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Basic Facts on Sheaves

Definition 1. A sheaf of abelian groups F on a topological space X is the following collection of data:

• for each open set U ⊂ X, an abelian group F(U), with F(∅) = 0
• if U ⊂ V , a restriction map ρV U : F(V ) → F(U), with ρUU = id

such that

(1) (restriction) if U ⊂ V ⊂ W , then ρWU = ρV U ◦ ρWV

(2) (gluing) if {Vi} is an open covering of U , and we have si ∈ F(Vi) such that for all i, j, ρVi,Vi∩Vj
(si) =

ρVj ,Vi∩Vj
(sj), then there exists a unique s ∈ F(U) such that ρU,Vi

(s) = si for all i.

If one omits the gluing condition from the above definition, one has a presheaf of abelian groups.

Elements of F(U) are called sections of F over U , and elements of F(X) are called global sections.

One can also define (pre)sheaves of R-modules, vector spaces, etc.

Notation 2. Γ(U,F) := F(U). s|V := ρV U (s).

Lemma 3. Let F be a sheaf. If {Vi} is an open cover of U , and s, t ∈ F(U) are sections such that s|Vi
= t|Vi

for all i, then s = t. In particular, if s|Vi
= 0 for all i, then s = 0.

Definition 4. Let F be a presheaf on X. The stalk of F at a point x ∈ X, denoted Fx, is the group whose
elements are equivalence classes of pairs

(U, s) where U is a neighborhood of x and s ∈ F(U),

and the equivalence relation is

(U, s) ∼ (V, t) if there is an open set W ⊂ U ∩ V with x ∈ W and s|W = t|W

For any neighborhood U of x, there is a natural map F(U) → Fx sending a section s ∈ F(U) to the
equivalence class of the pair (U, s). That equivalence class is denoted sx and is called the germ of s at x.

Lemma 5. A section is determined by its germs. That is, if s, t ∈ F(U), and if sx = tx for all x ∈ U , then
s = t.

Definition 6. Let F and G be presheaves. A morphism f : F → G is a collection of abelian group
homomorphisms fU : F(U) → G(U), where U ranges over all open sets of X, that are compatible with
restriction. That is, the following diagram must commute whenever V ⊂ U :

F(U)
fU

//

ρF
UV

��

G(U)

ρG

UV

��

F(V )
fV

// G(V )

A morphism f : F → G is an isomorphism if there is another morphism g : G → F such that f ◦ g = idG

and g ◦ f = idF .

It is easy to check that f : F → G is an isomorphism if and only if fU : F(U) → G(U) is an isomorphism for
all open sets U ⊂ X.

Definition 7. Let f : F → G be a morphism of presheaves, and let x ∈ X. The induced homomorphism
of stalks at x is the map fx : Fx → Gx given by fx([(U, s)]) = [(U, fU (s))]. (Here, the notation [(V, t)] for
an element of a stalk denotes the equivalence class of the pair (V, t).)

One must check that fx is well-defined; the proof uses the fact that the fU are compatible with restriction.



Definition 8. A sub(pre)sheaf of F is a (pre)sheaf G such that G(U) ⊂ F(U) for every open set U , and
whose restriction maps are the restrictions of the restriction maps of F . That is, in the diagram

G(U) �

�

//

ρG

UV

��

F(U)

ρF
UV

��

G(V ) �

�

// F(V )

we must have ρGUV = ρFUV |G(U).

Definition 9. Let F be a presheaf. The sheafification of F is the sheaf F+ defined by

F+(U) =

{

s : U →
∐

x∈U

Fx

∣

∣

∣

∣

∣

for all x ∈ U , s(x) ∈ Fx, and there is a neighborhood V ⊂ U

of x and a section t ∈ F(V ) such that for all y ∈ V , s(y) = ty

}

(Check that F+ really is a sheaf.)

When F happens to be a subpresheaf of a sheaf, there is a convenient alternate description of sheafification.

Lemma 10. Suppose F is a subpresheaf of G, and assume that G is a sheaf. Define a new sheaf F ′ ⊂ G by

F ′(U) = {s ∈ G(U) | there is an open cover {Vi} of U such that s|Vi
∈ F(U) for all i}.

Then F ′ ≃ F+.

Corollary 11. If F is a sheaf, then F ≃ F+.

Lemma 12. Let F be a presheaf. For all x ∈ X, Fx ≃ F+
x .

For any presheaf F , there is a canonical morphism ι : F → F+ defined as follows: given s ∈ F(U), we let
ιU (s) ∈ F+(U) be the function U →

∐

Fx given by ιU (s)(x) = sx.

Lemma 13 (Universal property of sheafification). Let F be a presheaf and G a sheaf. Given a morphism
f : F → G, there is a unique morphism f+ : F+ → G such that f = f+ ◦ ι.

In other words, this lemma asserts the existence of a morphism f+ making the following diagram commute:

F+
f+

$$
F

ι 44
iiiiii

f ,,ZZZZZZZZZZZZZZ

G

Definition 14. Let f : F → G be a morphism of sheaves. The kernel of f is the sheaf ker f given by
(ker f)(U) = ker fU . This is a subsheaf of F .

(The assertion that ker f is a sheaf requires proof.)

Definition 15. Let f : F → G be a morphism of sheaves. The presheaf-image of f is the presheaf psim f

given by (psim f)(U) = im fU . This is a subpresheaf of G, but it is not in general a sheaf.

The image of f is the sheafification of its presheaf-image: im f = (psim f)+. By Lemma 10, im f can be
identified with a subsheaf of G.

Definition 16. A morphism of sheaves f : F → G is injective if ker f = 0, and surjective if im f = G.

Lemma 17. A morphism of sheaves f : F → G is injective if and only if fU : F(U) → G(U) is injective for
every open set U .

WARNING: The analogue of the preceding lemma for surjective morphisms is false.

Lemma 18. A morphism of sheaves f : F → G is injective (resp. surjective, an isomorphism) if and only
if fx : Fx → Gx is injective (resp. surjective, an isomorphism) for all x ∈ X.
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Definition 1. Let f : X → Y be a continuous map of topological spaces. If F is a sheaf on X, the
push-forward by f of F , also called its direct image, and denoted f∗F , is the sheaf on Y defined by
(f∗F)(U) = F(f−1(U)).

Remark 2. Note that specifying a sheaf on a one-point topological space is the same as specifying a single
abelian group. One-point spaces occur in several examples below, and we will frequently treat abelian groups
as sheaves on these spaces without further comment.

Example 3. Let f : X → {x} be the constant map to a one-point space. Then f∗F ≃ Γ(X,F) for any
sheaf F on X.

Example 4. Let x0 ∈ X, and let i : {x0} →֒ X be the inclusion of the point. Let A be an abelian group,
thought of as a sheaf on {x0}. Then i∗A is sheaf on X whose stalks are all 0 except at x0, where its stalk is
isomorphic to A. This kind of sheaf is called a skyscraper sheaf.

Definition 5. Let F and G be sheaves on X. Their direct sum is the sheaf F ⊕G defined by (F ⊕G)(U) =
F(U) ⊕ G(U) for all open sets U ⊂ X.

Example 6. Let X = C r {0}, and let f : X → X be the map f(z) = z2. Then f∗C ≃ C ⊕Q, where Q is
the square-root sheaf on X.

Definition 7. Let f : X → Y be a continuous map of topological spaces. If F is a sheaf on Y , its pull-back

or inverse image, denoted f−1F , is the sheafification of the presheaf psf−1F defined by

(psf−1F)(U) = lim
→

V ⊃f(U)

F(V )

= equivalence classes of pairs (V, s) where V ⊃ f(U) and s ∈ F(V ).

The equivalence relation is the same as for stalks: (V, s) ∼ (V ′, s′) if there is an open set W ⊂ V ∩ V ′ such
that s|W = s′|W .

Example 8. For any continuous map f : X → Y and any abelian group A, we have f−1AY ≃ AX .

Definition 9. Let i : X →֒ Y be the inclusion map of a subspace. If F is a sheaf on Y , the pull-back i−1F
is also called the restriction of F to X, and is denoted F|X .

Notation 10. Let F and G be sheaves on X. The set of all morphisms of sheaves F → G is denoted
HomX(F ,G), or simply Hom(F ,G). It is an abelian group.

Definition 11. Let A and B be two abelian categories, and let S : A → B and T : B → A be functors. We
say that S is left-adjoint to T and that T is right-adjoint to S, or simply that (S, T ) is an adjoint pair,
if

HomB(S(A), B) ≃ HomA(A, T (B))

for all objects A ∈ A and B ∈ B.

Example 12. Perhaps the best-known adjoint pair of functors is the following. Let A = B = the category
of abelian groups. For a fixed abelian group C, the functors · ⊗ C and Hom(C, ·) are adjoint:

Hom(A ⊗ C,B) ≃ Hom(A,Hom(C,B)).

Theorem 13. Let f : X → Y be a continuous map of topological spaces, F a sheaf on Y , and G a sheaf on

X. Then HomX(f−1F ,G) ≃ HomY (F , f∗G).



Definition 14. Let F and G be sheaves on X. Their sheaf Hom is the sheaf HomX(F ,G) (or simply
Hom(F ,G)) defined by

HomX(F ,G)(U) = HomU (F|U ,G|U ).

Their sheaf tensor product is the sheafification of the presheaf

(F ⊗
ps

G)(U) = F(U) ⊗ G(U).

It is denoted F ⊗ G = (F ⊗ps G)+.

Warning 15. It is tempting to define sheaf Hom by setting Hom(F ,G)(U) = Hom(F(U),G(U)), but this
definition is not correct. Indeed, it does not make sense—there is no way to define restriction maps here, so
this “definition” does not even specify a presheaf.

