Single crystal silicon

Intel 4004 (1971), 4 bit, 2300 transistors

B
A

- .'.I.. f. I-‘
i]E Brd

‘v

-.-|.‘

1% Il-..-n—-|'1
'._' &a .l‘!‘lﬁ
A

- . .hm—-.-i-. ,
s i

. | |
= ¥
&
i —n

e TL]

b

-
"
K
»
1
5
-
- .
=
-
:

o e o0 U o T ..
. |
ol = [
o L
L]
L
i
-
L
 }

¥
-

ei§)

-
1.:111------'--_:
R W v

Rkl AL LR TR

Intel 4004 Architecture

|

Accumulator

Temp.
Register

Flag
Flip Flops

Decimal
Adjust

Data Bus

Data Bus
Buffer

|

L}

4 Bit internal Data Bus

|

Instruction
Register

Instruction
Decoder and

Machine

Cycle
Encoding

Intel 4004 (1971), 4 bit, 2300 transistors

D0-03 bidirectional

|

Stack
Multiplexer

Program Counter

Level No. 1

Level No. 2

Level No. 3

»| Stack Pointer

Timing and Control
ROM Control RAM Control

Address
Stack

Register
Multiplexer
0 1
2 3

8| 4 5

&

| B 7

®

o 8 9

5

2l 10 11
12 13
14 15

I Scratch
Fad

1

CM ROM

hils

CM RAM 0-3

IR

Test Sync Ph1 Ph2

Reset

Intel 8008 (1972), 8/14 bit, 2500 transistors

Intel 8086 (1978), 16 bit, 20 000 transistors

Basic Concepts of Microprocessors

e Differences between:

— Microcomputer — a computer with a
microprocessor as its CPU. Includes memory, 1/0O
etc.

— Microprocessor — silicon chip which includes
ALU, register circuits & control circuits

— Microcontroller — silicon chip which includes
microprocessor, memory & |1/O in a single
package.

What Is a Microprocessor?

e The word comes from the combination micro and
Processor.

— Processor means a device that processes whatever. In
this context processor means a device that processes
numbers, specifically binary numbers, 0’s and 1’s.

» To process means to manipulate. It is a general term that
describes all manipulation. Again in this content, it means to
perform certain operations on the numbers that depend on the
microprocessor’s design.

What about micro?

 Micro IS a new addition.

— In the late 1960’s, processors were built using discrete
elements.

» These devices performed the required operation, but were too
large and too slow.

— In the early 1970’s the microchip was invented. All of
the components that made up the processor were now
placed on a single piece of silicon. The size became
several thousand times smaller and the speed became
several hundred times faster. The “Micro”’Processor
was born.

Definition of the Microprocessor

The microprocessor Is a programmable device
that takes In numbers, performs on them
arithmetic or logical operations according to
the program stored in memory and then
produces other numbers as a result.

Definition (Contd.)

» Lets expand each of the underlined words:

— Programmable device: The microprocessor can perform
different sets of operations on the data it receives depending
on the sequence of instructions supplied in the given
program.

By changing the program, the microprocessor manipulates
the data in different ways.

— Instructions: Each microprocessor is designed to execute a
specific group of operations. This group of operations is
called an instruction set. This instruction set defines what the
microprocessor can and cannot do.

Definition (Contd.)

— Takes in: The data that the microprocessor
manipulates must come from somewhere.
e It comes from what is called “input devices”.

* These are devices that bring data into the system
from the outside world.

» These represent devices such as a keyboard, a
mouse, switches, and the like.

Definition (Contd.)

— Numbers: The microprocessor has a very narrow view on life. It
only understands binary numbers.

A binary digit is called a bit (which comes from binary digit).

The microprocessor recognizes and processes a group of bits
together. This group of bits is called a “word”.

The number of bits in a Microprocessor’s word, is a measure of its
“abilities”.

Definition (Contd.)

— Words, Bytes, etc.
» The earliest microprocessor (the Intel 8088 and Motorola’s
6800) recognized 8-bit words.

— They processed information 8-bits at a time. That’s why they are
called “8-bit processors”. They can handle large numbers, but in
order to process these numbers, they broke them into 8-bit pieces
and processed each group of 8-bits separately.

 Later microprocessors (8086 and 68000) were designed with
16-bit
— A group of 8-bits were referred to as a “half-word” or “byte”.
— A group of 4 bits is called a “nibble”.
— Also, 32 bit groups were given the name “long word”.

» Today, all processors manipulate at least 32 bits at a time and
there exists microprocessors that can process 64, 80, 128 bits

Definition (Contd.)

— Arithmetic and Logic Operations:
» Every microprocessor has arithmetic operations such as add
and subtract as part of its instruction set.
— Most microprocessors will have operations such as multiply and
divide.
— Some of the newer ones will have complex operations such as
square root.

 In addition, microprocessors have logic operations as well.
Such as AND, OR, XOR, shift left, shift right, etc.

» Again, the number and types of operations define the
microprocessor’s instruction set and depends on the specific

microprocessor.

Definition (Contd.)

— Stored in memory :

 First, what is memory?

— Memory is the location where information is kept while not in
current use.

— Memory is a collection of storage devices. Usually, each storage
device holds one bit. Also, in most kinds of memory, these
storage devices are grouped into groups of 8. These 8 storage
locations can only be accessed together. So, one can only read or
write in terms of bytes to and form memory.

— Memory is usually measured by the number of bytes it can hold.
It is measured in Kilos, Megas and lately Gigas. A Kilo in
computer language is 21°=1024. So, a KB (KiloByte) is 1024
bytes. Mega is 1024 Kilos and Giga is 1024 Mega.

Definition (Contd.)

— Stored In memory:

* \When a program is entered into a computer, it Is
stored in memory. Then as the microprocessor starts
to execute the instructions, it brings the instructions
from memory one at a time.

e Memory is also used to hold the data.

— The microprocessor reads (brings in) the data from
memory when it needs it and writes (stores) the results
Into memory when it is done.

Definition (Contd.)

— Produces: For the user to see the result of the
execution of the program, the results must be
presented in a human readable form.

* The results must be presented on an output device.

» This can be the monitor, a paper from the printer, a
simple LED or many other forms.

