
BASIC DIFFERENTIAL GEOMETRY:
CONNECTIONS AND GEODESICS

WERNER BALLMANN

Introduction

I discuss basic features of connections on manifolds: torsion and curvature
tensor, geodesics and exponential maps, and some elementary examples. In one
of the examples, I assume some familiarity with some elementary differential
geometry as in SE. I refer to [VC] for a short expositon of the general theory of
connections on vector bundles.
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2 Basic differential geometry

Conventions

If U ⊂ Rm is open, V is a real (or complex) vector space (of finite dimension),
and ϕ : U → V is a smooth function, then the partial derivative of ϕ with respect
to xi is denoted in the following different ways,

ϕi = ϕxi =
∂ϕ

∂xi
= dϕ · ∂

∂xi
.

Analogous notation will be used for higher partial derivatives. There are other
objects with indices, where the indices have a different meaning. But it seems
that there is no danger of confusion.

Let M be a manifold. By F(M) and V(M) we denote the spaces of smooth
real valued functions and smooth vector fields on M , respectively. Recall that
tangent vectors of M act as derivations on smooth maps with values in vector
spaces, ϕ : M → V . For X ∈ V(M), we use the notations Xf = df ·X for the
induced smooth function M 3 p 7→ X(p)(f) ∈ V .

A frame of TM over a subset U of M consists of a tuple Φ = (X1, . . . , Xm) of
smooth vector fields of M over U such that (X1(p), . . . , Xm(p)) is a basis of TpM ,
for all p ∈ U . If X is a vector field of M over U , then the map ξ : U → Rm with
X = ξiXi is called the principal part of X with respect to Φ. In the last formula,
the Einstein convention is in force. I will use it throughout: If in a term an index
occurs as upper and lower index, then it is understood that the sum over that
index is taken.

If U is open, Φ is a frame of TM over U , and X is a smooth vector field of M
over U , then the principal part ξ of X is smooth. If x : U → U ′ is a coordinate
chart of M , then

(0.1) (X1, . . . , Xm) :=
( ∂

∂x1
, . . . ,

∂

∂xm
)

is a frame of TM over U . We call it the frame associated to x. For this frame,
the principal part of a vector field X of M over U is given by dx ·X.
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1. Connections on manifolds

We start with some basic features of connections on manifolds, that is, con-
nections on their tangent bundles.

Definition 1.1. A connection or covariant derivative on M is a map

D : V(M)× V(M) −→ V(M), DXY = DY ·X,

such that D is tensorial in X and a derivation in Y .

By the latter we mean that

(1.1) DX(ϕ · Y ) = X(ϕ) · Y + ϕ ·DXY

for all ϕ ∈ F(M) and X, Y ∈ V(M).

Examples 1.2. 1) We view vector fields on M = Rm as maps X : Rm → Rm.
Then the standard derivative d defines a connection on Rm: For smooth vector
fields X, Y on Rm, set

(1.2) DXY (p) := dYp ·X(p).

For reasons which will become clear below, this connection on Rm is called the
flat connection.

2) Let M ⊂ Rn be a submanifold, and identify tangent spaces of M with
linear subspaces of Rn in the usual way. Then a vector field X on M is a map
X : M → Rn such that X(p) ∈ TpM for all p ∈ M . For example, a vector field
on the unit sphere Sm in Rm+1 is a map X : Sm → Rm+1 such that 〈p,X(p)〉 = 0
for all p ∈ Sm. For smooth vector fields X, Y on M , define

(1.3) DXY (p) := πp · dYp ·X(p), p ∈M,

where πp : Rn → TpM denotes the orthogonal projection. This defines a connec-
tion on M , the Levi-Civita connection, compare [SE, SR, IS].

3) Consider O(n) = {A ∈ Rn×n | A∗ = A−1}, a submanifold of Rn×n of
dimension m = n(n − 1)/2. Vector fields on O(n) are maps X : O(n) → Rn×n

such that, for all A ∈ O(n), X(A) = AB(A), where B∗(A) = −B(A). We say
that a vector field X on O(n) is left-invariant if X(A) = AB for some fixed
B ∈ Rn×n with B∗ = −B.

If (B1, . . . , Bm) is a basis of the vector space of {B ∈ Rn×n | B∗ = −B},
then smooth vector fields on O(n) are of the form Y (A) = ηi(A)ABi, where the
principal part η : O(n) → Rm of Y with respect to the chosen basis is smooth.
Define a connection D on O(n) by

(1.4) DXY (A) := (dηiA ·X(A))ABi.

This connection is called the left-invariant connection on O(n). A similar con-
struction works for all closed matrix groups.
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From now on, we let D be a connection on M . Let Y ∈ V(M). Then

(1.5) DY : V(M)→ V(M), X 7→ DY (X),

is tensorial in X. Therefore, by the argument of Lemma A.2, DY defines a family
of maps DY (p) : TpM → TpM such that DY (p) ·X(p) = DXY (p) for all p ∈ M
and X ∈ V(M), see Exercise 5) in Section 4. We call DY the covariant derivative
of Y . We think of covariant differentiation as a generalization of directional or
partial differentiation.

1.1. Localization. In our next observation we show that DXY (p), p ∈M , only
depends on the restriction of Y to a neighborhood of p.

Lemma 1.3. Let p ∈ M and Y1, Y2 ∈ V(M) be vector fields such that Y1 = Y2 in
some neighborhood U of p. Then

(DXY1)(p) = (DXY2)(p) for all X ∈ V(M).

Proof. Choose a smooth function ϕ : M → R with supp(ϕ) ⊂ U and such that
ϕ = 1 in a neighborhood V ⊂ U of p. Then ϕ · Y1 = ϕ · Y2 on M , hence

DX(ϕ · Y1) = DX(ϕ · Y2).

