Basic computer operation and organization

A computer manipulates binary coded data and respondsto events
occurring in the external world (users, other devices, network). This
Iscalled a stored-program, or a Von-Neumann machine ar chitecture:

— Memory isused to store both program instructions and data
(thisisthe core of the Von-Neumann ar chitecture).

— Program instructions are binary coded data which tell the
computer to do something, i.e. add two numberstogether.

— Dataissmply information to be used by the program, i.e. two
numbersto be added together.

— A central processing unit (CPU) with the following tasks:

* Fetching instruction(s) and/or data from memory
* Decodingtheinstruction(s)
« Performingtheindicated sequence of operations

EECC250 - Shaaban

#1 Lec#1 Winter99 11-29-99

The Von-Neumann Computer Model
o Partitioning of the computing engine into components:.

— Central Processing Unit (CPU): Control Unit (instruction decode, sequencing
of operations), Datapath (registers, arithmetic and logic unit, buses).

— Memory: Instruction and operand storage
— Input/Output (1/0)

— Thestored program concept: Instructions from an instruction set are fetched
from a common memory and executed one at atime

Memory
- 9 9
(instructions,
data) Datapath
registers Output
ALU, buses
Computer System CPU |/O Devices

EECC250 - Shaaban }

#2 Lec#1 Winter99 11-29-99

Central Processing Unit (CPU)

Control Arithmetic Logic

Unit Unit (ALU) Registers

Control unit
— Decodesthe program instructions.

— Hasa program counter which containsthe location of the next
instruction to be executed.

— Hasa statusregister which monitorsthe execution of instructions and
keepstrack of overflows, carries, borrows, etc.

e Arithmetic Logic Unit

— Carriesout thelogic and arithmetic operationsasrequired for
instructions decoded by the control unit.

Registers:
— Program counter, statusregisters, stack pointer for subroutine use.

— A number of general-purposeregistersaccessed by instructionsto store
addresses, instruction operands, and AL U results

EECC250 - Shaaban

#3 Lec#1 Winter99 11-29-99

Vertical Grid Organization of Memory

address <«— 8 bitswide —» address
$000000 $000000
$000001 $000002
$000002 $000004
: : OR
| |
I I
| |
I I
I I
| |
$FFFFFF $FFFFFE

Thememory grids above represent

44— 16 bhitswide ———»

$FFFFFF = 224 = 16,777,216 bytes of memory

EECC250 - Shaaban

#4 Lec#1 Winter99 11-29-99

Computer Data Storage Units

Bit - Smallest quantity of information that can be
manipulated inside a computer; valueiseither Oor 1.

Byte - Defined to be a group of 8 bits; typically the
minimum sizerequired to store a character.

Word - Basic unit of information stored in memory and
processed by a computer. Typical computer word lengths
are 16, 32 and 64 bits.

For the 68000, aword is 16-bits, and along word is 32 bits.

Words and long wordsin the 68000 must start at even
memory addresses (e.g. $1000 isallowed, but $1001
produces a memory alignment error).

EECC250 - Shaaban

#5 Lec#1 Winter99 11-29-99

68000 Architecture

ot
| 16 data lines

clock ———m /]—I\
N—

Speecial pumpose lines: R
DTACK* 62000 e MEMORY

HALT*

RESET* |
interrupl control,

processor status, system

ConTol
|IPL2%,|PL1%,|FLO* 23 address lines

LS arteibalion,

synchrohous and

2?; ;L; Tm NS Bus ground
FC2,FC1,FCO

EECC250 - Shaaban

#6 Lec#1 Winter99 11-29-99

Yo Addres=s
S0 bz, A1-A23
. CLE
lnout — L
! DoL15
2 £ X
a E | 50 e
PROCESSOR | FCO - | A
STATUS F g & ns, ASYNCHROMOUS
Fod & g LLS BLUS COMNTROL
RSO0 E e — - —
Fad _
EEE'TF;:H(EFAL i = | BF pu- BUS AREITRATICH
YEA %E CONTROL
SWSTEM | EBERR CEELI
CONTROL | FEZET e JWTERRLEL
HALT - COMNTROL
——fon —
Pin MName Dezcriptions
DO-D15 Data Bus
Al_—AES Address Bus
A0 Address BtrobelIndicates walue on address bus is walid)
R W Read ¥rite contool
UbDs , LD3 pper bvte, Lower byvte Data Stmobes
DTACE Data Transfer Acknowledge
FCO-FC2 Function Code (atatus) options
LE pysterm Clock