A Microprocessor-based system

From the above description, we can draw the
following block diagram to represent a
microprocessor-based system:

Input » Output

S
9
&
S
S
&
=Ny
@)
S

Memory

Inside The Microprocessor

 Internally, the microprocessor is made up of
3 main units.
— The Arithmetic/Logic Unit (ALU)
— The Control Unit.

— An array of registers for holding data while it is
being manipulated.

I/O
Input / Output
Register
Array t

< SystemBus

ROM RAM

Memory

Memory stores information such as instructions
and data in binary format (0 and 1). It provides
this information to the microprocessor whenever
It IS needed.

Usually, there is a memory “sub-system” in a
microprocessor-based system. This sub-system
Includes:

— The registers inside the microprocessor

— Read Only Memory (ROM)

 used to store information that does not change.

— Random Access Memory (RAM) (also known as

Read/Write Memory).

 used to store information supplied by the user. Such as
programs and data.

Memory Map and Addresses

 The memory map Is a picture representation
of the address range and shows where the
different memory chips are located within
the address range.

0000 0000

EPROM Address Range of EPROM Chip

3FFF
4400

RAM 1 I Address Range of 15t RAM Chip
L 5FFF
2 6000
&5 RAM 2 Address Range of 2" RAM Chip
7 8FFF
@ 9000 .
= RAM 3 Address Range of 3" RAM Chip
S A3FF
< A400
\ RAM 4 Address Range of 4" RAM Chip
F7FF

FFFF

Endianess
How to store integers with a size larger than 8 bits?

31 0

32-bit register

memory
0x0050
0x0051
0x0052
0x0053

Endianess
How to store integers with a size larger than 8 bits?

31 0
32-bit reqgister
memory little endian big endian
0x0050
0x0051
0x0052
0x0053

Intel, AMD, DEC All others, network protocols

» affects only integers (floats are standardized)
» ARM: bi-endian (endianess is selected during startup)

Memory

e To execute a program:

— the user enters its instructions in binary format into the
memory.

— The microprocessor then reads these instructions and
whatever data is needed from memory, executes the
Instructions and places the results either in memory or
produces it on an output device.

The three cycle Instruction
execution model

* To execute a program, the microprocessor “reads”
each Instruction from memory, “interprets” it, then
“executes” It.

e To use the right names for the cycles:
— The microprocessor fetches each instruction,
— decodes It,
— Then executes it.

 This sequence iIs continued until all instructions
are performed.

Machine Language

 The number of bits that form the “word” of a

microprocessor Is fixed for that particular
processor.

— These bits define a maximum number of combinations.

» For example an 8-bit microprocessor can have at most 28 = 256
different combinations.

* However, in most microprocessors, not all of these
combinations are used.

— Certain patterns are chosen and assigned specific
meanings.

— Each of these patterns forms an instruction for the
microprocessor.

— The complete set of patterns makes up the
microprocessor’s machine language.

The 8085 Machine Language

e The 8085 (from Intel) is an 8-bit microprocessor.

— The 8085 uses a total of 246 bit patterns to form its
Instruction set.

— These 246 patterns represent only 74 instructions.

» The reason for the difference is that some (actually most)
Instructions have multiple different formats.

— Because it Is very difficult to enter the bit patterns
correctly, they are usually entered in hexadecimal
Instead of binary.

» For example, the combination 0011 1100 which translates into
“increment the number in the register called the accumulator”,
Is usually entered as 3C.

Assembly Language

 Entering the Instructions using hexadecimal is quite
easier than entering the binary combinations.

— However, it still is difficult to understand what a program
written in hexadecimal does.

— S0, each company defines a symbolic code for the
Instructions.

— These codes are called “mnemonics”.

— The mnemonic for each instruction is usually a group of
letters that suggest the operation performed.

Assembly Language

« Using the same example from before,
— 00111100 translates to 3C in hexadecimal (OPCODE)
— Its mnemonic is: “INR A”.

— INR stands for “increment register” and A is short for
accumulator.

e Another example is: 1000 0000,

— Which translates to 80 in hexadecimal.
— Its mnemonic is “ADD B”.

— “Add register B to the accumulator and keep the result in the
accumulator”.

Assembly Language

 [tis Important to remember that a machine
language and its associated assembly language are
completely machine dependent.

— In other words, they are not transferable from one
microprocessor to a different one.

* For example, Motorolla has an 8-bit
microprocessor called the 6800.

— The 8085 machine language is very different from that
of the 6800. So Is the assembly language.

— A program written for the 8085 cannot be executed on
the 6800 and vice versa.

“Assembling” The Program

e How does assembly language get translated into
machine language?

— There are two ways:

— 15tthere is “hand assembly”.

* The programmer translates each assembly language instruction
Into its equivalent hexadecimal code (machine language). Then
the hexadecimal code is entered into memory.
— The other possibility is a program called an

“assembler”, which does the translation automatically.

e System Bus— wires connecting memory & /O to
MI Croprocessor

— Address Bus

 Unidirectional
* |dentifying peripheral or memory location

— DataBus
 Bidirectiona
» Transferring data
— Control Bus
» Synchronization signals
e Timing signals
« Control signal

von Neumann

address

memopy dClTG m
{00l ADD r5,rlr3 ADD r5rir3

von Neumann vs. Harvard

von Neumann
Same memory holds data, instructions.
A single set of address/data buses between
CPU and memory

Harvard

Separate memories for data and instructions.

Two sets of address/data buses between
CPU and memory

Harvard Architecture

address

data memory

‘ data

address

program memory | 4a+q

von Neumann vs. Harvard

Harvard allows two simultaneous memory
fetches.
Most DSPs use Harvard architecture for
streaming data:

greater memory bandwidth;

more predictable bandwidth.

