

Basic Concepts of Microprocessors
• Differences between:

– Microcomputer – a computer with a
microprocessor as its CPU. Includes memory, I/O
etc.

– Microprocessor – silicon chip which includes
ALU, register circuits & control circuits

– Microcontroller – silicon chip which includes
microprocessor, memory & I/O in a single
package.

What is a Microprocessor?

• The word comes from the combination micro and
processor.
– Processor means a device that processes whatever. In

this context processor means a device that processes
numbers, specifically binary numbers, 0’s and 1’s.

• To process means to manipulate. It is a general term that
describes all manipulation. Again in this content, it means to
perform certain operations on the numbers that depend on the
microprocessor’s design.

What about micro?

• Micro is a new addition.
– In the late 1960’s, processors were built using discrete

elements.
• These devices performed the required operation, but were too

large and too slow.

– In the early 1970’s the microchip was invented. All of
the components that made up the processor were now
placed on a single piece of silicon. The size became
several thousand times smaller and the speed became
several hundred times faster. The “Micro”Processor
was born.

Definition of the Microprocessor

The microprocessor is a programmable device
that takes in numbers, performs on them
arithmetic or logical operations according to
the program stored in memory and then
produces other numbers as a result.

Definition (Contd.)
• Lets expand each of the underlined words:

– Programmable device: The microprocessor can perform
different sets of operations on the data it receives depending
on the sequence of instructions supplied in the given
program.
By changing the program, the microprocessor manipulates
the data in different ways.

– Instructions: Each microprocessor is designed to execute a
specific group of operations. This group of operations is
called an instruction set. This instruction set defines what the
microprocessor can and cannot do.

Definition (Contd.)

– Takes in: The data that the microprocessor
manipulates must come from somewhere.

• It comes from what is called “input devices”.
• These are devices that bring data into the system

from the outside world.
• These represent devices such as a keyboard, a

mouse, switches, and the like.

Definition (Contd.)
– Numbers: The microprocessor has a very narrow view on life. It

only understands binary numbers.

A binary digit is called a bit (which comes from binary digit).

The microprocessor recognizes and processes a group of bits
together. This group of bits is called a “word”.

The number of bits in a Microprocessor’s word, is a measure of its
“abilities”.

Definition (Contd.)
– Words, Bytes, etc.

• The earliest microprocessor (the Intel 8088 and Motorola’s
6800) recognized 8-bit words.

– They processed information 8-bits at a time. That’s why they are
called “8-bit processors”. They can handle large numbers, but in
order to process these numbers, they broke them into 8-bit pieces
and processed each group of 8-bits separately.

• Later microprocessors (8086 and 68000) were designed with
16-bit words.

– A group of 8-bits were referred to as a “half-word” or “byte”.
– A group of 4 bits is called a “nibble”.
– Also, 32 bit groups were given the name “long word”.

• Today, all processors manipulate at least 32 bits at a time and
there exists microprocessors that can process 64, 80, 128 bits

 i

Definition (Contd.)
– Arithmetic and Logic Operations:

• Every microprocessor has arithmetic operations such as add
and subtract as part of its instruction set.

– Most microprocessors will have operations such as multiply and
divide.

– Some of the newer ones will have complex operations such as
square root.

• In addition, microprocessors have logic operations as well.
Such as AND, OR, XOR, shift left, shift right, etc.

• Again, the number and types of operations define the
microprocessor’s instruction set and depends on the specific
microprocessor.

Definition (Contd.)

– Stored in memory :
• First, what is memory?

– Memory is the location where information is kept while not in
current use.

– Memory is a collection of storage devices. Usually, each storage
device holds one bit. Also, in most kinds of memory, these
storage devices are grouped into groups of 8. These 8 storage
locations can only be accessed together. So, one can only read or
write in terms of bytes to and form memory.

– Memory is usually measured by the number of bytes it can hold.
It is measured in Kilos, Megas and lately Gigas. A Kilo in
computer language is 210 =1024. So, a KB (KiloByte) is 1024
bytes. Mega is 1024 Kilos and Giga is 1024 Mega.

Definition (Contd.)

– Stored in memory:
• When a program is entered into a computer, it is

stored in memory. Then as the microprocessor starts
to execute the instructions, it brings the instructions
from memory one at a time.

• Memory is also used to hold the data.
– The microprocessor reads (brings in) the data from

memory when it needs it and writes (stores) the results
into memory when it is done.

Definition (Contd.)

– Produces: For the user to see the result of the
execution of the program, the results must be
presented in a human readable form.

• The results must be presented on an output device.

• This can be the monitor, a paper from the printer, a
simple LED or many other forms.

Memory

OutputInput

A Microprocessor-based system
From the above description, we can draw the
following block diagram to represent a
microprocessor-based system:

Inside The Microprocessor

• Internally, the microprocessor is made up of
3 main units.
– The Arithmetic/Logic Unit (ALU)
– The Control Unit.
– An array of registers for holding data while it is

being manipulated.

Organization of a microprocessor-
based system

I/O
Input / Output

Memory

ROM RAM

System Bus
ALU Register

Array

Control

• Let’s expand the picture a bit.

Memory
• Memory stores information such as instructions

and data in binary format (0 and 1). It provides
this information to the microprocessor whenever
it is needed.

• Usually, there is a memory “sub-system” in a
microprocessor-based system. This sub-system
includes:
– The registers inside the microprocessor
– Read Only Memory (ROM)

• used to store information that does not change.
– Random Access Memory (RAM) (also known as

Read/Write Memory).
• used to store information supplied by the user. Such as

programs and data.

Memory Map and Addresses
• The memory map is a picture representation

of the address range and shows where the
different memory chips are located within
the address range.

