BASIC DIFFERENTIAL GEOMETRY: CONNECTIONS AND GEODESICS

WERNER BALLMANN

Introduction

I discuss basic features of connections on manifolds: torsion and curvature tensor, geodesics and exponential maps, and some elementary examples. In one of the examples, I assume some familiarity with some elementary differential geometry as in SE. I refer to [VC] for a short expositon of the general theory of connections on vector bundles.

Contents

Introduction 1
Conventions 2

1. Connections on manifolds 3
1.1. Localization 4
1.2. Symmetry 5
1.3. Curvature 6
2. Covariant derivative along maps 8
2.1. Torsion and curvature 9
2.2. Parallel translation along curves 10
3. Geodesics and exponential map 11
3.1. Geodesic flow 12
3.2. Geodesic variations and Jacobi fields 14
3.3. Exponential map 15
4. Exercises 17
Appendix A. Two technical lemmas 18
Acknowledgments 19
References 19
[^0]
Conventions

If $U \subset \mathbb{R}^{m}$ is open, V is a real (or complex) vector space (of finite dimension), and $\varphi: U \rightarrow V$ is a smooth function, then the partial derivative of φ with respect to x_{i} is denoted in the following different ways,

$$
\varphi_{i}=\varphi_{x_{i}}=\frac{\partial \varphi}{\partial x^{i}}=d \varphi \cdot \frac{\partial}{\partial x^{i}} .
$$

Analogous notation will be used for higher partial derivatives. There are other objects with indices, where the indices have a different meaning. But it seems that there is no danger of confusion.

Let M be a manifold. By $\mathcal{F}(M)$ and $\mathcal{V}(M)$ we denote the spaces of smooth real valued functions and smooth vector fields on M, respectively. Recall that tangent vectors of M act as derivations on smooth maps with values in vector spaces, $\varphi: M \rightarrow V$. For $X \in \mathcal{V}(M)$, we use the notations $X f=d f \cdot X$ for the induced smooth function $M \ni p \mapsto X(p)(f) \in V$.

A frame of $T M$ over a subset U of M consists of a tuple $\Phi=\left(X_{1}, \ldots, X_{m}\right)$ of smooth vector fields of M over U such that $\left(X_{1}(p), \ldots, X_{m}(p)\right)$ is a basis of $T_{p} M$, for all $p \in U$. If X is a vector field of M over U, then the map $\xi: U \rightarrow \mathbb{R}^{m}$ with $X=\xi^{i} X_{i}$ is called the principal part of X with respect to Φ. In the last formula, the Einstein convention is in force. I will use it throughout: If in a term an index occurs as upper and lower index, then it is understood that the sum over that index is taken.

If U is open, Φ is a frame of $T M$ over U, and X is a smooth vector field of M over U, then the principal part ξ of X is smooth. If $x: U \rightarrow U^{\prime}$ is a coordinate chart of M, then

$$
\begin{equation*}
\left(X_{1}, \ldots, X_{m}\right):=\left(\frac{\partial}{\partial x^{1}}, \ldots, \frac{\partial}{\partial x^{m}}\right) \tag{0.1}
\end{equation*}
$$

is a frame of $T M$ over U. We call it the frame associated to x. For this frame, the principal part of a vector field X of M over U is given by $d x \cdot X$.

1. Connections on manifolds

We start with some basic features of connections on manifolds, that is, connections on their tangent bundles.

Definition 1.1. A connection or covariant derivative on M is a map

$$
D: \mathcal{V}(M) \times \mathcal{V}(M) \longrightarrow \mathcal{V}(M), \quad D_{X} Y=D Y \cdot X
$$

such that D is tensorial in X and a derivation in Y.
By the latter we mean that

$$
\begin{equation*}
D_{X}(\varphi \cdot Y)=X(\varphi) \cdot Y+\varphi \cdot D_{X} Y \tag{1.1}
\end{equation*}
$$

for all $\varphi \in \mathcal{F}(M)$ and $X, Y \in \mathcal{V}(M)$.
Examples 1.2.1) We view vector fields on $M=\mathbb{R}^{m}$ as maps $X: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$. Then the standard derivative d defines a connection on \mathbb{R}^{m} : For smooth vector fields X, Y on \mathbb{R}^{m}, set

$$
\begin{equation*}
D_{X} Y(p):=d Y_{p} \cdot X(p) \tag{1.2}
\end{equation*}
$$

For reasons which will become clear below, this connection on \mathbb{R}^{m} is called the flat connection.
2) Let $M \subset \mathbb{R}^{n}$ be a submanifold, and identify tangent spaces of M with linear subspaces of \mathbb{R}^{n} in the usual way. Then a vector field X on M is a map $X: M \rightarrow \mathbb{R}^{n}$ such that $X(p) \in T_{p} M$ for all $p \in M$. For example, a vector field on the unit sphere S^{m} in \mathbb{R}^{m+1} is a map $X: S^{m} \rightarrow \mathbb{R}^{m+1}$ such that $\langle p, X(p)\rangle=0$ for all $p \in S^{m}$. For smooth vector fields X, Y on M, define

$$
\begin{equation*}
D_{X} Y(p):=\pi_{p} \cdot d Y_{p} \cdot X(p), \quad p \in M, \tag{1.3}
\end{equation*}
$$

where $\pi_{p}: \mathbb{R}^{n} \rightarrow T_{p} M$ denotes the orthogonal projection. This defines a connection on M, the Levi-Civita connection, compare [SE, SR, IS].
3) Consider $O(n)=\left\{A \in \mathbb{R}^{n \times n} \mid A^{*}=A^{-1}\right\}$, a submanifold of $\mathbb{R}^{n \times n}$ of dimension $m=n(n-1) / 2$. Vector fields on $O(n)$ are maps $X: O(n) \rightarrow \mathbb{R}^{n \times n}$ such that, for all $A \in O(n), X(A)=A B(A)$, where $B^{*}(A)=-B(A)$. We say that a vector field X on $O(n)$ is left-invariant if $X(A)=A B$ for some fixed $B \in \mathbb{R}^{n \times n}$ with $B^{*}=-B$.

If $\left(B_{1}, \ldots, B_{m}\right)$ is a basis of the vector space of $\left\{B \in \mathbb{R}^{n \times n} \mid B^{*}=-B\right\}$, then smooth vector fields on $O(n)$ are of the form $Y(A)=\eta^{i}(A) A B_{i}$, where the principal part $\eta: O(n) \rightarrow \mathbb{R}^{m}$ of Y with respect to the chosen basis is smooth. Define a connection D on $O(n)$ by

$$
\begin{equation*}
D_{X} Y(A):=\left(d \eta_{A}^{i} \cdot X(A)\right) A B_{i} \tag{1.4}
\end{equation*}
$$

This connection is called the left-invariant connection on $O(n)$. A similar construction works for all closed matrix groups.

From now on, we let D be a connection on M. Let $Y \in \mathcal{V}(M)$. Then

$$
\begin{equation*}
D Y: \mathcal{V}(M) \rightarrow \mathcal{V}(M), \quad X \mapsto D Y(X) \tag{1.5}
\end{equation*}
$$

is tensorial in X. Therefore, by the argument of Lemma A.2, $D Y$ defines a family of maps $D Y(p): T_{p} M \rightarrow T_{p} M$ such that $D Y(p) \cdot X(p)=D_{X} Y(p)$ for all $p \in M$ and $X \in \mathcal{V}(M)$, see Exercise 5) in Section 4. We call $D Y$ the covariant derivative of Y. We think of covariant differentiation as a generalization of directional or partial differentiation.
1.1. Localization. In our next observation we show that $D_{X} Y(p), p \in M$, only depends on the restriction of Y to a neighborhood of p.

