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1.  Bolometer is a classical detector 
2.  Produces a Voltage prop. to the incident power 
3.  Is not sensitive to the phase of the incoming photon 
4.  Can be very sensitive (limited by photon noise) but relatively slow 

response time 
5.  Detects all kind of power: electrical, light, particles, etc. 



2. HEMT development and LNAs 
for CMB research 
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frequency 

noise 

QL ≈ hv/(k ln2) 

Current noise in LNAs 



How coherent radiometry works 
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Amplifier: from quantum 
to classical world 



Quantum view of amplifier 
"   Linear device that takes an input signal and produces an output signal by 

allowing the input signal to interact with the amplifier’s internal degrees of 
freedom 

"   The input and output signals are carried by a set of “bosonic” modes [usually 
modes of the e.m. field] 

"   Increases the size of the Signal without degrading (too much) the signal-to-
noise ratio 

"   Noise after amplification is much larger that the minimum allowed by QM 

"   The signal can therefore be analyzed by our “dirty”, “grubby”, classical hands 

"   Brings very delicate QM systems to our classical world 
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Quantum limits on noise in linear amplifiers
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(Received 18 August 1981)

How much noise does quantum mechanics require a linear amplifier to add to a signal
it processes? An analysis of narrow-band amplifiers (single-mode input and output) yields
a fundamental theorem for phase-insensitive linear amplifiers; it requires such an amplif-
ier, in the limit of high gain, to add noise which, referred to the input, is at least as large
as the half-quantum of zero-point fluctuations. For phase-sensitive linear amplifiers,
which can respond differently to the two quadrature phases ("cosset" and "sin&at"), the
single-mode analysis yields an amplifier uncertainty principle —a lower limit on the pro-
duct of the noises added to the two phases. A multimode treatment of linear amplifiers
generalizes the single-mode analysis to amplifiers with nonzero bandwidth. The results
for phase-insensitive amplifiers remain the same, but for phase-sensitive amplifiers there
emerge bandwidth-dependent corrections to the single-mode results. Specifically, there is
a bandwidth-dependent lower limit on the noise carried by one quadrature phase of a sig-
nal and a corresponding lower limit on the noise a high-gain linear amplifier must add to
one quadrature phase. Particular attention is focused on developing a multimode descrip-
tion of signals with unequal noise in the two quadrature phases.

I. INTRODUCTION AND SUMMARY

The development of masers in the 1950's made
possible amplifiers that were much quieter than
other contemporary amplifiers. In particular, there
emerged the possibility of constructing amplifiers
with a signal-to-noise ratio of unity for a single in-
cident photon. This possibility stirred a flurry of
interest in quantum-mechanical limitations on the
performance of maser amplifiers, ' parametric
amplifiers, ' and, more generally, all "linear am-
plifiers. " ' The resulting limit is often expressed
as a minimum value for the noise temperature T„
of a high-gain "linear amplifier"' ' ':
T„)Ace/k,

where co/2w is the amplifier s input operating fre-
quency. The limit (1.1) means that a "linear am-
plifier" must add noise to any signal it processes;
the added noise must be at least the equivalent of
doubling the zero-point noise associated with the
input signal.
Interest in the limit (1.1) flagged in the 1960's,

mainly because the issue was seen as completely
resolved. (The existence of quantum limits on the

performance of "linear amplifiers" is now dis-
cussed in standard textbooks on noise" and quan-
tum electronics. ' ) Contributing to a dwindling of
interest were the difficulty of designing amplifiers
that even approached quantum-limited perfor-
mance and the dearth of applications that demand-
ed such performance. Recently interest has re-
vived' ' because of a fortunate coincidence. The
development of new amplifiers based on the dc
SQUID, which are close to achieving quantum-
limited sensitivity, ' ' has coincided with the
realization that the detection of gravitational radia-
tion using mechanically resonant detectors might
require quantum-limited amplifiers. Indeed,
mechanically resonant detectors might well require
"amplifiers" that somehow circumvent the limit
(1 1) 22

This paper returns to the question of quantum
limits on noise in linear amplifiers. For the pur-
poses of this paper an amplifier is any device that
takes an input signal, carried by a collection of bo-
sonic modes, and processes the input to produce an
output signal, also carried by a (possibly different)
collection of bosonic modes. A linear amplifier is
an amplifier whose output signal is linearly related

1817 1982 The American Physical Society
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The classical definition of noise figure, based on signal-to-noise ratio, is adapted to the case when quantum
noise is predominant. The noise figure is normalized to "uncertainty noise. " General quantum mechanical
equations for linear amplifiers are set up using the condition of linearity and the requirement that the com-
mutator brackets of the pertinent operators are conserved in the amplification. These equations include as
special cases the maser, the parametric amplifier, and the parametric up-converter. Using these equations
the noise figure of a general amplifier is derived. The minimum value of this noise figure is equal to 2. The
signi6cance of the result with regard to a simultaneous phase and amplitude measurement is explored.