0000

FFFF

Ad
dr

es
s

R
an

ge

RAM 1

RAM 2

RAM 3

RAM 4

EPROM
0000

3FFF
4400

5FFF
6000

8FFF
9000

A3FF
A400

F7FF

Address Range of EPROM Chip

Address Range of 1st RAM Chip

Address Range of 2nd RAM Chip

Address Range of 3rd RAM Chip

Address Range of 4th RAM Chip

Memory

• To execute a program:
– the user enters its instructions in binary format into the

memory.
– The microprocessor then reads these instructions and

whatever data is needed from memory, executes the
instructions and places the results either in memory or
produces it on an output device.

The three cycle instruction
execution model

• To execute a program, the microprocessor “reads”
each instruction from memory, “interprets” it, then
“executes” it.

• To use the right names for the cycles:
– The microprocessor fetches each instruction,
– decodes it,
– Then executes it.

• This sequence is continued until all instructions
are performed.

Machine Language
• The number of bits that form the “word” of a

microprocessor is fixed for that particular
processor.
– These bits define a maximum number of combinations.

• For example an 8-bit microprocessor can have at most 28 = 256
different combinations.

• However, in most microprocessors, not all of these
combinations are used.
– Certain patterns are chosen and assigned specific

meanings.
– Each of these patterns forms an instruction for the

microprocessor.
– The complete set of patterns makes up the

microprocessor’s machine language.

The 8085 Machine Language

• The 8085 (from Intel) is an 8-bit microprocessor.
– The 8085 uses a total of 246 bit patterns to form its

instruction set.
– These 246 patterns represent only 74 instructions.

• The reason for the difference is that some (actually most)
instructions have multiple different formats.

– Because it is very difficult to enter the bit patterns
correctly, they are usually entered in hexadecimal
instead of binary.

• For example, the combination 0011 1100 which translates into
“increment the number in the register called the accumulator”,
is usually entered as 3C.

Assembly Language

• Entering the instructions using hexadecimal is quite
easier than entering the binary combinations.
– However, it still is difficult to understand what a program

written in hexadecimal does.
– So, each company defines a symbolic code for the

instructions.
– These codes are called “mnemonics”.
– The mnemonic for each instruction is usually a group of

letters that suggest the operation performed.

Assembly Language

• Using the same example from before,
– 00111100 translates to 3C in hexadecimal (OPCODE)
– Its mnemonic is: “INR A”.
– INR stands for “increment register” and A is short for

accumulator.

• Another example is: 1000 0000,
– Which translates to 80 in hexadecimal.
– Its mnemonic is “ADD B”.
– “Add register B to the accumulator and keep the result in the

accumulator”.

Assembly Language

• It is important to remember that a machine
language and its associated assembly language are
completely machine dependent.
– In other words, they are not transferable from one

microprocessor to a different one.

• For example, Motorolla has an 8-bit
microprocessor called the 6800.
– The 8085 machine language is very different from that

of the 6800. So is the assembly language.
– A program written for the 8085 cannot be executed on

the 6800 and vice versa.

“Assembling” The Program

• How does assembly language get translated into
machine language?
– There are two ways:
– 1st there is “hand assembly”.

• The programmer translates each assembly language instruction
into its equivalent hexadecimal code (machine language). Then
the hexadecimal code is entered into memory.

– The other possibility is a program called an
“assembler”, which does the translation automatically.

• System Bus – wires connecting memory & I/O to
microprocessor
– Address Bus

• Unidirectional
• Identifying peripheral or memory location

– Data Bus
• Bidirectional
• Transferring data

– Control Bus
• Synchronization signals
• Timing signals
• Control signal

Intel 8085 Microprocessor
• Microprocessor consists of:

– Control unit: control microprocessor operations.
– ALU: performs data processing function.
– Registers: provide storage internal to CPU.
– Interrupts
– Internal data bus

The ALU

• In addition to the arithmetic & logic circuits, the
ALU includes the accumulator, which is part of
every arithmetic & logic operation.

• Also, the ALU includes a temporary register used
for holding data temporarily during the execution
of the operation. This temporary register is not
accessible by the programmer.

• Registers
– General Purpose Registers

• B, C, D, E, H & L (8 bit registers)
• Can be used singly
• Or can be used as 16 bit register pairs

– BC, DE, HL
• H & L can be used as a data pointer (holds memory

address)
– Special Purpose Registers

• Accumulator (8 bit register)
– Store 8 bit data
– Store the result of an operation
– Store 8 bit data during I/O transfer

Accumulator Flags
B C
D E
H L

Program Counter
Stack Pointer

DataAddress 816

• Flag Register
– 8 bit register – shows the status of the microprocessor before/after an

operation
– S (sign flag), Z (zero flag), AC (auxillary carry flag), P (parity flag) &

CY (carry flag)

– Sign Flag
• Used for indicating the sign of the data in the accumulator
• The sign flag is set if negative (1 – negative)
• The sign flag is reset if positive (0 –positive)

D7 D6 D5 D4 D3 D2 D1 D0

S Z X AC X P X CY

• Zero Flag
– Is set if result obtained after an operation is 0
– Is set following an increment or decrement operation of that register

• Carry Flag
– Is set if there is a carry or borrow from arithmetic operation

10110011
+ 01001101

1 00000000

1011 0101
+ 0110 1100

Carry 1 0010 0001

1011 0101
- 1100 1100

Borrow 1 1110 1001

• Auxillary Carry Flag
– Is set if there is a carry out of bit 3

• Parity Flag
– Is set if parity is even
– Is cleared if parity is odd

The Internal Architecture

• We have already discussed the general purpose
registers, the Accumulator, and the flags.

• The Program Counter (PC)
– This is a register that is used to control the sequencing

of the execution of instructions.
– This register always holds the address of the next

instruction.
– Since it holds an address, it must be 16 bits wide.

The Internal Architecture

• The Stack pointer
– The stack pointer is also a 16-bit register that is

used to point into memory.
– The memory this register points to is a special

area called the stack.
– The stack is an area of memory used to hold

data that will be retreived soon.
– The stack is usually accessed in a Last In First

Out (LIFO) fashion.