In the context of sheaves, many adjointness theorems come in ordinary and sheaf-theoretic versions. The
sheaf-theoretic version of Theorem 13 says:

Theorem 16. f∗ HomX(f−1F ,G) ≃ HomY (F , f∗G).

Here are two more:

Theorem 17. Hom(F ⊗ G,H) ≃ Hom(F ,Hom(G,H)).

Theorem 18. Hom(F ⊗ G,H) ≃ Hom(F ,Hom(G,H)).
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Convention. Henceforth, all sheaves will be sheaves of complex vector spaces. All topological spaces will
be locally compact, Hausdorff, second-countable, locally path-connected, and semilocally simply connected.
Unless otherwise specified, they will also be path-connected.

Remark 1. If F and G are sheaves of complex vector spaces, objects like Hom(F ,G) and F ⊗ G depend
on whether one is working in the category of sheaves of abelian groups, or in the category of sheaves of
vector spaces. Indeed, the same phenomenon is already visible with ordinary Hom and ⊗: in the category
of complex vector spaces, we have C ⊗ C ≃ C, while in the category of real vector spaces, C ⊗ C ≃ R4. In
the category of abelian groups, C ⊗ C is an uncountable-rank free Z-module for which we cannot give an
explicit basis.

Henceforth, all Hom-groups, sheaf Hom’s, and tensor products are to be computed in the category of sheaves
of complex vector spaces.

Definition 2. A sheaf F on X is locally constant, or F is a local system, if for all x ∈ X, there is a
neighborhood U containing x such that F|U is a constant sheaf.

Example 3. A constant sheaf is locally constant.

Example 4. The square-root sheaf Q on C r {0} is locally constant, but not constant.

Example 5. Let F be the sheaf of continuous functions on X = C. This sheaf is not locally constant. In
general, if U is a connected neighborhood of x, then over any smaller connected neighborhood V ⊂ U there
will be sections (continuous functions) that are not the restriction of any section over U . This situation does
not occur in constant sheaves, so F|U is not a constant sheaf for any open set U .

Definition 6. A sheaf F on X is constructible if there is a decomposition X =
⊔n

i=1Xi of X into a
disjoint union of finitely many locally closed subsets Xi such that F|Xi

is locally constant. (A set is locally

closed if it is the intersection of an open set and a closed set.)

Note, in particular, that all open sets and all closed sets are locally closed.

Typically, the required decomposition of X will either be obvious or fixed in advance. Proving that a given
sheaf is constructible usually consists only of showing that the restrictions F|Xi

are locally constant, and
not of finding the decomposition of X.

Theorem 7. There is a bijection
{

local systems on X

up to isomorphism

}

∼
←→

{

representations of π1(X,x0)
up to isomorphism

.

}

In fact, more is true: there is an equivalence of categories between the two sides of this picture.

A subset K ⊂ X is called good (for F if it is connected, and there is a connected open set V containing K
such that F|V is a constant sheaf. Note that if K is good, any connected subset K ′ ⊂ K is also good.

If γ, γ′ : [0, 1]→ X are two paths in X, we write γ ∼ γ′ to indicate that they are homotopic.

Lemma 7.1. Let x1, . . . , xn be points in a good set K. There are natural isomorphisms of stalks Fxi

∼
→ Fxj

for all i and j. These isomorphisms are compatible with each other: for any i, j, k, the composition Fxi

∼
→

Fxj

∼
→ Fxk

coincides with Fxi

∼
→ Fck

.

Proof. Choose a good open set V containing K. Since F|V is constant, the natural maps F(V ) → Fxi

are all isomorphisms. Composing one of these with the inverse of another gives the desired isomorphisms:
Fxi

∼
← F(V )

∼
→ Fxj

. The compatibility is obvious. �



Lemma 7.2. If γ : [0, 1] → X (resp. H : [0, 1]2 → X) is a continuous map, there exist numbers a0 = 0 <
a1 < · · · < an = 1 (resp. and b0 = 0 < b1 < · · · < bm = 1) such that for all i, γ([ai, ai+1]) (resp. for all i and
j, H([ai, ai+1]× [bj , bj+1])) is good.

Proof. For every point t ∈ [0, 1] (resp. t ∈ [0, 1]2), there is a good open neighborhood of γ(t) (resp. H(t)),
so by continuity, there is an open neighborhood V of t such that γ(V ) (resp. H(V )) is good. Inside V , find
an interval [a, a′] (resp. box [a, a′]× [b, b′]) containing t. The interiors of all these intervals (resp. boxes), as
t ranges over all points of [0, 1] (resp. [0, 1]2), form an open cover. By compactness, we can select finitely
of them that still form an open cover. From the remaining intervals (resp. boxes), write all a’s and a′’s in
order as a0 < a1 < · · · < an (resp. and write all the b’s and b′’s as b0 < b1 < · · · < bm). Each interval
[ai, ai+1] (resp. box [ai, ai+1]× [bj , bj+1]) is contained in one of the original open sets (called “V ” above), so
γ([ai, ai+1]) (resp. H([ai, ai+1]× [bj , bj+1])) is good. �

Proof of Theorem 7. The proof proceeds in five steps.

Step A. Given a path γ : [0, 1]→ X, define an invertible linear transformation ρ(γ) : Fγ(0)
∼
→ Fγ(1). Invoke

Lemma 7.2 to get a sequence of points a0 = 0 < a1 < · · · < an = 1. Since γ([ai, ai+1]) is good for each i, by
invoking Lemma 7.1, we obtain a number of isomorphisms as follows:

Fγ(0)
∼
→ Fγ(a1)

∼
→ Fγ(a2)

∼
→ · · ·

∼
→ Fγ(1).

We would like to define ρ(γ) to simply be the composition of all of these, but at first glance it is not clear that
that would be well-defined: it appears to depend on the ai’s that come out of the invocation of Lemma 7.2.

To deal with this problem, note first that if we add a new point anew to our list, say between ai and ai+1, then
γ([ai, anew]) and γ([anew, ai+1]) are good, so we can repeat the above construction. But the total composition

Fγ(0)
∼
→ Fγ(1) will remain unchanged, because the triangle

Fγ(ai)
∼ //

∼ &&MM
MM

M

Fγ(ai+1)

Fγ(anew)

∼

77ppppp

commutes by Lemma 7.1. Indeed, by induction adding finitely many points to the ai’s does not change the
total composition Fγ(0)

∼
→ Fγ(1).

In general, to show that ρ(γ) defined with respect to a0, . . . , an coincides with the map defined by another
set of points, say a′0, . . . , a

′

n′ , we simply note that both coincide with the map defined with respect to the
set of all ai’s and a′i’s. So ρ(γ) is well-defined. �

Step B. If γ ∼ γ′, then ρ(γ) = ρ(γ′). Let H : [0, 1]2 → X be a homotopy between γ and γ′. That is,
H(t, 0) = γ(t) and H(t, 1) = γ′(t). Let a0 < a1 < · · · < an and b0 < b1 < · · · < bm be as given by
Lemma 7.2. Let γj : [0, 1]→ X be the path γj(t) = H(t, bj). (In particular, γ0 = γ and γm = γ′.) To prove
that ρ(γ) = ρ(γ′), it clearly suffices to prove ρ(γj) = ρ(γj+1) for all j.

Consider the diagram

FH(0,bj+1)
∼ // FH(a1,bj+1)OO

≀

��

∼ // FH(a2,bj+1)OO

≀

��

∼ // ∼// FH(1,bj+1)

FH(0,bj)
∼ // FH(a1,bj)

∼ // FH(a2,bj)
∼ // ∼ // FH(1,bj)

By Lemma 7.2, every small square in this diagram commutes, because H([ai, ai+1]× [bj , bj+1]) is good. Since
ρ(γj) is the composition of all the maps along the bottom of this diagram, and ρ(γ′) is the composition of
all maps along the top, we see that ρ(γ) = ρ(γ′). �

Corollary. There is a well-defined map ρ : π1(X,x0) → GL(Fx0
). This follows immediately from Steps A

and B.

Step C. Given a representation τ : π1(X,x0) → GL(E), construct a local system G on X. For each point
x ∈ X, let us choose, once and for all, a path αx : [0, 1] → X that joins x0 to x. (That is, αx(0) = x0 and
αx(1) = x.) In particular, let us take αx0

to be the constant path at x0.
2



Now, we define a sheaf G on X by:

G(U) =

{

functions
k : U → E

∣

∣

∣

∣

∣

for any path γ : [0, 1]→ U , we have
k(γ(1)) = [α−1

γ(1) ∗ γ ∗ αγ(0)] · k(γ(0))

}

Here, “∗” indicates composition of paths. Note that α−1
γ(1) ∗ γ ∗ αγ(0) is a loop based at x0, so its homotopy

class [α−1
γ(1) ∗ γ ∗ αγ(0)] is an element of π1(X,x0). Via τ , this element acts on the vector k(γ(0)) ∈ E.

The verification that G is sheaf is routine, and we omit it. It does, however, remain to show that G is
locally constant. Here we require the fact that X is semilocally simply connected. That is, every point has
a neighborhood V with the property that every loop in V is null-homotopic in X.

Given such a V , we will now show that G(V ) ≃ E. Choose a point x ∈ V , and define a map φ : G(V )→ E

by φ(k) = k(x). It is easy to check that φ is injective. Indeed, a section k ∈ G(V ) is determined by the
vector k(x) ∈ E as follows: for any y ∈ V , we have k(y) = [α−1

y ∗ γ ∗ αx] · k(x), where γ is any path joining
x to y. To show that φ is surjective, given e ∈ E, we define a function k ∈ G(V ) by

k(y) = [α−1
y ∗ γ ∗ αx] · e where γ is a path joining x to y.