Lemma 1.3. Let $p \in M$ and $Y_{1}, Y_{2} \in \mathcal{V}(M)$ be vector fields such that $Y_{1}=Y_{2}$ in some neighborhood U of p. Then

$$
\left(D_{X} Y_{1}\right)(p)=\left(D_{X} Y_{2}\right)(p) \quad \text { for all } X \in \mathcal{V}(M)
$$

Proof. Choose a smooth function $\varphi: M \rightarrow \mathbb{R}$ with $\operatorname{supp}(\varphi) \subset U$ and such that $\varphi=1$ in a neighborhood $V \subset U$ of p. Then $\varphi \cdot Y_{1}=\varphi \cdot Y_{2}$ on M, hence

$$
D_{X}\left(\varphi \cdot Y_{1}\right)=D_{X}\left(\varphi \cdot Y_{2}\right) .
$$

On the other hand, by (1.1) and the choice of φ,

$$
\begin{aligned}
D_{X}\left(\varphi \cdot Y_{i}\right)(p) & =X_{p}(\varphi) \cdot Y_{i}(p)+\varphi(p) \cdot D_{X} Y_{i}(p) \\
& =0 \cdot Y_{i}(p)+1 \cdot D_{X} Y_{i}(p)=D_{X} Y_{i}(p)
\end{aligned}
$$

for $i=1,2$. Hence $\left(D_{X} Y_{1}\right)(p)=\left(D_{X} Y_{2}\right)(p)$ as claimed.
Let $U \subset M$ be an open subset and $p \in U$. Recall from Lemma A. 1 that for all smooth vector fields X, Y on U there are smooth vector fields \tilde{X}, \tilde{Y} on M such that $X=\tilde{X}$ and $Y=\tilde{Y}$ in an open neighborhood $V \subset U$ of p. Define

$$
\begin{equation*}
D_{X}^{U} Y(p):=(D \tilde{Y} \cdot \tilde{X})(p) \tag{1.6}
\end{equation*}
$$

By Lemma 1.3, $D_{X}^{U} Y(p)$ does not depend on the choice of \tilde{X} and \tilde{Y}. It is now easy to verify that D^{U} is a connection on U. We call D^{U} the induced connection. By abuse of notation we simply write D instead of D^{U}. This simplification will not lead to confusion.

Let $\Phi=\left(X_{1}, \ldots, X_{m}\right)$ be a frame of $T M$ over U. Then there are smooth functions $\Gamma_{i j}^{k}: U \rightarrow \mathbb{R}, 1 \leq i, j, k \leq m$, such that

$$
\begin{equation*}
D_{X_{i}} X_{j}=\Gamma_{i j}^{k} X_{k} . \tag{1.7}
\end{equation*}
$$

These functions $\Gamma_{i j}^{k}$ are called Christoffel symbols of D with respect to Φ. If X, Y are smooth vector fields on U and $\xi, \eta: U \rightarrow \mathbb{R}^{m}$ are their principal parts with
respect to $\Phi, X=\xi^{i} X_{i}$ and $Y=\eta^{i} X_{i}$, then

$$
\begin{aligned}
D_{X} Y & =D_{X}\left(\eta^{j} \cdot X_{j}\right)=X \eta^{j} \cdot X_{j}+\eta^{j} \cdot D_{X} X_{j} \\
& =X \eta^{j} \cdot X_{j}+\eta^{j} \cdot D_{\xi^{i} \cdot X_{i}} X_{j} \\
& =X \eta^{j} \cdot X_{j}+\Gamma_{i j}^{k} \xi^{i} \eta^{j} \cdot X_{k} \\
& =\left(X \eta^{k}+\Gamma_{i j}^{k} \xi^{i} \eta^{j}\right) \cdot X_{k} .
\end{aligned}
$$

Thus the principal part of $D_{X} Y$ is

$$
\begin{equation*}
X \eta+\Gamma(\xi, \eta)=d \eta(X)+\Gamma(\xi, \eta) \tag{1.8}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma(\xi, \eta):=\left(\Gamma_{i j}^{1} \xi^{i} \eta^{j}, \ldots, \Gamma_{i j}^{m} \xi^{i} \eta^{j}\right) . \tag{1.9}
\end{equation*}
$$

The above formalism holds, in particular, for the frame $\left(X_{1}, \ldots, X_{m}\right)$ associated to a coordinate chart (x, U).

Let $x: U \rightarrow U^{\prime}$ and $\hat{x}: \hat{U} \rightarrow \hat{U}^{\prime}$ be coordinate charts for M. If X and Y are vector fields on $U \cap \hat{U}$, then their principal parts with respect to x and \hat{x} are related by

$$
\hat{\xi}=d \hat{x}(X)=a \cdot \xi, \quad \text { and } \quad \hat{\eta}=d \hat{x}(Y)=a \cdot \eta,
$$

where $a(p):=d\left(\hat{x} \circ x^{-1}\right)(x(p)), p \in U \cap \hat{U}$. Similarly, for the corresponding principal parts of $D_{X} Y$ we have

$$
\begin{aligned}
a(d \eta(X)+\Gamma(\xi, \eta)) & =d \hat{x}\left(D_{X} Y\right) \\
& =d \hat{\eta}(X)+\hat{\Gamma}(\hat{\xi}, \hat{\eta}) \\
& =d(a \cdot \eta)(X)+\hat{\Gamma}(\hat{\xi}, \hat{\eta}) \\
& =b(\xi, \eta)+d \varphi_{x} \cdot \eta(X)+\hat{\Gamma}(\hat{\xi}, \hat{\eta}),
\end{aligned}
$$

where $b(p):=d^{2}\left(\hat{x} \circ x^{-1}\right)(x(p))$. Now $d x(X)=\xi$ and hence

$$
\begin{equation*}
\hat{\Gamma}(a \cdot \xi, a \cdot \eta)=a \cdot \Gamma(\xi, \eta)-b(\xi, \eta) \tag{1.10}
\end{equation*}
$$

the transformation rule for Christoffel symbols under a change of coordinates. The transformation rule involves second derivatives of $\hat{x} \circ x^{-1}$.
1.2. Symmetry. The Lie bracket of vector fields X, Y on \mathbb{R}^{m} is given by $[X, Y]=$ $d_{X} Y-d_{Y} X$. For connections on manifolds, this equality does not need to hold anymore. However, we are interested in having as much similarity to the standard differential calculus in \mathbb{R}^{m} as possible - this leads to the notion of symmetric connections. We say that a connection D for M is symmetric if

$$
\begin{equation*}
D_{X} Y-D_{Y} X=[X, Y] \tag{1.11}
\end{equation*}
$$

for all $X, Y \in \mathcal{V}(M)$. With respect to a coordinate chart (x, U) of M, that is, with respect to the frame associated to (x, U), this amounts to the symmetry of
the lower indices of the corresponding Christoffel symbols,

$$
\begin{equation*}
\Gamma_{i j}^{k}=\Gamma_{j i}^{k}, \quad 1 \leq i, j, k \leq m \tag{1.12}
\end{equation*}
$$

A measure of the symmetry is the torsion tensor

$$
\begin{equation*}
T: \mathcal{V}(M) \times \mathcal{V}(M) \rightarrow \mathcal{V}(M), \quad T(X, Y)=D_{X} Y-D_{Y} X-[X, Y] \tag{1.13}
\end{equation*}
$$

Proposition 1.4. The torsion tensor $T=T(X, Y)$ is tensorial and skew symmetric in X and Y.

Proof. The skew symmetry of T follows from the skew symmetry of the Lie bracket and the definition of T. Additivity in X and Y is clear. As for $\mathcal{F}(M)$ homogeneity in X, we compute

$$
\begin{aligned}
T(\varphi \cdot X, Y) & =D_{\varphi \cdot X} Y-D_{Y}(\varphi \cdot X)-[\varphi \cdot X, Y] \\
& =\varphi \cdot D_{X} Y-Y(\varphi) \cdot X-\varphi \cdot D_{Y} X+Y(\varphi) \cdot X-\varphi \cdot[X, Y] \\
& =\varphi \cdot T(X, Y)
\end{aligned}
$$

Now $\mathcal{F}(M)$-homogeneity in Y follows from skew symmetry.
Examples 1.5.1) As explained in the beginning of this subsection, the flat connection on \mathbb{R}^{m} is a symmetric connection.
2) Let $M \subset \mathbb{R}^{n}$ be a submanifold and $X, Y: M \rightarrow \mathbb{R}^{n}$ be smooth vector fields on M, compare Example 1.2.2. Let D be the Levi-Civita connection on M as defined in (1.3). Then since the Lie bracket $[X, Y]$ is tangential to M,

$$
\begin{aligned}
D_{X} Y-D_{Y} X & =\pi \cdot d Y \cdot X-\pi \cdot d X \cdot Y \\
& =\pi \cdot(d Y \cdot X-d X \cdot Y)=\pi \cdot[X, Y]=[X, Y]
\end{aligned}
$$

where we suppress the dependence on $p \in M$. Hence D is symmetric.
3) Consider the left-invariant connection D on $O(n)$ as in (1.4). Let $X(A)=$ $A B$ and $Y(A)=A C$ be left-invariant vector fields on $O(n)$. Then we have $D_{X} Y=D_{Y} X=0$, hence

$$
T(X, Y)(A)=-[X, Y](A)=-A(B C-C B)
$$

and hence D is not symmetric.
1.3. Curvature. For smooth vector fields X, Y on M and a smooth map φ : $M \rightarrow \mathbb{R}$ we have $X Y(\varphi)-Y X(\varphi)=[X, Y](\varphi)$, by the definition of the Lie bracket. For connections, the failure of the corresponding commutation formula is measured by the curvature tensor.