Non Programmable Registers

• Instruction Register & Decoder
– Instruction is stored in IR after fetched by processor
– Decoder decodes instruction in IR

Internal Clock generator
– 3.125 MHz internally
– 6.25 MHz externally

The Address and Data Busses

• The address bus has 8 signal lines A8 – A15
which are unidirectional.

• The other 8 address bits are multiplexed (time
shared) with the 8 data bits.
– So, the bits AD0 – AD7 are bi-directional and serve as

A0 – A7 and D0 – D7 at the same time.
• During the execution of the instruction, these lines carry the

address bits during the early part, then during the late parts of
the execution, they carry the 8 data bits.

– In order to separate the address from the data, we can
use a latch to save the value before the function of the
bits changes.

Demultiplexing AD7-AD0

– Given that ALE operates as a pulse during T1, we will
be able to latch the address. Then when ALE goes low,
the address is saved and the AD7– AD0 lines can be
used for their purpose as the bi-directional data lines.

A15-A8

LatchAD7-AD0

D7- D0

A7- A0

8085

ALE

Demultiplexing the Bus AD7 – AD0

• The high order address is placed on the address bus and hold for 3 clk
periods,

• The low order address is lost after the first clk period, this address
needs to be hold however we need to use latch

• The address AD7 – AD0 is connected as inputs to the latch 74LS373.
• The ALE signal is connected to the enable (G) pin of the latch and the

OC – Output control – of the latch is grounded

The Overall Picture
• Putting all of the concepts together, we get:

A15-A8

LatchAD7-AD0

D7- D0

A7- A0

8085

ALE

IO/MRDWR

1K Byte
Memory

Chip

WRRD

CS

A9- A0

A15- A10
Chip Selection

Circuit

Introduction to 8085 Instructions

The 8085 Instructions
– Since the 8085 is an 8-bit device it can have up to 28

(256) instructions.
• However, the 8085 only uses 246 combinations that represent a

total of 74 instructions.
– Most of the instructions have more than one format.

– These instructions can be grouped into five different
groups:

• Data Transfer Operations
• Arithmetic Operations
• Logic Operations
• Branch Operations
• Machine Control Operations

Instruction and Data Formats

• Each instruction has two parts.
– The first part is the task or operation to be

performed.
• This part is called the “opcode” (operation code).

– The second part is the data to be operated on
• Called the “operand”.

Data Transfer Operations
– These operations simply COPY the data from the

source to the destination.
– MOV, MVI, LDA, and STA

– They transfer:
• Data between registers.
• Data Byte to a register or memory location.
• Data between a memory location and a register.
• Data between an I\O Device and the accumulator.

– The data in the source is not changed.

The LXI instruction
• The 8085 provides an instruction to place

the 16-bit data into the register pair in one
step.

• LXI Rp, <16-bit address> (Load eXtended Immediate)

– The instruction LXI B 4000H will place the
16-bit number 4000 into the register pair B, C.

• The upper two digits are placed in the 1st register of
the pair and the lower two digits in the 2nd .

40 00LXI B 40 00H B C

The Memory “Register”

• Most of the instructions of the 8085 can use a
memory location in place of a register.
– The memory location will become the “memory” register M.

• MOV M B
– copy the data from register B into a memory location.

– Which memory location?

• The memory location is identified by the contents
of the HL register pair.
– The 16-bit contents of the HL register pair are treated

as a 16-bit address and used to identify the memory
location.

Using the Other Register Pairs

– There is also an instruction for moving data from
memory to the accumulator without disturbing the
contents of the H and L register.

• LDAX Rp (LoaD Accumulator eXtended)

– Copy the 8-bit contents of the memory location identified by the
Rp register pair into the Accumulator.

– This instruction only uses the BC or DE pair.
– It does not accept the HL pair.

Indirect Addressing Mode

• Using data in memory directly (without loading
first into a Microprocessor’s register) is called
Indirect Addressing.

• Indirect addressing uses the data in a register pair
as a 16-bit address to identify the memory location
being accessed.
– The HL register pair is always used in conjunction with

the memory register “M”.
– The BC and DE register pairs can be used to load data

into the Accumultor using indirect addressing.

Arithmetic Operations
– Addition (ADD, ADI):

– Any 8-bit number.
– The contents of a register.
– The contents of a memory location.

• Can be added to the contents of the accumulator and the result
is stored in the accumulator.

– Subtraction (SUB, SUI):
– Any 8-bit number
– The contents of a register
– The contents of a memory location

• Can be subtracted from the contents of the accumulator. The
result is stored in the accumulator.

Arithmetic Operations Related to
Memory

• These instructions perform an arithmetic operation
using the contents of a memory location while
they are still in memory.
– ADD M

• Add the contents of M to the Accumulator
– SUB M

• Sub the contents of M from the Accumulator
– INR M / DCR M

• Increment/decrement the contents of the memory location in
place.

– All of these use the contents of the HL register pair to
identify the memory location being used.

Arithmetic Operations

– Increment (INR) and Decrement (DCR):
• The 8-bit contents of any memory location or any

register can be directly incremented or decremented
by 1.

• No need to disturb the contents of the accumulator.

Manipulating Addresses

• Now that we have a 16-bit address in a register
pair, how do we manipulate it?
– It is possible to manipulate a 16-bit address stored in a

register pair as one entity using some special
instructions.

• INX Rp (Increment the 16-bit number in the register pair)
• DCX Rp (Decrement the 16-bit number in the register pair)

– The register pair is incremented or decremented as one
entity. No need to worry about a carry from the lower
8-bits to the upper. It is taken care of automatically.

