation and bent geometry.
(ii)	N_{3}^{-}	(2)	Central atom has $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridisation and octahedral.
(iii)	$\mathrm{PCl}_{6}-\left(\mathrm{PCl}_{5}(\mathrm{~s})\right.$ anion $)$	(3)	Central atom has sp hybridisation and linear geometry.
(iv)	$\mathrm{ICl}_{2}{ }^{+}\left(\mathrm{I}_{2} \mathrm{Cl}_{6}(\ell)\right.$ cation)	(4)	Central atom has sp ${ }^{3} \mathrm{~d}$ hybridisation and linear geometry.

(1) $(\mathrm{i}-\mathrm{a})$, (ii - b), (iii - c), (iv - d)
(2) $(\mathrm{i}-\mathrm{d}),(\mathrm{ii}-\mathrm{b}),(\mathrm{iii}-\mathrm{d}),(\mathrm{iv}-\mathrm{c})$
(3) (i - b), (ii - c), (iii - a), (iv - d)
(4) (i-d), (ii - c), (iii - b), (iv - a)

Dragos's Rule

633. Which one of the following compounds has bond angle as nearly 90°
(1) NH_{3}
(2) $\mathrm{H}_{2} \mathrm{~S}$
(3) $\mathrm{H}_{2} \mathrm{O}$
(4) CH_{4}
634. The percentage s-character of the hybrid orbitals in methane, ethene and ethyne are respectively
(1) $25,33,50$
(2) $25,50,75$
(3) $50,75,100$
(4) $10,20,40$
635. Which of the following molecule has higher p -character in $\mathrm{X}-\mathrm{H}$ bond.
(1) NH_{3}
(2) PH_{3}
(3) SbH_{3}
(4) AsH_{3}
636. For which of the following molecule s-character is found to be maximum in lone pair present at central atom.
(1) NH_{3}
(2) $\mathrm{H}_{2} \mathrm{O}$
(3) SF_{2}
(4) AsH_{3}
637. Two hybrid orbitals have a bond angle of 120°. The percentage of s-
character in the hybrid orbital is nearly:
(1) 25%
(2) 33%
(3) 50%
(4) 66%
638. \% s-character of bonding orbital of sulphur in $\mathrm{H}_{2} \mathrm{~S}$ is -
(Bond angle $\mathrm{H}-\mathrm{S}-\mathrm{H}=92^{\circ} ; \cos 92^{\circ}=-0.035$)
(1) 25%
(2) 20%
(3) 3.38%
(4) 33.33%

639 Choose the correct statement:
(1) NH_{3} is having bond angle of $109^{\circ} 28^{\prime}$.
(2) The direction of the dipole moment of NF_{3} is as shown in the diagram

(3) In the Lewis structure of $\mathrm{SO}_{3}{ }^{2-}$, there is no π-bond.
(4) sp^{2} hybrid orbital is consisting of 33.33% ' p ' character.
640. In $\mathrm{AsH}_{3}, \mathrm{H}-\mathrm{As}-\mathrm{H}$ bond angle is $91.8^{\circ}, \% \mathrm{~s}$ and $\% \mathrm{p}$ charactger in as H bond approximately will be:
(1) 33% s \& $66 \% \mathrm{p}$
(2) $25 \% \mathrm{~s} \& 75 \% \mathrm{p}$
(3) $33.3 \% \mathrm{~s} \& 66.6 \% \mathrm{p}$
(4) 3% s \& $97 \% \mathrm{p}$
641. Calculate the $\% \mathrm{p}$ character in the orbital occupied by the lone pairs in water molecule.
[Given: bond angle HOH is 104.5° and $\operatorname{Cos}\left(104.5^{\circ}\right)=-0.25$]
(1) 80%
(2) 20%
(3) 70%
(4) 75%
642. It has been observed that $\%$'s' character in $\mathrm{Sb}-\mathrm{H}$ bond in SbH_{3} is 0.5%. Predict the \% 's' character in the orbital occupied by the lone pair is
(1) 99.5%
(2) 99.0%
(3) 98.5%
(4) 98.0%
643. Average bond order of $\mathrm{C}-\mathrm{C}$ bond in $\mathrm{C}_{6} \mathrm{H}_{6}$ is
(1) 1
(2) 2
(3) 1.5
(4) 1.33

Bond Order

644. Which set of formal charge on oxygen and bond order is correct for $\mathrm{SO}_{4}{ }^{-2}$
(1) 0.5 and 1.5
(2) 1.5 and 3
(3) 2 and 3
(4) 1.5 and 1.5
645. In $\mathrm{PO}_{4}{ }^{3-}$, the formal charge on each oxygen atom and the $\mathrm{P}-\mathrm{O}$ bond order respectively are:
(1) $-0.75,0.6$
(2) $-0.75,1.0$
(3) $-0.75,1.25$
(4) $-3,1.253$
646. Choose the correct option for following statements:
(I) sp^{3} hybrid orbitals are at 90° to one another
(II) $\mathrm{sp}^{3} \mathrm{~d}^{2}$ adjacent hybrid orbitals are at 90° to one another
(III) sp^{2} hybrid orbitals are at 120° to one another
(IV) Bond order of $\mathrm{N}-\mathrm{O}$ bond in $\mathrm{NO}_{3}{ }^{1 / 3}$ is
(1) T F T F
(2) T T F F
(3) F T T T
(4) F T F T
647. The average charge on each O atom and average bond order of $\mathrm{I}-\mathrm{O}$ bond
in $\mathrm{IO}_{6}{ }^{5-}$ is:
(1) -1 and 1.67
(2) $-5 / 6$ and 1.67
(3) $-5 / 6$ and 1.33
(4) $-5 / 6$ and 1.167

Bond length

648.

 to bond length is -
(1) $x>y>z(2)$
(2) $x>z>y(3) z=y>x$
(4) $x>y=z$
649. Choose the correct code for incorrect statements.