Definition 1.6. The curvature tensor of D is the map

$$
\begin{aligned}
& R: \mathcal{V}(M) \times \mathcal{V}(M) \times \mathcal{V}(M) \rightarrow \mathcal{V}(M) \\
& R(X, Y) Z=D_{X} D_{Y} Z-D_{Y} D_{X} Z-D_{[X, Y]} Z
\end{aligned}
$$

A connection is called flat if its curvature tensor $R=0$.

Proposition 1.7. The curvature tensor R is tensorial in X, Y and Z and skew symmetric in X and $Y, R(X, Y) Z=-R(Y, X) Z$.

Proof. Skew symmetry in X and Y follows from the definition of R and the skew symmetry of the Lie bracket. Addidivity in X, Y and Z is immediate from the additivity of covariant derivative and Lie bracket. As for homogeneity over $\mathcal{F}(M)$, we compute:

$$
\begin{aligned}
D_{X} D_{Y}(\varphi \cdot Z)= & D_{X}\left(Y(\varphi) \cdot Z+\varphi \cdot D_{Y} Z\right) \\
& =X Y(\varphi) \cdot Z+Y(\varphi) \cdot D_{X} Z+X(\varphi) \cdot D_{Y} Z+\varphi \cdot D_{X} D_{Y} Z .
\end{aligned}
$$

An analogous formula holds for $D_{Y} D_{X}(\varphi \cdot Z)$. Now

$$
D_{[X, Y]}(\varphi \cdot Z)=[X, Y](\varphi) \cdot Z+\varphi \cdot D_{[X, Y]} Z
$$

and hence

$$
R(X, Y)(\varphi \cdot Z)=\varphi \cdot R(X, Y) Z
$$

The proof of homogeneity over $\mathcal{F}(M)$ in X and Y is simpler.
By the argument of Lemma A.2, the curvature R of a connection D is given by a family of trilinear maps $R_{p}: T_{p} M \times T_{p} M \times T_{p} M \rightarrow T_{p} M$ such that

$$
(R(X, Y) Z)(p)=R_{p}(X(p), Y(p)) Z(p)
$$

for all $p \in M$ and $X, Y, Z \in \mathcal{V}(M)$, compare Exercise 5) in Section 4.
Let $\Phi=\left(X_{1}, \ldots, X_{m}\right)$ be a frame of $T M$ over an open subset $U \subset M$, and let $\Gamma=\left(\Gamma_{i j}^{k}\right)$ be the corresponding Christoffel symbols of D. Let $X, Y, Z \in \mathcal{V}(M)$ with principal parts ξ, η, ζ with respect to Φ. Then the principal part of $R(X, Y) Z$ with respect to Φ is given by

$$
\begin{align*}
X(Y \zeta & +\Gamma(\eta, \zeta))+\Gamma(\xi, Y \zeta+\Gamma(\eta, \zeta))-Y(X \zeta+\Gamma(\xi, \zeta)) \\
& -\Gamma(\eta, X \zeta+\Gamma(\xi, \zeta))-[X, Y] \zeta-\Gamma(X \eta-Y \xi, \zeta) \tag{1.14}\\
& =(X \Gamma)(\eta, \zeta)-(Y \Gamma)(\xi, \zeta)+\Gamma(\xi, \Gamma(\eta, \zeta))-\Gamma(\eta, \Gamma(\xi, \zeta))
\end{align*}
$$

with $X \Gamma=\left(d \Gamma_{i j}^{k} \cdot X\right)$. This formula shows again that $R(X, Y) Z$ is tensorial in X, Y and Z, it involves the principal parts of X, Y and Z in a linear way.

Suppose now that $\left(X_{1}, \ldots, X_{m}\right)$ is the frame associated to a coordinate chart $x: U \rightarrow U^{\prime}$. Define smooth functions $R_{i j k}^{l}: U \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
R\left(X_{i}, X_{j}\right) X_{k}=R_{i j k}^{l} X_{l} \tag{1.15}
\end{equation*}
$$

Then, by the definition of Christoffel symbols in (1.7),

$$
\begin{equation*}
R_{i j k}^{l}=\Gamma_{j k, i}^{l}-\Gamma_{i k, j}^{l}+\left(\Gamma_{i h}^{l} \Gamma_{j k}^{h}-\Gamma_{j h}^{l} \Gamma_{i k}^{h}\right), \tag{1.16}
\end{equation*}
$$

where $\Gamma_{j k, i}^{l}$ denotes the i-th partial derivative of $\Gamma_{j k}^{l}$.

Examples 1.8. 1) A straightforward calculation shows that the flat connection on \mathbb{R}^{m} is flat in the sense of definition 1.6, that is, its curvature tensor $R=0$.
2) Let $M \subset \mathbb{R}^{m}$ be a submanifold and D be its Levi-Civita connection as in (1.3). The curvature of this connection is intimately related to the geometry of M. This is a long and interesting story, a story behind more or less everything we discuss, and will be pursued further in [SR] and [IS].
3) Let D be the left-invariant connection on $O(n)$ as in (1.4). Since the curvature tensor is tensorial, it suffices to compute $R(X, Y) Z$ for left-invariant vector fields on $O(n)$. Now $D Y=0$ for all left-invariant vector fields Y on $O(n)$. Hence the curvature tensor $R=0$.

2. Covariant derivative along maps

Let $f: N \rightarrow M$ be a smooth map. A vector field along f is a map $X: N \rightarrow T M$ with $\pi \circ X=f$, where $\pi: T M \rightarrow M$ is the projection to the foot point. The vector space of vector fields along f is denoted $\mathcal{V}(f)$ or \mathcal{V}_{f}.

Let $\Phi=\left(X_{1}, \ldots, X_{m}\right)$ be a local frame of $T M$ over an open set $U \subset M$. For $X \in \mathcal{V}(f)$, there exist smooth functions $\xi^{i}: f^{-1}(U) \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
X(p)=\xi^{i}(p) X_{i}(f(p)) \quad \text { for all } p \in f^{-1}(U) \tag{2.1}
\end{equation*}
$$

We write (2.1) also more shortly as $X=\xi^{i} \cdot X_{i} \circ f$, and call $\xi=\left(\xi^{1}, \ldots, \xi^{m}\right)$ the principal part of X with respect to Φ.