Logic Operations
• These instructions perform logic operations on the

contents of the accumulator.
– ANA, ANI, ORA, ORI, XRA and XRI

• Source: Accumulator and
– An 8-bit number
– The contents of a register
– The contents of a memory location

• Destination: Accumulator

ANA R/M AND Accumulator With Reg/Mem
ANI # AND Accumulator With an 8-bit number

ORA R/M OR Accumulator With Reg/Mem
ORI # OR Accumulator With an 8-bit number

XRA R/M XOR Accumulator With Reg/Mem
XRI # XOR Accumulator With an 8-bit number

Logic Operations

– Complement:
• 1’s complement of the contents of the accumulator.

CMA No operand

Additional Logic Operations

• Rotate
– Rotate the contents of the accumulator one

position to the left or right.
– RLC Rotate the accumulator left.

Bit 7 goes to bit 0 AND the Carry flag.
– RAL Rotate the accumulator left through the carry.

Bit 7 goes to the carry and carry goes to bit 0.
– RRC Rotate the accumulator right.

Bit 0 goes to bit 7 AND the Carry flag.
– RAR Rotate the accumulator right through the carry.

Bit 0 goes to the carry and carry goes to bit 7.

RLC vs. RLA

• RLC

• RAL

Accumulator

Carry Flag

7 6 5 4 3 2 1 0

Accumulator

Carry Flag

7 6 5 4 3 2 1 0

Logical Operations

• Compare
• Compare the contents of a register or memory location with the

contents of the accumulator.
– CMP R/M Compare the contents of the register

or memory location to the contents of
the accumulator.

– CPI # Compare the 8-bit number to the
contents of the accumulator.

• The compare instruction sets the flags (Z, Cy, and S).

• The compare is done using an internal subtraction that does not
change the contents of the accumulator.

A – (R / M / #)

Branch Operations

• Two types:
– Unconditional branch.

• Go to a new location no matter what.

– Conditional branch.
• Go to a new location if the condition is true.

Unconditional Branch
– JMP Address

• Jump to the address specified (Go to).

– CALL Address
• Jump to the address specified but treat it as a subroutine.

– RET
• Return from a subroutine.

– The addresses supplied to all branch operations must be
16-bits.

Conditional Branch
– Go to new location if a specified condition is met.

• JZ Address (Jump on Zero)
– Go to address specified if the Zero flag is set.

• JNZ Address (Jump on NOT Zero)
– Go to address specified if the Zero flag is not set.

• JC Address (Jump on Carry)
– Go to the address specified if the Carry flag is set.

• JNC Address (Jump on No Carry)
– Go to the address specified if the Carry flag is not set.

• JP Address (Jump on Plus)
– Go to the address specified if the Sign flag is not set

• JM Address (Jump on Minus)
– Go to the address specified if the Sign flag is set.

Machine Control

– HLT
• Stop executing the program.

– NOP
• No operation
• Exactly as it says, do nothing.
• Usually used for delay or to replace instructions

during debugging.

Operand Types

• There are different ways for specifying the
operand:
– There may not be an operand (implied operand)

• CMA
– The operand may be an 8-bit number (immediate data)

• ADI 4FH
– The operand may be an internal register (register)

• SUB B
– The operand may be a 16-bit address (memory address)

• LDA 4000H

Instruction Size

• Depending on the operand type, the instruction
may have different sizes. It will occupy a different
number of memory bytes.
– Typically, all instructions occupy one byte only.
– The exception is any instruction that contains

immediate data or a memory address.
• Instructions that include immediate data use two bytes.

– One for the opcode and the other for the 8-bit data.
• Instructions that include a memory address occupy three bytes.

– One for the opcode, and the other two for the 16-bit address.

Instruction with Immediate Date

• Operation: Load an 8-bit number into the
accumulator.

– MVI A, 32
• Operation: MVI A
• Operand: The number 32
• Binary Code:

0011 1110 3E 1st byte.
0011 0010 32 2nd byte.

Instruction with a Memory
Address

• Operation: go to address 2085.

– Instruction: JMP 2085
• Opcode: JMP
• Operand: 2085
• Binary code:
1100 0011 C3 1st byte.
1000 0101 85 2nd byte
0010 0000 20 3rd byte

Addressing Modes

• The microprocessor has different ways of
specifying the data for the instruction. These are
called “addressing modes”.

• The 8085 has four addressing modes:
– Implied CMA
– Immediate MVI B, 45
– Direct LDA 4000
– Indirect LDAX B

• Load the accumulator with the contents of the memory location
whose address is stored in the register pair BC).

Data Formats

• In an 8-bit microprocessor, data can be
represented in one of four formats:

• ASCII
• BCD
• Signed Integer
• Unsigned Integer.

– It is important to recognize that the microprocessor
deals with 0’s and 1’s.

• It deals with values as strings of bits.
• It is the job of the user to add a meaning to these strings.

Data Formats

• Assume the accumulator contains the following
value: 0100 0001.
– There are four ways of reading this value:

• It is an unsigned integer expressed in binary, the equivalent
decimal number would be 65.

• It is a number expressed in BCD (Binary Coded Decimal)
format. That would make it, 41.

• It is an ASCII representation of a letter. That would make it the
letter A.

• It is a string of 0’s and 1’s where the 0th and the 6th bits are set
to 1 while all other bits are set to 0.

ASCII stands for American Standard Code for Information Interchange.

Counters & Time Delays

Counters

• A loop counter is set up by loading a register with
a certain value

• Then using the DCR (to decrement) and INR (to
increment) the contents of the register are updated.

• A loop is set up with a conditional jump
instruction that loops back or not depending on
whether the count has reached the termination
count.

Counters
• The operation of a loop counter can be

described using the following flowchart.

Initialize

Update the count

Is this
Final

Count?

Body of loop

No

Yes

MVI C, 15H

LOOP DCR C

JNZ LOOP

Sample ALP for implementing a loop
Using DCR instruction

Using a Register Pair as a Loop
Counter

• Using a single register, one can repeat a loop for a
maximum count of 255 times.