On the other hand, by (1.1) and the choice of ϕ,

DX(ϕ · Yi)(p) = Xp(ϕ) · Yi(p) + ϕ(p) ·DXYi(p)

= 0 · Yi(p) + 1 ·DXYi(p) = DXYi(p)

for i = 1, 2. Hence (DXY1)(p) = (DXY2)(p) as claimed. �

Let U ⊂ M be an open subset and p ∈ U . Recall from Lemma A.1 that for all
smooth vector fields X, Y on U there are smooth vector fields X̃, Ỹ on M such
that X = X̃ and Y = Ỹ in an open neighborhood V ⊂ U of p. Define

(1.6) DU
XY (p) := (DỸ · X̃)(p).

By Lemma 1.3, DU
XY (p) does not depend on the choice of X̃ and Ỹ . It is now

easy to verify that DU is a connection on U . We call DU the induced connection.
By abuse of notation we simply write D instead of DU . This simplification will
not lead to confusion.

Let Φ = (X1, . . . , Xm) be a frame of TM over U . Then there are smooth
functions Γkij : U → R, 1 ≤ i, j, k ≤ m, such that

(1.7) DXi
Xj = ΓkijXk.

These functions Γkij are called Christoffel symbols of D with respect to Φ. If X, Y
are smooth vector fields on U and ξ, η : U → Rm are their principal parts with
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respect to Φ, X = ξiXi and Y = ηiXi, then

DXY = DX(ηj ·Xj) = Xηj ·Xj + ηj ·DXXj

= Xηj ·Xj + ηj ·Dξi·Xi
Xj

= Xηj ·Xj + Γkijξ
iηj ·Xk

=
(
Xηk + Γkijξ

iηj
)
·Xk.

Thus the principal part of DXY is

(1.8) Xη + Γ(ξ, η) = dη(X) + Γ(ξ, η),

where

(1.9) Γ(ξ, η) :=
(
Γ1
ijξ

iηj, . . . ,Γmij ξ
iηj
)
.

The above formalism holds, in particular, for the frame (X1, . . . , Xm) associated
to a coordinate chart (x, U).

Let x : U → U ′ and x̂ : Û → Û ′ be coordinate charts for M . If X and Y
are vector fields on U ∩ Û , then their principal parts with respect to x and x̂ are
related by

ξ̂ = dx̂(X) = a · ξ, and η̂ = dx̂(Y ) = a · η,
where a(p) := d(x̂ ◦ x−1)(x(p)), p ∈ U ∩ Û . Similarly, for the corresponding
principal parts of DXY we have

a
(
dη(X) + Γ(ξ, η)

)
= dx̂(DXY )

= dη̂(X) + Γ̂(ξ̂, η̂)

= d(a · η)(X) + Γ̂(ξ̂, η̂)

= b(ξ, η
)

+ dϕx · η(X) + Γ̂(ξ̂, η̂),

where b(p) := d2(x̂ ◦ x−1)(x(p)). Now dx(X) = ξ and hence

(1.10) Γ̂(a · ξ, a · η) = a · Γ(ξ, η)− b(ξ, η),

the transformation rule for Christoffel symbols under a change of coordinates.
The transformation rule involves second derivatives of x̂ ◦ x−1.

1.2. Symmetry. The Lie bracket of vector fieldsX, Y on Rm is given by [X, Y ] =
dXY − dYX. For connections on manifolds, this equality does not need to hold
anymore. However, we are interested in having as much similarity to the standard
differential calculus in Rm as possible — this leads to the notion of symmetric
connections. We say that a connection D for M is symmetric if

(1.11) DXY −DYX = [X, Y ]

for all X, Y ∈ V(M). With respect to a coordinate chart (x, U) of M , that is,
with respect to the frame associated to (x, U), this amounts to the symmetry of
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the lower indices of the corresponding Christoffel symbols,

(1.12) Γkij = Γkji, 1 ≤ i, j, k ≤ m.

A measure of the symmetry is the torsion tensor

(1.13) T : V(M)× V(M)→ V(M), T (X, Y ) = DXY −DYX − [X, Y ].

Proposition 1.4. The torsion tensor T = T (X, Y ) is tensorial and skew sym-
metric in X and Y .

Proof. The skew symmetry of T follows from the skew symmetry of the Lie
bracket and the definition of T . Additivity in X and Y is clear. As for F(M)-
homogeneity in X, we compute

T (ϕ ·X, Y ) = Dϕ·XY −DY (ϕ ·X)− [ϕ ·X, Y ]

= ϕ ·DXY − Y (ϕ) ·X − ϕ ·DYX + Y (ϕ) ·X − ϕ · [X, Y ]

= ϕ · T (X, Y ).

Now F(M)-homogeneity in Y follows from skew symmetry. �

Examples 1.5. 1) As explained in the beginning of this subsection, the flat
connection on Rm is a symmetric connection.

2) Let M ⊂ Rn be a submanifold and X, Y : M → Rn be smooth vector fields
on M , compare Example 1.2.2. Let D be the Levi-Civita connection on M as
defined in (1.3). Then since the Lie bracket [X, Y ] is tangential to M ,

DXY −DYX = π · dY ·X − π · dX · Y
= π ·

(
dY ·X − dX · Y

)
= π · [X, Y ] = [X, Y ],

where we suppress the dependence on p ∈M . Hence D is symmetric.
3) Consider the left-invariant connection D on O(n) as in (1.4). Let X(A) =

AB and Y (A) = AC be left-invariant vector fields on O(n). Then we have
DXY = DYX = 0, hence

T (X, Y )(A) = −[X, Y ](A) = −A(BC − CB),

and hence D is not symmetric.