Example 2.1. If X is a vector field on N, then $f_{*} X: N \rightarrow T M$,

$$
f_{*} X(p):=f_{* p} X(p), \quad p \in M,
$$

is a vector field along M. Such vector fields along f will be called tangential.
Let D be a connection on M. We want to induce a covariant derivative on vector fields along f. To that end, let $\Phi=\left(X_{1}, \ldots, X_{m}\right)$ be a local frame of $T M$ over an open set $U \subset M$, and let $\Gamma=\left(\Gamma_{i j}^{k}\right)$ be the corresponding Christoffel symbols. Let Y be a smooth vector field along f with principal part $\eta=\left(\eta^{1}, \ldots, \eta^{m}\right)$ with respect to Φ. For a smooth vector field X over $f^{-1}(U)$, define

$$
\begin{equation*}
D_{X}^{f} Y(p)=\left\{X_{p}\left(\eta^{k}\right)+\Gamma_{i j}^{k}(f(p)) \xi^{i}(p) \eta^{j}(p)\right\} \cdot\left(X_{k}(f(p)), \quad p \in U\right. \tag{2.2}
\end{equation*}
$$

where ξ is the principal part of $f_{*} X$. In short, the principal part of $D_{X}^{f} S$ with respect to the chosen frame is

$$
\begin{equation*}
X(\eta)+(\Gamma \circ f)(\xi, \eta) \tag{2.3}
\end{equation*}
$$

This formula shows that $D_{X}^{f} Y$ is smooth. We have not checked yet that $D_{X}^{f} Y$ is well defined. For this, let $\Psi=\left(Y_{1}, \ldots, Y_{m}\right)$ be another local frame of $T M$ over an open subset $V \subset M$, and let $a=\left(a_{i}^{j}\right)$ be the matrix of functions on $U \cap V$ describing the change of frame, $X_{i}=a_{i}^{j} Y_{j}$. Let $W=f^{-1}(U \cap V)$. On W, the
principal parts η_{Φ} and η_{Ψ} of Y with respect to Φ and Ψ, respectively, are related by $\eta_{\Psi}=(a \circ f) \cdot \eta_{\Phi}$. For the proposed principal parts of $D_{X} S$ we have

$$
\begin{aligned}
& X\left(\eta_{\Psi}\right)+\left(f^{*} \omega_{\Psi}\right)(X) \cdot \eta_{\Psi}=X\left((a \circ f) \cdot \eta_{\Phi}\right)+\omega_{\Psi}\left(f_{*} X\right) \cdot \eta_{\Psi} \\
&=X(a \circ f) \cdot \eta_{\Phi}+(a \circ f) \cdot X\left(\eta_{\Phi}\right)+\omega_{\Psi}\left(f_{*} X\right) \cdot(a \circ f) \cdot \eta_{\Phi} \\
&=X(a \circ f) \cdot \eta_{\Phi}+(a \circ f) \cdot X\left(\eta_{\Phi}\right) \\
& \quad+(a \circ f) \cdot \omega_{\Phi}\left(f_{*} X\right) \cdot \eta_{\Phi}-X(a \circ f) \cdot \eta_{\Phi} \\
&=(a \circ f) \cdot\left(X\left(\eta_{\Phi}\right)+\left(f^{*} \omega_{\Phi}\right)(X) \cdot \eta_{\Phi}\right) .
\end{aligned}
$$

This shows that $D_{X}^{f} Y$ is well defined. For convenience, we simply write D instead of D^{f}. The following proposition is immediate from the local expressions in (2.2) or (2.3).

Proposition 2.2. The covariant derivative $D=D^{f}$ along f,

$$
D: \mathcal{V}(N) \times \mathcal{V}(f) \rightarrow \mathcal{V}(f), \quad D_{X} Y=D_{X} \cdot Y,
$$

is tensorial in X and a derivation in Y.
Example 2.3. Consider \mathbb{R}^{m} with the flat connection d, and let $c: I \rightarrow \mathbb{R}^{m}$ be a smooth curve. Smooth vector fields along c correspond to smooth maps $Y: I \rightarrow \mathbb{R}^{m}$, and the covariant derivative of such a field Y is given by the usual derivative.

For any smooth vector field Y of $M, Y \circ f$ is a smooth vector field along f. The induced covariant derivative for sections along f is consistent with the original covariant derivative in the following sense.
Proposition 2.4 (Chain Rule). If Y is a smooth vector field of M, then

$$
D(Y \circ f) \cdot X=D Y \cdot\left(f_{*} X\right)
$$

for all smooth vector fields X of N.
2.1. Torsion and curvature. It is important that torsion and curvature tensor behave well under covariant differentiation along maps.

Proposition 2.5. Let X, Y be smooth vector fields on N and Z be a smooth vector field along f. Then

$$
\begin{aligned}
T\left(f_{*} X, f_{*} Y\right) & =D_{X} f_{*} Y-D_{Y} f_{*} X-f_{*}[X, Y], \\
R\left(f_{*} X, f_{*} Y\right) Z & =D_{X} D_{Y} Z-D_{Y} D_{X} Z-D_{[X, Y]} Z .
\end{aligned}
$$

Proof. We check the assertion about the curvature tensor, the proof of the assertion about the torsion tensor is similar.

Let $\Phi=\left(X_{1}, \ldots, X_{m}\right)$ be a local frame of $T M$ over an open subset $U \subset M$. Let $\Gamma=\Gamma_{i j}^{k}$ be the corresponding Christoffel symbols. Since the right hand side of the asserted equation is tensorial in Z, that is, additive and $\mathcal{F}(N)$-homogeneous
in Z, it suffices to consider the case $Z=X_{i} \circ f$. Then the principal part of the right hand side of the asserted formula is

$$
\begin{aligned}
X(Y \zeta+ & (\Gamma \circ f)(\eta, \zeta))+(\Gamma \circ f)(\xi, Y \zeta+(\Gamma \circ f)(\eta, \zeta))-Y(X \zeta+(\Gamma \circ f)(\xi, \zeta)) \\
& -(\Gamma \circ f)(\eta, X \zeta+(\Gamma \circ f)(\xi, \zeta))-[X, Y] \zeta-(\Gamma \circ f)(X \eta-Y \xi, \zeta) \\
= & (X(\Gamma \circ f))(\eta, \zeta)-(Y(\Gamma \circ f))(\xi, \zeta) \\
& +(\Gamma \circ f)(\xi,(\Gamma \circ f)(\eta, \zeta))-(\Gamma \circ f)(\eta,(\Gamma \circ f)(\xi, \zeta)),
\end{aligned}
$$

where ξ and η denote the principal part of $f_{*} X$ and $f_{*} Y$, respectively, and where we note that $X \eta-Y \xi$ is the principal part of $f_{*}[X, Y]$ with respect to Φ. The right hand side in the above equation is equal to the principal part of $R\left(f_{*} X, f_{*} Y\right) Z$, compare (1.14).
Corollary 2.6. Let $W \subset \mathbb{R}^{2}$ be open and $f: W \rightarrow M$ be a smooth map. Denote by D_{s} and D_{t} the covariant derivtives in the coordinate directions s and t of \mathbb{R}^{2}. Then

$$
\begin{aligned}
D_{s} f_{t} & =D_{t} f_{s}+T\left(f_{s}, f_{t}\right), \\
D_{s} D_{t} Z & =D_{t} D_{s} Z+R\left(f_{s}, f_{t}\right) Z,
\end{aligned}
$$

where Z is a smooth vector field along f.
Proof. The coordinate vector fields in \mathbb{R}^{2} commute.
2.2. Parallel translation along curves. The most important case is the covariant derivative along a curve $c=c(t)$ in M. If Y is a smooth vector field along c, then we set

$$
\begin{equation*}
Y^{\prime}:=D Y \cdot \frac{\partial}{\partial t} \tag{2.4}
\end{equation*}
$$

If η is the principal part of Y with respect to a local frame $\Phi=\left(X_{1}, \ldots, X_{m}\right)$ of $T M$ over U, then the principal part of Y^{\prime} over $V=c^{-1}(U)$ is given by

$$
\begin{equation*}
\eta^{\prime}+(\Gamma \circ c)(\xi, \eta), \tag{2.5}
\end{equation*}
$$

where ξ is the principal part of c^{\prime} with respect $\Phi=\left(X_{1}, \ldots, X_{m}\right)$.
Remark 2.7. Note that $Y^{\prime}(t)$ might be non-zero even if $c^{\prime}(t)=0$. For example, if c is a constant curve, $c(t) \equiv p$, and Y is a smooth vector field along c, that is, Y is a smooth map into $T_{p} M$, then Y^{\prime} is the usual derivative of Y as a map into the fixed vector space $T_{p} M$.

Definition 2.8. We say that a vector field Y along $f: N \rightarrow M$ is parallel if $D_{X} Y=0$ for all vector fields X of N.
In general there are no parallel vector fields along a map f. However, for smooth curves there are always such fields, that is, fields which satisfy $Y^{\prime}=0$. In terms of (2.5), they correspond to solutions of the linear ordinary differential equation

$$
\begin{equation*}
\eta^{\prime}+(\Gamma \circ c)(\xi, \eta)=0 . \tag{2.6}
\end{equation*}
$$

¿From the standard theorems on ordinary differential equations we obtain the following assertion.