INTRODUCTION

'HE availability of coherent signals at optical
frequencies has stimulated research in their use

for communication purposes. Ways of processing optical
frequencies are considered that are similar to those of
the low end of the coherent frequency spectrum. With
the use of classical communication techniques, classical
performance criteria will be applied. One purpose of
this paper is to extend classical noise performance
criteria to linear quantum amplifiers in wbich the pre
domineer apoise is quotum mechanical in nature. These
criteria will be applied to a wide class of linear quantum
mechanical amplifiers.
The purpose of a sensitive linear amplifier is to in-

crease the power, or photon Aux, of an incoming signal
with as small a noise contamination as possible so that
the signal may be conveniently detected at high power
levels. The incoming signal, if used for communication
purposes, carries amplitude modulation, phase modula-
tion, frequency modulation, or some other type of
modulation. Here we shall discuss noise problems mainly
in the context of ampli6ers processing sinusoidal car-
riers with narrow band amplitude and/or phase modu-
lation. In this connection it must be noted that the
presence of a modulation of bandwidth 8 calls for a
minimum rate of detection. The received signal must
be detected within a succession of observation times
each of duration r, where 7=—',8, in order to utilize
the information contained in the modulation.
Noise in masers, including sponteneous emission

noise, has been analyzed in many papers including the
classical papers by Shimoda, Takahasi, and Townes, '
and Serber and Townes. 2 A quantum mechanical treat-
ment of the parametric amplifier and up-converter has

been presented in a paper by Louisell et al.' We shall
develop a unified set of equations for all "linear"
amplifiers, special cases of which are the maser, the
parametric amplifier, and the parametric up-converter.
On the basis of these equations and the criteria of noise
performance, it will be possible to present a proof on
the limiting noise performance achievable by any one
of these amplifiers used singly or in combination with
other linear amplifiers. The connection of the funda-
mental noise of these amplifiers with the uncertainty
principle will be studied.

I. NOISE FIGURE

In the noise theory of classical ampliiiers (i.e.,
amplifiers operating with a very large number of
quanta) the deterioration of the signal-to-noise ratio
as the signal passes the amplifier is used as a measure
of amplifier noise performance. The signal-to-noise
ratio (SNR) is defined in the classical limit as the
ratio of signal power to noise power. Mathematically
one may describe a phase and amplitude modulated
signal in the presence of noise by

A (t) = do(t) cos/root+go(t)$+R4y cosLcoot+Qp(t) 1
+82, sinLcoot+@p(t) $. (1.1)

The 6rst term in this equation represents the signal in
the absence of noise. The remaining two terms are the
inphase and quadrature perturbations of the amplitude
due to the noise. These are slowly varying with time if
the noise is narrowband. We envisage an ensemble of
identical signal waveforms with accompanying noise.
The signal part may be extracted from the waveform
by taking an ensemble average indicated by the
brackets ( )

'K. Shimoda, H. Takahasi, and C. H. Townes, J. Phys. Soc.
Japan 12, 686 (1957).

2 R. Serber and C. H. Townes, in Quantum Electronics, edited byC. H. Townes (Columbia University Press, New York, 1960
pp. 233—255.

(2 (t))=As(t) cos[&uot+4 o(t)]. (1.2)
), ' W. H. Louisell, A. Yariv, and A. E. Siegman, Phys. Rev. 124,

1646 (1961).
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Abstract—This paper presents a model for radiation as a photon gas.
For each frequency, the photon distribution is a mixture of Bose-Einstein
and Poisson distributions, respectively for thermal noise and the useful
signal. Poisson (shot) noise contributes with noise at all frequencies.
When applied to the operation of linear amplifiers and attenuators, the
model gives a natural interpretation to the noise figure in terms of the
uncertainty in the amplification process itself.

I. INTRODUCTION
Noise under coherent detection is commonly modelled as [1]

N(ν) =
hν

e
hν

kBT − 1
+

hν

2
, (1)

that is, blackbody radiation with an additional term 1

2
hν. At the

reception process, additional noise A(ν) is added; Caves [2] lower
bounded A(ν) in terms of the amplifier gain γ(ν) (in photons),
A(ν) ≥ 1

2
1 − γ−1(ν) . As γ(ν) → ∞, A(ν) → 1

2
, i. e. half a

photon is added to the signal. Noise density can be well approximated
in the high-gain regime by kBT + hν.
This noise model is built on the wave nature of light and makes

extensive use of Gaussian distributions. In this paper we model
radiation as an ensemble of photons of various frequencies, a photon
gas. More specifically, we study which predictions of the Gaussian
model above can be replicated within a photon gas model. We
concentrate on the signal-to-noise, the existence of noise at optical
frequencies, and the behaviour of linear amplification.

II. MODELLING SIGNAL AND THERMAL NOISE
A complex-valued signal z(t), transmitted over a channel with

bandwidth W , and observed over a time interval of duration T , is
described by 2WT real numbers. A similar sampling theorem holds
for a photon gas described by a complex-valued wavefunction ψ. The
frequency corresponds to the photon energy via Einstein’s relation
E = hν. Under the same time and frequency constraints, WT is the
number of different cells in which the photons can be placed.
Photons are bosons and as such there may be an unlimited number

of particles per cell. Let ζk denote the number of photons in the k-th
cell. This is equivalent to a representation of the wavefunction ψk as
a density operator diagonal in the number-states.
We assume that the number of photons per mode is the sum of a

signal component wk and a thermal noise component xk, namely
ζk = wk + xk, where the statistics for wk and xk are Poisson
and Bose-Einstein (geometric) respectively. The Poisson distribution
is typical of coherent states [3]. A Bose-Einstein distribution has
maximum entropy. The expected number of thermal photons per cell
is related to the blackbody radiation, 〈xk〉 = e

hνk
kBT − 1

−1.
We define the signal-to-noise ratio at frequency νk, SNRk, as

SNRk =
〈wk〉

2

Var ζk

=
〈wk〉

2

Var wk + Var xk

. (2)