1.3. Curvature. For smooth vector fields X, Y on M and a smooth map ϕ :
M → R we have XY (ϕ) − Y X(ϕ) = [X, Y ](ϕ), by the definition of the Lie
bracket. For connections, the failure of the corresponding commutation formula
is measured by the curvature tensor.

Definition 1.6. The curvature tensor of D is the map

R : V(M)× V(M)× V(M)→ V(M),

R(X, Y )Z = DXDYZ −DYDXZ −D[X,Y ]Z.

A connection is called flat if its curvature tensor R = 0.
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Proposition 1.7. The curvature tensor R is tensorial in X, Y and Z and skew
symmetric in X and Y , R(X, Y )Z = −R(Y,X)Z.

Proof. Skew symmetry in X and Y follows from the definition of R and the skew
symmetry of the Lie bracket. Addidivity in X, Y and Z is immediate from
the additivity of covariant derivative and Lie bracket. As for homogeneity over
F(M), we compute:

DXDY (ϕ · Z) = DX

(
Y (ϕ) · Z + ϕ ·DYZ

)
= XY (ϕ) · Z + Y (ϕ) ·DXZ +X(ϕ) ·DYZ + ϕ ·DXDYZ.

An analogous formula holds for DYDX(ϕ · Z). Now

D[X,Y ](ϕ · Z) = [X, Y ](ϕ) · Z + ϕ ·D[X,Y ]Z

and hence

R(X, Y )(ϕ · Z) = ϕ ·R(X, Y )Z.

The proof of homogeneity over F(M) in X and Y is simpler. �

By the argument of Lemma A.2, the curvature R of a connection D is given by
a family of trilinear maps Rp : TpM × TpM × TpM → TpM such that

(R(X, Y )Z)(p) = Rp(X(p), Y (p))Z(p)

for all p ∈M and X, Y, Z ∈ V(M), compare Exercise 5) in Section 4.
Let Φ = (X1, . . . , Xm) be a frame of TM over an open subset U ⊂M , and let

Γ = (Γkij) be the corresponding Christoffel symbols of D. Let X, Y, Z ∈ V(M)
with principal parts ξ, η, ζ with respect to Φ. Then the principal part of R(X, Y )Z
with respect to Φ is given by

X(Y ζ + Γ(η, ζ)) + Γ(ξ, Y ζ + Γ(η, ζ))− Y (Xζ + Γ(ξ, ζ))

− Γ(η,Xζ + Γ(ξ, ζ))− [X, Y ]ζ − Γ(Xη − Y ξ, ζ)

= (XΓ)(η, ζ)− (Y Γ)(ξ, ζ) + Γ(ξ,Γ(η, ζ))− Γ(η,Γ(ξ, ζ)),

(1.14)

with XΓ = (dΓkij · X). This formula shows again that R(X, Y )Z is tensorial in
X, Y and Z, it involves the principal parts of X, Y and Z in a linear way.

Suppose now that (X1, . . . , Xm) is the frame associated to a coordinate chart
x : U → U ′. Define smooth functions Rl

ijk : U → R by

(1.15) R(Xi, Xj)Xk = Rl
ijkXl.

Then, by the definition of Christoffel symbols in (1.7),

(1.16) Rl
ijk = Γljk,i − Γlik,j +

(
ΓlihΓ

h
jk − ΓljhΓ

h
ik

)
,

where Γljk,i denotes the i-th partial derivative of Γljk.
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Examples 1.8. 1) A straightforward calculation shows that the flat connection
on Rm is flat in the sense of definition 1.6, that is, its curvature tensor R = 0.

2) Let M ⊂ Rm be a submanifold and D be its Levi-Civita connection as in
(1.3). The curvature of this connection is intimately related to the geometry of
M . This is a long and interesting story, a story behind more or less everything
we discuss, and will be pursued further in [SR] and [IS].

3) Let D be the left-invariant connection on O(n) as in (1.4). Since the curva-
ture tensor is tensorial, it suffices to compute R(X, Y )Z for left-invariant vector
fields on O(n). Now DY = 0 for all left-invariant vector fields Y on O(n). Hence
the curvature tensor R = 0.

2. Covariant derivative along maps

Let f : N →M be a smooth map. A vector field along f is a map X : N → TM
with π ◦ X = f , where π : TM → M is the projection to the foot point. The
vector space of vector fields along f is denoted V(f) or Vf .

Let Φ = (X1, . . . , Xm) be a local frame of TM over an open set U ⊂ M . For
X ∈ V(f), there exist smooth functions ξi : f−1(U)→ R such that

(2.1) X(p) = ξi(p)Xi(f(p)) for all p ∈ f−1(U).

We write (2.1) also more shortly as X = ξi ·Xi ◦ f , and call ξ = (ξ1, . . . , ξm) the
principal part of X with respect to Φ.

Example 2.1. If X is a vector field on N , then f∗X : N → TM ,

f∗X(p) := f∗pX(p), p ∈M,

is a vector field along M . Such vector fields along f will be called tangential.

Let D be a connection on M . We want to induce a covariant derivative on vector
fields along f . To that end, let Φ = (X1, . . . , Xm) be a local frame of TM over
an open set U ⊂M , and let Γ = (Γkij) be the corresponding Christoffel symbols.

Let Y be a smooth vector field along f with principal part η = (η1, . . . , ηm) with
respect to Φ. For a smooth vector field X over f−1(U), define

(2.2) Df
XY (p) =

{
Xp(η

k) + Γkij(f(p))ξi(p)ηj(p)
}
· (Xk(f(p)), p ∈ U,

where ξ is the principal part of f∗X. In short, the principal part of Df
XS with

respect to the chosen frame is

(2.3) X(η) + (Γ ◦ f)(ξ, η).

