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Chapter 1

Introduction

1.1 Banking versus insurance

A. The bank savings contract. Upon celebrating his 55th anniversary Mr.
(55) (let us call him so) decides to invest money to secure himself economically
in his old age. The first idea that occurs to him is to deposit a capital of S0 = 1
(e.g. one hundred thousand pounds) on a savings account today and draw the
entire amount with earned compound interest in 15 years, on his 70th birthday.
The account bears interest at rate i = 0.045 (4.5%) per year. In one year the
capital will increase to S1 = S0 +S0 i = S0(1+ i), in two years it will increase to
S = S1 +S1 i = S0(1 + i)2, and so on until in 15 years it will have accumulated
to

S15 = S0 (1 + i)15 = 1.04515 = 1.935 . (1.1)

This simple calculation takes no account of the fact that (55) will die sooner
or later, maybe sooner than 15 years. Suppose he has no heirs (or he dislikes
the ones he has) so that in the event of death before 70 he would consider his
savings waisted. Checking population statistics he learns that about 75% of
those who are 55 will survive to 70. Thus, the relevant prospects of the contract
are:
– with probability 0.75 (55) survives to 70 and will then possess S15;
– with probability 0.25 (55) dies before 70 and loses the capital.
In this perspective the expected amount at (55)’s disposal after 15 years is

0.75S15 . (1.2)

B. A small scale mutual fund. Having thought things over, (55) seeks to
make the following mutual arrangement with (55)∗ and (55)∗∗, who are also
55 years old and are in exactly the same situation as (55). Each of the three
deposits S0 = 1 on the savings account, and those who survive to 70, if any, will
then share the total accumulated capital 3S15 equally.

The prospects of this scheme are given in Table 1.1, where + and − signify
survival and death, respectively, L70 is the number of survivors at age 70, and
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Table 1.1: Possible outcomes of a savings scheme with three participants.

(55) (55)∗ (55)∗∗ L70 3S15/L70 Probability

+ + + 3 S15 0.75 · 0.75 · 0.75 = 0.422
+ + − 2 1.5S15 0.75 · 0.75 · 0.25 = 0.141
+ − + 2 1.5S15 0.75 · 0.25 · 0.75 = 0.141
+ − − 1 3S15 0.75 · 0.25 · 0.25 = 0.047
− + + 2 1.5S15 0.25 · 0.75 · 0.75 = 0.141
− + − 1 3S15 0.25 · 0.75 · 0.25 = 0.047
− − + 1 3S15 0.25 · 0.25 · 0.75 = 0.047
− − − 0 undefined 0.25 · 0.25 · 0.25 = 0.016

3S15/L70 is the amount at disposal per survivor (undefined if L70 = 0). There
are now the following possibilities:
– with probability 0.422 (55) survives to 70 together with (55)∗ and (55)∗∗ and
will then possess S15;
– with probability 2 · 0.141 = 0.282 (55) survives to 70 together with one more
survivor and will then possess 1.5S15;
– with probability 0.047 (55) survives to 70 while both (55)∗ and (55)∗∗ die
(may they rest in peace) and he will cash the total savings 3S15;
– with probability 0.25 (55) dies before 70 and will get nothing.
This scheme is superior to the one described in Paragraph A, with separate
individual savings contracts: If (55) survives to 70, which is the only scenario of
interest to him, he will cash no less than the amount S15 he would cash under
the individual scheme, and it is likely that he will get more. As compared with
(1.2), the expected amount at (55)’s disposal after 15 years is now

0.422 · S15 + 0.282 · 1.5 · S15 + 0.047 · 3S15 = 0.985S15 .

The point is that under the present scheme the savings of those who die are
bequeathed to the survivors. Thus the total savings are retained for the group
so that nothing is left to others unless the unlikely thing happens that the
whole group goes extinct within the term of the contract. This is essentially
the kind of solidarity that unites the members of a pension fund. From the
point of view of the group as a whole, the probability that all three participants
will die before 70 is only 0.016, which should be compared to the probability
0.25 that (55) will die and lose everything under the individual savings program.

C. A large scale mutual scheme. Inspired by the success of the mutual
fund idea already on the small scale of three participants, (55) starts to play
with the idea of extending it to a large number of participants. Let us assume
that a total number of L55 persons, who are in exactly the same situation as
(55), agree to join a scheme similar to the one described for the three. Then the
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total savings after 15 years amount to L55 S15, which yields an individual share
equal to

L55 S15

L70
(1.3)

to each of the L70 survivors if L70 > 0. By the so-called law of large numbers,
the proportion of survivors L70/L55 tends to the individual survival probability
0.75 as the number of participants L55 tends to infinity. Therefore, as the
number of participants increases, the individual share per survivor tends to

1

0.75
S15 , (1.4)

and in the limit (55) is faced with the following situation:
– with probability 0.75 he survives to 70 and gets 1

0.75S15;
– with probability 0.25 he dies before 70 and gets nothing.
The expected amount at (55)’s disposal after 15 years is

0.75
1

0.75
S15 = S15, (1.5)

the same as (1.1). Thus, the bequest mechanism of the mutual scheme has
raised (55)’s expectations of future pension to what they would be with the
individual savings contract if he were immortal. This is what we could expect
since, in an infinitely large scheme, some will survive to 70 for sure and share the
total savings. All the money will remain in the scheme and will be redistributed
among its members by the lottery mechanism of death and survival.

The fact that L70/L55 tends to 0.75 as L55 increases, and that (1.3) thus
stabilizes at (1.4), is precisely what is meant by saying that “insurance risk is
diversifiable”. The risk can be eliminated by increasing the size of the portfolio.

1.2 Mortality

A. Life and death in the classical actuarial perspective. Insurance
mathematics is widely held to be boring. Hopefully, the present text will not
support that prejudice. It must be admitted, however, that actuaries use to
cheer themselves up with jokes like: “What is the difference between an English
and a Sicilian actuary? Well, the English actuary can predict fairly precisely
how many English citizens will die next year. Likewise, the Sicilian actuary can
predict how many Sicilians will die next year, but he can tell their names as
well.” The English actuary is definitely the more typical representative of the
actuarial profession since he takes a purely statistical view of mortality. Still he
is able to analyze insurance problems adequately since what insurance is essen-
tially about, is to average out the randomness associated with the individual
risks.

Contemporary life insurance is based on the paradigm of the large scheme
(diversification) studied in Paragraph 1.1C. The typical insurance company
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serves tens and some even hundreds of thousands of customers, sufficiently many
to ensure that the survival rates are stable as assumed in Paragraph 1.1C. On
the basis of statistical investigations the actuary constructs a so-called decre-
ment series, which takes as it starting point a large number `0 of new-born and,
for each age x = 1, 2, . . ., specifies the number of survivors, `x.

Table 1.2: Excerpt from the mortality table G82M

x: 0 25 50 60 70 80 90

`x: 100 000 98 083 91 119 82 339 65 024 37 167 9 783
dx: 58 119 617 1 275 2 345 3 111 1 845
qx: .000579 .001206 .006774 .015484 .036069 .083711 .188617
px: .999421 .998794 .993226 .984516 .963931 .916289 .811383

Table 1.2 is an excerpt of the table used by Danish insurers to describe
the mortality of insured Danish males. The second row in the table lists some
entries of the decrement series. It shows e.g. that about 65% of all new-born
will celebrate their 70th anniversary. The number of survivors decreases with
age:

`x ≥ `x+1 .

The difference
dx = `x − `x+1

is the number of deaths at age x (more precisely, between age x and age x+ 1).
These numbers are shown in the third row of the table. It is seen that the number
of deaths peaks somewhere around age 80. From this it cannot be concluded
that 80 is the “most dangerous age”. The actuary measures the mortality at
any age x by the one-year mortality rate

qx =
dx

`x
,

which tells how big proportion of those who survive to age x will die within one
year. This rate, shown in the fourth row of the table, increases with the age.
For instance, 8.4% of the 80 years old will die within a year, whereas 18.9% of
the 90 years old will die within a year. The bottom row shows the one year
survival rates

px =
`x+1

`x
= 1 − qx .

We shall present some typical forms of products that an insurance company
can offer to (55) and see how they compare with the corresponding arrange-
ments, if any, that (55) can make with his bank.
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1.3 Banking

A. Interest. Being unable to find his perfect matches (55)∗, (55)∗∗,..., our
hero (55) abandons the idea of creating a mutual fund and resumes discussions
with his bank.

The bank operates with annual interest rate it in year t = 1, 2, .... Thus,
a unit S0 = 1 deposited at time 0 will accumulate with compound interest as
follows: In one year the capital increases to S1 = S0 + S0 i1 = 1 + i1, in two
years it increases to S2 = S1 +S1 i2 = (1+ i1)(1+ i2), and in t years it increases
to

St = (1 + i1) · · · (1 + it) , (1.6)

called the t-year accumulation factor.
Accordingly, the present value at time 0 of a unit withdrawn in j years is

Sj
−1 =

1

Sj

, (1.7)

called the j-year discount factor since it is what the bank would pay you at time
0 if you sell to it (discount) a default-free claim of 1 at time j.

Similarly, the value at time t of a unit deposited at time j < t is

(1 + ij+1) · · · (1 + it) =
St

Sj

,

called the accumulation factor over the time period from j to t, and the value
at time t of a unit withdrawn at time j > t is

1

(1 + it+1) · · · (1 + ij)
=
St

Sj

,

the discount factor over the time period from t to j.
In general, the value at time t of a unit due at time j is St Sj

−1, an ac-
cumulation factor if j < t and a discount factor if j > t (and of course 1 if
j = t).

From (1.6) it follows that St = St−1(1 + it), hence

it =
St − St−1

St−1
,

which expresses the interest rate in year t as the relative increase of the balance
in year t.

B. Saving in the bank. A general savings contract over n years specifies
that at each time t = 0, ..., n (55) is to deposit an amount ct (contribution) and
withdraw an amount bt (benefit). The net amount of deposit less withdrawal at
time t is ct − bt. At any time t the cash balance of the account, henceforth also
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called the retrospective reserve, is the total of past (including present) deposits
less withdrawals compounded with interest,

Ut = St

t
∑

j=0

Sj
−1(cj − bj) . (1.8)

It develops in accordance with the “forward” recursive scheme

Ut = Ut−1(1 + it) + ct − bt , (1.9)

t = 1, 2, . . . , n, commencing from

U0 = c0 − b0 .

Each year (55) will receive from the bank a statement of account with the
calculation (1.9), showing how the current balance emerges from the previous
balance, the interest earned meanwhile, and the current movement (deposit less
withdrawal).

The balance of a savings account must always be non-negative,

Ut ≥ 0 , (1.10)

and at time n, when the contract terminates and the account is closed, it must
be null,

Un = 0 . (1.11)

In the course of the contract the bank must maintain a so-called prospective
reserve to meet its future liabilities to the customer. At any time t the adequate
reserve is

Vt = St

n
∑

j=t+1

Sj
−1(bj − cj) , (1.12)

the present value of future withdrawals less deposits . Similar to (1.9), the
prospective reserve is calculated by the “backward” recursive scheme

Vt = (1 + it+1)
−1(bt+1 − ct+1 + Vt+1) , (1.13)

t = n− 1, n− 2, . . . , 0, starting from

Vn = 0 .

The constraint (1.11) is equivalent to

n
∑

j=0

Sj
−1cj −

n
∑

j=0

Sj
−1bj = 0 , (1.14)
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which says that the discounted value of deposits must be equal to the discounted
value of the withdrawals. It implies that, at any time t, the retrospective reserve
equals the prospective reserve,

Ut = Vt ,

as is easily verified. (Insert the defining expression (1.8) with t = n into (1.11),
split the sum

∑n
j=0 into

∑t
j=0 +

∑n
j=t+1, and multiply with St/Sn, to arrive at

Ut − Vt = 0.)

C. The endowment contract. The bank proposes a savings contract accord-
ing to which (55) saves a fixed amount c annually in 15 years, at ages 55,...,69,
and thereafter withdraws b = 1 (one hundred thousand pounds, say) at age 70.
Suppose the annual interest rate is fixed and equal to i = 0.045, so that the
accumulation factor in t years is St = (1 + i)t, the discount factor in j years is
Sj

−1 = (1 + i)−j , and the time t value of a unit due at time j is

St Sj
−1 = (1 + i)t−j .

For the present contract the equivalence requirement (1.14) is

14
∑

j=0

(1 + i)−jc − (1 + i)−151 = 0 ,

from which the bank determines

c =
(1 + i)−15

∑14
j=0(1 + i)−j

= 0.04604 , (1.15)

Due to interest, this amount is considerably smaller than 1/15 = 0.06667, which
is what (55) would have to save per year if he should choose to tuck the money
away under his mattress.

1.4 Insurance

A. The life endowment. Still, to (55) 0.04604 (four thousand six hundred
and four pounds) is a considerable expense. He believes in a life before death,
and it should be blessed with the joys that money can buy. He talks to an insur-
ance agent, and is delighted to learn that, under a life annuity policy designed
precisely as the savings scheme, he would have to deposit an annual amount of
only 0.03743 (three thousand seven hundred and forty three pounds).

The insurance agent explains: The calculations of the bank depend only on
the amounts ct − bt and would apply to any customer (x) who would enter into
the same contract at age x, say. Thus, to the bank the customer is really an
unknown Mr. X. To the insurance company, however, he is not just Mr. X, but
the significant Mr. (x) now x years old. Working under the hypothesis that (x)
is one of the `x survivors at age x in the decrement series and that they all hold
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identical contracts, the insurer offers (x) a general life annuity policy whereby
each deposit or withdrawal is conditional on survival. For the entire portfolio
the retrospective reserve at time t is

Up
t = St

t
∑

j=0

Sj
−1(cj − bj) `x+j (1.16)

= Up
t−1(1 + it) + (ct − bt) `x+t . (1.17)

The prospective portfolio reserve at time t is

V p
t = St

n
∑

j=t+1

Sj
−1(bj − cj)`x+j (1.18)

= (1 + it+1)
−1((bt+1 − ct+1)`x+t+1 + V p

t+1) . (1.19)

In particular, for the life endowment analogue to (55)’s savings contract,
the only payments are ct = c for t = 0, . . . , 14 and b15 = 1. The equivalence
requirement (1.14) becomes

14
∑

j=0

(1 + i)−jc `55+j − (1 + i)−151 `70 = 0 , (1.20)

from which the insurer determines

c =
(1 + i)−15 `70

∑14
j=0(1 + i)−j`55+j

= 0.03743 . (1.21)

Inspection of the expressions in (1.15) and (1.21) shows that the latter is
smaller due to the fact that `x is decreasing. This phenomenon is known as
mortality bequest since the savings of the deceased are bequeathed to the sur-
vivors. We shall pursue this issue in Paragraph C below.

B. A life assurance contract. Suppose, contrary to the former hypothesis,
that (55) has dependents whom he cares for. Then he might be concerned that,
if he should die within the term of the contract, the survivors in the pension
scheme will be his heirs, leaving his wife and kids with nothing. He figures that,
in the event of his untimely death before the age of 70, the family would need
a down payment of b = 1 (one hundred thousand pounds) to compensate the
loss of their bread-winner. The bank can not help in this matter; the benefit
of b would have to be raised immediately since (55) could die tomorrow, and
it would be meaningless to borrow the money since full repayment of the loan
would be due immediately upon death. The insurance company, however, can
offer (55) a so-called term life assurance policy that provides the wanted death
benefit against an affordable annual premium of c = 0.01701.

The equivalence requirement (1.14) now becomes

14
∑

j=0

(1 + i)−jc `55+j −
15
∑

j=1

(1 + i)−j 1 d55+j−1 = 0 , (1.22)
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from which the insurer determines

c =

∑15
j=1(1 + i)−j d55+j−1
∑14

j=0(1 + i)−j`55+j

= 0.01701 . (1.23)

C. Individual reserves and mortality bequest. In the insurance schemes
described above the contracts of deceased members are void, and the reserves
of the portfolio are therefore to be shared equally between the survivors at any
time. Thus, we introduce the individual retrospective and prospective reserves
at time t,

Ut = Up
t /`x+t , Vt = V p

t /`x+t .

Since we have established that Ut = Vt, we shall henceforth be referring to them
as the individual reserve or just the reserve.

For the general pension insurance contract in Paragraph A we get from (1.17)
that the individual reserve develops as

Ut = Ut−1
`x+t−1

`x+t

(1 + it) + (ct − bt)

= Ut−1

(

1 +
dx+t−1

lx+t

)

(1 + it) + (ct − bt) . (1.24)

The bequest mechanism is clearly seen by comparing (1.24) to (1.9): the ad-
ditional term Ut−1(1 + it) dx+t−1/lx+t in the latter is precisely the share per
survivor of the savings left over to them by those who died during the year.
Virtually, the mortality bequest acts as an increase of the interest rate.

Table 1.3 shows how the reserve develops for the endowment contracts of-
fered by the bank and the insurance company, respectively. It is seen that the
insurance scheme requires a smaller reserve than the bank savings scheme.

Table 1.3: Reserve Ut = Vt for bank savings account and for life endowment
insurance

t : 0 4 9 14

Savings account: 0.04604 0.25188 0.56577 0.95694
Life endowment: 0.03743 0.21008 0.49812 0.92523

For the life assurance described in Paragraph B we obtain similarly that the
individual reserve develops as as shown in Table 1.4.

D. Insurance risk in a finite portfolio. The perfect balance in (1.20) and
(1.22) rests on the hypothesis that the decrement series `x+t follows the pattern
of an infinitely large portfolio. In a finite portfolio, however, the factual numbers
of survivors, Lx+t, will be subject to randomness and will be determined by
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Table 1.4: Reserve Ut = Vt for a term life assurance of 1 against level premium
in 15 years from age 55

t : 0 4 9 14

0.01701 0.04460 0.06010 0.03170

the survival probabilities px+t (some of which are) shown in Table 1.2. The
difference between discounted premiums and discounted benefits,

D =
14
∑

j=0

(1 + i)−j0.0374L55+j − (1 + i)−15 L70 ,

will be a random quantity. It will have expected value 0, and its standard devia-
tion measures how much insurance risk is left due to “imperfect diversification”
in a finite portfolio. An easy exercise in probability calculus shows that the
standard deviation of D/L55 is 1√

L55
0.1685. It tends to 0 as L55 goes to infinity.

For the term insurance contract the corresponding quantity is 1√
L55

0.3478,

indicating that term insurance is a more risky business than life endowment.

1.5 With-profit contracts: Surplus and bonus

A. With-profit contracts. Insurance policies are long term contracts, with
time horizons wide enough to capture significant variations in interest and mor-
tality. For simplicity we shall focus on interest rate uncertainty and assume
that the mortality law remains unchanged over the term of the contract. We
will discuss the issue of surplus and bonus in the framework of the life endow-
ment contract considered in Paragraph 1.4.A.

At time 0, when the contract is written with benefits and premiums binding
to both parties, the future development of the interest rates it is uncertain,
and it is impossible to foresee what premium level c will establish the required
equivalence

14
∑

j=0

Sj
−1c `55+j = S15

−11 `70 , (1.25)

with
Sj = (1 + i1) · · · (1 + ij) .

If it should turn out that, due to adverse development of interest and mortality,
premiums are insufficient to cover the benefit, then there is no way the insurance
company can avoid a loss; it cannot reduce the benefit and it cannot increase
the premiums since these were irrevocably set out in the contract at time 0. The
only way the insurance company can prevent such a loss, is to charge a premium
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’on the safe side’, high enough to be adequate under all likely scenarios. Then,
if everything goes well, a surplus will accumulate. This surplus belongs to the
insured and is to be repaid as so-called bonus, e.g. as increased benefits or
reduced premiums.

B. First order basis. The usual way of setting premiums to the safe side is
to base the calculation of the premium level and the reserves on a provisional
first order basis, assuming a fixed annual interest rate i∗, which represents a
worst case scenario and leads to higher premium and reserves than are likely
to be needed. The corresponding accumulation factor is S∗

t = (1 + i∗)t. The
individual reserve based on the prudent first order assumptions is called the first
order reserve, and we denote it by V ∗

t as before. The premiums are determined
so as to satisfy equivalence under the first order assumption.

C. Surplus. At any time t we define the technical surplus Qt as the difference
between the retrospective reserve under the factual interest development and the
retrospective reserve under the first order assumption:

Qt = St

t
∑

j=0

Sj
−1 c `55+j − S∗

t

t
∑

j=0

S∗
j
−1 c `55+j

= St

t−1
∑

j=0

Sj
−1 c `55+j − S∗

t

t−1
∑

j=0

S∗
j
−1 c `55+j .

Setting St = St−1(1+ it) and S∗
t = S∗

t−1(1+ i∗), writing 1+ i∗ = 1+ it− (it− i∗)
in the latter, and rearranging a bit, we find that Qt develops as

Qt = Qt−1(1 + it) + V ∗
t−1 (it − i∗) `55+t−1 , (1.26)

commencing from
Q0 = 0 .

The contribution to the technical surplus in year t is

V ∗
t−1 (it − i∗) `55+t−1 ,

which is easy to interpret: it is precisely the interest earned on the reserve in
excess of what has been assumed under the prudent first order assumption.

The surplus is to be redistributed as bonus. Several bonus schemes are used
in practice. One can repay currently the contribution V ∗

t−1 (it − i∗) `55+t−1 as
so-called cash bonus (a premium deductible), whereby each survivor at time t
will receive

V ∗
t−1 (it − i∗) `55+t−1/`55+t .

Another possibility is to postpone repayment until the term of the contracts and
grant so-called terminal bonus to the survivors (an added benefit), the amount
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per survivor being b+ given by

S15

15
∑

j=1

Sj
−1 V ∗

j−1 (ij − i∗) `55+j = `70b
+ .

Between these two solutions there are countless other possibilities. In any
case, the point is that the financial risk can be eliminated: the insurer observes
the development of the factual interest and only in arrears repays the insured so
as to restore equivalence on the basis of the factual interest rate development.
This works well provided the first order interest rate is set on the safe side so
that it ≥ i∗ for all t.

There is a problem, however: Negative bonus can never be applied. There-
fore the insurer will suffer a loss if the factual interest falls short of the technical
interest rate. In this perspective cash bonus is the most risky solution and
terminal bonus is the least risky solution.

If the financial market is sufficiently rich in assets, then the interest rate
guarantee that is thus inherent in the with-profit policy can be priced, and the
insured can be charged an extra premium to cover it. This would ultimately
eliminate the financial risk by diversifying, not only the insurance portfolio, but
also the investment portfolio.

1.6 Unit-linked insurance

A quite different way of going about the financial risk is the so-called unit-linked
contract. As the name indicates, the idea is to relate payments directly to the
development of the investment portfolio, i.e. the interest rate. Consider the
balance equation for an endowment of b against premium ct in year t = 1, . . . , 14:

S15

14
∑

t=0

St
−1 ct `55+t − b `70 = 0 . (1.27)

A perfect link between payments and investments performance is obtained by
letting the premiums and the benefit be inflated by the index S,

ct = St c ,

and
b15 = S15 1 .

Here c is a baseline premium, which is to be determined. Then (1.27) becomes

S15

14
∑

t=0

St
−1 St c `55+t − S15 `70 = 0 ,

which reduces to
14
∑

t=0

c `55+t − `70 = 0 ,
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and we find

c =
`70

∑14
t=0 `55+t

.

Again financial risk has been perfectly eliminated and diversification of the
insurance portfolio is sufficient to establish balance between premiums and ben-
efits.

Perfect linking as defined here is not common in practice. Presumably,
remnants of social welfare thinking have led insurers to modify the unit-linked
concept in various ways, typically by introducing a guarantee on the sum insured
to the effect that it cannot be less than 1 (say). Also the premium is usually
not index-linked. Under such modified variations of the unit-linked policy one
cannot in general obtain balance by the simple device above. However, the
problem can in principle be resolved by calculating the price of the financial
claim thus introduced and to charge the insured with the needed additional
premium.

1.7 Issues for further study

The simple pieces of actuarial reasoning in the previous sections involve two
constituents, interest and mortality, and these are to be studied separately in the
two following chapters. Next we shall escalate the discussion to more complex
situations. For instance, suppose (55) wants a life insurance that is paid out
only if his wife survives him, or with a sum insured that depends on the number
of children that are still alive at the time of his death. Or he may demand a
pension payable during disability or unemployment. We need also to study the
risk associated with insurance, which is due to the uncertain developments of the
insurance portfolio and the investment portfolio: the deaths in a finite insurance
portfolio do not follow the mortality table (1.2) exactly, and the interest earned
on the investments may differ from the assumed 4.5% per year, and neither can
be predicted precisely at the outset when the policies are issued.

In a scheme of the classical mutual type the problem was how to share ex-
isting money in a fair manner. A typical insurance contract of today, however,
specifies that certain benefits will be paid contingent on certain events related
only to the individual insured under the contract. An insurance company work-
ing with this concept in a finite portfolio, with imperfect diversification of insur-
ance risk, faces a risk of insolvency as indicated in Paragraph 1.3.D. In addition
comes the financial risk, and ways of getting around that were indicated in Sec-
tions 1.5 and 1.6. The total risk has to be controlled in some way. With these
issues in mind, we now commence our studies of the theory of life insurance.

The reader is advised to consult the following authoritative textbooks on the
subject: [6] (a good classic – sharpen your German!), [4], [29] (lexicographic,
treats virtually every variation of standard insurance products, and includes
a good chapter on population theory), [45] (an excellent early text based on
probabilistic models, placing emphasis on risk considerations), [11], [15] (an
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original approach to the field – sharpen your French!), and [23] (the most recent
of the mentioned texts, still classical in its orientation).



Chapter 2

Payment streams and

interest

2.1 Basic definitions and relationships

A. Streams of payments. What is money? In lack of a precise definition
you may add up the face values of the coins and notes you find in your purse
and say that the total amount is your money. Now, if you do this each time
you open your purse, you will realize that the development of the amount over
time is important. In the context of insurance and finance the time aspect is
essential since payments are usually regulated by a contract valid over some
period of time. We will give precise mathematical content to the notion of
payment streams and, referring to Appendix A, we deal only with their proper-
ties as functions of time and do not venture to discuss their possible stochastic
properties for the time being.

To fix ideas and terminology, consider a financial contract commencing at
time 0 and terminating at a later time n (≤ ∞), say, and denote by At the
total amount paid in respect of the contract during the time interval [0, t]. The
payment function {At}t≥0 is assumed to be the difference of two non-decreasing,
finite-valued functions representing incomes and outgoes, respectively, and is
thus of finite variation (FV). Furthermore, the payment function is assumed to
be right-continuous (RC). From a practical point of view this assumption is just
a matter of convention, stating that the balance of the account changes at the
time of any deposit or withdrawal. From a mathematical point of view it is
convenient, since payment functions can then serve as integrators. In fact, we
shall restrict attention to payment functions that are piece-wise differentiable
(PD):

At = A0 +

∫ t

0

aτ dτ +
∑

0<τ≤t

∆Aτ , (2.1)

where ∆Aτ = Aτ − Aτ−. The integral adds up payments that fall due con-

19
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tinuously, and the sum adds up lump sum payments. In differential form (2.1)
reads

dAt = at dt+ ∆At . (2.2)

It seems natural to count incomes as positive and outgoes as negative. Some-
times, and in particular in the context of insurance, it is convenient to work with
outgoes less incomes, and to avoid ugly minus signs we introduce B = −A.

Having explained what payments are, let us now see how they accumulate
under the force of interest. There are monographs written especially for actu-
aries on the topic, see [31] and [17], but we will gather the basics of the theory
in only a few lines.

B. Interest. Suppose money is currently invested on (or borrowed from) an
account that bears interest. This means that a unit deposited on the account at
time s gives the account holder the right to cash, at any other time t, a certain
amount S(s, t), typically different from 1. The function S must be strictly
positive, and we shall argue that it must satisfy the functional relationship

S(s, u) = S(s, t)S(t, u) , (2.3)

implying, of course, that S(t, t) = 1 (put s = t = u and use strict positivity):
If the account holder invests 1 at time s, he may cash the amount on the left
of (2.3) at time u. If he instead withdraws the value S(s, t) at time t and
immediately reinvests it again, he will obtain the amount on the right of (2.3)
at time u. To avoid arbitrary gains, so-called arbitrage, the two strategies must
give the same result.

It is easy to verify that the function S(s, t) satisfies (2.3) if and only if it is
of the form

S(s, t) =
St

Ss

(2.4)

for some strictly positive function St (allowing an abuse of notation), which can
be taken to satisfy

S0 = 1 .

Then St must be the value at time t of a unit deposited at time 0, and we call
it the accumulation function. Correspondingly, S−1

t is the value at time 0 of a
unit withdrawn at time t, and we call it the discount function.

We will henceforth assume that St is of the form

St = e
∫

t
0

r , S−1
t = e−

∫

t
0

r , (2.5)

where rt is some piece-wise continuous function, usually positive. (The short-
hand exemplified by

∫

r =
∫

rτ dτ will be in frequent use throughout.) Accu-
mulation factors of this form are invariably used in basic banking operations
(loans and savings) and also for bonds issued by governments and corporations.
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Under the rule (2.5) the dynamics of accumulation and discounting are given
by

dSt = St rt dt , (2.6)

dS−1
t = −S−1

t rt dt . (2.7)

The relation (2.6) says that the interest earned in a small time interval is pro-
portional to the length of the interval and to the current amount on deposit.
The proportionality factor rt is called the force of interest or the (instantaneous)
interest rate at time t. In integral form (2.6) reads

St = Ss +

∫ t

s

Sτ rτ dτ , s ≤ t , (2.8)

and (2.7) reads S−1
u = S−1

t −
∫ u

t
S−1

τ rτ dτ or

S−1
t = S−1

u +

∫ t

s

S−1
τ rτ dτ , t ≤ u . (2.9)

We will be working with the expressions

S(s, t) = e−
∫

t
s

r

for the general discount factor when t ≤ s and

S(t, u) = e
∫

u
t

r

for the general accumulation factor when t ≤ u.
By constant interest rate r we have St = ert and and S−1

t = e−rt. Upon
introducing the the annual interest rate

i = er − 1 , (2.10)

whereby the annual accumulation factor is S1 = (1+i), and the annual discount
factor

v = e−r =
1

1 + i
, (2.11)

we have

St = (1 + i)t , S−1
t = vt . (2.12)

C. Valuation of payment streams. Suppose that the incomes/outgoes cre-
ated by the payment stream A are currently deposited on/drawn from an ac-
count which bears interest at rate rt at time t. By (2.4) the value at time t of the

amount dAτ paid in the small time interval around time τ is e
∫ t
0

re−
∫ τ
0

r dAτ .
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Summing over all time intervals we get the value at time t of the entire payment
stream,

e
∫ t
0

r

∫ n

0−
e−

∫ τ
0

r dAτ = Ut − Vt ,

where

Ut = e
∫

t
0

r

∫ t

0−
e−

∫

τ
0

r dAτ =

∫ t

0−
e
∫

t
τ

r dAτ (2.13)

is the accumulated value of past incomes less outgoes, and (recall the convention
B = −A)

Vt = e
∫

t
0

r

∫ t

0−
e−

∫

τ
0

r dBτ =

∫ n

t

e−
∫

τ
t

r dBτ (2.14)

is the discounted value of future outgoes less incomes. This decomposition is
particularly relevant for payments governed by some contract; Ut is the cash
balance, that is, the amount held at the time of consideration, and Vt is the
future liability. The difference between the two is the current value of the
contract.

The development of the cash balance can be viewed in various ways: Appli-
cation of (A.8) to (2.13), taking Xt = e

∫ t
0

r (continuous, with dynamics given

by (2.6)) and Yt =
∫ t

0− e
−
∫ τ
0

r dAτ , yields

dUt = Utrt dt+ dAt , (2.15)

By definition,

U0 = A0 . (2.16)

Integrating (2.15) from 0 to t, using the initial condition (2.16), gives

Ut = At +

∫ t

0

Uτrτ dτ . (2.17)

An alternative expression,

Ut = At +

∫ t

0

e
∫

τ
t

rAτ rτ dτ , (2.18)

is derived from (2.13) upon applying the rule (A.9) of integration by parts:

∫ t

0−
e−

∫

τ
0

r dAτ = A0 +

∫ t

0

e−
∫

τ
0

r dAτ

= A0 + e−
∫

t
0

rAt −A0 −

∫ t

0

Aτe
−
∫

τ
0

r(−rτ ) dτ .

The relationships (2.15) – (2.18) show how the cash balance emerges from pay-
ments and earned interest. They are easy to interpret and can be read aloud in
non-mathematical terms.
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It follows from (2.18) that, if r ≥ 0, then an increase of A results in an
increase of U . In particular, advancing payments of a given amount produces a
bigger cash balance.

Likewise, from (2.14) we derive

dVt = Vtrt dt− dBt . (2.19)

By definition, if n <∞,

Vn = 0 , (2.20)

or, setting ∆Bn = Bn −Bn−,

Vn− = ∆Bn . (2.21)

Integrating (2.19) from t to n, using the ultimo condition (2.20), gives the
following analogue to (2.17):

Vt = Bn −Bt −

∫ n

t

Vτ rτ dτ . (2.22)

The analogue to (2.18) is

Vt = Bn −Bt −

∫ n

t

e−
∫ τ

t
r(Bn −Bτ ) rτ dτ . (2.23)

The last two relationships are valid for n = ∞ only if B∞ < ∞. Yet another
expression is

Vt = e−
∫ n

t
r(Bn −Bt) +

∫ n

t

e−
∫ τ

t
r(Bτ −Bt) rτ dτ , (2.24)

which is obtained upon integrating by parts in (2.23) or, simpler, multiplying
Bn −Bt with

1 = e−
∫

n
t

r −

∫ n

t

e−
∫

τ
t

r rτ dτ

(a twist on (2.9)) and gathering terms.
Again interpretations are easy. The relations (2.22) and (2.23) state, in

different ways, that the debt can be settled immediately at a price which is the
total debt minus the present value of future interest saved by advancing the
repayment. The relation (2.24) states that repayment can be postponed until
the term of the contract at the expense of paying interest on the outstanding
amounts meanwhile. It follows from (2.24) that, if r ≥ 0, then an increase of
the outstanding payments produces an increase in the reserve. In particular,
advancing payments of a given amount leads to a bigger reserve.

Typically, the financial contract will lay down that incomes and outgoes be
equivalent in the sense that

Un = 0 or V0− = 0 . (2.25)
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These two relationships are equivalent and they imply that, for any t,

Ut = Vt . (2.26)

We anticipate here that, in the insurance context, the equivalence requirement
is usually not exercised at the level of the individual policy: the very purpose of
insurance is to redistribute money among the insured. Thus the principle must
be applied at the level of the portfolio in some sense, which we shall discuss
later. Moreover, in insurance the payments, and typically also the interest rate,
are not known at the outset, so in order to establish equivalence one may have
to currently adapt the payments to the development in some way or other.

D. Some standard payment functions and their values. Certain simple
payment functions are so frequently used that they have been given names. An
endowment of 1 at time n is defined by At = εn(t), where

εn(t) =

{

0, 0 ≤ t < n ,
1, t ≥ n .

(2.27)

(The only payment is ∆An = 1.) By constant interest rate r the present value
at time 0 of the endowment is e−rn or, recalling the notation in Chapter 1, v−n.

An n-year immediate annuity of 1 per year consists of a sequence of endow-
ments of 1 at times t = 1, . . . , n, and is thus given by

At =

n
∑

j=1

εj(t) = [t] ∧ n .

By constant interest rate r its present value at time 0 is

an =

n
∑

j=1

e−rj =
1 − e−rn

i
, (2.28)

see (2.11) – (2.10).
An n-year annuity-due of 1 per year consists of a sequence of endowments

of 1 at times t = 0, . . . , n− 1, that is,

At =

n−1
∑

j=0

εj(t) = [t+ 1] ∧ n .

By constant interest rate its present value at time 0 is

än =

n−1
∑

j=0

e−rj = (1 + i) an = (1 + i)
1 − e−rn

i
. (2.29)

An n-year continuous annuity payable at level rate 1 per year is given by

At = t ∧ n . (2.30)
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For the case with constant interest rate its present value at time 0 is (recall
(2.11))

ān =

∫ n

0

e−rτ dτ =
1 − e−rn

r
. (2.31)

An everlasting (perpetual) annuity is called a perpetuity. Putting n = ∞ in
the (2.28), (2.29), and (2.31), we find the following expressions for the present
values of the immediate perpetuity, the perpetuity-due, and the continuous
perpetuity:

a∞ =
1

i
, ä∞ =

1 + i

i
, ā∞ =

1

r
. (2.32)

An m-year deferred n-year temporary life annuity commences only after m
years and is payable throughout n years thereafter. Thus it is just the difference
between an m + n year annuity and an m year annuity. For the continuous
version,

At = ((t−m) ∨ 0) ∧ n = (t ∧ (m+ n)) − (t ∧m) . (2.33)

Its present value at time 0 by constant interest is denoted ām|n and must be

ām|n = ām+n − ām = vmān . (2.34)

2.2 Application to loans

A. Basic features of a loan contract. Loans and saving accounts in banks
are particularly simple financial contracts for which interest is invariably calcu-
lated in accordance with (2.5). Let us consider a loan contract stipulating that
at time 0, say, the bank pays to the borrower an amount H , called the principal
(’first’ in Latin), and that the borrower thereafter pays back or amortizes the
loan in accordance with a non-decreasing payment function {At}0≤t≤n called
the amortization function. The term of the contract, n, is sometimes called
the duration of the loan. Without loss of generality we assume henceforth that
H = 1 (the principal is proclaimed monetary unit).

The amortization function is to fulfill A0 = 0 and An ≥ 1. The excess of
total amortizations over the principal is the total amount of interest. We denote
it by Rn and have An = 1+Rn. General principles of book-keeping, needed e.g.
for taxation purposes, prescribe that the decomposition of the amortizations
into repayments and interest be extended to all t ∈ [0, n]. Thus,

At = Ft +Rt , (2.35)

where F is a non-decreasing repayment function satisfying

F0 = 0 , Fn = 1
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(formally a distribution function due to the convention H = 1), and R is a
non-decreasing interest payment function.

Furthermore, the contract is required to specify a nominal force of interest
rt, 0 ≤ t ≤ n, under which the value of the amortizations should be equivalent
to the value of the principal, that is,

∫ n

0

e−
∫

τ
0

r dAτ = 1 . (2.36)

There are, of course, infinitely many admissible decompositions (2.35) satis-
fying (2.36). A clue to constraints on F and R is offered by the relationship

∫ n

0

e−
∫ τ
0

r dRτ =

∫ n

0

e−
∫ τ
0

r(1 − Fτ ) rτ dτ , (2.37)

which is obtained upon inserting (2.35) into (2.36) and then using integration
by parts on the term

∫ n

0 exp
(

−
∫ τ

0 r
)

dFτ = −
∫ n

0 exp
(

−
∫ τ

0 r
)

d(1 − Fτ ). The
condition (2.37) is trivially satisfied if

dRt = (1 − Ft) rt dt ,

that is, interest is paid currently and instantaneously on the outstanding (part
of the) principal, 1 − F . This will be referred to as natural interest.

Under the scheme of natural interest the relation (2.35) becomes

dAt = dFt + (1 − Ft) rt dt , (2.38)

which establishes a one-to-one correspondence between amortizations and re-
payments. The differential equation (2.38) is easily solved:

First, integrate (2.38) over (0, t] to obtain

At = Ft +

∫ t

0

(1 − Fτ ) rτ dτ , (2.39)

which determines amortizations when repayments are given.

Second, multiply (2.38) with exp
(

−
∫ t

0 r
)

to obtain exp
(

−
∫ t

0 r
)

dAt =

−d
(

exp
(

−
∫ t

0
r
)

(1 − Ft)
)

and then integrate over (t, n] to arrive at

∫ n

t

e−
∫ τ

t
rdAτ = 1 − Ft , (2.40)

which determines (outstanding) repayments when amortizations are given.
The relationships (2.39) and (2.40) are easy to interpret. For instance, since

1−Ft is the remaining debt at time t, (2.40) is the time t update of the equiva-
lence requirement (2.36). When it comes to numerical computation, the integral
expressions in (2.39) and (2.40) are not so useful, however. Whether we want to
compute A for given F or the other way around, we would use the differential
equation ( 2.38).
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B. Standard forms of loans. We list some standard types of loans, taking
now r constant. It is understood that we consider only times t in [0, n].

The simplest form is the fixed loan, which is repaid in its entirety only at
the term of the contract, that is, Ft = εn(t), the endowment defined by (2.27).
The amortization function is obtained directly from (2.39): At = εn(t) + rt.

A series loan has repayments of annuity form. The continuous version is
given by Ft = t/n, see (2.30). The amortization plan is obtained from (2.39):
At = t/n+ rt(1 − t/2n). Thus, dFt/dt = 1/n (fixed) and dRt/dt = r(1 − t/n)
(linearly decreasing).

An annuity loan is called so because the amortizations, which are the amounts
actually paid by the borrower, are of annuity form. The continuous version
is given by At = t/ān , see (2.36) and (2.31). From (2.40) we easily obtain
Ft = 1 − ān−t /ān . We find dFt/dt = e−r(n−t)/ān (exponentially increasing),

and dRt/dt = (1 − e−r(n−t))/ān .
Putting n = ∞, the fixed loan and the series loan both specialize to an

infinite loan without repayment. Amortizations consist only of interest, which
is paid indefinitely at rate r.



Chapter 3

Mortality

3.1 Aggregate mortality

A. The stochastic model. Consider an aggregate of individuals, e.g. the
population of a nation, the persons covered under an insurance scheme, or a
certain species of animals. The individuals need not be animate beings; for
instance, in engineering applications one is often interested in studying the work-
life until failure of technical components or systems. Having demographic and
actuarial problems in mind, we shall, however, be speaking of persons and life
lengths until death.

Due to differences in inheritance and living conditions and also due to events
of a more or less purely random nature, like accidents, diseases, etc., the life
lengths vary among individuals. Therefore, the life length of a randomly selected
new-born can suitably be represented by a non-negative random variable T with
a cumulative distribution function

F (t) = P[T ≤ t] . (3.1)

In survival analysis it is convenient to work with the survival function

F̄ (t) = P[T > t] = 1 − F (t) . (3.2)

Fig. 3.1 shows F and F̄ for the mortality law G82M used by Danish life
insurers as a basis for calculating premiums for insurances on male lives. Find
the median life length and some other percentiles of this life distribution by
inspection of the graphs!

We assume that F is absolutely continuous and denote the density by f ;

f(t) =
d

dt
F (t) = −

d

dt
F̄ (t) . (3.3)

The density of the distribution in Fig. 3.1 is depicted in Fig. 3.2. Find the
mode by inspection of the graph! Can you already at this stage figure why the
median and the mode of F in Fig. 3.1 appear to exceed those of the mortality
law of the Danish male population?

28
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Figure 3.1: The G82M mortality law: F broken line, F̄ whole line.
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Figure 3.2: The density f for the G82M mortality law.
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Figure 3.3: The force of mortality µ for the G82M mortality law.

B. The force of mortality. The density is the derivative of −F̄ , see (3.3).
When dealing with non-negative random variables representing life lengths, it
is convenient to work with the derivative of − ln F̄ ,

µ(t) =
d

dt
{− ln F̄ (t)} =

f(t)

F̄ (t)
, (3.4)

which is well defined for all t such that F̄ (t) > 0. For small, positive dt we have

µ(t)dt =
f(t)dt

F̄ (t)
=

P[t < T ≤ t+ dt]

P[T > t]
= P[T ≤ t+ dt |T > t] .

(In the second equality we have neglected a term o(dt) such that o(dt)/dt → 0
as dt ↘ 0.) Thus, for a person aged t, the probability of dying within dt
years is (approximately) proportional to the length of the time interval, dt. The
proportionality factor µ(t) depends on the attained age, and is called the force
of mortality at age t. It is also called the mortality intensity or hazard rate at
age t, the latter expression stemming from reliability theory, which is concerned
with the durability of technical devices.

Fig 3.3 shows the force of mortality corresponding to F in Fig. 3.1. Assess
roughly the probability that a t years old person will die within one year for
t = 60, 70, 80, 90!

Integrating (3.4) from 0 to t and using F̄ (0) = 1, we obtain

F̄ (t) = e−
∫ t
0

µ. (3.5)

Relation (3.4) may be cast as

f(t) = F̄ (t)µ(t) = e−
∫ t
0

µµ(t) , (3.6)

which says that the probability f(t)dt of dying in the age interval (t, t+dt) is the
product of the probability F̄ (t) of survival to t and the conditional probability
µ(t)dt of then dying before age t+ dt.

The functions F , F̄ , f , and µ are equivalent representations of the mortality
law; each of them corresponds one-to-one to any one of the others.

Since F̄ (∞) = 0, we must have
∫∞
0 µ = ∞. Thus, if there is a finite highest

attainable age ω such that F̄ (ω) = 0 and F̄ (t) > 0 for t < ω, then
∫ t

0 µ↗ ∞ as
t↗ ω. If, moreover, µ is non-decreasing, we must also have limt↗ω µ(t) = ∞.
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C. The distribution of the remaining life length. Let Tx denote the
remaining life length of an individual chosen at random from the x years old
members of the population. Then Tx is distributed as T − x, conditional on
T > x, and has cumulative distribution function

F (t|x) = P[T ≤ x+ t |T > x] =
F (x+ t) − F (x)

1 − F (x)

and survival function

F̄ (t|x) = P[T > x+ t |T > x] =
F̄ (x+ t)

F̄ (x)
, (3.7)

which are well defined for all x such that F̄ (x) > 0. The density of this condi-
tional distribution is

f(t|x) =
f(x+ t)

F̄ (x)
. (3.8)

Denote by µ(t|x) the force of mortality of the distribution F (t|x). It is obtained
by inserting f(t|x) from (3.8) and F̄ (t|x) from (3.7) in the places of f and F̄ in
the definition (3.4). We find

µ(t |x) = f(x+ t)/F̄ (x+ t) = µ(x+ t) . (3.9)

Alternatively, we could insert (3.5) into (3.7) to obtain

F̄ (t|x) = e−
∫

x+t
x

µ(y) dy = e−
∫

t
0

µ(x+τ)dτ , (3.10)

which by the general relation (3.5) entails (3.9). Relation (3.9) explains why
the force of mortality is particularly handy; it depends only on the attained age
x + t, whereas the conditional density in (3.8) depends in general on x and t
in a more complex manner. Thus, the properties of all the conditional survival
distributions are summarized by one simple function of the total age only.

Figs. 3.4 – 3.6 depict the functions F (t|70), F̄ (t|70), f(t|70), and µ(t|70) =
µ(70 + t) derived from the life time distribution in Fig. 3.1. Observe that the
first three of these functions are obtained simply by scaling up the correspond-
ing graphs in Figs. 3.1 – 3.2 by the factor 1/F̄ (70) over the interval (70,∞).
The force of mortality remains unchanged, however.

D. Expected values in life distributions. Let T be a non-negative random
variable with absolutely continuous distribution function F , and let G : R+ → R

be a PD and RC function such that E[G(T )] exists and is finite. Integrating by
parts in the defining expression

E[G(T )] =

∫ ∞

0

G(τ) dF (τ) ,
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Figure 3.4: Conditional distribution of remaining life length for the G82M mor-
tality law: F (t|70) broken line, F̄ (t|70) whole line.
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Figure 3.5: Conditional density of remaining life length f(t|70) for the G82M
mortality law.
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mortality law.
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we find

E[G(T )] = G(0) +

∫ ∞

0

F̄ (τ) dG(τ) . (3.11)

Taking G(t) = tk we get

E[T k] = k

∫ ∞

0

tk−1F̄ (t) dt , (3.12)

and, in particular,

E[T ] =

∫ ∞

0

F̄ (t)dt . (3.13)

The expected remaining life time for an x years old person is

ēx =

∫ ∞

0

F̄ (t |x) dt . (3.14)

From (3.10) it is seen that F̄ (t |x) is a decreasing function of x for fixed t if µ
is an increasing function. Then ēx is a decreasing function of x. One can easily
construct mortality laws for which F̄ (t |x) and ēx are not decreasing functions
of x.

Consider the more general function

G(t) = ((t ∧ b) − (t ∧ a))k =







0 , 0 ≤ t < a,
(t− a)k , a ≤ t < b,
(b− a)k , b ≤ t,

(3.15)

that is, dG(t) = k(t− a)k−1 dt for a < t < b and 0 elsewhere. It is realized that
G(T ) is the kth power of the number of years lived between age a and age b.
From (3.11) we obtain

E[G(T )] = k

∫ b

a

(t− a)k−1F̄ (t) dt , (3.16)

In particular, the expected number of years lived between the ages of a and

b is
∫ b

a
F̄ (t) dt, which is the area between the t-axis and the survival function

in the interval from a to b. The formula can be motivated directly by noting
that F̄ (t) dt is the expected number of years survived in the small time interval
(t, t + dt) and using that the “expected value of the sum is the sum of the
expected values”.

3.2 Some standard mortality laws

A. The exponential distribution. Suppose the force of mortality is µ(t) =
λ, independent of the age. This means there are no wear-out effects; each morn-
ing when you wake up (if you wake up) life starts anew with the same prospects
of longevity as for a new-born. Then the survival function (3.5) becomes

F̄ (t) = e−λt , (3.17)
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Figure 3.7: Two exponential laws with intensities λ1 and λ2 such that λ1 < λ2;
F̄1 and F̄2 whole line, f1 and f2 broken line.

and the density (3.6) becomes

f(t) = λe−λt . (3.18)

Thus, T is exponentially distributed with parameter λ. The conditional survival
function (3.10) becomes F̄ (t |x) = e−λt, hence

F̄ (t |x) = F̄ (t) , (3.19)

the same as (3.17). The exponential distribution is a suitable model for certain
technical devices like bulbs and electronic components. Unfortunately, it is not
so apt for description of human lives.

One could arrive at the exponential distribution by specifying that (3.19)
be valid for all x and t, that is, the probability of surviving another t years is
independent of the age x. Then, from the general relation (3.7) we get

F̄ (x+ t) = F̄ (x)F̄ (t) (3.20)

for all non-negative x and t. It follows by induction that for each pair of positive
integers m and n, F̄ (m

n
) = F̄ ( 1

n
)m = F̄ (1)

m
n , hence

F (t) = F̄ (1)t (3.21)

for all positive rational t. Since F̄ is right-continuous, (3.21) must hold true for
all t > 0. Putting F̄ (1) = e−λ, we arrive at (3.17).

Fig. 3.7 shows the survival function and the density for two different values
of λ.
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B. The Weibull distribution. The intensity of this distribution is of the
form

µ(t) = βα−βtβ−1 , (3.22)

α, β > 0. The corresponding survival function is F̄ (t) = exp
(

−( t
α
)β
)

.
If β > 1, then µ(t) is increasing, and if β < 1, then µ(t) is decreasing. If

β = 1, the Weibull law reduces to the exponential law. Draw the graphs of F̄
and f for some different choices of α and β!

We have µ(x+ t) = βα−β(x+ t)β−1, and, by virtue of (3.22), F̄ (t |x) is not
a Weibull law.

C. The Gompertz-Makeham distribution. This distribution is widely
used as a model for survivorship of human lives, especially in the context of life
insurance. Thus, as it will be frequently referred to, we shall use the acronym
G-M for this law. Its mortality intensity is of the form

µ(t) = α+ βeγt , (3.23)

α, β ≥ 0. The corresponding survival function is

F̄ (t) = exp

(

−

∫ t

0

(α+ βeγs)ds

)

= exp
(

−αt− β(eγt − 1)/γ
)

. (3.24)

If β > 0 and γ > 0, then µ(t) is an increasing function of t. The constant
term α accounts for age-independent causes of death like certain accidents and
epidemic diseases, and the term βeγt accounts for all kinds of wear-out effects
due to aging.

We have µ(x + t) = α + βeγxeγt, and so (3.23) shows that F̄ (t|x) is also a
G-M survival function with parameters α, βeγx, γ. The special case α = 0 is
referred to as the (pure) Gompertz law.

The G82M mortality law depicted in Fig. 3.1 is the G-M law with

α = 5 · 10−4 , β = 7.5858 · 10−5 , γ = ln(1.09144) . (3.25)

Table E.1 in Appendix E shows µ(t), F̄ (t) and f(t) for integer t.

3.3 Actuarial notation

A. Actuaries in all countries – unite! The International Association of
Actuaries (IAA) has laid down a standard notation, which is generally accepted
among actuaries all over the world. Familiarity with this notation is a must for
anyone who wants to communicate in writing or reading with actuaries, and we
shall henceforth adopt it in those simple situations where it is applicable.
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B. A list of some standard symbols. According to the IAA standard, the
quantities introduced so far are denoted as follows:

tqx = F (t |x) , (3.26)

tpx = F̄ (t |x) , (3.27)

µx+t = µ(x+ t) . (3.28)

In particular, tq0 = F (t) and tp0 = F̄ (t). One-year death and survival proba-
bilities are abbreviated as

qx = 1qx , px = 1px . (3.29)

Frequently used is also the “n-year deferred probability of death within m
years”,

n|mqx = m+nqx − nqx = npx − m+npx = npx mqx+n . (3.30)

The formulas in Section 3.1 are easily translated, e.g.

tpx = exp(−

∫ t

0

µx+τ dτ), (3.31)

f(t |x) = tpxµx+t, (3.32)

ēx =

∫ ∞

0
tpxdt. (3.33)

Frequently actuaries work with expected numbers of survivors instead of
probabilities. Consider a population of l0 new-born who are subject to the
same law of mortality given by (3.28). The expected number of survivors at age
x is

lx = l0 xp0 . (3.34)

The function {lx; x > 0} is called the decrement function or, when considered
only at integer values of x, the decrement series. Expressed in terms of the
decrement function we find e.g.

tpx = lx+t/lx , (3.35)

µx+t = −l′x+t/lx+t , (3.36)

f(t |x) = −l′x+t/lx , (3.37)

ēx =

∫ ∞

0

lx+t dt/lx . (3.38)

The pieces of IAA notation we have shown here are quite pleasing to the
eye and also space-saving; for instance, the symbol on the left of (3.27) involves
three typographical entities, whereas the one on the right involves six.



CHAPTER 3. MORTALITY 37

3.4 Select mortality

A. The insurance portfolio consists of selected lives. Consider an indi-
vidual who purchases a life insurance at age x. In short, he will be referred to
as (x) in what follows.

It is quite common in actuarial practice to assume that the force of mortality
of (x) depends on x and t in a more complex manner than the simple relationship
(3.9), which rested on the assumption that (x) is chosen at random from the x
years old individuals in the population. The fact that (x) purchases insurance
adds information to the mere fact that he has attained age x; he does not
represent a purely random draw from the population, but is rather selected
by some mechanisms. It is easy to think of examples of such mechanisms.
For instance that poor people can not afford to buy insurance and, to the
extent that longevity depends on economic situation, the mortality experience
for insured people would reflect that they are wealthy enough to buy insurance
(’survival of the fattest’). Judging from textbooks on life insurance, e.g. [4]
and [29] and many others, it seems that the underwriting standards of the
insurer are generally held to be the predominant selective mechanism; before an
insurance policy is issued, the insurer must be satisfied that the applicant meets
certain requirements with regard to health, occupation, and other factors that
are assumed to determine the prospects of longevity. Only first class lives are
eligible to insurance at ordinary rates.

Thus there is every reason to account for selection effects by letting the force
of mortality be some more general function µx(t) or, in other words, specify that
Tx follows a survival function Fx(t) that is not necessarily of the form (3.7). One
then speaks of select mortality.

B. More of actuarial notation. The standard actuarial notation for select
mortality is

τq[x]+t = P[Tx ≤ t+ τ |Tx > t] , (3.39)

τp[x]+t = P[Tx > t+ τ |Tx > t] , (3.40)

µ[x]+t = lim
h↘0

hq[x]+t

h
. (3.41)

The idea is that the both the current age, x + t, and the age at entry, x, are
directly visible in [x] + t.

From a technical point of view select mortality is just as easy as aggregate
mortality; we work with the distribution function tq[x] instead of tqx, and are
interested in it as a function of t. For instance,

τp[x]+t =
t+τp[x]

tp[x]
= exp

(

−

∫ t+τ

t

µ[x]+s ds

)

.

C. Features of select mortality. There is ample empirical evidence to sup-
port the following facts about select mortality in life insurance populations:
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– For insured lives of a given age the rate of mortality usually increases with
increasing duration.
– The effect of selection tends to decrease with increasing duration and becomes
negligible for practical purposes when the duration exceeds a certain select pe-
riod.
– The mortality among insured lives is generally lower than the mortality in the
population.

There are many possible ways of building such features into the model. For
instance, one could modify the aggregate G-M intensity as

µ[x]+t = α(t) + β(t) eγ (x+t) ,

where α and β are non-negative and non-decreasing functions bounded from
above. In Section 7.6 we shall show how the selection mechanism can be ex-
plained in models that describe more aspects of the individual life histories than
just survival and death.



Chapter 4

Insurance of a single life

4.1 Some standard forms of insurance

A. The single-life status. Consider a person aged x with remaining life
length Tx as described in the previous section. In actuarial parlance this life
is called the single-life status (x) . Referring to Appendix B, we introduce the
indicator of the event of survival in t years, It = 1[Tx > t]. This is a binomial
random variable with ’success’ probability tpx. The indicator of the event of
death within t years is 1 − It = 1[Tx ≤ t], which is a binomial variable with
’success’ probability tqx = 1− tpx. (We apologize for sometimes using technical
terms where they may sound misplaced.) Note that, being 0 or 1, any indicator
1[A] satisfies 1[A]q = 1[A] for q > 0.

The present section lists some standard forms of insurance that (x) can
purchase, investigates some of their properties, and presents some basic actuarial
methods and formulas.

We assume that the investments of the insurance company yield interest at
a fixed rate r so that accumulation and discounting take place in in accordance
with (2.12).

B. The pure endowment insurance. An n-year pure (life) endowment of
1 is a unit that is paid to (x) at the end of n years if he is then still alive. In
other words, the associated payment function is an endowment of In at time n.
Its present value at time 0 is

PV e;n = e−rnIn . (4.1)

The expected value of PV e;n, denoted by nEx, is

nEx = e−rn
npx . (4.2)

For any q > 0 we have (PV e;n)q = e−qrnIn (recall that Iq
n = In), and so the

q-th non-central moment of PV e;n can be expressed as

E[(PV e;n)q ] = nE
(qr)
x , (4.3)

39



CHAPTER 4. INSURANCE OF A SINGLE LIFE 40

where the top-script (qr) signifies that discounting is made under a force of
interest that is qr.

In particular, the variance of PV e;n is

V[PV e;n] = nE
(2r)
x − nE

2
x . (4.4)

C. The life assurance. A life assurance contract specifies that a certain
amount, called the sum insured, is to be paid upon the death of the insured,
possibly limited to a specified period. We shall here consider only insurances
payable immediately upon death, and take the sum to be 1 (just a matter of
notation).

First, an n-year term insurance is payable upon death within n years. The
payment function is a lump sum of 1− In at time Tx. Its present value at time
0 is

PV ti;n = e−rTx (1 − In) . (4.5)

The expected value of PV ti;n is

Ā1
x n

=

∫ n

0

e−rτ
τpx µx+τ dτ , (4.6)

and, similar to (4.3),

E[(PV ti;n)q ] = Ā
(qr)
1
x n

. (4.7)

In particular,

V[PV ti;n] = Ā
(2r)
1
x n

− Ā2
1
x n

. (4.8)

An n-year endowment insurance is payable upon death if it occurs within
time n and otherwise at time n. The payment function is a lump sum of 1 at
time Tx ∧ n. Its present value at time 0 is

PV ei;n = e−r(Tx∧n) . (4.9)

The expected value of PV ei;n is

Āx n =

∫ n

0

e−rτ
τpx µx+τ dτ + e−rn

npx = Ā1
x n

+ nEx , (4.10)

and

E(PV ei;n)q = Ā
(qr)
x n . (4.11)

It follows that

V[PV ei;n] = Ā
(2r)
x n − Ā2

x n . (4.12)
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D. The life annuity. An n-year temporary life annuity of 1 per year is payable
as long as (x) survives but limited to n years. We consider here only the
continuous version. Recalling (2.30), the associated payment function is an
annuity of 1 in Tx ∧ n years. Its present value at time 0 is

PV a;n = āTx∧n =
1 − e−r(Tx∧n)

r
. (4.13)

The expected value of PV a;n is

āx n =

∫ n

0

āτ τpx µx+τ dτ + ān npx .

A more appealing formula is

āx n =

∫ n

0

e−rτ
τpx dτ , (4.14)

which displays the life annuity as a “continuum of life endowments”, āx n =
∫ n

0 τEx dτ . There are several ways of proving (4.14). Using brute force, one can
integrate by parts:

ān npx = ā0 0px +

∫ n

0

d

dτ
āτ τpx dτ +

∫ n

0

āτ

d

dτ
τpx dτ

=

∫ n

0

e−rτ
τpx dτ −

∫ n

0

āτ τpx µx+τ dτ .

Using the brain instead, one realizes that the expected present value at time 0 of
the payments in any small time interval (τ, τ +dτ) is e−rτ dτ τpx, and summing
over all time intervals one arrives at (4.14) (“the expected value of a sum is
the sum of the expected values”). This kind of reasoning will be omnipresent
throughout the text, and would also immediately produce formula (4.6) and
(4.10). The recipe is: Find the expected present value of the payments in each
small time interval and add up.

We shall demonstrate below that

E[(PV a;n)q ] =
q

rq−1

q
∑

p=1

(−1)p−1

(

q − 1

p− 1

)

ā
(pr)
x n , (4.15)

from which we derive

V[PV a;n] =
2

r

(

āx n − ā
(2r)
x n

)

− ā2
x n . (4.16)

The endowment insurance is a combined benefit consisting of an n-year term
insurance and an n-year pure endowment. By (4.9) and (4.13) it is related to
the life annuity by

PV a;n =
1 − PV ei;n

r
or PV ei;n = 1 − rPV a;n , (4.17)
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which just reflects the more general relationship (2.31). Taking expectation in
(4.17), we get

Āx n = 1 − rāx n . (4.18)

Also, since PV ti;n = PV ei;n − PV e;n = 1 − rPV a;n − PV e;n, we have

Ā1
x n

= 1 − rāx n −n Ex . (4.19)

The formerly announced result (4.15) follows by operating with the q-th
moment on the first relationship in (4.17), and then using (4.12) and (4.18) and
rearranging a bit. One needs the binomial formula

(x+ y)q =

q
∑

p=0

(

q

p

)

xq−pyp

and the special case
∑q

p=0

(

q
p

)

(−1)q−p = 0 (for x = −1 and y = 1).
A whole-life annuity is obtained by putting n = ∞. Its expected present

value is denoted simply by āx and is obtained by putting n = ∞ in (4.14), that
is

āx =

∫ ∞

0

e−rτ
τpx dτ, (4.20)

and the same goes for the variance in (4.16) (justify the limit operations).

E. Deferred benefits. An m-year deferred n-year temporary life annuity
commences only after m years, provided that (x) is then still alive, and is
payable throughout n years thereafter as long as (x) survives. The present
value of the benefits is

PV = PV a;m+n − PV a;m = ā
Tx∧(m+n) − āTx∧m

=
e−r(Tx∧m) − e−r(Tx∧(m+n))

r
(4.21)

The expected present value is

m|nāx = āx m+n − āx m =

∫ m+n

m

e−rt
tpx dt = mEx āx+m n . (4.22)

The last expression can be obtained also by the rule of iterated expectation,
and we carry through this small exercise just to illustrate the technique:

E [PV ] = E E [PV | Im]

= mpx E [PV | Im = 1] + mqx E [PV | Im = 0]

= mpx v
m āx+m n .