RISC vs. CISC
Reduced Instruction Set Computer (RISC)

Compact, uniform instructions - facilitate pipelining
More lines of code - large memory footprint
Allow effective compiler optimization

Complex Instruction Set Computer (CISC)
Many addressing modes and long instructions
High code density

Often require manual optimization of assembly code
for embedded systems

RISC

CISC

Microprocessors

ARM7 ARM9
Pentium SHARC
(DSP)
von Neumann Harvard

X1

INTR

CLKOUT

INTA# RST6.5 TRAP SID
RSTS5S5 RST75

8 Bitinternal Data Bus

Instruction
Register

(8 Bit)

Flag Re gister
(8 Bit)

Instruction
Decoder and

Machine

Cycle
Encoding

|'_l|.|ll-||l-_-:.| _' _‘_ "’_H

RESET OUT

RESET IN# HOLD

£ [3
HLDA SO s1 g

Decoder

MEMW# l IOW#
MEMR# IOR#

N WO N b N W 0 D W W 0 WO W W0 0 WO N 0 W

sSoD

Address Bus High).
L -]

Intel 8085 Microarchitecturs

I~
(=]
q:
a
. S
]
-
]
ALE 'L Latch :
| s
i
AB-AlS AD-A7 D0-D7 g
]

-
O 0 N b N 0 0 B W N B 0 N W W

Intel 8085 Microprocessor

« Microprocessor consists of:
— Control unit: control microprocessor operations.
— ALU: performs data processing function.
— Registers: provide storage internal to CPU.
— Interrupts
— Internal data bus

TheALU

 |naddition to the arithmetic & logic circuits, the
ALU includes the accumulator, which is part of
every arithmetic & logic operation.

e Also, the ALU includes atemporary register used
for holding data temporarily during the execution
of the operation. This temporary register is not
accessible by the programmer.

* Registers
— General Purpose Registers
, 0, 5, & L (8 bit registers)
e Can be used singly
e Or can be used as 16 bit register pairs

— BC,DE, HL
 H & L can be used as a data pointer (holds memory
addre$) ccumulator Flags
— Specia Purpose Registers - 5 C
(8 bit register) H]
~ Store 8 bit data Cogen o

— Store the result of an operation
— Store 8 bit dataduring 1/O transfer Address 116 ‘ {8 ‘ Data

— 8 bit register — shows the status of the microprocessor before/after an
operation

— S(signflag), Z (zero flag), AC (auxillary carry flag), P (parity flag) &
CY (carry flag)

D7 D6 D5 D4 D3 D2 D1 DO

S Z X AC X P X CY

» Used for indicating the sign of the data in the accumulator
 Thesignflagisset if negative (1 — negative)
 Thesignflagisreset if positive (0 —positive)

— |Isset if result obtained after an operation isO
— |s set following an increment or decrement operation of that register

10110011
+ 01001101

1 00000000

— Issetif thereisacarry or borrow from arithmetic operation

1011 0101 1011 0101
+ 0110 1100 - 1100 1100

Carry 1 0010 0001 Borrow 1 1110 1001

— |Isset if thereisacarry out of bit 3

— Isset if parity Iseven
— Iscleared if parity isodd

The Internal Architecture

* We have aready discussed the general purpose
registers, the Accumulator, and the flags.

e The Program Counter (PC)

— Thisisaregister that is used to control the sequencing
of the execution of instructions.

— Thisregister always holds the address of the next
Instruction.

— Since it holds an address, it must be 16 bits wide.

The Internal Architecture

e The Stack pointer

— The stack pointer is also a 16-bit register that is
used to point into memory.

— The memory this register pointsto is a special
area called the stack.

— The stack Is an area of memory used to hold
datathat will be retreived soon.

— The stack isusually accessed inalLast In First
Out (LIFO) fashion.

Non Programmable Registers

— Instruction is stored in IR after fetched by processor
— Decoder decodesinstructionin IR

Internal Clock generator

— 3.125 MHz internally
— 6.25 MHz externally

The Address and Data Busses

 Theaddressbushas8signal linesA8—-A15
which are unidirectional.

e The other 8 address bits are multiplexed (time
shared) with the 8 data bits.

— S0, the bits ADO — AD7 are bi-directional and serve as
and at the same time.

» During the execution of the instruction, these lines carry the
address bits during the early part, then during the late parts of
the execution, they carry the 8 data bits.

— In order to separate the address from the data, we can
use alatch to save the value before the function of the
bits changes.

Derultiplexing the Bus AD7 — ADo

The high order address is placed on the address bus and hold for 3 clk
periods,

The low order address islost after the first clk period, this address
needs to be hold however we need to use latch

The address AD7 — ADO is connected as inputs to the latch 74L S373.

The ALE signal is connected to the enable (G) pin of the latch and the
OC — Output control — of the latch is grounded

| Chip Selection
Circuit

WR RD IOM

| ntroduction to 8085 I nstructions

The 8085 Instructions

— Since the 8085 is an 8-bit deviceit can haveupto 28
(256) instructions.

* However, the 8085 only uses 246 combinations that represent a
total of 74 instructions.

— Most of the instructions have more than one format.

— These instructions can be grouped into five different
groups.
o Data Transfer Operations
Arithmetic Operations
L ogic Operations
Branch Operations
Machine Control Operations

| nstruction and Data Formats

e Each instruction has two parts.

— Thefirst part isthe task or operation to be
performed.

e Thispart iscalled the “opcode” (operation code).

— The second part is the data to be operated on
» Called the “operand”.

Data Transfer Operations

— These operations ssimply COPY the data from the
source to the destination.

— MOV, MVI, LDA, and STA

— They transfer:
» Data between registers.
« Data Byteto aregister or memory location.
» Data between a memory location and aregister.
» Data between an I\O Device and the accumulator.

— The datain the source is not changed.

The LXI instruction

e The 8085 provides an instruction to place
the 16-bit data into the register pair in one
step.

 LXI Rp, <16-bit address> (Load exXtended Immediate)

— Theinstruction L X1 B 4000H will place the
16-bit number 4000 into the register pair B, C.

* The upper two digits are placed in the 1% register of
the pair and the lower two digitsin the 2.

VR

LXI B 40 OOH B 40 00 C

The Memory “Register”

 Most of the instructions of the 8085 can use a

memory location in place of aregister.

— The memory location will become the “memory” register M.

- MOV MB
— copy the data from register B into amemory location.

— Which memory location?

 The memory location isidentified by the contents
of the HL register pair.

— The 16-bit contents of the HL reqister pair are treated
as a 16-bit address and used to identify the memory
location.

Using the Other Register Pairs

— Thereisalso an instruction for moving datafrom
memory to the accumulator without disturbing the
contents of the H and L register.

« LDAX Rp (LoaD Accumulator eXtended)

— Copy the 8-bit contents of the memory |ocation identified by the
Rp register pair into the Accumulator.