I: All $\mathrm{S}-\mathrm{O}$ distance in $\mathrm{SO}_{4}{ }^{2-}$ are not equal
II: All $\mathrm{S}-\mathrm{O}$ distance in $\mathrm{H}_{2} \mathrm{SO}_{4}$ is equal
III: All $\mathrm{B}-\mathrm{O}$ distance in $\mathrm{H}_{3} \mathrm{BO}_{3}$ is not equal
IV: All B-O distance in $\mathrm{BO}_{3}{ }^{3-}$ are equal
(1) I, II, IV
(2) II, III \& IV
(3) I, II, III
(4) I, II, III, IV

650 Which of the following molecule is having shortest bond length of $\mathrm{C}-\mathrm{O}$ bond.
(1) $\mathrm{CH}_{3} \mathrm{OH}$
(2) $\mathrm{H}_{2} \mathrm{CO}$
(3) CO
(4) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
651. In benzene molecule all $C-C$ bond lengths are equal because
(1) All carbon atoms are equivalent
(2) All carbon atoms are sp^{2} hybridised
(3) All $C-C$ bonds in benzene, have same order
(4) All $C-C$ bonds are single covalent bond
652. The correct order of bond length is
(1) $\mathrm{C}-\mathrm{C}<\mathrm{C} \equiv \mathrm{C}<\mathrm{C}=\mathrm{C}$
(2) $\mathrm{C}=\mathrm{C}<\mathrm{C} \equiv \mathrm{C}<\mathrm{C}-\mathrm{C}$
(3) $\mathrm{C} \equiv \mathrm{C}<\mathrm{C}=\mathrm{C}<\mathrm{C}-\mathrm{C}$
(4) $\mathrm{C} \equiv \mathrm{C}<\mathrm{C}-\mathrm{C}<\mathrm{C}=\mathrm{C}$
653. Which has the shortest $\mathrm{C}-\mathrm{C}$ bond length
(1) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(2) $\mathrm{C}_{2} \mathrm{H}_{6}$
(3) $\mathrm{C}_{2} \mathrm{H}_{2}$
(4) $\mathrm{C}_{2} \mathrm{H}_{4}$
654. The single, double, and triple bond lengths of carbon in carbon dioxide are respectively
(1) $1.15,1.22$ and $1.10 \AA$
(2) $1.22,1.15$ and $1.10 \AA$
(3) $1.10,1.15$ and $1.22 \AA$
(4) $1.15,1.10$ and $1.22 \AA$
655. The correct order of bond length $(\mathrm{C}-\mathrm{O})$ is
(1) $\mathrm{CO}_{2}<\mathrm{CO}<\mathrm{CO}_{3}^{2-}$
(2) $\mathrm{CO}_{3}{ }^{2-}<\mathrm{CO}<\mathrm{CO}_{2}$
(3) $\mathrm{CO}<\mathrm{CO}_{2}<\mathrm{CO}_{3}{ }^{2-}$
(4) $\mathrm{CO}<\mathrm{CO}_{3}{ }^{2-}<\mathrm{CO}_{2}$
656. Bond length of $\mathrm{C}-\mathrm{O}$ is minimum in -
(1) CO
(2) CO_{2}
(3) $\mathrm{CO}_{3}{ }^{-2}$
(4) HCOO^{-}
657. Which of the following statements is not correct?
(1) In PF_{5}, all the five $\mathrm{P}-\mathrm{F}$ bonds have equal bond length.

(3) XeF_{6} has perfect octahedron shape and hybridisation of Xe is $\mathrm{p}^{3} \mathrm{~d}^{3}$.
(4) All of these
658. The correct order in which the $\mathrm{O}-\mathrm{O}$ bond length increases in the following is
(1) $\mathrm{H}_{2} \mathrm{O}_{2}<\mathrm{O}_{2}<\mathrm{O}_{3}$
(2) $\mathrm{O}_{2}<\mathrm{H}_{2} \mathrm{O}_{2}<\mathrm{O}_{3}$
(3) $\mathrm{O}_{2}<\mathrm{O}_{3}<\mathrm{H}_{2} \mathrm{O}_{2}$
(4) $\mathrm{O}_{3}<\mathrm{H}_{2} \mathrm{O}_{2}<\mathrm{O}_{2}$
659. Which of the following is correct order of bond length?
(1) $\mathrm{BF}_{4}^{-}<\mathrm{BF}_{3}$
(2) $\mathrm{NO}_{2}^{+}<\mathrm{NO}_{2}^{-}$
(3) $\mathrm{CCl}_{4}<\mathrm{CF}_{4}$
(4) ${ }^{+} \mathrm{CH}_{3}>\mathrm{CH}_{4}$
660. $\mathrm{O}-\mathrm{O}$ bond length in $\mathrm{H}-\mathrm{O}-\mathrm{O}-\mathrm{H}$ and $\mathrm{F}-\mathrm{O}-\mathrm{O}-\mathrm{F}$ respectively are -
(1) $1.22 \AA, 1.48 \AA$
(2) $1.48 \AA, 1.22 \AA$
(3) $1.22 \AA, 1.22 \AA$
(4) $1.48 \AA, 1.48 \AA$
661. Which of the following statement is correct for $\mathrm{F}_{3} \mathrm{C}-\mathrm{CF}_{2}-\mathrm{CF}_{3}$?
(1) All C-F bond lengths are identical.
(2) Two C-F bond attached to middle carbon atom are longer as compared to the other $\mathrm{C}-\mathrm{F}$ bond at the terminal carbon.
(3) Two C-F bonds attached to the middle carbon atom are shorter as compared to the other $\mathrm{C}-\mathrm{F}$ bond at the terminal carbon.
(4) None of these
662. The correct order of $\mathrm{d}_{\mathrm{C}-\mathrm{H}}$ in the following option is
(1) $\mathrm{CHF}_{3}=\mathrm{CH}_{2} \mathrm{~F}_{2}=\mathrm{CH}_{3} \mathrm{~F}$
(2) $\mathrm{CHF}_{3}>\mathrm{CH}_{2} \mathrm{~F}_{2}>\mathrm{CH}_{3} \mathrm{~F}$
(3) $\mathrm{CH}_{2} \mathrm{~F}_{2}>\mathrm{CH}_{3} \mathrm{~F}>\mathrm{CHF}_{3}$
(4) $\mathrm{CH}_{3} \mathrm{~F}>\mathrm{CH}_{2} \mathrm{~F}_{2}>\mathrm{CHF}_{3}$
663. The strongest $\mathrm{P}-\mathrm{O}$ bond is found in the molecule
(1) $\mathrm{F}_{3} \mathrm{PO}$
(2) $\mathrm{Cl}_{3} \mathrm{PO}$
(3) $\mathrm{Br}_{3} \mathrm{PO}$
(4) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{PO}$
664. Out of $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{2}$. Compound which has highest $\mathrm{C}-\mathrm{C}$ bond length is:
(1) $\mathrm{C}_{2} \mathrm{H}_{4}$
(2) $\mathrm{C}_{2} \mathrm{H}_{2}$
(3) $\mathrm{C}_{2} \mathrm{H}_{6}$
(4) All have equal C-C bond length
665. Correct order of bond length is
(1) $\mathrm{SO}_{3}{ }^{2-}>\mathrm{SO}_{4}{ }^{2-}>\mathrm{SO}_{3}$
(2) $\mathrm{SO}_{4}{ }^{2-}>\mathrm{SO}_{3}{ }^{2-}>\mathrm{SO}_{3}$
(3) $\mathrm{SO}_{3}>\mathrm{SO}_{3}{ }^{2-}>\mathrm{SO}_{4}{ }^{2-}$
(4) None of these.
666. $\mathrm{N}_{2} \mathrm{H}_{4}$ reacts with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ to produce a salt $\left[\mathrm{NH}_{3}-\mathrm{NH}_{3}\right]^{+2} \mathrm{SO}_{4}{ }^{-2}$ in which.
(1) $\mathrm{d}_{\mathrm{N}-\mathrm{N}}($ salt $)>\mathrm{d}_{\mathrm{N}-\mathrm{N}}\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$
(2) $\mathrm{d}_{\mathrm{N}-\mathrm{N}}($ salt $)<\mathrm{d}_{\mathrm{N}-\mathrm{N}}\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$
(3) $\mathrm{d}_{\mathrm{N}-\mathrm{N}}($ salt $)=\mathrm{d}_{\mathrm{N}-\mathrm{N}}\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$
(4) Cannot be predicted
667. What is correct order of bond order of $\mathrm{Cl}-\mathrm{O}$ bond.
(1) $\mathrm{ClO}_{4}^{-}>\mathrm{ClO}_{3}^{-}>\mathrm{ClO}_{2}^{-}>\mathrm{ClO}^{-}$
(2) $\mathrm{ClO}^{-}<\mathrm{ClO}_{2}^{-}>\mathrm{ClO}_{3}^{-}<\mathrm{ClO}_{4}^{-}$
(3) $\mathrm{ClO}_{3}^{-}<\mathrm{ClO}_{2}^{-}<\mathrm{ClO}_{4}^{-}<\mathrm{ClO}^{-}$
(4) $\mathrm{ClO}_{2}^{-}<\mathrm{ClP}_{3}^{-}<\mathrm{ClO}_{4}^{-}<\mathrm{ClO}^{-}$