(In particular, if y = x, we take γ to be the constant path at x, so that φ(k) = k(x) is indeed e.) But now
there is a well-definedness issue arising from the choice of γ. For a given y ∈ V , suppose γ and γ′ are two
different paths joining x to y. Then γ−1 ∗ γ′ is a loop in V , which is, by assumption, null-homotopic in X.
It follows from this that γ ∼ γ′ in X, and therefore that [α−1

y ∗ γ ∗ αx] = [α−1
y ∗ γ′ ∗ α(x)] ∈ π1(X,x0).

Thus, k(y) is independent of the choice of γ, and k is well-defined. We conclude that φ : G(V )
∼
→ E is an

isomorphism.

Now, the same argument can be repeated for any connected open set V ′ ⊂ V , so G(V ′) ≃ E for such sets as
well. It follows then that in fact G|V ≃ EV . Since a neighborhood V of this type can be found around every
point in X, we conclude that G is locally constant. �

At this point, we have a construction F 7→ ρ assigning a representation to any local system, and another,
τ 7→ G, assigning a local system to any representation. It remains to show that these two assignments are
inverses of one another.

Step D. Given F and ρ as in Steps A–B, take τ = ρ and construct G as in Step C. Then F ≃ G. Note that
the vector space E of Step C is now identified with Fx0

. We will actually work with the sheafification F+

of F rather than F itself. (Of course, since F is already a sheaf, the two are isomorphic.) First, we define
a morphism φ : F+ → G. Let U be a connected open set such that F+|U is a constant sheaf. We define
φU : F+(U) → G(U) as follows: given s ∈ F+(U) (recall that s is a function U →

∐

x∈U Fx), we define
φU (s) ∈ G(U) to be the function

φU (s) : U → Fx0
, φU (s)(x) = ρ(α−1

x ) · s(x).

(This makes sense: s(x) ∈ Fx, and α−1
x is a path from x to x0, so ρ(α−1

x ) is a linear transformation

Fx
∼
→ Fx0

.) We need to check that φU (s) is a valid section of G: given a path γ : [0, 1] → U , note first
that γ([0, 1]) is good, so the linear transformation ρ(γ) constructed in Step A coincides with the canonical

isomorphism Fγ(0)
∼
→ Fγ(1) of Lemma 7.1. The latter is defined by taking germs of a given section, so we

see that ρ(γ) · s(γ(0)) = s(γ(1)). Then,

φU (s)(γ(1)) = ρ(α−1
γ(1)) · s(γ(1)) = ρ(α−1

γ(1))ρ(γ) · s(γ(0))

= ρ(α−1
γ(1) ∗ γ ∗ αγ(0))ρ(α

−1
γ(0)) · s(γ(0)) = ρ([α−1

γ(1) ∗ γ ∗ αγ(0)]) · φU (s)(γ(0)).

So φU (s) is indeed a valid section of G(U).

Although we have only defined φU for certain open sets U , those sets suffice—φU is determined on other
open sets by gluing. The verification of this is left as an exercise.

Next, we define a morphism ψ : G → F+. This time, let V be an open set in which all loops are null-
homotopic in X (again, we are using the semilocally-simply-connectedness of X). Given k ∈ G(V ) (a certain
function k : U → Fx0

), define ψV (k) ∈ F+(V ) by

ψV (k) : U →
∐

x∈V

Fx, ψV (k)(x) = ρ(αx) · k(x).
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This time, we must check the local condition for ψV (k) to be a valid section of F+(V ). Let U ⊂ V be a
connected neighborhood of x such that F|U is constant, and let s ∈ F(U) be such that sx = ψV (k)(x). We
will show that for all y ∈ U , sy = ψV (k)(y). As argued above, sy = ρ(γ) · sx, where γ is any path in U

joining x to y. Recall also that k satsifies k(y) = ρ(α−1
y ∗ γ ∗ αx) · k(x). Now,

ψV (k)(y) = ρ(αy) · k(y) = ρ(αy) · ρ(α−1
y ∗ γ ∗ αx) · k(x)

= ρ(γ) · ρ(αx) · k(x) = ρ(γ) · sx = sy.

As before, it suffices to define ψ on a certain collection of open sets.

It remains to check that ψ ◦ φ and φ ◦ ψ are the identity morphisms of F+ and G, respectively. This is
straightforward from the formulas. �

Step E. Given τ and G as in Step C, take F = G and construct ρ as in Steps A–B. Then ρ = τ . Note first
that all stalks of G are copies of E, and the germ of a section k at x is simply its value k(x). Let U be an
open set such that G|U is a constant sheaf, and let γ : [0, 1] → U be a path in U . Following the proof of
Lemma 7.1, we construct ρ(γ) : E → E as follows: given e ∈ E, take a function k ∈ G(U) such that k(x) = e;
then ρ(γ) · e = k(y). We have k(y) = τ([α−1

y ∗ γ ∗ αx]) · k(x), so ρ(γ) = τ([α−1
y ∗ γ ∗ αx]).

Now, if γ is a loop based at x0, let us follow the construction of ρ(γ) in Step A. Take a0 = 0 < a1 < · · · <
an = 1 such that γ([ai, ai+1]) is good. The action of each restricted path γ|[ai,ai+1] is constructed as in the
previous paragraph, and ρ(γ) is the composition of all of these. Thus:

ρ(γ) = τ([α−1
x0
∗ γ|[an−1,1] ∗ αγ(an−1)]) · τ([α

−1
γ(an−1)

∗ γ|[an−2,an−1] ∗ αγ(an−2)]) · · · τ([α
−1
γ(a1)

∗ γ|[0,a1] ∗ αx0
])

= τ([γ|[an−1,1] ∗ γ|[an−2,an−1] ∗ · · · ∗ γ[0,a1]]) = τ([γ]).

Here we have used the fact that αx0
is the constant path. This completes the proof of the theorem. �
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Definition 1. An abelian category is a category satisfying the following four axioms:

(1) For any two objects A and B in A, the set of morphisms Hom(A,B) is endowed with the structure
of an abelian group, and composition of morphisms is biadditive.

(2) There is a “zero object” 0 with the property that Hom(0, 0) = 0. (This property implies that it is
unique up to unique isomorphism, and that Hom(0, A) = Hom(A, 0) = 0 for all other objects A.)

(3) For any two objects A and B, there is a “biproduct” A⊕B. It is equipped with morphisms as shown
below:

A
i1 // A⊕B
p1

oo
p2

// B
i2oo

These morphisms satisfy the following identities:

p1 ◦ i1 = idA p1 ◦ i2 = 0 i1 ◦ p1 + i2 ◦ p2 = idA⊕B

p2 ◦ i2 = idB p2 ◦ i1 = 0

(4) Every morphism φ : A→ B gives rise to a diagram

K
k // A

i
//

φ

''
I

j
// B

c // C

Here, j ◦ i = φ. Also, K is the kernel of φ, C is its cokernel, and I is both the cokkernel of k : K → A
and the kernel of c : B → C. Such a diagram is called the canonical decomposition of φ. The
object I is called the image of φ.

A category satisfying the first three of these axioms is called an additive category.

Definition 2. The category of complexes over A, denoted C(A), is the category whose objects are
complexes of objects of A: that is, a sequence of objects (Ai) labelled by integers, together with morphisms
(called differentials) di : Ai → Ai+1, such that di ◦ di−1 = 0.

A• : · · ·
d−2

// A−1 d−1

// A0 d0 // A1 d1 // · · · where di ◦ di−1 = 0 for all i,

in which a morphism f : A• → B• is a family of morphisms in A, f i : Ai → Bi, that are compatible with
the differentials. That is, every square in the following diagram should commute:

· · · // A−1 //

f−1

��

A0 //

f0

��

A1 //

f1

��

· · ·

· · · // B−1 // B0 // B1 // · · ·

Definition 3. The ith cohomology functor Hi : C(A) → A is defined as follows: given an object A• in
C(A), let I be image of di−1, and K the kernel of di. The natural morphism I → Ai factors through K (by
the universal property of the kernel, and the fact that di ◦ di−1 = 0). Hi(A•) is defined to be the cokernel
of the induced morphism I → K. (In short, Hi(A•) = ker di/ im di−1.) It is easy to check that a morphism
f : A• → B• induces a morphism Hi(f) : Hi(A•) → Hi(B•), so Hi is indeed a functor.

Definition 4. A homotopy between two morphisms f, g : A• → B• in C(A) is a collection of morphisms
hi : Ai → Bi−1, such that

dh+ hd = f − g.



That is, in the diagram

· · · // A−1 //

f−1

��
g−1

��

h−1

yyssssssssss
A0 //

f0

��
g0

��

h0

yyssssssssss A1 //

f1

��
g1

��

h1

yytttttttttt
· · ·

· · · // B−1 // B0 // B1 // · · ·

we have di−1
B ◦ hi + hi+1 ◦ diA = f i − gi for each i. If there is a homotopy between f and g, then f and g are

said to be homotopic.

Definition 5. The homotopy category over A, denotedK(A), is the category whose objects are complexes
of objects in A, but whose morphisms are given by

HomK(A)(A
•, B•) = HomC(A)(A

•, B•)/(morphisms homotopic to 0).

In other words, a morphism in K(A) is a homotopy class of morphisms in C(A).

Lemma 6. If f, g : A• → B• are two homotopic morphisms in C(A), then Hi(f) = Hi(g).

Corollary 7. The cohomology functors can be regarded as being functors K(A) → A.

Definition 8. A morphism f : A• → B• (in C(A) or K(A)) is a quasi-isomorphism (often abbreviated
to qis) if the morphisms Hi(f) in A are isomorphisms for all i.