EECC250 - Shaaban

#7 Lec#1 Winter99 11-29-99

0o
By
02
03
[
0=
Bl
O

A0
A1
42
43
A4
A5
A6

a1

16 15 =

3l

16 1% =M

A7

user stack poinber

swstern stack poinker

23

[rROgrarm Counber

68000 | nternal
Register
Organization

< Dataregisters

< Addressregisters
15 = I

swstem bywbe | user byvbe

A

Statusregister
< Stack pointers

<« Program counter

EECC250 - Shaaban

#8 Lec#1 Winter99 11-29-99

Status Register:

16-bit status register

Condition Code Register
(CCR)

15 g 7 0
syskems information CCR
7 5] 2 4 3 2 1 0
bits function
16,5 hot used
4 extend bit
retains carry bit for multi-word
arithmetic
3 negative
set to 1 if instruction result is
hegative, set to 0 if positive
2 Zero
setto1ifresultis 0
1 averflow
set if sighed overflow occurs
0 carndborrow

EECC250 - Shaaban

#9 Lec#1 Winter99 11-29-99

Status Register: The System Part

15 14 13 12 11 10 9 8
T S l2 | 11] la
bits function
11,12,14 hot used
8910 interrupt mask
a priority scheme to determine
who has control of the
computer
13 supervisor
setto 0 if user, setto 1 if
sUpervisor
19 trace

set to 1 if program is to be
single stepped

EECC250 - Shaaban

1_

#10 Lec#1 Winter99 11-29-99

Description of 68000 Registers

Program Counter (PC) - pointsto the next instruction to be executed (24 bits).

General Purpose Registers- DO through D7
— Called "general purpose" becauseregisterscan each perform the same range of functions.
— 32 bitswide, but can be divided into 2 words or 4 bytes.

— Bitsin thedataregister have an arbitrary meaning; e.g., two's complement number,
unsigned integer, or ASCIIl characters.

— Word operations applied to theseregisters can only usethe low order 16 bits (d,z...d,).
— Byteoperations applied to these registers can only use the low order 8 bits(d-...d,).

Address Registers- AOthrough A7

— Called "addressregisters' becausethey are always used to store the address of a memory
location. 32 bitswide, but cannot be subdivided.

— AOthrough A6 can be used asyou seefit; however, A7 isthe stack pointer which isneeded
to keep track of subroutine return addresses. Therefore, you should not use A7 explicitly.

CCR Register Containsthefollowing flags:
X eXtend flag (smilar to the carry flag)
N - Negativeflag - trueif first bit 1 (sign bit or MSB of result is= 1)
Z Zeroflag-trueif all bitsO (resultisequal to zero).
V oVerflowflag (2'scomplement overflow)
C - Carryflag (carry out bit from an arithmetic operation).
Certain operations effect all bits; e.g., arithmetic. Certain operations effect only some of the

bits (e.g., Logical operationsdo not effect overflow or carry). Certain operations do not effect

any of thebits(e.g., exchangeregisters).
. it EECC250 - Shaaban JI-

#11 Lec#1 Winter99 11-29-99

Computer Instruction Set Architecture (1SA)
& Assembly Language

e Instruction Set Architecture (1SA) of the Microprocessor:

Assembly language programmer's view of the processor.

e Machine Code;

CPU language comprised of computer instructionsthat
controlsthe primitive operationson binary data within the
computer, including:

« Data movement and copying instructions

o Arithmetic operations (e.g., addition and subtraction);

e Logicinstructions:. AND, OR, XOR, shift operations, etc.
e Control instructions. Jumps, Branching,

e Assembly Language:

Human-readable representation of the binary code executed
by the computer.

EECC250 - Shaaban }

#12 Lec#1 Winter99 11-29-99

Computer Organization Layers

The computer may be organized into the following layers:

— Application level language

— High level language

— Low leve language

— Hardware - may include microcode.

Consider the case of a word processing program:

— Thehigh level commands:.

