
EECC250 - ShaabanEECC250 - Shaaban
#1 Lec # 1 Winter99 11-29-99

Basic computer operation and organizationBasic computer operation and organization
• A computer manipulates binary coded data and responds to events

occurring in the external world (users, other devices, network). This
is called a stored-program, or a Von-Neumann machine architecture:

– Memory is used to store both program instructions and data
(this is the core of the Von-Neumann architecture).

– Program instructions are binary coded data which tell the
computer to do something, i.e. add two numbers together.

– Data is simply information to be used by the program, i.e. two
numbers to be added together.

– A central processing unit (CPU) with the following tasks:

• Fetching instruction(s) and/or data from memory

• Decoding the instruction(s)

• Performing the indicated sequence of operations

EECC250 - ShaabanEECC250 - Shaaban
#2 Lec # 1 Winter99 11-29-99

The Von-Neumann Computer ModelThe Von-Neumann Computer Model
• Partitioning of the computing engine into components:

– Central Processing Unit (CPU): Control Unit (instruction decode , sequencing
of operations), Datapath (registers, arithmetic and logic unit, buses).

– Memory: Instruction and operand storage

– Input/Output (I/O)

– The stored program concept: Instructions from an instruction set are fetched
from a common memory and executed one at a time

-
MemoryMemory

(instructions,(instructions,
 data) data)

ControlControl

DatapathDatapath
registersregisters
ALU, busesALU, buses

 CPUCPUComputer SystemComputer System

InputInput

OutputOutput

I/O DevicesI/O Devices

EECC250 - ShaabanEECC250 - Shaaban
#3 Lec # 1 Winter99 11-29-99

Central Processing Unit (CPU)Central Processing Unit (CPU)

•• Control unitControl unit
– Decodes the program instructions.

– Has a program counter which contains the location of the next
instruction to be executed.

– Has a status register which monitors the execution of instructions and
keeps track of overflows, carries, borrows, etc.

•• Arithmetic Logic UnitArithmetic Logic Unit
– Carries out the logic and arithmetic operations as required for

instructions decoded by the control unit.

• Registers:
– Program counter, status registers, stack pointer for subroutine use.

– A number of general-purpose registers accessed by instructions to store
addresses, instruction operands, and ALU results

Control
 Unit

Arithmetic Logic
Unit (ALU)

Registers

EECC250 - ShaabanEECC250 - Shaaban
#4 Lec # 1 Winter99 11-29-99

Vertical Grid Organization of MemoryVertical Grid Organization of Memory

The memory grids above represent
$FFFFFF = 224 = 16,777,216 bytes of memory

$000000

$000001

$000002

$FFFFFF

address 8 bits wide

$000000

$000002

$000004

$FFFFFE

address

OR

16 bits wide

EECC250 - ShaabanEECC250 - Shaaban
#5 Lec # 1 Winter99 11-29-99

Computer Data Storage UnitsComputer Data Storage Units
•• BitBit - Smallest quantity of information that can be

manipulated inside a computer; value is either 0 or 1.

•• ByteByte - Defined to be a group of 8 bits; typically the
minimum size required to store a character.

•• WordWord - Basic unit of information stored in memory and
processed by a computer. Typical computer word lengths
are 16, 32 and 64 bits.

• For the 68000, a word is 16-bits , and a long word is 32 bits.

• Words and long words in the 68000 must start at even
memory addresses (e.g. $1000 is allowed, but $1001
produces a memory alignment error).