An m-year deferred whole life annuity is obtained by putting n = ∞. The
expected value is denoted by m|āx.
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Deferred life assurances, although less common in practice, are defined like-
wise. For instance, an m-year deferred n-year term assurance of 1 is payable
upon death in the time interval (m,m+ n]. Its present value at time 0 is

PV = PV ti;m+n − PV ti;m , (4.23)

and its expected present value is

m|nĀ1
x

= Ā1
x m+n

− Ā1
x m

= mEx Ā 1
x+m n

, . =

∫ m+n

m

e−rτ
τpx µx+τ dτ . (4.24)

F. Computational aspects. Distribution functions of present values and
many other functions of interest can be calculated easily; after all there is only
one random variable in play, and finding expected values amounts just to forming
integrals in one dimension. We shall, however, not pursue this approach because
it will turn out that a different point of view is needed in more complex situations
to be studied in the sequel.

Table 4.1: Expected value (E), coefficient of variation (CV), and skewness (SK)
of the present value at time 0 of a pure endowment (PE) with sum 1, a term
insurance (TI) with sum 1, an endowment insurance (EI) with sum 1, and a life
annuity (LA) with level intensity 1 per year, when x = 30, n = 30, µ is given
by (3.25), and r = ln(1.045).

PE TI EI LA
E 0.2257 0.06834 0.2940 16.04
CV 0.4280 2.536 0.3140 0.1308
SK −1.908 2.664 4.451 −4.451

Anyway, by methods to be developed later, we easily compute the three first
moments of the present values considered above, and find their expected values,
coefficients of variation, and skewnesses shown in Table 4.1. The reader should
contemplate the results, keeping in mind that the coefficient of variation may
be taken as a simple measure of “riskiness”.

We interpose that numerical techniques will be dominant in our context.
Explicit formulas cannot be obtained even for trivial quantities like āx n under
the Gompertz-Makeham law (3.23); age dependence and other forms of inhomo-
geneity of basic entities leave little room for aesthetics in actuarial science. Also
relationships like (4.18) are of limited interest; they are certainly not needed for
computational purposes, but may provide some general insight.

4.2 The principle of equivalence

A. A note on terminology. Like any other good or service, insurance cover-
age is bought at some price. And, like any other business, an insurance company
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must fix prices that are sufficient to defray the costs. In one respect, however,
insurance is different: for obvious reasons the customer is to pay in advance.
This circumstance is reflected by the insurance terminology, according to which
payments made by the insured are called premiums. This word has the positive
connotation “prize” (reward), rather antonymous to “price” (sacrifice, due), but
the etymological background is, of course, that premium means “first” (French:
prime).

B. The equivalence principle. The equivalence principle of insurance states
that the expected present values of premiums and benefits should be equal.
Then, roughly speaking, premiums and benefits will balance on the average.
This idea will be made precise later. For the time being all calculations are
made on an individual net basis, that is, the equivalence principle is applied
to each individual policy, and without regard to expenses incurring in addition
to the benefits specified by the insurance treaties. The resulting premiums are
called (individual) net premiums.

The premium rate depends on the premium payment scheme. In the simplest
case, the full premium is paid as a single amount immediately upon the inception
of the policy. The resulting net single premium is just the expected present value
of the benefits, which for basic forms of insurance is given in Section 4.1.

The net single premium may be a considerable amount and may easily exceed
the liquid assets of the insured. Therefore, premiums are usually paid by a series
of installments extending over some period of time. The most common solution
is to let a fixed level amount fall due periodically, e.g. annually or monthly,
from the inception of the agreement until a specified time m and contingent
on the survival of the insured. Assume for the present that the premiums
are paid continuously at a fixed level rate π. (This is admittedly an artificial
assumption, but it can serve well as an approximate description of periodical
payments, which will be treated later.) Then the premiums form an m-year
temporary life annuity, payable by the insured to the insurer. Its present value
is πPV a;m, with expected value πāx m given by (4.14). We list formulas for the
net level premium rate for a selection of basic forms of insurance: For the pure
endowment (Paragraph 4.1.B) against level premium in the insurance period,

π =
nEx

āx n

. (4.25)

For the m-year deferred n-year temporary annuity (Paragraph 4.1.E) against
level premium in the deferred period,

π =
m|nāx

āx m

=
āx m+n

āx m

− 1 . (4.26)

For the term insurance (Paragraph 4.1.C) against level premium in the insurance
period,

π =
Ā1

x n

āx n

. (4.27)
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For the endowment insurance (Paragraph 4.1.C) against level premium in the
insurance period,

π =
Āx n

āx m

=
1

āx n

− r , (4.28)

the last expression following from (4.18).

C. The net economic result for a policy. The random variables studied in
Section 4.1 represent the uncertain future liabilities of the insurer. Now, unless
single premiums are used, also the premium incomes are dependent on the
insured’s life length and become a part of the insurer’s uncertainty. Therefore,
the relevant random variable associated with an insurance policy is the present
value of benefits less premiums,

PV = PV b − πPV a;m , (4.29)

where PV b is the present value of the benefits, e.g. PV ei;n in the case of an
n-year endowment insurance.

Stated precisely, the equivalence principle lays down that

E[PV ] = 0 . (4.30)

For example, with PV b = PV ei;n (4.30) becomes 0 = Āx n −πāxm|, which yields
(4.28) when m = n.

A measure of the uncertainty associated with the economic result of the
policy is the variance V[PV ]. For example, with PV b =PV ei;n and m = n,

V[PV ] = V

[

vTx∧n − π
1 − vTx∧n

r

]

= (1 + π/r)2V[vTx∧n]

=
2
(

āx n − ā
(2r)
x n

)

rā2
x n

− 1 . (4.31)

4.3 Prospective reserves

A. The case. We shall discuss the notion of reserve in the framework of a
combined insurance which comprises all standard forms of contingent payments
that have been studied so far and, therefore, easily specializes to any of those.
The insured is x years old upon issue of the contract, which is for a term of
n years. The benefits consist of a term insurance with sum insured bt payable
upon death at time t ∈ (0, n) and a pure endowment with sum bn payable upon
survival at time n. The premiums consist of a lump sum π0 payable immediately
upon the inception of the policy at time 0, and thereafter an annuity payable
continuously at rate πt per time unit contingent on survival at time t ∈ (0, n).
As before, assume that the interest rate is a deterministic function rt.
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The expected present value at time 0 of total benefits less premiums under
the contract can be put up directly as the sum of the expected discounted
payments in each small time interval:

−π0 +

∫ n

0

e−
∫

τ
0

r
τpx {µx+τ bτ − πτ} dτ + bn e

−
∫

n
0

r
npx . (4.32)

Under the equivalence principle this is set equal to 0, a constraint on the pre-
mium function π.

B. Definition of the reserve. The expected value (4.32) represents, in an
average sense, an assessment of the economic prospects of the policy at the
outset. At any time t > 0 in the subsequent development of the policy the
assessment should be updated with regard to the information currently available.
If the policy has expired by death before time t, there is nothing more to be
done. If the policy is still in force, a renewed assessment must be based on the
conditional distribution of the remaining life length. Insurance legislation lays
down that at any time the insurance company must provide a reserve to meet
future net liabilities on the contract, and this reserve should be precisely the
expected present value at time t of total benefits less premiums in the future.
Thus, if the policy is still in force at time t, the reserve is

Vt =

∫ n

t

e−
∫ τ

t
r

τ−tpx+t {µx+τ bτ − πτ} dτ + bn e
−
∫ n

t
r

n−tpx+t . (4.33)

More precisely, this quantity is called the prospective reserve at time t since it
“looks ahead”. Under the principle of equivalence it is usually called the net
premium reserve. We will take the liberty to just speak of the reserve.

Upon inserting τ−tpx+t = e−
∫ τ

t
µx+s ds, (4.33) assumes the form

Vt =

∫ n

t

e−
∫ τ

t
(rs+µx+s) ds {µx+τ bτ − πτ} dτ + e−

∫ τ
t

(rs+µx+s) dsbn . (4.34)

Glancing behind at (2.14), we see that, formally, the expression in (4.34) is the
reserve at time t for a deterministic contract with payments given by ∆B0 = −π0

(comes from setting (4.32) equal to 0), dBt = (µx+t bt − πt) dt, 0 < t < n and
∆Bn = bn, and with interest rate rt + µx+t. We can, therefore, reuse the
relationships in Chapter 2.

For instance, by (2.26) and (2.13), we have the following retrospective formula
for the prospective premium reserve:

Vt = e
∫

t
0
(rs+µx+s) dsπ0 +

∫ t

0

e
∫

t
τ
(rs+µx+s) ds(πτ − µx+τ bτ ) dτ . (4.35)

This formula expresses Vt as the surplus of transactions in the past, accumulated
at time t with the “benefit of interest and survivorship”.
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Figure 4.1: The net reserve for an n-year pure endowment of 1 against single
net premium.

C. Some special cases. The net reserve is easily put up for the various forms
of insurance treated in Sections 4.1 and 4.2. We assume that the interest rate is
constant and that premiums are based on the equivalence principle, which can
be expressed as

V0 = π0 . (4.36)

First, for the pure endowment against single net premium nEx collected at
time 0,

Vt = n−tEx+t, 0 ≤ t < n. (4.37)

The graph of Vt will typically look as in Fig. 4.1. At points of discontinuity a
dot marks the value of the function.

If premiums are payable continuously at level rate π given by (4.25) through-
out the insurance period, then

Vt = n−tEx+t − πāx+t n−t

= n−tEx+t −
nEx

āx n

āx+t n−t . (4.38)

A typical graph of this function is shown in Fig. 4.2.
Next, for an m-year deferred whole life annuity against level net premium π

given by (4.26),

Vt =

{

m−t|āx+t − πāx+t m−t , 0 < t < m,
āx+t, t ≥ m,

= āx+t − āx+t m−t −
āx − āx m

āx m

āx+t m−t

= āx+t −
āx

āx m

āx+t m−t (4.39)
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Figure 4.2: The net reserve for an n-year pure endowment of 1 against level
premium in the insurance period.
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Figure 4.3: The net reserve for an m-year deferred whole life annuity against
level premium in the deferred period.
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Figure 4.4: The net reserve for an n-year term insurance against level premium
in the insurance period
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Figure 4.5: The net reserve for an n-year endowment insurance with level pre-
mium payable in the insurance period.
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(with the understanding that āx m−t = 0 if t > m). A typical graph of this
function is shown in Fig. 4.3.

For the n-year term insurance against level net premium π given by (4.27),

Vt = Ā 1
x+t n−t

− πāx+t n−t

= 1 − rāx+t n−t − n−tEx+t −
1 − rāx n − nEx

āx n

āx+t n−t

= 1 − n−tEx+t − (1 − nEx)
āx+t n−t

āx n

. (4.40)

A typical graph of this function is shown in Fig. 4.4.
Finally, for the n-year endowment insurance against level net premium π

given by (4.28),

Vt = Āx+t n−t − πāx+t n−t

= 1 − rāx+t n−t −
1 − rāx n

āx n

āx+t n−t

= 1 −
āx+t n−t

āx n

. (4.41)

A typical graph of this function is shown in Fig. 4.5.
The reserve in (4.41) is, of course, the sum of the reserves in (4.39) and

(4.40). Note that the pure term insurance requires a much smaller reserve than
the other insurance forms, with elements of savings in them. However, at old
ages x (where people typically are not covered against the risk of death since
death will incur soon with certainty) also the term insurance may have a Vt

close to 1 in the middle of the insurance period.

D. Non-negativity of the reserve. In all the examples given here the net
reserve is sketched as a non-negative function. Non-negativity of Vt is not a
consequence of the definition. One may easily construct premium payment
schemes that lead to negative values of Vt (just let the premiums fall due after
the payment of the benefits), but such payment schemes are not used in practice.
The reason is that the holder of a policy with Vt < 0 is in expected debt to
the insurer and would thus have an incentive to cancel the policy and thereby
get rid of the debt. (The agreement obliges the policy-holder only to pay the
premiums, and the contract can be terminated at any time the policy-holder
wishes.) Therefore, it is in practice required that

Vt ≥ 0, t ≥ 0. (4.42)

E. The reserve considered as a function of time. We will now take a
closer look at the prospective reserve as a function of time, bearing in mind
that it should be non-negative. The building blocks are the expected present
values n−tEx+t, āx+t:n−t , Āx+t n−t , and Ā 1

x+t n−t
appearing in the formulas in

Section 4.3.
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First,

n−tEx+t = e−
∫ n

t
(r+µx+s) ds

is seen to be an increasing function of t no matter what are the interest rate
and the mortality rate. The derivative is

d

dt
n−tEx+t = n−tEx+t (r + µx+t) .

We interpose here that nothing is changed if r depends on time. The expressions
above show that, for this pure survival benefit, r and µ play identical parts in
the expected present value. Thus, mortality bequest acts as an increase of the
interest rate.

Next consider

āx+t:n−t =

∫ n

t

e−
∫ τ

t
(r+µx+s) ds dτ .

The following inequalities are obvious:

āx+t:n−t ≤
1

r + infs≥t µx+s

≤
1

r
.

The last expression is just the present value of a perpetuity, (2.32). If µ is an
increasing function, then

āx+t:n−t ≤
1

r + µx+t

.

We find the derivative

d

dt
āx+t:n−t = (r + µx+t)āx+t:n−t − 1 .

It follows that āx+t:n−t is a decreasing function of t if µ is increasing, which is
quite natural. You can easily invent an example where āx+t:n−t is not decreas-
ing.

From the identity
Āx+t n−t = 1 − rāx+t:n−t

we conclude that Āx+t n−t is an increasing function of t if µ is increasing.
For

Ā 1
x+t n−t

= 1 − rāx+t:n−t − n−tEx+t

no general statement can be made as to whether it is decreasing or increasing.
Looking back at the formulas derived in Paragraph C above, we can conclude

that the reserve for the pure life endowment against single premium, (4.37), is
always increasing. Assume henceforth that µ is increasing, as is usually the
case at ages when people are insured and certainly holds for the Gompertz-
Makeham law. Then also the reserve (4.38) for the pure life endowment against
level premium during the term of the contract is increasing, and the same is the
case for the reserve (4.41) of the endowment insurance. It is left to the diligent
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reader to show that the reserve in (4.39) is increasing throughout the deferred
period and thereafter turns decreasing. This is best done by examining (4.33)
and (4.35) in the cases t ≤ m and t ≤ m, respectively. It follows in particular
that the reserve is non-negative. The same trick serves also to show that (4.40)
is first increasing and thereafter decreasing.

4.4 Thiele’s differential equation

A. The differential equation. We turn back to the general case with the
reserve given by (4.33) or (4.33), the latter being the more convenient since we
can draw on the results in Chapter 2.

The differential form (2.19) translates to the celebrated Thiele’s differentila
equation,

d

dt
Vt = πt − bt µx+t + (r + µx+t)Vt, (4.43)

valid at each t where b, π, and µ are continuous. The right hand side expression
in (4.43) shows how the fund per surviving policy-holder changes per time unit
at time t. It is increased by the excess of premiums over benefits (which may
be negative, of course), by the interest earned, rVt, and by the fund inherited
from those who die, µx+t Vt.

When combined with the boundary condition

Vn− = bn , (4.44)

the differential equation (4.43) determines Vt for fixed b and π.
If the principle of equivalence is exercised, then we must add the condition

(4.36). This represents a constraint on the contractual payments b and π; typi-
cally, one first specifies the benefit b and then determines the premium rate for
a given premium plan (shape of π).

Thiele’s differential equation is a so-called backward differential equation.
This term indicates that we take our stand at the beginning of the time interval
we are interested in and also that the differential equation is to be solved by
a backward scheme starting from the ultimo condition (2.21). The differential
equation may be put up by the direct backward construction which goes as
follows. Suppose the policy is in force at time t ∈ (0, n). Use the rule of iterated
expectation, conditioning on what happens in the small time interval (t, t+ dt]:
with probability µx+t dt+ o(dt) the insured dies, and the conditional expected
value is then just bt; with probability 1 − µx+t dt + o(dt) the insured survives,
and the conditional expected value is then −πtdt+ e−r dt Vt+dt. We gather

Vt = bt µx+t dt− πt dt+ (1 − µx+t dt)e
−r dt Vt+dt + o(dt). (4.45)

Subtract Vt+dt on both sides, divide by dt and let dt tend to 0. Observing that
(e−rdt − 1)/dt→ −r as dt→ 0, one arrives at (4.43)
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B. Savings premium and risk premium. Suppose the equivalence princi-
ple is in use. Rearrange (4.43) as

πt =
d

dt
Vt − rVt + (b− Vt)µx+t. (4.46)

This form of the differential equation shows how the premium at any time
decomposes into a savings premium,

πs
t =

d

dt
Vt − rVt, (4.47)

and a risk premium,
πr

t = (bt − Vt)µx+t. (4.48)

The savings premium provides the amount needed in excess of the earned inter-
est to maintain the reserve. The risk premium provides the amount needed in
excess of the available reserve to cover an insurance claim.

C. Uses of the differential equation. In the examples given above, Thiele’s
differential equation was useful primarily as a means of investigating the devel-
opment of the reserve. It was not required in the construction of the premium
and the reserve, which could be put up by direct prospective reasoning. In the fi-
nal example to be given Thiele’s differential equation is needed as a constructive
tool.

Assume that the pension treaty studied above is modified so that the reserve
is paid back at the moment of death in case the insured dies during the contract
period, the philosophy being that “the savings belong to the insured”. Then
the scheme is supplied by an (n+m)-year temporary term insurance with sum
bt = Vt at any time t ∈ (0,m+ n). The solution to (4.43) is easily obtained as

Vt =

{

πs̄t , 0 < t < m,
bām+n−t , m < t < m+ n,

where s̄t =
∫ t

0 (1 + i)t−τ dτ . The reserve develops just as for ordinary savings
contracts offered by banks.

D. Dependence of the reserve on the contract elements. A small col-
lection of results due to Lidstone (1905) and, in the time-continuous set-up,
Norberg (1985), deal with the dependence of the reserve on the contract ele-
ments, in particular mortality and interest.

The starting point in the time-continuous case is Thiele’s differential equa-
tion. For the sake of concreteness, we adopt the model assumptions and the
contract described in Section 4.4 and will refer to this as the standard contract.
For ease of reference we fetch Thiele’s differential from (4.43):

d

dt
Vt = πt − µx+t bt + (rt + µx+t)Vt . (4.49)
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The boundary condition following from the very definition of the reserve is

Vn− = bn . (4.50)

With premiums determined by the principle of equivalence, we also have

V0 = π0 , (4.51)

where π0 is the lump sum premium payment collected upon the inception of the
policy (it may be 0, of course).

Now consider a different model with interest r∗t and mortality µ∗
x+t and a

different contract with benefits b∗t and premiums π∗
t . This will be referred to as

the special contract. The reserve function V ∗
t under this contract satisfies

d

dt
V ∗

t = π∗
t − µ∗

x+tb
∗
t + (r∗t + µ∗

x+t)V
∗
t , (4.52)

V ∗
n− = b∗n , (4.53)

V ∗
0 = π∗

0 . (4.54)

Assume that
π∗

0 = π0 , b∗n = bn . (4.55)

We are interested in the difference V ∗
t − Vt, and a few words are in order to

motivate this: The reserve is accounted as a liability on the part of the insurance
company. To be on the safe side, the company should, at any time, provide a
reserve in excess of what seems likely to be needed. This is usually obtained
by using ’technical’ elements r∗t and µ∗

x+t that are different from the ’realistic’
elements rt and µx+t, and that produce a reserve V ∗

t bigger than the ’realistic’
Vt.

Subtract (4.49) from (4.52) to get

d

dt
(V ∗

t − Vt) = ηt + (r∗t + µ∗
x+t) (V ∗

t − Vt) , (4.56)

where

ηt = (π∗
t − πt) + (µx+tbt − µ∗

x+tb
∗
t ) + (r∗t − rt + µ∗

x+t − µx+t)Vt . (4.57)

Integrate (4.56) from 0 to t, using V0 = V ∗
0 , to obtain

V ∗
t − Vt =

∫ t

0

e
∫

t
s
(r∗+µ∗)ηs ds .

Similarly, integrate from t to n, using Vn− = V ∗
n−, to obtain

V ∗
t − Vt = −

∫ n

t

e−
∫

s
t
(r∗+µ∗)ηs ds .
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From these relations conclude: If there exists a t0 ∈ [0, n] such that

ηt
≤
≥

0 for t
<
>
t0 , (4.58)

then V ∗
t ≤ Vt for all t. In particular, this is the case if ηt is non-decreasing. The

result remains valid if all inequalities are made strict. We can now prove the
following:

(1) For a contract with level premium intensity throughout the insurance period,
and with non-decreasing reserve, a uniform increase of the interest rate results
in a decrease of the reserve.

Proof: Now r∗t −rt = ∆r is a positive constant, π∗ and π are both constants,
all other elements are unchanged, and Vt increasing. Then ηt = (π∗−π)+∆r Vt

is increasing.

(2) Consider an endowment insurance with fixed sum insured and level premium
rate throughout the insurance period. Prove that a change of mortality from µ
to µ∗ such that µ∗

t −µt is positive and non-increasing, leads to a decrease of the
reserve.

Proof: Now (µ∗
x+t − µx+t) is positive and decreasing (non-increasing), π∗

and π are constants, bt = b∗t = b constant, Vt increasing (this is the case for
the endowment insurance if µ in increasing). Then, since Vt ≤ b, we have
ηt = (π∗ − π) − (µ∗

x+t − µx+t)(b− Vt) is increasing.

(3) Consider a policy with no down premium payment at time 0 and no life
endowment at time n. Let the special contract be the same as the standard one,
except that the special contract charges so-called natural premium, π∗

t = btµx+t.
Then V ∗

t = 0 for all t, and (4.58) can be used to check whether the reserve Vt

is non-negative (as it should be).
Proof: Putting π∗

t = µx+tbt, means premiums covers current expected ben-
efits, so there is no accumulation of reserve; V ∗

t = 0. Now ηt = −πt + µx+tbt,
so if this is increasing, then 0 = V ∗

t ≤ Vt. This is the case e.g. if π and b are
constants and µt is increasing.

The reason why the impact on the reserve of a change in valuation and/or
contract elements is a bit involved is that, under the equivalence principle, the
premium is also affected by the change. However, if we require that the premium
be constant as function of t, then (π∗ − π) appearing in the expression for ηt is
constant and does not affect the monotonicity properties of ηt. Note also that,
since V ∗

t − Vt starts and ends at 0, ηt cannot be strictly positive in some part
of (0, n) without being strictly negative in some other part.
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4.5 Probability distributions

A. Motivation. The basic paradigm being the principle of equivalence, life
insurance mathematics centers on expected present values. The key tool is
Thiele’s differential equation, which describes the development of such expected
values and forms a basis for computing them by recursive methods. In Chapter
7 we shall obtain analogous differential equations for higher order moments,
which will enable us to compute the variance, skewness, kurtosis, and so on of
the present value of payments under a fairly general insurance contract.

We shall give an example of how to determine the probability distribution of
a present value, which is at the base of the moments and of any other expected
values of interest. Knowledge of this distribution, and in particular its upper
tail, gives insight into the riskiness of the contract beyond what is provided by
the mean and some higher order moments.

The task is easy for an insurance on a single life since then the model involves
only one random variable (the life length of the insured). De Pril [14] and
Dhaene [16] offer a number of examples. In principle the task is simple also for
insurances involving more than one life or, more generally, a finite number of
random variables. In such situations the distributions of present values (and
any other functions of the random variables) can be obtained by integrating the
finite-dimensional distribution.

B. A simple example. Consider the single life status (x) with remaining
life time Tx distributed as described in Chapter 3. Suppose (x) buys an n year
term insurance with fixed sum b and premiums payable continuously at level
rate π per year as long as the contract is in force (see Paragraphs 4.1.C-D). The
present value of benefits less premiums on the contract is

U(Tx) = be−rTx1[0 < Tx < n] − πāTx∧n ,

where āt =
∫ t

0
e−rτ dτ = (1 − e−rt)/r is the present value of an annuity certain

payable continuously at level rate 1 per year for t years. The function U is
non-increasing in Tx, and we easily find the probability distribution

P[U ≤ u] =



















0 , u < −πān ,
P[Tx > n] , −πān ≤ u < b e−rn − πān ,

P

[

Tx >
1
r

ln
(

br+π
ur+π

)]

, be−rn − πān ≤ u < b,

1 , u ≥ b.

(4.59)

The jump at −πān is due to the positive probability of survival to time n.
Similar effects are to be anticipated also for other insurance products with a
finite insurance period since, in general, there is a positive probability that the
policy will remain in the current state until the contract terminates.

The probability distribution in (4.59) is depicted in Fig. 4.6 for the G82M
case with r = ln(1.045) and µ(t|x) = 0.0005 + 10−4.12+0.038(x+t) when x = 30,
n = 30, b = 1, and π = 0.0042608 (the equivalence premium).
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Figure 4.6: The probability distribution of the present value of a term insurance
against level premium.

4.6 The stochastic process point of view

A. The processes indicating survival and death. In Paragraph A of
Section 4.1 we introduced the indicator of the event of survival to time t, It =
1[Tx > t], and the indicator of the complementary event of death within time t,
Nt = 1− It = 1[Tx ≤ t]. Viewed as functions of t, they are stochastic processes.
The latter counts the number of deaths of the insured as time is progresses and
is thus a simple example of a counting process as defined in Paragraph D of
Appendix A. This motivates the notation Nt. By their very definitions, It and
Nt are RC.

In the present context, where everything is governed by just one single ran-
dom variable, Tx, the process point of view is not important for practical pur-
poses. For didactic purposes, however, it is worthwhile taking it already here as
a rehearsal for more complicated situations where stochastic processes cannot
be dispensed with.

The payment functions of the benefits considered in Section 4.1 can be recast
in terms of the processes It and Nt. In differential form they are

dBe;n
t = It dεn(t) ,

dBti;n
t = 1(0,n](t) dNt ,

dBa;n
t = It1(0,n)(t) dt ,

dBei;n
t = dBti;n

t + dBe;n
t .

Their present values at time 0 are

PV e;n = e−
∫

n
0

rIn ,

PV ti;n =

∫ n

0

e−
∫

τ
0

rdNτ ,
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PV a;n =

∫ n

0

e−
∫ τ
0

rIτdτ ,

PV ei;n = V ti;n + V e;n .

The expressions in (4.14) and (4.10) are obtained directly by taking expectation
under the integral sign, using the obvious relations

E [Iτ ] = τpx ,

E [dNτ ] = τpx µx+τ dτ .

The relationship (4.19) re-emerges in its more basic form upon integrating
by parts to obtain

e−
∫ n
0

rIn = 1 +

∫ n

0

e−
∫ τ
0

r(−rτ )Iτ dτ +

∫ n

0

e−
∫ τ
0

rdIτ ,

and setting dIt = −dNt in the last integral.



Chapter 5

Expenses

5.1 A single life insurance policy

A. Three categories of expenses. Any firm has to defray expenditures in
addition to the net production costs of the commodities or services it offers, and
these expenses must be taken account of in the prices paid by the customers.
Thus, the rate of premium charged for a given insurance contract must not
merely cover the contractual net benefits, but also be sufficient to provide for
all items of expenditure connected with the operations of the insurance company.

For the sake of concreteness, and also of loyalty to standard actuarial no-
tation, we shall introduce the issue of expenses in the framework of the simple
single life policy encountered in Chapter 4. To get a case that involves all main
types of payments, let us consider a life (x) who purchases an n-year endow-
ment insurance with a fixed sum insured, b, and premium payable continuously
at level rate as long as the policy is in force.

We recall that the net premium rate determined by the principle of equiva-
lence is

π = b
Āx n

āx n

= b

(

1

āx n

− r

)

, (5.1)

and that the corresponding net premium reserve to be provided if the insured
is alive at time t, is

Vt = bĀx+t n−t − πāx+t n−t| = b

(

1 −
āx+t n−t

āx n

)

. (5.2)

The term net means “net of administration expenses”.
When expenses are included in the accounts, one will have to charge the

policy with a gross premium rate π′, which obviously must be greater than
the net premium rate, and the gross premium reserve V ′

t to be provided if the
policy is in force at time t will also in general differ from the net premium
reserve. The precise definitions of these quantities can only be made after we
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have made specific assumptions about the structure of the expenses, which we
now turn to.

The expenses are usually divided into three categories. In the first place there
are the so-called α-expenses that incur in connection with the establishment
of the contract. They comprise sales costs, including advertising and agent’s
commission, and costs connected with health examination, issue of the policy,
entering the details of the contract into the data files, etc. It is assumed that
these expenses incur immediately at time 0 and that they are of the form

α′ + α′′b . (5.3)

In the second place there are the so-called β-expenses that incur in connec-
tion with collection and accounting of premiums. They are assumed to incur
continuously at constant rate

β′ + β′′π′ (5.4)

throughout the premium-paying period.
Finally, in the third place there are the so-called γ-expenses that comprise

all expenditures not included in the former two categories, such as wages to em-
ployees, rent, taxes, fees, and maintenance of the business operations in general.
These expenses are assumed to incur continuously at rate

γ′ + γ′′b+ γ′′′V ′
t (5.5)

at time t if the policy is then in force.
The constant terms α′, β′, and γ′ represent costs that are the same for all

policies. The terms α′′b, β′′π′, and γ′′b represent costs that are proportional to
the size of the contract as measured by the amounts specified in the policy. Typ-
ically this is the case for the agent’s commission, which may be a considerable
portion of the α-expenses on individual insurances sold in an open competitive
market, and also for the debt collector’s or solicitor’s commission, which in for-
mer days made up the major part of the β-expenses. The term γ ′′′V ′

t represents
expenses in connection with management of the investment portfolio, which can
reasonably be divided between the policy-holders in proportion to their current
reserves.

B. The gross premium and the gross premium reserve. Upon exercising
the equivalence principle in the presence of expenses, one will determine the
gross premium rate π′ and the corresponding gross premium reserve function
V ′

t . When expenses depend on the reserve, as specified in (5.5), we have to
resort to the Thiele technique to construct π′ and V ′

t . We can immediately put
up the following differential equation by adding the expenses to the benefits in
the set-up of Section 4.4:

d

dt
V ′

t = π′ − β′ − β′′π′ − γ′ − γ′′b− γ′′′V ′
t − µx+tb+ rV ′

t + µx+tV
′
t . (5.6)
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The appropriate side conditions are

V ′
n− = b , (5.7)

and
V ′

0 = −(α′ + α′′b) . (5.8)

As before, (5.7) is a matter of definition and relies only on the fact that the
endowment benefit falls due upon survival at time n, and (5.8) is the equivalence
requirement, which determines π′ for given benefits and expense factors.

Gathering terms involving V ′
t on the left of (5.6) and multiplying on both

sides with e
∫ n

t
(r−γ′′′+µ) gives

d

dt

(

e
∫ n

t
(r−γ′′′+µ)V ′

t

)

= e
∫ n

t
(r−γ′′′+µ){(1− β′′)π′ − β′ − γ′ − (γ′′ + µx+t)b} .

(5.9)

Now integrate (5.9) between t and n, using (5.7), and rearrange a bit to obtain

V ′
t =

∫ n

t

e−
∫

τ
t

(r−γ′′′+µ){β′ + γ′ + (γ′′ + µx+τ )b− (1 − β′′)π′} dτ

+ e−
∫ n

t
(r−γ′′′+µ)b . (5.10)

Upon inserting t = 0 into (5.10) and using (5.8), we find

π′ =
α′ + α′′b+

∫ n

0
e−

∫ τ
0

(r−γ′′′+µ){β′ + γ′ + (γ′′ + µx+τ )b}dτ + e−
∫ n
0

(r−γ′′′+µ)b

(1 − β′′)
∫ n

0 e−
∫

τ
0

(r−γ′′′+µ)dτ
.

(5.11)

In the special case where γ ′′′ = 0 we could determine π′ and V ′
t directly

from the defining relations without using the differential equation. That goes,
in fact, also for the general case with γ ′′′ 6= 0 by the following consideration:
By inspection of the differential equation (5.6) and the side conditions, it is
realized that, formally, the problem amounts to determining the “net premium
rate” (1 − β′′)π′ and “net premium reserve” V ′

t for a policy with (admittedly
unrealistic) benefits consisting of a lump sum payment of α′ + α′′b at time 0,
a continuous level life annuity of β′ + γ′ + γ′′b per year, and an endowment
insurance of b, when the interest rate is r − γ ′′′.

Easy calculations show that, when γ ′′′ = 0, the gross and net quantities are
related by

π′ =
1

1 − β′′

(

π +
α′ + α′′b

āx n

+ β′ + γ′ + γ′′b

)

, (5.12)

and

V ′
t = Vt −

āx+t n−t

āx n

(α′ + α′′b). (5.13)
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It is seen that π′ > π, as was anticipated at the outset. Furthermore, V ′
t < Vt for

0 ≤ t < n, which may be less obvious. The relationship (5.13) can be explained
as follows: All expenses that incur at a constant rate throughout the term of
the contract are compensated by an equal component in the “effective” gross
premium rate (1−β′′)π′, see (5.12). Thus, the only expense factor that appears
in the gross reserve is the non-amortized initial α-cost, which is the last term
on the right of (5.13). It represents a debt on the part of the insured and is
therefore to be subtracted from the net reserve.

In Paragraph 4.3.D we have advocated non-negativity of the reserve. Now,
already from (5.8) it is clear that the gross premium sets out negative at the time
of issue of the contract and it will remain negative for some time thereafter until
a sufficient amount of premium has been collected. The only way to get around
this problem would be to charge an initial lump sum premium no less than the
initial expense, but this is usually not done in practice (presumably) because a
substantial down payment might keep customers with liquidity problems from
buying insurance.

5.2 The general multi-state policy

A. General treatment of expenses. Consider now the general multi-state
insurance policy treated in Chapter 7. Expenses are easily accommodated in the
theory of that chapter since they can be treated as additional benefits of annuity
and assurance type. Thus, from a technical point of view expenses do not create
any additional difficulties, and we can therefore suitably end this chapter here.
We round off by saying that expenses are still of conceptual and great practical
importance. Assumptions about the various forms of expenses are part of the
technical basis, which must be verified by the insurer and is subject to approval
of the supervisory authority. Thus, just as statistical and economic analysis is
required as a basis for assumptions about mortality and interest, thorough cost
analysis are required as a basis for assumptions about the expense factors.



Chapter 6

Multi-life insurances

6.1 Insurances depending on the number of sur-

vivors

A. The single-life status reinterpreted. In the treatment of the single life
status (x) in Chapters 3–4 we were having in mind the remaining life time T of
an x year old person. From a mathematical point of view this interpretation is
not essential. All that matters is that T is a non-negative random variable with
an absolutely continuous distribution function, so that the survival function is
of the form

tpx = e−
∫ t
0

µx+τ dτ . (6.1)

The footscript x serves merely to indicate what mortality law is in play. Re-
gardless of the nature of the status (x) and the notion of lifetime represented
by T , the previous results remain valid. In particular, all formulas for expected
present values of payments depending on T are preserved, the basic ones being
the endowment,

nEx = vn
npx , (6.2)

the life annuity,

āx n =

∫ n

0

vt
tpxdt =

∫ n

0
tExdt , (6.3)

the endowment insurance,

Āx n = 1 − rāx n , (6.4)

and the term insurance,

Ā1
x n = Āx n − nEx . (6.5)

These formulas demonstrate that present values of all main types of payments
in life insurance — endowments, life annuities, and assurances — can be traced
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back to the present value tEx of an endowment and, as far as the mortality law is
concerned, to the survival function tpx. Once we have determined tpx, all other
functions of interest are obtained by integration, possibly by some numerical
method, and elementary algebraic operations.

B. Multi-dimensional survival functions. Consider a body of r individu-
als, the j-th of which is called (xj) and has remaining lifetime Tj , j = 1, . . . , r.
For the time being we shall confine ourselves to the case with independent lives.
Thus, assume that the Tj are stochastically independent, and that each Tj pos-
sesses an intensity denoted by µxj+t and, hence, has survival function

tpxj = e−
∫ t
0

µxj+τ dτ . (6.6)

(The function µ need not be the same for all j as the notation suggests; we have
dropped an extra index j just to save notation.) The simultaneous distribution
of T1, . . . , Tr is given by the multi-dimensional survival function

P
[

∩r
j=1{Tj > tj}

]

=

r
∏

j=1

tjpxj = e−
∑r

j=1

∫ tj
0 µxj+τ dτ

or, equivalently, by the density

r
∏

j=1

tjpxjµxj+tj . (6.7)

C. The joint-life status. The joint life status (x1 . . . xr) is defined by having
remaining lifetime

Tx1...xr = min{T1, . . . , Tr} . (6.8)

Thus, the r lives are looked upon as a single entity, which continues to exist as
long as all members survive, and terminates upon the first death. The survival
function of the joint-life is denoted by tpx1...xr and is

tpx1...xr = P
[

∩r
j=1{Tj > t}

]

= e−
∫

t
0

∑r
j=1 µxj+τ dτ . (6.9)

From this survival function we form the present values of an endowment nEx1...xr ,
a life annuity āx1...xr n , an endowment insurance Āx1...xr n , and a term insur-
ance, Ā1

x1...xr n , by just putting (6.9) in the role of the survival function in (6.2)
– (6.5).

By inspection of (6.9), the mortality intensity of the joint-life status is simply
the sum of the component mortality intensities,

µx1...xr(t) =

r
∑

j=1

µxj+t . (6.10)



CHAPTER 6. MULTI-LIFE INSURANCES 65

In particular, if the component lives are subject to G-M mortality laws with a
common value of the parameter c,

µxj+t = αj + βje
γ (xj+t), (6.11)

then (6.10) becomes

µx1...xr(t) = α′ + β′eγ t (6.12)

with

α′ =

r
∑

j=1

αj , β
′ =

r
∑

j=1

βje
γ xj , (6.13)

again a G-M law with the same γ as in the component laws.

D. The last-survivor status. The last survivor status x1 . . . xr is defined by
having remaining lifetime

Tx1...xr = max{T1, . . . , Tr} . (6.14)

Now the r lives are looked upon as an entity that continues to exist as long as
at least one member survives, and terminates upon the last death. The survival
function of this status is denoted by tpx1...xr . By the general addition rule for
probabilities (Appendix C),

tpx1...xr = P
[

∪r
j=1{Tj > t}

]

=
∑

j

tpxj −
∑

j1<j2

tpxj1xj2
+ . . .+ (−1)r−1

tpx1...xr . (6.15)

This way actuarial computations for the last survivor are reduced to computa-
tions for joint lives, which are simple. As explained in Paragraph A, all main
types of present values can be built from (G). Formulas for benefits contingent
on survival, obtained from (6.2) and (6.3), will reflect the structure of (G) in
an obvious way. Formulas for death benefits are obtained from (6.4) and (6.5).
The expressions are displayed in the more general case to be treated in the next
paragraph.

E. The q survivors status.
The q survivors status q

x1...xr
is defined by having as remaining lifetime the

(r − q + 1)-th order statistic of the sample {T1, . . . , Tr}. Thus the status is
”alive” as long as there are at least q survivors among the original r. The
survival function can be expressed in terms of joint life survival functions of
sub-groups of lives by direct application of the theorem in Appendix C:

tp q
x1...xr

=
r
∑

p=q

(−1)p−q

(

p− 1

q − 1

)

∑

j1<...<jp

tpxj1 ...xjp
. (6.16)
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Present values of standard forms of insurances for the q survivors status
are now obtained along the lines described in the previous paragraph. First,
combine (6.16) with (6.2) to obtain

nE q
x1...xr

=

r
∑

p=q

(−1)p−q

(

p− 1

q − 1

)

∑

j1<...<jp

nExj1 ...xjp
, (6.17)

the notation being self-explaining. Next, combine (6.3) and (6.17) to obtain

ā q
x1...xr

n =

r
∑

p=q

(−1)p−q

(

p− 1

q − 1

)

∑

j1<...<jp

āxj1 ...xjp n . (6.18)

Finally, present values of endowment and term insurances are obtained by in-
serting (6.18) and (6.17) in the general relations (6.4) and (6.5):

Ā q
x1...xr

n = 1 − rā q
x1...xr

n , (6.19)

Ā1
q

x1...xr
n = Ā q

x1...xr
n − nExj1 ...xjp

. (6.20)

The following alternative to the expression in (6.19) has some aesthetic ap-
peal as it expresses the insurance by corresponding insurances on joint lives:

Ā q
x1...xr

n =
r
∑

p=q

(−1)p−q

(

p− 1

q − 1

)

∑

j1<...<jp

Āxj1 ...xjp n . (6.21)

It is obtained upon substituting (6.18) on the right of (6.19), then inserting
(recall (6.4)) āxj1 ...xjp

= (1 − Āxj1 ...xjp
)/r and using (C.8) in Appendix C. A

similar expression for the term insurance is obtained upon subtracting (6.17)
from (6.21).



Chapter 7

Markov chains in life

insurance

7.1 The insurance policy as a stochastic process

A. The basic entities. Consider an insurance policy issued at time 0 for a
finite term of n years. We have in mind life or pension insurance or some other
form of insurance of persons like disability or sickness coverage. In such lines of
business benefits and premiums are typically contingent upon transitions of the
policy between certain states specified in the contract. Thus, we assume there
is a finite set of states, Z = {0, 1, . . . , r}, such that the policy at any time is in
one and only one state, commencing in state 0 (say) at time 0. Denote the state
of the policy at time t by Z(t). Regarded as a function from [0, n] to Z , Z is
assumed to be right-continuous, with a finite number of jumps, and Z(0) = 0.
To account for the random course of the policy, Z is modeled as a stochastic
process on some probability space (Ω,H,P).

B. Model deliberations; realism versus simplicity. On specifying the
probability model, two concerns must be kept in mind, and they are inevitably
conflicting. On the one hand, the model should reflect the essential features of (a
certain piece of) reality, and this speaks for a complex model to the extent that
reality itself is complex. On the other hand, the model should be mathematically
tractable, and this speaks for a simple model allowing of easy computation of
quantities of interest. The art of modeling is to strike the right balance between
these two concerns.

Favouring simplicity in the first place, we shall be working under Markov
assumptions, which allow for fairly easy computation of relevant probabilities
and expected values. Later on we shall demonstrate the versatility of this model
framework, showing that it is capable of representing virtually any conception
one might have of the mechanisms governing the development of the policy. We
shall take the Markov chain model presented in [26] as a suitable framework
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throughout this text. A useful basic source is [30].

7.2 The time-continuous Markov chain

A. The Markov property. A stochastic process is essentially determined
by its finite-dimensional distributions. In the present case, where Z has only a
finite state space, these are fully specified by the probabilities of the elementary
events ∩p

h=1[Z(th) = jh], t1 < · · · < tp in [0, n] and j1, . . . , jp ∈ Z . Now

P [Z(th) = jh, h = 1, . . . , p]

=

p
∏

h=1

P [Z(th) = jh |Z(tg) = jg , g = 0, . . . , h− 1] , (7.1)

where, for convenience, we have put t0 = 0 and j0 = 0 so that [Z(t0) = j0] is
the trivial event with probability 1. Thus, the specification of P could suitably
start with the conditional probabilities appearing on the right of (7.1).

A particularly simple structure is obtained by assuming that, for all t1 <
· · · < tp in [0, n] and j1, . . . , jp ∈ Z ,

P [Z(tp) = jp |Z(th) = jh, h = 1, . . . , p− 1]

= P[Z(tp) = jp |Z(tp−1) = jp−1] , (7.2)

which means that process is fully determined by the (simple) transition proba-
bilities

pjk(t, u) = P[Z(u) = k |Z(t) = j] , (7.3)

t < u in [0, n] and j, k ∈ Z . In fact, if (7.2) holds, then (7.1) reduces to

P [Z(th) = jh, h = 1, . . . , p] =

p
∏

h=1

pjh−1jh
(th−1, th) , (7.4)

and one easily proves the equivalent that, for any t1 < · · · < tp < t < tp+1 <
· · · < tp+q in [0, n] and j1, . . . , jp, j, jp+1, . . . , jp+q in Z ,

P [Z(th) = jh, h = p+ 1, . . . , p+ q | Z(t) = j, Z(th) = jh, h = 1, . . . , p]

= P [Z(th) = jh, h = p+ 1, . . . , p+ q | Z(t) = j] . (7.5)

Proclaiming t “the present time”, (7.5) says that the future of the process is
independent of its past when the present is known. (Fully known, that is; if
the present state is only partly known, it may certainly help to add information
about the past.)

The condition (7.2) is called the Markov property. We shall assume that
Z possesses this property and, accordingly, call it a continuous time Markov
process on the state space Z .
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From the simple transition probabilities we form the more general transition
probability from j to some subset K ⊂ Z ,

pjK(t, u) = P[Z(u) ∈ K |Z(t) = j] =
∑

k∈K
pjk(t, u) . (7.6)

We have, of course,

pjZ(t, u) =
∑

k∈Z
pjk(t, u) = 1 . (7.7)

B. Alternative definitions of the Markov property. It is straightforward
to demonstrate that (7.2), (7.4), and (7.5) are equivalent, so that any one of the
three could have been taken as definition of the Markov property. Then (7.4)
should be preceded by: “Assume there exist non-negative functions pjk(t, u),
j, k ∈ Z , 0 ≤ t ≤ u ≤ n, such that

∑

k∈Z pjk(t, u) = 1 and, for any 0 ≤ t1 <
· · · < tp in [0, n] and {j1, . . . , jp} in Z ,...”

We shall briefly outline more general definitions of the Markov property.
For T ⊂ [0, n] let HT denote the class of all events generated by {Z(t)}t∈T .
It represents everything that can be observed about Z in the time set T . For
instance, H{t} is the information carried by the process at time t and consists
of the elementary events ∅, Ω, and [Z(t) = j], j = 0, . . . , r, and all possible
unions of these events. More generally, H{t1,...,tp} is the information carried
by the process at times t1, . . . , tp. Some sets T of interval type are frequently
encountered, and we abbreviate H≤t = H[0,t] (the entire history of the process by
time t), H<t = H[0,t) (the strict past of the process by time t), and H>t = H(t,n]

(the future of the process by time t).
The process Z is said to be a Markov process if, for any B ∈ H>t,

P[B | H≤t] = P[B | H{t}] . (7.8)

This is the general form of (7.5).
An alternative definition says that, for any A ∈ H<t and B ∈ H>t,

P[A ∩B | H{t}] = P[A | H{t}] P[B | H{t}] , (7.9)

that is, the past and the future of the process are conditionally independent,
given its present state. In the case with finite state space (countability is
equally simple) it is easy to prove that (7.8) and (7.9) are equivalent by work-
ing with the finite-dimensional distributions, that is, take A ∈ H{t1,...,tp} and
B ∈ H{tp+1,...,tp+q} with t1 < · · · < tp < t < tp+1 < · · · < tp+q .

C. The Chapman-Kolmogorov equation. For a fixed t ∈ [0, n] the events
{Z(t) = j}, j ∈ Z , are disjoint and their union is the almost sure event. It
follows that

P[Z(u) = k |Z(s) = i] =
∑

j∈Z
P[Z(t) = j, Z(u) = k |Z(s) = i]

=
∑

j∈Z
P[Z(t) = j |Z(s) = i] P[Z(u) = k |Z(s) = i , Z(t) = j] .
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If Z is Markov, and 0 ≤ s ≤ t ≤ u, this reduces to

pik(s, u) =
∑

j∈Z
pij(s, t)pjk(t, u) , (7.10)

which is known as the Chapman-Kolmogorov equation.

D. Intensities of transition. In principle, specifying the Markov model
amounts to specifying the pjk(t, u) in such a manner that the expressions on
the right of (7.4) define probabilities in a consistent way. This would be easy
if Z were a discrete time Markov chain with t ranging in a finite time set
0 = t0 < t1 < · · · < tq = n: then we could just take the pjk(tq−1, tq) as any
non-negative numbers satisfying

∑r
k=0 pjk(tp−1, tp) = 1 for each j ∈ Z and

p = 1, . . . , q. This simple device does not carry over without modification to the
continuous time case since there are no smallest finite time intervals from which
we can build all probabilities by (7.4). An obvious way of adapting the basic
idea to the time-continuous case is to add smoothness assumptions that give
meaning to a notion of transition probabilities in infinitesimal time intervals.

More specifically, we shall assume that the intensities of transition,

µjk(t) = lim
h↓0

pjk(t, t+ h)

h
(7.11)

exist for each j, k ∈ Z , j 6= k, and t ∈ [0, n) and, moreover, that they are
piece-wise continuous. Another way of phrasing (7.11) is

pjk(t, t+ dt) = µjk(t)dt+ o(dt) , (7.12)

where the term o(dt) is such that o(dt)/dt → 0 as dt → 0. Thus, transition
probabilities over a short time interval are assumed to be (approximately) pro-
portional to the length of the interval, and the proportionality factors are just
the intensities, which may depend on the time. What is ”short” in this con-
nection depends on the sizes of the intensities. For instance, if the µjk(τ) are
approximately constant and << 1 for all k 6= j and all τ ∈ [t, t + 1], then
µjk(t) approximates the transition probability pjk(t, t+1). In general, however,
the intensities may attain any positive values and should not be confused with
probabilities.

For j /∈ K ⊂ Z , we define the intensity of transition from state j to the set
of states K at time t as

µjK(t) = lim
u↓t

pjK(t, u)

u− t
=
∑

k∈K
µjk(t) . (7.13)

In particular, the total intensity of transition out of state j at time t is µj,Z−{j}(t),
which is abbreviated

µj·(t) =
∑

k;k 6=j

µjk(t) . (7.14)
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From (7.7) and (7.12) we get

pjj(t, t+ dt) = 1 − µj·(t)dt+ o(dt) . (7.15)

E. The Kolmogorov differential equations.
The transition probabilities are two-dimensional functions of time, and in non-
trivial situations it is virtually impossible to specify them directly in a consis-
tent manner or even figure how they should look on intuitive grounds. The
intensities, however, are one-dimensional functions of time and, being easily in-
terpretable, they form a natural starting point for specification of the model.
Luckily, as we shall now see, they are also basic entities in the system as they
determine the transition probabilities uniquely.

Suppose the process Z is in state j at time t. To find the probability that
the process will be in state k at a given future time u, let us condition on
what happens in the first small time interval (t, t + dt]. In the first place Z
may remain in state j with probability 1 − µj·(t) dt and, conditional on this
event, the probability of ending up in state k at time u is pjk(t+ dt, u). In the
second place, Z may jump to some other state g with probability µjg(t) dt and,
conditional on this event, the probability of ending up in state k at time u is
pgk(t+ dt, u). Thus, the total probability of Z being in state k at time u is

pjk(t, u) = (1 − µj·(t) dt) pjk(t+ dt, u)

+
∑

g;g 6=j

µjg(t) dt pgk(t+ dt, u) + o(dt) , (7.16)

Upon putting dtpjk(t, u) = pjk(t + dt, u) − pjk(t, u) in the infinitesimal sense,
we arrive at

dtpjk(t, u) = µj·(t) dt pjk(t, u) −
∑

g;g 6=j

µjg(t) dt pgk(t, u) . (7.17)

For given k and u these differential equations determine the functions pjk(·, u),
j = 0, . . . , r, uniquely when combined with the obvious conditions

pjk(u, u) = δjk . (7.18)

Here δjk is the Kronecker delta defined as 1 if j = k and 0 otherwise.
The relation (7.16) could have been put up directly by use of the Chapman-

Kolmogorov equation (7.10), with s, t, i, j replaced by t, t+ dt, j, g, but we have
carried through the detailed (still informal though) argument above since it will
be in use repeatedly throughout the text. It is called the backward (differential)
argument since it focuses on t, which in the perspective of the considered time
period [t, u] is the very beginning. Accordingly, (7.17) is referred to as the
Kolmogorov backward differential equations, being due to A.N. Kolmogorov.

At points of continuity of the intensities we can divide by dt in (7.17) and
obtain a limit on the right as dt tends to 0. Thus, at such points we can write
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(7.17) as

∂

∂t
pjk(t, u) = µj·(t)pjk(t, u) −

∑

g;g 6=j

µjg(t)pgk(t, u) . (7.19)

Since we have assumed that the intensities are piece-wise continuous, the in-
dicated derivatives exist piece-wise. We prefer, however, to work with the
differential form (7.17) since it is generally valid under our assumptions and,
moreover, invites algorithmic reasoning; numerical procedures for solving differ-
ential equations are based on approximation by difference equations for some
fine discretization and, in fact, (7.16) is basically what one would use with some
small dt > 0.

As one may have guessed, there exist also Kolmogorov forward differential
equations. These are obtained by focusing on what happens at the end of the
time interval in consideration. Reasoning along the lines above, we have

pij(s, t+ dt) =
∑

g;g 6=j

pig(s, t)µgj(t) dt+ pij(s, t)(1 − µj·(t) dt) + o(dt) ,

hence

dtpij(s, t) =
∑

g;g 6=j

pig(s, t)µgj(t) dt − pij(s, t)µj·(t) dt . (7.20)

For given i and s, the differential equations (7.20) determine the functions
pij(s, ·), j = 0, . . . , r, uniquely in conjunction with the obvious conditions

pij(s, s) = δij . (7.21)

In some simple cases the differential equations have nice analytical solutions,
but in most non-trivial cases they must be solved numerically, e.g. by the Runge-
Kutta method.

Once the simple transition probabilities are determined, we may calculate
the probability of any event in H{t1,...,tr} from the finite-dimensional distribu-
tion (7.4). In fact, with finite Z every such probability is just a finite sum of
probabilities of elementary events to which we can apply (7.4).

Probabilities of more complex events that involve an infinite number of co-
ordinates of Z, e.g. events in HT with T an interval, cannot in general be
calculated from the simple transition probabilities. Often we can, however, put
up differential equations for the requested probabilities and solve these by some
suitable method.

Of particular interest is the probability of staying uninterruptedly in the
current state for a certain period of time,

pjj(t, u) = P[Z(τ) = j, τ ∈ (t, u] |Z(t) = j] . (7.22)

Obviously pjj(t, u) = pjj(t, s) pjj(s, u) for t < s < u. By the “backward”
construction and (7.15) we get

pjj(t, u) = (1 − µj·(t) dt) pjj(t+ dt, u) + o(dt) . (7.23)
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From here proceed as above, using pjj (u, u) = 1, to obtain

pjj(t, u) = e−
∫

u
t

µj· . (7.24)

F. Backward and forward integral equations. From the backward dif-
ferential equations we obtain an equivalent set of integral equations as follows.
Switch the first term on the right over to the left and, to obtain a complete
differential there, multiply on both sides by the integrating factor e

∫ u
t

µj· :

dt

(

e
∫

u
t

µj·pjk(t, u)
)

= −e
∫

u
t

µj·

∑

g;g 6=j

µjg(t) dt pgk(t, u).

Now integrate over (t, u] and use (7.18) to obtain

δjk − e
∫

u
t

µj·pjk(t, u) = −

∫ u

t

e
∫

u
τ

µj·

∑

g; g 6=j

µgj(τ)pjk(τ, u) dτ .

Finally, carry the Kronecker delta over to the right, multiply by −e−
∫ u

t
µj , and

use (7.24) to arrive at the backward integral equations

pjk(t, u) =

∫ u

t

pjj(t, τ)
∑

g; g 6=j

µjg(τ)pgk(τ, u) dτ + δjkpjj(t, u) . (7.25)

In a similar manner we obtain the following set of forward integral equations
from (7.20):

pij(s, t) = δijpii(s, t) +
∑

g; g 6=j

∫ t

s

pig(s, τ)µgj (τ)pjj (τ, t)dτ . (7.26)

The integral equations could be put up directly upon summing the proba-
bilities of disjoint elementary events that constitute the event in question. For
(7.26) the argument goes as follows. The first term on the right accounts for the
possibility of ending up in state j without making any intermediate transitions,
which is relevant only if i = j. The second term accounts for the possibility
of ending up in state j after having made intermediate transitions and is the
sum, over all states g 6= j and all small time intervals (τ, τ + dτ) in (s, t), of
the probability of arriving for the last time in state j from state g in the time
interval (τ, τ + dτ). In a similar manner (7.25) is obtained upon splitting up by
the direction and the time of the first departure, if any, from state j.

We now turn to some specializations of the model pertaining to insurance of
persons.

7.3 Applications

A. A single life with one cause of death. The life length of a person is
modeled as a positive random variable T with survival function F̄ . There are
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Figure 7.1: Sketch of the mortality model with one cause of death.

two states, ’alive’ and ’dead’. Labeling these by 0 and 1, respectively, the state
process Z is simply

Z(t) = 1[T ≤ t] , t ∈ [0, n] ,

which counts the number of deaths by time t ≥ 0. The process Z is right-
continuous and is obviously Markov since in state 0 the past is trivial, and in
state 1 the future is trivial. The transition probabilities are

p00(s, t) = F̄ (t)/F̄ (s) .

The Chapman-Kolmogorov equation reduces to the trivial

p00(s, u) = p00(s, t)p00(t, u)

or F̄ (u)/F̄ (s) = {F̄ (t)/F̄ (s)}{F̄ (u)/F̄ (t)}. The only non-null intensity is µ01(t) =
µ(t), and

p00(t, u) = e−
∫

u
t

µ . (7.27)

The Kolmogorov differential equations reduce to just the definition of the in-
tensity (write out the details).

The simple two state process with state 1 absorbing is outlined in Fig. 7.1

B. A single life with r causes of death. In the previous paragraph it was,
admittedly, the process set-up that needed the example and not the other way
around. The process formulation shows it power when we turn to more complex
situations. Fig. 7.2 outlines a first extension of the model in the previous para-
graph, whereby the single absorbing state (”dead”) is replaced by r absorbing
states representing different causes of death, e.g. ”dead in accident”, ”dead
from heart disease”, etc. The index 0 in the intensities µ0j is superfluous and
has been dropped.
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Figure 7.2: Sketch of the mortality model with r causes of death.

Relation (7.14) implies that the total mortality intensity is the sum of the
intensities of death from different causes,

µ(t) =

r
∑

j=1

µj(t) . (7.28)

For a person aged t the probability of survival to u is the well-known survival
probability p00(t, u) given by (7.27). The present enriched model opens possibil-
ities of expressing ideas about the relative importance of various causes of death
and thus better motivate a specific mortality law in the aggregate. For instance,
the G-M law in the simple mortality model may be motivated as resulting from
two causes of death, one with intensity α independent of age (pure accident)
and the other with intensity βct (wear-out).

The probability that a t years old will die from cause j before age u is

p0j(t, u) =

∫ u

t

e−
∫

τ
t

µ µj(τ) dτ . (7.29)

This follows from e.g. (7.25) upon noting that prr(t, u) = 1, but — being totally
transparent — it can be put up directly.

Inspection of (7.28) – (7.29) gives rise to a comment. An increase of one
mortality intensity µk results in a decrease of the survival probability (evidently)
and also of the probabilities of death from every other cause j 6= k, hence (since
the probabilities sum to 1) an increase of the probability of death from cause
k (also evident). Thus, the increased proportions of deaths from heart diseases
and cancer in our times could be sufficiently explained by the fact that medical
progress has practically eliminated mortality by lunge inflammation, childbed
fever, and a number of other diseases.

The above discussion supports the assertion that the intensities are basic
entities. They are the pure expressions of the forces acting on the policy in
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each given state, and the transition probabilities are resultants of the interplay
between these forces.

C. A model for disabilities, recoveries, and death. Fig. 7.3 outlines a
model suitable for analyzing insurances with payments depending on the state
of health of the insured, e.g. sickness insurance providing an annuity benefit
during periods of disability or life insurance with premium waiver during dis-
ability. Many other problems fit into the same scheme by mere re-labeling of
the states. For instance, in connection with a pension insurance with additional
benefits to the spouse, states 0 and 1 would be ”unmarried” and ”married”,
and in connection with unemployment insurance they would be ”employed”
and ”unemployed”.

For a person who is active at time s the Kolmogorov forward differential
(7.20) equations are

∂

∂t
p00(s, t) = p01(s, t)ρ(t) − p00(s, t)(µ(t) + σ(t)) , (7.30)

∂

∂t
p01(s, t) = p00(s, t)σ(t) − p01(s, t)(ν(t) + ρ(t)) . (7.31)

(The probability p02(s, t) is determined by the other two.) The initial conditions
(7.21) become

p00(s, s) = 1 , (7.32)

p01(s, s) = 0 . (7.33)

(For a person who is disabled at time s the forward differential equations are
the same, only with the first subscript 0 replaced by 1 in all the probabilities,
and the side conditions are p00(s, s) = 0 , p11(s, s) = 1 .).

active invalid

dead
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J
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µ(t) ν(t)
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ρ(t)

Figure 7.3: Sketch of a Markov chain model for disabilities, recoveries, and
death.
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When the intensities are sufficiently simple functions, one may find explicit
closed expressions for the transition probabilities. Work through the case with
constant intensities.

7.4 Selection phenomena

A. Introductory remarks. The Markov model (like any other model) may
be accused of being oversimplified. For instance, in the disability model it says
that the prospects of survival of a disabled person are unaffected by information
about the past such as the pattern of previous disabilities and recoveries and,
in particular, the duration since the last onset of disability. One could imagine
that there are several types or degrees of disability, some of them light, with
rather standard mortality, and some severe with heavy excess mortality. In
these circumstances information about the past may be relevant: if we get to
know that the onset of disability incurred a long time ago, then it is likely that
one of the light forms is in play; if it incurred yesterday, it may well be one of
the severe forms by which a soon death is to be expected.

Now, the kind of heterogeneity effect mentioned here can be accommodated
in the Markov framework simply by extending the state space, replacing the
single state ”disabled” by more states corresponding to different degrees of dis-
ability. From this Markov model we deduce the model of what we can observe
as sketched in Fig. 7.3 upon letting the state ”disabled” be the aggregate of the
disability states in the basic model. What we end up with is typically no longer
a Markov model.

Generally speaking, by variation of state space and intensities, the Markov
set-up is capable of representing extremely complex phenomena. In the following
we shall formalize these ideas with a particular view to selection phenomena
often encountered in insurance. The ideas are to a great extent taken from [27].

B. Aggregating states of a Markov chain. Let Z be the general con-
tinuous time Markov chain introduced in Section 7.2. Let {Z0, . . . ,Zr̃} be a
partition of Z , that is, the Zg are disjoint and their union is Z . By convention,

0 ∈ Z0. Define a stochastic process Z̃ on the state space Z̃ = {0, . . . , r̃} by

Z̃(t) = g iff Z(t) ∈ Zg . (7.34)

The interpretation is that we can observe the process Z̃ which represents sum-
mary information about some not fully observable Markov process Z.

Suppose the underlying process Z is observed to be in state i at time s. The
subsequent development of Z̃ can be projected by conditional probabilities for
the process Z. We have, for s < t < u,

P[Z̃(u) = h |Z(s) = i, Z̃(t) = g] =
1

piZg (s, t)

∑

j∈Zg

pij(s, t)pjZh
(t, u) .
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From this expression we obtain conditional transition intensities of the aggregate
process:

lim
u↓t

P[Z̃(u) = h |Z(s) = i, Z̃(t) = g]

u− t
=

1

piZg (s, t)

∑

j∈Zg

pij(s, t)µjZh
(t) .

We can not speak of the intensities since they would in general be different if
more information about Z were conditioned on.

As an example, consider the aggregate of the states 0 and 1 in the disability
model in Paragraph 7.3.C, Z0 = {0, 1}, and put Z1 = {2}. Thus we observe
only whether the insured is alive or not. The process Z̃ is Markov, of course
(recall the argument in Paragraph 7.3.A). The survival probability is

p̃00(0, t) = p00(0, t) + p01(0, t) ,

and the mortality intensity at age t is

µ̃(t) =
p00(0, t)µ(t) + p01(0, t)ν(t)

p00(0, t) + p01(0, t)
,

a weighted average of the mortality intensities of active and disabled, the weights
being the probabilities of staying in the respective states.