This formula shows that Df
XY is smooth. We have not checked yet that Df

XY is
well defined. For this, let Ψ = (Y1, . . . , Ym) be another local frame of TM over
an open subset V ⊂ M , and let a = (aji ) be the matrix of functions on U ∩ V
describing the change of frame, Xi = ajiYj. Let W = f−1(U ∩ V ). On W , the
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principal parts ηΦ and ηΨ of Y with respect to Φ and Ψ, respectively, are related
by ηΨ = (a ◦ f) · ηΦ. For the proposed principal parts of DXS we have

X(ηΨ) + (f ∗ωΨ)(X) · ηΨ = X
(
(a ◦ f) · ηΦ

)
+ ωΨ(f∗X) · ηΨ

= X(a ◦ f) · ηΦ + (a ◦ f) ·X(ηΦ) + ωΨ(f∗X) · (a ◦ f) · ηΦ

= X(a ◦ f) · ηΦ + (a ◦ f) ·X(ηΦ)

+ (a ◦ f) · ωΦ(f∗X) · ηΦ −X(a ◦ f) · ηΦ

= (a ◦ f) ·
(
X(ηΦ) + (f ∗ωΦ)(X) · ηΦ

)
.

This shows that Df
XY is well defined. For convenience, we simply write D instead

of Df . The following proposition is immediate from the local expressions in (2.2)
or (2.3).

Proposition 2.2. The covariant derivative D = Df along f ,

D : V(N)× V(f)→ V(f), DXY = DX · Y,
is tensorial in X and a derivation in Y .

Example 2.3. Consider Rm with the flat connection d, and let c : I → Rm

be a smooth curve. Smooth vector fields along c correspond to smooth maps
Y : I → Rm, and the covariant derivative of such a field Y is given by the usual
derivative.

For any smooth vector field Y of M , Y ◦ f is a smooth vector field along f . The
induced covariant derivative for sections along f is consistent with the original
covariant derivative in the following sense.

Proposition 2.4 (Chain Rule). If Y is a smooth vector field of M , then

D(Y ◦ f) ·X = DY · (f∗X)

for all smooth vector fields X of N . �

2.1. Torsion and curvature. It is important that torsion and curvature tensor
behave well under covariant differentiation along maps.

Proposition 2.5. Let X, Y be smooth vector fields on N and Z be a smooth
vector field along f . Then

T (f∗X, f∗Y ) = DXf∗Y −DY f∗X − f∗[X, Y ],

R(f∗X, f∗Y )Z = DXDYZ −DYDXZ −D[X,Y ]Z.

Proof. We check the assertion about the curvature tensor, the proof of the asser-
tion about the torsion tensor is similar.

Let Φ = (X1, . . . , Xm) be a local frame of TM over an open subset U ⊂M . Let
Γ = Γkij be the corresponding Christoffel symbols. Since the right hand side of
the asserted equation is tensorial in Z, that is, additive and F(N)-homogeneous
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in Z, it suffices to consider the case Z = Xi ◦ f . Then the principal part of the
right hand side of the asserted formula is

X(Y ζ + (Γ ◦ f)(η, ζ)) + (Γ ◦ f)(ξ, Y ζ + (Γ ◦ f)(η, ζ))− Y (Xζ + (Γ ◦ f)(ξ, ζ))

− (Γ ◦ f)(η,Xζ + (Γ ◦ f)(ξ, ζ))− [X, Y ]ζ − (Γ ◦ f)(Xη − Y ξ, ζ)

= (X(Γ ◦ f))(η, ζ)− (Y (Γ ◦ f))(ξ, ζ)

+ (Γ ◦ f)(ξ, (Γ ◦ f)(η, ζ))− (Γ ◦ f)(η, (Γ ◦ f)(ξ, ζ)),

where ξ and η denote the principal part of f∗X and f∗Y , respectively, and where
we note that Xη−Y ξ is the principal part of f∗[X, Y ] with respect to Φ. The right
hand side in the above equation is equal to the principal part of R(f∗X, f∗Y )Z,
compare (1.14). �

Corollary 2.6. Let W ⊂ R2 be open and f : W →M be a smooth map. Denote
by Ds and Dt the covariant derivtives in the coordinate directions s and t of R2.
Then

Dsft = Dtfs + T (fs, ft),

DsDtZ = DtDsZ +R(fs, ft)Z,

where Z is a smooth vector field along f .

Proof. The coordinate vector fields in R2 commute. �

2.2. Parallel translation along curves. The most important case is the co-
variant derivative along a curve c = c(t) in M . If Y is a smooth vector field along
c, then we set

(2.4) Y ′ := DY · ∂
∂t
.

If η is the principal part of Y with respect to a local frame Φ = (X1, . . . , Xm) of
TM over U , then the principal part of Y ′ over V = c−1(U) is given by

(2.5) η′ + (Γ ◦ c)(ξ, η),

where ξ is the principal part of c′ with respect Φ = (X1, . . . , Xm).

Remark 2.7. Note that Y ′(t) might be non-zero even if c′(t) = 0. For example,
if c is a constant curve, c(t) ≡ p, and Y is a smooth vector field along c, that is,
Y is a smooth map into TpM , then Y ′ is the usual derivative of Y as a map into
the fixed vector space TpM .

Definition 2.8. We say that a vector field Y along f : N → M is parallel if
DXY = 0 for all vector fields X of N .