Corollary 2.9. Let $c: I \rightarrow M$ be a smooth curve. Let $t_{0} \in I$ and $v \in T_{c\left(t_{0}\right)} M$. Then there is a unique parallel vector field Y along c with $Y\left(t_{0}\right)=v$.

Let $c: I \rightarrow M$ be a smooth curve, $t_{0}, t_{1} \in I$, and set $p_{0}=c\left(t_{0}\right), P_{1}=c\left(t_{1}\right)$. The $\operatorname{map} P: T_{p_{0}} M \rightarrow T_{p_{1}} M$, which associates to $v \in T_{p_{0}} M$ the value $Y\left(t_{1}\right) \in T_{p_{1}} M$ of the unique parallel field Y along c with $Y\left(t_{0}\right)=v$, is called parallel translation along c from p_{0} to p_{1}. The map P is a linear isomorphism: by uniqueness the inverse map is parallel translation along c from p_{1} to p_{0}. In other words, if $\left(v_{1}, \ldots, v_{m}\right)$ is a basis of $T_{p_{0}} M$ and E_{i} is the parallel vector field along c with $E_{i}\left(t_{0}\right)=v_{i}, 1 \leq i \leq m$, then $\left(E_{1}(t), \ldots, E_{m}(t)\right)$ is a basis of $T_{c(t)} M$ for all $t \in I$. Such a frame along c will be called parallel.

Example 2.10. Consider \mathbb{R}^{m} with the flat connection d. A vector field Y along a smooth curve $c: I \rightarrow \mathbb{R}^{m}$ is parallel if and only if Y is constant.

Parallel frames along curves are very useful: Let $\Phi=\left(X_{1}, \ldots, X_{m}\right)$ be a parallel frame along c. If Y is a vector field along c, then there is a map $\eta: I \rightarrow \mathbb{R}^{m}$, the principal part of Y with respect to Φ, such that $Y=\eta^{i} X_{i}$. By Proposition 2.2, $Y^{\prime}=\left(\eta^{i}\right)^{\prime} X_{i}$ - covariant differentiation along c is reduced to standard differentiation.

3. Geodesics and exponential map

Let M be a manifold with a connection D. For a curve $c: I \rightarrow M$, the covariant derivative of the vector field c^{\prime} along c is denoted $c^{\prime \prime}$.
Definition 3.1. A smooth curve $c: I \rightarrow M$ is called a geodesic if $c^{\prime \prime}=0$.
Let $x: U \rightarrow U^{\prime}$ be a coordinate chart for M, and $\left(X_{1}, \ldots, X_{m}\right)$ be the associated frame of $T M$ over U. For a curve $c: I \rightarrow M$ set $c^{i}=x^{i} \circ c$ on $J=c^{-1}(U) \subset I$. On J, the coefficients of the principal part of $c^{\prime \prime}$ with respect to x are

$$
\left(c^{k}\right)^{\prime \prime}+\Gamma_{i j}^{k}\left(c^{i}\right)^{\prime}\left(c^{j}\right)^{\prime} .
$$

Therefore, c is a geodesic on $J=c^{-1}(U) \subset I$ if and only if the tuple $\left(c^{1}, \ldots, c^{m}\right)$ satisfies the geodesic equation

$$
\begin{equation*}
\left(c^{k}\right)^{\prime \prime}+\Gamma_{i j}^{k}\left(c^{i}\right)^{\prime}\left(c^{j}\right)^{\prime}=0 \tag{3.1}
\end{equation*}
$$

This is a system of differential equations for the coefficient functions c^{k}. We consider the vector function $\left(c^{1}, \ldots, c^{m}\right)$ as the independent variable and, therefore, simply speak of a differential equation.

Examples 3.2.1) With respect to the flat connection d, geodesics of \mathbb{R}^{m} are parameterized lines, $c(t)=p+t v$.
2) Consider the unit sphere S^{m} in \mathbb{R}^{m+1}. With respect to the Levi-Civita connection as in (1.3), unit speed geodesics on S^{m} are precisely the curves of the form $c(t)=\cos t x+\sin t y$, where $x, y \in \mathbb{R}^{m+1}$ are perpendicular unit vectors.
3) On $O(n)$ with the left-invariant connection as in (1.4), geodesics on $O(n)$ are precisely the curves of the form $A \exp (t B)$ with $A \in O(n)$ and where $B \in \mathbb{R}^{n \times n}$ satisfies $B^{*}=-B$.

Proposition 3.3. Let $c: I \rightarrow M$ be a geodesic and $\alpha, \beta \in \mathbb{R}$. Then $t \mapsto c(\alpha t+\beta)$ is a geodesic on $\{t \in \mathbb{R} \mid \alpha t+\beta \in I\}$.

Proof. With respect to a local coordinate chart $x: U \rightarrow U^{\prime}$, let $c^{i}=x^{i} \circ c$. Then $\left(c^{1}(\alpha t+\beta), \ldots, c^{m}(\alpha t+\beta)\right)$ satisfies the geodesic equation 3.1 if $\left(c^{1}(t), \ldots, c^{m}(t)\right)$ does.
3.1. Geodesic flow. The Geodesic Equation 3.1 is a non-linear ordinary differential equation of second order. Since the coefficients $\Gamma_{i j}^{k}$ are smooth functions on U, the standard theorems on ordinary differential equations have the following consequences.

Proposition 3.4 (Uniqueness). Let $c_{1}: I_{1} \rightarrow M$ and $c_{2}: I_{2} \rightarrow M$ be geodesics such that $c_{1}^{\prime}\left(t_{0}\right)=c_{2}^{\prime}\left(t_{0}\right)$ for some $t_{0} \in I:=I_{1} \cap I_{2}$. Then $c_{1}\left|I=c_{2}\right| I$.

Proof. The set $J \subset I$ of $t \in I$ with $c_{1}^{\prime}(t)=c_{2}^{\prime}(t)$ is closed in I. By assumption, $J \neq \emptyset$.

Let $t \in J$. Choose a coordinate chart $x: U \rightarrow U^{\prime}$ about $c_{1}(t)=c_{2}(t)$. Then both tuples $c_{1}^{i}=x^{i} \circ c_{1}$ and $c_{2}^{i}=x^{i} \circ c_{2}$ are solutions of the geodesic equation 3.1. Moreover, $c_{1}^{i}(t)=c_{2}^{i}(t)$ and $\left(c_{1}^{i}\right)^{\prime}(t)=\left(c_{2}^{i}\right)^{\prime}(t)$. Hence $x \circ c_{1}=x \circ c_{2}$ in a neighborhood of t in I, and, therfore, also $c_{1}=c_{2}$ in a neighborhood of t in I. Hence J is open in I and therefore $J=I$.

Let $v \in T M$. According to Proposition 3.4, there is a maximal interval $I_{v} \subset \mathbb{R}$ containing 0 such that there is a geodesic $c=c_{v}: I_{v} \rightarrow \mathbb{R}$ with initial velocity $c_{v}^{\prime}(0)=v$. Since geodesics are solutions of differential equations, I_{v} is open. We set $\mathcal{G}:=\left\{(v, t) \in T M \times \mathbb{R} \mid t \in I_{v}\right\}$.

Proposition 3.5 (Smoothness). The set \mathcal{G} is an open subset of $T M \times \mathbb{R}$ and contains $\mathbb{R} \times\left\{0_{p} \mid p \in M\right\}$. The map $\mathcal{G} \ni(v, t) \mapsto c_{v}(t) \in M$ is smooth.

Proof. We first prove the following weaker version WV of the proposition: Let $v \in T M$. Then there is an open neighborhood W of v in $T M$ and an $\varepsilon>0$ such that for all $w \in W$ there is a geodesic $c_{w}:(-\varepsilon, \varepsilon) \rightarrow M$ with $c_{w}^{\prime}(0)=w$, and the map $W \times(-\varepsilon, \varepsilon) \rightarrow M,(w, t) \mapsto c_{w}(t)$ is smooth.

To prove this, choose a coordinate chart $x: U \rightarrow U^{\prime}$ about the foot point p of v. Let $\hat{x}:=(x \times d x): T M \mid U \rightarrow U^{\prime} \times \mathbb{R}^{m}$ be the associated coordinate chart for $T M$. Then $\hat{x}(v)=(x(p), \xi)$, where $\xi=\left(\xi^{1}, \ldots, \xi^{m}\right)$ is the principal part of v with respect to x.