• It is possible to increase this count by using a
register pair for the loop counter instead of the
single register.
– A minor problem arises in how to test for the final

count since DCX and INX do not modify the flags.
– However, if the loop is looking for when the count

becomes zero, we can use a small trick by ORing the
two registers in the pair and then checking the zero flag.

Using a Register Pair as a Loop
Counter

• The following is an example of a loop set
up with a register pair as the loop counter.

LXI B, 1000H
LOOP DCX B

MOV A, C
ORA B
JNZ LOOP

Delays

• It was shown in Chapter 2 that each instruction
passes through different combinations of Fetch,
Memory Read, and Memory Write cycles.

• Knowing the combinations of cycles, one can
calculate how long such an instruction would
require to complete.

• The table in Appendix F of the book contains a
column with the title B/M/T.
– B for Number of Bytes
– M for Number of Machine Cycles
– T for Number of T-State.

Delays

• Knowing how many T-States an instruction
requires, and keeping in mind that a T-State is one
clock cycle long, we can calculate the time using
the following formula:

Delay = No. of T-States / Frequency

• For example a “MVI” instruction uses 7 T-States.
Therefore, if the Microprocessor is running at 2
MHz, the instruction would require 3.5 µSeconds
to complete.

Delay loops
• We can use a loop to produce a certain

amount of time delay in a program.

• The following is an example of a delay
loop:

MVI C, FFH 7 T-States
LOOP DCR C 4 T-States

JNZ LOOP 10 T-States

• The first instruction initializes the loop counter and is
executed only once requiring only 7 T-States.

• The following two instructions form a loop that
requires 14 T-States to execute and is repeated 255
times until C becomes 0.

Delay Loops (Contd.)

• We need to keep in mind though that in the last
iteration of the loop, the JNZ instruction will fail and
require only 7 T-States rather than the 10.

• Therefore, we must deduct 3 T-States from the total
delay to get an accurate delay calculation.

• To calculate the delay, we use the following formula:
Tdelay = TO + TL

– Tdelay = total delay
– TO = delay outside the loop
– TL = delay of the loop

• TO is the sum of all delays outside the loop.

Delay Loops (Contd.)

• Using these formulas, we can calculate the
time delay for the previous example:

• TO = 7 T-States
– Delay of the MVI instruction

• TL = (14 X 255) - 3 = 3567 T-States
– 14 T-States for the 2 instructions repeated 255 times

(FF16 = 25510) reduced by the 3 T-States for the final
JNZ.

 ()

Using a Register Pair as a Loop
Counter

• Using a single register, one can repeat a loop for a
maximum count of 255 times.

• It is possible to increase this count by using a
register pair for the loop counter instead of the
single register.
– A minor problem arises in how to test for the final

count since DCX and INX do not modify the flags.
– However, if the loop is looking for when the count

becomes zero, we can use a small trick by ORing the
two registers in the pair and then checking the zero flag.

Using a Register Pair as a Loop
Counter

• The following is an example of a delay loop
set up with a register pair as the loop
counter.

LXI B, 1000H 10 T-States
LOOP DCX B 6 T-States

MOV A, C 4 T-States
ORA B 4 T-States
JNZ LOOP 10 T-States

Using a Register Pair as a Loop
Counter

• Using the same formula from before, we can
calculate:

• TO = 10 T-States
– The delay for the LXI instruction

• TL = (24 X 4096) - 3 = 98301 T- States
– 24 T-States for the 4 instructions in the loop repeated

4096 times (100016 = 409610) reduced by the 3 T-
States for the JNZ in the last iteration.

 ()

Nested Loops

• Nested loops can be
easily setup in
Assembly language by
using two registers for
the two loop counters
and updating the right
register in the right
loop.
– In the figure, the body of

loop2 can be before or
after loop1.

Initialize loop 1

Update the count1

Is this
Final

Count?

Body of loop 1

No

Yes

Initialize loop 2

Body of loop 2

Update the count 2

Is this
Final

Count?

No

Yes

Nested Loops for Delay

• Instead (or in conjunction with) Register Pairs, a
nested loop structure can be used to increase the
total delay produced.

MVI B, 10H 7 T-States
LOOP2 MVI C, FFH 7 T-States
LOOP1 DCR C 4 T-States

JNZ LOOP1 10 T-States
DCR B 4 T-States
JNZ LOOP2 10 T-States

Delay Calculation of Nested
Loops

• The calculation remains the same except
that it the formula must be applied
recursively to each loop.
– Start with the inner loop, then plug that delay in

the calculation of the outer loop.

• Delay of inner loop
– TO1 = 7 T-States

• MVI C, FFH instruction
– TL1 = (255 X 14) - 3 = 3567 T-States

• 14 T-States for the DCR C and JNZ instructions repeated 255
times (FF16 = 25510) minus 3 for the final JNZ

Delay Calculation of Nested
Loops

• Delay of outer loop
– TO2 = 7 T-States

• MVI B, 10H instruction
– TL1 = (16 X (14 + 3574)) - 3 = 57405 T-States

• 14 T-States for the DCR B and JNZ instructions and 3574
T-States for loop1 repeated 16 times (1016 = 1610) minus 3 for the
final JNZ.

– TDelay = 7 + 57405 = 57412 T-States

• Total Delay
– TDelay = 57412 X 0.5 µSec = 28.706 mSec

Increasing the delay

• The delay can be further increased by using
register pairs for each of the loop counters
in the nested loops setup.

• It can also be increased by adding dummy
instructions (like NOP) in the body of the
loop.

Representation of Various Control signals generated during
Execution of an Instruction.

Following Buses and Control Signals must be shown in a
Timing Diagram:

•Higher Order Address Bus.