We distinguish now two separate regimes, classical and quantum. At
radio frequencies we have Var(wk) = 〈wk〉 ' 〈xk〉

2 < Var(xk);

at optical frequencies, Var(wk) = 〈wk〉 ( 〈xk〉 ) Var(wk). We
reproduce the behaviour in Eq. (1) in both extremes. The difference
between the two regimes is now a function of not only ν and T , as
in the usual analysis, but also of the signal energy as well. As noise
is not additive, but signal dependent, it may well happen that the shot
noise prevails over the thermal noise, even if hν ' kBT .

III. MODEL OF THE AMPLIFICATION PROCESS
Amplification corresponds to a change in the distribution of ζk. We

model this change statistically: for each input photon, a (random)
number of output photons γ is generated. The probability that γ
photons are effectively output is Pramp(γ). Linearity implies that
amplification takes place for every individual photon, independently
of the remaining photons in the mode. The mean of the amplifier
output ζout is 〈ζout〉 = 〈γ〉〈ζin〉, and its variance,

Var(ζout) = 〈γ〉2 Var(ζin) + Var(γ)〈ζin〉. (3)

The change in signal-to-noise ratio between input and output is
SNRin

SNRout
= 1 +

Var(γ)
〈γ〉2

〈ζin〉
Var(ζin)

. (4)

This ratio depends on the signal statistics. For a coherent state, for
which 〈ζin〉 = Var(ζin). We then define the noise figure F as

F ! 1 +
Var(γ)
〈γ〉2

=
〈γ2〉
〈γ〉2

. (5)

As expected, F ≥ 1, an amplifier can only worsen the signal-to-
noise ratio. Linear amplification admits a natural interpretation as
the change in the number of particles, and of their statistics. Added
amplification noise is related to the uncertainty in the amplification
process itself.
With a thermal input, a noise temperature Teq can be defined

Teq = T (F− 1) = T
Var(γ)
〈γ〉2

1 − e
−

hν

kBT )
Var(γ)
〈γ〉2

hν

kB

, (6)

where we assumed that hν

kBT
' 1.

We recover the well-known formula F = L for the noise figure of
an attenuator, a device which independently removes every photon
with probability π and lets it through with probability 1−π; its loss
L is L = (1 − π)−1 ≥ 1.
This model can be easily used to derive Friis’s formula for a chain

of n amplifiers, each with gain γν , it is easy to generalize Eq. (3) to
obtain a formula for total change in SNR,

SNRin

SNRout
= 1 +

n

ν=1

Fν − 1
ν−1

ν′=1
〈γ′

ν〉

〈ζin〉
Var(ζin)

. (7)

REFERENCES
[1] B. M. Oliver, “Thermal and quantum noise,” Proc. IEEE, vol. 53, pp.

436–454, May 1965.
[2] C. M. Caves, “Quantum limits on noise in linear amplifiers,” Phys. Rev.

D, vol. 26, no. 8, pp. 1817–1839, 15 October 1982.
[3] L. Mandel and E. Wolf, Optical Coherence and Quantum Optics. Cam-

bridge University Press, 1995.
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kB ln2



Amplifiers from the past 

16-24/07/2012 CMB and High Energy Physics 

High frequency à Low noise à high carrier mobility 
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2. High Electron Mobility 
Transistors (HEMTs) 

"   Mobility μ of electrons: 
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v = µE
[µ]= [cm2 / (Vs)]

Material Electron mobility 
(cm^2/Vs) 

Hole mobility 
(cm^2/Vs) 

GaAs 8000 320 

GaP 110 70 

InP 5600 150 

Si 1360 460 

Ge 3900 1900 



Scattering mechanisms 

"   Scattering is important for noise 
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 Mobility Modeling and Characterization 

Electrons and holes are accelerated by the electric fields, but lose momentum as a result 

of various scattering processes. These scattering mechanisms include lattice vibrations (phonons), 

impurity ions, other carriers, surfaces, and other material imperfections. A detailed chart of most 

of the imperfections that cause the carrier to scatter in a semiconductor is given in Figure 1. 

 

Scattering Mechanisms

Defect  Scattering Carrier-Carrier Scattering Lattice Scattering

Crystal
Defects Impurity Alloy

Neutral Ionized

Intravalley Intervalley

Acoustic OpticalAcoustic Optical

Nonpolar PolarDeformation
potential

Piezo-
electric

Scattering Mechanisms

Defect  Scattering Carrier-Carrier Scattering Lattice Scattering

Crystal
Defects Impurity Alloy

Neutral Ionized

Intravalley Intervalley

Acoustic OpticalAcoustic OpticalAcoustic Optical

Nonpolar PolarNonpolar PolarDeformation
potential

Piezo-
electric  

 

Figure 1.  Scattering mechanisms in a typical semiconductor. 