In general there are no parallel vector fields along a map f . However, for smooth
curves there are always such fields, that is, fields which satisfy Y ′ = 0. In terms
of (2.5), they correspond to solutions of the linear ordinary differential equation

(2.6) η′ + (Γ ◦ c)(ξ, η) = 0.
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¿From the standard theorems on ordinary differential equations we obtain the
following assertion.

Corollary 2.9. Let c : I → M be a smooth curve. Let t0 ∈ I and v ∈ Tc(t0)M .
Then there is a unique parallel vector field Y along c with Y (t0) = v. �

Let c : I → M be a smooth curve, t0, t1 ∈ I, and set p0 = c(t0), P1 = c(t1). The
map P : Tp0M → Tp1M , which associates to v ∈ Tp0M the value Y (t1) ∈ Tp1M
of the unique parallel field Y along c with Y (t0) = v, is called parallel translation
along c from p0 to p1. The map P is a linear isomorphism: by uniqueness the
inverse map is parallel translation along c from p1 to p0. In other words, if
(v1, . . . , vm) is a basis of Tp0M and Ei is the parallel vector field along c with
Ei(t0) = vi, 1 ≤ i ≤ m, then (E1(t), . . . , Em(t)) is a basis of Tc(t)M for all t ∈ I.
Such a frame along c will be called parallel.

Example 2.10. Consider Rm with the flat connection d. A vector field Y along
a smooth curve c : I → Rm is parallel if and only if Y is constant.

Parallel frames along curves are very useful: Let Φ = (X1, . . . , Xm) be a parallel
frame along c. If Y is a vector field along c, then there is a map η : I → Rm,
the principal part of Y with respect to Φ, such that Y = ηiXi. By Proposi-
tion 2.2, Y ′ = (ηi)′Xi — covariant differentiation along c is reduced to standard
differentiation.

3. Geodesics and exponential map

Let M be a manifold with a connection D. For a curve c : I → M , the
covariant derivative of the vector field c′ along c is denoted c′′.

Definition 3.1. A smooth curve c : I →M is called a geodesic if c′′ = 0.

Let x : U → U ′ be a coordinate chart for M , and (X1, . . . , Xm) be the associated
frame of TM over U . For a curve c : I → M set ci = xi ◦ c on J = c−1(U) ⊂ I.
On J , the coefficients of the principal part of c′′ with respect to x are

(ck)′′ + Γkij(c
i)′(cj)′.

Therefore, c is a geodesic on J = c−1(U) ⊂ I if and only if the tuple (c1, . . . , cm)
satisfies the geodesic equation

(3.1) (ck)′′ + Γkij(c
i)′(cj)′ = 0.

This is a system of differential equations for the coefficient functions ck. We con-
sider the vector function (c1, . . . , cm) as the independent variable and, therefore,
simply speak of a differential equation.

Examples 3.2. 1) With respect to the flat connection d, geodesics of Rm are
parameterized lines, c(t) = p+ tv.
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2) Consider the unit sphere Sm in Rm+1. With respect to the Levi-Civita
connection as in (1.3), unit speed geodesics on Sm are precisely the curves of the
form c(t) = cos t x+ sin t y, where x, y ∈ Rm+1 are perpendicular unit vectors.

3) On O(n) with the left-invariant connection as in (1.4), geodesics on O(n) are
precisely the curves of the form A exp(tB) with A ∈ O(n) and where B ∈ Rn×n

satisfies B∗ = −B.

Proposition 3.3. Let c : I →M be a geodesic and α, β ∈ R. Then t 7→ c(αt+β)
is a geodesic on {t ∈ R | αt+ β ∈ I}.

Proof. With respect to a local coordinate chart x : U → U ′, let ci = xi ◦ c. Then
(c1(αt+β), . . . , cm(αt+β)) satisfies the geodesic equation 3.1 if (c1(t), . . . , cm(t))
does. �

3.1. Geodesic flow. The Geodesic Equation 3.1 is a non-linear ordinary differ-
ential equation of second order. Since the coefficients Γkij are smooth functions on
U , the standard theorems on ordinary differential equations have the following
consequences.

Proposition 3.4 (Uniqueness). Let c1 : I1 → M and c2 : I2 → M be geodesics
such that c′1(t0) = c′2(t0) for some t0 ∈ I := I1 ∩ I2. Then c1|I = c2|I.

Proof. The set J ⊂ I of t ∈ I with c′1(t) = c′2(t) is closed in I. By assumption,
J 6= ∅.

Let t ∈ J . Choose a coordinate chart x : U → U ′ about c1(t) = c2(t). Then
both tuples ci1 = xi ◦ c1 and ci2 = xi ◦ c2 are solutions of the geodesic equation
3.1. Moreover, ci1(t) = ci2(t) and (ci1)′(t) = (ci2)′(t). Hence x ◦ c1 = x ◦ c2 in a
neighborhood of t in I, and, therfore, also c1 = c2 in a neighborhood of t in I.
Hence J is open in I and therefore J = I. �

Let v ∈ TM . According to Proposition 3.4, there is a maximal interval Iv ⊂ R
containing 0 such that there is a geodesic c = cv : Iv → R with initial velocity
c′v(0) = v. Since geodesics are solutions of differential equations, Iv is open. We
set G := {(v, t) ∈ TM × R | t ∈ Iv}.

Proposition 3.5 (Smoothness). The set G is an open subset of TM × R and
contains R× {0p | p ∈M}. The map G 3 (v, t) 7→ cv(t) ∈M is smooth.

Proof. We first prove the following weaker version WV of the proposition: Let
v ∈ TM . Then there is an open neighborhood W of v in TM and an ε > 0 such
that for all w ∈ W there is a geodesic cw : (−ε, ε)→M with c′w(0) = w, and the
map W × (−ε, ε)→M , (w, t) 7→ cw(t) is smooth.