Incorrect order of $\mathrm{N}-\mathrm{N}$ bond length is:
(1)

$>$

(2)

(3)

(4)

669 In which of the following option, all bond lengths are not equal.
(1) BF_{3}
(2) NF_{3}
(3) XeF_{4}
(4) ClF_{3}
670. Which of the following statements are correct for the $\mathrm{SO}_{4}{ }^{2-}$ ion?
(1) it is tetrahedral
(2) all the $\mathrm{S}-\mathrm{O}$ bond length are equal, and shorter than expected
(3) it contains four σ-bonds between the S and the O atoms, two π-bonds delocalized over the S and the four O atoms, and all the $\mathrm{S}-\mathrm{O}$ bonds have a bond order of 1.5
(4) Oxidation state of sulphur is +6 and all oxygen in -2
671. Which of the following has the shortest $\mathrm{N}-\mathrm{H}$ bond length?
(1) $\mathrm{H}_{2} \mathrm{~N}-\mathrm{NH}_{2}$
(2) $\mathrm{H}-\mathrm{N}=\mathrm{N}-\mathrm{H}$
(3) NH_{3}
(4) $\mathrm{CH}_{3}-\mathrm{NH}_{2}$
672. In which of following cases $\mathrm{C}-\mathrm{C}$ bond length will be highest.
(1) $\mathrm{CH}_{3}-\mathrm{CF}_{3}$
(2) $\mathrm{FCH}_{2}-\mathrm{CH}_{2} \mathrm{~F}$
(3) $\mathrm{F}_{2} \mathrm{CH}-\mathrm{CHF}_{2}$
(4) $\mathrm{CF}_{3}-\mathrm{CF}_{3}$
673. The bond length of the $\mathrm{S}-\mathrm{O}$ bond is maximum in which of the following compound.
$\mathrm{SOBr}_{2}, \mathrm{SOCl}_{2}, \mathrm{SOF}_{2}$
(1) SOCl_{2}
(2) SOBr_{2}
(3) SOF_{2}
(4) All have same length
674. Which of the following molecules or ions has different bond lengths?
(1) XeF_{4}
(2) BF_{4}
(3) SF_{4}
(4) SiF_{4}
675. Which of the following statement is not correct regarding $\mathrm{SF}_{2} \mathrm{Cl}_{2}$ molecule?
(1) Two axial bond lengths are longer compared to two equilateral bond lengths.
(2) Two S-F bond lengths are identical.
(3) Two $\mathrm{S}-\mathrm{Cl}$ bond lengths are identical.
(4) Lone pair is not changing its position.
676. Select the correct statement(s) regarding $\mathrm{ICl}_{4}(-)()$ ion.
(1) It is isostructural with
(2) All bond lengths are equal
(3) All adjacent angles are equal
(4) All of these
677. Maximum bond length is shown in
(1) CO_{2}
(2) CH_{4}
(3) NH_{3}
(4) $\mathrm{H}_{2} \mathrm{O}$
678. The compound is having shortest $\mathrm{S}-\mathrm{O}$ bond length is
(1) $\mathrm{SO}_{3} \mathrm{~F}^{-}$
(2) $\mathrm{SO}_{4}{ }^{2-}$
(3) SOF_{4}
(4) SOCl_{2}