By the standard theorems on ordinary differential equations, there is a neighborhood W^{\prime} about $(x(p), \xi)$ in $U^{\prime} \times \mathbb{R}^{m}$ and an $\varepsilon>0$ such that, for all $(u, \eta) \in$ W^{\prime}, there is a unique solution $\left(c^{1}, \ldots, c^{m}\right)_{(y, \eta)}:(-\varepsilon, \varepsilon) \rightarrow U^{\prime}$ of (3.1) with $\left(c^{1}, \ldots, c^{m}\right)_{(y, \eta)}(0)=y$ and $\left(c^{1}, \ldots, c^{m}\right)_{(y, \eta)}^{\prime}(0)=\eta$. Moreover, the map

$$
F: W^{\prime} \times(-\varepsilon, \varepsilon) \rightarrow U^{\prime}, \quad F(y, \eta, t)=u_{(y, \eta)}(t)
$$

is smooth. Now $W=\hat{x}^{-1} W^{\prime}$ is a neighborhood as claimed for the given ε : For $w \in W, c_{w}=x^{-1} \circ\left(c^{1}, \ldots, c^{m}\right)_{(y, \eta)}$, where $(y, \eta)=\hat{x}(w)$, is a geodesic with initial velocity w. The map $W \times(-\varepsilon, \varepsilon) \rightarrow M,(w, t) \mapsto c_{w}(t)$ is smooth because it is the composition $(w, t) \mapsto x^{-1}(F(\hat{x}(w), t))$. This proves WV.

The claim of the proposition is an easy consequence of WV. For $(v, t) \in \mathcal{G}$ we need to show that there is a neighborhood W of v in $T M$ and an $\varepsilon>0$ such that $c_{w}(s)$ is defined for all $w \in W$ and $s \in(t-\varepsilon, t+\varepsilon)$ and such that $(w, s) \mapsto c_{w}(s)$ is smooth on $W \times(t-\varepsilon, t+\varepsilon)$. The case $t=0$ is the assertion. For notational convenience, we assume $t>0$. The case $t<0$ is handled similarly.

Since $[0, t]$ is compact, WV implies that there exist an $\varepsilon>0$ and a subdivision

$$
0=t_{0}<t_{1}<\ldots<t_{k}=t \quad \text { of }[0, t]
$$

with $t_{i+1}<t_{i}+\varepsilon$ such that $v_{i}:=c_{w}^{\prime}\left(t_{i}\right)$ has an open neighborhood V_{i} in $T M$ such that

$$
V_{i} \times(-\varepsilon, \varepsilon) \rightarrow M, \quad(w, s) \mapsto c_{w}(s)
$$

is defined and smooth, $0 \leq i<k$. For $i \in\{0, k-1\}$ we assume inductively that v has an open neighborhhood W_{i} in $T M$ such that

$$
W_{i} \times\left(-\varepsilon, t_{i}+\varepsilon\right) \rightarrow M, \quad(w, s) \mapsto c_{w}(s)
$$

is defined and smooth. Then $c_{w}^{\prime}\left(t_{i+1}\right)$ depends smoothly on $w \in W_{i}$. Since $v_{i+1}=c_{v}^{\prime}\left(t_{i+1}\right)$,

$$
W_{i+1}=\left\{w \in W_{i} \mid c_{w}^{\prime}\left(t_{i+1}\right) \in V_{i+1}\right\} .
$$

is an open neighborhood of v in $T M$. For $w \in W_{i+1}$ and $s \in\left(-\varepsilon, t_{i}+\varepsilon\right)$ we have

$$
c_{w}(s)=c_{w_{i+1}}\left(s-t_{i+1}\right), \quad \text { where } \quad w_{i+1}=c_{w}^{\prime}\left(t_{i+1}\right),
$$

by (3.1). We conclude that $c_{w}, w \in W_{i+1}$, is defined on $\left(-\varepsilon, t_{i+1}+\varepsilon\right)$. Moreover, (3.1) implies that

$$
W_{i+1} \times\left(-\varepsilon, t_{i+1}+\varepsilon\right) \rightarrow M, \quad(w, s) \mapsto c_{w}(s)
$$

is defined and smooth. Set $W=W_{k}$, then $W \times(t-\varepsilon, t+\varepsilon) \subset \mathcal{G}$.
The geodesic flow associated to D is the map

$$
\begin{equation*}
\mathcal{G} \rightarrow T M, \quad(t, v) \mapsto c_{v}^{\prime}(t) \tag{3.2}
\end{equation*}
$$

We say that D is complete if $\mathcal{G}=\mathbb{R} \times T M$. If D is complete, the geodesic flow is a 1-parameter group of diffeomorphisms on $T M$.
3.2. Geodesic variations and Jacobi fields. For simplicity, we assume from now on that D is a symmetric connection on M. The general case can be handled in a similar way.

Let $c: I \rightarrow M$ be a geodesic. We say that a vector field V along c is a Jacobi field if it satisfies the Jacobi equation

$$
\begin{equation*}
V^{\prime \prime}+R\left(V, c^{\prime}\right) c^{\prime}=0 \tag{3.3}
\end{equation*}
$$

The Jacobi equation is a linear ordinary differential equation of second order with smooth coefficients.

Let E_{1}, \ldots, E_{m} be a parallel frame along c. Then a smooth vector field V along c can be written as a linear combination $V=v^{i} E_{i}$ with smooth functions $v^{i}: I \rightarrow \mathbb{R}$. Since the fields E_{i} are parallel, we have

$$
V^{\prime \prime}+R\left(V, c^{\prime}\right) c^{\prime}=\left(v^{i}\right)^{\prime \prime} E_{i}+v^{i} R\left(E_{i}, c^{\prime}\right) c^{\prime} .
$$

Now we can also express the smooth vector field $t \mapsto R\left(E_{i}(t), c^{\prime}(t)\right) c^{\prime}(t)$ along c as a linear combination of the $E_{i}, R\left(E_{i}, c^{\prime}\right) c^{\prime}=R_{i}^{j} E_{j}$. Then

$$
V^{\prime \prime}+R\left(V, c^{\prime}\right) c^{\prime}=\left(v^{i}\right)^{\prime \prime} E_{i}+v^{i} R_{i}^{j} E_{j}=\left(\left(v^{i}\right)^{\prime \prime}+R_{j}^{i} v^{j}\right) E_{i} .
$$

Hence V is a Jacobi field if and only if the coefficients v_{i} satisfy the linear system of second order, ordinary differential equations

$$
\begin{equation*}
\left(v^{i}\right)^{\prime \prime}+R_{j}^{i} v^{j}=0, \quad 1 \leq i \leq m . \tag{3.4}
\end{equation*}
$$

It follows that Jacobi fields are smooth and that linear combinations of Jacobi fields are again Jacobi fields. Hence the set of Jacobi fields \mathcal{J}_{c} along c is a real vector space. Since a solution of the Jacobi equation is determined by its initial value and initial (covariant) derivative at some time $t_{0} \in I$, we get

$$
\begin{equation*}
\operatorname{dim} \mathcal{J}_{c}=2 m . \tag{3.5}
\end{equation*}
$$

We say that a smooth map $H:(-\varepsilon, \varepsilon) \times I \rightarrow M$ of c is a geodesic variation of c if $c_{0}=H(0, \cdot)=c$ and if $c_{s}=H(s, \cdot)$ is a geodesic for each $s \in(-\varepsilon, \varepsilon)$. Recall that for a variation H of c, the variation field of H is the vector field $V=H_{s}(0, \cdot)$ along c.

Proposition 3.6. 1) The variation field of a geodesic variation is a Jacobi field. 2) Let $t_{0} \in I$ and suppose that there is a neighborhood U of v in TM such that the geodesic c_{u} with $c_{u}^{\prime}\left(t_{0}\right)=u$ is defined on all of I, for all $u \in U$. Then any Jacobi field V along $c:=c_{v}: I \rightarrow M$ is the variation field of a geodesic variation of c.

Remark 3.7. By Proposition 3.5, a neighborhood U as in 2) exists if I is a compact interval, $I=[a, b]$.