 

Since the effects of all of these microscopic phenomena are lumped into the macroscopic 

mobilities introduced by the transport equations, these mobilities are therefore functions of the 

local electric field, lattice temperature, doping concentration, and so on. Mobility modeling is 

normally divided into: (i) low field behavior, (ii) high field behavior, (iii) bulk semiconductor 

regions and (iv) inversion layers. The low electric field behavior has carriers almost in 

equilibrium with the lattice and the mobility has a characteristic low-field value that is 

commonly denoted by the symbol µn0,p0. The value of this mobility is dependent upon phonon 

and impurity scattering, both of which act to decrease the low field mobility. The high electric 

field behavior shows that the carrier mobility declines with electric field because the carriers that 



Scattering vs temperature 
(noise better at low temperatures?) 

"   Ionized impact scattering 

"   Acoustic phonon scattering 
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µII ∝T
3/2

µAC ∝T −3/2
σ ∝1/ µ



Ionized Impact scattering 
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Low electron velocity 

High electron velocity 

Higher temperature lower scattering 
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High purity Si 
1:  N = 1012  cm-3 

2:  N = 1014  cm-3 

3:  N = 2.3 1015  cm-3 

4:  N = 4.9 1015  cm-3 

Doping concentration and mobility 
versus temperature 

Penalty in mobility when 
doping concentration 
increases! 



•  We need carriers! Is there a way to avoid the 
mobility penalty as the doping concentration 
increases?  

"   YES!  Modulation doping: a mechanism that 
produces a 2D electron gas with high carrier 
mobility 
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EgWG 

doped undoped 

EgNG 

EC 

EV 

ΔE
C 

ΔE
V 

Charge transfer 
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Electrons are spatially separated by 
donors thus reducing the ionized 
impurity scattering 

Band bending results as a 
consequence of  the charge transfer 
and a 2D electron gas is generated 
with very high mobility. The spacer 
increases the separation between 
donors and electrons. 
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Section of a HEMT 
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ABSTRACT

We have developed a unique production
process based on 75 mm diameter InP substrates
and 0.1 µm passivated InP HEMT devices. Our InP
HEMT MMIC technology has demonstrated state-of-
art low noise performance from 2-200 GHz. We
present here over 2000 manufactured 44 GHz LNAs
with greater than 80% yield and typical performance
of 25 dB gain and 2.2 dB noise figure. We have also
compiled statistical process data from approximately
100 recently fabricated 0.1 µm 75 mm InP HEMT
MMIC wafers which demonstrates the consistent
performance and repeatability of our process over a
6-8 month period.

INTRODUCTION

As the needs for MMW systems spreads from
the DoD domain into the commercial world, the drive
for higher performance MMICs with simultaneously
higher volume capacity have become evident in the
past few years. InGaAs/InAlAs/InP HEMTs have
demonstrated the highest gain, lowest noise and
highest frequency capability for any three terminal
transistor [1-4] and are a natural fit towards next
generation satellite communication systems, wireless
LAN and ultra-high frequency remote sensing
applications to name a few. A further advantage,
especially for array type of applications is the ultra-
low d.c. power dissipation of these transistors.

PROCESS DESCRIPTION, TREND CHARTS

To transition into a viable production process
efficiently, TRW has leveraged several aspects of its
high volume 0.15 µm InGaAs/AlGaAs/GaAs HEMT
(GaAs HEMT) production process[5] into the 0.1 µm
InP HEMT process. The two processes share 75%
commonality with the only major differentiation
occurring with the chemical etchants, annealing

conditions and backside processing. The process
flow of the 0.1 µm InP HEMT process flow is nearly
identical to that of the production 0.15 µm GaAs
HEMT process. Furthermore, similar design rules
and device topologies are used for both processes,
simplifying the design and layout of MMIC circuits.
Other key MMIC process parameters include a
silicon nitride passivation thickness of 75 nm, silicon
nitride MIM capacitors with a 300 pF/mm2 sheet
capacitance and precision NiCr resistors with 100
ohm/sq. sheet resistance[6,7].

The key issues with the development of the InP
HEMT process are in MBE growth of high quality
HEMT epitaxial material on 75 mm InP substrates,
definition of 0.1 µm gates and repeatable gate recess
etching and the development of a robust backside
dry via etch process. The InP HEMT epitaxial
structure shown in Figure 1 has been TRWís
baseline structure for low noise amplifiers for several
years [1,2,6.7].

InP Substrate

i InAlAs 
 n   InGaAs

Si Plane 

In      Ga       As 0.60 0.40 

+

i InAlAs 

source • drain •

silicon nitride  
passivation

0.10 µm 
T-gate



NOISE in FETs 

"   For good low-noise devices: 
"   Good pinch-off 
"   Low parasitics Rg, Rs 

"   High gm 

 
K, Kr : noise coefficients 
Rg : gate resistance 
Rs : series resistance including ohmic contacts and channel resistance 
t = Ta/290 
gm : transconductance 
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Tmin = K ⋅ω ⋅C
t(Rg + Rs )

gm
+ Kr

gm
2



Low Noise Amplifiers 

"   Use HEMTs 

"   We characterize them with the radiometer formula: 

ΔTrms =
Tsys
Δν

       K/ Hz

ΔTrms =
Tsys
2 ⋅ Δν

   K ⋅ sec



Inside an LNA 

"   Integrate a complete radiometer on a single module 
(MMIC) 

Figure 1: A 95-GHz module with the radiometric components integrated (left) and the 90-element 95-GHz array
under assembly (right).