BOND ANGLE

679. The correct order towards bond angle is:
(1) $\mathrm{sp}^{3}<\mathrm{sp}^{2}<\mathrm{sp}$
(2) $\mathrm{sp}<\mathrm{sp}^{2}<\mathrm{sp}^{3}$
(3) $\mathrm{sp}^{2}<\mathrm{sp}<\mathrm{sp}^{3}$
(4) $\mathrm{sp}^{2}<\mathrm{sp}^{3}<\mathrm{sp}$
680. The bond angle in water molecule is nearly or Directed bonds in water forms an angle of
(1) 120^{0}
(2) 180°
(3) $109^{\circ} 28^{\prime}$
(4) $104^{\circ} 30^{\prime}$
681. In methane the bond angle is
(1) 180°
(2) 90°
(3) 120°
(4) 109^{0}
682. The bond angle in carbon tetrachloride is approximately
(1) 90°
(2) 109^{0}
(3) 120^{0}
(4) 180°
683. The angle between $s p^{2}$ orbitals in ethylene are
(1) 90^{0}
(2) 120°
(3) 180°
(4) 109^{0}
684. $\mathbf{C O}_{3}{ }^{2-}$ anion has which of the following characteristics
(1) Bonds of unequal length
(2) sp^{2} hybridization of C atom
(3) Resonance stabilization
(4) Same bond angles
685. The bond angle in sp^{2} hybridisation is
(1) 180^{0}
(2) 120°
(3) 90°
(4) $109^{0} 2^{\prime}$
686. The correct order towards bond angle is
(1) $\mathrm{sp}<\mathrm{sp}^{2}<\mathrm{sp}^{3}$
(2) $\mathrm{sp}^{2}<\mathrm{sp}<\mathrm{sp}^{3}$
(3) $\mathrm{sp}^{3}<\mathrm{sp}^{2}<\mathrm{sp}$
(4) Bond angle does not depend on hybridisation
687. When the hybridisation state of carbon atom changes from sp^{3} to sp^{2} to sp the angle between the hybridised orbitals
(1) Decreases gradually
(2) Increases gradually
(3) Decreases considerably
(4) All of these
688. The bond angle in PH_{3} is
(1) Much less than NH_{3}
(2) Equal to that of NH_{3}
(3) Much greater than NH_{3}
(4) Slightly greater than NH_{3}
689. The bond angle is minimum in
(1) $\mathrm{H}_{2} \mathrm{Te}$
(2) $\mathrm{H}_{2} \mathrm{Se}$
(3) $\mathrm{H}_{2} \mathrm{O}$
(4) $\mathrm{H}_{2} \mathrm{~S}$
690. The smallest bond angle is found in
(1) IF_{7}
(2) CH_{4}
(3) BeF_{2}
(4) BF_{3}
691. As the s-character of hybridisation orbital increases, the bond angle
(1) Increases
(2) Decreases
(3) Becomes zero
(4) Does not change

692 In which of the following species is the interatomic bond angle is $109^{\circ} 28^{\prime}$
(1) $\mathrm{NH}_{3},\left(\mathrm{BF}_{4}\right)^{-1}$
(2) $\left(\mathrm{NH}_{4}\right)^{+}, \mathrm{BF}_{3}$
(3) $\mathrm{NH}_{3}, \mathrm{BF}_{4}$
(4) $\left(\mathrm{NH}_{2}\right)^{-1}, \mathrm{BF}_{3}$
693. The molecule of CO_{2} has 180° bond angle. It can be explained on the basis of
(1) sp^{3} hybridisation
(2) sp^{2} hybridisation
(3) sp hybridisation
(4) $\mathrm{d}^{2} \mathrm{sp}^{3}$ hybridisation
694. Among the following orbital/bonds, the angle is minimum between:
(1) sp^{3} bonds
(2) p_{x} and p_{y} orbitals
(3) $\mathrm{H}-\mathrm{O}-\mathrm{H}$ in water
(4) sp bonds
695. The compound MX_{4} is tetrahedral. The number of $<X M X$ angles in the compound is
(1) Three
(2) Four
(3) Five
(4) Six
696. Select the correct order of bond angle in SeOCl_{2}

(1) $x>y$
(2) $x<y$
(3) $x=y$
(4) Can't predict
697. Which compound has the smallest bond angle is each series.
(i) (P) OSF_{2}
(Q) OSCl_{2}
(R) OSBr_{2}
(ii) (P) SbCl_{3}
(Q) SbBr_{3}
(R) SbI_{3}
(iii)
(P) PI_{3}
(Q) AsI_{3}
(R) SbI_{3}
(1) P, P, R
(2) P, R, R
(3) P, P, P
(4) P, R, P
698. Which of the following statement is correct about PCl_{3} ?
(1) $\mathrm{P}-\mathrm{Cl}_{\mathrm{ax}}$ is longer than $\mathrm{P}-\mathrm{Cl}_{\text {eq }}$.
(2) All the hybrid orbitals of P -atom having bond pairs are identical to each other
(3) $\mathrm{P}-\mathrm{Cl}_{\mathrm{ax}}$ is shorter than $\mathrm{P}-\mathrm{Cl}_{\text {eq }}$.
(4) Maximum 4 atoms in a plane and 4 such planes are present

699 The element A has 3 electrons in valence shell and its principal quantum number for last electron is 2 and element B has 7 electrons in valence shell and its principal quantum number for last electron is 3 . Which option is true for compound of element A and B .
(1) Compound is AB_{3} type
(2) Compound is nonplanar
(3) Compound has 107° bond angle.
(4) All are correct

700 Select the correct statement regarding XeO_{4} and IO_{4}^{-}.
(1) both are isoelectronic.
(2) both have equal number of pp-dp bonds.
(3) both have different shapes.
(4) $\angle \mathrm{OXeO}$ and $\angle \mathrm{OIO}$ are different bond angles.
701. The correct statement for the reaction -
$\mathrm{NH}_{3}+\mathrm{H}^{+} \rightarrow \mathrm{NH}_{4}{ }^{+}$:
(1) Hybridisation state is changed
(2) Bond angle increases
(3) NH_{3} act as a Lewis acid
(4) Regular geometry is changed
702. In compounds X, all the bond angles are exactly $109^{\circ} 28^{\prime} . X$ is:
(1) Chloromethane
(2) Carbon tetrachloride
(3) Iodoform
(4) Chloroform
703. When p-character of hybridised orbital (formed by s and p orbitals) increases. Then the bond angle
(1) Decreases
(2) Increases
(3) Becomes twice (4) Remains unaltered
704. Which of the following molecules has two lone pairs and bond angle (need not be all bond angles) $<109.5^{\circ}$?
(1) SF_{2}
(2) KrF_{4}
(3) ICl_{4}^{-}
(4) All of these
705. The correct order of bond angle is:
(1) $\mathrm{H}_{2} \mathrm{~S}<\mathrm{NH}_{3}<\mathrm{BF}_{3}<\mathrm{CH}_{4}$
(2) $\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{CH}_{4}<\mathrm{BF}_{3}$
(3) $\mathrm{H}_{2} \mathrm{~S}<\mathrm{NH}_{3}<\mathrm{CH}_{4}<\mathrm{BF}_{3}$
(4) $\mathrm{H}_{2} \mathrm{~S}<\mathrm{CH}_{4}<\mathrm{NH}_{3}<\mathrm{BF}_{3}$
706. In which of the following molecules are all the bonds not equal?
(1) NF_{3}
(2) ClF_{3}
(3) BF_{3}
(4) AlF_{3}
707. Which of the following order of bond angle is CORRECT.
(1) $\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{SbH}_{3}$
(2) $\mathrm{H}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{H}_{2} \mathrm{Se}<\mathrm{H}_{2} \mathrm{Te}$
(3) $\mathrm{OF}_{2}<\mathrm{H}_{2} \mathrm{O}<\mathrm{Cl}_{2} \mathrm{O}$
(4) $\mathrm{SiF}_{4}<\mathrm{SiCl}_{4}<\mathrm{SiBr}_{4}<\mathrm{SiI}_{4}$
708. Consider the following compounds:
(I) ClF_{3}
(II) BrF_{3}