— Thisinstruction only uses the BC or DE pair.
— It does not accept the HL pair.

Indirect Addressing Mode

e Using datain memory directly (without loading
first into a Microprocessor’ sregister) is called
Indirect Addressing.

 |Indirect addressing usesthe datain aregister pair
as a 16-bit address to identify the memory location
belng accessed.
— The HL register pair is always used in conjunction with
the memory register “M”.
— The BC and DE register pairs can be used to load data
Into the Accumultor using indirect addressing.

Arithmetic Operations

— Addition (ADD, ADI):
— Any 8-bit number.
— The contents of aregister.
— The contents of a memory location.

» Can be added to the contents of the accumulator and the result
IS stored in the accumul ator.

— Subtraction (SUB, SUI):

— Any 8-bit number
— The contents of aregister
— The contents of amemory location

» Can be subtracted fr om the contents of the accumulator. The
result is stored in the accumul ator.

Arithmetic Operations Related to
Memory

e Theseinstructions perform an arithmetic operation
using the contents of a memory location while
they are still in memory.

— ADD M
* Add the contents of M to the Accumulator
— SUB M

» Sub the contents of M from the Accumulator

— INR M/DCRM

 |ncrement/decrement the contents of the memory location in
place.

— All of these use the contents of the HL register pair to
Identify the memory location being used.

Arithmetic Operations

— Increment (INR) and Decrement (DCR):

* The 8-bit contents of any memory location or any
register can be directly incremented or decremented
by 1.

* NO need to disturb the contents of the accumul ator.

Manipulating Addresses

 Now that we have a 16-bit address in a register
pair, how do we manipulate it?

— It is possible to manipulate a 16-bit address stored in a
register pair as one entity using some specia

Instructions.
« INXRp (Increment the 16-bit number in the register pair)
 DCXRp (Decrement the 16-bit number in the register pair)

— Theregister pair isincremented or decremented as one
entity. No need to worry about a carry from the lower
8-hits to the upper. It istaken care of automatically.

L ogic Operations

e These instructions perform logic operations on the

contents of the accumulator.

— ANA, ANI, ORA, ORI, XRA and XRI

 Source: Accumulator and
— An 8-bit number
— The contents of aregister
— The contents of a memory location

e Destination: Accumulator

ANA R/M

ANl #

ORA R/M

ORI

XRA R/M

XRI

#

#

AND Accumulator With Reg/Mem
AND Accumulator With an 8-bit number

OR Accumulator With Reg/Mem
OR Accumulator With an 8-bit number

XOR Accumulator With Reg/Mem
XOR Accumulator With an 8-bit number

L ogic Operations

— Complement:

» 1's complement of the contents of the accumulator.
CMA No operand

Additional Logic Operations

e Rotate

— Rotate the contents of the accumulator one
position to the left or right.

RLC

Rotate the accumul ator |eft.
Bit 7 goesto bit 0 AND the Carry flag.

Rotate the accumulator left through the carry.
Bit 7 goesto the carry and carry goesto bit O.

Rotate the accumulator right.
Bit 0 goesto bit 7 AND the Carry flag.

Rotate the accumulator right through the carry.
Bit O goesto the carry and carry goesto bit 7.

e RLC

RLC vs. RLA

Carry Flag

4 | 3| 2 10w

Accumulator

71615

Carry Flag

C4 3| 2 D

Accumulator

Logical Operations

 Compare
» Compare the contents of aregister or memory location with the

contents of the accumulator.

— CMP R/M Compare the contents of the register
or memory location to the contents of

the accumul ator.

— CPI # Compare the 8-bit number to the
contents of the accumulator.

* The compare instruction setsthe flags (Z, Cy, and S).

* The compare isdone using an internal subtraction that does not
change the contents of the accumulator.

A—(R/M/#

Branch Operations

e Two types:

— Unconditional branch.
e (GO to anew location no matter what.

— Conditiona branch.
e Gotoanew location if the condition is true.

Unconditional Branch

— JMP Address
» Jump to the address specified (Go to).

— CALL Address
« Jump to the address specified but treat it as a subroutine.

— RET
* Return from a subroutine.

— The addresses supplied to all branch operations must be
16-bits.

Conditional Branch

— Go to new location if a specified condition is met.
« JZ Address (Jump on Zero)

— Go to address specified if the Zero flag is set.
IJNZ Address (Jump on NOT Zero)

— Go to address specified if the Zero flag isnot set.
JC Address (Jump on Carry)

— Go to the address specified if the Carry flag is set.
JNC Address (Jump on No Carry)

— Go to the address specified if the Carry flag is not set.
JP Address (Jump on Plus)

— Go to the address specified if the Sign flag is not set
JM Address (Jump on Minus)

— Go to the address specified if the Sign flag is set.

Machine Control

—HLT
 Stop executing the program.

— NOP

* NO operation
» Exactly asit says, do nothing.

o Usually used for delay or to replace instructions
during debugging.

Operand Types

* There are different ways for specifying the
operand.:
— There may not be an operand (implied operand)
« CMA

— The operand may be an 8-bit number (immediate data)
« ADI 4FH

— The operand may be an internal register (register)
-« SUB B

— The operand may be a 16-bit address (memory address)
« LDA 4000H

|nstruction Size

* Depending on the operand type, the instruction
may have different sizes. It will occupy adifferent
number of memory bytes.

— Typically, all instructions occupy one byte only.

— The exception is any instruction that contains
Immediate data or a memory address.
* Instructionsthat include immediate data use two bytes.
— One for the opcode and the other for the 8-bit data.

* Instructionsthat include a memory address occupy three bytes.
— Onefor the opcode, and the other two for the 16-bit address.

| nstruction with |mmediate Date

e Operation: Load an 8-bit number into the
accumulator.

— MVI A, 32
e Operation: MVI A
* Operand: The number 32
* Binary Code:

00111110 3E 1% byte.
0011 0010 32 2 pyte.

Instruction with a Memory

Address
e Operation: go to address 2085.

— Instruction: IMP 2085
e Opcode: IMP
e Operand: 2085
 Binary code:
11000011 C3 1% pyte.
10000101 85 2ndpyte

00100000 20 3dbyte

Addressing Modes

e The microprocessor has different ways of

specifying the data for the instruction. These are
called “ addressing modes”.