C. Non-differential probabilities. Suppose the transition probabilities pjZh
(t, u)

considered as functions of j are constant on each Zg , that is, there exist functions
p̃gh(t, u) such that, for each t < u and g, h ∈ Z∗,

pjZh
(t, u) = p̃gh(t, u) , ∀j ∈ Zg . (7.35)

Then we shall say that the probabilities of transition between the subsets Zg are
non-differential (within the individual subsets). The following result is evident
on intuitive grounds, but never the less merits emphasis.

Theorem 1. If the transition probabilities of the process Z between the subsets
Zg are non-differential, then the process Z̃ defined by (7.34) is Markov with
transition probabilities p̃gh(t, u) defined by (7.35). If Z possesses intensities
µjk, then the process Z∗ has intensities µ̃gh given by

µ̃gh = µjZh
, j ∈ Zg . (7.36)

Proof: By (7.8), we must show that, for any eventA depending only on {Z̃(τ)}0≤τ<t,

P[Z̃(u) = h |A , Z̃(t) = g] = p̃gh(t, u) . (7.37)

Using first the fact that [Z̃(t) = g] = ∪j∈Zg [Z(t) = j] is a union of disjoint
events, then that A ∈ H<t and Z is Markov, and finally assumption (7.35), we
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get

P[A, Z̃(t) = g, Z̃(u) = h]

=
∑

j∈Zg

P[A, Z(t) = j, Z(u) ∈ Zh]

=
∑

j∈Zg

P[A, Z(t) = j]pjZh
(t, u) .

= P[A, Z̃(t) = g] p̃gh(t, u) ,

which is equivalent to (7.37). �

D. Non-differential mortality. Let state r be absorbing, representing death,
and let H = {0, . . . , r− 1} be the aggregate of states where the insured is alive.
Assume that the mortality is non-differential, which means that all µjr, j ∈ H,
are identical and equal to λ, say. Then, by Theorem 1, the survival probability
is the same in all states j ∈ H:

pjH(t, u) = e−
∫

u
t

λ . (7.38)

The conditional probability of staying in state k ∈ H at time t, given survival,
is

pjk |H(t, u) =
pjk(t, u)

pjH(t, u)
= pjk(t, u)e

∫

u
t

λ . (7.39)

Inserting pjk(t, u) = pjk |H(t, u)e−
∫ u

t
λ into (7.25), we get for each j, k ∈ H that

pjk |H(t, u)e−
∫

u
t

λ =

∫ u

t

e−
∫

τ
t

µj,H−{j}−
∫

τ
t

λ
∑

g∈H−{j}
µjg(τ)pgk |H(τ, u)e−

∫

u
τ

λdτ

+ δjke
−
∫ u

t
µj,H−{j}−

∫ u
t

λ .

Multiplying with e
∫ t

s
λ, we see that the conditional probabilities in (7.39) satisfy

the integral equations (7.25) for the transition probabilities in the so-called par-
tial model with state space H and transition intensities µj,k, j, k ∈ H. Thus, to
find the transition probabilities in the full model, work first in the simple par-
tial model for the states as alive and multiply the partial probabilities obtained
there with the survival probability.

7.5 The standard multi-state contract

A. The contractual payments. We refer to the insurance policy with de-
velopment as described in Paragraph 7.1.A. Taking Z to be a stochastic process
with right-continuous paths and at most a finite number of jumps, the same
holds also for the associated indicator processes Ij and counting processes Njk
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defined, respectively, by Ij(t) = 1[Z(t) = j] (1 or 0 according as the policy is in
the state j or not at time t) and Njk(t) = ]{τ ; Z(τ−) = j, Z(τ) = k, τ ∈ (0, t]}
(the number of transitions from state j to state k (k 6= j) during the time in-
terval (0, t]). The indicator processes {Ij(t)}t≥0 and the counting processes
{Njk(t)}t≥0 are related by the fact that Ij increases/decreases (by 1) upon a
transition into/out of state j. Thus

dIj(t) = dN·j(t) − dNj·(t) , (7.40)

where a dot in the place of a subscript signifies summation over that subscript,
e.g. Nj· =

∑

k;k 6=j Njk.
The policy is assumed to be of standard type, which means that the payment

function representing contractual benefits less premiums is of the form (recall
the device (A.15))

dB(t) =
∑

k

Ik(t) dBk(t) +
∑

k 6=`

bk`(t) dNk`(t) , (7.41)

where each Bk, of form dBk(t) = bk(t) dt + Bk(t) − Bk(t−), is a deterministic
payment function specifying payments due during sojourns in state k (a general
life annuity), and each bk` is a deterministic function specifying payments due
upon transitions from state k to state ` (a general life assurance). When different
from 0, Bk(t)−Bk(t−) is an endowment at time t. The functions bk and bk` are
assumed to be finite-valued and piecewise continuous. The set of discontinuity
points of any of the annuity functions Bk is D = {t0, t1, . . . , tq} (say).

Positive amounts represent benefits and negative amounts represent premi-
ums. In practice premiums are only of annuity type. At times t /∈ [0, n] all
payments are null.

B. Identities revisited. Here we make an intermission to make a comment
that does not depend on the probability structure to be specified below. The
identity (4.18) rests on the corresponding identity (4.17) between the present
values. The latter is, in its turn, a special case of the identities put up in Section
2.1, from which many identities between present values in life insurance can be
derived.

Suppose the investment portfolio of the insurance company bears interest
with intensity r(t) at time t. The following identity, which expresses life annu-
ities by endowments and life assurances, is easily obtained upon integrating by
parts, using (7.40):

∫ u

t

e−
∫

τ
0

rIj(τ) dBj (τ) = e−
∫

u
0

rIj(u)Bj(u) − e−
∫

t
0

rIj(t)Bj(t) +

∫ u

t

e−
∫

τ
0

rIj(τ)Bj(τ)r(τ) dτ

+

∫ u

t

e−
∫

τ
0

rBj(τ−) d(Nj·(τ) −N·j(τ)) .
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C. Expected present values and prospective reserves. At any time
t ∈ [0, n], the present value of future benefits less premiums under the contract
is

V (t) =

∫ n

t

e−
∫

τ
t

rdB(τ) . (7.42)

This is a liability for which the insurer is to provide a reserve, which by statute
is the expected value. Suppose the policy is in state j at time t. Then the
conditional expected value of V (t) is

Vj(t) =

∫ n

t

e−
∫

τ
t

r
∑

k

pjk(t, τ)



dBk(τ) +
∑

`;`6=k

bk`(τ)µk`(τ) dτ



 . (7.43)

This follows by taking expectation under the integral in (7.42), inserting dB(τ)
from (7.41), and using

E[Ik(τ) |Z(t) = j] = pjk(t, τ) ,

E[dNk`(τ) |Z(t) = j] = pjk(t, τ)µk`(τ) dτ .

We expound the result as follows. With probability pjk(t, τ) the policy stays
in state k at time τ , and if this happens the life annuity provides the amount
dBk(τ) during a period of length dτ around τ . Thus, the expected present value
at time t of this contingent payment is pjk(t, τ)e−

∫ τ
t

r dBk(τ). With probability
pjk(t, τ)µk`(τ) dτ the policy jumps from state k to state ` during a period of
length dτ around τ , and if this happens the assurance provides the amount
bk`(τ). Thus, the expected present value at time t of this contingent payment
is pjk(t, τ)µk`(τ) dτ e

−
∫

τ
t

r bk`(τ). Summing over all future times and types of
payments, we find the total given by (7.43).

Let 0 ≤ t < u < n. Upon separating payments in (t, u] and in (u, n] on the
right of (7.43), and using Chapman-Kolmogorov on the latter part, we obtain

Vj(t) =

∫ u

t

e−
∫ τ

t
r
∑

k

pjk(t, τ)



dBk(τ) +
∑

`;`6=k

bk`(τ)µk`(τ) dτ





+ e−
∫

u
t

r
∑

k

pjk(t, u)Vk(u). (7.44)

This expression is also immediately obtained upon conditioning on the state of
the policy at time u.

Throughout the term of the policy the insurance company must currently
maintain a reserve to meet future net liabilities in respect of the contract. By
statute, if the policy is in state j at time t, then the company is to provide
a reserve that is precisely Vj(t). Accordingly, the functions Vj are called the
(state-wise) prospective reserves of the policy. One may say that the principle
of equivalence has been carried over to time t, now requiring expected balance
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between the amount currently reserved and the discounted future liabilities,
given the information currently available. (Only the present state of the policy
is relevant due to the Markov property and the simple memoryless payments
under the standard contract).

D. The backward (Thiele’s) differential equations. By letting u ap-
proach t in (7.44), we obtain a differential form that displays the dynamics
of the reserves. In fact, we are going to derive a set of backward differential
equations and, therefore, take the opportunity to apply the direct backward dif-
ferential argument demonstrated and announced previously in Paragraph 7.2.E.

Thus, suppose the policy is in state j at time t /∈ D. Conditioning on what
happens in a small time interval (t, t+ dt] (not intersecting D) we write

Vj(t) = bj(t) dt+
∑

k;k 6=j

µjk(t) dt bjk(t)

+(1 − µj·(t) dt)e
−r(t) dt Vj(t+ dt) +

∑

k;k 6=j

µjk(t) dt e−r(t) dt Vk(t+ dt) .

Proceeding from here along the lines of the simple case in Section 4.4, we eas-
ily arrive at the backward or Thiele’s differential equations for the state-wise
prospective reserves,

d

dt
Vj(t) = (r(t) + µj·(t))Vj(t) −

∑

k;k 6=j

µjk(t)Vk(t)

−bj(t) −
∑

k;k 6=j

bjk(t)µjk(t) . (7.45)

The differential equations are valid in the open intervals (tp−1, tp), p = 1, . . . , q,
and together with the conditions

Vj(tp−) = (Bj(tp) −Bj(tp−)) + Vj(tp) , p = 1, . . . , q, j ∈ Z , (7.46)

they determine the functions Vj uniquely.
A comment is in order on the differentiability of the Vj . At points of con-

tinuity of the functions bj , bjk, µjk , and r there is no problem since there the
integrand on the right of (7.43) is continuous. At possible points of disconti-
nuity of the integrand the derivative d

dt
Vj does not exist. However, since such

discontinuities are finite in number, they will not affect the integrations involved
in numerical procedures. Thus we shall throughout allow ourselves to write the
differential equations on the form (7.45) instead of the generally valid differen-
tial form obtained upon putting dVj(t) on the left and multiplying with dt on
the right.

E. Solving the differential equations. Only in rare cases of no practical
interest is it possible to find closed form solutions to the differential equations.
In practice one must resort to numerical methods to determine the prospective



CHAPTER 7. MARKOV CHAINS IN LIFE INSURANCE 83

reserves. As a matter of experience a fourth order Runge-Kutta procedure works
reliably in virtually all situations encountered in practice.

One solves the differential equations ’from top down’. First solve (7.45) in the
upper interval (tq−1, n) subject to (7.46), which specializes to Vj(n−) = Bj(n)−
Bj(n−) since Vj(n) = 0 for all j by definition. Then go to the interval below and
solve (7.45) subject to Vj(tq−1−) = (Bj(tq−1) − Bj(tq−1−)) + Vj(tq−1), where
Vj(tq−1) was determined in the first step. Proceed in this manner downwards.

It is realized that the Kolmogorov backward equations (7.17) are a special
case of the Thiele equations (7.45); the transition probability pjk(t, u) is just
the prospective reserve in state j at time t for the simple contract with the only
payment being a lump sum payment of 1 at time u if the policy is then in state k,
and with no interest. Thus a numerical procedure for computation of prospective
reserves can also be used for computation of the transition probabilities.

F. The equivalence principle. If the equivalence principle is invoked, one
must require that

V0(0) = −B0(0) . (7.47)

This condition imposes a constraint on the contractual functions bj , Bj , and
bjk, viz. on the premium level for given benefits and ’design’ of the premium
plan. It is of a different nature than the conditions (7.46), which follow by the
very definition of prospective reserves (for given contractual functions).

G. Savings premium and risk premium. The equation (7.45) can be re-
cast as

−bj(t) dt = dVj(t) − r(t) dt Vj (t) +
∑

k;k 6=j

Rjk(t)µjk(t) dt . (7.48)

where

Rjk(t) = bjk(t) + Vk(t) − Vj(t) . (7.49)

The quantity Rjk(t) is called the sum at risk associated with (a possible) tran-
sition from state j to state k at time t since, upon such a transition, the insurer
must immediately pay out the sum insured and also provide the appropriate
reserve in the new state, but he can cash the reserve in the old state. Thus,
the last term in (7.48) is the expected net outlay in connection with a possi-
ble transition out of the current state j in (t, t + dt), and it is called the risk
premium. The two first terms on the right of (7.48) constitute the savings pre-
mium in (t, t + dt), called so because it is the amount that has to be provided
to maintain the reserve in the current state; the increment of the reserve less
the interest earned on it. On the left of (7.48) is the premium paid in (t, t+ dt),
and so the relation shows how the premium decomposes in a savings part and a
risk part. Although helpful as an interpretation, this consideration alone cannot
carry the full understanding of the differential equation since (7.48) is valid also
if bj(t) is positive (a benefit) or 0.
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H. Integral equations. In (7.45) let us switch the term (r(t) + µj·(t))Vj(t)

appearing on the right of over to the left, and multiply the equation by e−
∫

t
0
(r+µj·)

to form a complete differential on the left:

d

dt

(

e−
∫ t
0
(r+µj·)Vj(t)

)

=

−e−
∫

t
0
(r+µj·)





∑

k;k 6=j

µjk(t)Vk(t) + bj(t) +
∑

k;k 6=j

bjk(t)µjk(t)



 .

Now integrate over an interval (t, u) containing no jumps Bj(τ) −Bj(τ−) and,

recalling that e−
∫ τ

t
µj· = pjj(t, τ), rearrange a bit to obtain the integral equation

Vj(t) =

∫ u

t

pjj(t, τ) e
−
∫

τ
t

r



bj(τ) +
∑

k; k 6=j

µjk(τ)(bjk(τ) + Vk(τ))



 dτ

+ pjj(t, u) e
−
∫ u

t
r Vj(u−) . (7.50)

This result generalizes the backward integral equations for the transition prob-
abilities (7.25) and, just as in that special case, also the expression on the right
hand side of (7.50) is easy to interpret; it decomposes the future payments into
those that fall due before and those that fall due after the time of the first
transition out of the current state in the time interval (t, u) or, if no transition
takes place, those that fall due before and those that fall due after time u.

We shall take a direct route to the integral equation (7.50) that actually is
the rigorous version of the backward technique. Suppose that the policy is in
state j at time t. Let us apply the rule of iterated expectations to the expected
value Vj(t), conditioning on whether a transition out of state j takes place within
time u or not and, in case it does, also condition on the time and the direction
of the first transition. We then get

Vj(t) =

∫ u

t

pjj(t, τ)
∑

k; k 6=j

µjk(τ) dτ

(∫ τ

t

e−
∫

s
t

rbj(s) ds+ e−
∫

τ
t

r(bjk(τ) + Vk(τ))

)

+pjj(t, u)

(∫ u

t

e−
∫

s
t

rbj(s) ds+ e−
∫

u
t

r Vj(u−)

)

. (7.51)

To see that this is the same as (7.50), we need only to observe that

∫ u

t

pjj(t, τ)µj·(τ)

∫ τ

t

e−
∫

s
t

rbj(s) ds dτ

=

∫ u

t

∫ u

s

d

dτ
(−pjj(t, τ)) dτe

−
∫ s

t
rbj(s) ds

= −pjj(t, u)

∫ u

t

e−
∫

s
t

rbj(s) ds+

∫ u

t

pjj(t, s)e
−
∫

s
t

rbj(s) ds.
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I. Uses of the differential equations. If the contractual functions do not
depend on the reserves, the defining relation (7.43) give explicit expressions for
the state-wise reserves and strictly speaking the differential equations (7.45)
are not needed for constructive purposes. They are, however, computationally
convenient since there are good methods for numerical solution of differential
equations. They also serve to give insight into the dynamics of the policy.

The situation is entirely different if the contractual functions are allowed to
depend on the reserves in some way or other. The most typical examples are
repayment of a part of the reserve upon withdrawal (a state ”withdrawn” must
then be included in the state space Z) and expenses depending partly on the
reserve. Also the primary insurance benefits may in some cases be specified
as functions of the reserve. In such situations the differential equations are an
indispensable tool in the construction of the reserves and determination of the
equivalence premium. We shall provide an example in the next paragraph.

J. An example: Widow’s pension. A married couple buys a combined
life insurance and widow’s pension policy specifying that premiums are payable
at level rate c as long as both husband and wife are alive, widow’s pension is
payable at level rate b (as long as the wife survives the husband), and a life
assurance with sum s is due immediately upon the death of the husband if the
wife is already dead (a benefit to their dependents). The policy terminates at
time n. The relevant Markov model is sketched Fig. F.4. We assume that r is
constant.

The differential equations (7.45) now specialize to the following (we omit the
trivial equation for V3(t) = 0):

d

dt
V0(t) = (r + µ(t) + ν(t)) V0(t)

−µ(t)V1(t) − ν02(t)V2(t) + c , (7.52)

d

dt
V1(t) = (r + ν′(t)) V1(t) − b , (7.53)

d

dt
V2(t) = (r + µ′(t)) V2(t) − µ′(t) s . (7.54)

Consider a modified contract, by which 50% of the reserve is to be paid back
to the husband in case he becomes a widower before time n, the philosophy being
that couples receiving no pensions should have some of their savings back. Now
the differential equations are really needed. Under the modified contract the
equations above remain unchanged except that the term 0.5V0(t)ν(t) must be
subtracted on the right of (7.52), which then changes to

d

dt
V0(t) = (r + µ(t) + 0.5ν(t))V0(t) + c

−µ(t)V1(t) − ν(t)V2(t) , (7.55)

Together with the conditions Vj(n) = 0, j = 0, 1, 2, these equations are easily
solved.
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Figure 7.4: Sketch of a model for two lives.

As a second case the widow’s pension shall be analyzed in the presence
of administration expenses that depend partly on the reserve. Consider again
the policy terms described in the introduction of this paragraph, but assume
that administration expenses incur with an intensity that is a times the current
reserve throughout the entire period [0, n].

The differential equations for the reserves remain as in (7.52)–(7.54), except
that for each j the term a Vj(t) is to be subtracted on the right of the differential
equation for Vj . Thus, the administration costs related to the reserve has the
same effect as a decrease of the interest intensity r by a.

7.6 Select mortality revisited

A. A simple Markov chain model. Referring to Section 3.4 we shall present
a simple Markov model that offers an explanation of the selection phenomenon.

The Markov model sketched in Fig. 7.5 is designed for studies of selection
effects due to underwriting standards. The population is grouped into four cat-
egories or states by the criteria insurable/uninsurable and insured/not insured.
In addition there is a category comprising the dead. It is assumed that each
person enters state 0 as new-born and thereafter changes states in accordance
with a time-continuous Markov chain with age-dependent forces of transition
as indicated in the figure. Non-insurability occurs upon onset of disability or
serious illness or other intervening circumstances that entail excess mortality.
Hence it is assumed that

λx > κx; x > 0. (7.56)

Let Z(x) be the state at age x for a randomly chosen new-born, and denote
the transition probabilities of the Markov process {Z(x); x > 0}. The following
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Figure 7.5: A Markov model for occurrences of non-insurability, purchase of
insurance, and death.

formulas can be put up directly:

p11(x, x + t) = exp{−

∫ x+t

x

(σ + κ)}, (7.57)

p12(x, x + t) =

∫ x+t

x

exp{−

∫ u

x

(σ + κ)}σu exp{−

∫ x+t

u

λ} du,

(7.58)

p00(0, x) = exp{−

∫ x

0

(σ + κ+ ρ)} . (7.59)

B. Select mortality among insured lives. The insured lives are in either
state 1 or state 2. Those who are in state 2 reached to buy insurance before
they turned non-insurable. However, the insurance company does not observe
transitions from state 1 to state 2; the only available information are x and x+t.
Thus, the relevant survival function is

tp[x] = p11(x, x + t) + p12(x, x+ t) , (7.60)

the probability that a person who entered state 1 at age x, will attain age x+ t.
The symbol on the left of (7.60) is chosen in accordance with standard actuarial
notation, see Sections 3.3 – 3.4.
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The force of mortality corresponding to (7.60) is

µ[x]+t =
κx+t p11(x, x+ t) + λx+t p12(x, x + t)

p11(x, x+ t) + p12(x, x + t)
. (7.61)

(Self-evident by conditioning on Z(x).) In general, the expression on the right
of (7.61) depends effectively on both x and t, that is, mortality is select.

We can now actually establish that under the present model the select mor-
tality intensity behaves as stated in Paragraph 3.4.C. It is suitable in the follow-
ing to fix x + t = y, say, as we are interested in how the mortality at a certain
age depends on the age of entry.

C. The select force of mortality is an decreasing function of the age
at entry. Formula (7.61) can be recast as

µ[x]+y−x = κy + ζ(x, y)(λy − κy) , (7.62)

where

ζ(x, y) =
p12(x, y)

p11(x, y) + p12(x, y)
(7.63)

=
1

1 + p11(x, y)/p12(x, y)
. (7.64)

We easily find that

p12(x, y)/p11(x, y) =

∫ y

x

σu exp{

∫ y

u

(σ + κ− λ)} du ,

which is a decreasing function of x. It follows that µ[x]+y−x is a decreasing
function of x as asserted in the heading of this paragraph.

The explanation is simple. Formula (7.61) expresses µ[x]+y−x as a weighted
average of κy and λy , the weights being (of course) the conditional probabilities
of being insurable and non-insurable, respectively. The weight attached to λy,
the larger of the two rates, decreases as x increases. Or, put in terms of everyday
speech: in a body of insured lives of the same age x and duration t = y − x,
some will have turned non-insurable in the period since entry; the longer the
duration, the larger the proportion of non-insurable lives. In particular, those
who have just entered, are known to be insurable, that is, µ[x] = κx.

D. Comparison with the mortality in the population. Let µ̄x denote
the force of mortality of a randomly chosen life of age x from the population.
A formula for µ̄x is easily obtained starting from the survival function xp̄0 =
∑3

i=0 p0i(0, x). It can, however, also be picked directly from the results of the
previous paragraph by noting that the pattern of mortality must be the same
in the population as among lives insured as newly-born, i.e. µ̄y = µ[0]+y. Then,
since µ[x]+y−x is a decreasing function of x and µ̄y corresponds to x = 0, it
follows that µ̄y > µ[x]+y−x for all x < y.
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Again the explanation is trivial; due to the underwriting standards, the
proportion of non-insurable lives will be less among insured people than in the
population as a whole.

7.7 Higher order moments of present values

A. Differential equations for moments of present values. Our frame-
work is the Markov model and the standard insurance contract. The set of time
points with possible lump sum annuity payments is D = {t0, t1 . . . , tm} (with
t0 = 0 and tm = n).

Denote by V (t, u) the present value at time t of the payments under the con-
tract during the time interval (t, u] and abbreviate V (t) = V (t, n) (the present
value at time t of all future payments). We want to determine higher order mo-
ments of V (t). By the Markov property, we need only the state-wise conditional
moments

V
(q)
j (t) = E[V (t)q |Z(t) = j] ,

q = 1, 2, . . .

Theorem 2. The functions V
(q)
j are determined by the differential equations

d

dt
V

(q)
j (t) = (qr(t) + µj·(t))V

(q)
j (t) − qbj(t)V

(q−1)
j (t)

−
∑

k; k 6=j

µjk(t)

q
∑

p=0

(

q

p

)

(bjk(t))pV
(q−p)
k (t) ,

valid on (0, n)\D and subject to the conditions

V
(q)
j (t−) =

q
∑

p=0

(

q

p

)

(Bj(t) −Bj(t−))pV
(q−p)
j (t) , (7.65)

t ∈ D . �

Proof: Obviously, for t < u < n,

V (t) = V (t, u) + e−
∫

u
t

rV (u) , (7.66)

For any q = 1, 2, . . . we have by the binomial formula

V q(t) =

q
∑

p=0

(

q

p

)

V (t, u)p
(

e−
∫ u

t
rV (u)

)q−p

. (7.67)
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Consider first a small time interval (t, t+ dt] without any lump sum annuity
payment. Putting u = t+dt in (7.67) and taking conditional expectation, given
Z(t) = j, we get

V
(q)
j (t) =

q
∑

p=0

(

q

p

)

E

[

V (t, t+ dt)p
(

e−r(t)dtV (t+ dt)
)q−p

∣

∣

∣

∣

Z(t) = j

]

. (7.68)

By use of iterated expectations, conditioning on what happens in the small
interval (t, t+ dt], the p-th term on the right of (7.68) becomes

(

q

p

)

(1 − µj·(t) dt) (bj(t) dt)
p e−(q−p)r(t) dt V

(q−p)
j (t+ dt) (7.69)

+

(

q

p

)

∑

k; k 6=j

µjk(t) dt (bj(t) dt+ bjk(t))pe−(q−p)r(t) dtV
(q−p)
k (t+ dt) .

(7.70)

Let us identify the significant parts of this expression, disregarding terms of
order o(dt). First look at (7.69); for p = 0 it is

(1 − µj·(t) dt)e
−qr(t) dt V

(q)
j (t+ dt) ,

for p = 1 it is

q bj(t) dt e
−(q−1)r(t) dt V

(q−1)
j (t+ dt) ,

and for p > 1 is o(dt). Next look at (7.70); the factor

dt (bj(t) dt+ bjk(t))p = dt

p
∑

r=0

(

p

r

)

(bj(t) dt)
r(bjk(t))p−r

reduces to dt (bjk(t))p so that (7.70) reduces to

(

q

p

)

∑

k; k 6=j

µjk(t) dt (bjk(t))pe−(q−p)r(t) dtV
(q−p)
k (t+ dt) .

Thus, we gather

V
(q)
j (t) = (1 − µj·(t) dt)e

−qr(t) dt V
(q)
j (t+ dt)

+ q bj(t) dt e
−(q−1)r(t) dt V

(q−1)
j (t+ dt)

+

q
∑

p=0

(

q

p

)

∑

k; k 6=j

µjk(t) dt (bjk(t))pe−(q−p)r(t) dtV
(q−p)
k (t+ dt) .

Now subtract V
(q)
j (t+ dt) on both sides, divide by dt, let dt tend to 0, and use

limt↓0
(

e−qr(t) dt − 1
)

/dt = −qr(t) to obtain the differential equation (7.65).
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The condition (7.65) follows easily by putting t − dt and t in the roles of t
and u in (7.67) and letting dt tend to 0. �

A rigorous proof is given in [38].
Central moments are easier to interpret and therefore more useful than the

non-central moments. Lettingm
(q)j
t denote the q-th central moment correspond-

ing to the non-central V
(q)j
t , we have

m
(1)
j (t) = V

(1)
j (t) , (7.71)

m
(q)
j (t) =

q
∑

p=0

(−1)q−p

(

q

p

)

V
(p)
j (t)

(

V
(1)
j (t)

)q−p

. (7.72)

B. Computations. The computation goes as follows. First solve the differ-
ential equations in the upper interval (tm−1, n), where the side conditions (7.65)
are just

V
(q)
j (n−) = (Bj(n) − Bj(n−))q (7.73)

since V
(q)
j (n) = δq0 (the Kronecker delta). Then, if m > 1, solve the differential

equations in the interval (tm−2, tm−1) subject to (7.65) with t = tm−1, and
proceed in this manner downwards.

C. Numerical examples. We shall calculate the first three moments for
some standard forms of insurance related to the ’disability model’ in Paragraph
7.3.C. We assume that the interest rate is constant and 4.5% per year,

r = ln(1.045) = 0.044017 ,

and that the intensities of transitions between the states depend only on the
age x of the insured and are

µx = νx = 0.0005 + 0.000075858 · 100.038x ,

σx = 0.0004 + 0.0000034674 · 100.06x ,

ρx = 0.005 .

The intensities µ, ν, and σ are those specified in the G82M technical basis.
(That basis does not allow for recoveries and uses ρ = 0).

Consider a male insured at age 30 for a period of 30 years, hence use µ02(t) =
µ12(t) = µ30+t, µ01(t) = σ30+t, µ10(t) = ρ30+t, 0 < t < 30 (= n). The central

moments m
(q)j
t defined in (7.71) – (7.72) have been computed for the states 0

and 1 (state 2 is uninteresting) at times t = 0, 6, 12, 18, 24, and are shown
– in Table 7.1 for a term insurance with sum 1 (= b02 = b12);
– in Table 7.2 for an annuity payable in active state with level intensity 1
(= b0);
– in Table 7.3 for an annuity payable in disabled state with level intensity 1
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(= b1);
– in Table 7.4 for a combined policy providing a term insurance with sum 1
(= b02 = b12) and a disability annuity with level intensity 0.5 (= b1) against
level net premium 0.013108 (= −b0) payable in active state.
You should try to interpret the results.

D. Solvency margins in life insurance – an illustration. Let Y be the
present value of all future net liabilities in respect of an insurance portfolio.
Denote the q-th central moment of Y by m(q). The so-called normal power
approximation of the upper ε-fractile of the distribution of Y , which we denote
by y1−ε, is based on the first three moments and is

y1−ε ≈ m(1) + c1−ε

√

m(2) +
c21−ε − 1

6

m(3)

m(2)
,

where c1−ε is the upper ε-fractile of the standard normal distribution. Adopting
the so-called break-up criterion in solvency control, y1−ε can be taken as a
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Table 7.1: Moments for a life assurance with sum 1

Time t 0 6 12 18 24 30

m
(1)0
t = m

(1)1
t : 0.0683 0.0771 0.0828 0.0801 0.0592 0

m
(2)0
t = m

(2)1
t : 0.0300 0.0389 0.0484 0.0549 0.0484 0

m
(3)0
t = m

(3)1
t : 0.0139 0.0191 0.0262 0.0343 0.0369 0

Table 7.2: Moments for an annuity of 1 per year while active:

Time t 0 6 12 18 24 30

m
(1)0
t : 15.763 13.921 11.606 8.698 4.995 0

m
(1)1
t : 0.863 0.648 0.431 0.230 0.070 0

m
(2)0
t : 5.885 5.665 4.740 2.950 0.833 0

m
(2)1
t : 7.795 5.372 3.104 1.290 0.234 0

m
(3)0
t : −51.550 −44.570 −32.020 −15.650 −2.737 0

m
(3)1
t : 78.888 49.950 25.099 8.143 0.876 0

Table 7.3: Moments for an annuity of 1 per year while disabled:

Time t 0 6 12 18 24 30

m
(1)0
t : 0.277 0.293 0.289 0.239 0.119 0

m
(1)1
t : 15.176 13.566 11.464 8.708 5.044 0

m
(2)0
t : 1.750 1.791 1.646 1.147 0.364 0

m
(2)1
t : 11.502 8.987 6.111 3.107 0.716 0

m
(3)0
t : 15.960 14.835 11.929 6.601 1.277 0

m
(3)1
t : −101.500 −71.990 −42.500 −17.160 −2.452 0
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Table 7.4: Moments for a life assurance of 1 plus a disability annuity of 0.5 per
year against net premium of 0.013108 per year while active:

Time t 0 6 12 18 24 30

m
(1)0
t : 0.0000 0.0410 0.0751 0.0858 0.0533 0

m
(1)1
t : 7.6451 6.8519 5.8091 4.4312 2.5803 0

m
(2)0
t : 0.4869 0.5046 0.4746 0.3514 0.1430 0

m
(2)1
t : 2.7010 2.0164 1.2764 0.5704 0.0974 0

m
(3)0
t : 2.1047 1.9440 1.5563 0.8686 0.1956 0

m
(3)1
t : −12.1200 −8.1340 −4.3960 −1.5100 −0.1430 0

minimum requirement on the technical reserve at the time of consideration.
It decomposes into the premium reserve, m(1), and what can be termed the
fluctuation reserve, y1−ε − m(1). A possible measure of the riskiness of the
portfolio is the ratio R =

(

y1−ε −m(1)
)

/P , where P is some suitable measure
of the size of the portfolio at the time of consideration. By way of illustration,
consider a portfolio of N independent policies, all identical to the one described
in connection with Table 7.4 and issued at the same time. Taking as P the
total premium income per year, the value of R at the time of issue is 48.61 for
N = 10, 12.00 for N = 100, 3.46 for N = 1000, 1.06 for N = 10000, and 0.332
for N = 100000.

7.8 A Markov chain interest model

7.8.1 The Markov model

A. The force of interest process.
The economy (or rather the part of the economy that governs the interest) is
a homogeneous time-continuous Markov chain Y on a finite state space J Y =
{1, . . . , JY }, with intensities of transition λef , e, f ∈ J Y , e 6= f . The force of
interest is re when the economy is in state e, that is,

r(t) =
∑

e

IY
e (t)re , (7.74)

where IY
e (t) = 1[Y (t) = e] is the indicator of the event that Y is in state e at

time t.
Figure F.5 shows a flow-chart of a simple Markov chain interest rate model

with three states, 0.02, 0.05, 0.08. Direct transition can only be made to a
neighbouring state, and the total intensity of transition out of any state is 0.5,
that is, the interest rate changes every two years on the average. By symmetry,
the long run average interest rate is 0.05.
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r1 = 0.02 r2 = 0.05 r3 = 0.08
-λ12 = 0.5

�
λ21 = 0.25

-λ23 = 0.25

�
λ32 = 0.5

Figure 7.6: Sketch of a simple Markov chain interest model.

B. The payment process.
We adopt the standard Markov chain model of a life insurance policy in Section
7.2 and equip the associated indicator and counting processes with topscript
Z to distinguish them from the corresponding entities for the Markov chain
governing the interest. We assume the payment stream is of the standard type
considered in Section 7.5.

C. The full Markov model.
We assume that the processes Y and Z are independent. Then (Y, Z) is a
Markov chain on J Y ×J Z with intensities

κej,fk(t) =







λef (t) , e 6= f, j = k ,
µjk(t) , e = f, j 6= k ,
0 , e 6= f, j 6= k .

7.8.2 Differential equations for moments of present values

A. The main result.
For the purpose of assessing the contractual liability we are interested in aspects
of its conditional distribution, given the available information at time t. We
focus here on determining the conditional moments. By the Markov assumption,
the functions in quest are the state-wise conditional moments

V
(q)
ej (t) = E

[(

1

v(t)

∫ n

t

v dB

)q ∣
∣

∣

∣

Y (t) = e, Z(t) = j

]

.

Copying the proof in Section 7.7, we find that the functions V
(q)
ej (·) are deter-

mined by the differential equations

d

dt
V

(q)
ej (t) = (qre + µj·(t) + λe·)V

(q)
ej (t) − qbj(t)V

(q−1)
ej (t)

−
∑

k;k 6=j

µjk(t)

q
∑

p=0

(

q

p

)

(bjk(t))pV
(q−p)
ek (t) −

∑

f ;f 6=e

λefV
(q)
fj (t) , (7.75)

valid on (0, n)\D and subject to the conditions

V
(q)
ej (t−) =

q
∑

p=0

(

q

p

)

(∆Bj(t))
pV

(q−p)
ej (t) , t ∈ D . � (7.76)
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For q = 2, 3, . . ., denote by m
(q)
ej (t) the q-th central moment corresponding

to V
(q)
ej (t), and define m

(1)
ej (t) = V

(1)
ej (t). Having computed the non-central

moments, we obtain the central moments of orders q > 1 from

m
(q)
ej (t) =

q
∑

p=0

(

q

p

)

(−1)q−p V
(p)
ej (t)

(

V
(1)
ej (t)

)q−p

.

B. Numerical results for a combined insurance policy.
Consider a combined life insurance and disability pension policy issued at time
0 to a person who is then aged x, say. The relevant states of the policy are 1 =
active, 2 = disabled , and 3 = dead . At time t, when the insured is x + t years
old, transitions between these states take place with intensities

µ13(t) = µ23(t) = 0.0005 + 0.000075858 · 100.038(x+t) ,

µ12(t) = 0.0004 + 0.0000034674 · 100.06(x+t) ,

µ21(t) = 0.005 .

We extend the model by assuming that the force of interest may assume three
values, r1 = ln(1.00) = 0 (low – in fact no interest), r2 = ln(1.045) = 0.04402
(medium), and r3 = ln(1.09) = 0.08618 (high), and that the transitions between
these states are governed by a Markov chain with infinitesimal matrix of the
form

Λ = λ





−1 1 0
0.5 −1 0.5
0 1 −1



 . (7.77)

The scalar λ can be interpreted as the expected number of transitions per time
unit and is thus a measure of interest volatility.

Table 1 displays the first three central moments of the present value at time
0 for the following case, henceforth referred to as the combined policy for short:
the age at entry is x = 30, the term of the policy is n = 30, the benefits are
a life assurance with sum 1 (= b13 = b23) and a disability annuity with level
intensity 0.5 (= b2), and premiums are payable in active state continuously at
level rate π (= −b1), which is taken to be the net premium rate in state (2,1)
(i.e. the rate that establishes expected balance between discounted premiums
and benefits when the insured is active and the interest is at medium level at
time 0).

The first three rows in the body of the table form a benchmark; λ = 0
means no interest fluctuation, and we therefore obtain the results for three
cases of fixed interest. It is seen that the second and third order moments of the
present value are strongly dependent on the (fixed) force of interest and, in fact,
their absolute values decrease when the force of interest increases (as could be
expected since increasing interest means decreasing discount factors and, hence,
decreasing present values of future amounts).
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Table 7.5: Central moments m
(q)
ej (0) of orders q = 1, 2, 3 of the present value

of future benefits less premiums for the combined policy in interest state e and
policy state j at time 0, for some different values of the rate of interest changes,
λ. Second column gives the net premium π of a policy starting from interest
state 2 (medium) and policy state 1 (active).

e, j : 1, 1 1, 2 2, 1 2, 2 3, 1 3, 2

λ π q

1 0.15 13.39 0.00 7.65 −0.39 5.03
0 .0131 2 2.55 12.50 0.49 2.70 0.13 0.80

3 20.45 −99.02 2.11 −12.12 0.37 −2.38

1 0.06 11.31 0.00 7.90 −0.03 5.78
.05 .0137 2 1.61 12.26 0.62 5.41 0.25 2.43

3 11.94 −42.87 3.20 −4.33 0.94 −0.08

1 0.02 8.43 0.00 7.81 −0.02 7.24
.5 .0134 2 0.65 4.90 0.55 4.15 0.46 3.52

3 3.34 −13.35 2.59 −10.13 2.02 −7.74

1 0.00 7.77 0.00 7.70 0.00 7.64
5 .0132 2 0.51 2.86 0.50 2.91 0.49 2.86

3 2.26 −12.51 2.20 −12.19 2.14 −11.88

1 0.00 7.69 0.00 7.69 0.00 7.69
∞ .0132 2 0.50 2.74 0.50 2.74 0.50 2.74

3 2.15 −12.37 2.15 −12.37 2.15 −12.37
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It is seen that, as λ increases, the differences across the three pairs of columns
get smaller and in the end they vanish completely. The obvious interpretation
is that the initial interest level is of little importance if the interest changes
rapidly.

The overall impression from the two central columns corresponding to medium
interest is that, as λ increases from 0, the variance of the present value will first
increase to a maximum and then decrease again and stabilize. This observation
supports the following piece of intuition: the introduction of moderate interest
fluctuation adds uncertainty to the final result of the contract, but if the interest
changes sufficiently rapidly, it will behave like fixed interest at the mean level.
Presumably, the values of the net premium in the second column reflect the
same effect.

7.8.3 Complement on Markov chains

A. Time-continuous Markov chains.
Let X = {X(t)}t≥0 be a time-continuous Markov chain on the finite state space
J = {1, . . . , J}. Denote by P (t, u) the J × J matrix whose j, k-element is the
transition probability pjk(t, u) = P [X(u) = k | X(t) = j]. The Markov property
implies the Chapman-Kolmogorov equation

P (s, u) = P (s, t)P (t, u) , (7.78)

valid for 0 ≤ s ≤ t ≤ u. In particular

P (t, t) = IJ×J , (7.79)

the J × J identity matrix. The intensity of transition from state j to state k
(6= j) at time t is defined as κjk(t) = limdt↓0 pjk(t, t+dt)/dt or, equivalently, by

pjk(t, t+ dt) = κjk(t) dt+ o(dt) , (7.80)

when the limit exists. Then, obviously,

pjj(t, t+ dt) = 1 − κj·(t)dt+ o(dt) , (7.81)

where κj·(t) =
∑

k; k 6=j κjk(t) can appropriately be termed the total intensity
of transition out of state j at time t. The infinitesimal matrix M(t) is the J ×J
matrix with κjk(t) in row j and column k, defining κjj(t) = −κj·(t). With this
notation (7.80) – (7.81) can be assembled in

P (t, t+ dt) = I +M(t)dt . (7.82)

The probabilities determine the intensities. Conversely, the probabilities
are determined by the intensities through Kolmogorov’s differential equations,
which are readily obtained upon combining (7.78) and (7.82). There is a forward
equation,

∂

∂t
P (s, t) = P (s, t)M(t) , (7.83)
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and a backward equation,

∂

∂t
P (t, u) = −M(t)P (t, u) , (7.84)

each of which determine P (t, u) when combined with the condition (7.79).

B. Stationary Markov chains.
When M(t) = M , a constant, then (as is obvious from the Kolmogorov equa-
tions) P (s, t) = P (0, t−s) depends on s and t only through t−s. In this case we
write P (t) = P (0, t), allowing a slight abuse of notation. The equations (7.83)
– (7.84) now reduce to

d

dt
P (t) = P (t)M = MP (t) . (7.85)

The limit Π = limt→∞ P (t) exists, and the j-th row of Π is the limiting (sta-
tionary) distribution of the state of the process, given that it starts from state
j. We shall assume throughout that all states communicate with each other.
Then the stationary distribution π′ = (π1, . . . , πJ), say, is independent of the
initial state, and so

Π = 1J×1π′ , (7.86)

where 1J×1 is the J-dimensional column vector with all entries equal to 1.
Letting t → ∞ in (7.85) and using (7.86), we get 1J×1π′M = M1J×1π′ =

0J×J (a matrix of the indicated dimension with all elements equal to 0), that
is,

π′M = 01×J , M1J×1 = 0J×1 . (7.87)

Thus, 0 is an eigenvalue of M , and π′ and 1J×1 are corresponding left and right
eigenvectors, respectively.

From Paragraph 4.3 of Karlin and Taylor (1975) we gather the following
useful representation result. Let ρj , j = 1, . . . , J , be the eigenvalues of M
and, for each j, let ψ′

j and φj be the corresponding left and right eigenvectors,
respectively. Let Φ be the J ×J matrix whose j-th column is φj . Then the j-th
row of Φ−1 is just ψ′

j , and introducing R(t) = diag(eρjt), the transition matrix
P (t) can be expressed as

P (t) = ΦR(t)Φ−1 =

J
∑

j=1

eρjtφjψ
′
j , (7.88)

which is computationally convenient. We can take ρ1 to be 0 and φ1 = 1J×1.
Then ψ′

1 = π′, and we obtain

P (t) = 1J×1π′ +
J
∑

j=2

eρjtφjψ
′
j . (7.89)
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All the ρj , j = 2, . . . , J are strictly negative, and so the representation shows
that the transition probabilities converge exponentially to the stationary distri-
bution.

At this point we need to make precise that in (7.85) the d
dt

is to be thought

of as an operator, to be distinguished from the matrix P (1)(t) of derivatives it
produces when applied to P (t). Now, for λ > 0, define

Pλ(t) = P (λt) . (7.90)

Upon differentiating this relationship and using (7.85), we obtain

d

dt
Pλ(t) =

d

dt
P (λt) = P (1)(λt)λ = Pλ(t)λM ,

which shows that Pλ(t), which is certainly a matrix of transition probabilities,
has infinitesimal matrix

Mλ = λM . (7.91)

Thus, doubling (say) the intensities of transition affects the transition probabil-
ities the same way as a doubling of the time period.

7.9 Dependent lives

7.9.1 Introduction

Actuarial tables for multi-life statuses are invariably based on the assumption
of mutual independence between the remaining lengths of the individual com-
ponent lives. The independence hypothesis is computationally convenient or,
rather, was so in those days when tables had to be constructed. In the present
era of scientific computing such concerns are not so important.

Let S and T be real-valued random variables defined on some probability
space. Being mainly interested in survival analysis related to life insurance, we
shall let S and T represent the remaining life lengths of two individuals insured
under the same policy, let us say husband and wife, respectively. Thus, we make
the convenient (but not essential) assumptions that S and T are strictly positive
with probability 1 and that they possess a joint density.

The variables S and T are stochastically independent if

P[S > s , T > t] = P[S > s] P[T > t] for all s and t.

In particular, stochastic independence implies that C(g(S), h(T )) = 0 for all
functions g and h such that the covariance is well defined. (We let C and V

denote covariance and variance, respectively.)
Mortality statistics suggest that life lengths of husband and wife are depen-

dent and, moreover, that they are positively correlated. It is easy to think of
possible explanations to this empirical fact. For instance, that people who marry
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do so because they have something in common (’birds of a feather fly together’),
or that married people share lifestyle and living conditions and therefore also
hazards of diseases and accidents, or that death of the spouse impairs the living
conditions for the survivor (’a grief effect’, or maybe the husband just does not
know where the kitchen is and starves to death shortly after the loss of the
spouse).

Correlation is a rather special measure of dependence – essentially it mea-
sures linear dependence between random variables – and it is not sufficiently
refined for our purposes.

7.9.2 Notions of positive dependence

There are various notions of positive dependence between pairs of random vari-
ables, and we will introduce three of them here. A comprehensive reference text
is [5].

Definition PQD: S and T are positively quadrant dependent, written PQD(S, T ),
if

P[S > s , T > t] ≥ P[S > s] P[T > t] for all s and t. (7.92)

This definition is symmetric in the two variables, so PQD(S, T ) is the same as
PQD(T, S). The defining inequality (7.92) is equivalent to

P[S > s |T > t] ≥ P[S > s] , (7.93)

which is easy to interpret: knowing e.g. that the wife will survive at least s
years improves the survival prospects of the husband.

Definition AS: S and T are associated, written AS(S, T ), if

C(g(S, T ), h(S, T )) ≥ 0 (7.94)

for all real-valued functions g and h that are increasing in both arguments (and
for which the covariance exists).

Also the definition of AS is symmetric in the two variables, so AS(S, T ) is the
same as AS(T, S).

Definition RTI: S is right tail increasing in T , written RTI(S|T ), if

P[S > s |T > t] is an increasing function of t for each fixed s. (7.95)

The definition of RTI is not symmetric in the two variables.
To each notion of positive dependence there is a corresponding notion of neg-

ative dependence. We can reasonably say that S and T are negatively quadrant
dependent if the inequality (7.92) is reversed. This is the same as PQD(−S, T ),
see Exercise 21. We can say that S and T are negatively associated (’dissociated’
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does not have the right connotation) if the inequality (7.94) is reversed. This is
the same as AS(−S, T ), see Exercise 21. We say that S is right tail decreasing
in T , written RTD(S|T ) if P[S > s |T > t] is a decreasing function of t for
each fixed s. This is the same as RTD(−S|T ), see Exercise 21. Since results on
positive dependence thus translate into results on negative dependence, we will
henceforth focus on the former.

Theorem 1: RTI(S|T ) ⇒ AS(S, T ) ⇒ PQD(S, T ).

Proof (incomplete): The first implication, RTI(S|T ) ⇒ AS(S, T ), is the hard
part. The proof is long and technical and can be found in [20].

The second implication AS(S, T ) ⇒ PQD(S, T ) is easy. For g(S, T ) =
1(s,∞)(S) = 1[S > s] and h(S, T ) = 1(t,∞)(T ) = 1[T > t], (7.94) reduces
to

C(1[S > s], 1[T > t]) ≥ 0 , (7.96)

which is just a reformulation of the defining inequality (7.92).
As a partial compensation for the absence of proof of the first implication, let

us prove the shortcut implication RTI(S|T ) ⇒ PQD(S, T ): if RTI(S|T ), then
P[S > s |T > t] ≥ P[S > s |T > 0] for t > 0, which is the same as (7.93). �

The following result is a partial converse to the second implication in The-
orem 1. It could be formulated by saying that positive quadrant dependence is
equivalent to “marginal association”.

Lemma 1: PQD(S, T ) ⇔ C(g(S), h(T )) ≥ 0 for increasing functions g and h.

Proof : By (7.96) the result holds for increasing indicator functions. Then it
holds for increasing simple functions, g(S) = g0 +

∑m
i=1 gi1[S > si] and h(T ) =

h0 +
∑n

j=1 hj1[T > tj ] (with constant coefficients gi and hj and gi > 0, i =
1, . . . ,m and hj > 0, j = 1, . . . , n), as is seen from

C(g(S), h(T )) =

m
∑

i=1

n
∑

j=1

gihjC (1[S > si], 1[T > tj ]) ≥ 0 .

Then it holds for all increasing functions g(S) and h(T ) since since any increas-
ing function from R to R can be written as the limit of a sequence of increasing
simple functions (monotone convergence). �

In the definitions of PQD, AS, and RTI we could equally reasonably have en-
tered the events S ≥ s and T ≥ t. Due to the continuity property of probability
measures, it does not matter which inequalities we use, > or ≥. See Exercise 21.
for A1 ⊆ A2 ⊆ . . . lim P[An] = P[∪nAn] for A1 ⊇ A2 ⊇ . . . lim P[An] = P[∩nAn]
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7.9.3 Dependencies between present values

The following table lists formulas for the life lengths and the survival functions
of the four statuses husband, wife, their joint life, and their last survivor.

Status (z) Life length U Survival function P[U > τ ]

Husband (x) S P[S > τ ]
Wife (y) T P[T > τ ]
Joint life (x, y) S ∧ T P[S > τ , T > τ ]
Last survivor x, y S ∨ T P[S > τ ] + P[T > τ ] − P[S > τ , T > τ ]

The next table recapitulate the formulas for present values and their expected
values for the most basic insurance benefits to a status (z) with remaining life
length U .

Payment scheme Present value Expected present value

Pure endowment e−rn 1[U > n] nEz = e−rn P[U > n]
Life annuity

∫ n

0 e−rτ 1[U > τ ] dτ āz n =
∫ n

0 e−rτ
P[U > τ ] dτ

Term insurance e−rU1[U < n] Ā1
x n

= 1 − nEz − āz n

The life lengths of the statuses listed in the first table are increasing functions
of both S and T . From the second table we see that, for a general status
with remaining life length U , the present value of a pure survival benefit (life
endowment or life annuity) is an increasing functions of U , whereas the present
value of the pure death benefit is a decreasing function of U (we assume the
interest rate r is positive.)

Combining these observations and Theorem 1, we can infer the following
(and many other things): If PQD(S, T ), then pure survival benefits on any two
statuses are positively dependent, pure death benefits on any two statuses are
positively dependent, and any pure survival benefit and any death benefit are
negatively dependent.

We can also draw conclusions about the bias introduced in equivalence pre-
miums by erroneously adopting the independence hypothesis. For instance, if
PQD(S, T ) and we work under the independence hypothesis, then the present
value of a survival benefit on the joint life will be underestimated, whereas the
present value of a survival benefit on the last survivor will be overestimated. For
the death benefit it is the other way around. Combining these things we may
conclude e.g. that, for a death benefit on the joint life against level premium
during joint survival, the equivalence premium will be overestimated.

7.9.4 A Markov chain model for two lives

It is not easy to create a given form of dependence between the life lengths S and
T by direct specification of their joint distribution. However, the process point
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of view, which is a powerful one, quite naturally allows us to express various
ideas about dependencies between life lengths of a couple. A suitable framework
is the Markov model sketched in Figure F.4.

The following formulas are obvious:

p00(s, t) = e−
∫ t

s
µ+ν ,

p01(s, t) =

∫ t

s

e−
∫

τ
s

µ+νµτe
−
∫

t
τ

ν′

dτ ,

p02(s, t) =

∫ t

s

e−
∫

τ
s

µ+νντe
−
∫

t
τ

µ′

dτ .

The joint survival function of S and T is

P[S > s , T > t] =

{

p00(0, t) + p00(0, s)p01(s, t) , s ≤ t ,
p00(0, s) + p00(0, t)p02(s, t) , s > t ,

=

{

e−
∫

t
0

µ+ν +
∫ t

s
e−

∫

τ
0

µ+νµτe
−
∫

t
τ

ν′

, s ≤ t ,

e−
∫ s
0

µ+ν +
∫ s

t
e−

∫ τ
0

µ+νντe
−
∫ s

τ
µ′

, s > t .
(7.97)

The marginal survival function of T is (put s = 0 in (7.97))

P[T > t] = p00(0, t) + p01(0, t)

= e−
∫

t
0

µ+ν +

∫ t

0

e−
∫

τ
0

µ+νµτe
−
∫

t
τ

ν′

, t ≥ 0 . (7.98)

It is intuitively obvious that S and T are independent if µ′
τ = µτ and ν′τ = ντ

for all τ , and this will follow from Theorem 2 below (see also Exercise 1). It is
also intuitively clear that S and T will become dependent if we let the mortality
rates depend on marital status. Let us see what happens if the mortality rate
increases upon the loss of the spouse.

Theorem 2: If µ′
τ ≥ µτ and ν′τ ≥ ντ for all τ , then S and T are positively

dependent in the sense RTI(S|T ) (hence AS(S, T ) and PQD(S, T )).
If µ′

τ ≤ µτ and ν′τ ≤ ντ for all τ , then S and T are negatively dependent in
the sense RTD(S|T ) (hence AS(−S, T ) and PQD(−S, T )).

If µ′
τ = µτ and ν′τ = ντ for all τ , then S and T are independent.

Proof : Consider first the case s ≤ t. From (7.97) and (7.98) we get

P[S > s |T > t] =
e−

∫

t
0

µ+ν +
∫ t

s
e−

∫

τ
0

µ+ν µτ e
−
∫

t
τ

ν′

dτ

e−
∫ t
0

µ+ν +
∫ t

0
e−

∫ τ
0

µ+ν µτ e
−
∫ t

τ
ν′
dτ

= 1 −

∫ s

0
e−

∫

τ
0

µ+ν−ν′

µτ dτ

e−
∫ t
0

µ+ν−ν′
+
∫ t

0
e−

∫ τ
0

µ+ν−ν′
µτ dτ

.

Now we need only to study the denominator in the second term as a function
of t. Its derivative is

e−
∫

s
0

µ+ν−ν′

(ν′t − νt) .
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It follows that P[S > s |T > t] is an increasing function function of t if ν ′t ≥ νt

and a decreasing function function of t if ν ′t ≤ νt.
Next consider the case s > t. This is a bit more complicated. From (7.97)

and (7.98) we get

P[S > s |T > t] =
e−

∫

s
0

µ+ν +
∫ s

t
e−

∫

τ
0

µ+ν ντ e
−
∫

s
τ

µ′

dτ

e−
∫

t
0

µ+ν +
∫ t

0
e−

∫

τ
0

µ+ν µτ e
−
∫

t
τ

ν′
dτ

.

By the rule d(u/v) = (v du−u dv)/v2, the sign of ∂
∂t

P[S > s |T > t] is the same
as that of

(

e−
∫ t
0

µ+ν +

∫ t

0

e−
∫ τ
0

µ+ν µτ e
−
∫ t

τ
ν′

dτ

)

(

−e−
∫ t
0

µ+ν νt e
−
∫ s

t
µ′
)

−

(

e−
∫

s
0

µ+ν +

∫ s

t

e−
∫

τ
0

µ+ν ντ e
−
∫

s
τ

µ′

dτ

)

×

(

e−
∫ t
0

µ+ν(−µt − νt) + e−
∫ t
0

µ+νµt +

∫ t

0

e−
∫ τ
0

µ+ν µτ e
−
∫ t

τ
ν′

dτ (−ν′t)

)

.

In this expression two terms cancel in the last parenthesis. Further, to get rid
of some common factors, let us multiply with e

∫

s
0

µ+ν e
∫

t
0

µ+ν , which preserves
the sign and turns the expression into

−

(

1 +

∫ t

0

e
∫ t

τ
µ+ν−ν′

µτ dτ

)

e
∫ s

t
µ−µ′+ν νt

+

(

1 +

∫ s

t

e
∫

s
τ

µ−µ′+νντ dτ

)(

νt +

∫ t

0

e
∫

t
τ

µ+ν−ν′

µτ dτ ν
′
t

)

.

Substituting

∫ s

t

e
∫ s

τ
µ−µ′+νντ dτ =

∫ s

t

e
∫ s

τ
µ−µ′+ν(µτ − µ′

τ + ντ ) dτ

+

∫ s

t

e
∫

s
τ

µ−µ′+ν(µ′
τ − µτ ) dτ

= e
∫

s
t

µ−µ′+ν − 1 +

∫ s

t

e
∫

s
τ

µ−µ′+ν(µ′
τ − µτ ) dτ

and rearranging a bit, we arrive at

(

νt + ν′t

∫ t

0

e
∫ t

τ
µ+ν−ν′

µτ dτ

) ∫ s

t

e
∫ s

τ
µ−µ′+ν(µ′

τ − µτ ) dτ

+

∫ t

0

e
∫ s

τ
µ+ν−ν′

µτ dτ (ν′t − νt) .

It follows that P[S > s |T > t] is an increasing function function of t if µ′
t ≥ µt

and ν′t ≥ νt and a decreasing function function of t if µ′
t ≤ µt and ν′t ≤ νt. �
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7.10 Conditional Markov chains

7.10.1 Retrospective fertility analysis

In connection with a pension insurance scheme there is an additional benefit
which is a sum insured payable to possible dependent children less than 18
years old at the time of death of the insured. In the technical basis we therefore
need to make assumptions about births. We have to distinguish by sex, and
in the following we consider female insured only. The Figure below shows a
flowchart for possible life histories with death and births (at most J). To keep
things simple, we assume that the insured enters the scheme in state 0 at age
0 and that the process is Markov: for a t year old who has given birth to j
children, the mortality rate µj(t) and the fertility rate φj(t) are functions of t
and j only.

- - - -
φ0 φj−1 φj φJ−1

· · · · · ·

0

Alive
0 births

j

Alive
j births

J

Alive
J births

? ? ?
µ0 µj µJ

d. Dead

Assume now that the past history of births and death is observed only upon
death of the insured, when the additional benefit to the possible dependents is
due. Suppose that the statistical data comprise only those who are dead at the
time of consideration and that for each of those there is a complete record of the
times of possible births and of death. In these data the observed life history of
a woman, who entered the scheme u years ago, is governed by a Markov process
as described above, but with intensities

µ∗
j (t) = µj(t)

1

pjd(t, u)
, (7.99)

φ∗j (t) = φj(t)
pj+1,d(t, u)

pjd(t, u)
. (7.100)

We see that µ∗
j (t) ≥ µj(t), which is easy to explain (we are looking at the

mortality, given death).
We are going to prove a more interesting result: If mortality increases with

the number of births, that is,

µj(t) ≤ µj+1(t) , j = 0, . . . , J − 1, t > 0 , (7.101)
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then
φ∗j (t) ≥ φj(t) , j = 0, . . . , J − 1 , t > 0 . (7.102)

We need to prove that pj+1,d(t, u) ≥ pjd(t, u), j = 1, . . . , J − 1. It is convenient
to work with

pj(t, u) = 1− pjd(t, u) =

J
∑

k=j

pjk(t, u) , (7.103)

the probability that a t year old with j births will survive to age u, and to prove
the hypothesis

Hj : pk(t, u) ≤ pj(t, u) , k = j + 1, . . . , J, (7.104)

for j = 0, . . . , J − 1. The proof goes by induction ’downwards’, proving that
Hj+1 implies Hj . Thus assume Hj+1 is true.

By direct reasoning (or an easy calculation) the mortality intensity at age u
(> t) associated with the survival function (F.49) is

µj(t, u) =

∑

k≥j pjk(t, u)µk(u)
∑

k≥j pjk(t, u)
, (7.105)

hence

pj(t, u) = e−
∫ u

t
µj (t,s)ds . (7.106)

Two more expressions for pj(t, u), both obvious, are

pj(t, u) =
∑

k≥j

pjk(t, τ) pk(τ, u) , (7.107)

t ≤ τ ≤ u, and

pj(t, u) = e−
∫

u
t

(φj+µj ) +

∫ u

t

e−
∫

τ
t

(φj+µj )φj(τ) pj+1(τ, u) dτ . (7.108)

By (F.47) and (7.105) we have

µj(u) ≤ µj+1(t, u) , (7.109)

hence
e−

∫

u
t

µj ≥ pj+1(t, u) .

Therefore, from (F.53) we get

pj(t, u) ≥ e−
∫

u
t

φj pj+1(t, u)

+

∫ u

t

e−
∫ τ

t
φjφj(t, τ) pj+1(t, τ) pj+1(τ, u) dτ . (7.110)
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Focusing on the last two factors under the integral, use in succession (F.49), the
induction hypothesis (7.104), and (F.50), to deduce

pj+1(t, τ)pj+1(τ, u) =

J
∑

k=j+1

pj+1,k(t, τ)pj+1(τ, u)

≥
J
∑

k=j+1

pj+1,k(t, τ)pk(τ, u)

= pj+1(t, u) .

Putting this into (7.110), we obtain

pj(t, u) ≥

(

e−
∫

u
t

φj +

∫ u

t

e−
∫

τ
t

φjφj(t, τ) dτ

)

pj+1(t, u) = pj+1(t, u) .

It follows that Hj is true. Since HJ−1 is obviously true, we are done. �

Comment: The inequality (F.48) means that the fertility rates will be overesti-
mated if one uses the estimators for the φ∗

j based on diseased participants in the
scheme. If the inequalities (F.47) are reversed, then also the inequality (F.48)
will be reversed, and the estimators the φ∗

j will underestimate the fertility. In
particular it follows that, under the hypothesis of non-differential mortality, the
fertility rates will be unbiasedly estimated from the selected material of diseased
participants.



Chapter 8

Probability distributions of

present values

Abstract: A system of integral equations is obtained for the statewise proba-
bility distributions of the present value of future payments on a multistate life
insurance policy under Markov assumptions. They are brought on a differential
form convenient for computation and applied to some cases.

Key words: Multistate life insurance, Markov counting process, optional sam-
pling, stochastic interest.

8.1 Introduction

A. Background and motive of the present study.
By tradition, life insurance mathematics centers on conditional expected values
of discounted cashflows. A key tool of the theory are Thiele’s differential equa-
tions, which describe the development of such expected values for a multistate
policy driven by a Markov process. In two recent papers one of the authors
(Norberg, 1994, 1995) obtains differential equations for higher order moments
of present values and offers examples of their potential uses in solvency assess-
ments and in construction of untraditional insurance products. In continuance
of those results, we undertake to determine the probability distributions that
are at the base of the moments and of any other expected values of interest.
Knowledge of the distribution of the present value, and in particular its upper
tail, gives insight into the riskiness of the contract beyond what is provided by
the mean and the higher order moments.

B. Contents of the paper.
By way of introduction, Section 2 deals briefly with models involving only a fi-
nite number of random variables. In such situations the distributions of present
values (and any other functions of the random variables) can be obtained by

109
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integrating the finite-dimensional distribution. This approach comes down over-
against more complex situations where stochastic processes have to be employed.
In Section 3 we consider a general multistate insurance policy with payments
of assurance and annuity types and with state-dependent force of interest. As-
suming that the state process is Markov, we derive in Section 4 a set of integral
equations for the conditional probability distribution function of the present
value of future benefits less premiums, given the state at the time of considera-
tion. The equations are converted to a differential form that forms the basis of
a computational scheme. Examples of applications, including numerical illus-
trations, are given in Section 5.