•Lower Address/Data bus

•ALE

•RD

•WR

•IO/M

Timing Diagram

Instruction:

A000h MOV A,B

Corresponding Coding:

A000h 78

Timing Diagram

Instruction:

A000h MOV A,B

Corresponding Coding:

A000h 78

8085 Memory

OFC

Timing Diagram

78h00h

A15- A8 (Higher Order Address bus)

ALE

RD

WR

IO/M

T1 T2 T3 T4Instruction:

A000h MOV A,B

Corresponding Coding:

A000h 78

8085 Memory

OFC

Op-code fetch Cycle

A0h

Timing Diagram

Instruction:

A000h MVI A,45h

Corresponding Coding:

A000h 3E

A001h 45

Timing Diagram

Instruction:

A000h MVI A,45h

Corresponding Coding:

A000h 3E

A001h 45

8085 Memory

OFC

MEMR

Timing Diagram

3Eh00h 01h 45h

A0h

A15- A8 (Higher Order Address bus)

DA7-DA0 (Lower order address/data Bus)

ALE

RD

WR

IO/M

Op-Code Fetch Cycle Memory Read Cycle

T1 T2 T3 T4 T5 T6 T7

A0h

Instruction:

A000h MVI A,45h

Corresponding Coding:

A000h 3E

A001h 45

Timing Diagram

Instruction:

A000h LXI A,FO45h

Corresponding Coding:

A000h 21

A001h 45

A002h F0

Timing Diagram

Instruction:

A000h LXI A,FO45h

Corresponding Coding:

A000h 21

A001h 45

A002h F0

Timing Diagram

8085 Memory

OFC

MEMR

MEMR

Timing Diagram

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

21h 01h 45h 02h F0h

A0h A0h A0h

A15- A8 (Higher Order Address bus)

DA7-DA0 (Lower order address/data Bus)

ALE

RD

WR

IO/M

00h

Op-Code Fetch Cycle Memory Read Cycle Memory Read Cycle

Instruction:

A000h MOV A,M

Corresponding Coding:

A000h 7E

Timing Diagram

8085 Memory

OFC

MEMR

Instruction:

A000h MOV A,M

Corresponding Coding:

A000h 7E

Timing Diagram

7Eh00h L Reg Content Of M

Content Of Reg H

A15- A8 (Higher Order Address bus)

DA7-DA0 (Lower order address/data Bus)

ALE

RD

WR

IO/M

Op-Code Fetch Cycle Memory Read Cycle

T1 T2 T3 T4 T5 T6 T7

A0h

Timing Diagram

Instruction:

A000h MOV A,M

Corresponding Coding:

A000h 7E

Instruction:

A000h MOV M,A

Corresponding Coding:

A000h 77

Timing Diagram

Instruction:

A000h MOV M,A

Corresponding Coding:

A000h 77

Timing Diagram

8085 Memory

OFC

MEMW

7Eh00h L Reg Content of Reg A

Content Of Reg H

A15- A8 (Higher Order Address bus)

DA7-DA0 (Lower order address/data Bus)

ALE

RD

WR

IO/M

Op-Code Fetch Cycle Memory Write Cycle

T1 T2 T3 T4 T5 T6 T7

A0h

Timing Diagram

Instruction:

A000h MOV M,A

Corresponding Coding:

A000h 77

Chapter 9
Stack and Subroutines

The Stack

• The stack is an area of memory identified by the
programmer for temporary storage of information.

• The stack is a LIFO structure.
– Last In First Out.

• The stack normally grows backwards into
memory.
– In other words, the programmer

defines the bottom of the stack
and the stack grows up into
reducing address range.

Memory

Bottom
of the
Stack

The Stack
grows
backwards
into memory

The Stack

• Given that the stack grows backwards into
memory, it is customary to place the bottom of the
stack at the end of memory to keep it as far away
from user programs as possible.

• In the 8085, the stack is defined by setting the SP
(Stack Pointer) register.

LXI SP, FFFFH

• This sets the Stack Pointer to location FFFFH (end
of memory for the 8085).

Saving Information on the Stack

• Information is saved on the stack by PUSHing it
on.
– It is retrieved from the stack by POPing it off.

• The 8085 provides two instructions: PUSH and
POP for storing information on the stack and
retrieving it back.
– Both PUSH and POP work with register pairs ONLY.

The PUSH Instruction

• PUSH B
– Decrement SP
– Copy the contents of register B to the memory

location pointed to by SP
– Decrement SP
– Copy the contents of register C to the memory

location pointed to by SP

B C

SPFFFF
FFFE
FFFD
FFFC
FFFB

F312

F3
12

The POP Instruction

• POP D
– Copy the contents of the memory location

pointed to by the SP to register E
– Increment SP
– Copy the contents of the memory location

pointed to by the SP to register D
– Increment SP

D E

SP
FFFF
FFFE
FFFD
FFFC
FFFB

F312

F3
12

Operation of the Stack

• During pushing, the stack operates in a
“decrement then store” style.
– The stack pointer is decremented first, then the

information is placed on the stack.

• During poping, the stack operates in a “use then
increment” style.
– The information is retrieved from the top of the the

stack and then the pointer is incremented.

• The SP pointer always points to “the top of the
stack”.

LIFO

• The order of PUSHs and POPs must be opposite
of each other in order to retrieve information back
into its original location.

PUSH B
PUSH D
...
POP D
POP B

The PSW Register Pair

• The 8085 recognizes one additional register pair
called the PSW (Program Status Word).
– This register pair is made up of the Accumulator and

the Flags registers.

• It is possible to push the PSW onto the stack, do
whatever operations are needed, then POP it off of
the stack.
– The result is that the contents of the Accumulator and

the status of the Flags are returned to what they were
before the operations were executed.

Subroutines

• A subroutine is a group of instructions that will be
used repeatedly in different locations of the
program.
– Rather than repeat the same instructions several times,

they can be grouped into a subroutine that is called
from the different locations.

• In Assembly language, a subroutine can exist
anywhere in the code.
– However, it is customary to place subroutines

separately from the main program.

Subroutines

• The 8085 has two instructions for dealing
with subroutines.
– The CALL instruction is used to redirect

program execution to the subroutine.
– The RTE insutruction is used to return the

execution to the calling routine.