Definition 9. The derived category of A, denoted D(A), is the category whose objects are complexes of
objects in A, and in which a morphism from A• to B• is an equivalence class of “roofs”

X•

qis

q

||xxx
x u

""FFF
F

A• B•

where q is a quasi-isomorphism. The equivalence relation is as follows: Two roofs

X•

qis

q

||xxx
x u

""FFF
F

A• B•

and
Y •

qis

r
||yyy

y v
""EEE

E

A• B•

are equivalent if there exists a roof over X• and Y • making the following diagram commute:

Z•

||xxx
x

""EEE
E

X•

||xxx
x

++VVVVVVVVVVVVVV Y •
hhhh

sshhhhhhhhhh
""EEE

E

A• B•

Definition 10. Let n ∈ Z, and let A• be a complex. The nth translation (or shift) is the complex A[n]•

defined by

A[n]i = Ai+n with differential di = (−1)ndi+nA .

Given a morphism f : A• → B•, the translated morphism f [n] : A[n]• → B[n]• is defined by f [n]i = f i+n.
In this way, translation by n is a functor C(A) → C(A) (or K(A) → K(A), or D(A) → D(A)).

Definition 11. Let f : A• → B• be a morphism in C(A). The cone of f a complex, denoted cone• f ,
defined as follows:

conei f = Ai+1
⊕Bi with differential

di : Ai+1
⊕Bi → Ai+2

⊕Bi+1

given by

(

−di+1
A 0

f i+1 diB

)

It is easy to check that di+1 ◦ di = 0:

di+1
◦ di =

(

−di+2
A 0

f i+2 di+1
B

)

·

(

−di+1
A 0

f i+1 diB

)

=

(

di+2
A ◦ di+1

A 0

−f i+2 ◦ di+1
A + di+1

B ◦ f i+1 di+1
B ◦ diB

)

=

(

0 0
0 0

)
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There are natural morphisms B• → cone• f and cone• f → A[1]•:

B•
( 0
id )

// cone• f
( id 0 ) // A[1]•

Definition 12. A sequence of morphisms X• → Y • → Z• → Z[1]• in K(A) or D(A) is called a distin-
guished triangle (abbreviated to d.t.) if there is a commutative diagram

X• //

q

��

Y • //

r

��

Z• // X[1]•

q[1]

��
A•

f // B• cone• f//
��

s

// A[1]•

where q, r, and s are isomorphisms. (Of course, the meaning of “isomorphism,” and hence of “distinguished
triangle,” depends on whether one is working in K(A) or D(A).)

Theorem 13. Distinguished triangles in K(A) enjoy the following four properties:

(1) (Identity) The triangle A• id
→ A• → 0 → A[1]• is distinguished.

(2) (Rotation) The triangle A• f
→ B• → C• → A[1]• is distinguished if and only if the rotated triangle

B• → C• → A[1]•
−f [1]
→ B[1]• is.

(3) (Square Completion) Any commutative square

A• //

u

��

B•

��
F • // G•

can be completed to a commutative diagram of distinguished triangles:

A• //

r

��

B•

��

//___ C•

���
�
�

//___ A[1]•

r[1]

��
F • // G• //___ H• //___ F [1]•

(4) (Octahedral Property) Given a commutative diagram of morphisms

B•

g

��9
99

99

A•

f
BB�����

h=g◦f
// C•

,

extend each of f , g, and h to a distinguished triangle:

A•
f // B• // F • // A[1]•

B•
g // C• // G• // B[1]•

A• h // C• // H• // A[1]•

Arrange three triangles, together with the obvious morphismG• → F [1]• (composition ofG• → B[1]•

and B[1]• → F [1]•) can be arranged in an octahedron as shown below. There exist morphisms
F • → H• and H• → G• making

F • // H• // G• // F [1]•

3



a distinguished triangle, and making the neighboring faces of the octahedron commute.

Morphisms
///o/o/o morphism of

degree 1; i.e.

G•
 F • means

G• → F [1]•

//___ morphism whose
existence is
being asserted

B•

g



��
��
��
��
��
��
��
��

��7
77

77
77

F •
r2 r2 r2 r2

rr r2 r2 r2 r2 r2 r2 r2 r2

�
�
�



�
�
�
�
�

A•

f

::uuuuuuuuuuuuuuuuuu

h

))SSSSSSSSS G•

dd
d$

d$
d$

d$
d$

d$
d$

d$
d$

d$
d$

ii i) i) i) i) i) i)

C•

22eeeeeeeeeeeeeeeeeeeee

��7
77

77
77

H•

dd
d$

d$
d$

d$
d$

d$
d$

d$
d$

d$
d$

::u
u

u
u

u
u

u
u

u

Triangles
•

����
�

• // •

YY Y�
Y�

distinguished
triangle

•

��3
33

•

EE��� // •
•

��3
33

•

EEE�
E�

///o/o •



























commutative
triangles

Remark 14. This theorem essentially states that K(A) satisfies the axioms for a triangulated category.

Proof. (1) The following diagram is clearly commutative:

A• id // A• cone• id//

��

// A[1]•

A• id // A• // 0 // A[1]•

It remains to check that cone• id → 0 is an isomorphism in K(A). Its putative inverse, of course, is the
zero morphism 0 → cone• id; we need to check that the compositions in both directions are equal (in K(A),
i.e., homotopic) to the identity morphisms of the their respective objects. For the zero object, this is
trivial. For cone• id, we now show that the zero morphism is homotopic to the identity morphism. Let
hi : conei id → conei−1 id be the homotopy given by

hi : Ai+1
⊕Ai → Ai ⊕Ai−1, hi =

(

0 id
0 0

)

Then

dh+ hd =

(

−dA 0
id dA

) (

0 id
0 0

)

+

(

0 id
0 0

) (

−dA 0
id dA

)

=

(

id 0
0 id

)

= idcone• id − 0.

Thus, cone• id → 0 is an isomorphism. �

(2) Starting with a distinguished triangle A• f
→ B• g

→ cone• f
r
→ A[1]•, we must show that the rotated

triangle is isomorphic to the distinguished triangle obtained by taking the cone of g. Note that conei f =
Ai+1 ⊕Bi, and conei g = Bi+1 ⊕ conei f = Bi+1 ⊕Ai+1 ⊕Bi. Consider the following diagram:

B•
g // cone• f

r // A[1]•
−f [1] //

θ

��

B[1]•

B•
g // cone• f

s // cone• g
t // B[1]•

Here, g, r, s and t are the usual morphisms, and θ is defined as below:

g =

(

0
id

)

, r =
(

id 0
)

, s =





0 0
id 0
0 id



 , t =
(

id 0 0
)

, and θ =





−f
id
0





For future reference, we note that the differentials are given by

dcone• f =

(

−dA 0
f dB

)

and dcone• g =





−dB 0 0
0 −dA 0
id f dB
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We must check first that the diagram is commutative, and then that θ is an isomorphism. It is clear that
tθ = id ◦ −f [1], but not that θr = s ◦ id. For the latter, note that

s− θr =





0 0
id 0
0 id



 −





−f
id
0





(

id 0
)

=





f 0
0 0
0 id



 .

We define a homotopy hi : conei f → conei−1 g by

h =





0 id
0 0
0 0



 .

Then

dh+ hd =





−dB 0 0
0 −dA 0
id f dB









0 id
0 0
0 0



 +





0 id
0 0
0 0





(

−dA 0
f dB

)

=





f 0
0 0
0 id



 = s− θr.

Thus, s is homotopic to θr, so the diagram is commutative.

To show that θ is an isomorphism, define ψ : cone• g → A[1]• by the matrix
(

0 id 0
)

. It is obvious that
ψθ = idA[1]• . To show that θψ = idcone• g, we need the homotopy

k =





0 0 1
0 0 0
0 0 0



 .

Note that

idcone• g − θψ =





id 0 0
0 id 0
0 0 id



 −





0 −f 0
0 id 0
0 0 0



 =





id f 0
0 0 0
0 0 id



 .

Then

dk + kd =





−dB 0 0
0 −dA 0
id f dB









0 0 1
0 0 0
0 0 0



 +





0 0 1
0 0 0
0 0 0









−dB 0 0
0 −dA 0
id f dB





=





0 0 −dB
0 0 0
0 0 id



 +





id f dB
0 0 0
0 0 0



 =





id f 0
0 0 0
0 0 id



 = idcone• g − θψ.

Thus, θ is an isomorphism, and the rotated triangle is distinguished.

(3) This is the easiest property to prove. We need to define θ : cone• f → cone• g such that the following
diagram commutes:

A•

r

��

f // B•

s

��

// cone• f

θ

��

// A[1]•

r[1]

��
F •

g // G• // cone• g // F [1]•

Define θi : Ai+1 ⊕Bi → F i+1 ⊕Gi by the matrix

θ =

(

r 0
0 s

)

.

Using the fact that sf = gr, it is trivial to check that θ commutes with differentials (so that it is actually a
well-defined morphism) and that it makes the above diagram commute.
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(4) This, of course, is the hardest property to check, but only in terms of the number of calculations to be
done. Assume that F • = cone• f , G• = cone• g, and H• = cone• h. Recall:

F i = Ai+1
⊕Bi

dF =

(

−dA 0
f dB

)

Gi = Bi+1
⊕ Ci

dG =

(

−dB 0
g dC

)

Hi = Ai+1
⊕ Ci

dH =

(

−dA 0
h dC

)

Define the following morphisms:

r : F •
→ H•

r =

(

id 0
0 g

)

s : H•
→ G•

s =

(

f 0
0 id

)

t : G•
→ F [1]•

t =

(

0 0
id 0

)

Next, let K• = cone• r, so that

Ki = F i+1
⊕Hi = Ai+1

⊕Bi+1
⊕Ai+1

⊕ Ci.