* (save, undo, bold, center, etc.) represent the application level
language.

— Thehigh level language might be:
» Pascal, C/C++ or Java.
— Thelow level language might be:

« 68000 or Intel x86 assembler or the proper assembly language for
the CPU in use.

EECC250 - Shaaban }

#13 Lec#1 Winter99 11-29-99

Basic Assembly Program Structure

« Assembly language is made up of two types of statements:

— Executable Instruction:

One of the processor'svalid instructions which can be
trandated into machine code form by the assembler.

— Assembler Directive:

|nform the assembler about the program and the
environment and cannot betrandated into machine code.

e Link symbolic namesto actual values.
o Set up pre-defined constants.

» Allocate storage for datain memory.
e Control the assembly process.

EECC250 - Shaaban }

#14 Lec#1 Winter99 11-29-99

Assembler Directives. EQU Directive

 Theequatedirective, EQU smply linksa nameto a value
In order to make a program easier toread. It does not
reserve spacein memory. For example:

BACK SP EQU $08
CAR RET EQU $0D

« The EQU directive may include expressionsaswell as
litrals provided all elements of the expression have
already been defined.:

Length EQU 30
Width EQU 25
Area EQU Length*Width

EECC250 - Shaaban }

#15 Lec#1 Winter99 11-29-99

Assembler Directives: DC Directive

 Thisdirective definesa constant and is qualified by:
.B - toindicate a byte, 8 bits
W - toindicateaword, 16 bits
L - toindicate along word, 32 bits

 Theoperand may consist of:
— Oneor moredecimal numbers;
— Oneor more hexadecimal numbersdenoted by aleading'$';
— Oneor morebinary numbersdenoted by aaleading'%",;
— An ASCII string enclosed in single quotes,
— An expression to be evaluated.

* A labdl intheleft hand column equatesthe label with the first
address (word).

 Theconstant isloaded into memory at the current location.

EECC250 - Shaaban }

#16 Lec#1 Winter99 11-29-99

Assembler Directives: DS Directive

 Example:

ORG $1000 Starting address
FIRST DSB 4 Reserve 4 bytes
SECOND DSW 4 Reserve 4 words
THIRD DS.L 4 Reserve 4 long words
TABLE DSW $10 Reserve 16 words

The define storage directive reserves a storage location in
memory but does not store any information.

Thedirective may be qualified by '.B', ""W" or '.L"' to indicate
bytes, words or long words.

A operand specifiesthe number of such quantitiesto reserve
In decimal or hex.

The optional label equatesto the address of the first word of
stor age.

EECC250 - Shaaban }

#17 Lec#1 Winter99 11-29-99

Assembler Directives: ORG, END Directives

 Theorigin directive sets up the value of the location
counter that trackswherethe next item will be stored in

memory;
— May belocated anywherein the program.
— Example:
ORG $00001000 Starting address
FIRST DSB 4 Reserve 4 bytes
ORG $00001100 Change the memory location
SECOND DSW 4 Reserve 4 words
« Theend directiveindicatesthat the end of the code has
been reached.
— Optionally specifiesthe place at which to start execution,;
e.g., END $400.

EECC250 - Shaaban }

#18 Lec#1 Winter99 11-29-99

Basic Characteristics of 68000 Assembly L anguage

« An assembly language program line or statement iscomprised of
the following 4 columns:;

1 Optional label which must begin in column 1

2 Aninstruction:
e Thesearetheactual instructionsthemselves, such asMOVE, ADD, etc.

 Opcodefidds: Thesuffixes .B', \W', and ".L' denote a byte, word, and
long-wor d operation, respectively. If not specified, the default isword
size (\W).

» Basic addressing modes

Dn dataregister

An addressregister

#n constant or immediate

n contents of memory location

3 Itsoperand or operands.

4 An optional comment field.

EECC250 - Shaaban

1_

#19 Lec#1 Winter99 11-29-99

Basic Characteristics of 68000 Assembly L anguage

e Alinebeginning with an asterisk * inthefirst column isa comment
and istotally ignored by the assembler.

 Number systemsarerepresented asfollows:
— A number without any prefix isdecimal.
— A number with aleading '$' is hex.
— A number with aleading '%" ishinary.