* The 8085 has four addressing modes:

— Implied CMA

— Immediate MVI B, 45
— Direct LDA 4000
— Indirect LDAX B

 Load the accumulator with the contents of the memory location
whose address is stored in the register pair BC).

Data Formats

* |nan 8-bit microprocessor, data can be

represented in one of four formats:
o ASCII
« BCD
o Signed Integer
* Unsigned Integer.

— |t iIsimportant to recognize that the microprocessor
dealswithO'sand 1's.

* |t dealswith values as strings of bits.
 |tisthejob of the user to add a meaning to these strings.

Data Formats

« Assume the accumulator contains the following
value: 0100 0001.

— There are four ways of reading this value:

 |tisan unsigned integer expressed in binary, the equivalent
decimal number would be 65.

 |tisanumber expressed in BCD (Binary Coded Decimal)
format. That would makeit, 41.

o Itisan ASCII representation of aletter. That would make it the
letter A.

 Itisastring of 0'sand 1'swhere the 0" and the 6! bits are set
to 1 while all other bitsare set to 0.

ASCII stands for American Standard Code for Information | nterchange.

Counters & Time Delays

counters

* A loop counter isset up by loading aregister with
acertain value

e Then using the DCR (to decrement) and INR (to
Increment) the contents of the register are updated.

o A loopisset up with aconditional jJump
Instruction that loops back or not depending on
whether the count has reached the termination
count.

counters

* The operation of aloop counter can be
described using the following flowchart.

Initialize

\ 4
Body of loop

I

Update the count

Yes

Sample ALP for implementing aloop
Using DCR instruction

MVI C, 15H
LOOP DCR C
JNZ LOOP

Using a Register Pair as aLoop
Counter

e Using asingle register, one can repeat aloop for a
maximum count of 255 times.

e |t IS possible to increase this count by using a
register pair for the loop counter instead of the
single register.

— A minor problem arises in how to test for the final
count since DCX and INX do not modify the flags.

— However, if the loop is looking for when the count
becomes zero, we can use a small trick by ORing the
two registers in the pair and then checking the zero flag.

Using a Register Pair as aLoop
Counter

 Thefollowing isan example of aloop set
up with aregister pair as the loop counter.

LXI B, 1000H
LOOP DCX B

MOV A, C

ORA B

JNZ LOOP

Delays

|t was shown in Chapter 2 that each instruction
passes through different combinations of Fetch,
Memory Read, and Memory Write cycles.

« Knowing the combinations of cycles, one can
calculate how long such an instruction would
require to complete.

e Thetablein Appendix F of the book contains a
column with the title B/M/T.
— B for Number of Bytes
— M for Number of Machine Cycles
— T for Number of T-State.

Delays

e Knowing how many T-States an instruction
requires, and keeping in mind that a T-State is one
clock cycle long, we can calculate the time using
the following formula:

Delay = No. of T-States/ Frequency

e For examplea“MVI” instruction uses 7 T-States.
Therefore, if the Microprocessor i1srunning at 2
MHz, the instruction would require 3.5 uSeconds

to complete.

Delay loops

* \WWe can use aloop to produce acertain
amount of time delay in a program.

 Thefollowing isan example of adelay

loop:
MVI C, FFH [T-States
LOOPDCR C 4 T-States
JNZ LOOP 10 T-States

o Thefirst instruction initializes the loop counter and is
executed only once requiring only 7 T-States.

e Thefollowing two instructions form aloop that
requires 14 T-States to execute and is repeated 255
times until C becomes 0.

Delay Loops (Contd.)

We need to keep in mind though that in the last
iteration of the loop, the INZ instruction will fail and
require only 7 T-States rather than the 10.

Therefore, we must deduct 3 T-States from the total
delay to get an accurate delay calculation.

To calculate the delay, we use the following formula:

Tgaay = To+ T,
— Tyaq = tota delay
— Ty = delay outside the loop
— T_ =delay of theloop

Ty isthe sum of al delays outside the loop.

Delay Loops (Contd.)

o Using these formulas, we can calculate the
time delay for the previous example;

e To=7T-States
— Delay of the MV 1 instruction

+ T, = (14X 255) - 3= 3567 T-States

— 14 T-States for the 2 instructions repeated 255 times
(FF,; = 255,,) reduced by the 3 T-States for the final
INZ.

Using a Register Pair as aLoop
Counter

e Using asingle register, one can repeat aloop for a
maximum count of 255 times.

e |t IS possible to increase this count by using a
register pair for the loop counter instead of the
single register.

— A minor problem arises in how to test for the final
count since DCX and INX do not modify the flags.

— However, if the loop is looking for when the count
becomes zero, we can use a small trick by ORing the
two registers in the pair and then checking the zero flag.

Using a Register Pair as aLoop
Counter

 Thefollowing isan example of adelay loop
set up with aregister pair as the loop
counter.

LXI B, 1000H 10 T-States

LOOP DCX B 6 T-States
MOV A, C 4 T-States
ORA B 4 T-States

JNZ LOOP 10 T-States

Using a Register Pair asa Loop
Counter

e Using the same formula from before, we can
calculate:

— Thedelay for the LXI instruction

o T, =(24 X 4096) - 3=98301 T- States

— 24 T-Statesfor the 4 instructions in the loop repeated
4096 times (1000, = 4096,,) reduced by the 3 T-
States for the INZ in the last iteration.

NeSted LOO Sl Initializ=e loop 2

Bodly of loop 2
e Nested |OOpS can be | Initializ} loop 1 |
easily setup in Body of 1o0p 1
Assembly language by e
using two registers for
the two loop counters o @
and updating the right e
register in the right Dpdate the count2
loop.
— In the figure, the body of = @
loop2 can be before or

Yes

after loopl.

Nested Loops for Delay

 Instead (or in conjunction with) Register Pairs, a
nested |oop structure can be used to increase the
total delay produced.

MVI B, 10H [/ T-States
LOOP2 MVIC, FFH { T-States
LOOP1 DCRC 4 T-States
JNZ LOOP1 10 T-States
DCR B 4 T-States

JNZ LOOP2 10 T-States

Delay Calculation of Nested
L oops

* The calculation remains the same except
that It the formula must be applied
recursively to each loop.