EECC250 - ShaabanEECC250 - Shaaban
#6 Lec # 1 Winter99 11-29-99

68000 Architecture68000 Architecture

EECC250 - ShaabanEECC250 - Shaaban
#7 Lec # 1 Winter99 11-29-99

68000 68000 PinoutPinout

EECC250 - ShaabanEECC250 - Shaaban
#8 Lec # 1 Winter99 11-29-99

68000 Internal68000 Internal
RegisterRegister

OrganizationOrganization

Data registersData registers

Address registers

Stack pointersStack pointers

Program counterProgram counter

Status registerStatus register

EECC250 - ShaabanEECC250 - Shaaban
#9 Lec # 1 Winter99 11-29-99

Status Register: Condition Code RegisterStatus Register: Condition Code Register
(CCR)(CCR)

EECC250 - ShaabanEECC250 - Shaaban
#10 Lec # 1 Winter99 11-29-99

Status Register: The System PartStatus Register: The System Part

EECC250 - ShaabanEECC250 - Shaaban
#11 Lec # 1 Winter99 11-29-99

Description of 68000 RegistersDescription of 68000 Registers
• Program Counter (PC) - points to the next instruction to be executed (24 bits).

• General Purpose Registers - D0 through D7

– Called "general purpose" because registers can each perform the same range of functions.

– 32 bits wide, but can be divided into 2 words or 4 bytes.

– Bits in the data register have an arbitrary meaning; e.g., two's complement number,
unsigned integer, or ASCII characters.

– Word operations applied to these registers can only use the low order 16 bits (d15…d0).

– Byte operations applied to these registers can only use the low order 8 bits (d7…d0).

• Address Registers - A0 through A7

– Called "address registers" because they are always used to store the address of a memory
location. 32 bits wide, but cannot be subdivided.

– A0 through A6 can be used as you see fit; however, A7 is the stack pointer which is needed
to keep track of subroutine return addresses. Therefore, you should not use A7 explicitly.

• CCR Register Contains the following flags:
 X eXtend flag (similar to the carry flag)

N - Negative flag - true if first bit 1 (sign bit or MSB of result is = 1)

Z Zero flag - true if all bits 0 (result is equal to zero).

V oVerflow flag (2’s complement overflow)

C - Carry flag (carry out bit from an arithmetic operation).

Certain operations effect all bits; e.g., arithmetic. Certain operations effect only some of the
bits (e.g., Logical operations do not effect overflow or carry). Certain operations do not effect

any of the bits (e.g., exchange registers).

EECC250 - ShaabanEECC250 - Shaaban
#12 Lec # 1 Winter99 11-29-99

Computer Instruction Set Architecture (ISA)Computer Instruction Set Architecture (ISA)
 & Assembly Language & Assembly Language

• Instruction Set Architecture (ISA) of the Microprocessor:

 Assembly language programmer's view of the processor.

• Machine Code:

 CPU language comprised of computer instructions that
controls the primitive operations on binary data within the
computer, including:

• Data movement and copying instructions

• Arithmetic operations (e.g., addition and subtraction);

• Logic instructions: AND, OR, XOR, shift operations, etc.

• Control instructions: Jumps, Branching,

• Assembly Language:

 Human-readable representation of the binary code executed
by the computer.

EECC250 - ShaabanEECC250 - Shaaban
#13 Lec # 1 Winter99 11-29-99

Computer Organization LayersComputer Organization Layers
• The computer may be organized into the following layers:

– Application level language

– High level language

– Low level language

– Hardware - may include microcode.

• Consider the case of a word processing program:

– The high level commands:
• (save, undo, bold, center, etc.) represent the application level

language.

– The high level language might be:
• Pascal, C/C++ or Java.

– The low level language might be:
• 68000 or Intel x86 assembler or the proper assembly language for

the CPU in use.

EECC250 - ShaabanEECC250 - Shaaban
#14 Lec # 1 Winter99 11-29-99

Basic Assembly Program StructureBasic Assembly Program Structure
• Assembly language is made up of two types of statements:

– Executable Instruction:

 One of the processor's valid instructions which can be

 translated into machine code form by the assembler.

– Assembler Directive:

 Inform the assembler about the program and the

 environment and cannot be translated into machine code.

• Link symbolic names to actual values.

• Set up pre-defined constants.

• Allocate storage for data in memory.

• Control the assembly process.