8.2 Calculation of probability distributions of

present values by elementary methods

A. A simple example involving only one life length.
De Pril (1989) and Dhaene (1990) compile lists of distributions of present values
of standard single-life insurance benefits ; pure endowment, term assurance,
endowment assurance, and life annuity. To offer an example along this line,
consider a life insurance policy specifying that the sum assured b is to be paid
out immediately upon the (possible) death of the insured within n years after
the date of issue of the policy and that premiums are payable continuously
at level rate c per year as long as the contract is in force. Suppose interest
accumulates with constant intensity δ so that the τ years discount factor is
vτ = e−δτ . Denoting the remaining life time of the insured by T , the present
value of benefits less premiums on the contract is U(T ) = bvT 1(0,n](T )−cāT∧n|,

where āt| =
∫ t

0
vτdτ = (1 − e−δt)/δ is the present value of an annuity certain

payable continuously at level rate 1 per year for t years. The function U is
nonincreasing in T and, letting T be a random variable, we easily find the
probability distribution (4.59).

The jump at −cān| is due to the positive probability of survival to time n.
Similar effects are to be anticipated also for more complex finite term insurance
products since, in general, there is a positive probability that the policy will
remain in the current state until the contract terminates.

Fig. 1 shows the graph of the function in (4.59) for the case where δ =

ln(1.045) = 0.044017, P[T > t] = e−
∫

t
0

µ(τ)dτ with µ(t) = 0.0005+0.000075858 ·
100.038(30+t), n = 30, b = 1, and c = 0.0042608; interest and mortality are ac-
cording to the first order technical basis currently used by most Danish insurers,
supposing the insured is a male who is 30 years old at the time when the policy
is issued, and the given value of c is the net premium rate. This contract will
henceforth be referred to as the term insurance policy.

Figure 1 about here.

Fig. 1: Probability distribution of the present value at time 0 of the term in-
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surance policy.

B. Models involving a finite number of random variables.
The analysis above was straightforward because the present value is a func-
tion of only one random variable. The approach works whenever only a finite
number of random variables, T1, . . . , Tr, are involved, e.g. for a multilife insur-
ance depending on r lifetimes. The probability distribution of a present value
U(T1, . . . , Tr), say, is obtained by integrating the joint probability function of
the Ti-s over the sets {(t1, . . . , tr); U(t1, . . . , tr) ≤ u} for (in principle) all u.
When applicable at all, this procedure would usually be far more complicated
than the one we are going to demonstrate. Thus, with no further ado, we now
turn to the principal message of the paper.

8.3 The general Markov multistate policy

A. Payments, interest, and present values.
Consider a stream of payments in respect of a contract issued at time 0 and
terminating at time n, say, and denote by B(t) the total amount paid in the
time interval [0, t]. The payment function {B(t)}t≥0 is assumed to be right-
continuous and of bounded variation. Money is currently invested in (or bor-
rowed from) a fund that at any time t yields δ(t) in return per unit of time and
unit amount on deposit, that is, δ(t) is the force of interest at time t. Then the
discounted value at time t of a unit due at time τ is e−

∫

τ
t

δ , and so the present
value at time t of the future payments under the contract is

∫ n

t

e−
∫ τ

t
δ dB(τ). (8.1)

The short-hand exemplified by
∫

δ =
∫

δ(s)ds will be in frequent use through-

out. By convention,
∫ b

a
means

∫

(a,b]
if b <∞ and

∫

(a,∞)
if b = ∞.

B. The multi-state insurance policy.
We adopt the standard set-up of life insurance mathematics as presented in
Norberg (1994). There is a set of states, J = {1, . . . , J}, such that at any time
t ∈ [0, n] the policy is in one an only one state. Denote by X(t) the state of
the policy at time t. Considered as a function of t, {X}t≥0 is taken to be right-
continuous, and X(0) = 1 implying (as a convention) that the policy commences
in state 1. Introduce Ij(t) = 1[X(t) = j], the indicator of the event that the
policy is in state j at time t, and Njk(t) = ]{τ ; τ ∈ (0, t], Xτ− = j,X(τ) = k},
the total number of transitions of X from state j to state k (6= j) by time t.
The payment function B is assumed to be of the form (7.41), where each Bj is
a deterministic payment function specifying payments due during sojourns in
state j (a general life annuity) and each bjk is a deterministic function specifying
payments due upon transitions from state j to state k (a general life assurance).
The left-limit in Ij(t−) means that the state j annuity is effective at time t if
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the policy is in state j just prior to (but not necessarily at) time t. Consistently
we define Ij(0−) = 1.

We shall allow the force of interest to depend on the current state, that as
in (7.74.

C. The time-continuous Markov model.
It is assumed that {X(t)}t≥0 is a (continuous-time) Markov chain. Denote the
transition probabilities by

pjk(t, u) = P[X(u) = k|X(t) = j].

The transition intensities

µjk(t) = lim
h↓0

pjk(t, t+ h)

are assumed to exist for all j, k ∈ J , j 6= k. The total intensity of transition out
of state j is µj·(t) =

∑

k;k 6=j µjk(t). The probability of staying uninterruptedly

in state j during the time interval from t to u is e−
∫ u

t
µj· .

8.4 Differential equations for statewise distribu-

tions

A. The statewise probability distributions.
The problem is to determine the conditional probability distribution of the
liability in (8.1), given the information available at time t. Since the Markov
assumption implies conditional independence between past and future for fixed
present state of the policy, the relevant functions are the statewise probability
distributions defined by

Pj(t, u) = P

[∫ n

t

e−
∫ τ

t
δdB(τ) ≤ u

∣

∣

∣

∣

Ij(t) = 1

]

, (8.1)

t ∈ [0, n], u ∈ R, j ∈ J .

B. A system of integral equations.
A simple heuristic argument will establish that the probabilities in (8.1) satisfy
the integral equations

Pj(t, u) =
∑

k;k 6=j

∫ n

t

e−
∫ s

t
µj·µjk(s) ds

·Pk

(

s, eδj(s−t)u−

∫ s

t

eδj(s−τ)dBj(τ) − bjk(s)

)

+ e−
∫

n
t

µj·1

[∫ n

t

e−δj(τ−t)dBj(τ) ≤ u

]

. (8.2)
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In the first terms on the right here the factor e−
∫ s

t
µj·µjk(s)ds is the probability

that the policy stays in state until time s (< n) and then makes a transfer to
state k (6= j) in the small time interval [s, s + ds). In this case the annuity Bj

is in force during the time interval (t, s], the lump sum bjk(s) falls due at time
s, and the interest rate during this time interval is δj , and so the event

∫ n

t

e−
∫

τ
t

δdB(τ) ≤ u (8.3)

takes place if

∫ s

t

e−δj(τ−t)dBj(τ) + e−δj(s−t)bjk(s) + e−δj(s−t)

∫ n

s

e−
∫

τ
s

δdB(τ) ≤ u

or, equivalently,

∫ n

s

e−
∫

τ
s

δdB(τ) ≤ eδj(s−t)

(

u−

∫ s

t

e−δj(τ−t)dBj(τ)

)

− bjk(s).

Thus, the corresponding conditional probability is

Pk

(

s, eδj(s−t)u−

∫ s

t

eδj(s−τ)dBj(τ) − bjk(s)

)

.

Summing over all times s and states k, we obtain the first terms on the right of
(8.2), which thus is the part of the total probability that pertains to exit from
state j before time n.

Likewise it is realized that the last term on the right of (8.2) is the remaining
part of the probability, pertaining to the case of no transition out of state j
before time n.

This heuristic argument is made rigorous by applying Doob’s optional sam-
pling theorem to the martingale generated by the indicator of the event in (8.3)
and the stopping time defined as the the minimum of n and the time of the first
transition after t from the current state j.

C. A system of differential equations.
Already (8.2) might serve as a basis for computation of the statewise probability
functions, but is not convenient since the integrand on the right depends on t.
Introduce the auxiliary functions Qj defined by

Qj(t, u) = Pj

(

t, eδjt

(

u−

∫ t

0

e−δjτdBj(τ)

))

(8.4)

or
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Pj(t, u) = Qj

(

t, e−δjtu+

∫ t

0

e−δjτdBj(τ)

)

. (8.5)

Multiply by e−
∫ t
0

µj· in (8.2), insert eδjt
(

u−
∫ t

0 e
−δjτdBj(τ)

)

in the place of u,

and rearrange a bit to obtain

e−
∫ t
0

µj·Qj(t, u) =

∫ n

t

e−
∫ s
0

µj·

∑

k;k 6=j

µjk(s) ds

·Qk

(

s, e(δj−δk)su+

∫ s

0

e−δkτdBk(τ)

−e(δj−δk)s

∫ s

0

e−δjτdBj(τ) − e−δksbjk(s)

)

+ e−
∫ n
0

µj·1

[∫ n

0

e−δjτdBj(τ) ≤ u

]

. (8.6)

Now the integrand on the right does not contain t, and we are allowed to differ-
entiate along t on the right hand side by simply substituting t for s in minus the
integrand. Performing this and cancelling the common factor e−

∫

t
0

µj· , we arrive
at the following main result, where the side condition (7.76) comes directly out
of (8.6) by letting t ↑ n:

Theorem. The functions Qj in (8.4) are the unique solutions to the differential
equations

dtQj(t, u) = µj·(t)dtQj(t, u) −
∑

k;k 6=j

µjk(t) dt

·Qk

(

t, e(δj−δk)tu+

∫ t

0

e−δkτdBk(τ)

−e(δj−δk)t

∫ t

0

e−δjτdBj(τ) − e−δktbjk(t)

)

, (8.7)

0 ≤ t ≤ n, subject to the conditions

Qj(n, u) = 1

[∫ n

0

e−δjτdBj(τ) ≤ u

]

. (8.8)

Having determined the auxiliary Qj, we obtain the Pj from (8.5).
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Remark: The differentiation is in the Stieltje’s sense for functions of bounded
variation and does not require differentiability or any other smoothness proper-
ties of the functions involved.

D. Computational scheme.
A simple numerical procedure consists in approximating the functions Qj by
the functions Q∗

j obtained from the finite difference version of (8.7):

Q∗
j (t− h, u) = (1 − µj·(t)h)Q

∗
j (t, u) + h

∑

k;k 6=j

µjk(t)

·Q∗
k

(

t, e(δj−δk)tu+

∫ t

0

e−δkτdBk(τ)

−e(δj−δk)t

∫ t

0

e−δjτdBj(τ) − e−δktbjk(t)

)

. (8.9)

Starting from (8.8) (with Q∗
j in the place of Qj), one calculates first the func-

tions Q∗
j (n−h, ·) by (8.9) and continues recursively until the Q∗

j (0, ·) have been
calculated in the final step.

The Q∗
j (t, u) are defined for t ∈ {0, h, 2h, . . . , n} and u ∈ {a, a + h′, a +

2h′, . . . , b}, say, where the steplengths h and h′ must be sufficiently small and a
and b must be chosen such that the supports of the Qj(t, ·) are sufficiently well
covered by [a, b]. What is “sufficient” must be decided on in each individual
case by judgement and by trial and error. If two states j and k are intercom-
municating, then Qj(t, ·) and Qk(t, ·) have the same support. The supports are
finite and usually easy to determine in situations where the number of assurance
payments has a non-random upper bound. The u-arguments in the functions
Q∗

k on the right of (8.9) must, of course, be rounded to the nearest point in
{a, a+ h′, a+ 2h′, . . . , b}.

E. Comments on the method.
Before turning to applications, we pause in this paragraph to offer some moti-
vation and discussion of our approach. It is not needed in the sequel and may
be skipped on the first reading.

The equation (8.7) is just the differential form of the integral equation (8.6).
It does not require that the derivatives ∂

∂t
Qj(t, u) exist, which they do not in

general for the obvious reason that the statewise annuity functions on the right
of (8.7) may have jumps.

If one should attempt to construct differential equations along the lines of
Norberg (1994), the starting point would be the martingale M defined by

M(t) = P

[∫ n

0

e−
∫ τ
0

δdB(τ) ≤ u | Ft

]

,

where Ft = σ{X(τ); τ ≤ t} is the information generated by the state process
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up to time t. Using the Markov property of conditional independence between
past and future, given the present, we find

M(t) =
∑

j

Ij(t)Pj

(

t, e
∫

t
0

δ

(

u−

∫ t

0

e−
∫

τ
0

δdB(τ)

))

.

Now, the recipe would be to apply the change of variable formula to the ex-
pression on the right and then to identify the martingale component that is
predictable (and of bounded variation) and hence constant. Accomplishing this
without caring about justification, would lead to the first order partial differen-
tial equations

∂

∂t
Pj(t, u) +

∂

∂u
Pj(t, u)(δju− bj(t))

+
∑

k;k 6=j

µjk(t) (Pk(t, u− bjk(t)) − Pj(t, u)) = 0,

valid between jumps of the contractual annuity functions Bj , and

Pj(t−, u) = Pj(t, u− ∆Bj(t)),

valid at jumps of the Bj , and subject to the condition that the Pj(n, u) are 0
and 1 according as u < 0 or u ≥ 0.

The approach requires that the functions Pj possess first order derivatives
in both directions. As we have seen already in the introductory example of
Section 2 they generally do not. This difficulty might possibly be circumvented
by conditioning on the ultimate state at time n, but proving differentiability of
the conditional probabilities would require additional assumptions and would
not be straightforward.

These remarks serve to show that the method developed in Section 4 is not
just one among several candidate approaches to the problem; it is the only
mathematically sound solution we are able to offer. One general conclusion we
can extract is that there is no single general technique for solving the bulk of
problems of the kind considered here; the method will have to be designed for
each individual problem at hand and will depend on the model assumptions and
the functional of interest.

8.5 Applications

A. The Poisson distribution.
In continuance of the example in Paragraph 6B of Norberg (1994), consider the
special case with two states, J = {1, 2}, no interest, δ1 = δ2 = 0, and the only
payments being an assurance of 1 payable upon each transition, b12 = b21 = 1.
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Then, taking n = 1, the present value in (8.1) is just the number of transition
in the time interval (t, 1], N12(1)+N21(1)−N12(t)−N21(t). Furthermore, take
µ12 = µ21 = µ, a constant (> 0). Then it is seen from the defining relation (8.4)
that the functions Pj and Qj are all the same. Denoting this function by P , we
can work with (8.2), which becomes

P (t, u) =

∫ 1

t

e−µ(s−t)µP (s, u− 1)ds+ e−µ(1−t)1[0 ≤ u]. (8.1)

Using that P (t, u) = 0 for u < 0, we readily obtain from (8.1) that P (t, u) =
e−µ(1−t) for 0 ≤ u < 1. Then, for 1 ≤ u < 2, it follows from (8.1) that
P (t, u) = µ(1 − t)e−µ(1−t) + e−µ(1−t). Proceeding by induction we obtain, for
each u ≥ 0, that

P (t, u) =

[u]
∑

i=0

(µ(1 − t))i

i!
e−µ(1−t),

which is the Poisson distribution with parameter (1 − t)µ, of course.
As a check on the accuracy of the numerical method, we list the computed

values of P (0, u), u = 0, 1, . . . , 8, for t = 0 and µ = 1 together with the exact
values of the Poisson probabilities (in parantheses): 0.3670 (0.3679), 0.7358
(0.7358), 0.9202 (0.9197), 0.9813 (0.9810), 0.9965 (0.9864), 0.9994 (0.9994),
0.9999 (0.9999), 0.9999 (0.9999), 1.0000 (1.0000). These results were obtained
with h = 1/200, h′ = 1/100, a = −0.5, and (truncating the infinite support)
b = 9.5.

B. The term insurance policy.
To analyse the term insurance policy in Paragraph 2A, take J = {1, 2}, n = 30,
µ12(t) = 0.0005 + 0.000075858 · 100.038(30+t), δ1 = ln(1.045), b1 = −0.0042608,
b12 = 1, and all other intensities and payments null.

Again, as a check on the accuracy of the numerical method, we list the com-
puted values of P (0, u) together with exact values (in parantheses): P (0, u) = 0
for u < −0.0705 (0 for u < −0.0709), P (0, u) = 0.8453 for u ∈ [−0.0705, 0.1965)
(0.8452 for u ∈ [−0.0709, 0.1961)), P (0, 0.2) = 0.8491 (0.8490), P (0, 0.4) =
0.9465 (0.9467), P (0, 0.6) = 0.9774 (0.9776), P (0, 0.8) = 0.9918 (0.9919), P (0, 1) =
1.0000 (1.0000). These results are based on h = 1/1000, h′ = 1/2000, a = −0.1,
and b = 1.1.

C. A combined insurance policy.
In our final numerical example we consider what will be referred to as the
combined policy, which is the same as the one in Paragraph B, but with a
disability pension added. More specifically, 1 is payable upon death, an annuity
with level intensity 0.5 is payable during disability, and premium is payable with
level intensity in active state. The relevant model entities are J = {1, 2, 3},
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n = 30, b13 = b23 = 1, b1 = −0.013108 (net premium when the intensities are
as specified below), b2 = 0.5, and, adoping the standard Danish technical basis
except for the recovery intensity, δ = ln(1.045) (independent of state), and

µ13(t) = µ23(t) = 0.0005 + 0.000075858 · 100.038x,

µ12(t) = 0.0004 + 0.0000034674 · 100.06(30+t),

µ21(t) = 0.005,

all other payments and intensities being null.

Figure 2 about here

Fig. 2: Probability distribution of the present value of the combined insurance
policy in (a) state 1 and (b) state 2.

This example is a follow-up of Paragraphs 4B-C in Norberg (1994), where
the first three moments of the present value are calculated for the combined
policy.

D. Numerical evaluation of multiple integrals.
Numerical integration in higher dimensions is in general complicated, and there
exists no technique held to be universally superior. The technique developed
here can be used to evaluate integrals that, possibly after a reinterpretation,
can be recognized as a probability related to a present value for a suitably
specified policy. Just to illustrate the idea, suppose T1 and T2 are independent
positive random variables with cumulative distribution functions F1 and F2 with
densities f1 and f2, respectively, and that we seek P[(T2 ∧ 1) − (T1 ∧ 1) ≤ u].
It is realized that this probability is found as P (0, u) for the policy with J =
{1, 2, 3, 4}, µ12(t) = µ34(t) = f1(t)/(1 − F1(t)), µ13(t) = µ24(t) = f2(t)/(1 −
F2(t)), b1(t) = −1, b2(t) = 1, n = 1, and no interest. Countless examples of this
kind can be constructed.



Chapter 9

Reserves

Prospective and retrospective reserves are defined as conditional expected val-
ues, given some information available at the time of consideration. Each speci-
fication of the information invoked gives rise to a corresponding pair of reserves.
Relationships between reserves are established in the general set-up. For the
prospective reserve the present definition conforms with, and generalizes, the
traditional one. For the retrospective reserve it appears to be novel. Special
attention is given to the continuous time Markov chain model frequently used in
the context of life and pension insurance. Thiele’s differential equation for the
prospective reserve is shown to have a retrospective counterpart. It is pointed
out that the prospective and retrospective differential equations have, respec-
tively, the Kolmogorov backward and forward differential equations as special
cases. Practical uses of the differential equations are demonstrated by examples.

9.1 Introduction

A. Sketch of the idea. The concept of prospective reserve is no matter of dispute
in life insurance mathematics. It is defined as the conditional expected present
value of future benefits less premiums on the policy, given its present state. A
straightforward generalization is obtained by conditioning on some other piece
of information, e.g. on the policy’s staying in some subset of the state space.
It is proposed here to define the retrospective reserve analogously as the condi-
tional expected present value of past premiums less benefits.

B. An example: insurance of a single life. A person aged x buys a life insurance
policy specifying that the sum assured, b, is payable immediately upon death
before age x + n and that premiums are to be contributed continuously with
level intensity c throughout the insurance period. Let Tx denote the person’s
remaining life length after the policy is issued at time 0, say. Assume that
the survival function tpx = P{Tx > t} is of the form tpx = e−

∫

t
0

µx+s ds, with

119
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continuous force of mortality, µ. Finally, assume that interest is earned with a
constant, nonrandom intensity δ so that v = e−δ is the annual discount factor
and i = eδ − 1 is the annual rate of interest (1 + i = v−1 is the annual interest
factor).

At any time t ∈ [0, n] the policy is either in state 0 = ”alive” or in state 1
= ”dead”. The prospective reserves in the two states, indicated by subscripts 0
and 1, are

V +
0 (t) =

∫ n

t

vτ−t
τ−tpx+t {bµx+τ − c} dτ (9.1)

(by the usual heuristic argument, the sum of expected discounted benefits minus
premiums in small time intervals (τ, τ + dτ), 0 < τ < t, and, of course,

V +
1 (t) = 0. (9.2)

The statewise retrospective reserves as defined above are

V −
0 (t) = c

∫ t

0

(1 + i)t−τ dτ (9.3)

(trivial) and

V −
1 (t) =

1

1 − tpx

∫ t

0

(1 + i)t−τ{c (τpx − tpx) − b τpx µx+τ} dτ (9.4)

(use the same kind of argument as in (9.1) noting that, conditional on death
within time t, the probability of survival to τ is (τpx − tpx)/(1− tpx) and the
probability of death in (τ, τ + dτ) is τpxµx+τdτ/(1 − tpx), 0 < τ < t) .

The state at time t is X(t) = 1[Tx ≤ t], the ”number of deaths” of the person
within time t. This is the information on which the reserves in (9.1) – (9.4) are
based.

Now, suppose the complete prehistory of the policy is currently recorded, so
that it is known at any time if the person is alive or dead and, in the latter case,
when he died. The information available at time t is the pair (X(t),min(Tx, t)).
Denote the reserves correspondingly by a double subscript. The reserves in state
0 remain as above, V ±

0,t(t) = V ±
0 (t), and so does the prospective reserve in state

1, of course, V +
1,Tx

(t) = V +
1 (t) = 0. Only the retrospective reserve in state 1

is affected by the additional information on the exact time of death. It now
becomes simply the value at time t of past premiums less the benefit payment,

V −
1,Tx

(t) = c

∫ Tx

0

(1 + i)t−τdτ − b(1 + i)t−Tx . (9.5)
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The quantity in (9.1) is what traditionally is referred to as the prospec-
tive reserve. The notion of retrospective reserve launched here differs from the
traditional one, which in the present example is

−V0(t) =
1

tpx

∫ t

0

(1 + i)t−τ
τpx (c− bµx+τ )dτ. (9.6)

This quantity emerges from the principle of equivalence, which requires that
benefits and premiums should balance in the mean at the outset:

∫ n

0

vτ
τpx(bµx+τ − c)dτ = 0. (9.7)

Splitting
∫ n

0
into

∫ t

0
+
∫ n

t
in (9.7) and substituting from (9.1) and (9.6), yields

−V0(t) = V +
0 (t) . (9.8)

Thus, the traditional concept of ”retrospective reserve” is rather a retrospective
formula for the prospective reserve, valid for b and c satisfying the equivalence
principle. For general b and c the quantity −V0(t) is not an expected value, and
it has no probabilistic interpretation in the present model involving one single
policy. In an extended (artificial) model, with m independent replicates of the
policy issued at time 0, it may be interpreted as the almost sure limit of the
total accumulated surplus per survivor by time t as m tends to infinity.

As compared with (9.8), the retrospective reserve introduced here is related
to the prospective reserve under the equivalence principle by the identity

tpxV
−
0 (t) + (1 − tpx)V −

1 (t) = tpxV
+
0 (t) . (9.9)

C. Outline of the paper. In Section 2 the present notions of reserves are defined
for quite general stochastic payment streams and discounting rules, and certain
relationships between them are established. No particular reference to the in-
surance context is made at this stage. In Sections 3 and 4 the framework of the
further discussions is presented: payments of the life annuity and life insurance
types in a continuous time Markov chain model. A useful auxiliary result is that
a Markov process behaves like a composition of mutually independent Markov
processes in disjoint intervals when its values at the dividing points between
the intervals are fixed. This together with standard results for Markov chains is
used in Section 5 to investigate the properties of reserves in the Markov chain
case. The prospective reserve, given the state at the time of consideration, is
the traditional one, which satisfies the well-known generalized Thiele’s differen-
tial equations (see e.g. Hoem, 1969a), here also referred to as the prospective
differential equations. The statewise retrospective reserves turn out to satisfy a
set of retrospective differential equations, different from the prospective ones. It
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is pointed out the differential equations for the reserves have the Kolmogorov
differential equations for the transition probabilities as special cases. Surpris-
ingly, maybe, it is the retrospective equations that generalize the Kolmogorov
forward equations, while the prospective equations generalize the Kolmogorov
backward equations. In Section 6 some more examples are supplied.

9.2 General definitions of reserves and statement

of some relationships between them

A. Payment streams and their discounted values. First some basic definitions
and results are quoted from Norberg (1990).

Consider a stream of payments commencing at time 0. It is defined by a
finite-valued payment function A, which for each time t ≥ 0 specifies the total
amount A(t) paid in [0, t]. Negative payments are allowed for; it is only required
that A be of bounded variation in finite intervals and, by convention, right-
continuous. This means that A = B − C, where B and C are non-negative,
nondecreasing, finite-valued, and right-continuous functions representing the
outgoes and incomes, respectively, of some business. In the context of insurance
B represents benefits and C represents contributed premiums on an insurance
policy (or a portfolio of policies). The payment function extends in a unique
way to a payment measure on the Borel sets, which is also denoted by A.

Assuming that payments are valuated by a piecewise monotone and contin-
uous discount function v, the present value of A at time t is

V (t, A) =
1

v(t)

∫

[0,∞)

v(τ) dA(τ) (9.1)

(the sum of all payments in small intervals discounted at time 0, multiplied by
the interest factor 1/v(t) for the interval from 0 to t). Just to obtain transparent
formulas, it will be assumed throughout that v is of the form

v(t) = e−
∫ t
0

δ, (9.2)

with piecewise continuous interest intensity δ. (The shorthand exemplified by
∫ t

0
δ =

∫ t

0
δ(τ) dτ will be in frequent use throughout.)

B. Definitions of retrospective and prospective reserves. The restriction of A to
a (measurable) time set T is the measure AT counting only those A-payments
that fall due in T ; AT {S} = A{S ∩ T }.

At any time t ≥ 0 the payment stream splits into payments after time t and
payments up to and including time t; A = A(t,∞) +A[0,t]. The present value in
(9.1) splits correspondingly into
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V (t, A) = V +(t, A) − V −(t, A), (9.3)

where

V +(t, A) = V (t, A(t,∞)) =
1

v(t)

∫

(t,∞)

v(τ) dA(τ) (9.4)

is the discounted value of future net outgoes (in the insurance context benefits
less premiums), and

V −(t, A) = V (t,−A[0,t]) =
1

v(t)

∫

[0,t]

v(τ) d(−A)(τ) (9.5)

is the value, with accumulation of interest, of past net incomes (in the insurance
context premiums less benefits). The quantity V −(t, A) is observable by time
t and can suitable be called the individual retrospective reserve of the policy at
time t. If the future development of (v,A) were known, then V +(t, A) would
be the appropriate amount to set aside to cover future excess of benefits over
premiums on the individual policy. However, if the future course of (v,A) is
uncertain, it is not possible to provide V +(t, A) as a prospective reserve on an
individual basis.

Assume now that A and, possibly, also v are stochastic processes on some
probability space (Ω,F , P ). An operational definition of the prospective reserve
must depend solely on information that is at hand at the moment when the
reserve is to be provided. Let F = {Ft}t≥0 be a family of sub-sigmaalgebras of
F , Ft representing some piece of information available at time t. The family
F may be increasing, that is, Fs ⊂ Ft, s < t, but this is not required in gen-
eral. Reserves are defined as conditional expected values, given the information
provided by F. At time t the prospective F-reserve is

V +
F (t, A) = EFtV

+(t, A), (9.6)

and the retrospective F-reserve is

V −
F (t, A) = EFtV

−(t, A), (9.7)

where the subscript on the expectation sign signifies conditioning. The prospec-
tive F-reserve meets the operationality requirement formulated above as it is
determined by the current information. Even though the retrospective individ-
ual reserve in (9.5) is observable by time t, it may be judged relevant to calculate
retrospective reserves with respect to some more summary information F. For
a given realization of {v(τ)}0≤τ≤t, Ft may be thought of as a classification of
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the policies, whereby all policies with the same characteristics as specified by Ft

are grouped together. Forming the mean, conditional on Ft, means averaging
over all policies in the same group, roughly speaking.

The reserves are conditional means of the present values V ±(t, A). Other
features of the conditional distributions of these random variables may be of
interest. In particular, as measures of variability, introduce the variances

V
±(2)
F (t, A) = V arFtV

±(t, A). (9.8)

C. Relationships between reserves. When only one payment stream is consid-
ered, notation can be saved by dropping the symbol A from V (t, A). Thus,
abbreviations like V (t) and V ±

F (t) will be frequently used in the sequel.
By (9.1) – (9.3), the value of A at time 0 is related to its value at any time

t ≥ 0 by

V (0) = v(t)V (t)

= v(t){V +(t) − V −(t)}.

Taking expectation gives

E V (0) = E {v(t)V (t)} (9.9)

= E {v(t)(V +(t) − V −(t))}. (9.10)

The equivalence principle of insurance states that premiums and benefits should
balance on the average as seen at the outset, that is,

E V (0) = 0. (9.11)

It does not imply EV (t) = 0 for t > 0 unless v is a deterministic function, confer
(9.9). Taking iterated expectations in (9.10), the equivalence requirement can
be cast as

E {v(t)V −
F (t)} = E {v(t)V +

F (t)} (9.12)

if v(t) is determined by Ft, and

E V −
F (t) = E V +

F (t) (9.13)

if v is deterministic. Relation (9.9) is a special case of (9.13).
Let F′ = {F ′

t}t≥0 be some sub-sigmaalgebra representing more summary
information than F = {Ft}t≥0 in the sense that F ′

t ⊂ Ft, t ≥ 0. The rule
of iterated expextations yields the following relationship between reserves on
different levels of information:
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V ±
F′ (t) = EF ′

t
V ±
F (t). (9.14)

By the general rule V arX = E V arYX + V ar EY X , variances denoted as in
(9.8) are related by

V
±(2)
F′ (t) = EF ′

t
{V

±(2)
F (t) + (V ±

F (t))2} − (V ±
F′ (t))

2. (9.15)

There exist also useful relationships between reserves at different times for
a fixed source of information, F. The discounted values of future net outgoes
at two different points of time, t < u, are related by

v(t)V +(t) =

∫

(t,u]

v(τ) dA(τ) + v(u)V +(u).

Similarly, for s < t,

v(t)V −(t) = v(s)V −(s) +

∫

(s,t]

v(τ) d(−A)(τ).

Taking expectations in these two identities, yields a pair of basic relationships
under the assumption that v is deterministic. If {A(τ)}τ≥u depends stochasti-
cally only on Fu for given Ft and Fu, then

v(t)V +
F (t) =

∫

(t,u]

v(τ) dEFtA(τ) + v(u)EFtV
+
F (u). (9.16)

Likewise, if {A(τ)}τ≤s depends stochastically only on Fs for given Fs and Ft,
then

v(t)V −
F (t) = v(s)EFtV

−
F (s) +

∫

(s,t]

v(τ) d(−EFtA)(τ). (9.17)

D. Right-continuity of the reserve processes. As defined by (9.6) and (9.7) the
reserves are right-continuous stochastic processes. They could alternatively be
made left-continuous by letting the integrals in (9.4) and (9.5) extend over [t,∞)
and [0, t), respectively. This would be in keeping with tradition, but the right-
continuous versions are chosen here since they fit into the general apparatus of
stochastic integrals and differential equations and thus are the more convenient
quantities to deal with in anticipated applications of the theory to complex
models. Anyway, the right-continuous and the left-continuous versions differ
only at points of time where non-null amounts fall due with positive probability.
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9.3 Description of payment streams appearing

in life and pension insurance

A. Specification of the insurance treaty terms. Having insurances of persons in
mind, consider insurance treaties specifying terms of the following general form.
There is a set J = {0, . . . , J} of possible states of the policy. The policy is
issued at time 0, say. At any time t ≥ 0 it is in one and only one of the states in
J , commencing in state 0. Payments are of two kinds: general life annuities by
which the amount A◦

g(t)−A◦
g(s) is paid during a sojourn in state g throughout

the time interval (s, t], and general life insurances by which an amount a◦gh(t) is
paid immediately upon a transition from state g to state h at time t. They com-
prise benefits, administration expenses of all kinds, and premiums (negative).
The contractual functions A◦

g and a◦gh are, respectively, a payment function and
a finite-valued, right-continuous function.

B. The form of the payment function. Let X(t) be the state of the policy at time
t. The development of the policy is given by {X(t)}t≥0. This process, regarded
as a function from [0,∞) to J , is assumed to be right-continuous, with a finite
number of jumps in any finite time interval. Let Ngh be the process counting
the transitions from state g to state h, that is, Ngh(t) = #{τ ∈ [0, t]; X(τ−) =
g,X(τ) = h}. The stream of net payments is of the form

A =
∑

g

{Ag +
∑

h;h6=g

Agh},

with

dAg(t) = 1[X(t) = g] dA◦
g(t), (9.1)

dAgh(t) = a◦gh(t) dNgh(t). (9.2)

The behaviour of the retrospective and prospective reserves is now to be
studied for some specifications of F that are of relevance in insurance. The model
framework will be the traditional Markov chain, which yields lucid results.

9.4 The Markov chain model

A. Model assumptions and basic relationships. The process {X(t)}t≥0 is as-
sumed to be a continuous time Markov chain on the state space J . The tran-
sition probabilities are denoted

pjk(t, u) = P{X(u) = k | X(t) = j}.

The transition intensities
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µjk(t) = lim
u↓t

pjk(t, u)

u− t

are assumed to exist for all t and j 6= k. To simplify matters, the functions
µjk are furthermore assumed to be piecewise continuous. The total transition
intensity from state j is

µj =
∑

k; k 6=j

µjk .

From the Chapman-Kolmogorov equations,

pjk(t, u) =
∑

g∈J
pjg(t, τ) pgk(τ, u),

valid for t ≤ τ ≤ u, one obtains Kolmogorov’s differential equations, the forward,

∂

∂t
pij(s, t) =

∑

g; g 6=j

pig(s, t) µgj(t) − pij(s, t)µj(t), (9.1)

and the backward,

∂

∂t
pjk(t, u) = µj(t)pjk(t, u) −

∑

g; g 6=j

µjg(t)pgk(t, u). (9.2)

Together with the initial conditions pjk(t, t) = δjk , j, k ∈ J , (the Kronecker
delta) they determine the transition probabilities uniquely. The Kolmogorov
equations are the major tools for constructing the transition probabilities from
the intensities, which are the basic entities in the system; they are functions
of one argument only and, being readily interpretable, they form the natural
starting point for specification of the model.

The conditional probability of staying uninterruptedly in state j through-
out the time interval [t, u], given that X(t) = j, is (solve a simple differential
equation)

pjj(t, u) = e−
∫

u
t

µj . (9.3)

B. Moments of present values. Throughout the balance of the paper it will
be assumed that the interest intensity is nonstochastic. Consider the general
annuities and insurances defined by (9.1) and (9.2). The present values at time
t of their contributions in some time interval T are
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V (t, AgT ) =
1

v(t)

∫

T
v(τ)1[X(τ) = g]dA◦

g(τ),

V (t, AghT ) =
1

v(t)

∫

T
v(τ)a◦gh(τ) dNgh(τ).

Here follows a list of formulas for the first and second order moments of such
present values, conditional on X(s), with T ⊂ [s,∞). The mean values are

EX(s)=iV (t, AgT ) =
1

v(t)

∫

T
v(τ)pig(s, τ) dA◦

g(τ), (9.4)

EX(s)=iV (t, AghT ) =
1

v(t)

∫

T
v(τ)a◦gh(τ)pig(s, τ)µgh(τ) dτ. (9.5)

The noncentral second order moments, for intervals S, T ⊂ [s,∞), are

EX(s)=i{V (t, AeS)V (t, AgT )}

=
1

v2(t)

∫ ∫

S×T
v(ϑ)v(τ){1[ϑ ≤ τ ]pie(s, ϑ)peg(ϑ, τ)

+1[ϑ > τ ]pig(s, τ)pge(τ, ϑ)} dA◦
e(ϑ) dA◦

g(τ), (9.6)
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EX(s)=i{V (t, AefS)V (t, AghT )}

=
1

v2(t)
[

∫ ∫

S×T
v(ϑ)v(τ){1[ϑ < τ ]pie(s, ϑ)pfg(ϑ, τ)

+1[ϑ > τ ]pig(s, τ)phe(τ, ϑ)}µef (ϑ)µgh(τ)a◦ef (ϑ)a◦gh(τ) dϑ dτ

+δef,gh

∫

S∩T
v2(τ)pig(s, τ)µgh(τ)a◦ 2

gh (τ) dτ ], (9.7)

EX(s)=i{V (t, AeS)V (t, AghT )}

=
1

v2(t)

∫ ∫

S×T
v(ϑ)v(τ){1[ϑ ≤ τ ]pie(s, ϑ)peg(ϑ, τ)

+1[ϑ > τ ]pig(s, τ)phe(τ, ϑ)}dA◦
e(ϑ)µgh(τ)a◦gh(τ) dτ. (9.8)

Variances and covariances are now formed by the rule Cov(X,Y ) = E(XY ) −
EXEY .

The formulas are easily established by a heuristic type of argument. To
motivate e.g. (9.8), put

EX(s)=i {

∫

S
v(ϑ)1[X(ϑ) = e] dA◦

e(ϑ)

∫

T
v(τ)a◦gh(τ) dNgh(τ) }

=

∫ ∫

S×T
v(ϑ)v(τ)EX(s)=i{1[X(ϑ) = e] dNgh(τ)}a◦gh(τ) dA◦

e(ϑ),

and calculate the expected value in the integrand for ϑ ≤ τ and for ϑ > τ .
Rigorous proofs will not be given here. Some of the results in (9.4) – (9.8)
are proved for absolutely continuous A◦

g by Hoem (1969a) and Hoem & Aalen
(1978).

C. Conditional Markov chains. Viewing reserves as conditional expected values,
one may be concerned with various sub-sigmaalgebras of the basic sigmaalgebra
F . They will typically be of the form FT = σ{X(τ); τ ∈ T }, the sigmaalgebra
representing all information provided by the process X in the time set T . Of
particular interest are F[0,t] and F{t0,...,tq}.

The Markov property means precisely that for B ∈ F(t,∞),

P{B | F[0,t]} = P{B | F{t}}, (9.9)

that is, the future development of the process depends on its past and present
states only through the present. An equivalent formulation is that, for A ∈ F(0,t)

and B ∈ F(t,∞),
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P{A ∩ B | F{t}} = P{A | F{t}}P{B | F{t}}, (9.10)

which says that for a fixed present state of the process its future and past
are conditionally independent. The equivalence of (9.9) and (9.10) is easily
established in the present situation with finite state space. By induction (9.10)
extends to the following: for 0 = t0 < t1 < . . . < tq < tq+1 = ∞ and Ap ∈
F(tp−1,tp), p = 1, . . . , q + 1,

P{∩q+1
p=1Ap | F{t0,...,tq}} =

q+1
∏

p=1

P{Ap | F{tp−1,tp}},

where F{tq ,∞} = F{tq}. Thus, conditional on X(0), X(t1), . . . , X(tq), the devel-
opments of the process in the intervals (tp−1, tp) are mutually independent. So,
to study the conditional process, given its values at fixed points, interest can be
focused on the behaviour of the segment {X(τ)}s<τ<t for fixed X(s) and X(t),
say. For s < τ < ϑ < t and A ∈ F(s,τ),

P{X(ϑ) = h | A, X(τ) = g, X(s) = i, X(t) = j}

=
P{X(s) = i, A, X(τ) = g, X(ϑ) = h, X(t) = j}

P{X(s) = i, A, X(τ) = g, X(t) = j}

=
P{X(s) = i, A, X(τ) = g} pgh(τ, ϑ)phj(ϑ, t)

P{X(s) = i, A, X(τ) = g}pgj(τ, t)
.

Thus, the conditional process is Markov with transition probabilities

pgh|ij(τ, ϑ | s, t) =
pgh(τ, ϑ)phj(ϑ, t)

pgj(τ, t)
(9.11)

and intensities

µgh|ij(τ | s, t) = µgh(τ)
phj(τ, t)

pgj(τ, t)
, (9.12)

both independent of s and i. As τ ↑ t, a point of continuity of all the intensities,
the expression in (9.12) tends to 0 if g = j, to µgh(t)µhj(t)/µgj(t) if g, h 6= j,
and to +∞ if h = j, which reflects that the conditional process is forced to end
up in state j at time t. The conditional process {X(τ)}0≤τ≤t, given X(t) = j,
was studied by Hoem (1969b) in connection with statistical analysis of selected
samples in demography.
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9.5 Reserves in the Markov chain model

A. Individual reserves. There are as many definitions of the reserves in (9.6)
and (9.7) as there are possible specifications of F. Each F represents a way of
classifying the policies, and the F-reserves at time t are classwise averages of
discounted excess of benefits over premiums in the future or accumulated excess
of premiums over benefits in the past.

The simplest concepts of reserves are the individual reserves obtained by
conditioning on the full history of the individual policy, that is, take Ft = F[0,t].
The individual retrospective reserve is simply the cash value at time t of the net
gains so far, defined by (9.5) and exemplified by (9.5):

V −
F (t) = V −(t). (9.1)

By the Markov property, the individual prospective reserve is

V +
F (t) = EX(t)V

+(t).

Thus, in the Markov case it suffices to study the prospective reserve for given
current state.

B. Reserves in single states. Now, let F = {F{t}}t≥0 so that reserves at time t
are formed by averaging over policies in each single state at that time. In short,
write V ±

j (t) for the reserves V ±
F (t) when X(t) = j. The prospective reserves

are the same as in Paragraph A. The explicit formula is gathered from (9.4) –
(9.5):

V +
j (t) =

1

v(t)

∫

(t,∞)

v(τ)
∑

g

pjg(t, τ){dA
◦
g(τ)

+
∑

h;h6=g

a◦gh(τ)µgh(τ) dτ}, (9.2)

defined on [0,∞) for j = 0 and on (0,∞) for j 6= 0.
The retrospective reserve in state j is obtained by combining the results

in Paragraphs 4B – C. Conditional on X(t) = j for t > 0 (and X(0) = 0),
{X(τ)}0≤τ≤t is a Markov chain starting in state 0, with transition probabilities
and intensities given by (9.11) and (9.12). Noting that

p0g|0j(0, τ | 0, t)µgh|0j(τ | 0, t) =
p0g(0, τ)µgh(τ)phj(τ, t)

p0j(0, t)
,

the general formulas (9.4) and (9.5) give
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V −
j (t) = −

1

v(t)p0j(0, t)

∫

[0,t]

v(τ)
∑

g

p0g(0, τ){dA
◦
g(τ)pgj (τ, t)

+
∑

h; h6=g

a◦gh(τ)µgh(τ)phj(τ, t) dτ}. (9.3)

This expression is valid if p0j(0, t) > 0. In particular, V −
0 (0) = −A◦

0(0), of
course, whereas V −

j (0) is not defined for j 6= 0. Formula (9.3) is easy to interpret
by direct heuristic reasoning: conditionally, given X(0) = 0 and X(t) = j, the
probability of staying in state g at time τ is p0g(0, τ)pgj(τ, t)/p0j(0, t), and the
probability of a transfer from state g to state h in the time interval (τ, τ + dτ)
is p0g(0, τ)µgh(τ)dτphj (τ, t)/p0j(0, t).

The conditional variances,

V
±(2)
j (t) = V arX(t)=jV

±(t),

are composed from (9.6) – (9.8) upon inserting the relevant conditional transi-
tion probabilities and intensities.

Finally, note that the future and the past developments of the process are
independent, hence uncorrelated, for fixed present X(t) = j.

C. More general reserves. Referring to Paragraph 2C, let F be as in Paragraph
B and let F′ = {F ′

t}t≥0 be the more summary information with F ′
t generated by

the events X(t) ∈ Jl, l = 1, . . . ,m, where {J1, . . . ,Jm} is some partitioning of
J . Thus, F′-reserves at time t are now conditional onX(t) ∈ Jl, l ∈ {1, . . . ,m}.
For any K ⊂ J and t ≤ u put

pjK(t, u) = P{X(u) ∈ K | X(t) = j} =
∑

k∈K
pjk(t, u).

Applying (9.14) and (9.15), one obtains (with obvious notation)

V ±
Jl

(t) =
1

p0Jl
(0, t)

∑

j∈Jl

p0j(0, t)V
±
j (t)

and

V
±(2)
Jl

(t) =
1

p0Jl
(0, t)

∑

j∈Jl

p0j(0, t){V
±(2)
j (t) + V ±

j (t)2} − V ±
Jl

(t)2,

hence F′-reserves and F′-variances can be composed from the corresponding
single-state quantities.
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A variety of reserves based on different choices of F can be analysed by
the results in Section 4. For instance, taking Ft = F{t1,t2,...}∩[0,t] means that
reserves are formed by averaging over policies that are known to have visited
certain states at given epochs in the past. The reserves and variances are found
for each of the intervals and, by conditional independence, simply added to give
the required total reserve and variance.

D. Differential equations for prospective reserves in single states. In the present
Markov chain set-up (9.16) specializes to

W+
j (t) =

∫

(t,u]

v(τ)
∑

g

pjg(t, τ){dA◦
g(τ) +

∑

h;h6=g

a◦gh(τ)µgh(τ)dτ}

+
∑

g

pjg(t, u)W+
g (u), (9.4)

where, for each j ∈ J ,

W+
j (t) = v(t)V +

j (t). (9.5)

Consider the case where all payments are restricted to a finite interval [0, n].
Assume first that the functions A◦

g are absolutely continuous between 0 and n,
that is, dA◦

g(t) = a◦g(t) dt, t ∈ (0, n). Then all W+
g are continuous in (0,n).

Assume furthermore that all the functions a◦g , a
◦
gh, µgh, and δ are continuous in

(0, n). Then, for u = t+ dt (9.4) becomes

W+
j (t) = v(t){a◦j (t) +

∑

g; g 6=j

µjg(t)a
◦
jg(t)} dt

+ (1 − µj(t) dt)W
+
j (t+ dt) +

∑

g; g 6=j

µjg(t)dtW+
g (t+ dt) + o(dt),

where o(dt)/dt → 0 as dt → 0. Now, subtract W+
j (t + dt) and divide by dt on

both sides, and let dt ↓ 0 to obtain the prospective differential equations, which
are the multistate generalization of Thiele’s classical equation:

∂

∂t
W+

j (t) = − v(t){a◦j (t) +
∑

g; g 6=j

µjg(t)a◦jg(t)}

+µj(t)W
+
j (t) −

∑

g; g 6=j

µjg(t)W
+
g (t). (9.6)

For fixed contractual functions the V +
j are uniquely determined by the equations

(9.6) together with the conditions
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V +
j (n−) = A◦

j (n) −A◦
j (n−). (9.7)

If the principle of equivalence (9.11) is invoked, then the additional condition

V +
0 (0) = −A◦

0(0) (9.8)

must be imposed — a constraint on the contractual functions.
The procedure is to be modified only slightly if A◦

j has jumps at points
tj1, . . . , tj,qj−1 in (0, n). Put tj0 = 0 and tjqj = n. The solution of (9.6) has to
be obtained in each of the intervals (tj,p−1, tjp), p = 1, . . . , qj , and the piecewise
solutions in adjacent intervals must be hooked together by the conditions

V +
j (tjp−) = V +

j (tjp) +A◦
j (tjp) −A◦

j (tjp−), (9.9)

p = 1, . . . , qj , which comprise (9.7).
A comment is needed also on possible discontinuities of the functions a◦jg ,

µjg , and δ. At such points and at the points tgp (if any) where A◦
g jumps and

W+
g is discontinuous for some g 6= j, the derivative ∂

∂t
W+

j does not exist. The
left and right derivatives exist, however, and if the discontinuities of the kind
mentioned are finite in number, they will cause no technical problem as they
will not affect the integrations that have to be performed to obtain the solution
of the differential equations.

Pursuing the previous remark, switch the term µj(t)W
+
j (t) appearing on the

right of (9.6) over to the left, multiply by the integrating factor e−
∫

t
0

µj to form

the complete differential ∂
∂t
{e−

∫

t
0

µjW+
j (t)} on the left, and finally integrate

over an interval (t, u) containing no jumps of A◦
j to obtain an integral equation.

Insert (9.5) and solve (recall (9.2) and (9.3))

V +
j (t) =

1

v(t)
[

∫ u

t

v(τ)pjj (t, τ){a
◦
j (τ) +

∑

g; g 6=j

µjg(τ)(a◦jg(τ) + V +
g (τ))}dτ

+ v(u)pjj(t, u)V
+
j (u−) ] . (9.10)

This expression is easy to interpret: it decomposes the future payments into
those that fall due before and those that fall due after time u or the time of
the first transition out of the current state, whichever occurs first. By fixed
contractual functions the integral equations in conjunction with the conditions
(9.9) determine the V +

j .

E. Differential equations for retrospective reserves in single states. The starting
point is (9.17), which now specializes to
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v(t)V −
j (t) = v(s)

∑

g

p0g(0, s)pgj(s, t)

p0j(0, t)
V −

g (s)

−

∫

(s,t]

v(τ)
∑

g

p0g(0, τ)

p0j(0, t)
{dA◦

g(τ)pgj(τ, t)

+
∑

h;h6=g

a◦gh(τ)µgh(τ)phj(τ, t) dτ}. (9.11)

Upon multiplying by p0j(0, t) and introducing

W−
j (t) = v(t)p0j(0, t)V

−
j (t), (9.12)

j ∈ J , (9.11) can be reshaped as

W−
j (t) =

∑

g

W−
g (s)pgj(s, t)

−

∫

(s,t]

v(τ)
∑

g

p0g(0, τ){dA
◦
g(τ)pgj (τ, t)

+
∑

h; h6=g

a◦gh(τ)µgh(τ)phj(τ, t)dτ}. (9.13)

Again, consider the case where all payments are restricted to a finite interval
[0, n], with dA◦

g(t) = a◦g(t) dt, t ∈ (0, n), and a◦g , a
◦
gh, µgh, and δ all continuous

in (0, n). With t and t+ dt in the places of s and t, (9.13) becomes

W−
j (t+ dt) =

∑

g;g 6=j

W−
g (t)µgj(t)dt+W−

j (t)(1 − µj(t)dt)

−v(t)
∑

g

p0g(0, t){a
◦
g(t)dt pgj(t, t+ dt)

+
∑

h;h6=g

a◦gh(t)µgh(t)phj(t, t+ dt)dt} + o(dt).

As pij(t, t+ dt) is µij(t)dt+ o(dt) for i 6= j and 1− µj(t)dt+ o(dt) for i = j, all
terms pij(t, t+dt) on the right can be replaced by δij (the difference is absorbed
in o(dt)). Then proceed in the same manner as in the previous paragraph to
obtain the retrospective differential equations

∂

∂t
W−

j (t) =
∑

g;g 6=j

W−
g (t)µgj(t) −W−

j (t)µj(t)

− v(t){p0j(0, t)a
◦
j (t) +

∑

g; g 6=j

p0g(0, t)a
◦
gj(t)µgj(t)}. (9.14)
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For fixed contractual functions the retrospective reserves are determined uniquely
by (9.14) together with the conditions

W−
j (0) = −δ0jA

◦
0(0). (9.15)

The equivalence condition (9.11) can be cast in terms of the retrospective
reserves as

∑

j∈J
p0j(0, n)V −

j (n) = 0. (9.16)

Possible discontinuities are accounted for in the same manner as for the
prospective reserves, the retrospective counterpart of (9.9) being

V −
j (tjp) = V −

j (tjp−) − (A◦
j (tjp) −A◦

j (tjp−)), (9.17)

p = 1, . . . , qj .
Copying essentially the steps leading to (9.10), one obtains from (9.14) the

integral equation

V −
j (t−) =

1

v(t)p0j(0, t)
[ v(s)p0j(0, s)pjj(s, t)V

−
j (s)

−

∫ t

s

v(τ){p0j(0, τ)pjj(τ, t)a
◦
j (τ)

+
∑

g; g 6=j

p0g(0, τ)µgj(τ)pjj (τ, t)(a
◦
gj(τ) − V +

g (τ))}dτ ],

(9.18)

valid in intervals (s, t) containing no jumps of A◦
j . It decomposes the past pay-

ments into those that fall due before and those that fall due after time s or the
time of the last transition into the current state, whichever is the latter.

F. The prospective and retrospective differential equations are generalizations
of Kolmogorov’s backward and forward differential equations, respectively. This
result is established by considering a simple endowment in the special case where
v(t) ≡ 1 (no interest). First, assume that the only payment provided is a unit
benefit payable at time u contingent upon X(u) = k, that is, A◦

k = εu, the
measure with a unit mass at u, and all other A◦

g and all a◦gh are null. Then,

for t < u, W+
j (t) in (9.5) reduces to pjk(t, u), and the prospective differential

equations in (9.6) specialize to the Kolmogorov backward equations in (9.2).
Second, the Kolmogorov forward differential equations in (9.1) are obtained as
a specialization of the retrospective differential equations in (9.14) by letting the
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only payment be a unit premium at time s, contingent upon X(s) = i, whereby
W−

j (t) in (9.12) reduces to p0i(0, s)pij(s, t) for t > s.
Likewise, integral equations for the transition probabilities come out as spe-

cial cases. From (9.10) one gets

pjk(t, u) =

∫ u

t

pjj(t, τ)
∑

g; g 6=j

µjg(τ)pgk(τ, u)dτ + δjkpjj(t, u), (9.19)

and from (9.18)

pij(s, t) = δijpii(s, t) +
∑

g; g 6=j

∫ t

s

pig(s, τ)µgj(τ)pjj (τ, t)dτ. (9.20)

These equations are easy to interpret.
In a similar manner one may also find differential and integral equations for

expected sojourn times. For v(t) ≡ 1, dA◦
k(t) = dt, and all other contractual

functions null, V +
j (t) and V −

j (t) are just the expected future and past total
sojourn times in state k, conditional on X(t) = j.

G. Uses of the differential equations. In the case where the contractual functions
do not depend on the reserves, the defining relations (9.2) and (9.3) are explicit
expressions for the reserves. The differential equations (9.6) and (9.14) are not
needed for constructive purposes — they serve only to give insight into the
dynamics of the policy.

The situation is entirely different if the contractual functions are allowed
to depend on the reserves in some way or other. The most typical examples
are repayment of a part of the reserve upon withdrawal (a state ”withdrawn”
must then be included in the state space J ) and expenses depending partly
on the reserve. Also the primary insurance benefits may in some cases be
specified as functions of the reserve. In such situations the differential equations
are indispensable tools in the construction of the reserves and determinaton of
the equivalence premium. The simplest case is when the payments are linear
functions of the reserve, with coefficients possibly depending on time. Then
the operations leading to (9.10) and (9.18) can basically be reproduced after
collecting all terms involving the reserve in state j on the left hand side and
multiplying by the appropriate integrating factor. Such techniques are standard
and frequently used for the traditional prospective reserve. They carry over to
the retrospective reserve, as will be illustrated by examples in the final section.

Apart from some very simple situations, like the one encountered in Para-
graph 1B, the computation of the reserves will usually require numerical solution
of the set of differential equations (or the equivalent integral equations). There
is, however, an important class of situations which allow for more direct com-
putation by iterated numerical integrations, and a comment shall be rendered
on those. When returns to formerly visited states are impossible, µjg = 0 for
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g < j, say, the equations (9.10) form the basis of a recursive computational pro-
cedure. The sum over g on the right of (9.10) extends only over g > j (void if
j = J), and so one can suitably start by determining V +

J , which is easy since the
equation for V +

J involves no other V +
g (typically the policy is no longer in force

in state J and V +
J is identically 0). Then proceed downwards through the state

space: having determined V +
j+1, . . . , V

+
J , use (9.10) with u = tjp and (9.9) in

each interval (tj,p−1, tjp), starting from time tjqj = n. Similarly, the equations

(9.18) are solved recursively starting with the equation for V −
0 , which involves

no other V −
g : having determined V +

0 , . . . , V +
j−1, use (9.18) with s = tj,p−1 and

(9.17) in each interval (tj,p−1, tjp), starting from time tj0 = 0. Again, the ex-
amples in the following section are referred to.

H. Behaviour of the retrospective reserves in the vicinity of 0. In establishing
the retrospective differential equations, the auxiliary functions W−

j defined in
(9.12) are more convenient to work with than the reserves themselves. The
V −

j are defined only for those t where p0j(0, t) > 0, whereas the W−
j are well

defined in all of [0,∞). The W−
j are right-continuous, and their values in 0,

given by (9.15), are simple initial conditions for the differential equations. The
reserves V −

j are also right-continuous, but in 0 only V −
0 is defined (−A◦

0(0)).

For j 6= 0 the limit V −
j (0+) must be obtained by letting t ↓ 0 in (9.3). Leaving

details aside, only the intuitively appealing result is reported. A state j 6= 0 is
said to be immediately accessible from state 0 in q steps via the directed path
g = (g1g2 . . . gq−1) if µg(0) = µ0g1(0)µg1g2(0) . . . µgq−1j(0) > 0. Let qj be the
minimum of all q for which this property holds for some path, and denote the
set of such minimal paths by Pj . Then

V −
j (0+) = −A◦

0(0) −

∑

g∈Pj
µg(0){a◦0g1

(0) + a◦g1g2
(0) + . . .+ a◦gqj−1j(0)}

∑

g∈Pj
µg(0)

.

I. A different notion of retrospective reserve. In a recent paper Wolthuis & Hoem
(1990) have launched a notion of retrospective reserve quite different from the
one introduced here. Working in the Markov chain model, they require that the
statewise retrospective reserves should satisfy

EX(0)=iV (0) = v(t)
∑

j∈J
pij(0, t){V

+
j (t) − V −

j (t)} (9.21)

for i = 0, which conforms with (9.10). Then, imagining that the policy might
start from any state different from 0, they require that (9.21) be valid for all i,
whereby some hypothetical values must be chosen for the EX(0)=iV (0), i 6= 0.
There exists no such choice that can produce the retrospective reserves (9.3),
and so the approach is incompatible with the one taken here. The same is the
case for the approach proposed by Hoem (1988), where (9.21) is required for
i = 0 and V −

j (t) is put equal to V +
j (t) for j 6= 0.
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9.6 Some examples

A. Life insurance of a single life (continued from Paragraph 1B). In this simple
situation the prospective differential equations (9.6) are

∂

∂t
W+

0 (t) = vt (c− µx+tb) + µx+tW
+
0 (t) − µx+tW

+
1 (t), (9.1)

∂

∂t
W+

1 (t) = 0. (9.2)

With the conditions

W+
0 (n−) = W+

1 (n−) = 0 (9.3)

they lead to (9.1) and (9.2), which could be put up by direct prospective rea-
soning. The equivalence premium is

c = b

∫ n

0
vτ

τpxµx+τdτ
∫ n

0
vτ

τpxdτ
.

Suppose the treaty is modified so that the prospective reserve is paid out as
an additional benefit upon death before time n; a◦01(t) = b+ V +

0 (t). Then the
reserve and the equivalence premium cannot be determined directly by prospec-
tive reasoning, and it is necessary to employ the differential equations (9.6).
Now, instead of (9.1) one gets

∂

∂t
W+

0 (t) = vt {c− µx+t(b+ V +
0 (t))} + µx+tW

+
0 (t) − µx+tW

+
1 (t)

= vt {c− µx+tb} − µx+tW
+
1 (t). (9.4)

Equation (F.38) and the conditions (F.39) remain unchanged. One finds V +
1 (t) =

0 as before, and

V +
0 (t) =

∫ n

t

vτ−t(µx+τb− c) dτ. (9.5)

The equivalence premium is determined upon inserting t = 0 in (9.5) and equat-
ing to 0:

c = b

∫ n

0 vτµx+τdτ
∫ n

0
vτdτ

. (9.6)

These techniques and results are classical, and are referred here for the sake of
comparison with what now follows.
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For the standard contract, with no repayment of the reserve, the differential
equations (9.14) become

∂

∂t
W−

0 (t) = −W−
0 (t)µx+t + vt

tpxc, (9.7)

∂

∂t
W−

1 (t) = W−
0 (t)µx+t − vt

tpxµx+tb. (9.8)

With the conditions

W−
0 (0) = W−

1 (0) = 0 (9.9)

they lead to (9.3) and (9.4), which could be put up directly.
Suppose now that the retrospective reserve is to be paid out as an additional

benefit upon death; a◦01(t) = b + V −
0 (t). Then the retrospective differential

equations must be employed. Instead of (9.8) one gets

∂

∂t
W−

1 (t) = W−
0 (t)µx+t − vt

tpxµx+t(b+ V −
0 (t))

= −vt
tpxµx+tb,

whereas equation (9.7) and the conditions (9.9) remain unchanged. One arrives
at the same expression for V −

0 as before, of course, and

V −
1 (t) = −

b

1 − tpx

∫ t

0

(1 + i)t−τ
τpxµx+τdτ.

The equivalence premium c is determined by (9.16):

c = b

∫ n

0 vτ
τpxµx+τdτ

npx

∫ n

0
vτdτ

.

B. Widow’s pension. A married couple buys a widow’s pension policy specifying
that premiums are to be paid with intensity c as long as both husband and
wife are alive, and pensions are to be paid with intensity b as long as the wife
is widowed. The policy terminates at time n or upon the death of the wife,
whichever occurs first. The relevant Markov model is sketched in Fig. reffig:two-
lives. Expressions for the transition probabilities are easily obtained by direct
reasoning or by use of (9.19). The reserves can be picked directly from (9.2)
and (9.3):

V +
0 (t) =

1

v(t)

∫ n

t

v(τ){b p01(t, τ) − c p00(t, τ)}dτ,

V +
1 (t) =

b

v(t)

∫ n

t

v(τ)p11(t, τ)dτ,

V +
2 (t) = V +

3 (t) = 0,
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V −
0 (t) =

c

v(t)

∫ t

0

v(τ) dτ, (9.10)

V −
1 (t) =

1

v(t) p01(0, t)

∫ t

0

v(τ) {c p00(0, τ)p01(τ, t)

− b p01(0, τ)p11(τ, t)}dτ, (9.11)

V −
2 (t) =

c

v(t) p02(0, t)

∫ t

0

v(τ) p00(0, τ)p02(τ, t) dτ, (9.12)

V −
3 (t) =

1

v(t) p03(0, t)

∫ t

0

v(τ) {c p00(0, τ)p03(τ, t)

− b p01(0, τ)p13(τ, t)}dτ. (9.13)

The differential equations are not needed to construct these formulas. The
retrospective ones are listed for ease of reference:

∂

∂t
W−

0 (t) = −W−
0 (t)(µ01(t) + µ02(t)) + v(t)p00(0, t) c, (9.14)

∂

∂t
W−

1 (t) = W−
0 (t)µ01(t) −W−

1 (t)µ13(t) − v(t)p01(0, t) b, (9.15)

∂

∂t
W−

2 (t) = W−
0 (t)µ02(t) −W−

2 (t)µ23(t), (9.16)

∂

∂t
W−

3 (t) = W−
1 (t)µ13(t) +W−

2 (t)µ23(t). (9.17)

Consider a modified policy, by which the retrospective reserve is to be paid
back to the husband in case he is widowered before time n, the philosophy
being that couples receiving no pensions should have their savings back. Now
the retrospective differential equations are needed. The equations above remain
unchanged except that the term v(t)p00(0, t)V

−
0 (t)µ02(t) = W−

0 (t)µ02(t) must
be subtracted on the right of (9.16), which then changes to

∂

∂t
W−

2 (t) = −W−
2 (t)µ23(t). (9.18)

Together with the conditions W−
j (0) = 0, j = 0, 1, 2, 3, these equations are

easily solved. Obviously, the expressions for V −
0 (t) and V −

1 (t) remain the same
as in (9.10) and (9.11). From (9.18) follows V −

2 (t) = 0, which is also obvious.
Finally, (9.17) gives

V −
3 (t) =

1

v(t) p03(0, t)

∫ t

0

v(τ) {c p00(0, τ)p013(τ,−, t)

− b p01(0, τ)p13(τ, t)} dτ, (9.19)
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where

p013(τ,−, t) =

∫ t

τ

p01(τ, ϑ)µ13(ϑ)dϑ

is the probability of passing from state 0 to state 3 via state 1 in the time
interval [τ, t], given that X(τ) = 0.