The differential of K• and the natural maps u : H• → K• and v : k• → F [1]]• are given by:

dK =









dA 0 0 0
−f −dB 0 0
id 0 −dA 0
0 g h dC









u =









0 0
0 0
id 0
0 id









v =

(

id 0 0 0
0 id 0 0

)

Next, define θ : G• → K• and ψ : K• → G• by

θ =









0 0
id 0
0 0
0 id









ψ =

(

0 id f 0
0 0 0 id

)

Finally, define homotopies k : Hi → Ki−1 and l : Ki → Ki−1 by

k =









id 0
0 0
0 0
0 0









l =









0 0 id 0
0 0 0 0
0 0 0 0
0 0 0 0









We need to show that the following diagram is well-defined and commutative to establish that the top row
is a distinguished triangle:

F • r // H• s // G•

θ

��

t // F [1]

F • r // H• u // K•

ψ

BB

v // F [1]•

To establish that this diagram makes sense, the following assertions need to be checked:

• r, s, t, θ, and ψ are well-defined (they commute with differentials).
• θs = u (in fact, they are homotopic, and dk + kd = u− θf).
• θ is an isomorphism (in fact, ψθ = idG, and θψ is homotopic to idK : we have dl + ld = idK − θψ).

Finally, to check that this distinguished triangle is compatible with the octahedron, we must check:

• t coincides with the composition G• → B[1]• → F [1]•.

• The natural morphism F • → A[1]• coincides with the composition F • r
→ H• → A[1]•.

• The natural morphism C• → G• coincides with the composition C• → H• s
→ G•.

The proofs of all these assertions are straightforward matrix calculations. �
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Recall that distinguished triangles in K(A) have four important properties. These properties are essential
for even showing that D(A) is a well-defined category: specifically, composition of morphisms in D(A) is
not an obvious operation, and we have to use distinguished triangles in K(A) to show how to do it.

Theorem 1. Distinguished triangles in D(A) enjoy the following properties:

(0) (Existence) Any morphism A• → B• can be completed to a distinguished triangle A• → B• →

C• → A[1]•.
(1–4) The Identity, Rotation, Completion, and Octahedral properties of distinguished triangles in K(A).

Proposition 2. A distinguished triangle A• → B• → C• → A[1]• in K(A) or D(A) gives rise to a long

exact sequence in cohomology

· · · → Hi−1(C•) → Hi(A•) → Hi(B•) → Hi(C•) → Hi+1(A•) → · · · .

The rest of this set of notes is devoted to discussing how a functor of abelian categories gives rise to a functor
of derived categories. Let A and B be abelian categories, and let F : A → B be an additive functor. Then:

(1) F induces a functor of chain complexes F : C(A) → C(B).
(2) F induces a functor of homotopy categories F : K(A) → K(B). (The proof of this is just to check

that F : C(A) → C(B) takes homotopic morphisms to homotopic morphisms.)

Now, suppose F is actually an exact functor. Then one also has:

(3) F induces a functor of derived categories F : D(A) → D(B). The proof requires showing that
F : K(A) → K(B) takes quasi-isomorphisms to quasi-isomorphisms; that fact is not true in general
if F is not exact.

(4) F : D(A) → D(B) takes distinguished triangles to distinguished triangles.

The harder, and more interesting, problem is that of defining a functor of derived categories when F is not

exact. In this case, the constructions requires the concepts of resolutions and adapted classes.

Definition 3. The bounded-below category of complexes (resp. bounded-below homotopy cate-

gory, bounded-below derived category) over A is the full subcategory C+(A) (resp. K+(A), D+(A))
of C(A) (resp. K(A), D(A)) containing those objects A• for which there exists an integer N such that
Hi(A•) = 0 for all i < N . (Here, N may depend on the object A•.) The bounded-above categories
C−(A), K−(A), D−(A) are defined similarly.

Definition 4. A class of objects R in A is large enough (or one says that A has enough objects in R)
if for every object A of A, there is a monomorphism A → R, where R ∈ R.

Theorem 5 (Existence of Resolutions). If R is large enough, then for any complex A• ∈ D+(A), there

exists a complex R• ∈ D+(A) with Ri ∈ R for all i, and a quasi-isomorphism t : A• → R•.

Definition 6. Let F : A → B be a left-exact functor. A class of objects R in A is an adapted class of

objects for F if the following two conditions are satisfied:

(1) F is exact on R (that is, F takes any short exact sequence of objects in R to a short exact sequence
in B).

(2) R is large enough.

Definition 7 (Derived Functor). Let F : A → B be a derived functor, and let R be an adapted class for F .
The derived functor RF : D+(A) → D+(B) is defined as follows: for any object A• in D+(A), choose an
R-resolution R•, and let RF (A•) be the complex F (R•). The latter is well-defined up to quasi-isomorphism
(i.e., up to isomorphism in D(B)) because R• is unique up to quasi-isomorphism, and since F is exact on
R, it takes quasi-isomorphisms of complexes of objects in R to quasi-isomorphisms.



There is a further issue of well-definedness: the choice of the adapted class R. That is, if R and R′ are two
adapted classes for F , do they both give rise to the same notion of derived functor? It can be shown that the
answer is yes, i.e., that derived functors are independent of the choice of adapted class, but we will not treat
this question in full generality. Instead, there is a special case in which the answer is obviously yes, and this
case covers all the examples we will meet. Specifically, if it happens that R ⊂ R′, then every R-resolution
is also an R′-resolution, so the two RF ’s defined with respect to these two classes coincide.

In our examples, we will only work with adapted classes that contain the class of injective objects.

Definition 8. An object I of an abelian category A is injective if, for every morphism f : A → I and
monomorphism i : A →֒ B, there exists a morphism g : B → I making the following diagram commute:

A
�

� i
//

f
��

@

@

@

@

@

@

@

@

B

g

��
�

�

�

I

Lemma 9. Any left-exact functor is exact on the class I of injective objects.

Corollary 10. If A has enough injectives, then the class I of injective objects is an adapted class for every

left-exact functor F : A → B.

Definition 11. Let F : A → B be a left-exact functor. The ith classical derived functor RiF : A → B

is defined as follows: given an object A ∈ A, regard it as a complex in D(A) with a single nonzero term
located in degree 0. Then RiF (A) = Hi(RF (A)).

Example 12. Let C be an abelian group. The functor Hom(C,−) : Ab → Ab is left-exact, and the
category Ab has enough injectives, so it gives rise to a derived functor R Hom : D+(Ab) → D+(Ab). The
corresponding classical derived functors Ri Hom(C,−) are usually denoted Exti(C,−).

There is a parallel theory for right-exact functors, giving rise to left derived functors LF : D−(A) → D−(B).
The class of projectives takes the place of the class of injectives in this setting. Unfortunately, the categories
of greatest interest to us—categories of sheaves on topological spaces—do not, in general, have enough
projectives.

Example 13. The category Ab does have enough projectives, so for a fixed abelian group C, the right-
exact functor C ⊗− gives rise to a derived functor C ⊗L −. The classical derived functors known as “Tor”
are defined by Tori(C,D) = H−i(C ⊗L D). (Note the negative exponent: this comes from the fact that
Tor is usually defined in terms of homological complexes (in which differentials reduce degree), whereas by
convention all of our complexes are cohomological (differentials raise degree).)

The examples above, Ext and Tor, are probably the best-known classical examples of derived functors. They
also illustrate a shortcoming of the theory we have developed so far: the functors R Hom(−,−) and −⊗L −

are asymmetric in that they take an object of Ab in the first variable, but a complex from D(Ab) in the
second. It would be more natural to allow complexes in both variables.

The correct way to handle this problem is to develop a full theory of derived bifunctors (functors of two
variables); such a theory should incorporate the idea (familiar from the classical theory of Ext and Tor) that
one should be able to compute a derived bifunctor by taking an appropriate resolution of either variable.
Such a theory is indeed developed in the book of Kashiwara–Schapira, but we will not develop it here.
Instead, we will simply show how to repair the definitions of R Hom and ⊗L to allow complexes in both
variables.

Recall that in general, a left-exact functor gives rise to a sequence of four functors:

F : A → B

F : C(A) → C(B)

F : K(A) → K(B)

RF : D+(A) → D+(B)
2



To repair R Hom and ⊗L, we will interfere with these sequences at the second step: instead of simply
considering the functors

Hom(C,−) : C(Ab) → C(Ab) and C ⊗− : C(Ab) → C(Ab)

that are induced by functors Ab → Ab, we replace them by new functors (called “graded Hom” and “graded
tensor product”) defined only at the level of complexes and not on Ab itself.

Let C• and D• be complexes of abelian groups. Their graded Hom, denoted Hom(C•, D•), is the complex
given by

Hom(C•, D•)i =
⊕

k−j=i

Hom(Cj , Dk).

The differential d : Hom(C•, D•)i → Hom(C•, D•)i+1 can be thought of as a large collection of maps

Hom(Cj , Dk) → Hom(Cm, Cn),

where k − j = i and n − m = i + 1. These small portions of d are defined as follows:

(d)jk,mn : Hom(Cj , Dk) → Hom(Cm, Dn)

(d)jk,mn =











f 7→ dk
D ◦ f if m = j and n = k + 1,

f 7→ (−1)jf ◦ d
j−1

C if m = j − 1 and n = k,

0 otherwise.

It is left as an exercise to verify that this differential makes Hom(C•, D•) into a complex (i.e., that d2 = 0).

Now, R Hom(C•, D•) is simply defined to be Hom(C•, I•), where I• is an injective resolution of D•. The
proof that this is well-defined is the same as before.

The definition of the graded tensor product is similar: C• ⊗D• is the complex given by

(C•
⊗D•)i =

⊕

j+k=i

(Cj
⊗ Dk).

As above, the differential can be specified by specifying

(d)jk,mn : Cj
⊗ Dk

→ Cm
⊗ Dn

(d)jk,mn =











idCj ⊗ dk
D if m = j and n = k + 1,

(−1)jd
j
C ⊗ idDk if m = j + 1 and n = k,

0 otherwise.