The order of the angles between axial and equatorial bond pairs is
(1) I $>$ II
(2) I $<$ II
(3) I = II
(4) none
709. In which of the following is the angle between the two covalent bonds greatest:
(1) CO_{2}
(2) CH_{4}
(3) NH_{3}
(4) $\mathrm{H}_{2} \mathrm{O}$
710. The bond angle in PH_{3} would be expected to be close to
(1) 90°
(2) 105°
(3) 109°
(4) 120°
711. Which of the following is the correct reducing order of bond-angle
(1) $\mathrm{NH}_{3}<\mathrm{CH}_{4}<\mathrm{C}_{2} \mathrm{H}_{2}<\mathrm{H}_{2} \mathrm{O}$
(2) $\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}<\mathrm{CH}_{4}<\mathrm{C}_{2} \mathrm{H}_{2}$
(3) $\mathrm{C}_{2} \mathrm{H}_{2}<\mathrm{CH}_{4}<\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}$
(4) $\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{O}<\mathrm{CH}_{4}<\mathrm{C}_{2} \mathrm{H}_{2}$
712. Maximum bond angle is present in
(1) BCl_{3}
(2) BBr_{3}
(3) BF_{3}
(4) Same for all
713. Select the correct order for bond angle.
(1) $\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{NH}_{3}<\mathrm{SbH}_{3}$
(2) $\mathrm{F}_{2} \mathrm{O}<\mathrm{H}_{2} \mathrm{O}<\mathrm{Cl}_{2} \mathrm{O}$
(3) $\mathrm{SbI}_{3}<\mathrm{SbBr}_{3}<\mathrm{SbCl}_{3}$
(4) $\mathrm{BF}_{3}>\mathrm{BCl}_{3}>\mathrm{BBr}_{3}$
714. $\mathrm{CO}_{3}{ }^{2-}$ anion does not have which of the following characteristics
(1) Bonds of unequal length
(2) sp^{2} hybridisation of C atom
(3) Resonance stabilization
(4) Same bond angles.
715. Which order of decreasing bond angle is correct: -
(1) $\mathrm{CCl} 4>\mathrm{BF} 3>$
(2) $\mathrm{NH} 3>\mathrm{NCl} 3>\mathrm{NBr} 3$
(3) $\mathrm{Br} 2 \mathrm{O}>\mathrm{Cl} 2 \mathrm{O}>\mathrm{OF} 2$
(4) $\mathrm{PCl} 3>\mathrm{PBr} 3>\mathrm{PI} 3$
716. The correct order of bond angles (smallest first) in $\mathrm{H}_{2} \mathrm{~S}, \mathrm{NH}_{3}, \mathrm{BF}_{3}$ and SiH_{4} is
(1) $\mathrm{H}_{2} \mathrm{~S}<\mathrm{NH}_{3}<\mathrm{SiH}_{4}<\mathrm{BF}_{3}$
(2) $\mathrm{NH}_{3}<\mathrm{H}_{2} \mathrm{~S}<\mathrm{SiH}_{4}<\mathrm{BF}_{3}$
(3) $\mathrm{H}_{2} \mathrm{~S}<\mathrm{SIH}_{4}<\mathrm{NH}_{3}<\mathrm{BF}_{3}$
(4) $\mathrm{H}_{2} \mathrm{~S}<\mathrm{NH}_{3}<\mathrm{BF}_{3}<\mathrm{SiH}_{4}$
717. The bond angles of $\mathrm{NH}_{3}, \mathrm{NH}_{4}^{+}$and $\mathrm{NH}_{2}-$ are in the order -
(1) $\mathrm{NH}_{2}->\mathrm{NH}_{3}>\mathrm{NH}_{4}^{+}$
(2) $\mathrm{NH}_{4}{ }^{+}>\mathrm{NH}_{3}>\mathrm{NH}_{2}$
(3) $\mathrm{NH}_{3}>\mathrm{NH}_{2}^{-}>\mathrm{NH}_{4}^{+}$
(4) $\mathrm{NH}_{3}>\mathrm{NH}_{4}^{+}>\mathrm{NH}_{2}^{-}$
718. Bond angle in $\mathrm{H}_{2} \mathrm{O}$ is 104.5°; then bond in $\mathrm{Cl}_{2} \mathrm{O}$ should be -
(1) 104.5°
(2) 101°
(3) $109^{\circ} 28^{\prime}$
(4) 110.8°
719. Correct order of bond angles is -
(1) $\mathrm{PF}_{3}<\mathrm{PCl}_{3}<\mathrm{PBr}_{3}<\mathrm{PI}_{3}$
(2) $\mathrm{PF}_{3}<\mathrm{PBr}_{3}<\mathrm{PI}_{3}<\mathrm{PCl}_{3}$
(3) $\mathrm{PCl}_{3}<\mathrm{PF}_{3}<\mathrm{PBr}_{3}<\mathrm{PI}_{3}$
(4) $\mathrm{PCl}_{3}<\mathrm{PBr}_{3}<\mathrm{PF}_{3}<\mathrm{PI}_{3}$
720. Correct order of bond angle is -
(1) $\mathrm{PF}_{3}<\mathrm{PH}_{3}$
(2) $\mathrm{PH}_{3}<\mathrm{PF}_{3}$
(3) $\mathrm{PF}_{3}=\mathrm{PH}_{3}$
(4) Cannot be predicted
721. Which statement is correct for $\mathrm{N}_{3}{ }^{-}$ion.
(1) It is bent molecule
(2) Bond angle is $<120^{\circ}$
(3) Central atom is sp^{2} hybridized
(4) None of these
722. Consider the following molecules.
$\mathrm{H}_{2} \mathrm{O} \quad \mathrm{H}_{2} \mathrm{~S} \quad \mathrm{H}_{2} \mathrm{Se} \quad \mathrm{H}_{2} \mathrm{Te}$
I II III IV
Arrange these molecules in increasing order of bond angles.
(1) I $<$ II $<$ III $<$ IV
(2) IV $<$ III $<$ II $<$ I
(3) I $<$ II $<$ IV $<$ III
(4) II $<$ IV $<$ III $<$ I
723. In which of the following bond angle is maximum
(1) NH_{3}
(2) NH_{4}^{+}
(3) PCl_{3}
(4) SCl_{2}
724. In which of the following central atom is unhybridized?
(1) $\mathrm{S}\left(\mathrm{CH}_{3}\right)_{2}$
(2) SO_{2}
(3) SiH_{4}
(4) PCl_{3}
725. The order of bond angle in $\mathrm{NH}_{3}, \mathrm{PH}_{3}$ and AsH_{3} is:
(1) $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}$
(2) $\mathrm{PH}_{3}>\mathrm{NH}_{3}>\mathrm{AsH}_{3}$