As a final example the widow’s pension shall be analysed in the presence
of administration expenses that depend partly on the reserve. Consider again
the policy terms described in the introduction of this paragraph, but assume
that administration expenses incur as follows. At time t expenses fall due with
intensity e′0(t) + e′′0(t)c in state 0 (the latter term represents encashment com-
mision) and with intensity e′1(t) in state 1. In addition, expenses related to
maintenance of the reserve fall due with intensity e(t)×(current retrospective
reserve) throughout the entire period [0, n].

Instead of (9.14) – (9.17) one now gets
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∂

∂t
W−

0 (t) = −W−
0 (t)(µ01(t) + µ02(t))

− v(t)p00(0, t){e
′
0(t) + e′′0(t)c+ e(t)V −

0 (t) − c}, (9.20)

∂

∂t
W−

1 (t) = W−
0 (t)µ01(t) −W−

1 (t)µ13(t)

− v(t)p01(0, t){b+ e′1(t) + e(t)V −
1 (t)}, (9.21)

∂

∂t
W−

2 (t) = W−
0 (t)µ02(t) −W−

2 (t)µ23(t)

−v(t)p02(0, t)e(t)V
−
2 (t), (9.22)

∂

∂t
W−

3 (t) = W−
1 (t)µ13(t) +W−

2 (t)µ23(t)

−v(t)p03(0, t)e(t)V
−
3 (t), (9.23)

and the conditions (9.15) become W−
j (0) = 0, j = 0, 1, 2, 3. Now a small trick.

In each of the equations (9.20) – (9.23), say the one for ∂
∂t
W−

j (t), there appears

a term −v(t)p0j(0, t)e(t)V
−
j (t) = −e(t)W−

j (t) on the right hand side. Switch

this over to the left and multiply on both sides by e
∫ t
0

e. Form a complete
differential ∂

∂t
{e
∫

t
0

eW−
j (t)} on the left hand side and absorb everywhere the

factor e
∫ t
0

e into v(t) = e−
∫ t
0

δ (remember v(t) is a factor in W−
j (t)). What

remains are retrospective differential equations for the the same situation as
the original one, modified to the effect that the administration costs related to
the reserve have vanished and the interest intensity δ has been decreased by
e. Thus, one can apply the explicit expression (9.3) for this modified case, and

arrive at the following formulas, where v∗(t) = e−
∫ t
0
(δ−e):

V −
0 (t) =

1

v∗(t)

∫ t

0

v∗(τ){c(1 − e′′0(τ)) − e′0(τ)} dτ,

V −
1 (t) =

1

v∗(t) p01(0, t)

∫ t

0

v∗(τ) [ p00(0, τ)p01(τ, t){c(1 − e′′0(τ)) − e′0(τ)}

− p01(0, τ)p11(τ, t)(b+ e′1(τ)) ] dτ,

V −
2 (t) =

1

v∗(t) p02(0, t)

∫ t

0

v∗(τ)p00(0, τ)p02(τ, t){c(1 − e′′0(τ)) − e′0(τ)}dτ,

V −
3 (t) =

1

v∗(t) p03(0, t)

∫ t

0

v∗(τ) [ p00(0, τ)p03(τ, t){c(1 − e′′0(τ)) − e′0(τ)}

− p01(0, τ)p13(τ, t)(b+ e′1(τ)) ] dτ.

Using the equivalence principle in the form (9.16), one obtains the equiva-
lence premium

c =

∫ n

0
v∗(τ){p00(0, τ)e

′
0(τ) + p01(0, τ)(b+ e′1(τ))} dτ

∫ n

0
v∗(τ)p00(0, τ)(1 − e′′0 (τ)) dτ

. (9.24)
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If the cost element e(t)V −
j (t) is replaced by e(t)V +

j (t), the prospective differ-
ential equations must be used. The procedure above can essentially be repeated,
and just as for the retrospective reserves it turns out that the prospective re-
serves are those correspending to e(t) = 0 and discount function v∗. The equiv-
alence premium remains as in (9.24).



Chapter 10

Safety loadings and bonus

10.1 General considerations

A. Bonus – what it is. The word bonus is Latin and means ’good’. In insur-
ance terminology it denotes various forms of repayments to the policyholders
of that part of the company’s surplus that stems from good performance of
the insurance portfolio, a sub-portfolio, or the individual policy. We shall here
concentrate on the special form it takes in traditional life insurance.

The issue of bonus presents itself in connection with every standard life insur-
ance contract, characteristic of which is its specification of nominal contingent
payments that are binding to both parties throughout the term of the contract.
All contracts discussed so far are of this type, and a concrete example is the com-
bined policy described in 7.4: upon inception of the contract the parties agree
on a death benefit of 1 and a disability benefit of 0.5 per year against a level
premium of 0.013108 per year, regardless of future developments of the inten-
sities of mortality, disability, and interest. Now, life insurance policies like this
one are typically long term contracts, with time horizons wide enough to cap-
ture significant variations in intensities, expenses, and other relevant economic-
demographic conditions. The uncertain development of such conditions subjects
every supplier of standard insurance products to a risk that is non-diversifiable,
that is, independent of the size of the portfolio; an adverse development can not
be countered by raising premiums or reducing benefits, and also not by can-
celling contracts (the right of withdrawal remains one-sidedly with the insured).
The only way the insurer can safeguard against this kind of risk is to build into
the contractual premium a safety loading that makes it cover, on the average in
the portfolio, the contractual benefits under any likely economic-demographic
development. Such a safety loading will typically create a systematic surplus,
which by statute is the property of the insured and has to be repaid in the form
of bonus.

145
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B. Sketch of the usual technique. The approach commonly used in prac-
tice is the following. At the outset the contractual benefits are valuated, and
the premium is set accordingly, on a first order (technical) basis, which is a
set of hypothetical assumptions about interest, intensities of transition between
policy-states, costs, and possibly other relevant technical elements. The first
order model is a means of prudent calculation of premiums and reserves, and
its elements are therefore placed to the safe side in a sense that will be made
precise later. As time passes reality reveals true elements that ultimately set
the realistic scenario for the entire term of the policy and constitute what is
called the second order (experience) basis. Upon comparing elements of first
and second order, one can identify the safety loadings built into those of first
order and design schemes for repayment of the systematic surplus they have
created. We will now make these things precise.

To save notation, we disregard administration expenses for the time being
and discuss them separately in Section 10.7 below.

10.2 First and second order bases

A. The second order model. The policy-state process Z is assumed to be a
time-continuous Markov chain as described in Section 7.2. In the present context
we need to equip the indicator processes and counting processes related to the
process Z with a topscript, calling them IZ

j and NZ
jk. The probability measure

and expectation operator induced by the transition intensities are denoted by
P and E, respectively.

The investment portfolio of the insurance company bears interest with in-
tensity r(t) at time t.

The intensities r and µjk constitute the experience basis, also called the
second order basis, representing the true mechanisms governing the insurance
business. At any time its past history is known, whereas its future is unknown.

We extend the set-up by viewing the second order basis as stochastic, whereby
the uncertainty associated with it becomes quantifiable in probabilistic terms.
In particular, prediction of its future development becomes a matter of model-
based forecasting. Thus, let us consider the set-up above as the conditional
model, given the second order basis, and place a distribution on the latter,
whereby r and the µjk become stochastic processes. Let Gt denote their com-
plete history up to, and including, time t and, accordingly, let E[ · | Gt] denote
conditional expectation, given this information.

For the time being we will work only in the conditional model and need not
specify any particular marginal distribution of the second order elements.

B. The first order model. We let the first order model be of the same type
as the conditional model of second order. Thus, the first order basis is viewed as
deterministic, and we denote its elements by r∗ and µ∗

jk and the corresponding
probability measure and expectation operator by P∗ and E∗, respectively. The
first order basis represents a prudent initial assessment of the development of
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the second order basis, and its elements are placed on the safe side in a sense
that will be made precise later.

By statute, the insurer must currently provide a reserve to meet future lia-
bilities in respect of the contract, and these liabilities are to be valuated on the
first order basis. The first order reserve at time t, given that the policy is then
in state j, is

V ∗
j (t) = E

∗
[∫ n

t

e−
∫

τ
t

r∗

dB(τ)

∣

∣

∣

∣

Z(t) = j

]

=

∫ n

t

e−
∫ τ

t
r∗∑

g

p∗jg(t, τ)



dBg(τ) +
∑

h;h6=g

bgh(τ)µ∗
gh(τ) dτ



 .(10.1)

We need Thiele’s differential equations

dV ∗
j (t) = r∗(t)V ∗

j (t) dt− dBj(t) −
∑

k; k 6=j

R∗
jk(t)µ∗

jk(t) dt , (10.2)

where
R∗

jk(t) = bjk(t) + V ∗
k (t) − V ∗

j (t) (10.3)

is the sum at risk associated with a possible transition from state j to state k
at time t.

The premiums are based on the principle of equivalence exercised on the first
order valuation basis,

E
∗
[∫ n

0−
e−

∫

τ
0

r∗

dB(τ)

]

= 0 , (10.4)

or, equivalently,
V ∗

0 (0) = −∆B0(0) . (10.5)

10.3 The technical surplus and how it emerges

A. Definition of the mean portfolio surplus. With premiums determined
by the principle of equivalence (10.4) based on prudent first order assumptions,
the portfolio will create a systematic technical surplus if everything goes well.
Quite naturally, the surplus is some average of past net incomes valuated on the
factual second order basis less future net outgoes valuated on the conservative
first order basis. The portfolio-wide mean surplus thus construed is

S(t) = E

[∫ t

0−
e
∫

t
τ

r d(−B)(τ)

∣

∣

∣

∣

Gt

]

−
∑

j

p0j(0, t)V
∗
j (t)

= − e
∫

t
0

r

∫ t

0−
e−

∫

τ
0

r
∑

j

p0j(0, τ)



dBj(τ) +
∑

k;k 6=j

bjk(τ)µjk(τ) dτ





−
∑

j

p0j(0, t)V
∗
j (t) . (10.6)
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The definition conforms with basic principles of insurance accountancy; at any
time the balance is the difference between, on the debit, the factual income in
the past and, on the credit, the reserve that by statute is to be provided in
respect of future liabilities. In particular, due to (10.5),

S(0) = 0 (10.7)

and, due to V ∗
j (n) = 0,

S(n) = E

[∫ n

0−
e
∫

n
τ

r d(−B)(τ)

∣

∣

∣

∣

Gn

]

, (10.8)

as it ought to be.
Note that the expression in (10.6) involves only the past history of the second

order basis, which is currently known.

B. The contributions to the surplus. Differentiating (10.6), applying the
Kolmogorov forward equation (7.20) and the Thiele backward equation (10.2)
to the last term on the right, leads to

dS(t) = − e
∫

t
0

r r(t) dt

∫ t

0−
e−

∫

τ
0

r
∑

j

p0j(0, τ)



dBj(τ) +
∑

k;k 6=j

bjk(τ)µjk(τ) dτ





−
∑

j

p0j(0, t)



dBj(t) +
∑

k;k 6=j

bjk(t)µjk(t) dt





−
∑

j





∑

g; g 6=j

p0g(0, t)µgj(t) dt − p0j(0, t)µj·(t) dt .



V ∗
j (t)

−
∑

j

p0j(0, t)



r∗(t)V ∗
j (t) dt − dBj(t) −

∑

k; k 6=j

R∗
jk(t)µ∗

jk(t) dt



 .

Reusing the relation (10.6) in the first line here and gathering terms, we obtain

dS(t) = r(t) dt S(t) +
∑

j

p0j(0, t)cj(t) dt ,

with

cj(t) = {r(t) − r∗(t)}V ∗
j (t) +

∑

k; k 6=j

R∗
jk(t){µ∗

jk(t) − µjk(t)} . (10.9)

Finally, integrating up and using (10.7), we arrive at

S(t) =

∫ t

0

e
∫

t
τ

r
∑

j

p0j(0, τ)cj(τ) dτ , (10.10)
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which expresses the technical surplus at any time as the sum of past contribu-
tions compounded with second order interest.

One may arrive at the definition of the contributions (10.9) by another route,
starting from the individual surplus defined, quite naturally, as

Sind(t) = e
∫ t
0

r

∫ t

0−
e−

∫ τ
0

r d(−B)(τ) −
∑

j

IZ
j (t)V ∗

j (t). (10.11)

Upon differentiating this expression, and proceeding along the same lines as
above, one finds that Sind(t) consists of a purely erratic term and a systematic

term. The latter is
∫ t

0 e
∫

t
τ

r
∑

j I
Z
j (τ)cj(τ) dτ , which is the individual counterpart

of (10.10), showing how the contributions emerge at the level of the individual
policy. They form a random payment function C defined by

dC(t) =
∑

j

IZ
j (t) cj(t) dt . (10.12)

With this definition, we can recast (10.10) as

S(t) = E

[∫ t

0

e
∫

t
τ

rdC(τ)

∣

∣

∣

∣

Gt

]

. (10.13)

C. Safety margins. The expression on the right of (10.9) displays how the
contributions arise from safety margins in the first order force of interest (the
first term) and in the transition intensities (the second term). The purpose
of the first order basis is to create a non-negative technical surplus. This is
certainly fulfilled if

r(t) ≥ r∗(t) (10.14)

(assuming that all V ∗
j (t) are non-negative as they should be) and

sign {µ∗
jk(t) − µjk(t)} = signR∗

jk(t) . (10.15)

10.4 Dividends and bonus

A. The dividend process. Legislation lays down that the technical surplus
belongs to the insured and has to be repaid in its entirety. Therefore, to the
contractual payments B there must be added dividends, henceforth denoted
by D. The dividends are currently adapted to the development of the second
order basis and, as explained in Paragraph 10.1.A, they can not be negative.
The purpose of the dividends is to establish, ultimately, equivalence on the true
second order basis:

E

[∫ n

0−
e−

∫ τ
0

r d{B +D}(τ)

∣

∣

∣

∣

Gn

]

= 0 . (10.16)
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We can state (10.16) equivalently as

E

[∫ n

0−
e
∫ n

τ
r d{B +D}(τ)

∣

∣

∣

∣

Gn

]

= 0 . (10.17)

The value at time t of past individual contributions less dividends, com-
pounded with interest, is

Ud(t) =

∫ t

0−
e
∫ t

τ
r d{C −D}(τ) . (10.18)

This amount is an outstanding account of the insured against the insurer, and
we shall call it the dividend reserve at time t.

By virtue of (10.8) and (10.13) we can recast the equivalence requirement
(10.17) in the appealing form

E[Ud(n) | Gn] = 0 . (10.19)

From a solvency point of view it would make sense to strengthen (10.19) by
requiring that compounded dividends must never exceed compounded contribu-
tions:

E[Ud(t) | Gt] ≥ 0 , (10.20)

t ∈ [0, n]. At this point some explanation is in order. Although the ultimate
balance requirement is enforced by law, the dividends do not represent a con-
tractual obligation on the part of the insurer; the dividends must be adapted
to the second order development up to time n and can, therefore, not be stip-
ulated in the terms of the contract at time 0. On the other hand, at any time,
dividends allotted in the past have irrevocably been credited to the insured’s
account. These regulatory facts are reflected in (10.20).

If we adopt the view that “the technical surplus belongs to those who created
it”, we should sharpen (10.19) by imposing the stronger requirement

Ud(n) = 0 . (10.21)

This means that no transfer of redistributions across policies is allowed. The sol-
vency requirement conforming with this point of view, and sharpening (10.20),
is

Ud(t) ≥ 0 , (10.22)

t ∈ [0, n].
The constraints imposed on D in this paragraph are of a general nature and

leave a certain latitude for various designs of dividend schemes. We shall list
some possibilities motivated by practice.

B. Special dividend schemes. The so-called contribution scheme is defined
by D = C, that is, all contributions are currently and immediately credited to
the account of the insured. No dividend reserve will accrue and, consequently,
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the only instrument on the part of the insurer in case of adverse second order
experience is to cease crediting dividends. In some countries the contribution
principle is enforced by law. This means that insurers are compelled to operate
with minimal protection against adverse second order developments.

By terminal dividend is meant that all contributions are currently invested
and their compounded total is credited to the insured as a lump sum dividend
payment only upon the termination of the contract at some time T after which
no more contributions are generated. Typically T would be the time of transition
to an absorbing state (death or withdrawal), truncated at n. If compounding is
at second order rate of interest, then

D(t) = 1[t ≥ T ]

∫ T

0

e
∫

T
τ

rdC(τ) .

Contribution dividends and terminal dividends represent opposite extremes
in the set of conceivable dividend schemes, which are countless. One class
of intermediate solutions are those that yield dividends only at certain times
T1 < · · · < TK ≤ n, e.g. annually or at times of transition between certain

states. At each time Ti the amount ∆D(Ti) =
∫ Ti

Ti−1
e
∫ Ti

τ
rdC(τ) (with T0 = 0)

is entered to the insured’s credit.

C. Allocation of dividends; bonus. Once they have been allotted, divi-
dends belong to the insured. They may, however, be disposed of in various ways
and need not be paid out currently as they fall due. The actual payouts of div-
idends are termed bonus in the sequel, and the corresponding payment function
is denoted by Bb.

The compounded value of credited dividends less paid bonuses at time t is

U b(t) =

∫ t

0

e
∫ t

τ
r d{D −Bb}(τ) . (10.23)

This is a debt owed by the insurer to the insured, and we shall call it the bonus
reserve at time t. Bonuses may not be advanced, so Bb must satisfy

U b(t) ≥ 0 (10.24)

for all t ∈ [0, n]. In particular, since D(0) = 0, one has Bb(0) = 0. Moreover,
since all dividends must eventually be paid out, we must have

U b(n) = 0 . (10.25)

We have introduced three notions of reserves that all appear on the debit
side of the insurer’s balance sheet. First, the premium reserve V ∗ is provided
to meet net outgoes in respect of future events; second, the dividend reserve U d

is provided to settle the excess of past contributions over past dividends; third,
the bonus reserve U b is provided to settle the unpaid part of dividends credited
in the past. The premium reserve is of prospective type and is a predicted
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amount, whereas the dividend and bonus reserves are of retrospective type and
are indeed known amounts summing up to

Ud(t) + U b(t) =

∫ t

0

e
∫ t

τ
r d{C −Bb}(τ) , (10.26)

the compounded total of past contributions not yet paid back to the insured.

D. Some commonly used bonus schemes. The term cash bonus is, quite
naturally, used for the scheme Bb = D. Under this scheme the bonus reserve is
always null, of course.

By terminal bonus, also called reversionary bonus, is meant that all divi-
dends, with accumulation of interest, are paid out as a lump sum upon the
termination of the contract at some time T , that is,

Bb(t) = 1[t ≥ T ]

∫ T

0

e
∫

T
τ

rdD(τ) .

Here we could replace the integrator D by C since terminal bonus obviously
does not depend on the dividend scheme; all contributions are to be repaid with
accumulation of interest.

Assume now, what is common in practice, that dividends are currently used
to purchase additional insurance coverage of the same type as in the primary
policy. It seems natural to let the additional benefits be proportional to those
stipulated in the primary policy since they represent the desired profile of the
product. Thus, the dividends dD(s) in any time interval [s, s+ ds) are used as
a single premium for an insurance with payment function of the form

dQ(s){B+(τ) −B+(s)} ,

τ ∈ (s, n], where the topscript ”+” signifies, in an obvious sense, that only
positive payments (benefits) are counted.

Supposing that additional insurances are written on first order basis, the
proportionality factor dQ(s) is determined by

dD(s) = dQ(s)V ∗+
Z(s)(s), (10.27)

where

V ∗+
Z(s)(s) = E

∗
[∫ n

s

e−
∫ τ

s
r∗

dB+(τ)

∣

∣

∣

∣

Z(s)

]

is the single premium at time s for the future benefits under the policy.
Now the bonus payments Bb are of the form

dBb(t) = Q(t)dB+(t) . (10.28)

Being written on first order basis, also the additional insurances create technical
surplus. The total contributions under this scheme develop as

dC(t) +Q(t)dC+(t) , (10.29)
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where the first term on the right stems from the primary policy and the second
term stems from the Q(t) units of additional insurances purchased in the past,
each of which has payment function B+ producing contributions C+ of the form
dC+(t) =

∑

j I
Z
j (t) c+j (t) dt, with

c+j (t) = {r(t) − r∗(t)}V ∗+
j (t) +

∑

k; k 6=j

R∗+
jk (t){µ∗

jk(t) − µjk(t)} ,

R∗+
jk (t) = b+jk(t) + V ∗+

k (t) − V ∗+
j (t) .

The present situation is more involved than those encountered previously
since, not only are dividends driven by the contractual payments, but it is
also the other way around. To keep things relatively simple, suppose that the
contribution principle is adopted so that the dividends in (10.27) are set equal
to the contributions in (10.29). Then the system is governed by the dynamics

dC(t) +Q(t)dC+(t) = dQ(t)V ∗+
Z(t)(t)

or, realizing that V ∗+
Z(t)(t) is strictly positive whenever dC(t) and dC+(t) are,

dQ(t) −Q(t) dG(t) = dH(t) , (10.30)

where G and H are defined by

dG(t) =
1

V ∗+
Z(t)(t)

dC+(t) , (10.31)

dH(t) =
1

V ∗+
Z(t)(t)

dC(t) . (10.32)

Multiplying with exp(−G(t)) to form a complete differential on the left and then
integrating from 0 to t, using Q(0) = 0, we obtain

Q(t) =

∫ t

0

eG(t)−G(τ) dH(τ) . (10.33)

10.5 Bonus prognoses

A. A Markov chain environment. We shall adopt a simple Markov chain
description of the uncertainty associated with the development of the second
order basis. Let Y (t), 0 ≤ t ≤ n, be a time-continuous Markov chain with
finite state space Y = {1, . . . , q} and constant intensities of transition, λef .
Denote the associated indicator processes by IY

e . The process Y represents the
“economic-demographic environment”, and we let the second order elements
depend on the current Y -state:

r(t) =
∑

e

IY
e (t) re = rY (t) ,

µjk(t) =
∑

e

IY
e (t)µe;jk(t) = µY (t);jk(t) .
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The re are constants and the µe;jk(t) are intensity functions, all deterministic.
With this specification of the full two-stage model it is realized that the pair

X = (Y, Z) is a Markov chain on the state space X = Y ×Z , and its intensities
of transition, which we denote by κej,fk(t) for (e, j), (f, k) ∈ X , (e, j) 6= (f, k),
are

κej,fj(t) = λef , e 6= f, (10.34)

κej,ek(t) = µe;jk(t) , j 6= k, (10.35)

and null for all other transitions.
In this extended set-up the contributions, whose dependence on the second

order elements was not visualized earlier, can appropriately be represented as

dC(t) = c(t) dt =
∑

e,j

IY
e (t)IZ

j (t)cej(t) dt,

where

cej(t) = {re − r∗(t)}V ∗
j (t) +

∑

k; k 6=j

R∗
jk(t){µ∗

jk(t) − µe;jk(t)} . (10.36)

Under the scheme of additional benefits described in Paragraph 10.4.D a similar
convention goes for C+ and c+ and, accordingly, (10.31) and (10.32) become

dG(t) = g(t) dt =
∑

e,j

IY
e (t)IZ

j (t)gej(t) dt , (10.37)

gej(t) =
c+ej(t)

V ∗+
j (t)

, (10.38)

dH(t) = h(t) dt =
∑

e,j

IY
e (t)IZ

j (t)hej(t) dt , (10.39)

hej(t) =
cej(t)

V ∗+
j (t)

. (10.40)

B. Preparatory remarks on the issue of bonus prognoses. There is no
single functional of the future bonus stream that presents itself as the relevant
quantity to prognosticate. One could e.g. take the total bonuses discounted by
some suitable inflation rate, or the undiscounted total bonuses, or the rate at
which bonus will be paid at certain times, and one could apply any of these pos-
sibilities to the random development of the policy or to some representative fixed
development. We shall focus on the expected value, and in the simplest cases
also higher order moments, of the future bonuses discounted by the stochastic
second order interest. From this we can easily deduce predictors for a number
of other relevant quantities. We turn now to the analysis of some of the schemes
described in Section 10.4.
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C. Contribution dividends and cash bonus. This case, where Bb = C =
D, is particularly simple since the bonus payments at any time depend only on
the current state of the process. We can then employ the appropriate version
of Thiele’s differential equation to calculate the state-wise expected discounted
future bonuses (= contributions),

Wej(t) = E

[∫ n

t

e−
∫

τ
t

r c(τ) dτ

∣

∣

∣

∣

X(t) = (e, j)

]

.

They are determined by the appropriate version of Thiele’s differential equation,

d

dt
Wej(t) = re Wej(t) − cej(t) −

∑

f ;f 6=e

λef (Wfj(t) −Wej(t))

−
∑

k;k 6=j

µe;jk(t) (Wek(t) −Wej(t)) , (10.41)

subject to
Wej(n−) = 0 , ∀e, j . (10.42)

D. Terminal dividend and/or bonus. Under the terminal bonus scheme
dividends and bonuses are the same, of course. The problem of predicting
the total bonus payments discounted with respect to second order interest is
basically the same as in the previous paragraph since it amounts to adding
the total amount of compounded past contributions, which is known, and the
state-wise predictor of discounted future contributions.

Suppose instead that at time t, the policy still being in force, it is decided
to predict the undiscounted value of the terminal bonus amount,

W =

∫ T

0

e
∫

T
τ

rc(τ) dτ =

∫ t

0

e
∫

t
τ

r c(τ) dτ W ′(t) +W ′′(t) , (10.43)

where

W ′(t) = e
∫

T
t

r,

W ′′(t) =

∫ T

t

e
∫

T
τ

rc(τ) dτ .

We need the state-wise expected values

W ′
e(t) = E[W ′(t) |Y (t) = e],

W ′′
ej(t) = E[W ′′(t) |X(t) = (e, j)] ,

to find the state-wise predictors of W in (10.43),

Wej(t) =

∫ t

0

e
∫

t
τ

r c(τ) dτ W ′
e(t) +W ′′

ej(t) .
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We shall find these functions by the backward construction, starting from

W ′(t) = er dtW ′(t+ dt),

W ′′(t) = c(t) dtW ′(t) +W ′′(t+ dt) .

Conditioning on what happens in the small time interval (t, t+ dt], we get

W ′
e(t) = ere dt



(1 − λe· dt)W
′
e(t+ dt) +

∑

f ; f 6=e

λef (t) dtW ′
f (t+ dt)



 ,

and

W ′′
ej(t) = cej(t) dtW

′
e(t) + (1 − (λe· + µe;j·(t)) dt)W

′′
ej (t+ dt)

+
∑

f ; f 6=e

λef (t) dtW ′′
fj(t+ dt)

+
∑

k; k 6=j

µe;jk(t) dtW ′′
ek(t+ dt) .

From these relationships we easily obtain the differential equations

d

dt
W ′

e(t) = −reW
′
e(t) −

∑

f ; f 6=e

λef

(

W ′
f (t) −W ′

e(t)
)

, (10.44)

d

dt
W ′′

ej(t) = − cej(t)W
′
e(t) −

∑

f ; f 6=e

λef

(

W ′′
fj(t) −W ′′

ej(t)
)

−
∑

k; k 6=j

µe;jk(t)
(

W ′′
ek(t) −W ′′

ej(t)
)

, (10.45)

which are to be solved subject to

W ′
e(n−) = 1 , W ′′

ej(n−) = 0 , ∀e, j . (10.46)

E. Additional benefits. Suppose we want to predict the total future bonuses
discounted with respect to second order interest,

W (t) =

∫ n

t

e−
∫

τ
t

r Q(τ) dB+(τ) ,

with Q defined by (10.33). Recalling (10.37)–(10.40), we reshape W (t) as

W (t) =

∫ n

t

e−
∫ τ

t
r

∫ τ

0

e
∫ τ

r
g h(r) dr dB+(τ)

=

∫ n

t

e−
∫ τ

t
r

(∫ t

0

e
∫ t

r
g h(r) dr e

∫ τ
t

g +

∫ τ

t

e
∫ τ

r
g h(r) dr

)

dB+(τ)

=

∫ t

0

e
∫

t
r

g h(r) dr W ′(t) +W ′′(t) , (10.47)
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with

W ′(t) =

∫ n

t

e
∫

τ
t

(g−r) dB+(τ),

W ′′(t) =

∫ n

t

e−
∫

τ
t

r W ′(τ)h(τ) dτ .

Thus, we need the state-wise expected values

W ′
ej(t) = E[W ′(t) |X(t) = (e, j)] ,

W ′′
ej(t) = E[W ′′(t) |X(t) = (e, j)] ,

in order to find the state-wise predictors of W (t) in (10.47),

Wej(t) =

∫ t

0

e
∫

t
r

g h(r) dr W ′
ej(t) +W ′′

ej(t) .

The backward equations start from

W ′(t) = dB+(t) + e(g(t)−r(t)) dtW ′(t+ dt) ,

W ′′(t) = W ′(t)h(t) dt+ e−r(t) dtW ′′(t+ dt) ,

from which we proceed in the same way as in the previous paragraph to obtain

dW ′
ej(t) = − dB+

j (t) + (re − gej(t)) dtW
′
ej (t)

−
∑

f ; f 6=e

λef dt
(

W ′
fj(t) −W ′

ej(t)
)

−
∑

k;k 6=j

µe;jk(t) dt
(

b+jk(t) +W ′
ek(t) −W ′

ej(t)
)

, (10.48)

dW ′′
ej(t) = −W ′

ej(t)hej(t) dt+ re dtW
′′
ej(t)

−
∑

f ; f 6=e

λef dt
(

W ′′
fj(t) −W ′′

ej(t)
)

−
∑

k; k 6=j

µe;jk(t) dt
(

W ′′
ek(t) −W ′′

ej(t)
)

. (10.49)

The appropriate side conditions are

W ′
ej(n−) = ∆B+

j (n) , W ′′
ej(n−) = 0 , ∀e, j . (10.50)

F. Predicting undiscounted amounts. If the undiscounted total contribu-
tions or additional benefits is what one wants to predict, one can just apply the
formulas with all re replaced by 0.
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G. Predicting bonuses for a given policy path. Yet another form of
prognosis, which may be considered more informative than the two mentioned
above, would be to predict bonus payments for some possible fixed pursuits of
a policy instead of averaging over all possibilities. Such prognoses are obtained
from those described above upon keeping the realized path Z(τ) for τ ∈ [0, t],
where t is the time of consideration, and putting Z(τ) = z(τ) for τ ∈ (t, n],
where z(·) is some fixed path with z(t) = Z(t). The relevant predictors then
become essentially functions only of the current Y -state and are simple special
cases of the results above.

As an example of an even simpler type of prognosis for a policy in state j
at time t, the insurer could present the expected bonus payment per time unit
at a future time s, given that the policy is then in state i, and do this for some
representative selections of s and i. If Y (t) = e, then the relevant prediction is

E[cY (s)i(s) |Y (t) = e] =
∑

f

pY
ef (t, s)cfi(s) .

10.6 Examples

A. The case. For our purpose, which is to illustrate the role of the stochastic
environment in model-based prognoses, it suffices to consider simple insurance
products for which the relevant policy states are Z = {a, d} (’alive’ and ’dead’).

We will consider a single life insured at age 30 for a period of n = 30 years,
and let the first order elements be those of the Danish technical basis G82M for
males:

r∗ = ln(1.045) ,

µ∗
ad(t) = µ∗(t) = 0.0005 + 0.000075858 · 100.038(30+t) .

Three different forms of insurance benefits will be considered, and in each
case we assume that premiums are payable continuously at level rate as long
as the policy is in force. First, a term insurance (TI) of 1 = bad(t) with first
order premium rate 0.0042608 = −ba(t). Second, a pure endowment (PE) of
1 = ∆Ba(30) with first order premium rate 0.0140690 = −ba(t). Third, an
endowment insurance (EI), which is just the combination of the former two; 1
= bad(t) = ∆Ba(30), 0.0183298 = −ba(t).

Just as an illustration, let the second order model be the simple one where
interest and mortality are governed by independent time-continuous Markov
chains and, more specifically, that r switches with a constant intensity λi be-
tween the first order rate r∗ and a better rate εir

∗ (εi > 1) and, similarly, µ
switches with a constant intensity λm between the first order rate µ∗ and a better
rate εmµ

∗ (εm < 1). (We choose to express ourselves this way although (10.15)
shows that, for insurance forms with negative sum at risk, e.g. pure endowment
insurance, it is actually a higher second order mortality that is “better” in the
sense of creating positive contributions.)
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Figure 10.1: The Markov process X = (Y, Z) for a single life insurance in an
environment with two interest states and two mortality states.

The situation fits into the framework of Paragraph 10.5.A; Y has states
Y = {bb, gb, bg, gg} representing all combinations of “bad” (b) and “good” (g)
interest and mortality, and the non-null intensities are

λbb,gb = λgb,bb = λbg,gg = λgg,bg = λi ,

λbb,bg = λbg,bb = λgb,gg = λgg,gb = λm .

The first order basis is just the worst-scenario bb.
Adopting the device (10.34)–(10.35), we consider the Markov chain X =

(Y, Z) with states (bb, a), (gb, a), etc. It is realized that all death states can be
merged into one, so it suffices to work with the simple Markov model with five
states sketched in Figure 10.1.

B. Results. We shall report some numerical results for the case where εi =
1.25, εm = 0.75, and λi = λm = 0.1. Prognoses are made at the time of issue
of the policy. Computations were performed by the fourth order Runge-Kutta
method, which turns out to work with high precision in the present class of
situations.
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Table 10.1 displays, for each of the three policies, the state-wise expected
values of discounted contributions obtained by solving (10.41)–(10.42). We shall
be content here to point out two features: First, for the term insurance the
mortality margin is far more important than the interest margin, whereas for
the pure endowment it is the other way around (the latter has the larger reserve).
Note that the sum at risk is negative for the pure endowment, so that the first
order assumption of excess mortality is really not to the safe side, see (10.15).
Second, high interest produces large contributions, but, since high initial interest
also induces severe discounting, it is not necessarily true that good initial interest
will produce a high value of the expected discounted contributions, see the two
last entries in the row TI.

The latter remark suggests the use of a discounting function different from
the one based on the second order interest, e.g. some exogenous deflator re-
flecting the likely development of the price index or the discounting function
corresponding to first order interest. In particular, one can simply drop dis-
counting and prognosticate the total amounts paid. We shall do this in the
following, noting that the expected value of bonuses discounted by second order
interest must in fact be the same for all bonus schemes, and are already shown
in Table 10.1.

Table 10.2 shows state-wise expected values of undiscounted bonuses for
three different schemes; contribution dividends and cash bonus (C, the same as
total undiscounted contributions), terminal bonus (TB), and additional benefits
(AB).

We first note that, now, any improvement of initial second order conditions
helps to increase prospective contributions and bonuses.

Furthermore, expected bonuses are generally smaller for C than for TB and
AB since bonuses under C are paid earlier. Differences between TB and AB
must be due to a similar effect. Thus, we can infer that AB must on the average
fall due earlier than TB, except for the pure endowment policy, of course.

One might expect that the bonuses for the term insurance and the pure en-
dowment policies add up to the bonuses for the combined endowment insurance
policy, as is the case for C and TB. However, for AB it is seen that the sum of
the bonuses for the two component policies is generally smaller than the bonuses
for the combined policy. The explanation must be that additional death bene-
fits and additional survival benefits are not purchased in the same proportions
under the two policy strategies. The observed difference indicates that, on the
average, the additional benefits fall due later under the combined policy, which
therefore must have the smaller proportion of additional death benefits.

C. Assessment of prognostication error. Bonus prognoses based on the
present model may be equipped with quantitative measures of the prognosti-
cation error. By the technique of proof shown in Section 10.5 we may derive
differential equations for higher order moments of any of the predictands con-
sidered and calculate e.g. the coefficient of variation, the skewness, and the
kurtosis.
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Table 10.1: Conditional expected present value at time 0 of total contributions
for term insurance policy (TI), pure endowment policy (PE), and endowment
insurance policy (EI), given initial second order states of interest and mortality
(b or g).

bb gb bg gg

TI : .00851 .00854 .01061 .01059

PE : .01613 .01823 .01595 .01807

EI : .02463 .02677 .02656 .02865

10.7 Including expenses

A. The form of the expenses. Expenses are assumed to incur in accordance
with a non-decreasing payment function A of the same type as the contractual
payments, that is,

dA(t) =
∑

j

IZ
j (t) dAj(t) +

∑

j 6=k

ajk(t) dNZ
jk(t) . (10.51)

It is common in practice to assume, furthermore, that expenses of annuity type
incur with a lump sum of initial costs at time 0 and thereafter continuously at a
rate that depends on the current state, that is, ∆A0(0) > 0 and dAj(t) = aj(t) dt
for t > 0. The transition costs ajk(t) are not explicitly taken into account
in practice, but we include them here since they add realism without adding
mathematical complexity.

B. First order assumptions. The elements ∆A0(0), aj(t), and ajk(t) will
in general depend on the second order development, and the first order basis
must, therefore, specify prudent estimates ∆A∗

0(0), a∗j (t), and a∗jk(t). Denote
the corresponding payment function by A∗.

C. Surplus and contributions in the presence of expenses. The intro-
duction of expenses adds a new feature to the previous set-up in that also the
payments become dependent on the second order development. However, the
essential parts of the analyses in the previous sections carry over with merely
notational modifications; all it takes is to replace everywhere the contractual
payment function B with A + B in the past and A∗ + B in the future. One
finds, in particular, that the first order equivalence relation (10.5) now turns
into

V ∗
0 (0) = −∆A∗

0(0) − ∆B0(0) , (10.52)

the surplus at time 0 becomes

S(0) = ∆A∗
0(0) − ∆A0(0) , (10.53)
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Table 10.2: Conditional expected value (E) of undiscounted total contributions
(C), terminal bonus (TB), and total additional benefits (AB) for term insurance
policy (TI), pure endowment policy (PE), and endowment insurance policy (EI),
given initial second order states of interest and mortality (b or g).

bb gb bg gg

TI: E C : .02153 .02222 .02436 .02505
E TB : .03693 .03916 .04600 .04847
E AB : .02949 .03096 .03545 .03706

PE: E C : .04342 .04818 .04314 .04791
E TB : .07337 .08687 .07264 .08615
E AB : .07337 .08687 .07264 .08615

EI: E C : .06495 .07040 .06750 .07296
E TB : .11030 .12603 .11864 .13462
E AB : .10723 .12199 .11501 .13003

and the contributions consist of a jump

∆C(0) = ∆A∗
0(0) − ∆A0(0) (10.54)

at time 0 and thereafter a continuous part, which is defined upon replacing
(10.9) with

cj(t) = {r(t) − r∗(t)}V ∗
j (t) + {a∗j (t) − aj(t)}

+
∑

k; k 6=j

{a∗jk(t) − ajk(t)}µjk(t)

+
∑

k; k 6=j

R∗
jk(t){µ∗

jk(t) − µjk(t)} , (10.55)

where now
R∗

jk(t) = a∗jk(t) + bjk(t) + V ∗
k (t) − V ∗

j (t) . (10.56)

Referring to the discussion in Paragraph 10.3.C, we see that the contributions
emerge from safety margins in all first order elements, r∗, µ∗

jk , and A∗.

D. Prediction in the presence of expenses. The complexity of the predic-
tion problem depends heavily on the assumptions made about the second order
expenses, and at this point some new problems may arise.

Just to get started, suppose first that the expense elements ∆A0(0), aj(t),
and ajk(t) are deterministic. Then the methods in Section 10.5 carry over with
only trivial modifications. Presumably, this simplistic model is at the base of
the frequently encountered claim that “administration expenses can be regarded
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as additional benefits”. Unfortunately, real life expenses are of a different, and
typically less pleasant, nature. An exhaustive discussion of this issue could easily
exhaust the reader, so we shall be content with just outlining some tentative
ideas.

The problem is that expenses are made up of wages, commissions, rent,
taxes and other items that are governed by the economic development. In
the framework of the Markov model in Paragraph 10.5.A, one simple way of
accounting for such effects is to make the second order expenses dependent on
the current state of Y , that is,

∆A0(0) =
∑

e

IY
e (t) ∆Ae0(0) ,

aj(t) =
∑

e

IY
e (t) aej(t) ,

ajk(t) =
∑

e

IY
e (t) aejk(t) ,

with deterministic ∆Ae0, aej , and aejk . By enriching sufficiently the state space
of Y , one can in principle create a fairly realistic model.

Perhaps the most reasonable point of view is that expenses are inflated by
some time-dependent rate γ(t) so that we should put aj(t) = e

∫

t
0

γa0
j (t) and

ajk(t) = e
∫

t
0

γa0
jk(t) with a0

j and a0
jk deterministic. One possibility is to put the

second order force of interest r in the role of γ. More realistically one should
let γ be something else, but still related to r through joint dependence on a
suitably specified Y . We shall not pursue this idea any further here, but note,
by way of warning, that prognostication in this kind of inflation model will
present problems in addition to those solved in Section 10.5.

10.8 Discussions

A. The principle of equivalence. This principle, as formulated in (10.4),
is basic in life insurance. The expected value represents averaging over a large
(really infinite) portfolio of policies, the philosophy being that, even if the in-
dividual policy creates a (possibly large) loss or gain, there will be balance on
the average between outgoes and incomes in the portfolio as a whole if the pre-
miums are set by equivalence. The deviation from perfect balance, which is
inevitable in a finite world with finite portfolios, represents profit or loss on the
part of the insurer and has to be settled by an adjustment of the equity capital.
(The possibility of loss, about as likely and about as large as the possible profit,
might seem unacceptable to an industry that needs to attract investors, but it
should be kept in mind that salaries to employees and dividends to owners are
accounted as part of the expenses discussed in Section 10.7.)

B. On the notion of second order basis. The definition of the second
order basis as the true one is slightly at variance with practical usage (which is
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not uniform anyway). The various amendments made to our idealized definition
in practice are due to administrative and procedural bottlenecks: The factual
development of interest, mortality, etc. has to be verified by the insurer and
then approved by the supervisory authority. Since this can not be a continuous
operation, any regulatory definition of the second order basis must to some
extent involve realistic, still typically conservative, short term forecasts of the
future development. However, our definition can certainly be agreed upon as
the intended one.

C. Model deliberations. The Markov chain model is mathematically tractable
since state-wise expected values are determined by solving (in most cases sim-
ple) systems of first order ordinary differential equations. At the same time,
when equipped with a sufficiently rich state space and appropriate intensities
of transition, it is able to picture virtually any conceivable notion of the real
object of the model.

The Markov chain model is particularly apt to describe the development of
life insurance policy since the paths of Z are of the same kind as the true ones.

When used to describe the development of the second order basis, however,
the approximative nature of the Markov chain is obvious, and it will surface
immediately as e.g. the experienced force of interest takes values outside of the
finite set allowed by the model. This is not a serious objection, however, and
the next paragraph explains why.

D. The role of the stochastic environment model. A paramount concern
is that of establishing equivalence conditional on the factual second order his-
tory in the sense of (10.16). Now, in this conditional expectation the marginal
distribution of the second order elements does not appear and is, in this re-
spect, irrelevant. Also the contributions and, hence, the dividends are functions
only of the realized experience basis and do not involve the distribution of its
elements.

Then, what remains the purpose of placing a distribution on the second
order elements is to form a basis for prognostication of bonus. Subsidiary as it
is, this role is still an important part of the play; although a prognosis does not
commit the insurer to pay the forecasted amounts, it should as much as possible
be a reliable piece of information to the insured. Therefore, the distribution
placed on the second order elements should set a reasonable scenario for the
course of events, but it need not be perfectly true. This is comforting since any
view of the mechanisms governing the economic-demographic development is
to some extent guess-work. When the accounts are eventually made up, every
speculative element must be absent, and that is precisely what the principle
(10.16) lays down.

E. A digression: Which is more important, interest or mortality?
Actuarial wisdom says it is interest. This is, of course, an empirical statement
based on the fact that, in the era of contemporary insurance, mortality rates
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have been smaller and more stable than interest rates. Our model can add some
other kind of insight. We shall again be content with a simple illustration related
to the single life described in Section 10.6. Table 10.3 displays expected values
and standard deviations of the present values at time 0 of a term life insurance
and a life annuity under various scenarios with fixed interest and mortality, that
is, conditional on fixed Y -state throughout the term of the policy. The impact
of interest variation is seen by reading column-wise, and the impact of mortality
variation is seen by reading row-wise. The overall impression is that mortality
is the more important element by term insurance, whereas interest is the (by
far) more important by life annuity insurance.
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Table 10.3: Expected value (E) and standard deviation (SD) of present values
of a term life insurance (TI) with sum 1 and a life annuity (LA) with level
intensity 1 per year, with interest r = εir

∗ and mortality µ = εmµ
∗ for various

choices of εi and εm.

TI LA
εm : 1.5 1.0 0.5 1.5 1.0 0.5

εi : 0.5 E : .14636 .10119 .05250 20.545 20.996 21.467
SD : .27902 .24104 .18041 03.691 03.101 02.257

1.0 E : .09927 .06834 .03531 15.750 16.039 16.340
SD : .20245 .17330 .12857 02.505 02.097 01.521

1.5 E : .06976 .04782 .02460 12.466 12.655 12.852
SD : .15858 .13437 .09868 01.759 01.468 01.061



Chapter 11

Statistical inference in the

Markov chain model

Think of the insurance company as a car:
At the steering wheel sits the managing
director trying to keep the vehicle steadily
on the road. In the front passenger seat
sits the sales manager pushing the speed
pedal. At the rear sits the actuary peeping
out the back window and giving the directions.

11.1 Estimating a mortality law from fully ob-

served life lengths

A. Completely observed life lengths. Let the life length of an individual be
represented by a non-negative random variable T with cumulative distribution function of the
form

F (t; θ) = 1 − e−
∫ t
0 µ(s;θ) ds . (11.1)

The mortality intensity µ is assumed to be continuous (at least piece-wise) so that the density

f(t) = µ(t)(1 − F (t)) (11.2)

exists.

A. Right-censored life times. Let the total life length of an individual be rep-
resented by a non-negative random variable T with cumulative distribution function of the
form

F (t) = 1 − e−
∫ t
0 µ(s) ds . (11.3)

The mortality intensity µ is assumed to be continuous (at least piece-wise) so that the density

f(t) = µ(t)(1 − F (t)) , (11.4)

exists.
Suppose that the individual is observed continually in z years from its birth so that only

the truncated life length W = T ∧z is observed. A technical term for this kind of observational
plan is right-censoring at time z. The cumulative distribution of W is

P[W ≤ t] =

{

F (t), 0 < t < z ,
1, t ≥ z .

167
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and the density (with respect to Lebesgue measure on (0, z) and the unit mass at z) is (recall
(11.4))

g(t) =

{

µ(t)(1 − F (t)), 0 < t < z ,
1 − F (z), t = z .

Introduce

d(t) = 1(0,z)(t) =

{

1 , 0 < t < z ,
0 , t ≥ z ,

(11.5)

to obtain the closed expression

g(t) = µ(t)d(t)(1 − F (t)) , 0 < t ≤ z . (11.6)

Denote the indicator function of survival to age u > 0 by I(u) = 1[U > u]. The indicator
of death before age z is

D = d(T ) = 1 − I(z−) = 1 − I(z) , (11.7)

where the last equality holds with probability 1.
We will need the following formulas, valid whenever the displayed moments exist:

E[Dk] = F (z) , k = 1, 2, . . . , (11.8)

E[T k] = k

∫ z

0
tk−1(1 − F (t))dt , k = 1, 2, . . . , (11.9)

E[DT ] = E[T ] − z(1 − F (z)) . (11.10)

To verify (11.10), use (11.7) and T =
∫ z
0

I(t)dt to write DT =
∫ z
0

I(t)dt − zI(z), and take
expectation.

B. The truncated exponential distribution. We set out by analyzing the simple
case with constant mortality intensity, partly as a motivating example, but also because the
techniques are at the base of an important class of procedures in actuarial life history analysis.

Thus, assume that U is exponentially distributed with cumulative distribution function

F (u; µ) = 1 − e−µu , u > 0 , (11.11)

that is, µ is constant, independent of age. The expected life length is

ν =

∫ ∞

0
(1 − F (u; µ))du =

1

µ
. (11.12)

Using (11.8) – (11.11) one easily calculates

E[D] = 1 − e−µz , (11.13)

V[D] = e−µz(1 − e−µz) , (11.14)

E[T ] =
1 − e−µz

µ
, (11.15)

V[T ] =
1 − 2µze−µz − e−2µz

µ2
, (11.16)

E[D − µT ] = 0 , (11.17)

V[D − µT ] = 1 − e−µz . (11.18)

C. Maximum likelihood estimators based on censored exponential
variates. Let Ui , i = 1, 2, . . ., be independent replicates of U . Consider the problem
of estimating µ from a sample of n censored life lengths, Ti = Ui ∧ zi , i = 1, . . . , n. The
interpretation is that a mortality study is carried out in a population during a certain period
of time terminating at time t̄, say, the sample being n individuals born during the period at
times t̄ − zi , i = 1, . . . , n.
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Referring to (11.7), put Ni = 1[Ti < zi] , i = 1, . . . , n. By (11.6) and (11.11), the likelihood
of the observables is

Λ = Πn
i=1µNi e−µTi = µN e−µW = eln µ N−µW , (11.19)

where

N =
n
∑

i=1

Ni, the total number of deaths occurred,

W =
n
∑

i=1

Ti, the total time exposed to risk of death.

Clearly, (N, W ) is a sufficient statistic. Take the logarithm,

lnΛ = lnµ N − µW ,

and form the derivatives
∂

∂µ
ln Λ =

N

µ
− W , (11.20)

∂2

∂µ2
ln Λ = − N

µ2
. (11.21)

Putting the expression in (11.20) equal to 0 and noting that the second derivative is non-
positive, we find that the maximum likelihood estimator (MLE) of µ is the so-called occurrence-

exposure rate, (OE rate)

µ̂ =
N

W
, (11.22)

the number of deaths occurred per unit of time exposed to risk of death in the sample. It is
the empirical counterpart of the mortality intensity, which is the expected number of deaths
per time unit, roughly speaking.

The MLE of the expected life length in (11.12) is

ν̂ =
W

N
, (11.23)

defined as +∞ when N = 0. This estimator has no mean (and no higher order moments).
The expressions for the likelihood in (11.19) and the MLE in (11.22) do not appear to

depend on the censoring mechanoism. The censoring is, however, decisive of the probability
distribution of µ̂ and, hence, of its performance as an estimator of µ. Unfortunately, this
probability distribution is not easy to calculate in general, and we shall therefore have to add
assumptions about the censoring mechanism, ranging from the special case of no censoring,
where everything is simple and a lot of powerful results can be proved, to weak conditions
under which only certain asymptotic properties are in reach.

D. The special case with no censoring. Suppose now that the n lives are com-
pletely observed without censoring, that is, zi = ∞ and Ti = Ui, i = 1, . . . , n. Then all Ni

are 1, N = n, W =
∑n

i=1 Ti, and the likelihood in (11.19) becomes

Λ = elnµ n−µW . (11.24)

In this simple situation it is easy to investigate the small sample properties of the estima-
tors. The sum of the life lengths, W , is now a sufficient statistic. It has a gamma distribution
with shape parameter n and scale parameter ν = 1/µ, whose density is

µn

Γ(n)
wn−1e−µw , w > 0 .

One finds (perform the easy calculations) for k > −n that

E[W k] =
Γ(n + k)

Γ(n)µk
,
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hence
E[µ̂] =

nµ

n − 1
, n > 1 ,

V[µ̂] =
n2µ2

(n − 1)2(n − 2)
, n > 2 ,

and
E[ν̂] = ν , n ≥ 1 ,

V[ν̂] =
ν2

n
, n ≥ 1 .

The estimator µ̂ is biased and, on the average, overestimates µ by µ/(n − 1), which is
negligible for large n. An unbiased estimator of µ is µ̌ = (n−1)/W . Its variance is µ2/(n−2).
The estimator ν̂ is now just the observed average life length, the empirical counterpart of ν.
It is unbiased, of course. In fact, µ̌ and ν̂ are UMVUE (uniformly minimum variance unbiased
estimators) since they are based on W , which is a sufficient and complete statistic: by (11.24),
the distribution belongs to an exponential family with canonical parameter µ varying in the
open set (0,∞).

E. Asymptotic results by uniform censoring. Suppose all zi are equal to z,
say. Writing

µ̂ =
1
n

∑n
i=1 Ni

1
n

∑n
i=1 Ti

,

and noting that E[Ni] = µETi by (11.13) and (11.15), it follows by the strong law of large
numbers that the estimator is strongly consistent,

µ̂
a.s.→ µ .

To investigate its asymptotic distribution, look at

√
n(µ̂ − µ) =

1√
n

∑n
i=1(Ni − µTi)

1
n

∑n
i=1 Ti

.

The denominator of this fraction converges a.s. to E[Ti] given by (11.15). By the central limit
theorem, the limiting distribution of the numerator is normal with mean 0 (recall (11.17))
and variance given by (11.18). It follows that

µ̂ ∼as N

(

µ,
µ2

n(1 − e−µz)

)

. (11.25)

Copying the arguments above (or using (D.6) in Appendix D), it can also be concluded
that ν̂ defined by (11.23) is strongly consistent and that

ν̂ ∼as N

(

ν,
1

nµ2(1 − e−µz)

)

. (11.26)

No strong conclusions as to optimality can be drawn in parallel to those in the previous
paragraph. The reason is seen from (11.19): the distribution belongs to a general exponential
family with canonical parameter (ln µ, µ), which does not vary in an open (two-dimensional)
set. Therefore, the sufficient statistic (N, W ) cannot be proved to be complete (not the usual
way at least), and standard theory for inference in regular exponential families of distributions
cannot be employed.

F. Asymptotic results by fairly general censoring. Consider now the general
situation in Paragraph C with censoring varying among the individuals. A bit more effort
must now be put into the study of the asymptotic properties of the MLE. It turns out that
a sufficient condition for consistency and asymptotic normality is that the expected exposure
grows to infinity in the sense that

n
∑

i=1

E[Ti] → ∞ ,
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which by (11.15) is equivalent to

n
∑

i=1

(1 − e−µzi) → ∞ , (11.27)

that is, the expected number of deaths grows to infinity. Thus assume that (11.27) is satisfied.
In the following the relationships (11.13) – (11.18) will be used frequently without explicit
mentioning.

First, to prove consistency, use (11.15) and (11.18) to write

µ̂ − µ =

∑n
i=1(Ni − µTi)
∑n

i=1 Ti
.

=

∑n
i=1(Ni − µTi)

∑n
i=1 V[Ni − µTi]

(
∑n

i=1 Ti

µ
∑n

i=1 E[Ti]

)−1

. (11.28)

The first factor in (11.28) has expected value 0 and variance

1
∑n

i=1 V[Ni − µTi]
=

1
∑n

i=1(1 − e−µzi )
,

which tends to 0 as n increases. Therefore, this factor tends to 0 in probability. The second
factor in (11.28) is the inverse of

∑n
i=1 Ti/µ

∑n
i=1 E[Ti], which has expected value 1/µ and

variance equal to 1/µ2 times
∑n

i=1 V[Ti]
(∑n

i=1(1 − e−µzi)
)2

=

∑n
i=1(1 − 2µzie−µzi − e−2µzi)
(∑n

i=1(1 − e−µzi)
)2

=

∑n
i=1 a(µzi)(1 − e−µzi)
∑n

i=1(1 − e−µzi)

1
∑n

i=1(1 − e−µzi)
,

(11.29)

where a is defined as

a(t) =
1 − 2te−t − e−2t

1 − e−t
, t ≥ 0.

The function a is bounded since it is continuous and tends to 0 as t ↘ 0 (use l’Hospital’s rule)
and to 1 as t ↗ ∞. The first factor in (11.29) is bounded since it is a weighted average of
values of a, and the second factor tends to 0 by assumption. It follows that the expression in
(11.29) tends to 0 and, consequently, that the second factor in (11.28) converges in probability
to µ. It can be concluded that the expression in (11.28) converges in probability to 0, so that
µ̂ is weakly consistent;

µ̂
p→ µ .

Next, to prove asymptotic normality, look at
√

√

√

√

n
∑

i=1

(1 − e−µzi)(µ̂ − µ) =

∑n
i=1(Ni − µTi)

√
∑n

i=1(1 − e−µzi )

(
∑n

i=1 Ti

µ
∑n

i=1 E[Ti]

)−1

.

In the presence of (11.27) the first factor on the right converges in distribution to a standard
normal variate. (Verify that the Lindeberg condition is satisfied, see Appendix D.)

The second factor has just been proved to converge in probability to µ. It follows that

µ̂ ∼as N

(

µ,
µ2

∑n
i=1(1 − e−µzi)

)

. (11.30)

Likewise, it also holds that ν̂ is weakly consistent, and

ν̂ ∼as N

(

ν,
1

µ2
∑n

i=1(1 − e−µzi)

)

. (11.31)
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G. Random censoring. In Paragraph E the censoring time was assumed to be the
same for all individuals. Thereby the pairs (Ni, Ti) became stochastic replicates, and we could
invoke simple asymptotic theory for i.i.d. variates to prove strong consistency and asymptotic
normality of MLE-s. In Paragraph F the censoring was allowed to vary among the individuals,
but it turned out that the asymptotic results essentially remained true, although only weak
consistency could be achieved. All we required was (11.27), which says that the censoring
must not turn too severe so that information deteriorates in the end: there must be a certain
stability in the censoring pattern so that individuals with sufficient exposure time enter the
study sufficiently frequently in the long run. One way of securing such stability is to regard the
censoring times as outcomes of i.i.d. random variables. Such an assumption seems particularly
apt in a non-experimental context like insurance. The censoring is not subject to planning,
and the censoring times are just as random in their nature as anything else observed about
the individuals.

Thus, we henceforth work with an augmented model where the assumptions in Paragraph
F constitute the conditional model for given censoring times Zi = zi, i = 1, 2, . . ., and the
Zi are independent selections from some distribution function H with (generalized) density h
independent of µ. This way the triplets (Ni, Ti, Zi), i = 1, 2, . . ., become stochastic replicates,
and the i.i.d. situation is restored with all its powers.

The likelihood of the observations now becomes

Λ = Πn
i=1µNi e−µTi h(Zi) = eln µ N−µW Πn

i=1h(Zi) . (11.32)

Maximizing (11.32) with respect to µ is equivalent to maximizing the likelihood (11.19) in
the conditional model for fixed censoring, hence the MLE remains the same as before. Its
distribution is affected by the structure now added to the model, however. It is easy to
prove that the results in Paragraph E carry over to the present case, only that the expression
1 − e−µz is everywhere to be replaced by 1 − E

[

e−µZ
]

, where Z ∼ H.

11.2 Parametric inference in the Markov model

A. The likelihood of a time-continuous Markov process. Consider now the
general set-up, whereby the development of an insurance policy is represented by a continuous
time Markov process Z on a finite state space Z = {0, 1, . . . , J}. As usual, let Ig(t) and Ngh(t)
denote, respectively, the indicator of the event that the process is staying in state g at time
t ≥ 0, and the number of transitions from state g to state h in the time interval (0, t]. The
transition intensities µgh are assumed to exist, and to be piecewise continuous.

Suppose the policy is observed continuously throughout the time period [t, t̄ ], commencing
in state g0 at time t. One then speaks of left-censoring and right-censoring at times t and
t̄, respectively, and the triplet z = (t, t̄, g0) will be referred to as observational design or
censoring scheme of the policy.

Consider a specific realization of the observed part of the process:

X(τ) =



















g0 , t < τ < t1,
g1 , t1 + dt1 < τ < t2,

. . .
gq−2 , tq−2 + dtq−2 < τ < tq−1 ,
gq−1 , tq−1 + dtq−1 < τ < t̄.

By the given censoring, the probability of this realization is as follows, where t0 = t , tq = t̄,
and µg =

∑

h6=g µgh denotes the total intensity of transition out of state g:

exp

(

−
∫ t1

t0

µg0

)

µg0g1 (t1)dt1 exp

(

−
∫ t2

t1

µg1

)

µg1g2 (t2)dt2 . . .

exp

(

−
∫ tq−1

tq−2

µgq−2

)

µgq−2gq−1 (tq−1)dtq−1 exp

(

−
∫ tq

tq−1

µgq−1

)

=

q−1
∏

p=1

µgp−1gp(tp)dtp exp

(

−
q
∑

1

∫ tp

tp−1

µgp−1

)
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= exp





q−1
∑

p=1

ln µgp−1gp(tp) −
q
∑

1

∫ tp

tp−1

µgp−1



 dt1 . . . dtq−1 .

It follows that the likelihood of the observables is

Λ = exp





∑

g 6=h

∫ t̄

t
lnµgh(τ)dNgh(τ) −

∑

g

∫ t̄

t
µg(τ)Ig(τ)dτ





= exp





∑

g 6=h

∫ t̄

t
{ln µgh(τ)dNgh(τ) − µgh(τ)Ig(τ)dτ}



 . (11.33)

B. ML estimation of parametric intensities. Now consider a parametric model
where the intensities are of the form µgh(t, θ), with θ = (θ1, . . . , θs)′ varying in an open
set in the s-dimensional euclidean space, s < ∞. We assume they are twice continuously
differentiable functions of θ.

Suppose that inference is to be made about the intensities or, equivalently, the parameter
θ on the basis of data from a sample of n similar policies. Equip all quantities related to the m-
th policy by topscript (m). The processes X(m) are assumed to be stochastically independent
replicates of the process Z described above, but their censoring schemes z(m) may be different.

By independence, the likelihood of the whole data set is the product of the individual
likelihoods: Λ =

∏n
m=1 Λ(m). Thus, by (11.33),

ln Λ =
∑

g 6=h

∫

{

lnµgh(τ, θ)dNgh(τ) − µgh(τ, θ)Ig(τ)dτ
}

, (11.34)

with

Ngh =
n
∑

m=1

N
(m)
gh , Ig =

n
∑

m=1

I
(m)
g .

The censoring schemes are not visualized in (11.34), and they need not be if, as a matter of

definition, dN
(m)
gh (t) and I

(m)
g (t) are taken as 0 for t /∈ [t(m), t̄(m)]. Likewise, introduce

p
(m)
g (t) = p

g
(m)
0 g

(t(m), t)1 [t(m) ,t̄(m)](t) ,

the probability that the censored process Z(m) stays in g at time t, by definition taken as 0
for t /∈ [t(m), t̄(m) ].

In the MLE construction we need the derivatives of (11.34), of first order (an s-vector),

∂

∂θ
ln Λ =

∑

g 6=h

∫

∂

∂θ
ln µgh(τ, θ){dNgh(τ) − µgh(τ, θ)Ig(τ)dτ} , (11.35)

and of second order (an s × s matrix),

∂2

∂θ∂θ′
lnΛ =

∑

g 6=h

∫ {

∂2

∂θ∂θ′
ln µgh(τ, θ){dNgh(τ) − µgh(τ, θ)Ig(τ)dτ}

− ∂

∂θ
lnµgh(τ, θ)

∂

∂θ′
µgh(τ, θ)Ig(τ) dτ

}

(11.36)

By (11.35) the MLE θ̂ is the solution to

∑

g 6=h

∫

∂

∂θ
ln µgh(τ, θ){dNgh(τ) − µgh(τ, θ)Ig(τ)dτ} |θ=θ̂= 0sx1 . (11.37)

A comment on the form of the likelihood (9.31): For each type of transition g → h

introduce Ngh, the number of transitions of that type, and (if Ngh > 0) T
(1)
gh , . . . , T

(Ngh)

gh , the
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times when such transitions occurred. In terms of these quantities the log likelihood in (9.32)
assumes the form

∑

g 6=h

Ngh
∑

j=1

ln µgh(T
(j)
gh , θ̂) −

∑

g 6=h

∫

µgh(τ, θ̂) Ig(τ)dτ ,

and the ML equations (9.35) become

∑

g 6=h

Ngh
∑

j=1

∂
∂θi

µgh(T
(j)
gh , θ̂)

µgh(T
(j)
gh , θ̂)

=
∑

g 6=h

∫

∂

∂θi
µgh(τ, θ̂) Ig(τ)dτ , (11.38)

i = 1, . . . , s. The form (11.38) is explicit and is, of course, the one we will work with when it
comes to numerical computation of the MLE: The good thing about the form (9.32) is that
it, by use of the counting processes, writes the sum on the left as a sum of contributions
from all small time intervals. This is particularly useful in the derivation of the statisti-
cal properties of the MLE. (A similar remark could be made about the benefit of using the
counting processes to define the payment stream for a general insurance policy in Section 7.5.)