Proof of Proposition 3.6.1) Let H be a geodesic variation of c, and denote the covariant derivative in the coordinate directions by D_{s} and D_{t}, respectively. Now
D is symmetric, hence

$$
D_{t} D_{t} H_{s}=D_{t} D_{s} H_{t}=D_{s} D_{t} H_{t}-R\left(H_{s}, H_{t}\right) H_{t}
$$

Since the variation is geodesic, we have $D_{t} H_{t}=0$. Therefore,

$$
D_{t} D_{t} H_{s}=-R\left(H_{s}, H_{t}\right) H_{t} .
$$

Now in $s=0$, we have $H_{t}=c^{\prime}, H_{s}=V$, and $D_{t} D_{t} H_{s}=V^{\prime \prime}$, where V is the variation field of H.
2) Let $\alpha=\alpha(s)$ be a smooth curve in M with $\alpha(0)=c(0)$ and $\alpha^{\prime}(0)=V\left(t_{0}\right)$. Let X be a smooth vector field along α with $X(0)=c^{\prime}\left(t_{0}\right)$ and $D_{s} X(0)=V^{\prime}\left(t_{0}\right)$. Let $H(s, t)=c_{s}(t)$, where c_{s} is the geodesic with $c_{s}\left(t_{0}\right)=\alpha(s)$ and $c_{s}^{\prime}\left(t_{0}\right)=X(s)$. By our assumption, c_{s} is defined on I for all $s \in(-\varepsilon, \varepsilon)$, if we choose $\varepsilon>0$ is sufficiently small. Furthermore,

$$
H(s, 0)=\alpha(s), \quad H_{s}(0,0)=V(0), \quad H_{t}(s, 0)=X(s)
$$

and, since D is symmetric,

$$
D_{t} H_{s}(0,0)=D_{s} H_{t}(0,0)=V^{\prime}(0) .
$$

Hence the variation field $H_{s}(0, \cdot)$ of H has the same initial conditions at $t=0$ as the given Jacobi field V. Now H is a geodesic variation and hence $H_{s}(0, \cdot)$ is a Jacobi field. Therefore $V=H_{s}(0, \cdot)$, hence V is the variation field of H.

Examples 3.8.1) For any geodesic c and constants $a, b \in \mathbb{R}$, the vector field $V(t)=(a t+b) c^{\prime}(t), t \in I$, is a Jacobi field.
2) Let $M=S^{m} \subset \mathbb{R}^{m+1}$ be the unit sphere and D be its Levi-Civita connection as in (1.3). Let $c: \mathbb{R} \rightarrow S^{m}$ be a great circle parametrized by arc length, $c(t)=\cos t x+\sin t y$, where x and y are perpendicular unit vectors in \mathbb{R}^{m+1}. Let $v \in \mathbb{R}^{m+1}$ be a further unit vector, and suppose that v is perpendicular to x and y. Then

$$
H(s, t)=\cos t x+\sin t(\cos s y+\sin s v)
$$

is a geodesic variation of c. Note that the constant vector field $E(t)=v$ is parallel along c and that the variation field of H is $V(t)=\sin t E(t)$. A nice application: The Jacobi equation implies that $R\left(u, c^{\prime}(t)\right) c^{\prime}(t)=u$ for any $t \in \mathbb{R}$ and $u \in T_{c(t)} S^{m}$ perpendicular to $c^{\prime}(t)$.
3.3. Exponential map. The set $\mathcal{E}=\{v \in T M \mid(1, v) \in \mathcal{G}\}$ is open with $\left\{0_{p} \mid p \in M\right\} \subset \mathcal{E}$. The exponential map $\exp : \mathcal{E} \rightarrow M$ is defined by

$$
\begin{equation*}
\mathcal{E} \ni v \mapsto \exp (v):=c_{v}(1) . \tag{3.6}
\end{equation*}
$$

By Proposition 3.5, the exponential map is smooth.
Let $p \in M$. Then $\mathcal{E}_{p}=\mathcal{E} \cap T_{p} M$ contains 0_{p}, is star-shaped with respect to 0_{p} and open. The restriction of the exponential map to \mathcal{E}_{p} is denoted $\exp _{p}$. For any $v \in T_{p} M, \exp _{p}(t v)=c_{t v}(1)=c_{v}(t)$ for all $t \in \mathbb{R}$ with $t v \in \mathcal{E}_{p}$.

Proposition 3.9. Let $p \in M$.

1) The differential of $\exp _{p}$ in 0_{p} is the identity, $\left(\exp _{p}\right)_{* 0_{p}}(v)=v$.
2) The differential of $\pi \times \exp : T M \rightarrow M \times M$ in 0_{p}, where $\pi: T M \rightarrow M$ is the projection, is an isomorphism.

Proof. For any $v \in T_{p} M$ and $t \in \mathbb{R}$ sufficiently small, we have $t v \in \mathcal{E}_{p}$ and $\exp _{p}(t v)=c_{v}(t)$. Hence $\left(\exp _{p}\right)_{* 0_{p}}(v)=c_{v}^{\prime}(0)=v$. This proves the first assertion.

To prove the second, note that by the first assertion, any tangent vector in $T_{p} M \times T_{p} M$ of the form $(0, v)$ is in the image of $(\pi \times \exp)_{* 0_{p}}$. On the other hand, if c is a smooth curve through p with $c^{\prime}(0)=u$, and $u(t):=0_{c(t)}$, then u is a smooth curve in $T M$ with $((\pi \times \exp) \circ u)^{\prime}(0)=(u, u)$. This implies that $(\pi \times \exp)_{* 0_{p}}$ is surjective. On the other hand, $\operatorname{dim} T M=2 m=2 \operatorname{dim} M$. Hence $(\pi \times \exp)_{* 0_{p}}$ is an isomorphism.
It follows that there are open neighborhoods U^{\prime} of 0_{p} in $T_{p} M$ and U of p in M such that $\exp _{p}: U^{\prime} \rightarrow U$ is a diffeomorphism. Hence, up to an isomorphism of $T_{p} M$ with \mathbb{R}^{m}, we can consider $\exp _{p}^{-1}: U \rightarrow U^{\prime}$ as a coordinate chart of M about p. In this coordinate chart, geodesics through p correspond to lines in $T_{p} M$.

It also follows that $\pi \times \exp$ is a diffeomorphism from a neighborhood V of 0_{p} in $T M$ to a product neighborhood $U \times U$ of (p, p) in $M \times M$. In particular, for any pair of points $\left(q_{0}, q_{1}\right)$ in $U \times U$, there is a unique tangent vector $u \in V$ with $\pi(v)=q_{0}$ and $\exp (v)=q_{1}$, and u depends smoothly on q_{0} and q_{1}.
Proposition 3.10. Let $p \in M, v \in \mathcal{E}_{p}$ and $w \in T_{v} T_{p} M \cong T_{p} M$. Then

$$
\left(\exp _{p}\right)_{* t v}(t w)=V(t), \quad 0 \leq t \leq 1
$$

where V is the Jacobi field along the geodesic $c(t)=\exp _{p}(t v), 0 \leq t \leq 1$, with $V(0)=0$ and $V^{\prime}(0)=w$.
Proof. Let $H(s, t)=\exp _{p}(t(v+s w)), 0 \leq t \leq 1$. Since \mathcal{E}_{p} is open, H is defined for all s sufficiently small and

$$
\left(\exp _{p}\right)_{* t v}(t w)=H_{s}(0, t)
$$

Now $c_{s}=H(s, \cdot)$ is a geodesic for each s. Hence the variation field V of H is a Jacobi field along c. We have $V(0)=H_{s}(s, 0)=0$ since $H(s, 0)=p$ for all s. Furthermore,

$$
V^{\prime}(0)=D_{t} H_{s}(0,0)=D_{s} H_{t}(0,0)=\left.D_{s}(v+s w)\right|_{s=0}=w
$$