— Start with the inner loop, then plug that delay in
the calculation of the outer |oop.

e Delay of inner loop
— Ty, = 7 T-States
« MVI C, FFH instruction
— T,,=(255 X 14) - 3= 3567 T-States

o 14 T-Statesfor the DCR C and JNZ instructions repeated 255
timeec(EE = 2BE6 YminiiceRfaor the final INI17

Delay Calculation of Nested
L oops

« Delay of outer loop
— To, =7 T-States
« MVI B, 10H instruction
— T,,=(16 X (14 + 3574)) - 3 = 57405 T-States

o 14 T-States for the DCR B and JNZ instructions and 3574
T-States for loopl repeated 16 times (10,4 = 16,,) minus 3 for the
final INZ.

— Tpaa = 7 + 57405 = 57412 T-States

o Total Delay
— Tpaa = 57412 X 0.5 uSec = 28.706 mSec

Increasing the delay

e The delay can be further increased by using

register pairs for each of the loop counters
In the nested |oops setup.

e It can also beincreased by adding dummy

Instructions (like NOP) in the body of the
loop.

Timing Diagram

Representation of Various Control signals generated during
Execution of an Instruction.

Following Buses and Control Signals must be shown in a
Timing Diagram:

*Higher Order AddressBus.
[ower Address/Data bus
*ALE

Timing Diagram

Instruction:
A 000N MQV A,B
Corresponding Coding:

A000N /8

Timing Diagram
| nstruction:

A0Q0Oh MOV A,B
Corresponding Coding:
A0Q0Oh /8

l B I

38085 M emory

Timing Diagram

| nstruction: n 12 T3 Ta

A0OOh MOV A,B — o —

Corresponding Coding: Coon > >
A0OOh 78

Op-code fetch Cycle

Timing Diagram
| nstruction:

A000h MVI A,45h
Corresponding Coding:
A000h 3E

A001h 45

Timing Diagram

| nstruction:

A000N MVI A,45h

Corresponding Coding:

A000N 3E « -
MEMR

A001h 45

8085 Memory

Timing Diagram

T1 i T2 i T3 i T4 I i T6 i T7

—
e

Instruction:

A000h MVI A,45h
Corresponding Coding:
A000h 3E
A001h 45

- 10/M

Op-Code Fetch Cycle "~ Memory Read Cycle

Timing Diagram

Instruction:

A000h L X1 A,FO45h
Corresponding Coding:
A000h 21

A001h 45

A002h FO

Timing Diagram

Instruction:

A000ONn L X1 A,FO45h

Corresponding Coding: orC
A000h 21 MEMR
A001h 45 MR

A002h FO 8085

Memory

Timing Diagram

n
>

<
<

n
>

A

Op-Code Fetch Cycle

. T2

. T3

v
A

Abh

DA-DAG (L ower ord:

gher Order Addressbus)

2]

Llh

er addresydata Bus):

Memory Read Cycle

. T6

. T7

AOh

Memory Read Cycle

. T9

. T10

AOh

F(

Timing Diagram

Instruction:
A000N MOV AM
Corresponding Coding:

A0Q0Oh /E

Timing Diagram

| nstruction:
A000Nh MOV A M

OFC
Corresponding Coding: R

A0O0Oh E
3085 Memory

Timing Diagram

fT6 fT7

Cointent Of Reg H >
Content OfM_>>

Instruction:

AO00Oh MOV A M
Corresponding Coding: :
A000h 7E __

|O/M

Op-Code Fetch Cycle ~ Memory Read Cycle

Timing Diagram

Instruction:
A000N MOV M,A
Corresponding Coding:

A000N 7

Timing Diagram

| nstruction:
A0O0Oh MOV M A

OFC
Corresponding Coding: SRV

A0O0Oh 7/
3085 Memory

Timing Diagram

' T6 Py

Cointent Of Reg H >

| nstruction:

A000h MOV M,A
Corresponding Coding:
A000h 77 _

1O/M

Op-Code Fetch Cycle ~ Memory WriteCycle -

Chapter 9
Stack and Subroutines

The Stack

e The stack is an area of memory identified by the
programmer for temporary storage of information.

e The stack iIsaLIFO structure.
— Last In First Out.

e The stack normally grows backwards into | """
memory.

— In other words, the programmer
defines the bottom of the stack The Stack
and the stack grows up into grows

backwards T

FGdUCI ng addl"eSS range into memory

Bottom
<« of the
Stack

The Stack

* Given that the stack grows backwards into
memory, It Is customary to place the bottom of the
stack at the end of memory to keep it as far away
from user programs as possible.

* |Inthe 8085, the stack is defined by setting the SP
(Stack Pointer) register.

LXI SP, FFFFH

e This setsthe Stack Pointer to location FFFFH (end
of memory for the 8085).

Saving Information on the Stack

o |Information is saved on the stack by PUSHINg it
on.
— It isretrieved from the stack by POPing it off.

* The 8085 providestwo instructions. PUSH and
POP for storing information on the stack and
retrieving it back.

— Both PUSH and POP work with register pairs ONLY .

The PUSH Instruction

« PUSH B

— Decrement SP

— Copy the contents of register B to the memory
location pointed to by SP

— Decrement SP
— Copy the%Tma%%of register C to the memory

FFFB

location pointed.to by 5Pz

» FFFE 12
FFFF SP

The POP Instruction

« POPD

— Copy the contents of the memory location
pointed to by the SP to register E

— Increment SP

— Copy the cgntents of the memory location
pointed t¢-, L= 3P to register D

FFFB

— Increment 3P S <p

FFFE[12 |
FFFF —

Operation of the Stack

« During pushing, the stack operatesin a
“decrement then store” style.

— The stack pointer is decremented first, then the
Information is placed on the stack.

 During poping, the stack operatesin a“use then
Increment” style.

— The information is retrieved from the top of the the
stack and then the pointer is incremented.

e The SP pointer always pointsto “the top of the
stack”.

LIFO

e The order of PUSHs and POPs must be opposite
of each other in order to retrieve information back
Into its original location.

PUSH B
PUSH D

POP D
POP B

The PSW Register Pair

* The 8085 recognizes one additional register pair
called the PSW (Program Status Word).