Referring to Appendix D, the large sample distribution properties of the MLE are given
by

θ̂ ∼as N(θ,Σ(θ)) , (11.39)

where Σ(θ) is given by its inverse, the so-called information matrix,

Σ(θ)−1 = −E

[

∂

∂θ∂θ′
lnΛ

]

. (11.40)

Taking expectation in (11.36), noting that the terms

dNgh(τ) − µgh(τ, θ)Ig(τ)dτ

have zero means, we obtain

Σ(θ)−1 =
∑

g 6=h

∫

1

µgh(τ, θ)

(

∂

∂θ
µgh(τ, θ)

∂

∂θ′
µgh(τ, θ)

) n
∑

m=1

p
(m)
g (τ, θ)dτ .

(11.41)

The expression in parentheses under the integral sign is an s×s matrix and all other quantities
are scalar.

It is seen that the information matrix tends to infinity, hence the variance matrix of

the MLE tends to 0, if the terms
∑n

m=1 p
(m)
g (τ, θ) grow to infinity as n increases, roughly

speaking, which means that the expected number of individuals exposed to risk in different
states gets unlimited.

C. Estimating the parameters of a Gompertz-Makeham mortality law.
The actuarial office in a life insurance company is to estimate the mortality law governing
the company’s portfolio of term insurance policies. (The mortality law for the portfolio of life
annuities may be different since people who (believe they) are in good health would probably
find a pure survival benefit more useful and profitable than a pure death benefit. Thus, it
seems appropriate to perform a separate mortality investigation for each line of life insurance
business. Moreover, since mortality also depends on sex, the study would typically include
only males or only females.)

Suppose the statistical data comprises n individuals who have been insured under the
scheme during a certain period of time. For each individual No. m (= 1, . . . , n) there is a
policy record with the following pieces of information:
– xm, the age on entry into the study;
– ym, the age on exit from the study;
– Nm, the number of deaths during the study (0 or 1).
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Here xm would typically be the age at issue of the policy. If Nm = 1, then ym is the age at
death, and if Nm = 0, then ym is the age at the time of censoring, either at the term of the
contract or upon termination of the study, whichever occurred first. In any case ym − xm is
the time spent under observation as alive during the study. With these definitions xm takes
the role of t(m) in the general set-up and, for Nm = 0, ym takes the role of t̄(m) .

The state space is now just Z = {0, 1} (”alive” and ”dead”). Assume the mortality law
is Gompertz-Makeham so that the mortality intensity at age t is

µ(τ, θ) = α + βeγτ ,

with

θ =





α
β
γ



 .

We need the derivatives of the intensity w.r.t. all three parameters,

∂

∂α
µ(τ, θ) = 1 ,

∂

∂β
µ(τ, θ) = eγτ ,

∂

∂γ
µ(τ, θ) = β eγτ τ ,

and their integrals with respect to time,
∫ y

x

∂

∂α
µ(τ, θ) dτ = y − x ,

∫ y

x

∂

∂β
µ(τ, θ) dτ =

eγy − eγx

γ
,

∫ y

x

∂

∂γ
µ(τ, θ) dτ = β

(

eγyy − eγxx

γ
− eγy − eγx

γ2

)

.

The MLE equations (9.35) specialize to
∑

m; Nm=1

1

α̂ + β̂eγ̂ym
=

∑

m

(ym − xm) ,

∑

m; Nm=1

eγ̂ym

α̂ + β̂eγ̂ym
=

∑

m

eγ̂ym − eγ̂xm

γ̂
,

∑

m; Nm=1

eγ̂ymym

α̂ + β̂eγ̂ym
=

∑

m

(

eγymym − eγxm xm

γ
− eγym − eγxm

γ2

)

.

To find the information matrix (9.38) we need the matrix with the products of the deriva-
tives,

∂

∂θ
µ(τ, θ)

∂

∂θ′
µ(τ, θ) =





1 eγτ βeγτ τ
· e2γτ βe2γτ τ
· · β2e2γτ τ2



 (11.42)

(symmetric) and the probabilities p
(m)
0 (τ, θ), which are

p
(m)
0 (τ, θ) = exp

(

−
∫ τ

xm

(α + βeγ s) ds

)

= exp

(

−α(τ − xm) − β
eγτ − eγxm

γ

)

, (11.43)

for τ ∈ [xm, ym] (the survival probability) and 0 otherwise. (There is only one kind of
transition, from 0 to 1, and the summation over g, h in the information matrix (9.38) can be
dropped.)

We see that all ingredients in the asymptotic variance matrix are given by explicit formu-
las, and it remains only to perform a numerical integration to find its value for given θ.
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11.3 Confidence regions

A. An asymptotic confidence ellipsoid. From the asymptotic normality of the
MLE it follows that

(θ̂ − θ)′Σ−1(θ)(θ̂ − θ) ∼as χ2
s , (11.44)

the chi-squared distribution with s degrees of freedom. Therefore, denoting the (1−ε)-fractile
of this distribution by χ2

s, 1−ε, an asymptotic 1−ε confidence region is the set of all θ satisfying

(θ − θ̂)′Σ−1(θ)(θ − θ̂) ≤ χ2
s, 1−ε . (11.45)

The expression on the left here will typically be a complicated function of θ, and it is in
general not easy to find the values of θ that satisfy the inequality and constitute a confidence
region. Now, suppose Σ(θ) can be estimated by some function of the data, Σ̂, and that the
estimator is consistent in the sense that

Σ̂Σ−1(θ) → I . (11.46)

Then it is easy to show that also the relation

(θ − θ̂)′Σ̂−1(θ − θ̂) ≤ χ2
s, 1−ε (11.47)

determines an asymptotic 1 − ε confidence region. The relation (11.47) defines an ellipsoid,
which is a fairly simple geometric figure and, as we shall see in the following paragraph, a
convenient basis for deriving other confidence statements of interest.

A straightforward way of constructing Σ̂ would be to replace θ in Σ(θ) by the consistent

estimator θ̂, that is, put
Σ̂ = Σ(θ̂) .

This works well if the entries in Σ(θ) are closed expressions in θ. Unfortunately, this is the case
only in certain simple situations, typically when the state space Z is small and the pattern of
transitions is hierarchical. One example is the mortality study with parametric mortality law,
e.g. of G-M type. In more complex situations we cannot in general find closed formulas for the

probabilities p
(m)
g (τ) involved in Σ, even if the intensities themselves are simple parametric

functions. Then a different construction is required. A simple device is to replace the p
(m)
g (τ)

by their empirical counterparts I
(m)
g (τ) and put

n
∑

m=1

p
(m)
g (τ) ≈ Ig(τ) . (11.48)

B. Simultaneous confidence intervals. The confidence ellipsoid (11.47) can be
resolved in simultaneous confidence intervals for all linear functions of θ in the following way.
The Schwarz inequality says that for all vectors a and x in Rs,

|a′x| ≤
√

a′a x′x ,

with equality for a = cx. Thus, noting that the quadratic form on the left of (11.47) is

(Σ̂−1/2(θ − θ̂))′ (Σ̂−1/2(θ − θ̂)), the confidence statement can be cast equivalently as

|a′Σ̂−1/2(θ − θ̂)| ≤
√

a′a χ2
s, 1−ε , ∀a . (11.49)

Since Σ̂ is of full rank, the vector Σ̂−1/2a ranges through all of Rs as a ranges in Rs. Thus,
writing a′a = (Σ̂−1/2a)′Σ̂(Σ̂−1/2a), (11.49) is equivalent to

|a′(θ − θ̂)| ≤
√

a′Σ̂a χ2
s, 1−ε , ∀a ,

that is,

a′θ ∈ [a′θ̂ −
√

χ2
s, 1−εa′Σ̂a , a′ θ̂ +

√

χ2
s, 1−εa′Σ̂a] , ∀a . (11.50)

The intervals in (11.50) are (asymptotic) simultaneous confidence intervals for all linear func-
tions of θ in the sense that the probability is at least 1 − ε that they all hold true.
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C. Confidence band for the G-M mortality intensity. Returning to the
mortality study example in Paragraph 11.2.C, let c be taken as known so that the mortality
intensity is a linear function of the unknown parameter θ = (α, β)′. The MLE is obtained by
solving the equations (11.42) and (11.42), and the appropriate variance matrix Σ is obtained
by inverting the upper left 2 × 2 block in the information matrix defined by (11.41), (11.42),
and (11.43).

From (11.50) we obtain simultaneous confidence intervals for all µ(τ) = α + βeγτ , consti-
tuting a confidence band in the space of mortality intensity functions;

µ(τ) ∈ [α̂ + β̂eγτ −
√

χ2
2, 1−εσ̂τ , α̂ + β̂eγτ −

√

χ2
2, 1−εσ̂τ ] , ∀τ > 0 , (11.51)

where

σ̂τ = (1, eγτ )Σ̂

(

1
eγτ

)

.

11.4 More on simultaneous confidence intervals

A. Simultaneous confidence intervals based on a confidence region.

Let X ∈ X be some observation(s) with distribution Pθ, θ ∈ Θ, some s-dimensional set. A
1 − ε confidence region for θ is a function C from X to the set of subsets of Θ such that the
random set C = C(X) satisfies

Pθ{θ ∈ C} = 1 − ε, ∀θ ∈ Θ .

From a confidence region we readily obtain confidence intervals for the values g(θ) of
all real-valued functions g : Θ → R as follows. For a fixed g, define the random variables
g = infθ∈C g(θ) and g = supθ∈C g(θ). Clearly, θ ∈ C implies g ≤ g(θ) ≤ g for all g, hence

Pθ{g ≤ g(θ) ≤ g , ∀g} ≥ 1 − ε , ∀θ ∈ Θ .

Thus, by stating that

g(θ) ∈ [ g, g ] , ∀g , (11.52)

all statements hold true simultaneously with a probability no less than 1−ε. In this sense the
intervals in (11.52) are simultaneous confidence intervals with (simultaneous) confidence level
1− ε. A practical consequence is that we are allowed to snoop around in the data set, looking
for possible interesting effects (within the model), and still keep control of the probability of
making false statements.

B. Confidence ellipsoid for a normal mean; Scheffé intervals.

Let θ̂ is an estimator of an s-dimensional parameter vector θ and assume that

θ̂ ∼ N(θ, Σ) ,

with Σ known. A 1 − ε confidence region of θ is the ellipsoid defined by (3.2):

C = {θ ; (θ − θ̂)′Σ−1(θ − θ̂) ≤ χ2
s, 1−ε} .

To construct the confidence interval (11.52) for a specific function g(θ), we are left with
the mathematical problem of finding the extrema of g over the ellipsoid, which may be a
difficult task. For linear functions it is simple, however, and it goes by the the technique
in Paragraph 3B, which is due to Scheffé. The simultaneous confidence intervals for linear
functions a′θ =

∑s
p=1 apθp are, with a bit sloppy notation,

a′θ ∈ a′ θ̂ ± σa

√

χ2
s, 1−ε , ∀a ∈ Rs ,

where

σ2
a = a′ Σa

is the variance of the point estimator a′ θ̂.
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C. Narrowing the confidence intervals.

Generally speaking, in the presence of uncertainty, the price we have to pay for making many
safe statements is that each individual statement has to be vague. In our situation this general
truth takes a very manifest form: for a fixed confidence level 1−ε the lengths of the confidence
intervals increase with the dimension of θ since χ2

s, 1−ε is an increasing function of s (why?).
We can gain precision in terms of lengths of the intervals by reducing the number of

statements we want to make. Suppose we are only interested in drawing inferences about
linear combinations of r linearly independent functions b′jθ, j = 1, . . . , r, r < s. Thus, putting

B = (b1 , . . . , br), an s×r matrix, we are only interested in linear functions a′θ with a = Bc for
some r-vector c, that is, a ∈ R(B), the r-dimensional linear space spanned by the bj . Then,
start from

B′θ̂ ∼ N(B′θ,B′ΣB) ,

and apply the results above to obtain that simultaneous confidence intervals for all linear
functions of B′ θ are given by

c′B′θ ∈ c′B′ θ̂ ±
√

c′B′ΣBc χ2
r, 1−ε , ∀ c ∈ Rr , (11.53)

or, equivalently,

a′θ ∈ a′ θ̂ ± σa

√

χ2
r, 1−ε , ∀a ∈ R(B) .

It is seen that, by reducing the ”dimension of our statements” from s to r, we have gained a

reduction of the lengths of the confidence intervals by a factor
√

χ2
r, 1−ε/χ2

s, 1−ε.

B. Bonferroni intervals for a finite number of parameter functions.

Let gj(θ), j = 1, . . . , r, be a finite number of real-valued parameter functions, and assume
that for each gj(θ) we have constructed an individual confidence interval [ g

j
, gj ] with level

1 − εj . Thus, denoting the event gj(θ) ∈ [g
j
, gj ] by Aj , we have Pθ (Aj) ≥ 1 − εj for each j.

The probability that all Aj hold true at the same time is

Pθ (∩j Aj) = 1 − Pθ

(

∪j Ac
j

)

≥ 1 −
r
∑

j=1

Pθ (Ac
j)

≥ 1 −
r
∑

j=1

εj .

It follows that the intervals taken together are simultaneous confidence intervals with simul-
taneous confidence level no less than 1 − ε, where ε =

∑r
j=1 εj .

This simple device, due to Bonferroni, represents an attractive alternative to the approach
in Paragraphs A – C in situations where we take interest only in a finite number of param-
eter functions. It turns out that the Bonferroni intervals often are shorter than the Scheffé
intervals, which aim at an infinite number of parameter functions. Bonferroni intervals with
simultaneous confidence level 1 − ε for q linear functions a′

jθ, j = 1, . . . , q, are

a′
jθ ∈ a′

j θ̂ ± σaj

√

χ2
1, 1−ε/q

, (11.54)

(Note that
√

χ2
1, 1−ε/q

is just the (1 − ε/2q)-fractile of the standard normal distribution, so

we recognize (11.54) as the traditional individual 1 − ε/q confidence interval for a normal
mean.) Let r (≤ s) be the dimension of the space spanned by the coefficient vectors aj . The
corresponding Scheffé intervals based on (11.53) are

a′
jθ ∈ a′

j θ̂ ± σaj

√

χ2
r, 1−ε .

The ratio of the length of the intervals by the two constructions is B/S(q, r, ε) =
√

χ2
1, 1−ε/q

/χ2
r, 1−ε.

Clearly, the ratio decreases with r. It increases with q, and (for r > 1) it starts from q = 1
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with a value smaller than 1 and tends to infinity as q grows. There will be some value q(r, ε)
such that the ratio is ≤ 1 for q ≤ q(r, ε). Inspection of a table of the chi-square fractiles shows
e.g. that q(2, 0.025) = 5, q(4, 0.1) = 20, q(6, 0.25) = 50 (approximately).

E. Confidence intervals based on consistent and asymptotically normal point es-

timators.

The results and considerations in the previous paragraphs carry over to the situation in Section
3, where (3.4) formed the basis for simultaneous inference.

Suppose we are interested in functions of a set of parameter functions fj(θ), j = 1, . . . , r,
r < s. Put f = (f1, . . . , fr)′. If f is continuously differentiable, first order Taylor expansion
gives

f(θ̂) ∼as N
(

f(θ), Σf (θ))
)

,

with
Σf (θ) = Df(θ)′ Σ(θ) Df(θ) ,

and

Df(θ) =
∂

∂θ
f(θ) ,

an s × r matrix. We obtain the asymptotic confidence ellipsoid

Cf = {f ; (f − f(θ̂))′Σ̂−1
f (f − f(θ̂)) ≤ χ2

r, 1−ε} ,

where Σ̂f is some consistent estimator of Σf in the sense of (3.3), e.g. Σ̂f = Σf (θ̂). Asymp-
totic Scheffé intervals for all functions g(θ) = h(f(θ)), with h real-valued and continuously
differentiable, are

g(θ) ∈ g(θ̂) ± σ̂g

√

χ2
r, 1−ε ,

where

σ̂g =
∂

∂θ′
g(θ) Σ(θ)

∂

∂θ
g(θ) |

θ=θ̂
.

Asymptotic Bonferroni intervals for a finite collection of functions gj , j = 1, . . . , q, are ob-
tained upon replacing r and ε with 1 and ε/q.

F. The G-M mortality intensity revisited.

The confidence intervals (3.8) are infinitely many, so Bonferroni ideas cannot help here. If also
c is to be estimated, we obtain asymptotic confidence intervals by the device above. The same
goes for any function of actuarial relevance, like the reserve of a life insurance or a portfolio
of insurances. Think of examples.
Returning to the mortality study example in Paragraph 2C, let γ be taken as known so that
the mortality intensity is a linear function of the unknown parameter θ = (α, β)′. The MLE
is obtained by solving the eqnarrays (11.42) and (11.42), and the appropriate variance matrix
Σ is obtained by inverting the upper left 2 × 2 block in the information matrix defined by
(11.41), (11.42), and (11.43).

From (11.50) we obtain simultaneous confidence intervals for all µ(τ) = α + βeγτ , consti-
tuting a confidence band in the space of mortality intensity functions;

µ(τ) ∈ [α̂ + β̂eγτ −
√

χ2
2, 1−εσ̂τ , α̂ + β̂eγτ −

√

χ2
2, 1−εσ̂τ ] , ∀τ > 0 ,

where

σ̂τ = (1, eγτ )Σ̂

(

1
eγτ

)

.

11.5 Piecewise constant intensities

A. Piecewise constant intensities. Let 0 = t0 < t1 < · · · < · · · < tr = t̄ be some
finite partition of the time interval [0, t̄ ], and assume that the intensities are step functions of
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the form

µgh(τ) = µgh,q , τ ∈ [tq−1, tq) , q = 1, . . . , r ,

=
r
∑

q=1

1[tq−1,tq)(τ)µgh,q , (11.55)

where the µgh,q take values in (0,∞), with no relationships between them. The situation fits
into the general framework with θ = (. . . , µgh,q , . . .)′, a vector of (typically high) dimension
J × J × r.

B. The MLE estimators are O-E rates. The log likelihood in (11.34) now
becomes

ln Λ =
∑

g 6=h

r
∑

q=1

{lnµgh,qNgh,q − µgh,qWg,q} , (11.56)

where

Ngh,q =

∫ tq

tq−1

dNgh(τ) , (11.57)

Wg,q =

∫ tq

tq−1

Ig(τ)dτ , (11.58)

are, respectively, the total number of transitions from state g to state h and the total time
spent in state g during the age interval [tq−1, tq).

Since the µgh,q are functionally unrelated, the log likelihood decomposes into terms that
depend on one and only one of the basic parameters, and finding maximum amounts to max-
imizing each term. The derivatives involved in the ML construction now become particularly
simple:

∂

∂µgh,q
ln Λ =

1

µgh,q
Ngh,q − Wg,q , (11.59)

∂2

∂µgh,q∂µg′h′,q′
lnΛ = −δghq,g′h′q′

1

µ2
gh,q

Ngh,q . (11.60)

It follows from (11.59) that the MLE is

µ̂gh,q =
Ngh,q

Wg,q
, (11.61)

an O-E rate of the same kind as in the simple model of 11.2.B. Noting that, by (11.57),

E[Ngh,q ] = µgh,q

∫ tq

tq−1

n
∑

m=1

p
(m)
g (τ)dτ ,

we obtain from (11.60) that the asymptotic variance matrix becomes

Σ(θ) = Diag



. . . ,
µgh,q

∫ tq
tq−1

∑n
m=1 p

(m)
g (τ)dτ

, . . .



 , (11.62)

a diagonal matrix, implying that the estimators of the µgh,q are asymptotically independent.
An estimator of Σ is obtained upon replacing the parameter functions appearing on the

right of (11.62) by their straightforward estimators: put µgh,q ≈ µ̂gh,q defined by (11.61) and,
by the device (11.48),

∫ tq

tq−1

n
∑

m=1

p
(m)
g (τ)dτ ≈

∫ tq

tq−1

Ig(τ)dτ = Wg,q ,

to obtain

Σ̂ = Diag

(

. . . ,
Ngh,q

W 2
g,q

, . . .

)

. (11.63)
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C. Smoothing O-E rates. The MLE of the intensity function is obtained upon in-
serting the estimators (11.61) in (11.55). The resulting function will typically have a ragged
appearance due to the estimation error in a finite sample. This is unsatisfactory since the
intensities are expected to be smooth functions: for instance, there are a priori reasons to
assume that the mortality intensity is a continuous and non-decreasing function of the age.
Now, the very assumption of piecewise constant intensities is artificial, of course, and the
estimates obtained under this assumption cannot serve as an ultimate answer in practice. In
fact, they represent only the first step in a two-stage procedure, where the second step is to
fit some smooth functions to the raw estimates delivered by the O-E rates. The functions
used for fitting constitute the model we have in mind. It may be objected that the two-stage
procedure is a detour since, if the intensities are assumed to be functions of a smaller set
of parameters, one could follow the prescription in Section 11.2 and maximize the likelihood
directly. There are two reasons why the two-stage procedure never the less merits special
treatment: in the first place, the O-E rates and their asymptotic variance matrix are easy to
construct; in the second place, a comparative plot of the fitted functions and the O-E rates
makes it possible to detect systematic deviations between model assumptions and facts.

A commonly used fitting technique is the so-called generalized least squares method, which
amounts to minimizing a positive definite quadratic form in the deviations between the raw
estimates and the fitting functions. In the following brief outline of the procedure we focus
on one given intensity and drop the subscripts g, h.

For each interval [tq−1, tq) choose a ”representative” point τq , e.g. the interval midpoint.
Put µ̂ = (. . . , µ̂q , . . .)′, the vector of O-E rates, and (with a bit sloppy notation) µ(θ) =
(. . . , µ(τq , θ) , . . .)′, the vector of true values. Let A = (apq) be some positive definite matrix
of order r × r. Estimate θ by θ∗ minimizing

(µ(θ) − µ̂)′A(µ(θ) − µ̂) =
∑

pq

apq(µ(τp , θ) − µ̂p)(µ(τq , θ) − µ̂q) . (11.64)

If the intensity is a linear function of θ (like in the G-M study with known γ),

µ(θ) = Y (τ)θ , (11.65)

then
θ̂ = (Y ′AY )−1Y ′Aµ̂ . (11.66)

The asymptotic variance of θ̂ is (Y ′AY )−1Y ′AΣ(θ)AY (Y ′AY )−1. By the Gauss-Markov
theorem it is minimized by taking A = Σ(θ)−1, and the minimum is (Y ′Σ(θ)−1Y )−1. Thus,

asymptotically the best choice of A is Σ̂−1, where Σ̂ is some estimate of Σ satisfying (11.46).
Write Σ = Σ(θ). The symmetric, pd matrix Σ has a symmetric pd square root W such that
Σ = W 2.

∆ = (Y ′AY )−1Y ′AΣAY (Y ′AY )−1 − (Y ′Σ−1Y )−1

= (Y ′AY )−1Y ′AW
[

I − WY ((WY )′(WY ))−1(WY )′
]

WAY (Y ′AY )−1

= (Y ′AY )−1Y ′AW H WAY (Y ′AY )−1 .

where
H = I − P (P ′P )−1P ′ .

The matrix H = I − P (P ′P )−1P ′ is symmetric, H = H′, and idempotent, H2 = H, Thus,
H = H′H and

∆ =
(

HWAY (Y ′AY )−1
)′ (

HWAY (Y ′AY )−1
)

which is indeed pd.
More on analytic graduation - the G-M example: Let us focus on one intensity that is to

be graduated and, to fix ideas, assume it is the mortality intensity in the simple model with
two states ’alive’ and ’dead’..

The first step is to assume that the intensity is piece-wise constant:

µ(t) = µq , q − 1 ≤ t < q , j = 1, 2, . . .

The log likelihood (9.53) is

ln Λ =
∑

q

(ln µqNq − µqWq) ,
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where Nq and Wq are, respectively, the number of deaths and the total time spent alive in
the age interval [q − 1, q).

Each µq is a parameter which is functionally unrelated to all the others, so there are many
parameters in this model! For instance, if we are interested in mortality up to age 100 and
have data in the age range from 0 to 100, there are 100 parameters, which is quite a lot.
Remember, however, that this model is just a first step in a two-stage procedure where the
second step is to graduate (smooth) the ML estimators resulting from the present naive model
with piece-wise constant intensity.

The ML estimators are the occurrence-exposure rates,

µ̂q =
Nq

Wq
,

which are well defined for all q such that Wq > 0 (i.e. in age intervals where there were
survivors exposed to risk of death). The µ̂q are asymptotically (as n increases) normally
distributed, mutually independent, unbiased, and with variances given by

σ2
q = as.V[µ̂q ] =

µq

E[Wq ]
, (11.67)

where the expected exposure is

E[Wq ] =
n
∑

m=1

∫ q

q−1
p(m)(τ) dτ ,

p(m)(τ) being the probability that individual No. m is alive and under observation at time τ .
The variance σ2

q is inversely proportional to the corresponding expected exposure. In
the present simple model, with only one intensity of transition from the state ’alive’ to the
absorbing state ’dead’, we find explicit expressions for the expected exposure.

For instance, suppose we have observed each individual life from birth until death or until
attained age 100, whichever occurs first (i.e. censoring at age 100). Then, for τ ∈ [q − 1, q)
with q = 1, . . . , 100, we have

p(m)(τ) = exp

(

−
∫ τ

0
µ(s) ds

)

= exp



−
q−1
∑

p=1

µp − (τ − (q − 1)) µq



 , (11.68)

hence

E[Wq] = n

∫ q

q−1
exp



−
q−1
∑

p=1

µp − (τ − (q − 1)) µq



 dτ

= n exp



−
q−1
∑

p=1

µp





1 − exp (−µq)

µq
,

and

σ2
q =

1

n

µq

exp
(

−
∑q−1

p=1 µp

)

(1 − exp (−µq))
. (11.69)

You should look at other censoring schemes and discuss the impact of censoring on the vari-
ance. Take e.g. the case where person No m enters at age zm and is observed until death or
age 100, whichever occurs first (all zm less than 100).

Estimators σ̂2
q of the variances are obtained upon replacing the µj in (G.55) by the

estimators µ̂j . Simpler estimators are obtained by just replacing µq and E[Wq ] in (G.53) with
their straightforward empirical counterparts: σ̂2

q = µ̂q/Wq = Nq/W 2
q .

Now to graduation. The occurrence-exposure rates will usually have a ragged appearance.
Assuming that the real underlying mortality intensity is a smooth function, we will therefore
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fit a suitable function to the occurrence-exposure rates. Suppose we assume that the true
mortality rate is a Gompertz Makeham function, µ(t) = α + βeγt. Then, take some represen-
tative age τq (typically τq = q − 0.5) in each age interval and fit the parameters α, β, γ by
minimizing a weighted sum of squared errors

Q =
∑

q

aq (µ̂q − α − βeγτq )2 .

This is a matter of non-linear regression. The optimal weights aq are the inverse of the
variances, but since these are unknown, we plug in the estimators and use aq = 1/σ̂2

q .
The minimizing values α∗, β∗, and γ∗ are obtained by differentiating Q with respect to

each of the three parameters and setting the derivatives equal to 0. The derivatives are:

∂

∂α
Q =

∑

q

aq2 (µ̂q − α − βeγτq ) (−1) ,

∂

∂β
Q =

∑

q

aq2 (µ̂q − α − βeγτq ) (−eγτq ) ,

∂

∂γ
Q =

∑

q

aq2 (µ̂q − α − βeγτq ) (−βeγτq τq) .

Thus α∗, β∗, and γ∗ are the solution to the equations

∑

q

aq

(

µ̂q − α∗ − β∗eγ∗τq

)

= 0 ,

∑

q

aq

(

µ̂q − α∗ − β∗eγ∗τq

)

eγ∗τq = 0 ,

∑

q

aq

(

µ̂q − α∗ − β∗eγ∗τq

)

eγ∗τq τq = 0 .

This is in general a set of non-linear equations that does not allow of an explicit solution.
Actually these equations are just as involved as the maximum likelihood equations in Para-
graph 9.2C above, which is disappointing since the two-stage procedure considered here was
supposed to be simpler. (Occurrence-exposure rates are easy to find and they are asymptoti-
cally independent, which makes it easy to find their asymptotic variances. The graduation is,
however, messy.)

Suppose now that γ is taken to be known. Then only the two first equations above are
relevant and they reduce to

∑

q

aq α∗ +
∑

q

aqeγτq β∗ =
∑

q

aq µ̂q ,

∑

q

aqeγ∗τq α∗ −
∑

q

aqe2γ∗τq β∗ =
∑

q

aq µ̂qeγ∗τq .

This is a linear system of equations with an explicit solution, which the industrious reader
certainly will find.

11.6 Impact of the censoring scheme

A. The precision of the estimation. The precision of the MLE depends on the
amount of information provided by the censoring scheme of the study. Asymptotically it
is the variance matrix Σ(θ) that determines everything, and in Section 11.2 it was pointed
out that the size of this matrix depends on the censoring scheme only through the functions
∑n

m=1 p
(m)
g (τ), g = 0, . . . , J , the expected numbers of individuals staying in each state g at

time τ . (It depends also on the parametric structure of the intensities, of course.) We shall
look at two censoring schemes frequently encountered in practice.
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B. Longitudinal observation (cohort studies). The term cohort stems from
Latin and originally signified a unit division in an ancient Roman legion. In demography
it means a class of individuals born in a particular year or more general period of time (a
”generation”), and a cohort study is one where a cohort is observed over a certain period,
possibly until it is extinct. This was the situation in Paragraph 11.2.C.

Thus, let the n Markov processes in the general set-up be stochastic replicates, all com-
mencing in state 0 at time 0 and thereafter observed continuously throughout the time interval
[0, t̄ ]. In this case

n
∑

m=1

p
(m)
g (τ) = np

(1)
g (τ) , g = 0, . . . , J,

and

Σ(θ) =
1

n





∑

g 6=h

∫ t̄

0

1

µ(τ, θ)

∂

∂θ
µ(τ, θ)

∂

∂θ′
µ(τ, θ)p

(1)
g (τ)dτ





−1

.

This matrix tends to 0 as n increases if the inverse matrix indicated exists.

C. Cross-sectional observation. In a cross-sectional study a population is observed
over a certain period of time. As an example, suppose the G-M mortality study in Paragraph
11.2.C is conducted cross-sectionally throughout a calendar period of duration t̄, and that it
comprises n individuals at ages t(m), m = 1, . . . , n, at the beginning of the study. In this case
the factor depending on the design in the information matrix is

n
∑

m=1

p(m)(τ) =
n
∑

m=1

1 [ t(m),t(m)+t̄ ](τ) exp

(

−α(τ − t(m)) − β
eγt(m)

(eγτ − 1)

γ

)

.



Chapter 12

Heterogeneity models

12.1 The notion of heterogeneity – a two-stage

model

The life length T of an individual depends on a number of factors like biological inheritance
(some are strong and healthy, others are weak and sickly), occupation (mining and forestry
have higher accident rates than office work), leisure activities (mountain climbing is more
wholesome but also more dangerous than philately), nutrition (see the weekly magazines for
current wisdom), smoking and drinking habits. The list might be extended endlessly. Let all
such individual characteristics be represented by a parameter θ, which may be quite complex,
possibly of large dimension comprising numbers and strings of letters. The dependence of
T on these characteristics is accounted for by letting the probability law of T depend on θ.
Thus, write Fθ(t) for the probability that a person with characteristics θ dies within age t
and F̄θ(t) for the corresponding survival probability. Assuming that Fθ possesses a density

fθ , the force of mortality is µθ(t) = fθ(t)/F̄θ(t), and F̄θ(t) = exp
(

−
∫ t
0 µθ(s) ds

)

, F̄θ(t |x) =

exp
(

−
∫ x+t
x µθ(s) ds

)

, and so on.

Apparently the aggregate mortality law treated in Section *** conflicts with the myopic
viewpoint taken here, but this is really not so: the aggregate law describes the mortality
pattern in the population as a whole and represents the prospects of longevity for a person
when nothing is known as to his/her personal characteristics. To make this precise we let the
individual characteristics of a randomly chosen newly born be a random element Θ with a
distribution G, and the conditional distribution of the life length for fixed Θ = θ is Fθ . If
the value of Θ is observed to be θ, then Fθ is the relevant basis for making predictions about
T . If Θ is not observed, then predictions about T can only be based on the unconditional
distribution function

F (t) = E[FΘ(t)] =

∫

Fθ(t) dG(θ) (12.1)

or any of the equivalent functions in (3.2) – (3.4), which now assume the forms

F̄ (t) =

∫

F̄θ(t) dG(θ), (12.2)

f(t) =

∫

fθ(t) dG(θ), (12.3)

µ(t) = f(t)/F̄ (t) =

∫

fθ(t) dG(θ)
∫

F̄θ(t) dG(θ)
=

∫

µθ(t)F̄θ(t) dG(θ)
∫

F̄θ(t) dG(θ)
(12.4)

= E[µΘ(t) |T > t] . (12.5)

185



CHAPTER 12. HETEROGENEITY MODELS 186

Formula ( 12.5 ) calls for a comment. The joint distribution of T and Θ is given by

P [T ∈ A,Θ ∈ B] =

∫

B

∫

A
fθ(t) dt dG(θ) =

∫

B
Fθ [A] dG(θ).

The marginal distribution of T is given by

P[T ∈ A] = F [A] =

∫

Fθ [A] dG(θ) ,

where the integral sign without indication of the area signifies integration over the entire range
of the variable. The conditional distribution of Θ, given T ∈ A, is

G[B |T ∈ A] =

∫

B Fθ [A] dG(θ)
∫

Fθ [A] dG(θ)
(12.6)

or, in terms of the generalized density,

dG(θ |T ∈ A) =
Fθ [A] dG(θ)
∫

Fθ′ [A] dG(θ′)
. (12.7)

In particular, the conditional distribution of Θ, given T > t, is given by

dG(θ |T > t) =
F̄θ(t) dG(θ)
∫

F̄θ′(t) dG(θ′)
, (12.8)

and the last expression in (12.4) is recognized as the expected value of µΘ(t) with respect
to this distribution. Inserting A = [t, t + dt] and Fθ[A] = fθ dt in (12.7) gives (somewhat
informally)

dG(θ |T = t) =
fθ dG(θ)

∫

fθ′ (t) dG(θ′)
. (12.9)

The probabilities in (12.7) have a straightforward interpretation as proportions in a cohort
of individuals born at the same time. They cannot in general be interpreted as proportions in
a given population, and the reason for this is that no assumptions have been made as to the
birth rates that would govern the development of the age composition of the population over
time. It is certainly true that (12.8) is the distribution of Θ amongst those who, at a given
moment, are exactly t years old in the population. It is not the distribution of Θ amongst
those who, at a given moment, are t years or older (as the conditioning on T > t might
suggest). Likewise, (12.9) is the distribution of Θ amongst those who are known to have died
at age t in the past.

The conditional probability P[T ∈ A′ |T ∈ A] may be expressed as

F [A′ |A] =
F [A′ ∩ A]

F [A]

=

∫

Fθ [A′ ∩ S] dG(θ)

F [A]

=

∫

Fθ [A′ ∈ A]

Fθ[A]

Fθ [A] dG(θ)

F [A]

=

∫

Fθ [A′ |A] dG(θ |T ∈ A). (12.10)

Formula ( 12.10 ) says that, when T ∈ A is given, the probability of T ∈ A′ is to be formed
in the usual way, by taking the average of the probability of T ∈ A′ for fixed Θ over the
distribution of Θ, all distributions being conditional on T ∈ A. In particular,

F̄ (t | x) =

∫

F̄θ(t |x) dG(θ |T > x), (12.11)

which resembles (12.2), only that the distributions of T and Θ are updated in regard of the
information that the person has survived to age x.

Those who adhere to a deterministic world picture would presumably fancy the idea that
T could be exactly determined if only the individual and its surroundings could be sufficiently
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accurately described – down to the atoms. Then T would be just a function T (Θ) of Θ, and
Fθ would reduce to a one-point distribution in T (θ) which need no longer be explicated in
the model since the mortality law would simply be GT−1. The model formulation (12.1)
with Fθ a non-degenerate distribution, expresses the point of view that something remains
unexplained beyond Θ. Two interpretations are possible. Either that there exists such a thing
as pure randomness in the world, or that not all explanatory factors are included in Θ. Now,
leaving such speculations to the philosophers, let us pursue the chosen approach.

12.2 The proportional hazard model

The perhaps simplest means of describing mortality variations is the so-called proportional
hazard model, which specifies that Θ is a positive random variable, and

µθ(t) = θµ◦(t), (12.12)

where µ◦(t) is some ”baseline” force of mortality. According to this assumption, the mortality
pattern is basically the same for all people, only that some die ”faster” than others at all ages.
It does not allow for the possibility that e.g. some people have mortality above the average
in the youth and below the average in the old age.

Introduce the accumulated baseline intensity at age t,

W (x) =

∫ x

0
µ◦(s) ds. (12.13)

Under the assumption (12.11), the conditional survival function by fixed Θ = θ is

F̄θ(t) = e−θW (t), (12.14)

and the conditional density is
fθ(t) = θµ◦(t) e−θW (t). (12.15)

The functions in (12.2) – (12.5) become

F̄ (t) =

∫

e−θW (t) dG(θ), (12.16)

f(t) = µ◦(t)

∫

θ e−θW (t) dG(θ), (12.17)

µ(t) = µ◦(t)

∫

θ e−θW (t) dG(θ)
∫

e−θW (t) dG(θ)
= µ◦(t) E(Θ |T > t). (12.18)

Although the unconditional distribution F is the only thing that matters when Θ is
unobservable, the present two-stage model is of interest also in such circumstances. In the
first place it is of theoretical interest due to its explanatory import, and in the second place
it is of practical value since it produces candidates for suitable aggregate laws. Assume now
that G is Gγ,δ , the gamma distribution with shape parameter γ and scale parameter δ−1,
whose density is

gγ,δ(θ) =
δγ

Γ(γ)
θγ−1 e−θδ , θ > 0, (12.19)

and γ, δ > 0. Here Γ is the gamma function

Γ(γ) =

∫ ∞

0
tγ−1 e−t dt ,

which satisfies
Γ(γ) = (γ − 1) Γ(γ − 1), γ > 1,

(easy to prove by integration by parts) and Γ(1) = 1. It is immediately seen that

E

(

Θr e−Θs
)

=
δγ

Γ(γ)

Γ(r + γ)

(s + δ)r+γ
, r > −γ, s > −δ,

=
δγ (r + γ − 1)(r)

(s + δ)r+γ
, r = 0, 1, · · · , s > −δ. (12.20)
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In particular, all moments of Θ exist, and

E Θ = γ/δ, (12.21)

V Θ = γ/δ2 . (12.22)

The role of the scale parameter becomes clear by substituting θ′ = θδ in the integral

Gγ,δ(θ) =

∫ θ

0

δγ

Γ(γ)
θγ−1 e−θδ dθ =

∫ θδ

0

1

Γ(γ)
θ′−γ−1 e−θ′

dθ′ = Gγ,1(θδ), (12.23)

which is an increasing function of δ.
By use of ( 12.20 ), it is readily seen that the present case (12.16)—(12.18) specialize to

F̄ (t) =

(

δ

W (t) + δ

)γ

, (12.24)

f(t) = µ◦(t)
δγ γ

(W (t) + δ)γ+1
, (12.25)

µ(t) = µ◦(t)
γ

W (t) + δ
. (12.26)

Observe that

P [W (t) > w] = F̄ (W−1(w)) =

(

δ

w + δ

)γ

,

that is, W (t) + δ is Pareto-distributed with parameters (δ, γ). Observe also that µ(t) is
µ◦(t) times a factor that decreases with t. Notice that µ◦ is not a force of mortality in the
unconditional law.

The survival function for an x year old is obtained from ( 12.24 ) as

F̄ (t |x) = F̄ (x + t)/F̄ (x) =

(

W (x) + δ

W (x + t) + δ

)γ

,

(12.27)

which can be written as

F̄ (t | x) =

(

δ(x)

W (t |x) + δ(x)

)γ

(12.28)

with

W (t |x) = W (t + x) − W (x) =

∫ t

0
µ◦(x + τ) dτ,

δ(x) = W (x) + δ.

Thus, the survival distribution of an x-year old is of the same form as that of a newly born,
see ( 12.24 ), but with updated value of the scale parameter.

Despite what has been said about Θ and G as elements of a mere explanatory background
of the ”surface” entities T and F , it may be of interest to study the conditional distribution
( 12.6 ) for some given aspect T ∈ A of the life length. As an example, take the general
proportional hazard model and focus attention at (see ( 12.6 )

Ḡ(θ |T > t) = P [Θ > θ |T > t] =

∫∞
θ e−θ′W (t) dG(θ′)
∫∞
0 e−θ′W (t) dG(θ′)

.

To study the dependence of this function on t, differentiate:

∂

∂t
Ḡ(θ |T > t) =

∫∞
0

e−θ′W (t) dG(θ′)
∫∞

θ
e−θ′W (t)(−θ′ µ◦(t)) dG(θ′) −

∫∞
0

e−θ′W (t)(−θ′ µ◦(t)) dG(θ′)
∫∞
θ

e−θ′W (t) dG(θ′)
{∫∞

0
e−θ′W (t) dG(θ′)

}2
(12.29)
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By introduction of the probability measure H given by

dH(θ) =
e−θW (x) dG(θ)

∫∞
0

e−θ′W (t) dG(θ′)
,

( 12.29 ) can be cast as

µ◦(t) {−EH(Θ 1[Θ > θ]) + EHΘEH1[Θ > θ]} = −µ◦(t)CovH (Θ, 1[Θ > θ]), (12.30)

where subscript H signifies that the operators are formed by the distribution H. Now, Θ and
1[Θ > θ] are both increasing functions of Θ, hence associated and positively correlated. It
follows that the expression in ( 12.30 ) is negative, hence that the probability G(θ |T > t) is a
decreasing function of t and so RTD(Θ |T ). Thus, old people are likely to have a small value
of θ.

Specialize now to the gamma case ( 12.19 ) again. By ( 12.8), the conditional density of
Θ, given X > x, is

gγ,δ(θ |T > t) = cθγ−1 e−θ(W (t)+δ), (12.31)

where c does not depend on θ. The constant c need not be calculated since, by inspection of
(12.19) and ( 12.31 ) it follows that

gγ,δ(θ |T > t) = gγ,W (t)+δ(θ) . (12.32)

Formula ( 12.28 ) is also obtained from ( 12.11 ) upon inserting

Fθ(t | x) = exp[−θ{W (x + t) − W (x)}]

and, from ( 12.32 ), dG(θ |X > x) = gγ,W (x)+δ(θ) dθ and using ( 12.20 ). From a com-
putational point of view this is a detour, but it uncovers the role of the hidden Θ in the
play.



Chapter 13

Group life insurance

13.1 Basic characteristics of group insurance

.
A group insurance treaty is an arrangement whereby a group of persons is covered by a single
contract with an insurer. In its broadest context, group insurance would include a variety
of coverages, including life insurance, accident insurance, health insurance, annuities, civil
property insurance, and others. The major types of groups eligible for group insurance are
individual employer groups (the employees of a firm are covered by a contract between an
insurer and the employer, typically as a part of a labour–management negotiated employee
welfare and security plan), multiple employer groups (the same as individual employer groups,
except that the individual firm is extended to two or more firms/employers, e.g. a trade
association or an entire industry), labour union groups (the members of a labour union are
covered by a contract issued directly to the union), and creditor – debtor groups (life and/or
health insurance is provided for debtors through a contract issued to the creditor, e.g. a
commercial bank; if the borrower dies or is disabled, benefits are paid to the lender to cancel
the insured part of the debt). A great variety of groups beyond the foregoing classifications
are covered by group insurance. Among such miscellaneous groups are associations of public
and private employees, professional organizations, fraternal societies, and many others.

When group insurance is contrasted with individual insurance, a number of characteristic
features are evident, In the first place, the coverage is offered to all members of the group,
usually without medical examination or other evidence of individual insurability. Thus, the
criteriae by which individuals are recruited to a group are considered to provide a sufficient
guarantee against adverse selection of high-risk individuals, so-called antiselection against
the insurer. For instance, it is to be expected that the staff of an engineering workshop or
publishing house or the membership of an association of lawyers or teachers has only a small
infusion of impaired lives. To further preclude the possibility of antiselection, there are usually
some requirements pertaining to the minimum number of persons needed to constitute a group
and to the minimum proportion covered in the entire group.

Another feature characteristic of group insurance is that the persons insured under a
contract are not parties to the contract, since legally the contract is between the insurer and
the policyholder (usually an employer or an organization).

A third characteristic of group insurance is that it is essentially low-cost, mass protection.
Marketing and administration costs are far below the level typical of individual insurance.

As a fourth characteristic, it should be pointed out that group insurance contracts are
of a continuing nature, in that the contract and the plan may last long beyond the lifetime,
or membership in the plan, of any one individual. New persons are added to the group from
time to time, and others terminate their coverage. The contract is renewed regularly, typi-
cally annually. Therefore, both contract terms and premium rate can be currently adjusted in

190
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accordance with the observed development of costs, risk conditions and other circumstances
influencing the economic result. This feature sets a difference of great principal and practical
importance between group contracts and individual contracts in life insurance. An individual
life insurance policy usually specifies premiums and benefits that remain unalterned through-
out the contract period, which may extend over several decades. Therefore, a substantial
safety loading is usually built into the individual premium to meet possible unfavourable fu-
ture developments of mortality and expenses. In group life insurance there is no need for this
kind of safety loading since the premium rate can be currently adjusted in accordance with
the experiences.

The last remark points directly to the final feature of group insurance to be mentioned
here. To save expenses, usually only very summary characteristics of the groups are observed
and used as a basis for the rating of premiums at the outset. Those risk characteristics that
are not observed may vary considerably between the groups and give rise to substantial risk
differentials between them, despite that they “appear to be similar”. As an example, in group
life insurance one may choose to observe only the number of persons insured under the plan of
a group and leave other characteristics such as occupation and age composition unobserved. If
the groups differ considerably with respect to these unobserved risk characteristics, they will
have different “true underlying risk premiums”. These differentials will be reflected by the
risk experiences of the individual groups as time passes and claims statistics accrues. Thus,
the individual claims record of a group provides some information on its “risk profile”, which
could be taken into account in the current adjustment of the premium. When the premium is
regulated this way for each group in regard of its claims experience, one speaks of experience

rating.
There is yet another point of difference between individual and group insurance which

ought to be mentioned because it explains why experience rating is widely used in group
life insurance. If you should ask holders of individual life insurance policies if they find the
premiums reasonable, the answers would typically be “I guess so” or “I don’t know”. They
don’t know and don’t haggle over the price, simply because they have no access to statistics
from which they could judge the fairness of the premiums. In group life insurance this is
different. Each master contract is managed by a policyholder who can compare premium
payments with received benefits in the long run. Those policy holders who find that premiums
exceed by far the benefits, will sooner or later call for a discount (the others will remain silent).
Therefore, a competitive market will tend to enforce experience rating of groups life contracts.

13.2 A proportional hazard model for complete

individual policy and claim records

Consider a group life portfolio for which statistical records have been maintained during the
period (τ ′, τ ′′), where τ ′′ is the present moment. The portfolio comprises I master contracts,
labeled by i = 1, . . . , I. Let (τ ′

i , τ
′′
i ) be the period during which contract i has been in

force (τ ′′
i < τ ′′ if the contract has been terminated in its entirety). Let Ji be the number

of persons currently or formerly insured under the plan of contract i. They are labeled by
(i, j), j = 1, . . . , Ji. For each individual (i, j) introduce the following quantities, which are
observable by time τ ′′ :

τ ′
ij , the time of entry into the group,

xij , the age at enty,
Tij , the time exposed to risk as insured before time τ ′′

i
Kij , the number of times the coverage has been terminated on an individual basis before

time τ ′′
i ,

Mij , the number of deaths as insured before time τ ′′
i .

The pairs (Kij , Mij) can only assume the values (0,0), (1,0), (0,1) (implying that participa-
tion in the group will not be resumed once it has been terminated). The hidden mortality
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characteristics of group i are represented by a latent quantity Θi. The Tij ,Kij ,Mij , and Θi

are viewed as random variables, and the following assumptions are made.

(i) Variables belonging to different groups are stochastically independent and Θ1, . . . , ΘI

are iid (independent and identically distributed).

(ii) Variables belonging to different persons within one and the same group i are condition-
ally independent, given Θi.

(iii) All persons in one and the same group follow the same pattern of mortality and termi-
nation. More specifically, it is assumed that the Θi are positive and that, conditional
on Θi = θi, a person who entered group i at age x and is still a member of the group
at age x + t (x, t > 0), then has a force of termination

κi(x, t) (13.1)

and a force of mortality of the form

θiµ(x, t). (13.2)

Assumption (i) corresponds to the idea that the groups are independent random selec-
tions from a population of groups that are comparable, but not entirely similar. It is this
assumption, in conjunction with (15.2), that establishes a relationship between the groups
and forms the rationale of combining portfoliowide mortality experience with the mortality
experience of a given group in an assessment of the mortality in that group. The “propor-
tional hazard” assumption (15.2) represents, perhaps, the simplest possible way of modelling
mortality variations between groups. It states that the risk characteristics specific of a group
act on the force of mortality only through a multiplicative factor, implying that the mortality
pattern is basically the same for all groups. Such an assumption is not apt for describing more
complex mortality differences, e.g. that a group may have a mortality below the average at
early ages and above the average towards the end of life. For example, it is thinkable that
such hazardous occupations as blast furnace operation and mining attract only physically fit
and healthy applicants and that those who are employed quickly get worn out by the severe
working conditions.

The statistical data presently available from group i are the individual entrance times,
τ ′
ij , entrance ages, xij , and histories as insurees,

Oi = {(Kij ,Mij , Tij); j = 1, . . . , Ji}.

The conditional distribution of (Kij ,Mij , Tij), when Θi = θi, is given by

P{Kij = 0, Mij = 1, tij < Tij tij + dtij |Θi = θi}

= θiµ(xij , tij) dtij exp

[

−
∫ tij

0
{κi(xij , t) + θiµ(xij , t)} dt

]

,

0 < tij < τ ′′
i − τ ′

ij ,

P{Kij = 1, Mij = 0, tij < Tij tij + dtij |Θi = θi}

= κi(xij , tij) dtij exp

[

−
∫ tij

0
{κi(xij , t) + θiµ(xij , t)} dt

]

,

0 < tij < τ ′′
i − τ ′

ij ,
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P{Kij = Mij = 0, Tij = tij |Θi = θi}

= exp

[

−
∫ tij

0
{κi(xij , t) + θiµ(xij , t)} dt

]

,

tij = τ ′′
i − τ ′

ij .

From these expressions we gather the following formula for the conditional likelihood of Oi:

Ji
∏

j=1

(κi(xij , Tij)
Kij {θiµ(xij , Tij)}Mij

exp[−
∫ Tij

0
{κi(xij , t) + θiµ(xij , t)} dt]), (13.3)

(Kij , Mij) ∈ {(0, 1), (1, 0)} and 0 < Tij < τ ′′
i − τ ′

ij or (Kij , Mij) = (0, 0) and Tij = τ ′′
i −

τ ′
ij , j = 1, . . . , Ji. For each person (i, j) introduce the cumulative basic force of mortality

Wij =

∫ Tij

0
µ(xij , t) dt. (13.4)

It is seen from (15.3) that a set of sufficient statistics for group i are

Mi =
∑Ji

j=1 Mij , the total number of deaths, (13.5)

Wi =
∑Ji

j=1 Wij , the sum of cumulative basic intensities, (13.6)

and that the conditional likelihood, considered as a function of θi, is proportional to

θ
Mi
i e−θiWi . (13.7)

The expression in (15.7) is gamma shaped. Motivated by the convenience of the analysis
in the previous chapter, it is assumed that the common distribution of the latent Θi is the
gamma distribution with density

gγ,δ(θi) =
δγ

Γ(γ)
θγ−1
i e−θiδ , θi > 0. (13.8)

The conditional density of Θi, given O, is proportional to the product of the expressions
in (15.7) and (15.8), hence

gγ,δ(θi |Oi) = gMi+γ,Wi+δ(θi). (13.9)

By use of (14.25)–(14.27), it follows that

E(Θi |Oi) =
Mi + γ

Wi + δ
, (13.10)

V ar(Θi |Oi) =
Mi + γ

(Wi + δ)2
, (13.11)

E(e−wΘi |Oi) =

(

Wi + δ

w + Wi + δ

)Mi+γ

, w > −(Wi + δ). (13.12)

The conditional mean in (15.10) is the Bayes estimator Θ̃i (say) of Θi with respect to squared
loss. It can be cast as
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Θ̃i = ζiΘ̂i + (1 − ζi)γ/δ, (13.13)

where

Θ̂i = Mi/Wi (13.14)

is the maximum likelihood estimator of θi in the conditional model, given Θi = θi, and

ζi = Wi/(Wi + δ). (13.15)

The expression in (15.13) is a weighted mean of the sample estimator Θ̂i and the unconditional
mean, EΘi = γ/δ. The weight ζi attached to the experience of the group, is an increasing
function of the exposure times Tij , confer (15.4).

13.3 Experience rated net premiums

The set of master contracts in force at the present moment is

I = {i : τ ′′
i = τ ′′},

and for each group i ∈ I the set of persons presently covered under the plan of the group is

Ji = {j : τ ′
ij + Tij = τ ′′}.

For each person (i, j) presently insured let M ′′
ij and S′′

ij denote, respectively, the number of

deaths and the sum payable by death in the next year, (τ ′′, τ ′′ + 1). To prevent technicalities
from obscuring the main points, disregard interest and assume that all the S ′′

ij will remain
constant throughout the year.

For a group i ∈ I the net annual premium based on the available information Oi is

P A
i =

∑

j∈Ji

S′′
ij E(M ′′

ij |Oi). (13.16)

The expected values appearing in (15.16) are

E(M ′′
ij |Oi) = E{E(M ′′

ij |Θi,Oi) |Oi}

= E[1 − exp

{

−Θi

∫ 1

0
µ(xij , Tij + t) dt

}

|Oi],

which can be calculated by formula (15.12). Defining

w′′
ij =

∫ 1

0
µ(xij , Tij + t) dt (13.17)

and

Qi,w = 1 −
(

Wi + δ

w + Wi + δ

)Mi+γ

, (13.18)

one finds

E(M ′′
ij |Oi) = Qi,w′′

ij
. (13.19)

Substituting (15.19) into (15.16) yields
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P A
i =

∑

j∈Ji

S′′
ij Qi,w′′

ij
, (13.20)

with Qi,w′′
ij

defined by (15.17) and (15.18).

As an alternative to the premium (15.20), which is exact on an annual basis, one could
use the “instantaneous net premium” per time unit at time τ ′′,

P I
i = lim

∆τ↓0
E







∑

j∈Ji

S′′
ij M ′′

ij(∆τ) |Oi







/∆τ, (13.21)

where M ′′
ij(∆τ) is the number of deaths of person (i, j) in the time interval (τ ′′, τ ′′ + ∆τ).

Now,

E{M ′′
ij(∆τ) |Oi} = E[E{M ′′

ij(∆τ)) |Θi,Oi}|Oi]

= E{Θiµ(xij , Tij)∆τ + o(∆t) |Mi,Wi}
= µ(xij , Tij)∆tΘ̃i + o(∆t), (13.22)

the last passage being a consequence of (15.10) and (15.13). Combine (15.21) and (15.22), to
obtain

P I
i =

∑

j∈Ji

S′′
ij µ(xij , Tij)Θ̃i. (13.23)

To see that P I
i is an approximation to P A

i , apply the first order Taylor expansion (1+x)−α ≈
1 − αx to the second term on the right of (15.18) and then approximate w′′

ij in (15.17) by

µ(xij , Tij), which gives

Qi,w′′
ij

= 1 − {1 + w′′
ij/(Wi + δ)}−(Mi+γ)

≈ 1 − {1 − (Mi + γ)w′′
ij/(Wi + δ)}

= w′′
ijΘ̃i

≈ µ(xij , Tij)Θ̃i. (13.24)

Using (15.25) in (15.20), yields P A
i ≈ P I

i . The approximation is good if the w′′
ij are << Wi,

which is the case for groups with a reasonably large risk exposure in the past, and if the
µ(xij , Tij + t) are nearly constant for 0 < t < 1.

13.4 The fluctuation reserve

A measure of the uncertainty associated with the annual result for group i is the conditional
variance,

V A
i = V ar





∑

j∈Ji

S′′
ij M ′′

ij |Oi)





= E







∑

j,k∈Ji

S′′
ijS′′

ikM ′′
ijM ′′

ik |Oi







− (P A
i )2

=
∑

j∈Ji

S′′2
ij E(M ′′

ij |Oi)

+2
∑

j,k∈Ji;j<k

S′′
ijS′′

ikE(M ′′
ijM ′′

ik |Oi) − (P A
i )2 (13.25)
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(M ′′
ij is equal to its square since it is 0 or 1). The expected values appearing in the second

sum in (15.26) are

E(M ′′
ijM ′′

ik |Oi) = E{E(M ′′
ijM ′′

ik |Θi,Oi) |Oi}
= E

[

{1 − exp(−Θiw
′′
ij)}{1 − exp(−Θiw

′′
ik)}|Oi

]

= Qi,w′′
ij

+ Qi,w′′
ik

− Qi,w′′
ij+w′′

ik
, (13.26)

confer (15.12) and (15.18). Now, insert the expressions (15.19) and (15.26) into (15.25) to
obtain

V A
i =

∑

j∈Ji

S′′2
ij Qi,w′′

ij
+ 2

∑

j,k∈Ji; j<k

S′′
ijS′′

ik(Qi,w′′
ij

+ Qi,w′′
ik

− Qi,w′′
ij+w′′

ik
) − (P A

i )2

= 2
∑

j∈Ji

S′′
ijP A

i −
∑

j∈Ji

S′′2
ij Qi,w′′

ij

−2
∑

j,k∈Ji; j<k

S′′
ijS′′

ikQi,w′′
ij+w′′

ik
− (P A

i )2, (13.27)

where Qi,w′′
ij

and P A
i are given by (15.17), (15.18), and (15.20). By use of the approximation

(15.24),

V A
i ≈

∑

j∈Ji

S′′2
ij w′′

ijΘ̃i − (P A
i )2. (13.28)

Charging each group i its net premium P A
i would only secure expected equivalence of

premium incomes and benefit payments for the portfolio as a whole. (At any time groups with
low mortality will subsidize those with high mortality, but as time passes and risk experience
accrues, these transfers will diminish: eventually each group will be charged its true risk
premium.) To meet unfavourable random fluctuations in the results, the company should
provide a reserve for the entire portfolio. By approximation to the normal distribution, which
is reasonable for a portfolio of some size, a fluctuation reserve given by

F A = 2.33





∑

i∈I
V A

i





1
2

, (13.29)

with V A
i defined by (15.27) or (15.28), will be sufficient to cover claim expenses in excess of

the total net premium,
∑

i∈I P A
i , with 99% probability. To establish the reserve in (15.29),

it may be necessary to charge each group an initial loading in addition to the net premium.
Thereafter the reserve can be maintained by transfer of surplus in years with favourable results
for the whole portfolio. (Charging the insurees a total premium loading equal to F A each year
is, of course, not necessary: that would create an unlawful profit on the part of the insurer.)
The loadings can be determined in several ways. One reasonable possibility is to let each

group i contribute to F A by an amount F A
i proportional to the standard deviation (V A

i )
1
2 ,

that is,

F A
i = F A(V A

i )
1
2 /
∑

k∈I
(V A

k )
1
2 . (13.30)

Upon termination of a master contract, the group should be credited with the amount
(15.30).
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13.5 Estimation of parameters

At time τ ′′ the observations that can be utilized in parameter estimation are Oi, i = 1, . . . , I.
It is, of course, only in this connection that the data from terminated master contracts come
into play.

Assume now that the basic mortality law is of Gompertz-Makeham type and is aggregate,
that is, µ(x, t) = µ(x + t), where

µ(y) = α + βcy, y > 0. (13.31)

(In group life insurance there is actually no reason to expect selectional effects since eligibility
is not made conditional on the insuree’s health or other individual risk characteristics.)

From (15.3), (15.8) and (15.31) one gathers the following expression for the unconditional
likelihood of the data:

ji
∏

j=1





∫ ∞

0







Ji
∏

j=1

κi(xij , Tij)
Kij







θ
Mi
i







Ji
∏

j=1

(α + βcxij+Tij )Mij







exp







−
Ji
∑

j=1

∫ Tij

0
κi(xij , t) dt − θi

Ji
∑

j=1

∫ Tij

0
(α + βcxij+t) dt







δγ

Γ(γ)
θγ−1
i e−δθi dθi

]

.

The forces of termination do not appear in any of the expressions for premiums and reserves,
and so one can concentrate on the estimation of γ, δ, α, β, c. The essential part of the likelihood
is







I
∏

i=1

Ji
∏

j=1

(α + βcxij+Tij )Mij







(

δγ

Γ(γ)

)I

I
∏

i=1

Γ(Mi + γ)
{

α
∑Ji

j=1 Tij + β
∑Ji

j=1 cxij (cTij − 1)/ ln c + δ
}Mi+γ

.

The maximum likelihood estimators γ∗, δ∗, α∗, β∗, c∗ have to be determined by numerical
methods, e.g. steepest ascent or Newton-Raphson techniques. Note that the number of pa-
rameters is essentially only four since a scale parameter in θi can be absorbed in µ in (15.2).
On should, therefore, put γ = δ or α = 1 or β = 1.



Chapter 14

Hattendorff and Thiele

Hattendorff’s classical result on zero means and uncorrelatedness of the losses created in
disjoint time intervals by a life insurance policy is an immediate consequence of the very defi-
nition of the concept of loss. Thus, the result is formulated and proved here in a setting with
quite general payments, discount function, and time intervals, all stochastic. A general rep-
resentation is given for the variances of the losses. They are easy to compute when sufficient
structure is added to the model. The traditional continuous time Markov chain model is given
special consideration. A stochastic Thiele’s differential equation is obtained in a fairly general
counting process framework.

14.1 Introduction

A. Short review

Hattendorff’s (1868) theorem states that the losses in different years on a life insurance policy
have zero means and are uncorrelated, hence the variance of the total loss is the sum of the
variances of the per year losses. The loss in a year is defined as the net outgoes (insurance
benefits less premiums) during the year, plus the reserve that has to be provided at the end of
the year, and minus the reserve released at the beginning of the year, all quantities discounted
at time 0. This classical result has had its recent revival with the advent of modern life
insurance mathematics based on the theory of stochastic processes, notable references being
Gerber (1979, 1986), Papatriandafylou and Waters (1984), Wolthuis (1987), and Ramlau-
Hansen (1988). The first three of these papers deal with losses in fixed time intervals but,
apart from that, the proofs do not really rest on any specific model assumptions. The two
last-mentioned papers deal with stochastic periods, namely the total sojourn times in differ-
ent states in the framework of the continuous time Markov chain model, with deterministic
contractual benefits and constant interest rate. The proofs, hence apparently also the results,
depend on the particular structures of the model.