QUIET observes the four CMB patches listed in Table 1. Each scan is performed with a half
amplitude of 7.5◦ and repointed when the sky has drifted by 15◦, making up deep coverages of
! 15◦ × 15◦ on each patch. The observing scan is a periodical scan in azimuth with the speed
of ! 6◦/s, with a fixed elevation and rotation angle about the optical axis. We use two means
to achieve parallactic-angle coverage: sky rotation from diurnal sky motion and weekly rotation
about the optical axis (boresight rotation).

About 10% of our observing time is dedicated to calibrations. Calibrations of polarization
angle, spurious polarization due to leakage from I (intensity) to Q/U, and the responsivity are of
importance. We calibrate these by combining daily and/or weekly observations of astronomical
sources such as the Moon, Jupiter, and Taurus A; and the ‘skydip’ (scanning the telescope up and
down in elevation), which is performed once per 90 minutes. Supplemented by measurements
using a broad-band polarized noise source and a rotating wire-grid, we achieve the required
calibration precision for Phase I. We also spend ∼ 10% of observation time scanning galactic
plane for the purposes of calibration and galactic science.

4 Analysis

Our two independent analysis pipelines employ different and complementary techniques: one
uses pseudo-C! estimators11,12 and the other is based on maximum-likelihood map-making and
power-spectrum estimation13,14. It is critical to cut data contaminated by fluctuations of envi-
ronmental or instrumental origin. Such selection criteria are under development using results
obtained from the null-test suite described below.

Our policy is to not look at polarization power spectra until the criteria are defined and the
data pass a variety of predefined null tests, each designed to validate our understanding of a
particular possible systematic effect. In each test, the data are split into two subsets; CMB maps
(m1 and m2) are made from each half, and we compute the power spectrum of the difference
map (mdiff ≡ [m1 − m2]/2), to check consistency with zero signal.

One example is to split the data into those obtained from Q-sensitive channels and U-sensitive
ones. Excess power should arise in this null spectrum if there were instrumental systematic effects
that show up differently in those channels. A preliminary result for this null test using 44 GHz
data is shown in the left panel of Fig. 2, where the power spectra are consistent with zero signal
as expected. Each division has 16 bins, 8 bins in E-mode and B-mode power. A test suite of
32 divisions makes a total of 512 points that should be consistent with zero. The right panel of
Fig. 2 shows the distribution of the χ2 values of those points for one of our CMB patches. The
data distribution is consistent with that from Monte Carlo simulations, validating our selection
criteria and noise model.





Let’s compare the noise 

Table 2: Comparison of current, future and ultimate achievable sensitivity to CMB polarization 

a)      Goal sensitivity of each feed to ∆T = (∆Tx+∆Ty)/2 and Stokes parameter Q or U, defined as (∆Tx-∆Ty)/2. 
b) Sensitivity for 100 mK, Ge thermistor, Polarization-Sensitive Bolometer pair, assuming 1.0K RJ instrument 

background, 50% optical efficiency and 30% bandwidth. 
c) Same for HEMT amplifier with noise 3x quantum limit over 30% bandwidth.  The sensitivity quoted is    2-1/2 x NET, 

to take into account the ability to measure Q and U simultaneously with appropriate post-amplification electronics. 
d) The ultimate limit to sensitivity to Q or U, for zero instrument background and a noiseless direct detector. 

 
A bolometric polarimeter requires a method of cleanly modulating the input polarization prior to 

detection.  Cooled rotating waveplates would be extremely expensive and risky to implement.  An 
alternative it so use Faraday rotation in cylindrical waveguide.  A prototype 100 GHz polarization 
modulator based on this principle has been developed by our group, in collaboration with Todd Gaier and 
Mike Seiffert at JPL, and appears quite promising. This “solid-state waveplate” allows the input 
polarization to be rapidly rotated prior to detection by a pair of polarization sensitive bolometers that are 
embedded in the waveguide.  This scheme will first be tested in ~ 2004 by BICEP, a 100 and 150 GHz 
polarimeter designed to be sited at the South Pole, which will have approximately the same instantaneous 
sensitivity to CMB polarization as Planck. 

In addition to being optimized for polarimetry, a next-generation CMB polarization mission will 
require significantly higher sensitivity as well, as there is no guarantee that the amplitude of the gravity-
wave signal will be as large as that shown in Fig.1. The “Ge bolometer” sensitivities in Table 2 are ~ 2.5x 
better than the goal sensitivity of the Planck HFI. The “CMB BLIP” column shows that only another factor 
of ~2 can be had by reducing instrument emission and detector noise to zero. More gains could be made by 
frequency multiplexing so that two or more of the requisite bands can share the same focal plane area. 
Finally, large filled arrays could, in principle, provide increases of a factor of ~ 1.5 in sensitivity over the ~ 
2Fλ feedhorn arrays employed on Planck.7 
 
SZ Astronomy 

In comparison with the current state of CMB polarimetry, SZ astronomy is in a relatively mature state.  The 
unmistakable signature of the effect has been detected by a variety of experiments. The challenge now is to 
develop instrumentation that will achieve mapping speeds sufficient to make routine the  “serendipitous” 
detection in blank field surveys of high redshift clusters. 