— Thisregister pair is made up of the Accumulator and
the Flags registers.

 |tispossibleto push the PSW onto the stack, do
whatever operations are needed, then POP it off of
the stack.
— Theresult is that the contents of the Accumulator and

the status of the Flags are returned to what they were
before the operations were executed.

Subroutines

e A subroutine is agroup of instructions that will be
used repeatedly in different locations of the
program.

— Rather than repeat the same instructions several times,
they can be grouped into a subroutine that is called
from the different locations.

 In Assembly language, a subroutine can exist
anywhere in the code.

— However, it Is customary to place subroutines
separately from the main program.

Subroutines

e The 8085 has two instructions for dealing
with subroutines.

— The CALL instruction is used to redirect
program execution to the subroutine.

— The RTE insutruction is used to return the
execution to the calling routine.

The CALL Instruction

 CALL 4000H

2000
2003

Push the address of the instruction
Immediately following the CALL onto the

S¥2 8 1
L oad the program ea—=#33~4h the 16-hit
address supplied with the CALL frstrugtion.
>irel 20|

FFFF SP

The RTE Instruction

« RTE

— Retrieve the return address from the top of
the stack

— Load the program counter with the return
address. Pc[_2003]

FFFB
4014 e ‘ FEEG

4015 RTE FFFD|__ 03 SP

FFFE| 20 |
FFFF «—

Cautions

 The CALL instruction places the return address at
the two memory locations immediately before
where the Stack Pointer is pointing.

— You must set the SP correctly BEFORE using the
CALL instruction.

e The RTE instruction takes the contents of the two
memory locations at the top of the stack and uses
these as the return address.

— Do not modify the stack pointer in a subroutine. Y ou
will loose the return address.

Passing Datato a Subroutine

* |In Assembly Language datais passed to a
subroutine through registers.

— The datais stored in one of the registers by the calling
program and the subroutine uses the value from the

register.

e The other possibility isto use agreed upon
memory locations.

— The calling program stores the data in the memory
location and the subroutine retrieves the data from the

location and uses It.

Call by Reference and Call by
Vaue

* |f the subroutine performs operations on the
contents of the registers, then these modifications
will be transferred back to the calling program

upon returning from a subroutine.
— Call by reference

e |f thisisnot desired, the subroutine should PUSH
all the registers it needs on the stack on entry and
POP them on return.

— The original values are restored before execution
returnsto the calling program.

Cautions with PUSH and POP
« PUSH and POP should be used in opposite order.

* There hasto be as many POP sasthere are
PUSH’s.

— If not, the RET statement will pick up the wrong
Information from the top of the stack and the program
will fail.

 |tisnot advisableto place PUSH or POP inside a
loop.

Conditional CALL and RTE

| nstructions

e The 8085 supports conditional CALL and
conditional RTE instructions.

— The same conditions used with conditional JUMP
Instructions can be used.

— CC, call subroutineif Carry flag is set.

— CNC, call subroutineif Carry flag is not set

— RC, return from subroutine if Carry flag is set

— RNC, return from subroutine if Carry flag is not set
— Etc.

A Proper Subroutine

« According to Software Engineering practices, a
proper subroutine:

— Isonly entered with a CALL and exited with an RTE

— Hasasingle entry point

* Do not use a CALL statement to jump into different points of
the same subroutine.

— Has asingle exit point
» There should be one return statement from any subroutine.

* Following these rules, there should not be any
confusion with PUSH and POP usage.

	1. Intro
	Slide Number 1
	MICROPROCESSOR 8085
	Basic Concepts of Microprocessors
	What is a Microprocessor?
	What about micro?
	Was there ever a “mini”-processor?
	Definition of the Microprocessor
	Definition (Contd.)
	Definition (Contd.)
	Definition (Contd.)
	Definition (Contd.)
	Definition (Contd.)
	Definition (Contd.)
	Definition (Contd.)
	Definition (Contd.)
	A Microprocessor-based system
	Inside The Microprocessor
	Organization of a microprocessor-based system
	Memory
	Memory Map and Addresses
	Memory
	The three cycle instruction execution model
	Machine Language
	The 8085 Machine Language
	Assembly Language
	Assembly Language
	Assembly Language
	“Assembling” The Program

	2a. architecture
	8085 Microprocessor�Architecture
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Architecture of Intel 8085 Microprocessor
	Intel 8085 Microprocessor
	The ALU
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	The Internal Architecture
	The Internal Architecture
	Non Programmable Registers
	The Address and Data Busses
	Demultiplexing AD7-AD0
	Demultiplexing AD7-AD0
	Demultiplexing the Bus AD7 – AD0
	Slide Number 19
	The Overall Picture

	3.Instruction
	Introduction to 8085 Instructions
	The 8085 Instructions
	Instruction and Data Formats
	Data Transfer Operations
	The LXI instruction
	The Memory “Register”
	Using the Other Register Pairs
	Indirect Addressing Mode
	Arithmetic Operations
	Arithmetic Operations Related to Memory
	Arithmetic Operations
	Manipulating Addresses
	Logic Operations
	Logic Operations
	Additional Logic Operations
	RLC vs. RLA
	Logical Operations
	Branch Operations
	Unconditional Branch
	Conditional Branch
	Machine Control
	Operand Types
	Instruction Size
	Instruction with Immediate Date
	Instruction with a Memory Address
	Addressing Modes
	Data Formats
	Data Formats
	Slide Number 29

	4.Counter And delay
	Counters & Time Delays
	Counters
	Counters
	Slide Number 4
	Using a Register Pair as a Loop Counter
	Using a Register Pair as a Loop Counter
	Delays
	Delays
	Delay loops
	Delay Loops (Contd.)
	Delay Loops (Contd.)
	Using a Register Pair as a Loop Counter
	Using a Register Pair as a Loop Counter
	Using a Register Pair as a Loop Counter
	Nested Loops
	Nested Loops for Delay
	Delay Calculation of Nested Loops
	Delay Calculation of Nested Loops
	Increasing the delay
	Slide Number 20

	5.Timing Diagram
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Timing Diagram
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