The verification that d2 = 0 is again left as an exercise. Then C• ⊗L D• is defined to be C• ⊗P •, where P •

is a projective (or flat) resolution of D•.
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Derived Functors in Categories of Sheaves
March 8, 2007

In the philosophy expounded by Grothendieck, there are six important operations on sheaves, occuring in
three adjoint pairs:

(
L

⊗, RHom), (f−1, Rf∗), (Rf!, f
!).

All other operations can be built out of these. (For example, RΓ is the same as Ra∗, where a : X → {pt} is
the constant map to a point, and R Hom = RΓ ◦RHom.) In this set of notes, we will review the definitions
of all of these except f !, list adapted classes, and collect various composition and adjointness theorems.

Convention. All statements below are correct for sheaves of abelian groups. However, some of them contain
conditions that become superfluous or trivial in the category of sheaves of vector spaces. Specifically, all
sheaves of vector spaces are flat, so ⊗ is already an exact functor. Nevertheless, we will use the usual notation
⊗L for the functor induced by ⊗ on the derived category.

Theorem 1. The category ShX of sheaves on X has enough injectives.

As a consequence, we can form the derived functor of all left-exact functors on sheaves.

Refer to the previous set of notes for the definitions Hom and ⊗. Analogous definitions can be made for
Hom and ⊗ in the category of sheaves on a space X. Then, we define

RHom(F•,G•) = Hom(F•, I•) where I• is an injective resolution of G•,

F•
L

⊗ G• = F• ⊗P• where P• is a flat resolution of G•.

(Because all sheaves of vector spaces are flat, one can always just take P• = G•.)

Given a continuous map f : X → Y , the push-forward functor f∗ is left-exact, so we can form its derived
functor Rf∗. The pullback functor f−1 is exact and so automatically gives rise to a functor f−1 on the
derived category.

We need to a bit of preparation to define f!.

Definition 2. Let F be a sheaf on X, let s ∈ F(U). The support of s is defined to be

supp s = {x ∈ U | sx 6= 0}.

This is automatically a closed subset of U .

Definition 3. A continuous map f : X → Y is proper if, for every compact set K ⊂ Y , the preimage
f−1(K) ⊂ X is compact.

Definition 4. Let f : X → Y be a continuous map, and let F be a sheaf on X. The proper push-forward

of F , denoted f!F , is the subsheaf of f∗F defined by

(f!F)(U) = {s ∈ f−1(U) | f |supp s : supp s → U is proper}.

Note that the restriction of a proper map to a closed subset of its domain is always proper. If f is a proper
map, then the functors f! and f∗ coincide, because f |supp s is always proper. In particular, if f is an inclusion
of a closed subset, proper push-forward and ordinary push-forward coincide.

If f is an inclusion of an open subset, f! coincides with the “extension by zero” functor defined earlier.

Definition 5. A sheaf F on X is flabby (or flasque) if the restriction maps F(X) → F(U) are surjective
for all U in X.

Definition 6. F is soft if for every compact set K ⊂ X, the natural map Γ(F) → Γ(F|K), or, equivalently,
the natural map

F(X) → lim
→

U⊃K

F(U),

is surjective.



Remark 7. Some sources use the term “c-soft” for sheaves satisfying the above definition, and use the term
“soft” for a related notion in which “compact” is replaced by “closed.” However, on locally compact, second
countable Hausdorff spaces, the two notions coincide.

Proposition 8. Every injective sheaf is flabby. Every flabby sheaf is soft.

Theorem 9. The various functors on sheaves are left-exact, right-exact, or exact as shown in the table

below. For each functor, the classes of sheaves listed in the third column are adapted.

Note that this theorem is not asserting that the largest class listed for a given functor is in fact the largest
adapted class for that functor.

Functor Exactness Adapted classes Derived functor Classical derived functors

Γ left injective, flabby RΓ Hi(X,−)
f∗ left injective, flabby Rf∗ Rif∗

Hom left injective R Hom Exti

Hom left injective RHom Ext i

f! left injective, flabby, soft Rf! Rif!

f−1 exact — f−1

⊗ right flat ⊗L Tor i

Once again, recall that for sheaves of vector spaces, ⊗ is exact, and all sheaves are flat. Also, the classical
derived functor Tor i (as well as the functor Tori for abelian groups) is usually defined homologically : it is
defined in terms of a resolution whose differentials decrease degree. By convention, all our complexes have
differentials that raise degree, so the classical Tor i is obtained from our ⊗L by:

Tor i(F ,G) = H−i(F
L

⊗ G).

Since the category ShX has enough injectives, no other adapted classes would have been needed if all we
wanted to do was define the derived functors of the various left-exact functors. However, we also want to be
able to understand compositions of derived functors. The following fact tells us how to do this.

Proposition 10. Let F : A → B and G : B → C be two left-exact functors. If there is an adapted class R
for F and an adapted class S for G such that F (R) ⊂ S, then R(G ◦ F ) = RG ◦ RF .

Not every left-exact functor takes injective objects to injective objects, so in order to apply the above
proposition, we usually need to have some additional adapted classes at hand. This is where flabby and soft
sheaves are useful.

Proposition 11. The functors f∗, f!, and Hom act on injective, flabby, and soft sheaves as shown here:

f∗ (injective) = injective Hom(anything, injective) = flabby
f∗ (flabby) = flabby Hom(flat, injective) = injective
f! (soft) = soft

The following theorem on compositions is now immediate:

Theorem 12. If f : X → Y and g : Y → Z are continuous maps, then

Rf∗ ◦ Rg∗ = R(f ◦ g)∗

Rf! ◦ Rg! = R(f ◦ g)!

If F• and G• are complexes of sheaves on X, then

RΓ(RHom(F•, G•)) = R Hom(F•,G•).

Finally, we obtain two of the three important adjointness theorems by using the above facts on compositions
of derived functors. In both cases, the proof consists of reducing to the corresponding theorems in the
nonderived setting.
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Theorem 13. If F•,G• ∈ D−(ShX) and H• ∈ D+(ShX), then we have:

Hom(F• ⊗L G•,H•) ≃ Hom(F•, RHom(G•,H•)),

RHom(F• ⊗L G•,H•) ≃ R Hom(F•, RHom(G•,H•)),

R Hom(F• ⊗L G•,H•) ≃ RHom(F•, RHom(G•,H•)).

Theorem 14. If f : X → Y is a continuous map, F• ∈ D−(ShY ), and G• ∈ D+(ShX), then we have:

Hom(f−1F•,G•) ≃ Hom(F•, Rf∗G
•)

R Hom(f−1F•,G•) ≃ R Hom(F•, Rf∗G
•)

Rf∗RHom(f−1F•,G•) ≃ RHom(F•, Rf∗G
•)

3
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Proper Pull-Back and Poincaré–Verdier Duality
March 13, 2007

Convention. We now add an assumption to our standing list of assumptions on topological spaces. For
each topological space X, we assume there is a number r such that for any exact sequence

F0 → · · · → Fr → 0

of sheaves on X, if F0, . . . ,Fr−1 are all soft, then so is Fr. (This assumption is true for manifolds and for
closed subsets of manifolds.)

We also add a hypothesis on sheaves. From now on, all sheaves will be assumed to be sheaves of finite-

dimensional vector spaces, and ShX will denote the category of such sheaves.

The main result in this set of notes is the following.

Theorem 1. Let f : X → Y be a continuous map. There is a functor f ! : D+(ShY ) → D+(ShX), unique

up to isomorphism, that is right-adjoint to Rf!:

Hom(Rf!F
•,G•) ≃ HomF•, f !G•).

The proof relies on the following sequence of lemmas.

Lemma 2. Any sheaf F on X has a soft resolution of length at most r.

Lemma 3. For any sheaf F on X, there exists a sheaf P and a surjective morphism P → F where P is

of the form P =
∏

i CVi
. Here {Vi} is some collection of open sets, and CVi

is regarded as a sheaf on X by

extension by zero.

(The proof of the preceding lemma is close to a general proof of the existence of flat resolutions in the
category of sheaves of abelian groups.)

Lemma 4. If K is a flat, soft sheaf on X, then for any sheaf F on X, F ⊗K is soft.

Corollary 5. The functor F 7→ f!(F ⊗K) is exact.

Now, if K is a sheaf on X and G is a sheaf on Y , let H(K,G) be the presheaf given by

H(K,G)(V ) = Hom(f!(j!(K|V )),G) where j : V →֒ X is the inclusion map.

Lemma 6. If K is flat and soft, and G is injective, then

(1) H(K,G) is a sheaf.

(2) Hom(f!(F ⊗K),G) ≃ Hom(F ,H(K,G)).
(3) H(K,G) is injective.

The last step is to actually define f !. Choose a resolution K• of CX by flat, soft modules. (If we had been
working in the setting of sheaves of abelian groups, the “flat” part of the preceding sentence would require
additional work, but for sheaves of vector spaces, it is automatic.) Let G• ∈ D+(ShX). Assume that G• is a
complex of injective sheaves (i.e., replace it by an injective resolution if necessary. Define the complex f !G•

by

(f !G•)i =
⊕

k−j=i

H(Kj ,Gk),

with differentials defined in the same way as for Hom. Once the theorem is proved, we also know that f !G•

is independent of the choice of K• by the following lemma.

Lemma 7 (Uniqueness of adjoints). If (F,G) and (F,H) are both adjoint pairs of functors, then G ≃ H.

As usual, we also have derived and sheaf-theoretic versions of the adjointness theorem. Note that these
cannot be proved by reducing to the nonderived case (as was done for the adjoint pairs (⊗L, RHom) and
(f−1, Rf∗)), because there is no nonderived version of f ! in general.