The CALL Instruction

• CALL 4000H
– Push the address of the instruction

immediately following the CALL onto the
stack

– Load the program counter with the 16-bit
address supplied with the CALL instruction.

PC

SPFFFF
FFFE
FFFD
FFFC
FFFB

2 0 0 3

03
20

2000 CALL 4000
2003

The RTE Instruction

• RTE
– Retrieve the return address from the top of

the stack
– Load the program counter with the return

address. PC

FFFF
FFFE
FFFD
FFFC
FFFB

2 0 0 3

03
20

4014 . . .
4015 RTE SP

Cautions

• The CALL instruction places the return address at
the two memory locations immediately before
where the Stack Pointer is pointing.
– You must set the SP correctly BEFORE using the

CALL instruction.

• The RTE instruction takes the contents of the two
memory locations at the top of the stack and uses
these as the return address.
– Do not modify the stack pointer in a subroutine. You

will loose the return address.

Passing Data to a Subroutine

• In Assembly Language data is passed to a
subroutine through registers.
– The data is stored in one of the registers by the calling

program and the subroutine uses the value from the
register.

• The other possibility is to use agreed upon
memory locations.
– The calling program stores the data in the memory

location and the subroutine retrieves the data from the
location and uses it.

Call by Reference and Call by
Value

• If the subroutine performs operations on the
contents of the registers, then these modifications
will be transferred back to the calling program
upon returning from a subroutine.
– Call by reference

• If this is not desired, the subroutine should PUSH
all the registers it needs on the stack on entry and
POP them on return.
– The original values are restored before execution

returns to the calling program.

Cautions with PUSH and POP

• PUSH and POP should be used in opposite order.

• There has to be as many POP’s as there are
PUSH’s.
– If not, the RET statement will pick up the wrong

information from the top of the stack and the program
will fail.

• It is not advisable to place PUSH or POP inside a
loop.

Conditional CALL and RTE
Instructions

• The 8085 supports conditional CALL and
conditional RTE instructions.
– The same conditions used with conditional JUMP

instructions can be used.

– CC, call subroutine if Carry flag is set.
– CNC, call subroutine if Carry flag is not set
– RC, return from subroutine if Carry flag is set
– RNC, return from subroutine if Carry flag is not set
– Etc.

A Proper Subroutine

• According to Software Engineering practices, a
proper subroutine:
– Is only entered with a CALL and exited with an RTE
– Has a single entry point

• Do not use a CALL statement to jump into different points of
the same subroutine.

– Has a single exit point
• There should be one return statement from any subroutine.

• Following these rules, there should not be any
confusion with PUSH and POP usage.

	1. Intro
	Slide Number 1
	MICROPROCESSOR 8085
	Basic Concepts of Microprocessors
	What is a Microprocessor?
	What about micro?
	Was there ever a “mini”-processor?
	Definition of the Microprocessor
	Definition (Contd.)
	Definition (Contd.)
	Definition (Contd.)
	Definition (Contd.)
	Definition (Contd.)
	Definition (Contd.)
	Definition (Contd.)
	Definition (Contd.)
	A Microprocessor-based system
	Inside The Microprocessor
	Organization of a microprocessor-based system
	Memory
	Memory Map and Addresses
	Memory
	The three cycle instruction execution model
	Machine Language
	The 8085 Machine Language
	Assembly Language
	Assembly Language
	Assembly Language
	“Assembling” The Program

	2a. architecture
	8085 Microprocessor�Architecture
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Architecture of Intel 8085 Microprocessor
	Intel 8085 Microprocessor
	The ALU
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	The Internal Architecture
	The Internal Architecture
	Non Programmable Registers
	The Address and Data Busses
	Demultiplexing AD7-AD0
	Demultiplexing AD7-AD0
	Demultiplexing the Bus AD7 – AD0
	Slide Number 19
	The Overall Picture

	3.Instruction
	Introduction to 8085 Instructions
	The 8085 Instructions
	Instruction and Data Formats
	Data Transfer Operations
	The LXI instruction
	The Memory “Register”
	Using the Other Register Pairs
	Indirect Addressing Mode
	Arithmetic Operations
	Arithmetic Operations Related to Memory
	Arithmetic Operations
	Manipulating Addresses
	Logic Operations
	Logic Operations
	Additional Logic Operations
	RLC vs. RLA
	Logical Operations
	Branch Operations
	Unconditional Branch
	Conditional Branch
	Machine Control
	Operand Types
	Instruction Size
	Instruction with Immediate Date
	Instruction with a Memory Address
	Addressing Modes
	Data Formats
	Data Formats
	Slide Number 29

	4.Counter And delay
	Counters & Time Delays
	Counters
	Counters
	Slide Number 4
	Using a Register Pair as a Loop Counter
	Using a Register Pair as a Loop Counter
	Delays
	Delays
	Delay loops
	Delay Loops (Contd.)
	Delay Loops (Contd.)
	Using a Register Pair as a Loop Counter
	Using a Register Pair as a Loop Counter
	Using a Register Pair as a Loop Counter
	Nested Loops
	Nested Loops for Delay
	Delay Calculation of Nested Loops
	Delay Calculation of Nested Loops
	Increasing the delay
	Slide Number 20

	5.Timing Diagram
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Timing Diagram
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16

	6.stack and subroutines
	Chapter 9�Stack and Subroutines
	The Stack
	The Stack
	Saving Information on the Stack
	The PUSH Instruction
	The POP Instruction
	Operation of the Stack
	LIFO
	The PSW Register Pair
	Subroutines
	Subroutines
	The CALL Instruction
	The RTE Instruction
	Cautions
	Passing Data to a Subroutine
	Call by Reference and Call by Value
	Cautions with PUSH and POP
	Conditional CALL and RTE Instructions
	A Proper Subroutine
	Slide Number 20