To prove this, choose a coordinate chart x : U → U ′ about the foot point p of
v. Let x̂ := (x× dx) : TM |U → U ′ × Rm be the associated coordinate chart for
TM . Then x̂(v) = (x(p), ξ), where ξ = (ξ1, ..., ξm) is the principal part of v with
respect to x.
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By the standard theorems on ordinary differential equations, there is a neigh-
borhood W ′ about (x(p), ξ) in U ′ × Rm and an ε > 0 such that, for all (u, η) ∈
W ′, there is a unique solution (c1, . . . , cm)(y,η) : (−ε, ε) → U ′ of (3.1) with
(c1, . . . , cm)(y,η)(0) = y and (c1, . . . , cm)′(y,η)(0) = η. Moreover, the map

F : W ′ × (−ε, ε)→ U ′, F (y, η, t) = u(y,η)(t),

is smooth. Now W = x̂−1W ′ is a neighborhood as claimed for the given ε: For
w ∈ W , cw = x−1 ◦ (c1, . . . , cm)(y,η), where (y, η) = x̂(w), is a geodesic with initial
velocity w. The map W × (−ε, ε) → M , (w, t) 7→ cw(t) is smooth because it is
the composition (w, t) 7→ x−1(F (x̂(w), t)). This proves WV.

The claim of the proposition is an easy consequence of WV. For (v, t) ∈ G we
need to show that there is a neighborhood W of v in TM and an ε > 0 such that
cw(s) is defined for all w ∈ W and s ∈ (t− ε, t+ ε) and such that (w, s) 7→ cw(s)
is smooth on W × (t − ε, t + ε). The case t = 0 is the assertion. For notational
convenience, we assume t > 0. The case t < 0 is handled similarly.

Since [0, t] is compact, WV implies that there exist an ε > 0 and a subdivision

0 = t0 < t1 < ... < tk = t of [0, t]

with ti+1 < ti+ε such that vi := c′w(ti) has an open neighborhood Vi in TM such
that

Vi × (−ε, ε)→M, (w, s) 7→ cw(s)

is defined and smooth, 0 ≤ i < k. For i ∈ {0, k − 1} we assume inductively that
v has an open neighborhhood Wi in TM such that

Wi × (−ε, ti + ε)→M, (w, s) 7→ cw(s)

is defined and smooth. Then c′w(ti+1) depends smoothly on w ∈ Wi. Since
vi+1 = c′v(ti+1),

Wi+1 = {w ∈ Wi | c′w(ti+1) ∈ Vi+1}.
is an open neighborhood of v in TM . For w ∈ Wi+1 and s ∈ (−ε, ti + ε) we have

cw(s) = cwi+1
(s− ti+1), where wi+1 = c′w(ti+1),

by (3.1). We conclude that cw, w ∈ Wi+1, is defined on (−ε, ti+1 + ε). Moreover,
(3.1) implies that

Wi+1 × (−ε, ti+1 + ε)→M, (w, s) 7→ cw(s)

is defined and smooth. Set W = Wk, then W × (t− ε, t+ ε) ⊂ G. �

The geodesic flow associated to D is the map

(3.2) G → TM, (t, v) 7→ c′v(t).

We say that D is complete if G = R× TM . If D is complete, the geodesic flow is
a 1-parameter group of diffeomorphisms on TM .
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3.2. Geodesic variations and Jacobi fields. For simplicity, we assume from
now on that D is a symmetric connection on M . The general case can be handled
in a similar way.

Let c : I → M be a geodesic. We say that a vector field V along c is a Jacobi
field if it satisfies the Jacobi equation

(3.3) V ′′ +R(V, c′)c′ = 0.

The Jacobi equation is a linear ordinary differential equation of second order with
smooth coefficients.

Let E1, . . . , Em be a parallel frame along c. Then a smooth vector field V
along c can be written as a linear combination V = viEi with smooth functions
vi : I → R. Since the fields Ei are parallel, we have

V ′′ +R(V, c′)c′ = (vi)′′Ei + viR(Ei, c
′)c′.

Now we can also express the smooth vector field t 7→ R(Ei(t), c
′(t))c′(t) along c

as a linear combination of the Ei, R(Ei, c
′)c′ = Rj

iEj. Then

V ′′ +R(V, c′)c′ = (vi)′′Ei + viRj
iEj =

(
(vi)′′ +Ri

jv
j
)
Ei.

Hence V is a Jacobi field if and only if the coefficients vi satisfy the linear system
of second order, ordinary differential equations

(3.4) (vi)′′ +Ri
jv
j = 0, 1 ≤ i ≤ m.

It follows that Jacobi fields are smooth and that linear combinations of Jacobi
fields are again Jacobi fields. Hence the set of Jacobi fields Jc along c is a real
vector space. Since a solution of the Jacobi equation is determined by its initial
value and initial (covariant) derivative at some time t0 ∈ I, we get

(3.5) dimJc = 2m.

We say that a smooth map H : (−ε, ε)× I →M of c is a geodesic variation of c
if c0 = H(0, ·) = c and if cs = H(s, ·) is a geodesic for each s ∈ (−ε, ε). Recall
that for a variation H of c, the variation field of H is the vector field V = Hs(0, ·)
along c.

Proposition 3.6. 1) The variation field of a geodesic variation is a Jacobi field.
2) Let t0 ∈ I and suppose that there is a neighborhood U of v in TM such that
the geodesic cu with c′u(t0) = u is defined on all of I, for all u ∈ U . Then any
Jacobi field V along c := cv : I →M is the variation field of a geodesic variation
of c.