(3) $\mathrm{AsH}_{3}>\mathrm{PH}_{3}>\mathrm{NH}_{3}$
(4) $\mathrm{PH}_{3}=\mathrm{NH}_{3}<\mathrm{AsH}_{3}$
726. The bond angle in water molecule is nearly:
(1) 120°
(2) 180°
(3) $109^{\circ} 28^{\prime}$
(4) $104^{\circ} 30^{\prime}$
727. A molecule is formed by $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridisation. Bond angle in it is:
(1) 90°
(2) $109^{\circ} 28^{\prime}$
(3) 90° and 120°
(4) 120°
728. In which of the following species the angle around the central atom is exactly equal to $109^{\circ} 28^{\prime}$:
(1) SF_{4}
(2) NH_{3}
(3) NH_{4}^{+}
(4) None
729. The bond angles of NH_{3}, and $\mathrm{NH}_{4}{ }^{+}$are in the order:
(1) $\mathrm{NH}_{3}>\mathrm{NH}_{4}^{+}>\mathrm{NH}_{2}^{-}$
(2) $\mathrm{NH}_{3}>\mathrm{NH}_{2}^{-}>\mathrm{NH}_{4}^{+}$
(3) $\mathrm{NH}_{4}^{+}>\mathrm{NH}_{3}>\mathrm{NH}_{2}^{-}$
(4) $\mathrm{NH}_{2}->\mathrm{NH}_{3}>\mathrm{NH}_{4}^{+}$
730. Which of the following set contains species having same angle around the central atom:
(1) $\mathrm{SF}_{4}, \mathrm{CH}_{4}, \mathrm{NH}_{3}$
(2) $\mathrm{NF}_{3}, \mathrm{BCl}_{3}, \mathrm{NH}_{3}$
(3) $\mathrm{BF}_{3}, \mathrm{NF}_{3}, \mathrm{AlCl}_{3}$
(4) $\mathrm{BF}_{3} \mathrm{BCl}_{3}, \mathrm{BBr}_{3}$
731. The order of increasing bond angle in the molecules $\mathrm{BeCl}_{2}, \mathrm{BCl}_{3}, \mathrm{CCl}_{4}$ and SF_{6} is:
(1) $\mathrm{SF}_{6}<\mathrm{CCl}_{4}<\mathrm{BCl}_{3}<\mathrm{BeCl}_{2}$
(2) $\mathrm{BeCl}_{2}<\mathrm{BCl}_{3}<\mathrm{CCl}_{4}<\mathrm{SF}_{6}$
(3) $\mathrm{SF}_{6}<\mathrm{CCl}_{4}<\mathrm{BeCl}_{2}<\mathrm{BCl}_{3}$
(4) $\mathrm{BCl}_{3}<\mathrm{BeCl}_{2}<\mathrm{SF}_{6}<\mathrm{CCl}_{4}$
732. In compounds X, all the bond angles are exactly $109^{\circ} 28^{\prime}$. X is -
(1) Chloromethane
(2) Carbon tetrachloride
(3) Iodoform
(4) Chloroform
733. Among the following orbital/bonds, the angle is minimum between (1) sp^{3} bonds (2) p_{x} and p_{y} orbitals (3) $\mathrm{H}-\mathrm{O}-\mathrm{H}$ in water (4) sp bonds
734. When p-character of hybridised orbital (formed by s and p orbitals) increases. Then the bond angle -
(1) Decreases (2) Increases (3) Becomes twice (4) Remains unaltered
735. Which is not correct:
(1) Bond angle $\mathrm{H}-\mathrm{S}-\mathrm{H}<\mathrm{H}-\mathrm{OH}$
(2) Bond angle $\mathrm{F}-\mathrm{O}-\mathrm{F}<\mathrm{Cl}-\mathrm{O}-\mathrm{Cl}$
(3) Bond angle $\mathrm{H}-\mathrm{P}-\mathrm{H}<\mathrm{H}-\mathrm{N}-\mathrm{H}$
(4) Bond angle $\mathrm{Cl}-\mathrm{Sn}-\mathrm{Cl}>\mathrm{Cl}-\mathrm{Hg}-\mathrm{Cl}$
736. When NH_{3} is treated with $\mathrm{HCl}, \mathrm{H}-\mathrm{N}-\mathrm{H}$ bond angle
(1) Increases
(2) Decreases
(3) Remains same
(4) Depends upon temperature
737. The correct order of the bond angles is: -
(1) $\mathrm{NH}_{3}>\mathrm{H}_{2} \mathrm{O}>\mathrm{PH}_{3}>\mathrm{H}_{2} \mathrm{~S}$
(2) $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}$
(3) $\mathrm{NH}_{3}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{PH}_{3}>\mathrm{H}_{2} \mathrm{O}$
(4) $\mathrm{PH}_{3}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{NH}_{3}>\mathrm{H}_{2} \mathrm{O}$
738. The correct increasing bond angle among $\mathrm{BF}_{3}, \mathrm{PF}_{3}$ and ClF_{3} follows the order: -
(1) $\mathrm{BF}_{3}<\mathrm{PF}_{3}<\mathrm{ClF}_{3}$
(2) $\mathrm{PF}_{3}<\mathrm{BF}_{3}<\mathrm{ClF}_{3}$
(3) $\mathrm{ClF}_{3}<\mathrm{PF}_{3}<\mathrm{BF}_{3}$
(4) $\mathrm{BF}_{3}=\mathrm{PF}_{3}=\mathrm{ClF}_{3}$
739. Among the following orbital bonds, the angle is minimum between: -
(1) sp^{3} bonds
(2) p_{x} and p_{y} orbitals
(3) $\mathrm{H}-\mathrm{O}-\mathrm{H}$ in water
(4) sp bonds
740. The correct order of increasing $\mathrm{X}-\mathrm{O}-\mathrm{X}$ bond angle is $(\mathrm{X}=\mathrm{H}, \mathrm{F}$ or Cl)
(1) $\mathrm{H}_{2} \mathrm{O}>\mathrm{Cl}_{2} \mathrm{O}>\mathrm{F}_{2} \mathrm{O}$
(2) $\mathrm{Cl}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{O}>\mathrm{F}_{2} \mathrm{O}$
(3) $\mathrm{F}_{2} \mathrm{O}>\mathrm{Cl}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{O}$
(4) $\mathrm{F}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{O}>\mathrm{Cl}_{2} \mathrm{O}$
741. Which of the following has maximum bond energy?
(1) $\mathrm{H}-\mathrm{O}-\mathrm{H}$