Much excitement has recently centered around the potential of a new generation of receivers built 
around large, arrays of bolometric detectors and coupled to large ground-based telescopes.  To realize the 
full potential of this class of instruments will require an enormous leap in detector technology.  Consider, 
for example, The Large Millimeter-wave Telescope, a 50 m dish that is scheduled to see first light in ~ 
2004.  The telescope should ultimately achieve diffraction limited resolution at 217 GHz (the null of the SZ 
thermal effect, and of particular interest to exploiting the kinetic SZ effect) of ~ 0.15 arcmin.  Filling even a 
modest 4’ diameter field of view with 0.5Fλ pixels will require well in excess of 1,000 pixels. Several 
groups at this workshop will report on exciting new detector architectures that will allow such large arrays 
to be realized.  There are several options for (i) how to couple the radiation in each pixel (dense arrays of 
“pop-up” detectors or dense planar arrays of antennae or absorbers),  (ii) how to detect the radiation 
(Transition Edge Superconducting (TES) detectors or Kinetic Inductance Detectors (KIDs), and (iii) how to 
multiplex the signals (time domain or frequency domain SQUID-based muxes for TES detectors, 
frequency-domain HEMT based muxes for KIDs). 

The possibility of kilapixel arrays of background-limited detectors with sub-arcmin resolution 
operating near the peak brightness of the CMB is enough to make observational cosmologists giddy.  We 
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HEMT in space 

"   A space mission for low frequencies (<70 GHz) will be 
competitive with bolometric missions. 

"   Example: a cluster of small, simple satellites forming an 
interferometer for measuring the B-modes 

"   Interferometer vs imaging à it is the subject for 
another talk! 

"   From the ground, having the atmosphere, if we reach 
the QL, LNAs will be competitive with bolometers 
above 70 GHz. 



Comparing bolometers and 
HEMTs 1 

"   Bolometers 
"   Detect power 

"   No quantum limit 

"   Broadband thermal 

"   Large format 

"   Need T0 < 300 mK 

"   Little power dissipation 

"   1/f dealt mechanically 

"   Interferometry possible 

"   Little digital 

" Cryo LNAs 
"   Amplitude/phase 

"   Quantum limit 

"   Sensitive only RF 

"   Medium format 

"   Need T0 ≈ 20K 

"   Power hungry 

"   1/f dealt electronically 

"   Interferometry standard 

"   Totally digital 
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Comparing bolometers and 
HEMTs 2 

"   Bolometers 
"   Need optics to form 

images 

" Polarimeter complex    
(no simult. U&Q) 

"   Need band-pass filters 

" Microphonics 

"   Sensitive to Temp 
fluctuations 

"   Complex back-end 
electronics 

" Cryo LNAs 
"   Interferometer with no 

optics 

" Polarimeter integrated 
(measure U&Q) 

"   Thermal filters 

"   Little microphonics 

"   Sensitive to RFI 

"   Complex back-end 
electronics but digital 
sampling possible 
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Bolometers are better (?) 

"   No QL 

"   Large format arrays 

"   Limited by photon noise – in principle 

"   Sensitive up to sub-mm/IR 

"   Relatively simple fabrication techniques 



HEMTs are better (?) 

"   Dynamic range 

"   Linearity 

"   Dependence of responsivity on T0 

"   Dependence of responsivity on IR power loading 

"   Speed 

"   Required operating temperature T0 
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mode signals by differencing both legs of the analyzer instantaneously.  We have developed a compact dual 
analyzer (see Fig. 5) consisting of a pair of polarization-selective bolometers11 (PSBs).  Placing the 
bolometers together at the output of a single-mode feedhorn ensures well-matched beams on the sky.  Dual 
analyzers are thus relatively immune to common-mode noise sources, such as temperature drifts, gain 
drifts, sky noise, and common-mode pickup from microphonics and electro-magnetic interference. 
 

 
 
Figure 4:  Sensitivity of bolometer- and HEMT-based receiver systems for CMB polarimetry.  The goal sensitivities per 
feed for Planck LFI (HEMT-based, solid circles) and Planck HFI (bolometer-based, solid squares) in polarization-
sensitive channels.  The sensitivity achievable with 100 mK bolometers, assuming 50 % optical efficiency, 30 % 
bandwidth, 5x dynamic range, and a 1 % emissive 60 K telescope (open squares) is about a factor of three better than 
Planck HFI, but does not allocate sensitivity to systems noise sources.  Bolometer sensitivity compares favorably to 
that of future HEMT amplifiers (open circles), calculated assuming 3x quantum-limited noise performance, 30 % 
bandwidth, and simultaneous detection of both Q and U.  The ultimate background-limited sensitivity from the CMB, 
assuming 100 % efficiency and a noiseless detector, is shown by the solid curve. 
 

Mechanisms such as rotating waveplates, wire grids, K-mirrors, and Fresnel rhombs12 are commonly 
used to modulate polarization.  Such mechanisms are challenging to implement at low temperature, and can 
introduce pickup from microphonics or EMI into sensitive bolometers and low-noise readout electronics.  
Waveplates are difficult to operate over a wide spectral band, and must be stacked together to obtain wider 
spectral coverage.  Furthermore, high-sensitivity polarimeters inherently require large optical throughput, 
so the modulator must be physically large.  For example, the QUEST receiver is using a 20-cm, 5-element 
waveplate cooled to 77 K.  Implementing this technology in a space-borne experiment, for a receiver with 
equivalent or larger optical throughput, is a significant engineering challenge.  An alternate technology, the 
solid-state Faraday modulator, relies on an applied magnetic field to produce Faraday rotation in a section 
of ferrite coupled in waveguide.  Polarization is modulated without moving parts, but one modulator is 
required per feedhorn. 