Proposition 8. Let f : X → Y be a continuous map. For any F• ∈ Db(ShX) and G• ∈ D+(ShY ), we

have:

R Hom(Rf!F
•,G•) ≃ R HomF•, f !G•),

RHom(Rf!F
•,G•) ≃ Rf∗RHom F•, f !G•).

Proposition 9. f !RHom(F•,G•) ≃ RHom(f−1F•, f !G•).

Definition 10. Let a : X → {pt} be the constant map from X to a one-point space. The dualizing

complex on X is the complex ωX = a!
C.

Definition 11. Let F• ∈ D−(ShX). The Verdier dual of F• is the complex DF• = RHom(F , ωX).

Proposition 12. f !
DF• ≃ Df−1F•.

Proposition 13. DDF• ≃ F•.

(The preceding proposition is not true if one works with sheaves of possibly infinite dimension, essentially
because taking the vector space dual twice gives the original vector space only if the original vector space is
finite-dimensional.)

Corollary 14. f−1
DF• ≃ Df !F•.

Proposition 15. We have:

RHom(F•, DG•) ≃ RHom(G•, DF•) Rf!DF• ≃ DRf∗F
•

RHom(F•, DG•) ≃ D(F•
L

⊗ G•) Rf∗DF• ≃ DRf!F
•

The following theorem is an easy consequence of the adjointness of Rf! and f ! in the special case where
f : X → {pt} is the map to a point.

Theorem 16 (Verdier Duality). H−i
c (X,F•)∗ ≃ Hi(X, DF•).

Classical Poincaré duality can be recovered from this with the aid of the following fact.

Proposition 17. Let X be a smooth, oriented n-dimensional manifold. Then ωX ≃ CX [n].

It follows immediately from this that on a smooth, oriented n-dimensional manifold, we have DC ≃ C[n].
Then the Verdier duality theorem above becomes the following.

Theorem 18 (Poincaré Duality). Hn−i
c (X, C)∗ ≃ Hi(X, C).

Historically, of course, Poincaré duality came long before Verdier duality, and Verdier duality can be seen as
a generalization of Poincaré duality.

Indeed, Verdier duality holds in great generality, whereas Poincaré duality, a much more specific statement,
fails for most spaces that are not manifolds. For most spaces, and most complexes of sheaves, the complexes
F• and DF• that appear in Verdier duality are different. What makes Poincaré duality work for manifolds
is the fact that the constant sheaf is close to self-dual. (Its dual is just a shift of itself.)

If we could find self-dual complexes of sheaves on other spaces, then we could achieve a sort of intermediate
generalization of Poincaré duality: a duality theorem that is closer in spirit to the original Poincaré duality,
but yet that holds on many spaces that are not manifolds.

The search for such self-dual complexes of sheaves is one of the principal motivations for the development of
the theory of perverse sheaves.
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Triangulated Categories and t-Structures
March 27, 2007

Definition 1. A triangulated category is an additive category C equipped with (a) a shift functor
[1] : C → C and (b) a class of triangles X → Y → Z → X[1], called distinguished triangles, satisfying the
following axioms:

(-2) The shift functor is an equivalence categories. In particular, it has an inverse, denoted [−1] : C → C.
(-1) Every triangle isomorphic to a distinguished triangle is a distinguished triangle.

(0) Every morphism f : X → Y can be completed to a distinguished triangle X
f

−→ Y → Z → X[1].
(1) (Identity)
(2) (Rotation)
(3) (Square Completion)
(4) (Octahedral Property)

(The last four axioms are the properties of distinguished triangles in the derived category that were estab-
lished in an earlier set of notes.)

Example 2. The derived category of an abelian category, with its usual shift functor and its usual notion of
distinguished triangles, is a triangulated category. The same is true of the homotopy category of complexes
over an abelian category. Indeed, these are essentially the only examples of triangulated categories that we
will see.

Definition 3. Let C be a triangulated category. A t-structure on C is a pair of full subcategories (C≤0, C≥0)
satisfying the axioms below. (For any n ∈ Z, we use the notation C≤n = C≤0[−n], C≥n = C≥0[−n].)

(1) C≤0 ⊂ C≤1 and C≥0 ⊃ C≥1.
(2)

⋂
n∈Z

C≤n =
⋂

n∈Z
C≥n = {0}.

(3) If A ∈ C≤0 and B ∈ C≥1, then Hom(A,B) = 0.
(4) For any object X in C, there is a distinguished triangle A → X → B → A[1] with A ∈ C≤0 and

B ∈ C≥1.

Although the last axiom does not say anything about uniqueness of the distinguished triangle, it turns out
to be unique as a consequence of the other axioms. Specifically, we have:

Proposition 4. The distinguished triangle in Axiom (4) above is unique up to isomorphism. Indeed, there
are functors tτ≤0 : C → C≤0 and tτ≥1 : C → C≥1 such that for any object X of C,

tτ≤0X → X → tτ≥1X → (tτ≤0X)[1]

is that distinguished triangle.

Proposition 5. Let ι≤0 : C≤0 → C be the inclusion functor. Then (ι≤0,
tτ≤0) is an adjoint pair.

Similarly, let ι≥1 : C≥1 → C) be the inclusion functor. Then (tτ≥0, ι≥0) is an adjoint pair.

When doing calculations in a triangulated category with a t-structure, the preceding proposition typically
comes up in the following way: if A ∈ C≤0 and f : A → X is any morphism in C, then f factors through
tτ≤0X. That is, there is a unique morphism f ′ making the following diagram commute:

A

f ′
''N

N
N

f

##
tτ≤0X // X

Similarly, if B ∈ C≥1 and g : X → B is any morphism, then g factors through tτ≥1X:

B

X

g --

// tτ≥1X
g′

77p
p

p



Of course, although the last two propositions were stated in terms of “≤ 0” and “≥ 1,” there are corresponding
statements with “≤ n” and “≥ n” for any n ∈ Z, obtained by shifting. In particular, there are truncation
functors tτ≤n and tτ≥n for all n, and there are distinguished triangles

tτ≤nX → X → tτ≥n+1X → (tτ≤nX)[1]

for all n. The relationship between truncation and shifting is given by:
tτ≤nX = (tτ≤0(X[n]))[−n].

Proposition 6. Suppose n ≤ m. Then we have
tτ≤n

tτ≤m = tτ≤m
tτ≤n = tτ≤n, tτ≥n

tτ≤m = tτ≤m
tτ≥n

tτ≥n
tτ≥m = tτ≥m

tτ≥n = tτ≥m, tτ≤n
tτ≥m = tτ≥m

tτ≤n = 0 if n < m.

In particular, all truncation functors commute with each other.

Definition 7. Let C be a triangulated category with a t-structure (C≤0, C≥0). The category T = C≤0 ∩C≥0

is called the heart (or core) of the t-structure.

The functor tH0 : C → T defined by tH0 = tτ≤0
tτ≥0 = tτ≥0

tτ≤0 is called (zeroth) t-cohomology. Moreover,
for any i ∈ Z, the functor tHi defined by tHi(X) = tH0(X[i]) (or, equivalently, tHi = tτ≤i

tτ≥i = tτ≥i
tτ≤i is

called the ith t-cohomology.

The following theorem is the reason we want to introduce the notion of t-structures.

Theorem 8. Let C be a triangulated category with a t-structure (C≤0, C≥0), and let T be its heart. T is an
abelian category. Moreover, the functor tH0 : C → T with the following properties:

(1) For any object A ∈ T , tH0(A) ≃ A.
(2) tH0 takes distinguished triangles in C to long exact sequences in T .
(3) A morphism f : X → Y in C is an isomorphism if and only if the morphisms tHi(f) are isomorphisms

in T for all i ∈ Z.
(4) We have

C≤0 = {X ∈ C | tHi(X) = 0 for all i > 0},

C≥0 = {X ∈ C | tHi(X) = 0 for all i < 0}.
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Gluing t-Structures; Perverse Sheaves
March 29, 2007

Notation 1. Henceforth, the derived category of sheaves on a topological space X will be denoted D(X)
instead of D(ShX). Its various bounded versions will similarly be denoted D+(X), D−(X), and Db(X).

The standard t-structure on Db(X) will be denoted (stdDb(X)≤0, stdDb(X)≥0).

Let X be a topological space; let U ⊂ X be an open set, and Z = X r U its complement. Let j : U →֒ X

and i : Z →֒ X be the inclusion maps. Consider the bounded derived categories Db(U), Db(Z), and Db(X).
We have the following six functors:

Rj∗ :Db(U) → Db(X) Ri∗ :Db(Z) → Db(X)

Rj! :Db(U) → Db(X) i! :Db(X) → Db(Z)

j−1 :Db(X) → Db(U) i−1 :Db(X) → Db(Z)

(Note that Ri! = Ri∗, since a closed inclusion is a proper map, and j! = j−1 by Exercise 4 on Problem
Set 7.)

The following facts are useful to keep in mind: for any sheaf F , there is a distinguished triangle

Rj!j
−1F → F → Ri∗i

−1F → (Rj!j
−1F)[1].

Using the Verdier duality functor D, we also obtain a distinguished triangle

Ri∗i
!F → F → Rj∗j

−1F → (Ri∗i
!F)[1].

(Take the first distinguished triangle for the sheaf DF , then apply D to the whole triangle, keeping in mind
the interaction of D with the various push-forward and pull-back functors.)

Also, it is obvious that
i−1Rj!F = 0

for any sheaf F on U , by the definition of “extension by zero.” Another Verdier duality argument yields that

i!Rj∗F = 0

as well.

Now, let DU be a full subcategory of Db(U), DZ a full subcategory of Db(Z), and D a full subcategory of
Db(X), such that the following conditions hold:

• DU , DZ , and D are triangulated categories. (In particular, they are stable under the shift operation
and under formation of distinguished triangles.)