(2) $\mathrm{H}-\mathrm{S}-\mathrm{H}$
(3) $\mathrm{H}-\mathrm{Te}-\mathrm{H}$
(4) $\mathrm{H}-\mathrm{Se}-\mathrm{H}$
742. Which of the following hypothesis justifies that the bond angle of $\mathrm{H}_{2} \mathrm{~S}$ is 92° ?
(1) Lewis's structure
(2) Valence bond theory
(3) Valance bond concept of hybrid orbitals
(4) Octet rule
743. If s character decreases in hybrid orbital, then bond angle
(1) decreases
(2) increases
(3) remains uncertain
(4) all are wrong
744. Incorrect information about $\mathrm{Cl}_{2} \mathrm{O}$ is
(1) angular structure
(2) 110° bond angle
(3) four lone pairs
(4) two σ bonds
745. Select the correct order of bond angle of the following species.
$\mathrm{ClO}_{3}^{-}, \mathrm{BrO}_{3}^{-}, \mathrm{IO}_{3}^{-}$
(1) $\mathrm{BrO}_{3}^{-}>\mathrm{IO}_{3}^{-}>\mathrm{ClO}_{3}{ }^{-}$
(2) $\mathrm{ClO}_{3}^{-}>\mathrm{BrO}_{3}^{-}>\mathrm{IO}_{3}{ }^{-}$
(3) $\mathrm{IO}_{3}^{-}>\mathrm{BrO}_{3}^{-}>\mathrm{ClO}_{3}^{-}$
(4) $\mathrm{IO}_{3}^{-}<\mathrm{BrO}_{3}^{-}>\mathrm{ClO}_{3}^{-}$
746. The total right angled $\angle \mathrm{ClPCl}$ are present in $\mathrm{PCl}_{5}, \mathrm{PCl}_{4}^{+}, \mathrm{PCl}_{6}^{-}-$ respectively.
(1) $0,1,4$
(2) $6,0,4$
(3) $2,4,0$
(4) $6,0,12$
747. If hybridisation is absent in NH_{3} and pure orbitals involved in bonding then select the incorrect statement.
(1) All bonds have equal strength
(2) Shape of NH_{3} will be pyramidal
(3) All $\angle \mathrm{HNH}$ angles are 90°
(4) All $\angle \mathrm{HNH}$ angles are 107°
748. Which of the following has 90° bond angle in its structure?
(1) IF_{7}
(2) SF_{6}
(3) PCl_{5}
(4) All
749. The correct order of OPX bond angle is $(\mathrm{X}=\mathrm{F}, \mathrm{Cl}, \mathrm{Br})$:
(1) $\mathrm{POF}_{3}>\mathrm{POCl}_{3}>\mathrm{POBr}_{3}$
(2) $\mathrm{POF}_{3}<\mathrm{POCl}_{3}<\mathrm{POBr}_{3}$
(3) $\mathrm{POF}_{3}=\mathrm{POCl}_{3}=\mathrm{POBr}_{3}$
(4) $\mathrm{POCl}_{3}>\mathrm{POF}_{3}>\mathrm{POBr}_{3}$
750. Which of the following has maximum bond angle?
(1) NF_{3}
(2) NCl_{3}
(3) PCl_{3}
(4) OF_{2}
751. Which of the following has minimum bond angle about oxygen?
(1) OF_{2}
(2) OCl_{2}
(3) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$
(4) $\mathrm{H}_{2} \mathrm{O}$
752. The correct order of bond angle is
(1) $\mathrm{PF}_{3}<\mathrm{PCl}_{3}<\mathrm{PI}_{3}<\mathrm{PBr}_{3}$
(2) $\mathrm{PF}_{3}<\mathrm{PCl}_{3}<\mathrm{PBr}_{3}<\mathrm{PI}_{3}$
(3) $\mathrm{PF}_{3}>\mathrm{PCl}_{3}>\mathrm{PBr}_{3}>\mathrm{PI}_{3}$
(4) $\mathrm{PCl}_{3}>\mathrm{PF}_{3}>\mathrm{PBr}_{3}>\mathrm{PI}_{3}$
753. Which of the following has all equal bond angles?
(1) $\mathrm{CH}_{3} \mathrm{Cl}$
(2) $\mathrm{CH}_{2} \mathrm{~F}_{2}$
(3) NH_{3}
(4) $\mathrm{NH}_{2}-\mathrm{OH}$
754. In which of the following $\mathrm{O}-\mathrm{N}-\mathrm{O}$ bond angle is highest?
(1) $\mathrm{NO}_{2}{ }^{+}$
(2) $\mathrm{NO}_{3}{ }^{-}$
(3) NO_{2}^{-}
(4) None
755. Which of the following tri-atomic planar species have bond angle greater than 104° and less than bond angle in perfectly tetrahedral species?
(1) OCl_{2}
(2) NH_{3}
(3) OF_{2}
(4) OH_{2}
756. $\angle \mathrm{HBH}$ is BH_{4}^{-}is almost
(1) 180°
(2) 120°
(3) 109°
(4) 90°
757. In which of the following the $\mathrm{O}-\mathrm{N}-\mathrm{O}$ bond angle is highest.
(1) $\mathrm{N}_{2} \mathrm{O}_{4}$
(2) $\mathrm{NO}_{2}{ }^{+}$
(3) NO_{2}^{-}
(4) $\mathrm{NO}_{3}{ }^{-}$
758. Arrange the following species according to their bond angle order.
(I) O_{3}
(II) NO_{2}^{-}
(III) FNO
(1) I $>$ II $>$ III
(2) II $>$ I $>$ III
(3) III $>$ II $>$ I
(4) II $>$ III $>$ I
759. Arrange the following species according to their bond angle order.
(I) O_{3}
(II) NO_{2}^{-}
(III) FNO
(1) I $>$ II $>$ III
(2) II $>$ I $>$ III
(3) III $>$ II $>$ I
(4) II $>$ III $>$ I
760. Which of following statements is/are correct regarding IF_{5} molecule.
(I) There is only one lone pair present in equatorial position.
(II) All \angle FIF angles are identical.
(III) There are eight faces in this molecule.
(IV) The number $\angle \mathrm{FIF}$ angles less than 90° is 8.
(1) I, II and III
(2) II, III and IV
(3) III and IV
(4) III only
761. If hybridisation is absent in NH_{3} and pure orbitals involved in bonding then select the incorrect statement.