Remark 3.7. By Proposition 3.5, a neighborhood U as in 2) exists if I is a
compact interval, I = [a, b].

Proof of Proposition 3.6. 1) Let H be a geodesic variation of c, and denote the
covariant derivative in the coordinate directions by Ds and Dt, respectively. Now
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D is symmetric, hence

DtDtHs = DtDsHt = DsDtHt −R(Hs, Ht)Ht.

Since the variation is geodesic, we have DtHt = 0. Therefore,

DtDtHs = −R(Hs, Ht)Ht.

Now in s = 0, we have Ht = c′, Hs = V , and DtDtHs = V ′′, where V is the
variation field of H.

2) Let α = α(s) be a smooth curve in M with α(0) = c(0) and α′(0) = V (t0).
Let X be a smooth vector field along α with X(0) = c′(t0) and DsX(0) = V ′(t0).
Let H(s, t) = cs(t), where cs is the geodesic with cs(t0) = α(s) and c′s(t0) = X(s).
By our assumption, cs is defined on I for all s ∈ (−ε, ε), if we choose ε > 0 is
sufficiently small. Furthermore,

H(s, 0) = α(s), Hs(0, 0) = V (0), Ht(s, 0) = X(s)

and, since D is symmetric,

DtHs(0, 0) = DsHt(0, 0) = V ′(0).

Hence the variation field Hs(0, ·) of H has the same initial conditions at t = 0 as
the given Jacobi field V . Now H is a geodesic variation and hence Hs(0, ·) is a
Jacobi field. Therefore V = Hs(0, ·), hence V is the variation field of H. �

Examples 3.8. 1) For any geodesic c and constants a, b ∈ R, the vector field
V (t) = (at+ b)c′(t), t ∈ I, is a Jacobi field.

2) Let M = Sm ⊂ Rm+1 be the unit sphere and D be its Levi-Civita connection
as in (1.3). Let c : R → Sm be a great circle parametrized by arc length,
c(t) = cos t x+ sin t y, where x and y are perpendicular unit vectors in Rm+1. Let
v ∈ Rm+1 be a further unit vector, and suppose that v is perpendicular to x and
y. Then

H(s, t) = cos t x+ sin t (cos s y + sin s v)

is a geodesic variation of c. Note that the constant vector field E(t) = v is
parallel along c and that the variation field of H is V (t) = sin t E(t). A nice
application: The Jacobi equation implies that R(u, c′(t))c′(t) = u for any t ∈ R
and u ∈ Tc(t)Sm perpendicular to c′(t).

3.3. Exponential map. The set E = {v ∈ TM | (1, v) ∈ G} is open with
{0p | p ∈M} ⊂ E . The exponential map exp : E →M is defined by

(3.6) E 3 v 7→ exp(v) := cv(1).

By Proposition 3.5, the exponential map is smooth.
Let p ∈M . Then Ep = E ∩ TpM contains 0p, is star-shaped with respect to 0p

and open. The restriction of the exponential map to Ep is denoted expp. For any
v ∈ TpM , expp(tv) = ctv(1) = cv(t) for all t ∈ R with tv ∈ Ep.
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Proposition 3.9. Let p ∈M .
1) The differential of expp in 0p is the identity, (expp)∗0p(v) = v.
2) The differential of π × exp : TM →M ×M in 0p, where π : TM →M is the
projection, is an isomorphism.

Proof. For any v ∈ TpM and t ∈ R sufficiently small, we have tv ∈ Ep and
expp(tv) = cv(t). Hence (expp)∗0p(v) = c′v(0) = v. This proves the first assertion.

To prove the second, note that by the first assertion, any tangent vector in
TpM × TpM of the form (0, v) is in the image of (π × exp)∗0p . On the other
hand, if c is a smooth curve through p with c′(0) = u, and u(t) := 0c(t), then u

is a smooth curve in TM with
(
(π × exp) ◦ u

)′
(0) = (u, u). This implies that

(π × exp)∗0p is surjective. On the other hand, dimTM = 2m = 2 dimM . Hence
(π × exp)∗0p is an isomorphism. �

It follows that there are open neighborhoods U ′ of 0p in TpM and U of p in M
such that expp : U ′ → U is a diffeomorphism. Hence, up to an isomorphism of
TpM with Rm, we can consider exp−1

p : U → U ′ as a coordinate chart of M about
p. In this coordinate chart, geodesics through p correspond to lines in TpM .

It also follows that π × exp is a diffeomorphism from a neighborhood V of 0p
in TM to a product neighborhood U × U of (p, p) in M ×M . In particular, for
any pair of points (q0, q1) in U × U , there is a unique tangent vector u ∈ V with
π(v) = q0 and exp(v) = q1, and u depends smoothly on q0 and q1.

Proposition 3.10. Let p ∈M , v ∈ Ep and w ∈ TvTpM ∼= TpM . Then

(expp)∗tv(tw) = V (t), 0 ≤ t ≤ 1,

where V is the Jacobi field along the geodesic c(t) = expp(tv), 0 ≤ t ≤ 1, with
V (0) = 0 and V ′(0) = w.

Proof. Let H(s, t) = expp(t(v + sw)), 0 ≤ t ≤ 1. Since Ep is open, H is defined
for all s sufficiently small and

(expp)∗tv(tw) = Hs(0, t).

Now cs = H(s, ·) is a geodesic for each s. Hence the variation field V of H is a
Jacobi field along c. We have V (0) = Hs(s, 0) = 0 since H(s, 0) = p for all s.
Furthermore,

V ′(0) = DtHs(0, 0) = DsHt(0, 0) = Ds(v + sw)
∣∣
s=0

= w.