	6.stack and subroutines
	Chapter 9�Stack and Subroutines
	The Stack
	The Stack
	Saving Information on the Stack
	The PUSH Instruction
	The POP Instruction
	Operation of the Stack
	LIFO
	The PSW Register Pair
	Subroutines
	Subroutines
	The CALL Instruction
	The RTE Instruction
	Cautions
	Passing Data to a Subroutine
	Call by Reference and Call by Value
	Cautions with PUSH and POP
	Conditional CALL and RTE Instructions
	A Proper Subroutine
	Slide Number 20

	7. memory interfacing
	The Design and Operation of Memory
	Accessing Information in Memory
	Tri-State Buffers
	The Tri-State Buffer
	The Basic Memory Element
	The Basic Memory Element
	The Basic Memory Element
	A Memory “Register”
	A group of memory registers
	Externally Initiated Operations
	A group of Memory Registers
	The Design of a Memory Chip
	The Enable Inputs
	The Design of a Memory Chip
	The Design of a Memory Chip
	The steps of writing into Memory
	Dimensions of Memory
	The 8085 and Memory
	Chip Select
	Chip Selection Example
	Chip Selection Example
	Memory Map and Addresses
	Address Range of a Memory Chip
	Address Range of a Memory Chip
	The 8085 and Address Ranges
	The 8085 and Address Ranges
	Chip Select Example
	Chip Select Example
	Chip Select Example
	High-Order vs. Low-Order Address Lines
	Data Lines
	Data Lines

	8.Interrupts
	� Interrupts
	Interrupts
	Interrupts
	Responding to Interrupts
	The 8085 Interrupts
	The 8085 Interrupts
	The 8085 Interrupts
	Interrupt Vectors and the Vector Table
	The 8085 Non-Vectored Interrupt Process
	The 8085 Non-Vectored Interrupt Process
	The 8085 Non-Vectored Interrupt Process
	Restart Sequence
	Restart Sequence
	Hardware Generation of RST Opcode
	Hardware Generation of RST Opcode
	Hardware Generation of RST Opcode
	Issues in Implementing INTR Interrupts
	Issues in Implementing INTR Interrupts
	Issues in Implementing INTR Interrupts
	Multiple Interrupts & Priorities
	The Priority Encoder
	Multiple Interrupts & Priorities
	Multiple Interrupts and Priority
	The 8085 Maskable/Vectored Interrupts
	Masking RST 5.5, RST 6.5 and RST 7.5
	Maskable Interrupts
	The 8085 Maskable/Vectored Interrupt Process
	The 8085 Maskable/Vectored Interrupt Process
	Manipulating the Masks
	How SIM Interprets the Accumulator
	SIM and the Interrupt Mask
	SIM and the Interrupt Mask
	SIM and the Interrupt Mask
	Using the SIM Instruction to Modify the Interrupt Masks
	Triggering Levels
	Determining the Current Mask Settings
	How RIM sets the Accumulator’s different bits
	The RIM Instruction and the Masks
	The RIM Instruction and the Masks
	Pending Interrupts
	Using RIM and SIM to set Individual Masks
	Using RIM and SIM to set Individual Masks
	TRAP
	Internal Interrupt Priority
	The 8085 Interrupts
	Additional Concepts and Processes
	The Need for the 8259A
	Interfacing the 8259A to the 8085
	Operating of the 8259A
	Operating of the 8259A
	Direct Memory Access

	9.Serial Tx
	�Serial I/O and Data Communication
	Basic Concepts in Serial I/O
	Basic Concepts in Serial I/O
	Synchronous Data Transmission
	Asynchronous Data Transmission
	Asynchronous Data Transmission
	Simplex and Duplex Transmission
	Rate of Transmission
	Length of Each Bit
	Transmitting a Character
	Error Checking
	Parity Checking
	Checksum
	RS 232
	Software-Controlled Serial Transmission
	Serial Transmission
	Flowchart of Serial Transmission
	Software-Controlled Serial Reception
	Serial Reception
	Flowchart of Serial Reception
	The 8085 Serial I/O Lines
	SIM and Serial Output
	RIM and Serial Input
	Ports?
	Example

	10.8255
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Control Word Format for I/O Mode
	Slide Number 5
	�Mode 0 (Simple Input or Output)��PROBLEM 1)
	BSR (Bit Set/Reset) Mode
	Problem 2)
	Mode 1: Input or Output with Handshake
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Problem 3)�

	8086
	Slide Number 1
	Pinouts
	8086 Pins��
	8086 Pins
	8086 Pins
	8086 Features
	8086 Architecture
	8086 Block Diagram
	8086 Architecture
	Slide Number 10
	Slide Number 11
	Slide Number 12
	8086 Programmer’s Model
	Slide Number 14
	Slide Number 15
	8086 Memory Terminology
	The Code Segment
	The Stack Segment
	The Data Segment
	Slide Number 20
	Even addresses are on the low half �of the data bus (D0-D7).��Odd addresses are on the upper�half of the data bus (D8-D15).��A0 = 0 when data is on the low�half of the data bus.��BHE’ = 0 when data is on the upper�half of the data bus.�
	MAX and MIN Modes
	Why MIN and MAX modes?
	The 9 pins (min)
	The 9 pins (max)
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Loops and Conditional Jumps
	Conditional Jumps

	8253_8254
	8254 Internal Architecture
	Slide Number 2
	8254 Control Word Format
	Slide Number 4
	Slide Number 5
	Slide Number 6
	MODE 1 : HARDWARE-RETRIGGERABLE �ONE-SHOT
	MODE 2 : RATE GENERATOR CLOCK
	MODE 3 : Square Wave Generator
	MODE 4 : SOFTWARE TRIGGERED STROBE
	MODE 5 : HARWARE TRIGGERED STROBE
	READ BACK COMMAND FORMAT:

	Data Transfer schemes
	Data Transfer �Schemes�
	Why do we need data transfer schemes ?
	Classification of Data Transfer Schemes
	Programmed Data Transfer Scheme
	Synchronous Mode of Data Transfer
	Slide Number 6
	Asynchronous Data Transfer
	Slide Number 8
	Disadvantages
	Interrupt Driven Data Transfer
	Slide Number 11
	Multiple Interrupts
	Slide Number 13
	Interrupts of 8085
	Interrupt Instructions
	Slide Number 16
	Call Locations and Hex – codes for RST n
	DMA Data Transfer scheme
	Slide Number 19