 Enclosingastringin quotesrepresents a sequence of ASCI |
characters.

o At least one spaceisrequired to separate the label and comment field
from theinstruction; but additional spaces are added for readability.

« Thefollowing data sizes apply:
— Byte- 8 bits
— Word - 16 bits (default operand size for most instructions).
— Longword - 32 bits

EECC250 - Shaaban }

#20 Lec#1 Winter99 11-29-99

Some Basic Assembly I nstructions
| nstruction Operation Performed
MOVE DO,Q Copy the contents of register DO to memory location Q.
MOVE Q,DO Copy the contents of memory location Q to register DO.
MOVE #Q,D0 Copy the number Q to register DO

ADD Q,DO Add the contents of memory location Q to register
DO and put the result in DO.

ADD DO,Q Add the contents of memory location Q to register
DO and put the results in memory location Q.
CLR Q Set the content of memory location Q to zero.

CMP Q,DO Subtract the contents of memory location Q from the contents
of register DO in order to set up the CCR. Discard the result

CMP#Q,DO Subtract the number Q from the contents of register
DO in order to set up the CCR. Discard the result.

BEQN Branch to N if the result of the last operation yielded O.
BNEN Branchto N if operands of the last comparison were not equal.
BRA N Always branch to location N.

EECC250 - Shaaban }

#21 Lec#1 Winter99 11-29-99

68000 Operand Size and Storagein Memory

 The 68000 usesthe following suffixesto identify the size of the

Instruction’s operands.
B onebyte When no suffix is specified,

W word (2 bytes) then most instructions

L longword (4 bytes) assume W

e 68000 memory isbyte-addressed; however, all word and long
word operandsin memory must start at an even address. For this
reason the preferred memory map for 68000 assembly programs

show a singleword (two bytes) in each row.
Word (16 bits)

* When storing valuesin memory:
The most significant byteisstored 91000 A C 3 95
E F

at thefirst address|ocation $1002 B 4
followed by the remaining bytes L

at memory address $1000

EECC250 - Shaaban

1_

#22 Lec#1 Winter99 11-29-99

A Simple M otor ola 68000 Assembly
L anguage Program Example

 Thefollowing assembly language program addstogether the two 8-bit numbers
stored in the memory locations called Valuel and Value2, and depositsthe sum in
Result. Result = Valuel + Value2

ORG $400 Start of program area
Main CLR DO Clear DO
CLR D1 Clear D1

MOVE.B Valuel,DO Copy Valuel to low byte of DO
MOVE.B Value2D1 Copy Value2 to low byte of D1

ADD.B DO,D1 Add Valuel + Value2 resultin D1
MOVE.B D1,Result Store Result in memory
STOP #$2700 Stop execution
ORG $1000 Start of dataarea
Valuel DC.B 12 Store 12 in memory for Valuel
Value2 DC.B 24 Store 24 in memory for Value2
Result DS.B 1 Reserve a memory byte for Result
END $400 End of program and entry point

EECC250 - Shaaban }

#23 Lec#1 Winter99 11-29-99

Memory Map and Register Usage For Example

Memory Map
address
$ $400 1
$402 Main
h 4
ROM | |
Area ! !
l $1000 | Valuel =12 |Value2 =24
M}, Result
RAM
Area

DO
D1
D2
D3
D4
D5
D6
D7

AO
Al
A2
A3
A4
A5
A6

Register Usage

Valuel

Value2

EECC250 - Shaaban

1_

#24 Lec#1 Winter99 11-29-99

Example: Sum Using A Loop

Performthesum 1+2+ 3+ ... + 10 by usingaloop, i.e.

TOTAL :=0;
FOR COUNTER:=1 TO 10DO
TOTAL :=TOTAL + COUNTER;

This can be accomplished by the following 68000 Assembler
code:

ORG $400 Start of program area
CLR D1 Set thetotal initially to O
MOVE.B #1,D0 Initialize the counter to 1
Next ADD.B DO,D1 Add the counter to thetotal
ADD.B #1,D0 | ncrement the counter
CMP.B #11,00 Check if loop isdone
BNE Next Go back for another round if not done
STOP #$2700 Stop execution
END $400 Program terminator and entry point

EECC250 - Shaaban

1_

#25 Lec#1 Winter99 11-29-99