�
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4. Exercises

1) Discuss the representation of the torsion tensor with respect to local frames.
What is a decisive difference between a general local frame of TM and the one
associated to a coordinate chart?

2) Let D be a symmetric connection on M and f : M → R be a smooth
function. Define the second covariant derivative D2f by

D2f(X, Y ) := XY (f)−DXY (f), X, Y ∈ V(M).

Show that D2f is tensorial and symmetric in X and Y .
3) Let D be a symmetric connection on M and Z be a smooth vector field on

M . Define the second covariant derivative D2X by

D2Z(X, Y ) := DXDYZ −DDXYZ, X, Y ∈ V(M).

Show that D2Z is tensorial in X and Y . What about the symmetry of D2X?
4) Let D be a symmetric connection on M . Show that its curvature tensort R

satisfies the first Bianchi identity:

R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0

for all X, Y, Z ∈ V(M).
5) A smooth tensor field of type (k, 0) or (k, 1), respectively, is a k-linear map

L : V(M)× . . .× V(M)→ V , (X1, . . . , Xk) 7→ L(X1, . . . , Xk),

with V = F(M) or V = V(M), respectively, which is F(M)-homogeneous in each
variable Xi. Use the ϕ2-argument from the proof of Lemma A.2 to show that any
such tensor field is given by a family of k-linear maps Lp : TpM × . . .×TpM → R
or Lp : TpM × . . .× TpM → TpM , respectively, such that

L(X1, . . . , Xk)(p) = Lp(X1(p), . . . , Xk(p))

for all p ∈M and X1, . . . , Xk ∈ V(M). Discuss the representation of tensor fields
with respect to local frames.

6) Let D be a connection on M and L be a tensor field of type (k, 0) or (k, 1),
respectively. Define its covariant derivative DL by

DL(X0, . . . , Xk) := DX0

(
L(X1, . . . , Xk)

)
−
∑

L(X0, . . . , DX0Xi, . . . , Xk).

Here we use the notation DXf := Xf for smooth functions f . Show that DL is
a tensor field of type (k + 1, 0) or (k + 1, 1), respectively.
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Appendix A. Two technical lemmas

There are some lemmas of a more technical nature which we use over and over
again. We also need modifications of these lemmas, the arguments underlying
the proofs are useful tools.

Lemma A.1. 1) Given p ∈ M and a neighborhood U of p in M , there exists a
function ϕ ∈ F(M) such that 0 ≤ ϕ ≤ 1, suppϕ ⊂ U and such that ϕ(q) = 1 for
all q in a (small) neighborhood of p.
2) Given p ∈M and a tangent vector v ∈ TpM , there is a smooth vector field X
on M with X(p) = v.
3) Let W ⊂ M be open, X ∈ V(W ), and p ∈ W . Then there is Y ∈ V(M) with
X(q) = Y (q) for all q in a neighborhood of p.

Proof. 1) By replacing U by a smaller neighborhood of p if necessary, we can
and will assume that there is a coordinate chart x : U → U ′. We arrange x
such that x(p) = 0 and let ψ : Rm → R be a smooth function with 0 ≤ ψ ≤ 1,
suppψ ⊂ U ′ and such that ψ(u) = 1 for all u in a (small) neighborhood of 0.
Then ϕ : M → R, ϕ = ψ ◦ ψ on U and ψ = 0 otherwise satisfies the assertions.
Then ϕ = 0 in a neighborhood of the boundary of U , hence ϕ is smooth.

2) Choose a coordinate chart x : U → U ′ about p. Let X1 . . . , Xm be the
associated frame and ξ ∈ Rm be the principal part of v with respect to x, v =
ξiXi(p). Choose ϕ as in 1) and define

Y (q) =

{
ϕξiXi(q) for q ∈ U,
0 otherwise.

Then Y = 0 in a neighborhood of the boundary of U , hence Y is smooth.
3) We use the same argument as in 2): Choose the coordinate chart x such that

U ⊂ W . Now the principal part of X with respect to x is a map ξ : U → Rm,
all we do now is to replace, in the definition of Y , the constants ξi by the values
ξ(q). �

Lemma A.2. Let Φ : V(M)→ F(M) be a linear map which is tensorial, i.e.,

Φ(ϕX) = ϕΦ(X) for all ϕ ∈ F(M) and X ∈ V(M).

Then there is a smooth 1-form ω with

Φ(X)(p) = ωp(X(p)) for all X ∈ V(M) and p ∈M.

Proof. Let p ∈M and X and Y be smooth vector fields on M such that X(q) =
Y (q) for all q in a neighborhood V of p. It suffices to show that Φ(X)(p) =
Φ(Y )(p).

In a neighborhood U ⊂ V of p, choose a local frame (X1, . . . , Xm) of TM and
a function ϕ ∈ F(M) with ϕ(p) = 1 and supp(ϕ) ⊂ U . Then ϕ ·Xi is a smooth
vector field when extended by zero outside U , 1 ≤ i ≤ m.
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By assumption, the principal parts of X and Y coincide, X = ξiXi = Y on U .
The functions ϕξi are smooth on M when extended by zero outside U and

ϕ2 ·X = (ϕξi) · (ϕXi) = ϕ2 · Y.
Hence

Φ(X)(p) = ϕ2(p) · Φ(X)(p) = Φ(ϕ2 ·X)(p) = Φ(Y )(p).

�

Remark A.3. In the text, we need some variations of Lemma A.2, for example in
the localization arguments concerning covariant derivatives and curvature tensors.
On the other hand, the ϕ2-argument is easy to adapt and, therefore, we leave the
proof of the corresponding assertions to the reader, see Exercise 5) in Section 4.
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