Measuring polarization of the CMB at the < 0.1 uK level using a receiver with instrumental 
polarization and cross-polarization at the 10-2 level may at first seem an impossible task.  However, 
scanning bolometric receivers measure temperature anisotropy at the 10’s of uK level from balloon-borne 
and ground-based platforms.  Therefore, spurious polarization must not confuse CMB temperature 
anisotropy and grad-mode polarization as measured through the instrument with true CMB grad-mode and 
curl-mode polarization.  Instrument polarization renders structure in the CMB (or atmosphere) polarized, 
and must be calibrated such that these structures do not induce false signals.  Fortunately, instrument 
polarization is readily measured by observing an unpolarized source such as the CMB dipole, or a beam-
filling calibrator.  Cross-polarization mixes Stokes Q and U parameters, and can produce false curl-mode 

318     Proc. of SPIE Vol. 4843

Downloaded from SPIE Digital Library on 16 Jul 2012 to 130.88.0.124. Terms of Use:  http://spiedl.org/terms

From J. Bock, “Polarimetry in Astronomy”, 2003 



16-24/07/2012 CMB and High Energy Physics 
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waveplate cooled to 77 K.  Implementing this technology in a space-borne experiment, for a receiver with 
equivalent or larger optical throughput, is a significant engineering challenge.  An alternate technology, the 
solid-state Faraday modulator, relies on an applied magnetic field to produce Faraday rotation in a section 
of ferrite coupled in waveguide.  Polarization is modulated without moving parts, but one modulator is 
required per feedhorn. 

Measuring polarization of the CMB at the < 0.1 uK level using a receiver with instrumental 
polarization and cross-polarization at the 10-2 level may at first seem an impossible task.  However, 
scanning bolometric receivers measure temperature anisotropy at the 10’s of uK level from balloon-borne 
and ground-based platforms.  Therefore, spurious polarization must not confuse CMB temperature 
anisotropy and grad-mode polarization as measured through the instrument with true CMB grad-mode and 
curl-mode polarization.  Instrument polarization renders structure in the CMB (or atmosphere) polarized, 
and must be calibrated such that these structures do not induce false signals.  Fortunately, instrument 
polarization is readily measured by observing an unpolarized source such as the CMB dipole, or a beam-
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mode signals by differencing both legs of the analyzer instantaneously.  We have developed a compact dual 
analyzer (see Fig. 5) consisting of a pair of polarization-selective bolometers11 (PSBs).  Placing the 
bolometers together at the output of a single-mode feedhorn ensures well-matched beams on the sky.  Dual 
analyzers are thus relatively immune to common-mode noise sources, such as temperature drifts, gain 
drifts, sky noise, and common-mode pickup from microphonics and electro-magnetic interference. 
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introduce pickup from microphonics or EMI into sensitive bolometers and low-noise readout electronics.  
Waveplates are difficult to operate over a wide spectral band, and must be stacked together to obtain wider 
spectral coverage.  Furthermore, high-sensitivity polarimeters inherently require large optical throughput, 
so the modulator must be physically large.  For example, the QUEST receiver is using a 20-cm, 5-element 
waveplate cooled to 77 K.  Implementing this technology in a space-borne experiment, for a receiver with 
equivalent or larger optical throughput, is a significant engineering challenge.  An alternate technology, the 
solid-state Faraday modulator, relies on an applied magnetic field to produce Faraday rotation in a section 
of ferrite coupled in waveguide.  Polarization is modulated without moving parts, but one modulator is 
required per feedhorn. 

Measuring polarization of the CMB at the < 0.1 uK level using a receiver with instrumental 
polarization and cross-polarization at the 10-2 level may at first seem an impossible task.  However, 
scanning bolometric receivers measure temperature anisotropy at the 10’s of uK level from balloon-borne 
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Horn array and bolometer array: which one is cleaner electromagnetically? 

SKY Optics and then SKY 



And now… 
A few interesting 
instruments 



3. HF Gravitational waves 

"   Ground or space interferometers 

"   Pulsars 

"   CMB B-modes 

"   What about different frequencies… like very high 
frequencies? 
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"   Strong science cases- well understood technology 
"   Pulsar timing ~10-8 Hz  
"   LISA/DECIGO 10-4 – 10-2 Hz  
"   Advanced LIGO 102 – 5×103 Hz  

"   Emerging science cases- new technology 
"   Microwave Frequencies 108 – 1010 Hz 
"   IR and Optical Frequencies 1012 – 1015 Hz or higher 

First Detections? 

Gravitational Wave Frequency Ranges 



"   Early Universe 
"   Garcia-Bellido, Easther, Leblond, etc 

" Kaluza-Klein modes from Black Holes in 5-D 
gravity 
" Seahra, Clarkson and Maartens, Clarkson and 

Seahra 

"   EM-GW mode conversion in magnetised 
plasmas 
" Servin and Brodin 
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Possible Sources at Very High Frequencies ? 