B. Outline of the present paper

It is shown here that Hattendorff’s results are valid for virtually any payment stream and
rule for accumulation of interest, no matter what stochastic mechanisms govern them, and for
any natural time periods, random or not. The crux of the matter is the very definition of the
losses: as pointed out by Gerber (1979), they are the increments of a martingale. The rest
follows from the optional sampling theorem. This general result is established in Section 2.

It is only when it comes to formulas for the variances of the losses that specific model
assumptions are crucial. Section 3 deals with the situation where the events upon which
payments are contingent are governed by a continuous time stochastic process with finite state
space, essentially a multivariate counting process. A representation theorem for martingales

198
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adapted to a counting process is used to identify the variance process that generates the
variances of the losses. As a byproduct, Thiele’s differential equation, well-known from the
case with Markov counting process and benefits depending only on the present state, turns
out to be a special case of a stochastic differential equation valid under far more general
assumptions.

The Markov case with nonrandom benefits and discount function, is simple enough to
allow for easy computation of the variances. As an example of what can be gained by the
general formulation of Hattendorff’s theorem, it is applied to the periods of time spent upon
the n-th visit to a certain state. Benefits depending on the past development of the process
can also be dealt with without great difficulties. Relaxing the Markov assumption is what
makes computation of variances cumbersome.

For ease of reference, some elements from the theory of martingales are gathered in the
final Section 4. They are taken as prerequisites throughout.

14.2 The general Hattendorff theorem

A. Payment streams and discounted values

A suitable framework for a general treatment of properties of payment streams is set in
two recent papers by the author (Norberg, 1990, 1991). It is adopted here with sufficient
explanation to make the presentation selfcontained.

Consider a stream of payments commencing at time 0. It is defined by the payment
function A, which to each time t ≥ 0 specifies the total amount A(t) paid in [0, t]. Negative
payments are allowed for; it is only required that A be of bounded variation in finite intervals
and, by convention, right-continuous. This essentially means that A is a difference of two
non-decreasing, finite-valued, and right-continuous payment functions representing outgoes
and incomes, respectively. When the discount function v is used, the present value at time 0
of the payments is

V =

∫

v dA. (14.1)

To allow for random development of payments and interest, the functions A and v are
assumed to be stochastic processes defined on some probability space (Ω,F , P ). They are
adapted to a right-continuous filtration F = {Ft}t≥0, each Ft comprising the events that
govern the development of payments and interest up to and including time t.

B. The notions of reserve and loss

At any time t the insurer must provide a reserve to meet future net liabilities on the policy.
An adequate reserve would be the cash value at time t of future outgoes minus incomes, but
this quantity is in general unobservable by time t. What can be entered in the accounts, is its
expected value given the information available by time t, the so-called (prospective) F-reserve,

VF(t) =
1

v(t)
E

(

∫

(t,∞)
v dA | Ft

)

. (14.2)

The F-reserve plays a central role in insurance practice since it is taken as a factual liability
and, by statute, is to be accounted as a debt in the balance sheet of the insurer at time t. In
accordance with this accountancy convention the insurer’s loss in the period (s, t] is defined
as

L(s,t] =

∫

(s,t]
v dA + v(t)VF(t) − v(s)VF(s), (14.3)

the expression on the right being construed as follows: at the end of the period the net outgoes
throughout the period have been covered (the first term), the new reserve must be provided
(the second term), and the reserve set aside prior to the period can be cashed (the third term).

C. Hattendorff’s theorem generally stated.

The basic circumstance underlying Hattendorff’s theorem and its generalizations is the fact
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that the loss as defined by (14.3) is the increment over (s, t] of the martingale generated by
the value V in (14.1). More precisely, assuming that E|V | < ∞, define for each t ≥ 0

M(t) = E (V |Ft)

=

∫

[0,t]
v dA + v(t)VF(t), (14.4)

the second equality due to F-adaptedness of A and v and the definition (14.2). By inspection
of (14.3) and (14.4),

L(s,t] = M(t) − M(s). (14.5)

Clearly, {M(t)}t≥0 is an F-martingale converging to V . It can always be taken to be right-
continuous (see e.g Protter, 1990, p.8) so that the optional sampling property and its conse-
quences apply, confer Section 4.

A general Hattendorff theorem is now obtained by merely spelling out some basic prop-
erties of martingales and stochastic integrals quoted in Section 4, in particular (F.38), (F.39),
and (14.10), with stopping times in the roles of the ti. Thus, let 0 = T0 < T1 < · · · be a
nondecreasing sequence of F-stopping times. This covers the simple case where the Ti are
fixed (typically Ti = i, the end of year No. i) and all practically relevant cases where they are
random. Abbreviate

Li = L(Ti−1,Ti]
, i = 1, 2, . . . , (14.6)

and define consistently the loss at time 0 as

L0 = A(0) + VF(0) − E V. (14.7)

Theorem 1. Assume that the value V in (14.1) has finite variance. Then the losses Li defined

in (14.6) – (14.7) have zero means and are uncorrelated, and this is also true conditionally:

for i < j < k

E(Lj |FTi
) = 0, (14.8)

Cov (Lj , Lk | FTi
) = 0, (14.9)

hence

Var





∞
∑

k=j

Lk | FTi



 =
∞
∑

k=j

Var (Lk | FTi
). (14.10)

The variances in (14.10) are of the form

Var (Lj | FTi
) = E (〈M〉(Tj ) − 〈M〉(Tj−1) | FTi

) (14.11)

= E

(

∫

(Tj−1,Tj ]
d〈M〉 | FTi

)

, (14.12)

where 〈M〉 is the variance process defined by (14.9) in Section 4.

The results listed in the theorem are quite independent of the nature of the processes
involved. They are rooted in the very definition of the concept of loss, not in any particular
assumptions as to what mechanisms they stem from. There are Hattendorff results for virtually
any payment stream and rule for accumulation of interest, in insurance, life as well as non-life,
and in finance in general. The periods may be any time intervals delimited by stopping times.

The qualitative part of the theorem, (14.8) – (14.10), is done with once and for all. The
quantitative part concerning the form of the variances, (14.11) – (14.12) and (14.9), calls
for further examination of special models to find computable expressions. The next section
is devoted to the case where payments are generated by an insurance policy modelled by a
multivariate counting process.
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14.3 Application to life insurance

A. The general life insurance policy

A life or pension insurance treaty is typically of the following general form. There is a set
J = {0, . . . , J} of possible states of the policy. At any time t it is in one and only one of
the states in J , commencing in state 0 at time 0, say. Let X(t) be the state of the policy
at time t. The development of the policy, {X(t)}t≥0 , is a stochastic process. Regarded as
a function from [0,∞) to J , it is assumed to be right-continuous, with a finite number of
jumps in any finite time interval, and X(0) = 0. For each j ∈ J , let Ij(t) = 1[X(t) = j] be
the indicator of the event that the process is in state j at time t ≥ 0, and for each j, k with
j 6= k let Njk(t) = ]{τ ∈ (0, t]; X(τ−) = j,X(τ) = k} be the number of transitions from
state j to state k up to and including time t > 0. Define Njk(0) = 0 for all j 6= k. The
processes X, (Ij)j∈J , and (Njk)j 6=k, j,k∈J correspond mutually one-to-one and carry the
same information, which is the filtration F = {Ft}t≥0 generated by {X(t)}t≥0 . In particular,
since the process is in state j at a given time if and only if the number of entries into j exceeds
(necessarily by 1) the number of departures from j by that time,

Ij(t) = δ0j +
∑

k; k 6=j

(Nkj(t) − Njk(t)) . (14.1)

It is assumed that the process possesses intensities. The intensity of transition from state j
to state k, j 6= k, is denoted by λjk(t) and is of the form

λjk(t) = Ij(t)µjk(t) , (14.2)

with µjk some F-adapted process.
Insurance benefits are of two kinds. In the first place, the general life annuity provides

the amount A◦
j (t) − A◦

j (s) during a sojourn in state j throughout the time interval (s, t]. In

the second place, the general assurance provides the lump sum a◦
jk(t) immediately upon a

transition from state j to state k at time t. Insurance premiums are counted as negative
benefits. The contractual functions A◦

j and a◦
jk are, respectively, a payment function as

defined in Paragraph 2A and a left-continuous, finite-valued function, both predictable with
respect to F, which means that benefits at any time may depend on the past development of
the policy. The total stream of payments A is of the form

dA(t) =
∑

j

Ij(t) dA◦
j (t) +

∑

j 6=k

a◦
jk(t) dNjk(t) .

It is assumed throughout that the discount function v is continuous and deterministic. In
general the reserve VF(t) depends on the entire history Ft, but it is convenient to suppress
this in the notation and visualize only the dependence on the present state of the process.
Thus, henceforth write Vj(t) for the reserve when X(t) = j.

B. The variance process

In the present model the martingale in (14.4) takes the form

M(t) = A◦
0(0) +

∫

(0,t]
v(τ)





∑

j

Ij(τ)dA◦
j (τ) +

∑

j 6=k

a◦
jk(τ) dNjk(τ)





+
∑

j

Ij(t) v(t)Vj (t) (14.3)

Assume that E(
∫

v dA)2 < ∞ so that {M(t)}t≥0 is square integrable, that is, supt≥0E M2(t) <
∞ for all t ≥ 0. Then a general representation theorem (see Bremaud, 1981, Section III.3)
says that M is of the form
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M(t) = M(0) +

∫

(0,t]

∑

j 6=k

Hjk(τ)
(

dNjk(τ) − λjk(τ)dτ
)

, (14.4)

where the Hjk are some predictable processes satisfying

E
∑

j 6=k

∫

(0,t]
H2

jk(τ) λjk(τ)dτ < ∞ . (14.5)

Moreover, the variance process is given by

d〈M〉(t) =
∑

j 6=k

H2
jk(t) λjk(t)dt . (14.6)

Thus, to find the variance process, it suffices to identify those functions in (14.3) that take
the roles of the Hjk in (14.4).

To simplify notation, introduce

ã◦
jk(t) = v(t) a◦

jk(t) , (14.7)

Ã◦
j (t) =

∫

(0,t]
v(τ) dA◦

j (τ) , (14.8)

Wj(t) = v(t)Vj (t) , (14.9)

the last two being right-continuous processes with bounded variation (define Wj(0) = Vj(0+)

for j 6= 0). Note, in passing, that the function Ã◦
j + Wj is continuous since

Ã◦
j (t−) + Wj(t−) = Ã◦

j (t−) + (Ã◦
j (t) − Ã◦

j (t−)) + Wj(t)

= Ã◦
j (t) + Wj(t) .

In terms of the functions in (14.7) – (14.9) the relation (14.3) is

M(t) = A◦
0(0) +

∫

(0,t]





∑

j

Ij(τ)dÃ◦
j (τ) +

∑

j 6=k

ã◦
jk(τ) dNjk(τ)





+
∑

j

Ij(t) Wj(t) . (14.10)

The last term on the right of (14.10) can be reshaped as follows. Integration by parts gives

Ij(t) Wj(t) = Ij(0) Wj(0) +

∫

(0,t]
Ij(τ) dWj(τ) +

∫

(0,t]
Wj(τ−)dIj(τ) .

In the last term here use (14.1) to write

dIj(t) =
∑

k; k 6=j

d(Nkj (t) − Njk(t))

and obtain

∑

j

Ij(t) Wj(t) =
∑

j

Ij(0) Wj(0) +
∑

j

∫

(0,t]
Ij(τ) dWj(τ)

+
∑

j

∫

(0,t]
Wj(τ−)

∑

k; k 6=j

d(Nkj(τ) − Njk(τ))

= W0(0) +

∫

(0,t]

∑

j

Ij(τ) dWj(τ)

+

∫

(0,t]

∑

j 6=k

(Wk(τ−) − Wj(τ−))dNjk(τ) .
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Upon inserting this, (14.10) becomes

M(t) = A◦
0(0) + W0(0) +

∫ t

0

∑

j

Ij(τ)d(Ã◦
j (τ) + Wj(τ))

+

∫

(0,t]

∑

j 6=k

(ã◦
jk(τ) + Wk(τ−) − Wj(τ−)) dNjk(τ) . (14.11)

Now, identify the discontinuous parts on the right of (14.4) and (14.11), to obtain the following
result.

Theorem 2. For any continuous discount function and any predictable contractual functions

such that E(
∫

v dA)2 < ∞, the variance process (14.6) is given by

Hjk(t) = ã◦
jk(t) + Wk(t−) − Wj(t−) , (14.12)

with the elements on the right defined by (14.7) and (14.9).

The functions Hjk in (14.12) can be expressed as

Hjk(t) = v(t)Rjk(t) , (14.13)

where

Rjk(t) = a◦
jk(t) + Vk(t−) − Vj(t−) (14.14)

is the so-called sum at risk in respect of transition from state j to state k at time t.

C. A stochastic Thiele’s differential equation.

Upon identifying the continuous parts of the expressions on the right of (14.4) and (14.11)
and recalling (14.2), the following result is obtained.

Theorem 3. For any continuous discount function and any predictable contractual functions

such that E(
∫

v dA)2 < ∞, the identity

Ij(t) d(Ã◦
j (t) + Wj(t)) +

∑

k; k 6=j

Hjk(t) λjk(t)dt = 0 (14.15)

holds almost surely, the elements being defined by (14.7) – (14.9) and (14.12).

This is a generalization of the classical Thiele’s differential equation, well-known from the
case with Markov counting process and deterministic contractual functions. The stochastic
differential equation (14.15) is valid for any counting process possessing intensities, and for
any predictable benefit functions, including lump sum survival benefits.

For technical purposes the compact form (14.15) is expedient. For ease of interpretation
and comparison with the traditional Thiele’s equation, an alternative form is suitable. Assume
that the discount function is of the form v(t) = exp(−

∫ t
0 δ(τ)dτ), so that δ(t) is the interest

intensity at time t. Insert (14.8), (14.9), and (14.14) in (14.15), put dWj(t) = dv(t)Vj (t) +
v(t)dVj (t) = −v(t)δ(t)dtVj (t) + v(t)dVj (t), divide by v(t), and rearrange a bit to obtain

Ij(t) d(−A◦
j )(t) = Ij(t) (dVj(t) − Vj(t)δ(t)dt)

+
∑

k; k 6=j

Rjk(t) λjk(t)dt . (14.16)
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On the left of (14.16) is the premium (possibly negative) paid in state j during a small time
interval around t. The expression on the right shows how it decomposes into a savings pre-

mium (the first term), which provides the amount needed for maintenance of the reserve in
excess of the interest it creates, and a risk premium (the second term), which covers the outgo
related to transitions from the current state (sum insured plus new reserve minus old reserve).

D. Losses in a given state

In the present set-up it is meaningful to speak of the total loss L(j) in a certain state j. Let

S
(j)
n and T

(j)
n denote the (stopping) times of arrival and departure, respectively, by the n-th

visit of the policy in state j (they are ∞ if no such visit takes place). Then

L(j) =
∞
∑

n=1

(

M(T
(j)
n ) − M(S

(j)
n )
)

(14.17)

=
∞
∑

n=1

∫

(S
(j)
n ,T

(j)
n ]

dM(τ) (14.18)

=

∫

Ij(τ−)dM(τ),

the last equality due to the right-continuity of X, by which

{X(t−) = j} =
∞
⋃

n=1

{S(j)
n < t ≤ T

(j)
n }.

The function Ij(t−) is left-continuous, hence predictable. Then, by a general martingale

result ((14.8) in Section 4), VarL(j) = E
∫

(0,∞)
Ij(τ−) d〈M〉(τ). Inserting (14.6) and recalling

(14.2), gives

VarL(j) =

∫ ∞

0
E



Ij(τ−)
∑

k; k 6=j

µjk(τ) H2
jk(τ)



 dτ, (14.19)

E. The Markov chain model revisited

To obtain feasible expressions for the variance in (14.19), more structure must be placed on
the model. Thus, assume now that the process {X(t)}t≥0 is a time-continuous Markov chain,
and denote the transition probabilities by

pjk(t, u) = P{X(u) = k | X(t) = j},
0 ≤ t ≤ u, j, k ∈ J . The µjk appearing in (14.2) are now deterministic functions given by

µjk(t) = lim
u↓t

pjk(t, u)

u − t
.

For the time being the contractual functions A◦
j and a◦

jk are taken to be deterministic,

that is, the benefits depend only on the current state. Then the discounted reserves Wj(t) are
deterministic functions given by the integral expressions

Wj(t) =

∫

(t,∞)
v(τ)

∑

g

pjg(t, τ)



dA◦
g(τ) +

∑

h; h6=g

a◦
gh(τ) µgh(τ) dτ



 , (14.20)

which are easy to compute.
It follows that (14.19) reduces to

VarL(j) =

∫ ∞

0
p0j(0, τ)

∑

k; k 6=j

µjk(τ) H2
jk(τ) dτ. (14.21)
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The expression (14.21) was obtained by Ramlau-Hansen (1988) by use of martingale the-
orems applied to the compensated multivariate Markov counting process in combination with
the classical Thiele’s differential equation, implying that the life annuity benefits are abso-
lutely continuous. As for the qualitative part of the Hattendorff theorem, an examination
of the proof indicates that the special model assumptions are redundant: at the stage where
Thiele’s differential equation is invoked, all terms pertaining to intermediate transitions be-
tween visits to state j vanish.

It follows from Theorem 1 that not only are the losses created in different states uncorre-
lated, but so are also the losses created in respect of different visits to one and the same state.
The loss in connection with the n-th visit to state j is

L
(j)
n = M(T

(j)
n ) − M(S

(j)
n ) =

∫

(S
(j)
n ,T

(j)
n ]

dM(t),

the n-th term on the right of (14.17) or (14.18). (If there are fewer than n visits to state j, then

S
(j)
n = T

(j)
n = ∞ by definition and L

(j)
n = 0 since E|V | < ∞ implies limt→∞

∫∞
t

v dA = 0

almost surely.) Repeating the argument above, replacing Ij(t−) with 1[S
(j)
n < t ≤ T

(j)
n ] (also

a left-continuous function), one arrives at

VarL
(j)
n =

∫ ∞

0
p
(n)
0j (0, τ)

∑

k; k 6=j

µjk(τ) H2
jk(τ) dτ, (14.22)

where

p
(n)
0j (0, t) = P{S(j)

n < t ≤ T
(j)
n }

is the probability of sojourning in state j for the n-th time just before time t. Summing
(14.22) over n gives (14.21), a consequence of the general theorem.

The results above carry over to visits within a fixed time interval (t, u] since for any stop-
ping time T the truncated times (T ∨ t) ∧ u and t ∨ (T ∧ u) are also stopping times (∨ and ∧
form maximum and minimum, respectively); just replace

∫∞
0 by

∫ u
t . For any stopping time

T the FT -conditional variances of losses in state j after time T are obtained upon replacing
∫∞
0 by

∫∞
T and p

(n)
0j (0, τ) by the appropriate conditional probability.

F. Computational problems in more complex models

An immediate extension of the simple set-up in the previous paragraph, which does not destroy
the computability of the variance of the loss, consists in letting the contractual functions A◦

j
and a◦

jk depend on the past development of the policy. The expressions may become messy,

however.
An interesting issue is to study computational problems under non-Markov assumptions,

e.g. when the transition intensities are allowed to depend on the duration of the period
that has elapsed since the policy entered the current state. This would complicate matters
immensely since integrations would have to be performed over the times of transitions. In
principle a numerical procedure can always be arranged. Another possibility would be to let
the counting process be doubly stochastic.

Finally, it should be mentioned that the discount function and the contractual functions
could be made stochastic and independent of the development of the policy. Then computa-
tions would still be feasible by the rule of iterated expectations.

All the extensions indicated here present computational problems that do not pertain
particularly to Hattendorff’s and Thiele’s results, and this is not the right place to pursue
such technical issues.

14.4 Excerpts from martingale theory

A. Definition of martingale

Let (Ω,F , P ) be some probability space. A family F = {Ft}t≥0 of sub-sigma-algebras of F is
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called a filtration if it is non-decreasing, that is, Fs ⊆ Ft for s ≤ t. The index t represents time,
and Ft is some collection of F-events whose occurrence or non-occurrence is settled by time
t. Thus, F represents a description of the evolution of the internal history of the phenomena
encountered. It is assumed thet F is right-continuous, which means that Fs = ∩t;t>sFt.

A stochastic process {M(t)}t≥0 is said to be F-adapted if M(t) is measurable with respect
to Ft for each t. It is an F-martingale if it is F-adapted, E|M(t)| exists for all t, and

E (M(t) − M(s)|Fs) = 0 (14.1)

for s ≤ t. (Relations involving random variables are understood to hold almost surely.)

B. Basic properties of square integrable martingales

In what follows {M(t)}t≥0 is assumed to be a square integrable martingale, that is, (14.1)
holds and supt≥0E M2(t) < ∞. Let 0 = t0 < t1 < · · · be some partitioning of [0,∞), and
denote the increments of M over the intervals by

∆jM = M(tj) − M(tj−1). (14.2)

As straightforward consequences of the martingale property, the increments have conditional
zero means and covariances: for i < j < k,

E (∆jM | Fti ) = E
(

E (∆jM | Ftj−1 ) | Fti

)

= 0, (14.3)

Cov (∆jM,∆kM | Fti ) = E (∆jM ∆kM | Fti )

= E
(

∆jM E(∆kM | Ftk−1) | Fti

)

= 0. (14.4)

It follows that, for i < j < l ≤ ∞ and for H any square integrable F-adapted process,

E





l
∑

k=j

H(tk−1)∆kM | Fti





= E





l
∑

k=j

H(tk−1)E(∆kM | Ftk−1 ) | Fti





= 0, (14.5)

and

Var





l
∑

k=j

H(tk−1)∆kM | Fti





= E





l
∑

k=j

l
∑

k′=j

H(tk−1)H(tk′−1)E (∆kM∆k′M | Ftk−1∨tk′−1
) | Fti





= E





l
∑

k=j

H2(tk−1)E
(

(∆kM)2 | Ftk−1

)

| Fti



 . (14.6)

Integral analogues of (14.5) and (14.6), obtained by passing to the limit, are valid with
certain qualifications. Denote by Ft− the history as specified by F up to, but not including,
time t. It is a sub-sigma-algebra of Ft. Assume that the process H is predictable in the sense
that H(t) is Ft−-measurable for each t. Left-continuity certainly implies predictability. Now,
let s = ti < ti+1 < · · · < tl = t be a partitioning of [s, t]. Refine it indefinitely to obtain from
(14.5) that
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E

(

∫

(s,t]
H dM | Fs

)

= 0, (14.7)

and from (14.6) that

Var

(

∫

(s,t]
H dM | Fs

)

= E

(

∫

(s,t]
H2 d〈M〉 | Fs

)

, (14.8)

where 〈M〉 is the so-called variance process of M defined (informally) by

d〈M〉(t) = E
(

(dM(t))2 | Ft−
)

. (14.9)

As a special case, take H(t) = 1(tj−1,tj ](t), a left-continuous function of t. Then (14.8)

reduces to

Var (∆jM | Fti) = E (〈M〉(tj ) − 〈M〉(tj−1) | Fti )

= E

(

∫

(tj−1,tj ]
d〈M〉 | Fti

)

. (14.10)

C. Stopping times and optional sampling

So far the time points ti have been taken as fixed. It turns out that all results stated above
carry over to certain random times Ti, now to be defined. A nonnegative random variable T
is an F-stopping time if {T ≤ t} ∈ Ft,∀t ≥ 0, which means that the information provided
by the description of the history by F suffices to ascertain at any time whether or not T
has occurred. The collection of all events that are observable by time T is denoted by FT .
Formally, these are the events F ∈ F such that F ∩ {T ≤ t} ∈ Ft,∀t. Obviously they form a
sigma-algebra.

Doob’s fundamental optional sampling theorem states that (14.1) remains valid if s and t
are replaced by F-stopping times S and T . More precisely, if {M(t)}t≥0 is a right-continuous
F-martingale, which converges to a random variable M(∞) with finite mean, then

E (M(T ) − M(S)|FS) = 0 (14.11)

for S and T F-stopping times such that S ≤ T . Now, since all the results above rest on the
martingale property (14.1), they remain valid if the ti are replaced by F-stopping times Ti in
the presence of (14.11).

By necessity the present brief survey is imprecise at some points. Recommendable rigorous
expositions of martingale theory are e.g. the readable text by Gihman and Skorohod (1979)
or the recent one by Protter (1990).
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Addendum to Hattendorff’s Theorem and Thiele’s
Differential Equation generalized

Ragnar Norberg

A. Purpose of this note
Any specific application of the theory in Section 3 of the paper would demand that the
statewise reserves Vj be precisely defined. There is some latitude at this point, however,
and it turns out that Theorem 3 as stated may require that an appropriate definition
be used. Paragraph B of the present note adds rigour on this issue. Paragraph C offers
some guidance as to how to construct and compute the reserves in nontrivial cases.
Some technical lemmas are placed in the final Paragraph D.

Notation and results from the background paper are used without further expla-
nation (formula numbers in that paper indicate section and formula within the section
separated by decimal point, in contrast to the integer formula numbers internal to the
present note). We shall feel free also to employ certain basic concepts and results in
the theory of point processes and their martingales as presented in Paragraphs II.1-4
of Andersen & al. A number of statements about paths of stochastic processes are tac-
itly understood to be with the qualification ’almost surely’. We shall also frequently
use the fact that we are dealing only with processes of bounded variation without
explicitly saying so.

B. Supplement to Section 3
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The history of the state process throughout the time interval (0, t] is completely de-
scribed by the present state, X(t), the time of last entry into the present state, S(t),
and the “strict past” made up by the times of (possible) previous transitions and the
state arrived at upon each of those transitions (define the first transition to take place
at time 0, taking the process into state 0). Therefore, fairly generally, the reserve (2.2)
is of the form

VF(t) = f(S(t), t, U(t), X(t)), (14.12)

where U(t) is some (finite-dimensional) predictable semimartingale. Now, (14.12) may
be cast as

VF(t) =
∑

j

Ij(t)f(S(t), t, U(t), j) =
∑

j

Ij(t)f(Sj(t), t, U(t), j), (14.13)

where

Sj(t) = Ij(t)S(t) + (1 − Ij(t))t (14.14)

is S(t) during sojourns in state j and t otherwise. The statewise reserves introduced
at the end of Paragraph 3A may conveniently be defined as

Vj(t) = f(Sj(t), t, U(t), j), (14.15)

and, accordingly, Wj(t) = v(t)Vj(t).
Obviously, the definition of Sj(t) at times t when Ij(t) = 0 is immaterial. The

choice (14.14) reflects the fact that, even if we cannot predict times of transition of
the policy, we know just prior to any transition what S(t) will be and hence what
new value the reserve will assume upon the transition. The semimartingale Sj(t) is
continuous at (the random) times of transition into state j and also everywhere else
except at times t of transition out of state j, where it jumps from S(t) (< t) to t.

We are now in a position to explicate the arguments following (3.11) and leading
to Theorems 2 and 3. First, noting that

∑

k Ik ≡ 1, put

Ij(t)dWj(t) =
∑

k;k 6=j

Ik(t−)Ij(t)(Wj(t) −Wj(t−)) + Ij(t−)Ij(t)dWj(t)

=
∑

k;k 6=j

dNkj(t)v(t)(f(t, t, U(t), j) − f(t−, t−, U(t−), j)) (14.16)

+Ij(t−)Ij(t)dWj(t). (14.17)

where we have used that, as a matter of definition, Sj(τ ) = τ for all τ in the non-
degenerate interval [S(t−), t] if the policy enters state j at time t > 0. By Lemma 1
below (in Paragraph D), the predictable process f(t, t, U(t), j) has no jumps coinciding
with jumps of the counting processes, and so the sum in (14.16) is 0. By Lemma
3 below, the term in (14.17) is predictable (or, more presicely, the increment of a
predictable process). It follows that Ij(t)dWj(t) is predictable. Finally, by Lemma
2 below, Ij(t)dÃ

◦
j (t) is predictable since dÃ◦

j (t) is. Comparison of the predictable
(bounded variation) parts of (3.4) and (3.11) leads to Theorems 2 and 3.
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With the present definition of the statewise reserves it makes no difference if we
replace Wk(t−) with Wk(t) in (3.12) (and Vk(t) with Vk(t−) in (3.14)). This obser-
vation settles the apparent disagreement with the result (3.5) in Møller (1993). He
considers the case where the contractual payment functions, the transition intensities
and, hence, the reserve depend only on t and S(t) or, equivalently, on t and t − S(t)
(he uses U(t) to denote the latter).

C. Construction of the reserve
Usually Thiele’s differential equations are mobilized when the reserve cannot be put up
by a direct prospective argument, typically when the payments depend on the current
reserve. However, as long as the payments and the transition intensities do not depend
on the past, the statewise reserves remain functions of t only and can, therefore, be
determined by a set of simple differential equations. Real difficulties arise only when
payments and transition intensities are allowed to depend on the past in a more or
less complex manner; then the reserves will be functions of several variables and it is
rather obvious that they cannot be determined by just a set of first order ordinary
differential equations.

Let us look briefly at the case mentioned at the balance of the previous paragraph,
where payments, intensities, and hence the reserve depend on S(t) (and t). We seek the
two-dimensional statewise discounted reserve-functions Wj(s, t) (say), 0 ≤ s ≤ t ≤ n,
j ∈ J , where n is the time of expiry of the contract. Conditioning on whether or not
there is a transition out of state j within time n and, in case there is, the time and
the direction of the first such transition, we obtain the integral equation

Wj(s, t) =

∫ n

t

e−
∫ τ
t µj·(s,u)du

∑

k;k 6=j

µjk(s, τ )dτ

·(Ã◦
j (s, τ ) − Ã◦

j (s, t) + ã◦jk(s, τ ) +Wk(τ, τ )) (14.18)

+ e−
∫n

t µj·(s,u)du(Ã◦
j (s, n) − Ã◦

j (s, t)).

Again, we see that Wk(τ, τ ) can be replaced with Wk(τ−, τ−) since the integration
with respect to dτ annihilates the at most countable number of differences between
them. To determine the reserve functions, solve first the Wj(t, t) from the integral
equations with s = t, and then solve the Wj(s, t) from the general equations.

To obtain a differential form of the integral equation (14.18), add Ã◦
j (s, t) and

multiply by e−
∫ t
0 µj·(s,u)du on both sides, then differentiate with respect to t, and finally

divide by the common factor e−
∫ t
0 µj·(s,u)du, which gives the following equivalent of

(3.15):

dt(Wj(s, t) + Ã◦
j (s, t)) = −

∑

k;k 6=j

µjk(s, t)dt(ã◦jk(s, t) +Wk(t, t) −Wj(s, t)). (14.19)

D. Some auxiliary results

Lemma 1. If H is a predictable process, then

∫ t

0

H(τ−)dNjk(τ ) =

∫ t

0

H(τ )dNjk(τ ). (14.20)
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Consequently, H has no jumps in common with the counting processes.

Proof: Let Mjk be the martingale defined by dMjk(t) = dNjk(t) − λjk(t)dt. The
difference between the two integrals in (14.20) is

∫ t

0

(H(τ ) −H(τ−))dNjk(τ ) =

∫ t

0

(H(τ ) −H(τ−))λjk(τ )dτ

+

∫ t

0

(H(τ )−H(τ−))dMjk(τ ).

The first term on the right is zero because the integrand differs from 0 at most at a
countable set of points. Likewise, the second term is also 0 because its variance is

E

∫ t

0

(H(τ )−H(τ−))2λjk(τ )dτ.

The last assertion is an obvious implication of the argument above. �

Lemma 2. If A is a predictable semimartingale, then so is also the process H defined
by dH(t) = Ij(t)dA(t).

Proof: By the rule of integration by parts, we have the identities

dH(t) = dIj(t)A(t−) + Ij(t)dA(t) = dIj(t)A(t) + Ij(t−)dA(t).

Forming the difference between the last two expressions and using (3.1), gives

Ij(t)dA(t) = Ij(t−)dA(t) +
∑

k;k 6=j

(A(t) −A(t−))(dNkj(t) − dNjk(t)).

The first term on the right is predictable and the second term is 0 by Lemma 1. �

Lemma 3. If G is a semimartingale, then the process H defined by dH(t) = Ij(t−)Ij(t)dG(t)
is predictable.

Proof: Inserting the Doob-Meyer decomposition

dG(t) = dG0(t) +
∑

i6=k

Gik(t)(dNik(t) − λik(t)dt),

with G0(t) and the Gik(t) predictable, and noting that Ij(t−)Ij(t)dNik(t) = 0, we get

dH(t) = Ij(t−)Ij(t)dG0(t) −
∑

i6=k

Gik(t)λik(t)dt.

Here the first term is predictable by Lemma 2, and the second term is certainly pre-
dictable as it is continuous. �



Chapter 15

Financial mathematics in

insurance

15.1 Finance in insurance

Finance was always an essential part of insurance. Trivially, one might say, because
any business has to attend to its money affairs. However, for at least two reasons, in-
surance is not just any business. In the first place insurance products are not physical
goods or services, but financial contracts with obligations related to uncertain future
events. Therefore, pricing is not just a piece of accountancy involving the four basic
arithmetical operations, but requires assessment and management of risk by sophis-
ticated mathematical models and methods. In the second place, insurance contracts
are more or less long term (in life insurance for up to several decades), and they are
typically paid in advance (hence the term ’premium’ for ’price’ derived from French
’prime’ for ’first’). Therefore, the insurance industry is a major accumulator of capital,
and insurance companies especially pension funds are major institutional investors in
today’s society. It follows that the financial operations (investment strategy) of an in-
surance company may be as decisive of its revenues as its insurance operations (design
of products, risk management, premium rating, procedures of claims assessment, and
the pure randomness in the claims process). Accordingly one speaks of assets risk or
financial risk and liability risk or insurance risk. We anticipate here that financial risk
may well be the more severe: Insurance risk created by random deviations of individ-
ual claims from their expected is diversifiable in the sense that, by the law of large
numbers, it can be eliminated in a sufficiently large insurance portfolio. This notion
of diversification does not apply to catastrophe coverage and it does not account for
the risk associated with long term contracts

insurance
ic insurance risk
Financial risk created random economic events are
by booms, recessions and, rare but disastrous, crashes in the market as a whole

is not diversifiable; it is the uncertain events are part of our the world history non-
replicable averaged out in any meaningful sense. Financial risk created by the day-to-
day rises and falls of individual stocks, is not diversifiable

212
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on large random ups and downs is held to be indiversifiable since the entire portfolio
is affected by the development of the economy.

On this background one may ask why insurance mathematics traditionally centers
on measurement and control of the insurance risk. The answer may partly be found
in institutional circumstances: The insurance industry used to be heavily regulated,
solvency being the primary concern of the regulatory authority. Possible adverse devel-
opments of economic factors (e.g. inflation, weak returns on investment, low interest
rates, etc.) would be safeguarded against by placing premiums on the safe side. The
comfortable surpluses, which would typically accumulate under this regime, were re-
distributed as bonuses (dividends) to the policyholders only in arrears, after interest
and other financial parameters had been observed. Furthermore, the insurance indus-
try used to be separated from other forms of business and protected from competition
within itself, and severe restrictions were placed on its investment operations. In these
circumstances financial matters appeared to be something the traditional actuary did
not need to worry about. Another reason why insurance mathematics used to be void
of financial considerations was, of course, the absence of a well developed theory for
description and control of financial risk.

All this has changed. National and institutional borders have been downsized or
eliminated and regulations have been liberalized: Mergers between insurance compa-
nies and banks are now commonplace, new insurance products are being created and
put on the market virtually every day, by insurance companies and other financial
institutions as well, and without prior licencing by the supervisory authority. The
insurance companies of today find themselves placed on a fiercely competitive market.
Many new products are directly linked to economic indices, like unit-linked life insur-
ance and catastrophe derivatives. By so-called securitization also insurance risk can be
put on the market and thus open new possibilities of inviting investors from outside to
participate in risk that previously had to be shared solely between the participants in
the insurance insurance schemes. These developments in practical insurance coincide
with the advent of modern financial mathematics, which has equipped the actuaries
with a well developed theory within which financial risk and insurance risk can be
analyzed, quantified and controlled.

A new order of the day is thus set for the actuarial profession. The purpose of
this chapter is to give a glimpse into some basic ideas and results in modern finan-
cial mathematics and to indicate by examples how they may be applied to actuarial
problems involving management of financial risk.

15.2 Prerequisites

A. Probability and expectation.

Taking basic measure theoretic probability as a prerequisite, we represent the relevant
part of the world and its uncertainties by a probability space (Ω,F ,P). Here Ω is the
set of possible outcomes ω, F is a sigmaalgebra of subsets of Ω representing the events
to which we want to assign probabilities, and P : F 7→ [0, 1] is a probability measure.

A set A ∈ F such that P[A] = 0 is called a nullset, and a property that takes
place in all of Ω, except possibly on a nullset, is said to hold almost surely (a.s.).
If more than one probability measure are in play, we write “nullset (P)” and “a.s.
(P)” whenever emphasis is needed. Two probability measures P̃ and P are said to
be equivalent, written P̃ ∼ P, if they are defined on the same F and have the same
nullsets.
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Let G be some sub-sigmaalgebra of F . We denote the restriction of P to G by PG ;
PG[A] = P[A], A ∈ G. Note that also (Ω,G, PG) is a probability space.

A G-measurable random variable (r.v.) is a function X : Ω 7→ R such that
X−1(B) ∈ G for all B ∈ R, the Borel sets in R. We write X ∈ G in short.

The expected value of a r.v. X is the probability-weighted average E[X] =
∫

X dP =
∫

Ω
X(ω) dP(ω), provided this integral is well defined.

The conditional expected value of X, given G, is the r.v. E[X|G] ∈ G satisfying

E{E[X|G] Y } = E[XY ] (15.1)

for each Y ∈ G such that the expected value on the right exists. It is unique up to
nullsets (P). To motivate (15.1), consider the special case when G = σ{B1, B2, . . .}, the
sigma-algebra generated by the F-measurable sets B1, B2, . . ., which form a partition
of Ω. Being G-measurable, E[X|G] must be of the form

∑

k bk1[Bk]. Putting this
together with Y = 1[Bj ] into the relationship (15.1) we arrive at

E[X|G] =
∑

j

1[Bj ]

∫

Bj
X dP

P[Bj ]
,

as it ought to be. In particular, taking X = 1[A], we find the conditional probability
P[A|B] = P[A ∩B]/P[B].

One easily verifies the rule of iterated expectations, which states that, for H ⊂ G ⊂
F ,

E {E[X|G]| H} = E[X|H] . (15.2)

F. Change of measure.

If L is a r.v. such that L ≥ 0 a.s. (P) and E[L] = 1, we can define a probability
measure P̃ on F by

P̃[A] =

∫

A

LdP = E[1[A]L] . (15.3)

If L > 0 a.s. (P), then P̃ ∼ P.
The expected value of X w.r.t. P̃ is

Ẽ[X] = E[XL] (15.4)

if this integral exists; by the definition (15.3), the relation (15.4) is true for indicators,
hence for simple functions and, by passing to limits, it holds for measurable functions.
Spelling out (15.4) as

∫

X dP̃ =
∫

XLdP suggests the notation dP̃ = LdP or

dP̃

dP
= L . (15.5)

The function L is called the Radon-Nikodym derivative of P̃ w.r.t. P.
Conditional expectation under P̃ is formed by the rule

Ẽ[X|G] =
E[XL|G]

E[L|G]
. (15.6)

To see this, observe that, by definition,

Ẽ{Ẽ[X|G] Y } = Ẽ[XY ] (15.7)
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for all Y ∈ G. The expression on the left of (15.7) can be reshaped as

E{Ẽ[X|G] Y L} = E{Ẽ[X|G] E[L|G] Y } .

The expression on the right of (15.7) is

E[XY L] = E{E[XL|G] Y } .

It follows that (15.7) is true for all Y ∈ G if and only if

Ẽ[X|G] E[L|G] = E[XL|G] ,

which is the same as (15.6).
For X ∈ G we have

ẼG [X] = Ẽ[X] = E[XL] = E {X E[L|G]} = EG {X E[L|G]} , (15.8)

showing that

dP̃G
dPG

= E[L|G] . (15.9)

B. Stochastic processes.

To describe the evolution of random phenomena over some time interval [0, T ], we
introduce a family F = {Ft}0≤t≤T of sub-sigmaalgebras of F , where Ft represents the
information available at time t. More precisely, Ft is the set of events whose occurrence
or non-occurrence can be ascertained by time t. If no information is ever sacrificed,
we have Fs ⊂ Ft for s < t. We then say that F is a filtration, and (Ω,F ,F,P) is called
a filtered probability space.

A stochastic process is a family of r.v.-s, {Xt}0≤t≤T . It is said to be adapted to
the filtration F if Xt ∈ Ft for each t ∈ [0, T ], that is, at any time the current state
(and also the past history) of the process is fully known if we are currently provided
with the information F. An adapted process is said to be predictable if its value at any
time is entirely determined by its history in the strict past, loosely speaking. For our
purposes it is sufficient to think of predictable processes as being either left-continuous
or deterministic.

C. Martingales.

An adapted process X with finite expectation is a martingale if

E[Xt|Fs] = Xs

for s < t. The martingale property depends both on the filtration and on the probabil-
ity measure, and when these need emphasis, we shall say that X is martingale (F,P).
The definition says that, “on the average”, a martingale is always expected to remain
on its current level. One easily verifies that, conditional on the present information,
a martingale has uncorrelated future increments. Any integrable r.v. Y induces a
martingale {Xt}t≥0 defined by Xt = E[Y |Ft], a consequence of (15.2).

Abbreviate Pt = PFt , introduce

Lt =
dP̃t

dPt
,
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and put L = LT . By (15.9) we have

Lt = E[L|Ft] , (15.10)

which is a martingale (F,P).

D. Counting processes.

As the name suggests, a counting process is a stochastic process N = {Nt}0≤t≤T that
commences from zero (N0 = 0) and thereafter increases by isolated jumps of size 1
only. The natural filtration of N is FN = {FN

t }0≤t≤T , where FN
t = σ{Ns; s ≤ t} is

the history of N by time t. This is the smallest filtration to which N is adapted. The
strict past history of N at time t is denoted by FN

t−.
An FN -predictable process {Λt}0≤t≤T is called a compensator of N if the process

M defined by

Mt = Nt − Λt (15.11)

is a zero mean FN -martingale. If Λ is absolutely continuous, that is, of the form

Λt =

∫ t

0

λs ds ,

then the process λ is called the intensity of N . We may also define the intensity
informally by

λt dt = P [dNt = 1 | Ft−] = E [dNt | Ft−] ,

and we sometimes write the associated martingale (15.11) in differential form,

dMt = dNt − λt dt . (15.12)

A stochastic integral w.r.t. the martingale M is an FN -adapted process H of the
form

Ht = H0 +

∫ t

0

hs dMs , (15.13)

where H0 is FN
0 -measurable and h is an FN -predictable process such that H is inte-

grable. The stochastic integral is also a martingale.
A fundamental representation result states that every FN martingale is a stochastic

integral w.r.t. M . It follows that every integrable FN
t measurable r.v. is of the form

(15.13).

If H
(1)
t = H

(1)
0 +

∫ t

0
h

(1)
s dMs and H

(2)
t = H

(2)
0 +

∫ t

0
h

(2)
s dMs are stochastic integrals

with finite variance, then an easy heuristic calculation shows that

Cov[H
(1)
T , H

(2)
T |Ft] = E

[
∫ T

t

h(1)
s h(2)

s λs ds | Ft

]

, (15.14)

and, in particular,

Var[HT |Ft] = E

[∫ T

t

h2
sλs ds | Ft

]

.

H(1) and H(2) are said to be orthogonal if they have conditionally uncorrelated in-
crements, that is, the covariance in (15.14) is null. This is equivalent to saying that
H(1)H(2) is a martingale.
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The intensity is also called the infinitesimal characteristic if the counting process
since it entirely determines it probabilistic properties. If λt is deterministic, then Nt

is a Poisson process. If λ depends only on Nt−, then Nt is a Markov process.
A comprehensive textbook on counting processes in life history analysis is [3].

E. The Girsanov transform.

Girsanov’s theorem is a celebrated one in stochastics, and it is basic in mathematical
finance. We formulate and prove the counting process variation:

Theorem (Girsanov). Let Nt be a counting process with (F,P)-intensity λt, and let
λ̃t be a given non-negative F-adapted process such that λ̃t = 0 if and only if λt = 0.
Then there exists a probability measure P̃ such that P̃ ∼ P and N has (F, P̃)-intensity
λ̃t. The likelihood process (15.10) is

Lt = exp

(∫ t

0

(ln λ̃s − lnλs) dNs +

∫ t

0

(λs − λ̃s) ds

)

.

Proof: We shall give a constructive proof, starting from a guessed L in (15.5). Since
L must be strictly positive a.e. (P), a candidate would be L = LT , where

Lt = exp

(
∫ t

0

φs dNs +

∫ t

0

ψs ds

)

with φ predictable and ψ adapted.
In the first place, Lt should be a martingale (F,P). By Itô’s formula,

dLt = Lt ψt dt+ Lt−(eφt − 1) dNt

= Lt

(

ψt +
(

eφt − 1
)

λt

)

dt+ Lt−
(

eφt − 1
)

dMt .

The representation result (15.13) tells us that to make L a martingale, we must make
the drift term vanish, that is,

ψt =
(

1 − eφt

)

λt , (15.15)

whereby

dLt = Lt−
(

eφt − 1
)

dMt ,

In the second place, we want to determine φt such that the process M̃ given by

dM̃t = dNt − λ̃t dt (15.16)

is a martingale (F, P̃). Thus, we should have Ẽ[M̃t|Fs] = M̃s or, by (15.6),

E

[

M̃tL|Fs

]

E [L|Fs]
= M̃s .

Using the martingale property (15.10) of Lt, this is the same as

E

[

M̃tLt|Fs

]

= M̃sLs
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i.e. M̃tLt should be a martingale (F,P). Since

d(M̃tLt) = (−λ̃t dt)Lt + M̃t(e
φt − 1)Lt(−λt dt)

+
(

(M̃t− + 1)Lt−e
φt − M̃t−Lt−)

)

dNt

= Lt dt
(

−λ̃t + eφtλt

)

+
(

(M̃t− + 1)Lt−e
φt − M̃t−Lt−)

)

dMt .

we conclude that the martingale property is obtained by choosing φt = ln λ̃t − lnλt.
The multivariate case goes in the same way; just replace by vector-valued processes.

15.3 A Markov chain financial market - Intro-

duction

A. Motivation.

The theory of diffusion processes, with its wealth of powerful theorems and model
variations, is an indispensable toolkit in modern financial mathematics. The seminal
papers of Black and Scholes [10] and Merton [32] were crafted with Brownian motion,
and so were most of the almost countless papers on arbitrage pricing theory and its
bifurcations that followed over the past quarter of a century.

A main course of current research, initiated by the martingale approach to arbi-
trage pricing ([24] and [25]), aims at generalization and unification. Today the core
of the matter is well understood in a general semimartingale setting, see e.g. [13].
Another course of research investigates special models, in particular various Levy mo-
tion alternatives to the Brownian driving process, see e.g. [18] and [40]. Pure jump
processes have been widely used in finance, ranging from plain Poisson processes in-
troduced in [33] to quite general marked point processes, see e.g. [8]. And, as a
pedagogical exercise, the market driven by a binomial process has been intensively
studied since it was launched in [12].

The present paper undertakes to study a financial market driven by a continuous
time homogeneous Markov chain. The idea was launched in [39] and reappeared in [19],
the context being limited to modelling of the spot rate of interest. The purpose of the
present study is two-fold: In the first place, it is instructive to see how well established
theory turns out in the framework of a general Markov chain market. In the second
place, it is worthwhile investigating the feasibility of the model from a theoretical as
well as from a practical point of view. Poisson driven markets are accommodated as
special cases.

B. Preliminaries: Notation and some useful results.

Vectors and matrices are denoted by in bold letters, lower and upper case, respectively.
They may be equipped with topscripts indicating dimensions, e.g. An×m has n rows
and m columns. We may write A = (ajk)k∈K

j∈J to emphasize the ranges of the row
index j and the column index k. The transpose of A is denoted by A′. Vectors are
invariably taken to be of column type, hence row vectors appear as transposed. The
identity matrix is denoted by I, the vector with all entries equal to 1 is denoted by
1, and the vector with all entries equal to 0 is denoted by 0. By Dj=1,...,n(aj), or
just D(a), is meant the diagonal matrix with the entries of a = (a1, . . . , an)′ down
the principal diagonal. The n-dimensional Euclidean space is denoted by R

n, and the
linear subspace spanned by the columns of An×m is denoted by R(A).
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A diagonalizable square matrix An×n can be represented as

A = ΦDj=1,...,n(ρj)Φ
−1 =

n
∑

j=1

ρjφjψ
′
j , (15.1)

where the φj are the columns of Φn×n and the ψ′
j are the rows of Φ−1. The ρj are

the eigenvalues of A, and φj and ψ′
j are the corresponding right and left eigenvectors,

respectively. Eigenvectors (right or left) corresponding to eigenvalues that are distin-
guishable and non-null are mutually orthogonal. These results can be looked up in
e.g. [30].

The exponential function of An×n is the n× n matrix defined by

exp(A) =
∞
∑

p=0

1

p!
A

p = ΦDj=1,...,n(eρj )Φ−1 =
n
∑

j=1

eρjφjψ
′
j , (15.2)

where the last two expressions follow from (15.1). The matrix exp(A) has full rank.
If Λn×n is positive definite symmetric, then 〈ζ1, ζ2〉Λ = ζ′1Λζ2 defines an inner

product on R
n. The corresponding norm is given by ‖ζ‖

Λ
= 〈ζ, ζ〉1/2

Λ
. If Fn×m has

full rank m (≤ n), then the 〈 · , · 〉
Λ
-projection of ζ onto R(F) is

ζ
F

= PFζ , (15.3)

where the projection matrix (or projector) PF is

PF = F(F′
ΛF)−1

F
′
Λ . (15.4)

The projection of ζ onto the orthogonal complement R(F)⊥ is

ζ
F⊥ = ζ − ζ

F
= (I − PF)ζ .

Its squared length, which is the squared 〈 · , · 〉
Λ
-distance from ζ to R(F), is

‖ζ
F⊥‖2

Λ
= ‖ζ‖2

Λ
− ‖ζ

F
‖2
Λ

= ζ
′
Λ(I − PF)ζ . (15.5)

The cardinality of a set Y is denoted by |Y|. For a finite set it is just its number
of elements.

15.4 The Markov chain market

A. The continuous time Markov chain.

At the base of everything (although slumbering in the background) is some probability
space (Ω,F , P).

Let {Yt}t≥0 be a continuous time Markov chain with finite state space Y =
{1, . . . , n}. We assume that it is time homogeneous so that the transition probabilities

pjk
t = P[Ys+t = k | Ys = j]

depend only on the length of the transition period. This implies that the transition
intensities

λjk = lim
t↘0

pjk
t

t
, (15.1)
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j 6= k, exist and are constant. To avoid repetitious reminders of the type “j, k ∈ Y”,
we reserve the indices j and k for states in Y throughout. We will frequently refer to

Yj = {k; λjk > 0} ,

the set of states that are directly accessible from state j, and denote the number of
such states by

nj = |Yj | .
Put

λjj = −λj· = −
∑

k;k∈Yj

λjk

(minus the total intensity of transition out of state j). We assume that all states
intercommunicate so that pjk

t > 0 for all j, k (and t > 0). This implies that nj > 0 for
all j (no absorbing states). The matrix of transition probabilities,

Pt = (pjk
t ) ,

and the infinitesimal matrix,
Λ = (λjk) ,

are related by (F.41), which in matrix form reads Λ = limt↘0
1
t
(Pt − I), and by the

backward and forward Kolmogorov differential equations,

d

dt
Pt = PtΛ = ΛPt . (15.2)

Under the side condition P0 = I, (15.2) integrates to

Pt = exp(Λt) . (15.3)

In the representation (15.2),

Pt = ΦDj=1,...,n(eρjt)Φ−1 =
n
∑

j=1

eρjt
φjψ

′
j , (15.4)

the first (say) eigenvalue is ρ1 = 0, and corresponding eigenvectors are φ1 = 1 and
ψ′

1 = (p1, . . . , pn) = limt↗∞(pj1
t , . . . , p

jn
t ), the stationary distribution of Y . The

remaining eigenvalues, ρ2, . . . , ρn, are all strictly negative so that, by (15.4), the tran-
sition probabilities converge exponentially to the stationary distribution as t increases.

Introduce

Ij
t = 1[Yt = j] , (15.5)

the indicator of the event that Y is in state j at time t, and

N jk
t = |{s; 0 < s ≤ t, Ys− = j , Ys = k}| , (15.6)

the number of direct transitions of Y from state j to state k ∈ Y j in the time interval
(0, t]. For k /∈ Yj we define N jk

t ≡ 0. Taking Y to be right-continuous, the same goes
for the indicator processes Ij and the counting processes N jk. As is seen from (15.5),
(15.6), and the obvious relationships

Yt =
∑

j

jIj
t , Ij

t = Ij
0 +

∑

k;k 6=j

(Nkj
t −N jk

t ) ,
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the state process, the indicator processes, and the counting processes carry the same
information, which at any time t is represented by the sigma-algebra FY

t = σ{Ys; 0 ≤
s ≤ t}. The corresponding filtration, denoted by FY = {FY

t }t≥0, is taken to satisfy
the usual conditions of right-continuity (Ft = ∩u>tFu) and completeness (F0 contains
all subsets of P-nullsets), and F0 is assumed to be the trivial (∅,Ω). This means,
essentially, that Y is right-continuous (hence the same goes for the I j and the N jk)
and that Y0 deterministic.

The compensated counting processes M jk, j 6= k, defined by

dM jk
t = dN jk

t − Ij
t λ

jk dt (15.7)

and M jk
0 = 0, are zero mean, square integrable, mutually orthogonal martingales w.r.t.

(FY , P).
We now turn to the subject matter of our study and, referring to introductory

texts like [9] and [43], take basic notions and results from arbitrage pricing theory as
prerequisites.

B. The continuous time Markov chain market.

We consider a financial market driven by the Markov chain described above. Thus, Yt

represents the state of the economy at time t, FY
t represents the information available

about the economic history by time t, and FY represents the flow of such information
over time.

In the market there are m+1 basic assets, which can be traded freely and friction-
lessly (short sales are allowed, and there are no transaction costs). A special role is
played by asset No. 0, which is a “locally risk-free” bank account with state-dependent
interest rate

rt = rYt =
∑

j

Ij
t r

j ,

where the state-wise interest rates rj , j = 1, . . . , n, are constants. Thus, its price
process is

Bt = exp

(∫ t

0

rs ds

)

= exp

(

∑

j

rj

∫ t

0

Ij
s ds

)

,

with dynamics

dBt = Bt rt dt = Bt

∑

j

rjIj
t dt .

(Setting B0 = 1 a just a matter of convention.)
The remaining m assets, henceforth referred to as stocks, are risky, with price

processes of the form

Si
t = exp





∑

j

αij

∫ t

0

Ij
s ds+

∑

j

∑

k∈Yj

βijkN jk
t



 , (15.8)

i = 1, . . . , m, where the αij and βijk are constants and, for each i, at least one of the
βijk is non-null. Thus, in addition to yielding state-dependent returns of the same
form as the bank account, stock No. i makes a price jump of relative size

γijk = exp
(

βijk
)

− 1
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upon any transition of the economy from state j to state k. By the general Itô’s
formula, its dynamics is given by

dSi
t = Si

t−





∑

j

αijIj
t dt+

∑

j

∑

k∈Yj

γijkdN jk
t



 . (15.9)

Taking the bank account as numeraire, we introduce the discounted stock prices
S̃i

t = Si
t/Bt, i = 0, . . . ,m. (The discounted price of the bank account is B̃t ≡ 1, which

is certainly a martingale under any measure). The discounted stock prices are

S̃i
t = exp





∑

j

(αij − rj)

∫ t

0

Ij
s ds+

∑

j

∑

k∈Yj

βijkN jk
t



 , (15.10)

with dynamics

dS̃i
t = S̃i

t−





∑

j

(αij − rj)Ij
t dt+

∑

j

∑

k∈Yj

γijkdN jk
t



 , (15.11)

i = 1, . . . ,m.
We stress that the theory we are going to develop does not aim at explaining

how the prices of the basic assets emerge from supply and demand, business cycles,
investment climate, or whatever; they are exogenously given basic entities. (And God
said “let there be light”, and there was light, and he said “let there also be these
prices”.) The purpose of the theory is to derive principles for consistent pricing of
financial contracts, derivatives, or claims in a given market.

C. Portfolios.

A dynamic portfolio or investment strategy is an m+ 1-dimensional stochastic process

θ
′
t = (ηt, ξ

′
t) ,

where ηt represents the number of units of the bank account held at time t, and the
i-th entry in

ξt = (ξ1t , . . . , ξ
m
t )′

represents the number of units of stock No. i held at time t. As it will turn out, the
bank account and the stocks will appear to play different parts in the show, the latter
being the more visible. It is, therefore, convenient to costume the two types of assets
and their corresponding portfolio entries accordingly. To save notation, however, it is
useful also to work with double notation

θt = (θ0t , . . . , θ
m
t )′ ,

with θ0t = ηt, θ
i
t = ξi

t, i = 1, . . . , m, and work with

S
∗
t = (S0

t , . . . , S
m
t )′ , S0

t = Bt .

The portfolio θ is adapted to FY (the investor cannot see into the future), and the
shares of stocks, ξ, must also be FY -predictable (the investor cannot, e.g. upon a
sudden crash of the stock market, escape losses by selling stocks at prices quoted just
before and hurry the money over to the locally risk-free bank account.)
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The value of the portfolio at time t is

V θ
t = ηtBt +

m
∑

i=0

ξi
tS

i
t = ηtBt + ξ′tSt = θ

′
tS

∗
t

Henceforth we will mainly work with discounted prices and values and, in accor-
dance with (15.10), equip their symbols with a tilde. The discounted value of the
portfolio at time t is

Ṽ θ
t = ηt + ξ′t S̃t = θ

′
t S̃

∗
t . (15.12)

The strategy θ is self-financing (SF) if dV θ
t = θ′

t dS
∗
t or, equivalently,

dṼ θ
t = θ

′
t dS̃

∗
t =

m
∑

i=1

ξi
t dS̃

i
t . (15.13)

We explain the last step: Put Yt = B−1
t , a continuous process. The dynamics of the

discounted prices S̃∗
t = YtS

∗
t is then dS̃∗

t = dYtS
∗
t + Yt dS

∗
t . Thus, for Ṽ θ

t = YtV
θ

t , we
have

dṼ θ
t = dYt V

θ
t + Yt dV

θ
t = dYt θ

′
t S

∗
t + Ytθ

′
t dS

∗
t = θ

′
t (dYtS

∗
t + Yt dS

∗
t ) = θ

′
t dS̃

∗
t ,

hence the property of being self-financing is preserved under discounting.
The SF property says that, after the initial investment of V θ

0 , no further investment
inflow or dividend outflow is allowed. In integral form:

Ṽ θ
t = Ṽ θ

0 +

∫ t

0

θ
′
s dS̃

∗
s = Ṽ θ

0 +

∫ t

0

ξ
′
s dS̃s . (15.14)

Obviously, a constant portfolio θ is SF; its discounted value process is Ṽ θ
t = θ′ S̃∗

t ,
hence (15.13) is satisfied. More generally, for a continuous portfolio θ we would have
dṼt(θ) = dθ′

t S̃
∗
t +θ′t dS̃

∗
t , and the self-financing condition would be equivalent to the a

budget constraint dθ′
t S̃

∗
t = 0, which says that any purchase of assets must be financed

by a sale of some other assets. We urge to say that we shall typically be dealing with
portfolios that are not continuous and, in fact, not even right-continuous so that “dθt”
is meaningless (integrals with respect to the process θ are not well defined).

D. Absence of arbitrage.

An SF portfolio θ is called an arbitrage if, for some t > 0,

V θ
0 < 0 and V θ

t ≥ 0 a.s. P ,

or, equivalently,
Ṽ θ

0 < 0 and Ṽ θ
t ≥ 0 a.s. P .

A basic requirement on a well-functioning market is the absence of arbitrage. The
assumption of no arbitrage, which appears very modest, has surprisingly far-reaching
consequences as we shall see.

A martingale measure is any probability measure P̃ that is equivalent to P and
such that the discounted asset prices S̃∗

t are martingales (F, P̃). The fundamental
theorem of arbitrage pricing says: If there exists a martingale measure, then there is
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no arbitrage. This result follows from easy calculations starting from (15.14): Forming
expectation Ẽ under P̃ and using the martingale property of S̃∗ under P̃, we find

E[Ṽ θ
t ] = Ṽ θ

0 + E[

∫ t

0

ξ
′
s dS̃s] = Ṽ θ

0

(the stochastic integral is a martingale). It is seen that arbitrage is impossible.
We return now to our special Markov chain driven market. Let

Λ̃ = (λ̃jk)

be an infinitesimal matrix that is equivalent to Λ in the sense that λ̃jk = 0 if and only
if λjk = 0. By Girsanov’s theorem, there exists a measure P̃, equivalent to P, under
which Y is a Markov chain with infinitesimal matrix Λ̃. Consequently, the processes
M̃ jk, j = 1, . . . , n, k ∈ Yj , defined by

dM̃ jk
t = dN jk

t − Ij
t λ̃

jk dt , (15.15)

and M̃ jk
0 = 0, are zero mean, mutually orthogonal martingales w.r.t. (FY , P̃). Rewrite

(15.11) as

dS̃i
t = S̃i

t−





∑

j



αij − rj +
∑

k∈Yj

γijkλ̃jk



 Ij
t dt+

∑

j

∑

k∈Yj

γijkdM̃ jk
t



 , (15.16)

i = 1, . . . ,m. The discounted stock prices are martingales w.r.t. (FY , P̃) if and only if
the drift terms on the right vanish, that is,

αij − rj +
∑

k∈Yj

γijkλ̃jk = 0 , (15.17)

j = 1, . . . , n, i = 1, . . . ,m. From general theory it is known that the existence of such
an equivalent martingale measure P̃ implies absence of arbitrage.

The relation (15.17) can be cast in matrix form as

rj
1 −αj = Γ

j
λ̃

j
, (15.18)

j = 1, . . . , n, where 1 is m× 1 and

α
j =

(

αij
)

i=1,...,m
, Γ

j =
(

γijk
)k∈Yj

i=1,...,m
, λ̃

j
=
(

λ̃jk
)

k∈Yj
.

The existence of an equivalent martingale measure is equivalent to the existence of a

solution λ̃
j

to (15.18) with all entries strictly positive. Thus, the market is arbitrage-
free if (and we can show only if) for each j, rj1 − αj is in the interior of the convex
cone of the columns of Γj .

Assume henceforth that the market is arbitrage-free so that (15.16) reduces to

dS̃i
t = S̃i

t−
∑

j

∑

k∈Yj

γijkdM̃ jk
t , (15.19)

where the M̃ jk defined by (15.15) are martingales w.r.t. (FY , P̃) for some measure P̃

that is equivalent to P.
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Inserting (15.19) into (15.13), we find that θ is SF if and only if

dṼ θ
t =

∑

j

∑

k∈Yj

m
∑

i=1

ξi
tS̃

i
t−γ

ijkdM̃ jk
t , (15.20)

implying that Ṽ θ is a martingale w.r.t. (FY , P̃) and, in particular,

Ṽ θ
t = Ẽ[Ṽ θ

T | Ft] . (15.21)

Here Ẽ denotes expectation under P̃. (Note that the tilde, which in the first place was
introduced to distinguish discounted values from the nominal ones, is also attached
to the equivalent martingale measure and certain related entities. This usage is moti-
vated by the fact that the martingale measure arises from the discounted basic price
processes, roughly speaking.)