EECC250 - ShaabanEECC250 - Shaaban
#15 Lec # 1 Winter99 11-29-99

Assembler Directives: EQU DirectiveAssembler Directives: EQU Directive

• The equate directive, EQU simply links a name to a value
in order to make a program easier to read. It does not
reserve space in memory. For example:

 BACK_SP EQU $08

 CAR_RET EQU $0D

• The EQU directive may include expressions as well as
litrals provided all elements of the expression have
already been defined:

 Length EQU 30

 Width EQU 25

 Area EQU Length*Width

EECC250 - ShaabanEECC250 - Shaaban
#16 Lec # 1 Winter99 11-29-99

Assembler Directives: DC DirectiveAssembler Directives: DC Directive
• This directive defines a constant and is qualified by:

 .B - to indicate a byte, 8 bits

.W - to indicate a word, 16 bits

 .L - to indicate a long word, 32 bits

• The operand may consist of:
– One or more decimal numbers;

– One or more hexadecimal numbers denoted by a leading '$';

– One or more binary numbers denoted by a a leading '%';

– An ASCII string enclosed in single quotes;

– An expression to be evaluated.

• A label in the left hand column equates the label with the first
address (word).

• The constant is loaded into memory at the current location.

EECC250 - ShaabanEECC250 - Shaaban
#17 Lec # 1 Winter99 11-29-99

Assembler Directives: DS DirectiveAssembler Directives: DS Directive
• The define storage directive reserves a storage location in

memory but does not store any information.

• The directive may be qualified by '.B', '.W' or '.L' to indicate
bytes, words or long words.

• A operand specifies the number of such quantities to reserve
in decimal or hex.

• The optional label equates to the address of the first word of
storage.

• Example:

 ORG $1000 Starting address

FIRST DS.B 4 Reserve 4 bytes

SECOND DS.W 4 Reserve 4 words

THIRD DS.L 4 Reserve 4 long words

TABLE DS.W $10 Reserve 16 words

EECC250 - ShaabanEECC250 - Shaaban
#18 Lec # 1 Winter99 11-29-99

Assembler Directives: ORG, END DirectivesAssembler Directives: ORG, END Directives
• The origin directive sets up the value of the location

counter that tracks where the next item will be stored in
memory;
– May be located anywhere in the program.

– Example:

 ORG $00001000 Starting address

FIRST DS.B 4 Reserve 4 bytes

 ORG $00001100 Change the memory location

SECOND DS.W 4 Reserve 4 words

• The end directive indicates that the end of the code has
been reached.
– Optionally specifies the place at which to start execution;

 e.g., END $400.

EECC250 - ShaabanEECC250 - Shaaban
#19 Lec # 1 Winter99 11-29-99

Basic Characteristics of 68000 Assembly LanguageBasic Characteristics of 68000 Assembly Language
• An assembly language program line or statement is comprised of

the following 4 columns:

1 Optional label which must begin in column 1

2 An instruction;
• These are the actual instructions themselves, such as MOVE, ADD, etc.

• Opcode fields : The suffixes `.B', `.W', and `.L' denote a byte, word, and
long-word operation, respectively. If not specified, the default is word
size (.W).

• Basic addressing modes

Dn data register

An address register

#n constant or immediate

n contents of memory location

3 Its operand or operands.

4 An optional comment field.

EECC250 - ShaabanEECC250 - Shaaban
#20 Lec # 1 Winter99 11-29-99

Basic Characteristics of 68000 Assembly LanguageBasic Characteristics of 68000 Assembly Language
• A line beginning with an asterisk * in the first column is a comment

and is totally ignored by the assembler.

• Number systems are represented as follows:

– A number without any prefix is decimal.
– A number with a leading '$' is hex.

– A number with a leading '%' is binary.

• Enclosing a string in quotes represents a sequence of ASCII
characters.

• At least one space is required to separate the label and comment field
from the instruction; but additional spaces are added for readability.

• The following data sizes apply:

– Byte - 8 bits

– Word - 16 bits (default operand size for most instructions).

– Long word - 32 bits

EECC250 - ShaabanEECC250 - Shaaban
#21 Lec # 1 Winter99 11-29-99

Some Basic Assembly InstructionsSome Basic Assembly Instructions

MOVE D0,Q

MOVE Q,D0

MOVE #Q,D0

ADD Q,D0

ADD D0,Q

CLR Q

CMP Q,D0

CMP #Q,DO

BEQ N
BNE N
BRA N

Copy the contents of register D0 to memory location Q.