"   Laser interferometers lose 
sensitivity as n increases 

"   Use Graviton to Photon 
conversion in B Field 

"   De Logi and Mickelson (1977) 

"   Cross section for g      ν   

Σ=Γ 3

228
c
LGBπ
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Graviton, g 

Virtual Photon 
( Static Magnetic  
Field , B) 
 

Photon, ν	



Spin states of g, B and ν	



Detector Possibilities 

B is magnetic field, L is path length 



"   Cross Section G is small due to G/c3 factor 
but this is per incoming graviton 

"   Flux of gravitons is large due to c2/G factor 

  

  

"    Signal Power is ( )2 2 2 2 2

0

1
8EMW gwP B L K h cSin α
µ

=
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What are the fluxes ? 

   
Photon Flux = Γ c2

16πG
ω gw

2h2 1
ω gw



Conversion GW à e.m waves 

16-24/07/2012 CMB and High Energy Physics 

Inverse-Gertsenshtein effect 
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"   Need smart transducer 
GW àEMW à waveguides à LNA à detection, or 

GW àEMW à lenses à CCD à detection 

"   With EMW’s we can use standard techniques 

"   Correlation receiver for a single baseline GW 
detector or an imaging detector at optical 
wavelengths 

 

Conversion GW à e.m waves 



Instrument angular-acceptance/beam 

•  First tests at Birmingham create EMW’s completely inside 

single mode waveguide- simple geometry 

•  New detector requires GW-EMW conversion outside 

modified waveguide and at many angles 
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New  instrument concept 
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Conversion  
volume 

g – waves à à  e.m.- waves 

Collection 
part 

Detection 
part 

à single-mode RF 

Magnets & waveguide 
Waveguide  

taper 

Cryo  
LNA 

Correlator 



Collection part 
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Single-mode 
output 

Conversion volume 
Collection part 

Finite-element e.m. modelling (HFSS) 

Magnets 
Standard single  
mode waveguide 

Tall  
waveguide 

Plane-waves / modes 
from different 

directions in input 



New Detector- microwave 
"   Partial list of problems: 

"   Conversion plane-wave à waveguide modes 
"   Waves from different directions à Mismatch with 

the main waveguide mode 
"   Gradient of e.m. intensity along conversion 

volume 
"   Magnetic field projection effects 
"   Difference in waveguide phase-velocity 
"   Multiple reflections inside the waveguide structure 
"   Etc… 
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GW Correlation Receiver 

Correlator 

•  Sensitivity increase 
•  Narrower beam in the z direction 
•  … 

16-24/07/2012 CMB and High Energy Physics 



20	
  K	
  

LIA	
  

LIA	
  

900	
  LPF	
  

LPF	
  

PS1	
  

PS2	
  

LO	
  7GHz	
  

BPF	
  

BPF	
  

Video	
  
Amp.	
  

Video	
  
Amp.	
  

PS	
  	
  waveform	
  
generator	
  

IN1	
  

IN2	
  

Cryo	
  LNA	
  
C-­‐band	
  (5	
  GHz)	
  

RC	
  cos	
  

RC	
  sin	
  

Re	
   Im	
  

USB	
  (LO	
  +	
  Si)	
  
(12	
  GHz)	
  

LSB	
  (LO	
  -­‐	
  Si)	
  
(2	
  GHz)	
  

LO	
  (7	
  GHz)	
  

Signal	
  Si	
  
(5	
  GHz)	
  

LPF	
   BPF	
  

IF1	
  

IF2	
  

Correlation receiver circuitry 

16-24/07/2012 CMB and High Energy Physics 



  X 

s s 

antenna b 

)cos(2 tVV ω=])(cos[1 gtVV τω −=

2/])2cos()[cos(21 gg tVV ωτωωτ −+

2/)]/2cos([2/])cos([ 2121 cVVVVR gc sb ⋅== πυωτ

multiply 

average 

A	
  small	
  (but	
  finite)	
  
frequency	
  width,	
  and	
  no	
  
moVon.	
  	
  Consider	
  
radiaVon	
  from	
  a	
  small	
  
solid	
  angle	
  dW,	
  from	
  
direcVon	
  s.	
  

Cosine	
  output	
  

Correlation receiver 
B’ham/M’cr GW prototype experiment 

cg /sb ⋅=τ

16-24/07/2012 CMB and High Energy Physics 



Effect of finite bandwidth 

interferometer response attenuated 

Solution: add time delay to 
compensate for phase difference 

⌧i = ⌧g�g = b · s/c

Pxy(⇤g) =

Z �0+B/2

�0�B/2
A(�, s)F� exp(�i2⇥�⇤g)d�

⇥ A(�0, s)F�0 exp (�i2⇥�0⇤g)sinc(B⇤g)

S
xy

(�0, s)

Synthesizing beams… 

Transit of a point-like 
source 
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Sensitivity ( Provisional ) 

16-24/07/2012 CMB and High Energy Physics 

continuous 



Ideas for the (not so distant) future 

We are considering extending the Birmingham optical 
detector work using larger arrays feeding CCD detectors 
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Conclusion 
"   In addition to the obvious sources at LIGO and LISA frequencies there may be 

GW radiation at microwave and optical although the sources are speculative 

"   The prototype detectors using the graviton to photon conversion are relatively 
cheap to build 

"   The Jodrell – Birmingham collaboration is studying the design of a single 
baseline interferometer operating at 5GHz and an optical detector (*). 

"   The detector will locate sources in the sky 

 

(*) PMTs/CCDs coupled to superconducting  

Magnets inside a cryostat to give very high sensitivity  
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END 
Thank you 