• The six functors above still “work.” (That is, Rj∗|DU
should take values in D, etc.)

As an example, one can certainly take DU = Db(U), DZ = Db(Z), and D = Db(X), but later on we will
make a different choice for these categories.

Theorem 2 (Gluing t-structures). Given t-structures (D≤0
U , D

≥0
U ) and (D≤0

Z , D
≥0
Z ) on DU and DZ , respec-

tively, there is a t-structure on D defined by

D≤0 = {F | j−1F ∈ D
≤0
U and i−1F ∈ D

≤0
Z }

D≥0 = {F | j−1F ∈ D
≥0
U and i!F ∈ D

≥0
Z }

The main idea in the definition of perverse sheaves is that using the above theorem, we want to define a
t-structure on the derived category of sheaves on a stratified space by gluing together various shifts of the
standard t-structure on each stratum.

Definition 3. A stratification of a topological space X is a finite set S of subspaces (called strata) of X

such that:

• X is the disjoint union of all the strata.



• Each stratum S ∈ S is a manifold.
• The closure of a stratum S is a union of strata.

We also call X a stratified space.

(Later, we will impose an additional condition on our stratifications.)

If X is a stratified space, then its set of strata S carries a natural partial order: we say that S ≤ T if and
only if S ⊂ T . Since S is finite, there must obviously be strata that are minimal with respect to this partial
order, and others that are maximal. Evidently, a stratum is minimal if and only if it is closed. A stratum is
maximal if and only if it is open.

Definition 4. An ordinary sheaf F on a stratified space X is constructible with respect to the stratification
S if for all S ∈ S, the restriction F|S is locally constant.

A complex of sheaves F is said to be constructible if all of its cohomology sheaves Hi(F) are constructible
in the above sense.

The full subcategory of Db(X) consisting of constructible sheaves is denoted Db
c(X).

The category Db
c(X) is often casually referred to as “the derived category of constructible sheaves,” although

this is somewhat of a misnomer: it is a subcategory of the derived category of the category of ordinary sheaves,
and it is not equivalent to the derived category of the category of ordinary constructible sheaves.

Definition 5. Let X be a stratified space, with set of strata S. A perversity function is simply a function
p : S → Z.

For each stratum S ∈ S, let iS : S →֒ X be the inclusion map. The perverse t-structure on D = Db(X)
with respect to the perversity p is given by

pD≤0 = {F | i−1
S F ∈ stdDb(S)≤p(S) for all S ∈ S}

pD≥0 = {F | i!SF ∈ stdDb(S)≥p(S) for all S ∈ S}

(This is a slightly nonstandard definition; the issue will be clarified later.) The associated truncation and
t-cohomology functors are denoted pτ≤0,

pτ≥0, and pH0. A perverse sheaf on X with respect to p is a
constructible sheaf in the heart of this t-structure.

Of course, we must show that this actually is a t-structure. That is quite easy; we just use the gluing theorem
and induction on the number of strata.

Theorem 6. The perverse t-structure on Db(X) is a t-structure.

Remark 7. By far, the most common setting for perverse sheaves is one in which all strata are even-
dimensional, and the perversity function used is p(S) = − 1

2 dim S. The advantages of this will become clear
when we discuss Verdier duality for perverse sheaves.

In any situation in which the perversity function is not specified, it should be assumed that this is the
perversity function being used.

One reason the theory of perverse sheaves is so useful is that there is a new kind of extension functor with
very good properties.

Theorem 8. In the context of Theorem 2, let T , TU , and TZ be the hearts of the t-structures on D, DU ,

and DZ , respectively. Let F be an object of TU . There is a unique object G of T , up to isomorphism, such

that

j−1G ≃ F , i−1G ∈ D
≤−1
Z , i!G ∈ D

≥1
Z .

This object is denoted by G = j!∗F and is called the middle extension or Goresky–MacPherson exten-

sion of F .

In addition, let us define two t-structures (D±,≤0, D±,≥0) on D obtained by gluing (D≤0
U , D

≥0
U ) and one of

(D≤±1
Z , D

≥±1
Z ), and let τ±

≤0, τ±
≥0 be the corresponding truncation functors. Then the middle extension can be

characterized as

j!∗F ≃ τ−
≤0Rj∗F ≃ τ+

≥0Rj!F .

2



Definition 9. Let X be a stratified space with set of strata S and perversity function p : S → Z. Let S be
a stratum of X, and let E be a local system (locally constant ordinary sheaf) on S. Let jS : S →֒ S be the
inclusion of S into its closure, and let iS : S →֒ X be the inclusion of S into X. E [p(S)] is a perverse sheaf

on S, so jS!∗(E [p(S)]) is a perverse sheaf on S, and the sheaf

ICp(S, E) = iS∗jS!∗(E [p(S)])

is a perverse sheaf on X. (If the perversity function to be used is unambiguous, the “p” may be omitted from
the notation.) A perverse sheaf obtained in this way is called an intersection cohomology complex. In
the case E = CS , IC(S, CS) is also denoted IC(S) or ICS .

But wait! It is clear that intersection cohomology complexes are objects in the heart of the perverse t-
structure, but are they constructible?

This question will be resolved in the next set of notes. At the same time, we will deal with the three issues
that were put off until “later” in this set of notes.
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Goresky–MacPherson Stratifications and Perversities
April 12, 2007

Intersection cohomology complexes are in some sense the most important perverse sheaves—essentially all
perverse sheaves that come up in practice are direct sums of intersection cohomology complexes. But as
pointed out in the last set of notes, it is not clear that intersection cohomology complexes are actually
constructible. In fact, we need to modify the definition of “stratification” to make sure that they are.

Definition 1. Let X be a topological space equipped with a stratification S, and let n = max{dim S | S ∈
S}. S is called a topological stratification (or a Goresky–MacPherson stratification) if it satisfies
the following additional condition: for any point x in a stratum of dimension k with k < n, there is a
neighborhood U together with a homeomorphism

U ≃ R
k × C

where
C = (Y × [0,∞)/(Y × {0})

(the “cone” on Y ), and where Y is a topologically stratified space of dimension n− k − 1. Moreover, the set
of strata T of Y should be in bijection with the strata of X that are larger than S in the partial order on
strata: specifically, if S′ ∈ S is such that S ⊂ S′ but S 6= S′, then there must exist a stratum T of Y such
that the homeomorphism U ≃ R

k × C restricts to a homeomorphism

S′ ∩ U ≃ R
k × (T × (0,∞)),

and every T ∈ T must arise in this way from some S′.

Theorem 2. If S is a topological stratification of X, then for any stratum S and any local system E on S,
the sheaf RiS∗E (where iS : S →֒ X is inclusion) is constructible.

Now we can go back and revisit the theorems on gluing of t-structures and on middle extension. Those
theorems were stated in terms of categories D, DU , and DZ , together with six pull-back and push-forward
functors. On a topologically stratified space, the relevant pull-back and push-forward functors all take
constructible sheaves to constructible sheaves, so we can invoke those theorems with D = Db

c(X), DU =
Db

c(U), and Db
c(Z). In particular, we can define a “perverse t-structure” on Db

c(X) (not just on the larger
category Db(X)), and we can revise the definition of “perverse sheaves” as follows.

Definition 3. The category of perverse sheaves on X (with respect to a topological stratification S and
a perversity function p : S → Z), denoted M(X), is the heart of the perverse t-structure on Db

c(X) given
by

pDb
c(X)≤0 = {F | i−1

S F ∈ stdDb
c(S)≤p(S) for all S ∈ S}

pDb
c(X)≥0 = {F | i!SF ∈ stdDb

c(S)≥p(S) for all S ∈ S}

Then, revisiting the middle extension theorem gives the following result.

Corollary 4. On a topologically stratified space, the intersection cohomology complexes IC(S, E) are con-
structible.

Recall that a simple or irreducible object A in an abelian category is an object with the property that
any monomorphism A′ → A is either 0 or an isomorphism. Equivalently, any epimorphism A → A′′ must be
either 0 or an isomorphism.

We call a local system “simple” if it has no nontrival ordinary subsheaf that is also a local system. A simple
local system on a stratum of a stratified space is a simple object in the category of ordinary constructible
sheaves, but not in the category of all ordinary sheaves.

Theorem 5. The simple objects in the category M(X) are precisely the intersection cohomology complexes
IC(S, E) where a E is a simple local system on S.



So far, perversity functions have been arbitrary integer-valued functions on the set of strata. In the literature,
however, one usually imposes a few mild conditions on perversities, and these conditions have a number of
useful consequences.

Definition 6. A perversity function p : S → Z is said to be of Goresky–MacPherson type if the
following conditions hold:

(1) p(S) depends only on the dimension of S: that is, there is a function p̃ : N → Z such that p(S) =
p̃(dimS).

(2) p̃ is weakly decreasing.
(3) p̃∗ : N → Z, defined by p̃∗(k) = −k − p̃(k), is also weakly decreasing.

The last two conditions are equivalent to requiring that

0 ≤ p̃(l) − p̃(k) ≤ k − l

whenever 0 ≤ l ≤ k.

Often, Goresky–MacPherson perversities are normalized by also requiring p̃(0) = 0. With this normaliza-
tion, it is clear that the Goresky–MacPherson perversity with the smallest possibles values (the “bottom
perversity”) is

p̃(n) = −n.

Conversely, the “top perversity” is the constant perversity

p̃(n) = 0.

(As we have noted before, perverse sheaves with respect to a constant perversity function are the same as
ordinary constructible sheaves.) In between are the “upper middle” and “lower middle” perversities

p̃(n) = ⌈−n/2⌉ and p̃(n) = ⌊−n/2⌋.

On a space with only even-dimensional strata, these two perversities coincide with each other and with what
we have previously called the “middle perversity.”
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