	7. memory interfacing
	The Design and Operation of Memory
	Accessing Information in Memory
	Tri-State Buffers
	The Tri-State Buffer
	The Basic Memory Element
	The Basic Memory Element
	The Basic Memory Element
	A Memory “Register”
	A group of memory registers
	Externally Initiated Operations
	A group of Memory Registers
	The Design of a Memory Chip
	The Enable Inputs
	The Design of a Memory Chip
	The Design of a Memory Chip
	The steps of writing into Memory
	Dimensions of Memory
	The 8085 and Memory
	Chip Select
	Chip Selection Example
	Chip Selection Example
	Memory Map and Addresses
	Address Range of a Memory Chip
	Address Range of a Memory Chip
	The 8085 and Address Ranges
	The 8085 and Address Ranges
	Chip Select Example
	Chip Select Example
	Chip Select Example
	High-Order vs. Low-Order Address Lines
	Data Lines
	Data Lines

	8.Interrupts
	� Interrupts
	Interrupts
	Interrupts
	Responding to Interrupts
	The 8085 Interrupts
	The 8085 Interrupts
	The 8085 Interrupts
	Interrupt Vectors and the Vector Table
	The 8085 Non-Vectored Interrupt Process
	The 8085 Non-Vectored Interrupt Process
	The 8085 Non-Vectored Interrupt Process
	Restart Sequence
	Restart Sequence
	Hardware Generation of RST Opcode
	Hardware Generation of RST Opcode
	Hardware Generation of RST Opcode
	Issues in Implementing INTR Interrupts
	Issues in Implementing INTR Interrupts
	Issues in Implementing INTR Interrupts
	Multiple Interrupts & Priorities
	The Priority Encoder
	Multiple Interrupts & Priorities
	Multiple Interrupts and Priority
	The 8085 Maskable/Vectored Interrupts
	Masking RST 5.5, RST 6.5 and RST 7.5
	Maskable Interrupts
	The 8085 Maskable/Vectored Interrupt Process
	The 8085 Maskable/Vectored Interrupt Process
	Manipulating the Masks
	How SIM Interprets the Accumulator
	SIM and the Interrupt Mask
	SIM and the Interrupt Mask
	SIM and the Interrupt Mask
	Using the SIM Instruction to Modify the Interrupt Masks
	Triggering Levels
	Determining the Current Mask Settings
	How RIM sets the Accumulator’s different bits
	The RIM Instruction and the Masks
	The RIM Instruction and the Masks
	Pending Interrupts
	Using RIM and SIM to set Individual Masks
	Using RIM and SIM to set Individual Masks
	TRAP
	Internal Interrupt Priority
	The 8085 Interrupts
	Additional Concepts and Processes
	The Need for the 8259A
	Interfacing the 8259A to the 8085
	Operating of the 8259A
	Operating of the 8259A
	Direct Memory Access

	9.Serial Tx
	�Serial I/O and Data Communication
	Basic Concepts in Serial I/O
	Basic Concepts in Serial I/O
	Synchronous Data Transmission
	Asynchronous Data Transmission
	Asynchronous Data Transmission
	Simplex and Duplex Transmission
	Rate of Transmission
	Length of Each Bit
	Transmitting a Character
	Error Checking
	Parity Checking
	Checksum
	RS 232
	Software-Controlled Serial Transmission
	Serial Transmission
	Flowchart of Serial Transmission
	Software-Controlled Serial Reception
	Serial Reception
	Flowchart of Serial Reception
	The 8085 Serial I/O Lines
	SIM and Serial Output
	RIM and Serial Input
	Ports?
	Example

	10.8255
	Slide Number 1
	Slide Number 2
	Slide Number 3
	Control Word Format for I/O Mode
	Slide Number 5
	�Mode 0 (Simple Input or Output)��PROBLEM 1)
	BSR (Bit Set/Reset) Mode
	Problem 2)
	Mode 1: Input or Output with Handshake
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Problem 3)�

	8086
	Slide Number 1
	Pinouts
	8086 Pins��
	8086 Pins
	8086 Pins
	8086 Features
	8086 Architecture
	8086 Block Diagram
	8086 Architecture
	Slide Number 10
	Slide Number 11
	Slide Number 12
	8086 Programmer’s Model
	Slide Number 14
	Slide Number 15
	8086 Memory Terminology
	The Code Segment
	The Stack Segment
	The Data Segment
	Slide Number 20
	Even addresses are on the low half �of the data bus (D0-D7).��Odd addresses are on the upper�half of the data bus (D8-D15).��A0 = 0 when data is on the low�half of the data bus.��BHE’ = 0 when data is on the upper�half of the data bus.�
	MAX and MIN Modes
	Why MIN and MAX modes?
	The 9 pins (min)
	The 9 pins (max)
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Loops and Conditional Jumps
	Conditional Jumps

	8253_8254
	8254 Internal Architecture
	Slide Number 2
	8254 Control Word Format
	Slide Number 4
	Slide Number 5
	Slide Number 6
	MODE 1 : HARDWARE-RETRIGGERABLE �ONE-SHOT
	MODE 2 : RATE GENERATOR CLOCK
	MODE 3 : Square Wave Generator
	MODE 4 : SOFTWARE TRIGGERED STROBE
	MODE 5 : HARWARE TRIGGERED STROBE
	READ BACK COMMAND FORMAT:

	Data Transfer schemes
	Data Transfer �Schemes�
	Why do we need data transfer schemes ?
	Classification of Data Transfer Schemes
	Programmed Data Transfer Scheme
	Synchronous Mode of Data Transfer
	Slide Number 6
	Asynchronous Data Transfer
	Slide Number 8
	Disadvantages
	Interrupt Driven Data Transfer
	Slide Number 11
	Multiple Interrupts
	Slide Number 13
	Interrupts of 8085
	Interrupt Instructions
	Slide Number 16
	Call Locations and Hex – codes for RST n
	DMA Data Transfer scheme
	Slide Number 19