4. EXERCISES

1) Discuss the representation of the torsion tensor with respect to local frames. What is a decisive difference between a general local frame of $T M$ and the one associated to a coordinate chart?
2) Let D be a symmetric connection on M and $f: M \rightarrow \mathbb{R}$ be a smooth function. Define the second covariant derivative $D^{2} f$ by

$$
D^{2} f(X, Y):=X Y(f)-D_{X} Y(f), \quad X, Y \in \mathcal{V}(M)
$$

Show that $D^{2} f$ is tensorial and symmetric in X and Y.
3) Let D be a symmetric connection on M and Z be a smooth vector field on M. Define the second covariant derivative $D^{2} X$ by

$$
D^{2} Z(X, Y):=D_{X} D_{Y} Z-D_{D_{X} Y} Z, \quad X, Y \in \mathcal{V}(M)
$$

Show that $D^{2} Z$ is tensorial in X and Y. What about the symmetry of $D^{2} X$?
4) Let D be a symmetric connection on M. Show that its curvature tensort R satisfies the first Bianchi identity:

$$
R(X, Y) Z+R(Y, Z) X+R(Z, X) Y=0
$$

for all $X, Y, Z \in \mathcal{V}(M)$.
5) A smooth tensor field of type $(k, 0)$ or $(k, 1)$, respectively, is a k-linear map

$$
L: \mathcal{V}(M) \times \ldots \times \mathcal{V}(M) \rightarrow \mathcal{V}, \quad\left(X_{1}, \ldots, X_{k}\right) \mapsto L\left(X_{1}, \ldots, X_{k}\right),
$$

with $\mathcal{V}=\mathcal{F}(M)$ or $\mathcal{V}=\mathcal{V}(M)$, respectively, which is $\mathcal{F}(M)$-homogeneous in each variable X_{i}. Use the φ^{2}-argument from the proof of Lemma A. 2 to show that any such tensor field is given by a family of k-linear maps $L_{p}: T_{p} M \times \ldots \times T_{p} M \rightarrow \mathbb{R}$ or $L_{p}: T_{p} M \times \ldots \times T_{p} M \rightarrow T_{p} M$, respectively, such that

$$
L\left(X_{1}, \ldots, X_{k}\right)(p)=L_{p}\left(X_{1}(p), \ldots, X_{k}(p)\right)
$$

for all $p \in M$ and $X_{1}, \ldots, X_{k} \in \mathcal{V}(M)$. Discuss the representation of tensor fields with respect to local frames.
6) Let D be a connection on M and L be a tensor field of type $(k, 0)$ or $(k, 1)$, respectively. Define its covariant derivative $D L$ by

$$
D L\left(X_{0}, \ldots, X_{k}\right):=D_{X_{0}}\left(L\left(X_{1}, \ldots, X_{k}\right)\right)-\sum L\left(X_{0}, \ldots, D_{X_{0}} X_{i}, \ldots, X_{k}\right)
$$

Here we use the notation $D_{X} f:=X f$ for smooth functions f. Show that $D L$ is a tensor field of type $(k+1,0)$ or $(k+1,1)$, respectively.

Appendix A. Two technical lemmas

There are some lemmas of a more technical nature which we use over and over again. We also need modifications of these lemmas, the arguments underlying the proofs are useful tools.

Lemma A.1. 1) Given $p \in M$ and a neighborhood U of p in M, there exists a function $\varphi \in \mathcal{F}(M)$ such that $0 \leq \varphi \leq 1, \operatorname{supp} \varphi \subset U$ and such that $\varphi(q)=1$ for all q in a (small) neighborhood of p.
2) Given $p \in M$ and a tangent vector $v \in T_{p} M$, there is a smooth vector field X on M with $X(p)=v$.
3) Let $W \subset M$ be open, $X \in \mathcal{V}(W)$, and $p \in W$. Then there is $Y \in \mathcal{V}(M)$ with $X(q)=Y(q)$ for all q in a neighborhood of p.

Proof. 1) By replacing U by a smaller neighborhood of p if necessary, we can and will assume that there is a coordinate chart $x: U \rightarrow U^{\prime}$. We arrange x such that $x(p)=0$ and let $\psi: \mathbb{R}^{m} \rightarrow \mathbb{R}$ be a smooth function with $0 \leq \psi \leq 1$, $\operatorname{supp} \psi \subset U^{\prime}$ and such that $\psi(u)=1$ for all u in a (small) neighborhood of 0 . Then $\varphi: M \rightarrow \mathbb{R}, \varphi=\psi \circ \psi$ on U and $\psi=0$ otherwise satisfies the assertions. Then $\varphi=0$ in a neighborhood of the boundary of U, hence φ is smooth.
2) Choose a coordinate chart $x: U \rightarrow U^{\prime}$ about p. Let $X_{1} \ldots, X_{m}$ be the associated frame and $\xi \in \mathbb{R}^{m}$ be the principal part of v with respect to $x, v=$ $\xi^{i} X_{i}(p)$. Choose φ as in 1) and define

$$
Y(q)= \begin{cases}\varphi \xi^{i} X_{i}(q) & \text { for } q \in U \\ 0 & \text { otherwise }\end{cases}
$$

Then $Y=0$ in a neighborhood of the boundary of U, hence Y is smooth.
3) We use the same argument as in 2): Choose the coordinate chart x such that $U \subset W$. Now the principal part of X with respect to x is a map $\xi: U \rightarrow \mathbb{R}^{m}$, all we do now is to replace, in the definition of Y, the constants ξ^{i} by the values $\xi(q)$.

Lemma A.2. Let $\Phi: \mathcal{V}(M) \rightarrow \mathcal{F}(M)$ be a linear map which is tensorial, i.e.,

$$
\Phi(\varphi X)=\varphi \Phi(X) \quad \text { for all } \varphi \in \mathcal{F}(M) \text { and } X \in \mathcal{V}(M)
$$

Then there is a smooth 1-form ω with

$$
\Phi(X)(p)=\omega_{p}(X(p)) \quad \text { for all } X \in \mathcal{V}(M) \text { and } p \in M .
$$

Proof. Let $p \in M$ and X and Y be smooth vector fields on M such that $X(q)=$ $Y(q)$ for all q in a neighborhood V of p. It suffices to show that $\Phi(X)(p)=$ $\Phi(Y)(p)$.

In a neighborhood $U \subset V$ of p, choose a local frame $\left(X_{1}, \ldots, X_{m}\right)$ of $T M$ and a function $\varphi \in \mathcal{F}(M)$ with $\varphi(p)=1$ and $\operatorname{supp}(\varphi) \subset U$. Then $\varphi \cdot X_{i}$ is a smooth vector field when extended by zero outside $U, 1 \leq i \leq m$.

By assumption, the principal parts of X and Y coincide, $X=\xi^{i} X_{i}=Y$ on U. The functions $\varphi \xi^{i}$ are smooth on M when extended by zero outside U and

$$
\varphi^{2} \cdot X=\left(\varphi \xi^{i}\right) \cdot\left(\varphi X_{i}\right)=\varphi^{2} \cdot Y
$$

Hence

$$
\Phi(X)(p)=\varphi^{2}(p) \cdot \Phi(X)(p)=\Phi\left(\varphi^{2} \cdot X\right)(p)=\Phi(Y)(p)
$$

Remark A.3. In the text, we need some variations of Lemma A.2, for example in the localization arguments concerning covariant derivatives and curvature tensors. On the other hand, the φ^{2}-argument is easy to adapt and, therefore, we leave the proof of the corresponding assertions to the reader, see Exercise 5) in Section 4.

Acknowledgments

I would like to thank Tim Baumgartner and Alexander Lytchak for many helpful comments and corrections.

References

[SE] W. Ballmann: Basic geometry of submanifolds in Euclidean spaces. Available at: www.math.uni-bonn.de/people/ballmann/notes.html.
[SR] W. Ballmann: Semi-Riemannian metrics. Soon vailable at: www.math.uni-bonn.de/people/ballmann/notes.html.
[IS] W. Ballmann: Riemannian immersions and submersions.
Soon vailable at: www.math.uni-bonn.de/people/ballmann/notes.html.
[VC] W. Ballmann: Vector bundles and connections.
Available at: www.math.uni-bonn.de/people/ballmann/notes.html.
[Sp] M. Spivak: A comprehensive introduction to differential geometry, Vols. I-V, Second edition. Publish or Perish, Inc., Wilmington, Del., 1979.

Mathematisches Institut, Universität Bonn, Beringstrasse 1, D-53115 Bonn,

[^0]: Date: Last update: 9.12.02.