Copy the contents of memory location Q to register D0.

Copy the number Q to register D0

Add the contents of memory location Q to register
D0 and put the result in D0.

Add the contents of memory location Q to register
D0 and put the results in memory location Q.
Set the content of memory location Q to zero.

Subtract the contents of memory location Q from the contents
of register D0 in order to set up the CCR. Discard the result

Subtract the number Q from the contents of register
 D0 in order to set up the CCR. Discard the result.

Branch to N if the result of the last operation yielded 0.
Branch to N if operands of the last comparison were not equal.
Always branch to location N.

Instruction Operation Performed

EECC250 - ShaabanEECC250 - Shaaban
#22 Lec # 1 Winter99 11-29-99

68000 Operand Size and Storage in Memory68000 Operand Size and Storage in Memory
• The 68000 uses the following suffixes to identify the size of the

instruction’s operands:

 .B one byte

 .W word (2 bytes)

 .L long word (4 bytes)

• 68000 memory is byte-addressed; however, all word and long
word operands in memory must start at an even address. For this
reason the preferred memory map for 68000 assembly programs
show a single word (two bytes) in each row.

When no suffix is specified,
then most instructions
assume .W

• When storing values in memory:
 The most significant byte is stored
 at the first address location
 followed by the remaining bytes

 Example: Store $AC 35 EF B4
 at memory address $1000

Word (16 bits)

$1000 A C 3 5

$1002 E F B 4

Memory Map

EECC250 - ShaabanEECC250 - Shaaban
#23 Lec # 1 Winter99 11-29-99

A Simple Motorola 68000 AssemblyA Simple Motorola 68000 Assembly
Language Program ExampleLanguage Program Example

• The following assembly language program adds together the two 8-bit numbers
stored in the memory locations called Value1 and Value2, and deposits the sum in
Result. Result = Value1 + Value2

 ORG $400 Start of program area

 Main CLR D0 Clear D0

CLR D1 Clear D1

MOVE.B Value1,D0 Copy Value1 to low byte of D0

 MOVE.B Value2,D1 Copy Value2 to low byte of D1

 ADD.B D0,D1 Add Value1 + Value2 result in D1

 MOVE.B D1,Result Store Result in memory

 STOP #$2700 Stop execution

 ORG $1000 Start of data area

Value1 DC.B 12 Store 12 in memory for Value1

Value2 DC.B 24 Store 24 in memory for Value2

Result DS.B 1 Reserve a memory byte for Result

 END $400 End of program and entry point

EECC250 - ShaabanEECC250 - Shaaban
#24 Lec # 1 Winter99 11-29-99

Memory Map and Register Usage For ExampleMemory Map and Register Usage For Example

$400

$402

address

Main

$1002

$1000 Value1 = 12 Value2 = 24

Result

ROM
Area

RAM
Area

D6

D7

D4

D5

D2

D3

D0

D1

A6

A4

A5

A2

A3

A0

A1

Value1

Value2

Register UsageMemory Map

EECC250 - ShaabanEECC250 - Shaaban
#25 Lec # 1 Winter99 11-29-99

Example: Sum Using A LoopExample: Sum Using A Loop
• Perform the sum 1 + 2 + 3 + … + 10 by using a loop, i.e.

 TOTAL := 0;

 FOR COUNTER := 1 TO 10 DO

 TOTAL := TOTAL + COUNTER;

• This can be accomplished by the following 68000 Assembler
code:

ORG $400 Start of program area

 CLR D1 Set the total initially to 0

 MOVE.B #1,D0 Initialize the counter to 1

Next ADD.B D0,D1 Add the counter to the total

 ADD.B #1,D0 Increment the counter

 CMP.B #11,D0 Check if loop is done

 BNE Next Go back for another round if not done

 STOP #$2700 Stop execution

 END $400 Program terminator and entry point