(1) All bonds have equal strength
(2) Shape of NH_{3} will be pyramidal
(3) All $\angle \mathrm{HNH}$ angles are 90°
(4) All $\angle \mathrm{HNH}$ angles are 107°
762. Which of the following has 90° bond angle in its structure?
(1) IF_{7}
(2) SF_{6}
(3) PCl_{5}
(4) All
763. The number of 90° angle in SF_{6} are:
(1) 4
(2) 8
(3) 12
(4) 16
764. Which of the following has maximum bond angle?
(1) NF_{3}
(2) NCl_{3}
(3) PCl_{3}
(4) OF_{2}
765. Which of the following has minimum bond angle about oxygen?
(1) OF_{2}
(2) OCl_{2}
(3) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{O}$
(4) $\mathrm{H}_{2} \mathrm{O}$
766. In compound X, all the bond angles are exactly $109^{\circ}, 28^{\prime} \mathrm{X}$ is
(1) Chloromethane
(2) Iodoform
(3) Carbon tetrachloride
(4) Chloroform
767. Select the property which do(es) not follow the following order for NX_{3} (X = halogen). $\quad \mathrm{NF}_{3}<\mathrm{NCl}_{3}<\mathrm{NBr}_{3}<\mathrm{NI}_{3}$
(1) XNX bond angle
(2) NX bond length
(3) $\mathrm{N}-\mathrm{X}$ bond polarity
(4) All of these
768. The bond angle in PH_{3} would be expected to be close to
(1) 90°
(2) 105^{0}
(3) 109^{0}
(4) 120°
769. Which has the least bond angle
(1) NH_{3}
(2) BeF_{2}
(3) $\mathrm{H}_{2} \mathrm{O}$
(4) CH_{4}
770. Which has maximum bond angle
(1) CHF_{3}
(2) CHCl_{3}
(3) CHBr_{3}
(4) All have maximum bond angle
771. In which of the following is the angle between the two covalent bonds greatest
(1) CO_{2}
(2) CH_{4}
(3) NH_{3}
(4) $\mathrm{H}_{2} \mathrm{O}$
772. As the s-character of hybridized orbital decreases, the bond angle
(1) Decreases
(2) Increases
(3) Does not change
(4) Becomes zero
773. The bond angle between $\mathrm{H}-\mathrm{O}-\mathrm{H}$ in ice is closest to
(1) $120^{\circ} 28^{\prime}$
(2) 60°
(3) 90°
(4) 105^{0}
774. Which of the following is the correct reducing order of bond-angle
(1) $\mathrm{NH}_{3}<\mathrm{CH}_{4}<\mathrm{C}_{2} \mathrm{H}_{2}<\mathrm{H}_{2} \mathrm{O}$
(2) $\mathrm{C}_{2} \mathrm{H}_{2}>\mathrm{NH}_{3}>\mathrm{H}_{2} \mathrm{O}<\mathrm{CH}_{4}$
(3) $\mathrm{NH}_{3}>\mathrm{H}_{2} \mathrm{O}>\mathrm{CH}_{4}<\mathrm{C}_{2} \mathrm{H}_{2}$
(4) $\mathrm{H}_{2} \mathrm{O}<\mathrm{NH}_{3}>\mathrm{CH}_{4}<\mathrm{C}_{2} \mathrm{H}_{2}$
775. Which compound has bond angle nearly to 90°
(1) $\mathrm{H}_{2} \mathrm{O}$
(2) $\mathrm{H}_{2} \mathrm{~S}$
(3) NH_{3}
(4) CH_{4}
776. The bond angle of water is 1045^{0} due to
(1) Repulsion between lone pair and bond pair
(2) $S P^{3}$ hybridization of O
(3) Bonding of $\mathrm{H}_{2} \mathrm{O}$
(4) Higher electronegativity of O
777. The correct sequence of decrease in the bond angle of the following hybrids is
(1) $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}$
(2) $\mathrm{NH}_{3}>\mathrm{AsH}_{3}>\mathrm{PH}_{3}>\mathrm{SbH}_{3}$
(3) $\mathrm{SbH}_{3}>\mathrm{AsH}_{3}>\mathrm{PH}_{3}>\mathrm{NH}_{3}$
(4) $\mathrm{PH}_{3}>\mathrm{NH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}$
778. True order of bond angle is
(1) $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{Te}$
(2) $\mathrm{H}_{2} \mathrm{Te}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{O}$
(3) $\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{Te}$
(4) $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{Te}>\mathrm{H}_{2} \mathrm{Se}$
779. Maximum bond angle is present in
(1) BeCl_{3}
(2) BBr_{3}
(3) BF_{3}
(4) Same for all
780. The largest bond angle is in
(1) AsH_{3}
(2) NH_{3}
(3) $\mathrm{H}_{2} \mathrm{O}$
(4) PH_{3}
781. The bond angle in ammonia molecule is
(1) $91^{0} 8^{\prime}$
(2) $93^{\circ} 3^{\prime}$
(3) $106^{0} 45^{\prime}$
(4) $109^{0} 28^{\prime}$
782. The maximum number of 90° angles between bond pair-bond pair of electrons are observed in
(1) dsp^{2} hybridization
(2) $\mathrm{sp}^{3} \mathrm{~d}$ hybridization
(3) dsp ${ }^{3}$ hybridization
(4) $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridization
783. Among the following molecules which one have smallest bond angle
(1) NH_{3}
(2) PH_{3}
(3) $\mathrm{H}_{2} \mathrm{O}$
(4) $\mathrm{H}_{2} \mathrm{~S}$
784. As the P-character increases, the bond angle in hybrid orbitals formed by s and atomic orbitals
(1) Decreases
(2) Increases
(3) Doubles
(4) Remains unchanged