E. Attainability.

A T -claim is a contractual payment due at time T . Formally, it is an FY
T -measurable

random variable H with finite expected value. The claim is attainable if it can be
perfectly duplicated by some SF portfolio θ, that is,

Ṽ θ
T = H̃ . (15.22)

If an attainable claim should be traded in the market, then its price must at any
time be equal to the value of the duplicating portfolio in order to avoid arbitrage.
Thus, denoting the price process by πt and, recalling (15.21) and (15.22), we have

π̃t = Ṽ θ
t = Ẽ[H̃ | Ft] , (15.23)

or

πt = Ẽ

[

e−
∫T

t rH
∣

∣

∣ Ft

]

. (15.24)

By (15.23) and (15.20), the dynamics of the discounted price process of an attain-
able claim is

dπ̃t =
∑

j

∑

k∈Yj

m
∑

i=1

ξi
tS̃

i
t−γ

ijkdM̃ jk
t . (15.25)

F. Completeness.

Any T -claim H as defined above can be represented as

H̃ = Ẽ[H̃] +

∫ T

0

∑

j

∑

k∈Yj

ζjk
t dM̃ jk

t , (15.26)

where the ζjk
t are FY -predictable and integrable processes. Conversely, any random

variable of the form (15.26) is, of course, a T -claim. By virtue of (15.22), and (15.20),
attainability of H means that

H̃ = Ṽ θ
0 +

∫ T

0

dṼ θ
t

= Ṽ θ
0 +

∫ T

0

∑

j

∑

k∈Yj

∑

i

ξi
tS̃

i
t−γ

ijkdM̃ jk
t . (15.27)
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Comparing (15.26) and (15.27), we see that H is attainable iff there exist predictable
processes ξ1t , . . . , ξ

m
t such that

m
∑

i=1

ξi
tS̃

i
t−γ

ijk = ζjk
t ,

for all j and k ∈ Yj . This means that the nj -vector

ζ
j
t = (ζjk

t )k∈Yj

is in R(Γj ′).
The market is complete if every T -claim is attainable, that is, if every nj -vector is

in R(Γj ′). This is the case if and only if rank(Γj) = nj , which can be fulfilled for each
j only if m ≥ maxj nj .

15.5 Arbitrage-pricing of derivatives in a com-

plete market

A. Differential equations for the arbitrage-free price.

Assume that the market is arbitrage-free and complete so that prices of T -claims are
uniquely given by (15.23) or (15.24).

Let us for the time being consider a T -claim of the form

H = h(YT , S
`
T ) . (15.1)

Examples are a European call option on stock No. ` defined by H = (S`
T − K)+, a

caplet defined by H = (rT − g)+ = (rYT − g)+, and a zero coupon T -bond defined by
H = 1.

For any claim of the form (15.1) the relevant state variables involved in the condi-
tional expectation (15.24) are t, Yt, S

`
t , hence πt is of the form

πt =
n
∑

j=1

Ij
t f

j(t, S`
t ) , (15.2)

where the

f j(t, s) = Ẽ

[

e−
∫ T

t rH
∣

∣

∣
Yt = j, S`

t = s
]

(15.3)

are the state-wise price functions.
The discounted price (15.23) is a martingale w.r.t. (FY , P̃). Assume that the

functions f j(t, s) are continuously diferentiable. Using Itô on

π̃t = e−
∫ t
0 r

n
∑

j=1

Ij
t f

j(t, S`
t ) , (15.4)

we find

dπ̃t = e−
∫ t
0 r
∑

j

Ij
t

(

−rj f j(t, S`
t ) +

∂

∂t
f j(t, S`

t ) +
∂

∂s
f j(t, S`

t )S
`
tα

`j

)

dt

+e−
∫ t
0 r
∑

j

∑

k∈Yj

(

fk(t, S`
t−(1 + γ`jk)) − f j(t, S`

t−)
)

dN jk
t
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= e−
∫ t
0 r
∑

j

Ij
t

(

−rj f j(t, S`
t ) +

∂

∂t
f j(t, S`

t ) +
∂

∂s
f j(t, S`

t )S
`
tα

`j

+
∑

k∈Yj

{fk(t, S`
t−(1 + γ`jk)) − f j(t, S`

t−)}λ̃jk
)

dt

+e−
∫ t
0 r
∑

j

∑

k∈Yj

(

fk(t, S`
t−(1 + γ`jk)) − f j(t, S`

t−)
)

dM̃ jk
t . (15.5)

By the martingale property, the drift term must vanish, and we arrive at the non-
stochastic partial differential equations

−rj f j(t, s) +
∂

∂t
f j(t, s) +

∂

∂s
f j(t, s)sα`j

+
∑

k∈Yj

(

fk(t, s(1 + γ`jk)) − f j(t, s)
)

λ̃jk = 0 , (15.6)

j = 1, . . . , n, which are to be solved subject to the side conditions

f j(T, s) = h(j, s) , (15.7)

j = 1, . . . , n.
In matrix form, with

R = Dj=1,...,n(rj) , A
` = Dj=1,...,n(α`j) ,

and other symbols (hopefully) self-explaining, the differential equations and the side
conditions are

−Rf(t, s) +
∂

∂t
f(t, s) + sA` ∂

∂s
f(t, s) + Λ̃f(t, s(1 + γ)) = 0 , (15.8)

f(T, s) = h(s) . (15.9)

B. Identifying the strategy.

Once we have determined the solution f j(t, s), j = 1, . . . , n, the price process is known
and given by (15.2).

The duplicating SF strategy can be obtained as follows. Setting the drift term to
0 in (15.5), we find the dynamics of the discounted price;

dπ̃t = e−
∫ t
0 r
∑

j

∑

k∈Yj

(

fk(t, S`
t−(1 + γ`jk)) − f j(t, S`

t−)
)

dM̃ jk
t . (15.10)

Identifying the coefficients in (15.10) with those in (15.25), we obtain, for each state
j, the equations

m
∑

i=1

ξi
tS

i
t−γ

ijk = fk(t, S`
t−(1 + γ`jk)) − f j(t, S`

t−) , (15.11)

k ∈ Yj . The solution ξj
t = (ξi,j

t )′i=1,...,m (say) certainly exists since rank(Γj) ≤ m, and
it is unique iff rank(Γj) = m. Furthermore, it is a function of t and St− and is thus
predictable. This simplistic argument works on the open intervals between the jumps
of the process Y , where dM̃ jk

t = −Ij
t λ̃

jk dt. For the dynamics (15.10) and (15.25) to
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be the same also at jump times, the coefficients must clearly be left-continuous. We
conclude that

ξt =
n
∑

j=1

Ij
t−ξt ,

which is predictable.
Finally, η is determined upon combining (15.12), (15.23), and (15.4):

ηt = e−
∫ t
0 r

n
∑

j=1

(

Ij
t f

j(t, S`
t ) − Ij

t−

m
∑

i=1

ξi,j
t Si

t

)

.

C. The Asian option.

As an example of a path-dependent claim, let us consider an Asian option, which

essentially is a T -claim of the form H =
(

∫ T

0
S`

τ dτ −K
)+

, where K ≥ 0. The price

process is

πt = Ẽ

[

e−
∫T

t r

(
∫ T

0

S`
τ dτ −K

)+
∣

∣

∣

∣

∣

FY
t

]

=
n
∑

j=1

Ij
t f

j

(

t, S`
t ,

∫ t

0

S`
τ dτ

)

,

where

f j(t, s, u) = Ẽ

[

e−
∫T
t r

(∫ T

t

S`
τ + u−K

)+
∣

∣

∣

∣

∣

Yt = j, S`
t = s

]

.

The discounted price process is

π̃t = e−
∫ t
0 r

n
∑

j=1

Ij
t f

j

(

t, S`
t ,

∫ t

0

S`
s

)

.

We obtain partial differential equations in three variables.
The special case K = 0 is simpler, with only two state variables.

D. Interest rate derivatives.

A particularly simple, but still important, class of claims are those of the form H =
h(YT ). Interest rate derivatives of the form H = h(rT ) are included since rT = rYT .
For such claims the only relevant state variables are t and Yt, so that the function in
(15.3) depends only on t and j. The equation (15.6) reduces to

d

dt
f j

t = rjf j
t −

∑

k∈Yj

(fk
t − f j

t )λ̃jk , (15.12)

and the side condition is (put h(j) = hj)

f j
T = hj . (15.13)

In matrix form,
d

dt
ft = (R̃ − Λ̃)ft ,
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subject to
fT = h .

The solution is

ft = exp{(Λ̃ − R)(T − t)}h . (15.14)

It depends on t and T only through T − t.
In particular, the zero coupon bond with maturity T corresponds to h = 1. We

will henceforth refer to it as the T -bond in short and denote its price process by p(t, T )
and its state-wise price functions by p(t, T ) = (pj(t, T ))j=1,...,n;

p(t, T ) = exp{(Λ̃ − R)(T − t)}1 . (15.15)

For a call option on a U -bond, exercised at time T (< U) with price K, h has
entries hj = (pj(T, U) −K)+.

In (15.14) – (15.15) it may be useful to employ the representation shown in (15.2),

exp{(Λ̃ − R)(T − t)} = Φ̃Dj=1,...,n(eρ̃j(T−t)) Φ̃−1 , (15.16)

say.

15.6 Numerical procedures

A. Simulation.

The homogeneous Markov process {Yt}t∈[0,T ] is simulated as follows: Let K be the
number of transitions between states in [0, T ], and let T1, . . . , TK be the successive
times of transition. The sequence {(Tn, YTn)}n=0,...,K is generated recursively, starting
from the initial state Y0 at time T0 = 0, as follows. Having arrived at Tn and YTn ,
generate the next waiting time Tn+1 − Tn as an exponential variate with parameter
λYn· (e.g. − ln(Un)/λYn·, where Un has a uniform distribution over [0, 1]), and let the
new state YTn+1 be k with probability λYnk/λYn·. Continue in this manner K + 1
times until TK < T ≤ TK+1.

B. Numerical solution of differential equations.

Alternatively, the differential equations must be solved numerically. For interest rate
derivatives, which involve only ordinary first order differential equations, a Runge
Kutta will do. For stock derivatives, which involve partial first order differential equa-
tions, one must employ a suitable finite difference method, see e.g. [46].

15.7 Risk minimization in incomplete markets

A. Incompleteness.

The notion of incompleteness pertains to situations where a contingent claim cannot
be duplicated by an SF portfolio and, consequently, does not receive a unique price
from the no arbitrage postulate alone.

In Paragraph 15.4F we were dealing implicitly with incompleteness arising from a
scarcity of traded assets, that is, the discounted basic price processes are incapable of
spanning the space of all martingales w.r.t. (FY , P̃) and, in particular, reproducing
the value (15.26) of every financial derivative (function of the basic asset prices).
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Incompleteness also arises when the contingent claim is not a purely financial
derivative, that is, its value depends also on circumstances external to the financial
market. We have in mind insurance claims that are caused by events like death or fire
and whose claim amounts are e.g. inflation adjusted or linked to the value of some
investment portfolio.

In the latter case we need to work in an extended model specifying a basic prob-
ability space with a filtration F = {Ft}t≥0 containing FY and satisfying the usual
conditions. Typically it will be the natural filtration of Y and some other process
that generates the insurance events. The definitions and conditions laid down in Para-
graphs 15.4C-E are modified accordingly, so that adaptedness of η and predictability
of ξ are taken to be w.r.t. (F,P) (keeping the symbol P for the basic probability
measure), a T -claim H is FT measurable, etc.

B. Risk minimization.

Throughout the remainder of the paper we will mainly be working with discounted
prices and values without any other mention than the notational tilde. The reason is
that the theory of risk minimization rests on certain martingale representation results
that apply to discounted prices under a martingale measure. We will be content to
give just a sketchy review of some main concepts and results from the seminal paper
of Föllmer and Sondermann [21].

Let H̃ be a T -claim that is not attainable. This means that an admissible portfolio
θ satisfying

Ṽ θ
T = H̃

cannot be SF. The cost, C̃θ
t , of the portfolio by time t is defined as that part of the

value that has not been gained from trading:

C̃θ
t = Ṽ θ

t −
∫ t

0

ξ
′
τdS̃τ .

The risk at time t is defined as the mean squared outstanding cost,

R̃t = Ẽ

[

(C̃θ
T − C̃θ

t )2
∣

∣

∣
Ft

]

. (15.1)

By definition, the risk of an admissible portfolio θ is

R̃θ
t = Ẽ

[

(H̃ − Ṽ θ
t −

∫ T

t

ξ
′
τdS̃τ )2

∣

∣

∣

∣

Ft

]

,

which is a measure of how well the current value of the portfolio plus future trading
gains approximates the claim. The theory of risk minimization takes this entity as
its object function and proves the existence of an optimal admissible portfolio that
minimizes the risk (15.1) for all t ∈ [0, T ]. The proof is constructive and provides a
recipe for how to actually determine the optimal portfolio.

One sets out by defining the intrinsic value of H̃ at time t as

Ṽ H
t = Ẽ

[

H̃ | Ft

]

.

Thus, the intrinsic value process is the martingale that represents the natural current
forecast of the claim under the chosen martingale measure. By the Galchouk-Kunita-
Watanabe representation, it decomposes uniquely as

Ṽ H
t = Ẽ[H̃] +

∫ t

0

ξ
H′

t dS̃t + LH
t ,
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where LH is a martingale w.r.t. (F, P̃) which is orthogonal to S̃. The portfolio θH de-
fined by this decomposition minimizes the risk process among all admissible strategies.
The minimum risk is

R̃H
t = Ẽ

[
∫ T

t

d〈LH〉τ
∣

∣

∣

∣

Ft

]

.

C. Unit-linked insurance.

As the name suggests, a life insurance product is said to be unit-linked if the benefit
is a certain predetermined number of units of an asset (or portfolio) into which the
premiums are currently invested. If the contract stipulates a minimum value of the
benefit, disconnected from the asset price, then one speaks of unit-linked insurance
with guarantee. A risk minimization approach to pricing and hedging of unit-linked
insurance claims was first taken by Møller [34], who worked with the Black-Scholes-
Merton financial market. We will here sketch how the analysis goes in our Markov
chain market, which conforms well with the life history process in that they both are
intensity-driven.

Let Tx be the remaining life time of an x years old who purchases an insurance at
time 0, say. The conditional probability of survival to age x+u, given survival to age
x+ t (0 ≤ t < u), is

u−tpx+t = P[Tx > u |Tx > t] = e−
∫u
t µx+s ds , (15.2)

where µy is the mortality intensity at age y. We have

d u−tpx+t = u−tpx+t µx+t dt . (15.3)

Introduce the indicator of survival to age x+ t,

It = 1[Tx > t] ,

and the indicator of death before time t,

Nt = 1[Tx ≤ t] = 1 − It .

The process Nt is a (very simple) counting process with intensity It µx+t, that is, M
given by

dMt = dNt − It µx+t dt (15.4)

is a martingale w.r.t. (F,P). Assume that the life time Tx is independent of the
economy Y . We will work with the martingale measure P̃ obtained by replacing the
intensity matrix Λ of Y with the martingalizing Λ̃ and leaving the rest of the model
unaltered.

Consider a unit-linked pure endowment benefit payable at a fixed time T , contin-
gent on survival of the insured, with sum insured equal to one unit of stock No. `, but
guaranteed no less than a fixed amount g. This benefit is a contingent T -claim,

H = (S`
T ∨ g) IT .

The single premium payable as a lump sum at time 0 is to be determined.
Let us assume that the financial market is complete so that every purely financial

derivative has a unique price process. Then the intrinsic value of H at time t is

Ṽ H
t = π̃t It T−tpx+t ,
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where π̃t is the discounted price process of the derivative S`
T ∨ g.

Using Itô and inserting (15.4), we find

dṼ H
t = dπ̃t It− T−tpx+t + π̃t It− T−tpx+t µx+t dt+ (0 − π̃t− T−tpx+t) dNt

= dπ̃t It− T−tpx+t − π̃t− T−tpx+t dMt .

It is seen that the optimal trading strategy is that of the price process of the sum
insured multiplied with the conditional probability that the sum will be paid out, and
that

dLH
t = −T−tpx+t π̃t− dMt .

Consequently,

R̃H
t =

∫ T

t
T−sp

2
x+s Ẽ

[

π̃2
s

∣

∣Ft

]

s−tpx+t µx+s ds

= T−tpx+t

∫ T

t

Ẽ
[

π̃2
s

∣

∣Ft

]

T−spx+s µx+s ds . (15.5)

15.8 Trading with bonds: How much can be

hedged?

A. A finite zero coupon bond market.

Suppose an agent faces a contingent T -claim and is allowed to invest only in the bank
account and a finite number m of zero coupon bonds with maturities Ti, i = 1, . . . ,m,
all post time T . For instance, regulatory constraints may be imposed on the investment
strategies of an insurance company. The question is, to what extent can the claim be
hedged by self-financed trading in these available assets?

An allowed SF portfolio has discounted value process Ṽ θ
t of the form

dṼ θ
t =

m
∑

i=1

ξi
t

∑

j

∑

k∈Yj

(p̃k(t, Ti) − p̃j(t, Ti))dM̃
jk
t =

∑

j

d(M̃j
t)

′
F

j
tξt ,

where ξ is predictable, M̃
j ′

t = (M̃ jk
t )k∈Yj

is the nj -dimensional row vector comprising
the non-null entries in the j-th row of M̃t = (M̃ jk

t ), and

F
j
t = Y

j
Ft

where

Ft = (p̃j(t, Ti))
i=1,...,m
j=1,...,n = (p̃(t, T1), · · · , p̃(t, Tm)) , (15.1)

and Yj is the nj × n matrix which maps Ft to (p̃k(t, Ti) − p̃j(t, Ti))
i=1,...,m

k∈Yj . If e.g.

Yn = {1, . . . , p}, then Yn = (Ip×p , 0p×(n−p−1) , −1p×1).
The sub-market consisting of the bank account and the m zero coupon bonds is

complete in respect of T -claims iff the discounted bond prices span the space of all
martingales w.r.t. (FY , P̃) over the time interval [0, T ]. This is the case iff, for each j,
rank(Fj

t) = nj . Now, since Yj obviously has full rank nj , the rank of F
j
t is determined

by the rank of Ft in (15.1). We will argue that, typically, Ft has full rank. Thus,
suppose c = (c1, . . . , cm)′ is such that

Ftc = 0
n×1 .
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Recalling (15.15), this is the same as

m
∑

i=1

ci exp{(Λ̃ − R)Ti}1 = 0 ,

or, by (15.16) and since Φ̃ has full rank,

Dj=1,...,n(

m
∑

i=1

cie
ρ̃jTi )Φ̃−1

1 = 0 . (15.2)

Since Φ̃−1 has full rank, the entries of the vector Φ̃−11 cannot be all null. Typically
all entries are non-null, and we assume this is the case. Then (15.2) is equivalent to

m
∑

i=1

cie
ρ̃jTi = 0 , j = 1, . . . , n. (15.3)

Using the fact that the generalized Vandermonde matrix has full rank, we know that
(15.3) has a non-null solution c if and only if the number of distinct eigenvalues ρ̃j is
less than m, see Section 15.9 below.

In the case where rank(Fj
t) < nj for some j we would like to determine the

Galchouk-Kunita-Watanabe decomposition for a given FY
T -claim. The intrinsic value

process has dynamics

dH̃t =
∑

j

∑

k∈Yj

ζjk
t dM̃ jk

t =
∑

j

d(M̃j
t)

′
ζ

j
t . (15.4)

We seek a decomposition of the form

dṼt =
∑

i

ξi
t dp̃(t, Ti) +

∑

j

∑

k∈Yj

ψjk
t dM̃ jk

t

=
∑

j

∑

j∈Yj

∑

i

ξi
t (p̃k(t, Ti) − p̃j(t, Ti)) dM̃

jk
t +

∑

j

∑

k∈Yj

ψjk
t dM̃ jk

t

=
∑

j

d(M̃j
t)

′
F

j
tξ

j
t +

∑

j

d(M̃j
t)

′
ψ

j
t ,

such that the two martingales on the right hand side are orthogonal, that is,

∑

j

Ij
t−
∑

k∈Yj

(Fj
tξ

j
t )

′
Λ̃

j
ψ

j
t = 0 ,

where Λ̃j = D(λ̃
j
). This means that, for each j, the vector ζj

t in (15.4) is to be
decomposed into its 〈 , 〉

Λ̃j projections onto R(Fj
t) and its orthocomplement. From

(15.3) and (15.4) we obtain
F

j
tξ

j
t = P

j
tζ

j
t ,

where
P

j
t = F

j
t (F

j
t

′
Λ̃

j
F

j
t)

−1
F

j
t

′
Λ̃

j ,

hence

ξ
j
t = (Fj

t

′
Λ̃

j
F

j
t )

−1
F

j
t

′
Λ̃

j
ζ

j
t . (15.5)
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Furthermore,

ψ
j
t = (I − P

j
t )ζ

j
t , (15.6)

and the risk is
∫ T

t

∑

j

pYtj
s−t

∑

k∈Yj

λjk(ψjk
s )2 ds . (15.7)

The computation goes as follows: The coefficients ζjk involved in the intrinsic value
process (15.4) and the state-wise prices pj(t, Ti) of the Ti-bonds are obtained by si-
multaneously solving (15.6) and (15.12), starting from (15.9) and (15.12), respectively,
and at each step computing the optimal trading strategy ξ by (15.5) and the ψ from
(15.6), and adding the step-wise contribution to the variance (15.7) (the step-length
times the current value of the integrand).

B. First example: The floorlet.

For a simple example, consider a ’floorlet’ H = (r∗ − rT )+, where T < mini Ti. The
motivation could be that at time T the insurance company will ascribe interest to the
insured’s account at current interest rate, but not less than a prefixed guaranteed rate
r∗. Then H is the amount that must be provided per unit on deposit and per time
unit at time T .

Computation goes by the scheme described above, with the ζjk
t = f̃k

t − f̃ j
t obtained

from (15.12) subject to (15.13) with hj = (r∗ − rj)+.

C. Second example: The interest guarantee in insurance.

A more practically relevant example is an interest rate guarantee on a life insurance
policy. Premiums and reserves are calculated on the basis of a prudent so-called first
order assumption, stating that the interest rate will be at some fixed (low) level r∗

throughout the term of the insurance contract. Denote the corresponding first order
reserve at time t by V ∗

t . The (portfolio-wide) mean surplus created by the first order
assumption in the time interval [t, t+dt) is (r∗−rt)

+
tp

∗
xV

∗
t dt. This surplus is currently

credited to the account of the insured as dividend, and the total amount of dividends
is paid out to the insured at the term of the contracts at time T . Negative dividends
are not permitted, however, so at time T the insurer must cover

H =

∫ T

0

e
∫T
s r(r∗ − rs)

+
sp

∗
xV

∗
s ds .

The intrinsic value of this claim is

H̃t = Ẽ

[∫ T

0

e−
∫ s
0 r(r∗ − rs)

+
sp

∗
xV

∗
s ds

∣

∣

∣

∣

Ft

]

=

∫ t

0

e−
∫ s
0 r(r∗ − rs)

+
sp

∗
xV

∗
s ds+ e−

∫ t
0 r
∑

j

Ij
t f

j
t ,

where the f j
t are the state-wise expected values of future guarantees, discounted at

time t,

f j
t = Ẽ

[∫ T

t

e−
∫ s

t r(r∗ − rs)
+

sp
∗
xV

∗
s ds

∣

∣

∣

∣

Yt = j

]

.
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Working along the lines of Section 15.5, we determine the f j
t by solving

d

dt
f j

t = −(r∗ − rj)+ tp
∗
xV

∗
t + rjf j

t −
∑

k∈Yj

(fk
t − f j

t )λ̃jk ,

subject to

f j
T = 0 . (15.8)

The intrinsic value has dynamics (15.4) with ζjk
t = f̃k

t − f̃ j
t .

From here we proceed as described in Paragraph A.

D. Computing the risk.

Constructive differential equations may be put up for the risk. As a simple example,
for an interest rate derivative the state-wise risk is

R̃j
t =

∫ T

t

∑

g

pjg
τ−t

∑

k;k 6=g

λgk
(

ψgk
τ

)2

dτ .

Differentiating this equation, we find

d

dt
R̃j

t = −
∑

k;k 6=j

λjk
(

ψjk
t

)2

+

∫ T

t

∑

g

d

dt
pjg

τ−t

∑

k;k 6=g

(

ψgk
τ

)2

dτ ,

and, using the backward version of (15.2),

d

dt
pjg

s−t = −
∑

h;h6=j

λjhphg
s−t + λj·pjg

s−t ,

we arrive at
d

dt
R̃j

t = −
∑

k;k 6=j

λjk
(

ψjk
t

)2

−
∑

k;k 6=j

λjkR̃k
t + λj·R̃j

t .

15.9 The Vandermonde matrix in finance

A. The Vandermonde matrix.

Let An denote the generic n × n matrix of the form

An =
(

eαiβj

)j=1,...,n

i=1,...,n
, (15.1)

where α1, . . . , αn and β1, . . . , βn are reals. This is a classic in matrix theory, known as

the generalized Vandermonde matrix (usually its elements are written in the form x
βj

i

with xi > 0). It is well known that it is non-singular iff all αi are different and all βj

are different, see Gantmacher [22] p. 87.

B. Purpose of the study.

The matrix An in (15.1) and its close relative

An − 1n1
′
n =

(

eαiβj − 1
)j=1,...,n

i=1,...,n
, (15.2)
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arise naturally in zero coupon bond prices based on spot interest rates driven by certain
homogeneous Markov processes. It turns out that, in such bond markets, the issue
of completeness is closely related to the rank of the two archetype matrices. Roughly
speaking, non-singularity of matrices of types (15.1) or (15.2) ensures that any simple
T -claim can be duplicated by a portfolio consisting of the risk-free bank account and a
sufficiently large number of zero coupon bonds. The non-singularity results are proved
in Section 15.10, and applications to bond markets are presented in Section 15.11.

15.10 Two properties of the Vandermonde ma-

trix

A. The main result.

We take the opportunity here to provide a short proof of the quoted result on non-
singularity of the Vandermonde matrix in (15.1), and will supply a similar result about
its relative defined in (15.2).

Theorem

(i) If the αi are all different and the βj are all different, then An is non-singular.
(ii) If, furthermore, the αi and the βj are all different from 0, then An − 1n1′

n is
non-singular.

Proof: The proof goes by induction. Let Hn be the hypothesis stated in the two items
of the lemma. Trivially, H1 is true. Assuming that Hn−1 is true, we need to prove
Hn.

Addressing first item (i) of the the hypothesis, it suffices to prove that det(An) 6= 0.
Recast this determinant as

det(An) =

(

n
∏

j=1

eαnβj

)

det

















e(α1−αn)β1 · · · e(α1−αn)βn

· · · · ·
· · · · ·
· · · · ·

e(αn−1−αn)β1 · · · e(αn−1−αn)βn

1 · · · 1

















=

(

n
∏

j=1

eαnβj

n−1
∏

i=1

e(αi−αn)βn

)

det

(

An−1 1n−1

1′
n−1 1

)

(15.1)

where

An−1 =
(

e(αi−αn)(βj−βn)
)j=1,...,n−1

i=1,...,n−1
. (15.2)

The determinant appearing in (15.1) remains unchanged upon subtracting the n-th
row of the matrix from all other rows, which gives

det

(

An−1 1n−1

1′
n−1 1

)

= det

(

An−1 − 1n−11
′
n−1 0n−1

1′
n−1 1

)

= det
(

An−1 − 1n−11
′
n−1

)

. (15.3)
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Now, since the αi are all different and also the βj are all different, the matrix An−1

in (15.2) is of the form required in item (ii) of the lemma and so, by the assumed
hypothesis Hn−1, det(An−1 − 1n−11

′
n−1) 6= 0. It follows from (15.1) and (15.3) that

det(An) 6= 0, hence item (i) of Hn holds true.
Next, we turn to item (ii) of Hn. Preparing for an ad absurdum argument, assume

that An is as specified in item (ii) of the lemma and that An −1n1′
n is singular. Then

there exists a vector c = (c1, . . . , cn)′ 6= 0n such that

Anc = 1n1
′
nc . (15.4)

Introducing the function

f(α) =
n
∑

j=1

cje
αβj ,

and putting α0 = 0, we can spell out (15.4) as

f(α0) = f(α1) = · · · = f(αn) , (15.5)

that is, f assumes the same value at n+1 distinct values of α. Since f is continuously
differentiable, Rolle’s theorem implies that the derivative f ′ of f is 0 at n distinct
values α∗

1 , . . . , α
∗
n (say) of α. Now,

f ′(α) =
n
∑

j=1

cjβje
αβj ,

and since some cj are different from 0 and all βj are different from 0, it follows that

the matrix A∗
n =

(

eα∗
i βj

)j=1,...,n

i=1,...,n
should be singular. This contradicts the previously

established item (i) under Hn, showing that the assumed singularity of An − 1n1′
n is

absurd. We conclude that also item (ii) of Hn holds true. �

B. Remarks.

In fact, if α1 < · · · < αn and β1 < · · · < βn, then det(An) > 0 (see [22]). If we take
this fact for granted, (15.1) and (15.3) show that also det(An − 1n1′

n) > 0, implying
that the latter is non-singular under the hypothesis of item (ii) in the theorem. The
sign of a general Vandermonde determinant is, of course, the product of the signs of
the row and column permutations needed to order the αi and the βj by their size.

15.11 Applications to finance

A. Zero coupon bond prices.

A zero coupon bond with maturity T , or just T -bond in short, is the simple contingent
claim of 1 at time T . Taking an arbitrage-free financial market for granted, the price
process {p(t, T )}t∈[0,T ] of the T -bond is

p(t, T ) = Ẽ

[

e−
∫T

t ru du
∣

∣

∣
Ft

]

, (15.1)

where Ẽ denotes expectation under some martingale measure, and Ft is the information
available at time t.
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We will provide some examples where the results in Section 15.10 are instrumental
for establishing linear independence of price processes of bonds with different maturi-
ties. The issue is non-trivial only in cases where the bond prices are governed by more
than one source of randomness, of course, so we have to look into cases where the spot
rate of interest is driven by more than one martingale.

B. Markov chain interest rate.

Referring to Chapter 7, let us model the spot rate of interest {rt}t≥0 as a continuous
time, homogeneous, recurrent Markov chain with finite state space {r1, . . . , rn}.

We are working under some martingale measure given by an infinitesimal matrix
Λ̃ = (λ̃jk) of the Markov chain, that is, the transition intensities are λ̃jk, j 6= k, and
λ̃jj = −∑k;k 6=j λ̃

jk. The price at time t ≤ T of a zero coupon bond with maturity T
is

p(t, T ) =
n
∑

j=1

Ij
t p

j(t, T ) ,

where Ij
t = 1[rt = rj ] and

pj(t, T ) = Ẽ

[

e−
∫T
t ru du

∣

∣

∣
rt = rj

]

.

The vector of state-wise prices,

p(t, T ) = (pj(t, T ))j=1,...,n ,

is given by (15.15),

p(t, T ) = exp{(Λ̃ − R)(T − t)}1 = ΦDiag(eρj(T−t))Ψ1 ,

where R = Diag(rj) is the n × n diagonal matrix with the entries rj down the prin-
cipal diagonal, 1 is the n-vector with all entries equal to 1, ρ̃j , j = 1, . . . , n, are the
eigenvalues of Λ̃ − R, and Φ and Ψ are the n × n matrices formed by the right and
left eigenvectors, respectively.

The price processes of m zero coupon bonds with maturities T1 < · · · < Tm are
linearly independent only if the matrix

(eρ̃jTi)j=1,...,n
i=1,...,m

has rank m. From item (i) in the theorem in Paragraph 15.10A we conclude that
this is the case if there are at least m distinct eigenvalues ρ̃j . It also follows that the

market consisting of the bank account with price process exp
(

∫ t

0
rs ds

)

and the m

zero coupon bonds is complete for the class of all Fr
T1

-claims only if both the number
of distinct eigenvalues and the number of bonds are no less than the maximum number
of states that can be directly accessed from any single state of the Markov chain.

C. Mixed Vaciček interest rate.

The Vasiček model takes the spot rate of interest to be an Ornstein-Uhlenbeck process
given by

drt = α (ρ− rt) dt+ σ dW̃t . (15.2)
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Here ρ is the stationary mean of the process, α is a positive mean reversion parameter,
σ is a positive volatility parameter, and W̃ is a standard Brownian motion under a
martingale measure. The dynamics of the discounted T -bond price,

p̃(t, T ) = e−
∫ t
0 ru dup(t, T ) , (15.3)

is

dp̃(t, T ) = p̃(t, T )
σ

α

(

e−α (T−t) − 1
)

dW̃t , (15.4)

see e.g. [9]. Obviously, any FW̃
T claim can be duplicated by a self-financing portfolio

in the T -bond and the bank account, and so the completeness issue is trivial in this
model.

To create an example where one bond is not sufficient to complete the market, let
us concoct a mixed Vasiček model by putting

rt =
n
∑

j=1

rj
t ,

where the rj are independent Ornstein-Uhlenbeck processes,

drj
t = αj (ρj − rj

t ) dt+ σj dW̃ j
t ,

j = 1, . . . , n, and the W̃ j are independent standard Brownian motions. We assume
that the αj are all distinct (otherwise we could gather all processes rj with coinciding
mean reversion parameter into one Ornstein-Uhlenbeck process). The mixed Vasiček
process is not mean-reverting in the same simple sense as the traditional Vasiček
process. It is stationary, however, and is apt to describe interest that is subject to
several random phenomena, each of mean-reverting type.

By the assumed independence, the price of the T -bond is just

p(t, T ) =
n
∏

j=1

pj(t, T ) ,

where pj(t, T ) = Ẽ

[

e−
∫ T

t ru du
∣

∣

∣
rj

t

]

, and the discounted price is

p̃(t, T ) =

n
∏

j=1

p̃j(t, T ) ,

where p̃j(t, T ) is the “j-analogue” to (15.3). By virtue of (15.4), we conclude that the
discounted T -bond price has dynamics

dp̃(t, T ) = p̃(t, T )
n
∑

j=1

σj

αj

(

e−αj (T−t) − 1
)

dW̃ j
t . (15.5)

Now, consider the market consisting of the bank account and m zero coupon bonds
with maturities T1 < · · · < Tm. From (15.5) it is seen that this market is complete for

the class of FW̃1,...,W̃n
T1

-claims if and only if the matrix

(

e−αj (Ti−t) − 1
)i=1,...,m

j=1,...,n
(15.6)
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has rank n. By virtue of item (ii) in the theorem in Paragraph 15.10A, we conclude
that this is the case if m ≥ n.

D. Mixed Poisson-driven Ornstein-Uhlenbeck interest rate.

Referring to [40], let us replace the Brownian motions in Paragraph C above with
independent compensated Poisson processes, that is,

dW̃ j
t = dN j

t − λj dt ,

where each N j is a Poisson process with intensity λj . Instead of (15.5) we obtain

dp̃(t, T ) = p̃(t−, T )
n
∑

j=1

(

exp

{

σj

αj

(

e−αj (T−t) − 1
)

}

− 1

)

dW̃ j
t . (15.7)

It is seen from (15.7) that the market consisting of the bank account and m zero

coupon bonds with maturities T1 < · · · < Tm is complete for the class of F Ñ1,...,Ñn
T1

-
claims if and only if the matrix

(

exp

{

σj

αj

(

e−αj (T−t) − 1
)

}

− 1

)i=1,...,m

j=1,...,n

has rank n. By item (ii) in the theorem in Paragraph 15.10A, we know that the matrix
(15.6) has full rank. Thus, completeness of a market consisting of the bank account
and at least n bonds would be established – and we would be done – if we could prove
that the n×m matrix (eγji − 1) has full rank whenever (γji) has full rank. With this
conjecture our study of these problems will have to halt for the time being.

15.12 Martingale methods

A. Preliminaries. Referring to Sections 5.4 and 7.3 we shall see examples of how
martingale methods can be used to prove results that throughout the text have been
obtained by the direct backward argument.

The policy was described as a time-continuous Markov chain Z with finite state
space and transition intensities µjk, j 6= k. We introduced

Ij(t) = 1[Z(t) = j] ,

the indicator of the event that Z is in state j at time t, and

Njk(t) = ]{s; 0 < s ≤ t, Z(s−) = j , Z(s) = k} ,

the number of direct transitions of Z from state j to state k (6= j) in the time interval
(0, t]. Taking Z to be right-continuous, the same goes for the indicator processes Ij

and the counting processes Njk.
Let FZ

t = σ{Zs; 0 ≤ s ≤ t}, t ≥ 0, be the filtration generated by Z. The
compensated counting processes Mjk, j 6= k, defined by

dMjk(t) = dNjk(t) − Ij(t)µjk dt (15.8)

and Mjk(0) = 0, are zero mean, square integrable, mutually orthogonal martingales
w.r.t. the filtration.
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We need a couple of general results:
1. Let X be a real-valued random variable such that E|X| <∞. Then the process M
defined by

M(t) = E[X|Ft]

is a martingale. This follows by the rule of iterated expectation and the filtration
property, Fs ⊂ Ft for s < t :

E[M(t) | Fs] = E{E[X|Ft] | Fs} = E[X | Fs] = M(s) .

2. A martingale M with paths that are (almost surely) continuous and of finite
variation in every finite interval is constant as a function of time; M(t) = M(0)
for all t. This is seen as follows. Since M has finite variation, it obeys the rules of
ordinary calculus and, in particular,

M2(t) = M2(0) + 2

∫ t

0

M(s) dM(s) .

Since M is continuous, it is also predictable so that the integral
∫ t

0
2M(s) dM(s) is a

martingale. It follows that
E
[

M2(t)
]

= M2(0) .

Since E[M(t)] = M(0), we conclude that

Var[M(t)] = 0 ,

hence M is constant.
Now to the martingale technique:

B. First example: Thiele’s differential equation. Consider the standard
multi-state insurance policy defined in Paragraph 5.4.A and recall the form of the
payment function,

dB(t) =
∑

j

Ij(t) dBj(t) +
∑

j 6=k

bjk(t) dNjk(t) , (15.9)

where the Bj and the bjk are deterministic functions. Motivated by Section 5.6, we
allow the interest rate to depend on the current state of the Markov process:

r(t) = rZ(t) =
∑

j

Ij(t) rj . (15.10)

(This does not complicate matters.)
Define the martingale

M(t) = E

[
∫ n

0−
e−

∫ τ
0 rdB(τ )

∣

∣

∣

∣

Ft

]

=

∫ t

0−
e−

∫ τ
0 rdB(τ ) + e−

∫ t
0 r

E

[∫ n

t

e−
∫ τ
t rdB(τ )

∣

∣

∣

∣

Ft

]

=

∫ t

0−
e−

∫ τ
0 rdB(τ ) + e−

∫ t
0 r
∑

j

Ij(t)Vj(t) . (15.11)
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(Recall the short-hand
∫ τ

0
r =

∫ τ

0
r(s) ds.) The last step follows from the Markov prop-

erty of Z and the fact that the payments at any time are (functionally) independent
of the past:

E

[∫ n

t

e−
∫ τ

t rdB(τ )

∣

∣

∣

∣

Ft

]

= E

[∫ n

t

e−
∫ τ

t rdB(τ )

∣

∣

∣

∣

Zt

]

= VZ(t)(t)

=
∑

j

Ij(t)Vj(t) .

Now apply Itǒ’s formula to (15.11):

dM(t) = e−
∫ t
0 rdB(t) + e−

∫ t
0 r(−r(t) dt)

∑

j

Ij(t)Vj(t)

+ e−
∫ t
0 r
∑

j

Ij(t) dVj(t) + e−
∫ t
0 r
∑

j 6=k

dNjk(t) (Vk(t) − Vj(t−)) .

The last term on the right takes care of the jumps of the Markov process: upon a jump
from state j to state k the last term in (15.11) changes immediately from the discounted
value of the reserve in state j just before the jump to the value of the reserve in state k
at the time of the jump. Since the state-wise reserves are deterministic functions with
finite variation, they have at most a countable number of discontinuities at fixed times.
The probability that the Markov process jumps at any such time is 0. Therefore, we
need not worry about possible common points of discontinuity of the Vj(t) and the
Ij(t). For the same reason we can also disregard the left limit in Vj(t−) in the last
term.

We proceed by inserting the expressions (15.9) for dB(t), (15.10) for r(t), and the
expression dNjk(t) = dMjk(t) − Ij(t)µjk(t) dt obtained from (15.8), and gather

dM(t) = e−
∫ t
0 r
∑

j

Ij(t)



dBj(t) − rj Vj(t) dt + dVj(t) +
∑

k; k 6=j

µjk dtRjk(t)





+ e−
∫ t
0 r
∑

j 6=k

Rjk(t) dMjk(t) , (15.12)

where
Rjk(t) = bjk(t) + Vk(t) − Vj(t)

is recognized as the sum at risk in respect of transition from j to k at time t.
Since the last term on the right of (15.12) is the increment of a martingale, the

first term of the right is the difference between the increments of two martingales and
is thus itself the increment of a martingale. This martingale has finite variation and,
as will be explained below, is also continuous, and must therefore be constant. For
this to be true for all realizations of the indicator functions Ij , we must have

dBj(t) − rj Vj(t) dt + dVj(t) +
∑

k; k 6=j

µjk dtRjk(t) = 0 . (15.13)

This is nothing but Thiele’s differential equation. We also obtain that

dM(t) = e−
∫ t
0 r
∑

j 6=k

Rjk(t) dMjk(t) ,

which displays the dynamics of the martingale M .
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Finally, we explain why the (15.13) is the increment at t of a continuous function.
The dt terms are continuous increments, of course. Outside jump times of the Bj both
the Bj themselves and the Vj are continuous. At any time t where there is a jump
in some Bj the reserve Vj jumps by the same amount in the opposite direction since
Vj(t−) = ∆Bj(t) + Vj(t). Thus, Bj + Vj is indeed continuous.

C. Second example: Revisiting Exercise 56, the geometric Poisson
price process. Martingale methods are certainly not needed in this case since the
Poisson process is sufficiently well structured to allow of direct computation of all
functions asked for in the exercise. But just for the sake of the example:

Introduce
V (t) = E[S(t)] .

Let Ft, t ≥ 0, be the filtration generated by the Poisson process N . Fix a time T > 0
and introduce the martingale

M(t) = E [S(T ) | Ft]

= eαt+βN(t)
E

[

eα(T−t)+β(N(T )−N(t)
∣

∣

∣Ft

]

= S(t)V (T − t) .

Here we have made use of the fact that the Poisson process has stationary and inde-
pendent increments.

Write V ′ = d
dt
V and apply Itǒ:

dM(t) = S(t)αdtV (T − t) + S(t)V ′(T − t)(−dt) + (S(t) − S(t−))V (T − t) ,(15.14)

the last term accounting of jumps. Rewrite

S(t) − S(t−) = eαt+βN(t) − eαt+βN(t−)

= eαt+β(N(t−)+∆N(t)) − eαt+βN(t−)

= S(t−)
(

eβ∆N(t) − 1
)

= S(t−)
(

eβ − 1
)

dN(t) ,

where the last two step is due to the zero-or-one nature of the increments of counting
process N . Upon inserting this into (15.14) and introducing the martingale

dMN (t) = dN(t) − λdt ,

we get

dM(t) = S(t)
[

αV (T − t) − V ′(T − t) +
(

eβ − 1
)

λV (T − t)
]

dt

+S(t−)
(

eβ − 1
)

dMN (t) ,

Here we have used the fact that S(t−) dt = S(t) dt which is to be understood in
integral form:

∫

f(t−) dt =
∫

f(t) dt since the integral is not affected by a change
of the integrand at an at most countable set of points. Arguing as in the previous
example, the drift term in the dynamics of M must vanish, and we arrive at the
differential equation

V ′(t) =
[

α +
(

eβ − 1
)

λ
]

V (t) ,
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The solution, subject to the obvious condition

V (0) = 1 ,

is

V (t) = exp
[(

α +
(

eβ − 1
)

λ
)

t
]

.

To rehearse the technique, you should use it to solve Item (c) in exercise 56. Start
from the martingale

M(t) = E

[
∫ T

0

S−1(τ ) dτ

∣

∣

∣

∣

Ft

]

=

∫ t

0

S−1(τ )dτ + e−αt−βN(t) V (T − t) ,

where

V (t) = E

[
∫ t

0

S−1(τ ) dτ

]

.

D. Third example: Revisiting pricing of the unit-linked term insur-
ance with guarantee, pages 166-167. We need to determine

π = E

[
∫ n

0

(

1 ∨ e−
∫ τ
0 rg

)

f(τ ) dτ

]

.

Let Ft = σ{Ys; 0 ≤ s ≤ t}, t ≥ 0, be the filtration generated by the ’economy process’
Y . Start from the martingale

M(t) = E

[(

1 ∨ e−
∫ τ
0 rg

)

f(τ ) dτ
∣

∣

∣
Ft

]

=

∫ t

0

(

1 ∨ e−
∫ τ
0 rg

)

f(τ ) dτ + e−
∫ t
0 r

E

[
∫ n

t

(

e
∫ t
0 r ∨ e−

∫ τ
t rg

)

f(τ ) dτ

∣

∣

∣

∣

Ft

]

=

∫ t

0

(

1 ∨ e−
∫ τ
0 rg

)

f(τ ) dτ + e−
∫ t
0 r
∑

e

Ie(t)We(t, e
∫ τ
0 r) ,

where

We(t, u) = E

[
∫ n

t

(

u ∨ e−
∫ τ

t rg
)

f(τ ) dτ

∣

∣

∣

∣

Y (t) = e

]

.

Assuming that the partial derivatives ∂
∂t
We(t, u) and ∂

∂u
We(t, u) exist, apply Itǒ:

dM(t) =
(

1 ∨ e−
∫ t
0 rg

)

f(t) dt + e−
∫ t
0 r(−r(t)dt)

∑

e

Ie(t)We(t, e
∫ τ
0 r)

+ e−
∫ t
0 r
∑

e

Ie(t)

(

∂

∂t
We(t, e

∫ τ
0 r) dt +

∂

∂u
We(t, e

∫ τ
0 r) e

∫ τ
0 rr(t) dt

)

+ e−
∫ t
0 r
∑

e6=f

dNef (t) (Wf (t, e
∫ τ
0 r) − We(t, e

∫ τ
0 r)) .

Substitute
dNef (t) = dMef (t) + λef dt ,



CHAPTER 15. FINANCIAL MATHEMATICS IN INSURANCE 245

where the Mef are martingales, and put U(t) = e
∫ τ
0 r. Arguing along the lines of

Paragraph B, we conclude that
(

1 ∨ U(t)−1g
)

f(t) − U(t)−1 re We(t, U(t))

+U(t)−1

(

∂

∂t
We(t, U(t)) +

∂

∂u
We(t, U(t))U(t) re(t)

)

+U(t)−1
∑

f ; f 6=e

λef (Wf (t, U(t)) − We(t, U(t))) = 0 .

for all realizations of Y . We end up with the partial differential equation

(u ∨ g) f(t) − re We(t, u) +

(

∂

∂t
We(t, u) +

∂

∂u
We(t, u)u re(t)

)

+
∑

f ; f 6=e

λef (Wf (t, u) − We(t, u)) = 0 ,

which are to be solved subject to the obvious conditions

We(n, u) = 0 .

E. Remark on the technique. In all three examples we needed to determine
the expected value of some random variable W that depends on the development of
a stochastic process. Here is an outline of the method: Start from the martingale
M(t) = E [W | Ft]. Inspect W and try to write it in the form

W = W (T (t), U(t)) ,

where T (t) depends only on the future development of the process and U(t) depends
only on the past history Ft. The random variable U(t) is the called the ’state vari-
able(s)’ (it may be multi-dimensional). How to proceed from here depends on the
properties of the driving stochastic process. In our situations (let us keep the example
in Paragraph D in mind) we use the Markov property of Y to conclude that the con-
ditional expected value M(t) must be a function only of the current time, state, and
value of the state variable:

M(t) = FY (t)(t, U(t)) =
∑

e

Ie(t)Fe(t, U(t)) .

Assuming continuous differentibility of the functions Fe with respect to t and u, use
Itǒ to form the dynamics of M :

dM(t) =
∑

e

Ie(t)

(

∂

∂t
Fe(t, U(t)) dt +

∂

∂u
Fe(t, U(t)) dU c(t)

)

+
∑

e

[Ie(t)Fe(t, U(t)) − Ie(t−)Fe(t−, U(t−))] .

Here Uc denotes the continuous part of U . The jump part may have contributions
from possible jumps of U outside jump times for Y , but these will always cancel out
and vanish in the end, however, see the example in Paragraph B above. In any case
the jump part will consist of the following terms due to jumps of Y :

∑

f 6=e

dNef (t) [Ff (t, U(t)) − Fe(t, U(t−))] .
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Now, insert dNef (t) = dMef (t)+λef dt and identify the martingale part and the drift
part with the factor dt in the expression for dM(t). The drift part must vanish, and
we arrive at a set of constructive non-stochastic differential equations from which the
functions Fe(t, u) can be solved (at least numerically).



Bibliography

[1] Aase, K.K. and Persson, S.-A. (1994). Pricing of unit-linked life insurance policies.
Scand. Actuarial J., 1994, 26-52.

[2] Aczel J. Lectures on Functional Equations and their Applications. Academic Press,
1966.

[3] Andersen, P.K., Borgan, Ø., Gill, R.D., Keiding, N. (1993). Statistical Models
Based on Counting Processes. Springer-Verlag, New York, Berlin, Heidelberg.

[4] Anderson, J.L. and Dow, J.B. (1948). Actuarial Statistics, Vol. II: Constructions
of Mortality and other Tables. Cambridge University Press.

[5] Barlow, R.E. and Proschan, F (1981): Statistical Theory of Reliability and Life
Testing, Holt, Reinhart and Winston Inc.

[6] Berger, A. (1939): Mathematik der Lebensversicherung. Verlag von Julius Springer,
Vienna.

[7] Bibby J.M., Mardia, K.V., and Kent J.T. Multivariate Analysis. Academic Press,
1979.

[8] Björk, T., Kabanov, Y., Runggaldier, W. (1997): Bond market structures in the
presence of marked point processes. Mathematical Finance, 7, 211-239.

[9] Björk, T. (1998): Arbitrage Theory in Continuous Time, Oxford University Press.

[10] Black, F., Scholes, M. (1973): The pricing of options and corporate liabilities. J.
Polit. Economy, 81, 637-654.

[11] Bowers, N.L. Jr., Gerber, H.U., Hickman, J.C., and Nesbitt, C.J. (1986). Actu-
arial Mathematics. The Society of Actuaries. Itasca, Illinois.

[12] Cox, J., Ross, S., Rubinstein, M. (1979): Option pricing: A simplified approach.
J. of Financial Economics, 7, 229-263.

[13] Delbaen, F., Schachermayer, W. (1994): A general version of the fundamental
theorem on asset pricing. Mathematische Annalen, 300, 463-520.

[14] De Pril, N. (1989). The distributions of actuarial functions. Mitteil. Ver. Schweiz.
Vers.math., 89, 173-183.

[15] De Vylder, F. and Jaumain, C. (1976). Exposé moderne de la théorie
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Appendix A

Calculus

A. Piecewise differentiable functions. Being concerned with operations in
time, commencing at some initial date, we will consider functions defined on the pos-
itive real line [0,∞). Thus, let us consider a generic function X = {Xt}t≥0 and think
of Xt as the state or value of some process at time t. For the time being we take X
to be real-valued.

In the present text we will work exclusively in the space of so-called piecewise
differentiable functions. From a mathematical point of view this space is tiny since
only elementary calculus is needed to move about in it. From a practical point of view
it is huge since it comfortably accommodates any idea, however sophisticated, that an
actuary may wish to express and analyse. It is convenient to enter this space from the
outside, starting from a wider class of functions.

We first take X to be of finite variation (FV), which means that it is the differ-
ence between two non-decreasing, finite-valued functions. Then the left-limit Xt− =
lims↑t Xs and the right-limit Xt+ = lims↓t Xs exist for all t, and they differ on at most
a countable set D(X) of discontinuity points of X.

We are particularly interested in FV functions X that are right-continuous (RC),
that is, Xt = lims↓tXs for all t. Any probability distribution function is of this type,
and any stream of payments accounted as incomes or outgoes, can reasonably be taken
to be FV and, as a convention, RC. If X is RC, then ∆Xt = Xt −Xt−, when different
from 0, is the jump made by X at time t.

For our purposes it suffices to let X be of the form

Xt = X0 +

∫ t

0

xτ dτ +
∑

0<τ≤t

(Xτ −Xτ−) . (A.1)

The integral, which may be taken to be of Riemann type, adds up the continuous
increments/decrements, and the sum, which is understood to range over discontinuity
times, adds up increments/decrements by jumps.

We assume, furthermore, that X is piecewise differentiable (PD); A property holds
piecewise if it takes place everywhere except, possibly, at a finite number of points in
every finite interval. In other words, the set of exceptional points, if not empty, must
be of the form {t0, t1, . . .}, with t0 < t1 < · · ·, and, in case it is infinite, limj→∞ tj =
∞. Obviously, X is PD if both X and x are piecewise continuous. At any point

4
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t /∈ D = D(X) ∪ D(x) we have d
dt
Xt = xt, that is, the function X grows (or decays)

continuously at rate xt.
As a convenient notational device we shall frequently write (A.1) in differential

form as

dXt = xt dt + Xt −Xt− . (A.2)

A left-continuous PD function may be defined by letting the sum in (A.1) range
only over the half-open interval [0, t). Of course, a PD function may be neither right-
continuous nor left-continuous, but such cases are of no interest to us.

B. The integral with respect to a function. Let X and Y both be PD and,
moreover, let X be RC and given by (A.2). The integral over (s, t] of Y with respect
to X is defined as

∫ t

s

Yτ dXτ =

∫ t

s

Yτxτ dτ +
∑

s<τ≤t

Yτ (Xτ −Xτ−) , (A.3)

provided that the individual terms on the right and also their sum are well defined.
Considered as a function of t the integral is itself PD and RC with continuous incre-
ments Ytxt dt and jumps Yt(Xt −Xt−). One may think of the integral as the weighted
sum of the Y -values, with the increments of X as weights, or vice versa. In particular,
(A.1) can be written simply as

Xt = Xs +

∫ t

s

dXτ , (A.4)

saying that the value of X at time t is its value at time s plus all its increments in
(s, t].

By definition,

∫ t−

s

Yτ dXτ = lim
r↗t

∫ t

s

Yτ dXτ =

∫ t

s

Yτ dXτ − Yt(Xt −Xt−) =

∫

(s,t)

Yτ dXτ ,

a left-continuous function of t. Likewise,

∫ t

s−
Yτ dXτ = lim

r↗s

∫ t

r

Yτ dXτ =

∫ t

s

Yτ dXτ + Ys(Xs −Xs−) =

∫

[s,t]

Yτ dXτ ,

a left-continuous function of s.

C. The chain rule (Itô’s formula). Let Xt = (X1
t , . . . , X

m
t ) be an m-variate

function with PD and RC components given by dX i
t = xi

t dt + (Xi
t − Xi

t−). Let
f : Rm 7→ R have continuous partial derivatives, and form the composed function
f(Xt). On the open intervals where there are neither discontinuities in the xi nor jumps
of the Xi, the function f(Xt) develops in accordance with the well-known chain rule
for scalar fields along rectifiable curves. At the exceptional points f(Xt) may change
(only) due to jumps of the X i, and at any such point t it jumps by f(Xt) − f(Xt−).
Thus, we gather the so-called change of variable rule or Itô’s formula, which in our
simple function space reads

df(Xt) =
m
∑

i=1

∂f

∂xi
(Xt) x

i
t dt+ f(Xt) − f(Xt−) , (A.5)
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or, in integral form,

f(Xt) = f(Xs) +

∫ t

s

m
∑

i=1

∂

∂xi
f(Xτ )xi

τ dτ +
∑

s<τ≤t

{f(Xτ ) − f(Xτ−)} . (A.6)

Obviously, f(Xt) is PD and RC.
A frequently used special case is (check the formulas!)

d(XtYt) = Xt yt dt+ Yt xt dt+XtYt −Xt−Yt−

= Xt− dYt + Yt− dXt + (Xt −Xt−)(Yt − Yt−)

= Xt− dYt + Yt dXt . (A.7)

If X and Y have no common jumps, as is certainly the case if one of them is continuous,
then (A.7) reduces to the familiar

d(XtYt) = Xt dYt + Yt dXt . (A.8)

The integral form of (A.7) is the so-called rule of integration by parts:

∫ t

s

YτdXτ = YtXt − YsXs −
∫ t

s

Xτ− dYτ . (A.9)

Let us consider three special cases for which (A.9) can be obtained by direct
calculation and specialises to well-known formulas. Setting s = 0 (just a matter of
notation), (A.9) can be cast as

YtXt = Y0X0 +

∫ t

0

Yτ dXτ +

∫ t

0

Xτ− dYτ , (A.10)

which shows how the product of X and Y at time t emerges from its initial value at
time 0 plus all its increments in the interval (0, t].

Assume first that X and Y are both discrete. To keep notation simple assume
Xt =

∑[t]
j=0 xj and Yt =

∑[t]
j=0 yj . Then

XtYt =

[t]
∑

i=0

xi

[t]
∑

j=0

yj

= x0y0 +

[t]
∑

i=1

i
∑

j=0

yj xi +

[t]
∑

j=1

j−1
∑

i=0

xi yj

= X0Y0 +

[t]
∑

i=1

Yi xi +

[t]
∑

j=1

Xj−1 yj

= X0 Y0 +

∫ t

0

Yτ dXτ +

∫ t

0

Xτ− dYτ ,

which is (A.10). We see here that the left limit on the right of (A.10) is essential.
This case is basically nothing but the rule of changing the order of summation in a
double sum, the only new thing being that we formally consider the sums X and Y as
functions of a continuous time index; only the values at integer times matter, however.
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Assume next that X and Y are both continuous, that is,

Xt = X0 +

∫ t

0

xτ dτ , Yt = Y0 +

∫ t

0

yτ dτ .

Take X0 = Y0 = 0 for the time being. Then

XtYt =

∫ t

0

xσ dσ

∫ t

0

yτ dτ

=

∫ ∫

0<τ≤σ≤t

yτ dτ xσ dσ +

∫ ∫

0<σ<τ≤t

xσ dσ yτ dτ

=

∫ t

0

∫ σ

0

yτ dτ xσ dσ +

∫ t

0

∫ τ−

0

xσ dσ yτ dτ

=

∫ t

0

Yσxσ dσ +

∫ t

0

Xτ− yτ dτ

=

∫ t

0

Yτ dXτ +

∫ t

0

Xσ dYσ ,

which also conforms with (A.10): the left limit in the next to last line disappeared
since an integral with respect to dτ remains unchanged if we change the integrand at
a countable set of points. The result for general X0 and Y0 is obtained by applying
the formula above to Xt −X0 and Yt − Y0.

Finally, let one function be discrete and the other continuous, e.g. Xt =
∑[t]

j=0 xj

and Yt = Y0 +
∫ t

0
yτ dτ . Introduce

ŷ0 = Y0 , ŷj =

∫ j

j−1

yτ dτ , j = 1, . . . , [t].

We have Xt = X[t] and

XtYt = X[t]Y[t] +X[t](Yt − Y[t])

=

[t]
∑

i=0

xi

[t]
∑

j=0

ŷj +X[t]

∫ t

[t]

yτ dτ . (A.11)

Upon applying our first result for two discrete functions, the first term in (A.11)
becomes

X0Y0 +

[t]
∑

i=1

i
∑

j=0

ŷj xi +

[t]
∑

j=1

j−1
∑

i=0

xi ŷj

= X0Y0 +

[t]
∑

i=1

Yj xi +

[t]
∑

j=1

Xj−1

∫ j

j−1

yτ dτ

= X0Y0 +

∫ t

0

Yτ dXτ +

∫ [t]

0

Xτ−dYτ

The second term in (A.11) is
∫ t

[t]
Xτ−dYτ . Thus, also in this case we arrive at (A.10).

Again the left-limit is irrelevant since dYτ = yτ dτ .
The general formula now follows from these three special cases by the fact that

the the integral is a linear operator with respect to the integrand and the integrator.
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D. Counting processes. Let t1 < t2 < · · · be a sequence in (0,∞), either finite
or, if infinite, such that limj→∞ tj = ∞. Think of tj as the j-th time of occurrence
of a certain event. The number of events occurring within a given time t is Nt =
]{j ; tj ≤ t} =

∑

j 1[tj ,∞)(t) or, putting t0 = 0, Nt = j for tj ≤ t < tj+1. The
function N = {Nt}t≥0 thus defined is called a counting function since it currently
counts the number of occurred events. It is a particularly simple PD and RC function
commencing from N0 = 0 and thereafter increasing only by jumps of size 1 at the
epochs tj , j = 1, 2, . . .

The change of variable rule (A.6) becomes particularly simple when X is a counting
function. In fact, for f : R 7→ R and for N defined above,

f(Nt) = f(Ns) +
∑

s<τ≤t

{f(Nτ ) − f(Nτ−)} (A.12)

= f(Ns) +
∑

s<τ≤t

{f(Nτ− + 1) − f(Nτ−)}(Nτ −Nτ−) (A.13)

= f(Ns) +

∫ t

s

{f(Nτ− + 1) − f(Nτ−)} dNτ . (A.14)

Basically, what these expressions state, is just

f(j) = f(0) +

j
∑

i=1

{f(i) − f(i − 1)} .

Still they will prove to be useful representations when we come to stochastic counting
processes.

Going back to the general PD and RC function X in (A.1), we can associate with
it a counting function N defined by Nt = ]{τ ∈ (0, t]; Xτ 6= Xτ−}, the number of
discontinuities of X within time t. Equipped with our notion of integral, we can now
express X as

dXt = xc
t dt+ xd

t dNt , (A.15)

where xc
t = xt is the instantaneous rate of continuous change and xd

t = Xt − Xt− is
the size of the jump, if any, at t. Generalizing (A.14), we have

f(Xt) = f(Xs) +

∫ t

s

d

dx
f(Xτ )xc

τ dτ +

∫ t

s

{f(Xτ− + xd
τ ) − f(Xτ−)} dNτ .

(A.16)



Appendix B

Indicator functions

A. Indicator functions in general spaces. Let Ω be some space with generic
point ω, and let A be some subset of Ω. The function IA : Ω → {0, 1} defined by

IA(ω) =

{

1 if ω ∈ A ,
0 if ω ∈ Ac ,

is called the indicator function or just the indicator of A since it indicates by the value
1 precisely those points ω that belong to A.

Since IA assumes only the values 0 and 1, (IA)p = IA for any p > 0. Clearly,
I∅ = 0, IΩ = 1, and

IAc = 1 − IA , (B.1)

where Ac = Ω\A is the complement of A.
For any two sets A and B (subsets of Ω),

IA∩B = IAIB (B.2)

and
IA∪B = IA + IB − IAIB . (B.3)

The last two statements are displayed here only for ease of reference. They are special
cases of the following results, valid for any finite collection of sets {A1, . . . , Ar}:

I∩r
j=1Aj =

r
∏

j=1

IAj , (B.4)

I∪r
j=1

Aj =
∑

j

IAj −
∑

j1<j2

IAj1
IAj2

+ . . .+ (−1)r−1IA1 · · · IAr . (B.5)

The relation (B.4) is obvious. To demonstrate (B.5), we need the identity

r
∏

j=1

(aj + bj) =

r
∑

p=0

∑

r\p

aj1 · · · ajpbjp+1 · · · bjr , (B.6)

9
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where r\p signifies that the sum ranges over all
(

r
p

)

different ways of dividing {1, . . . , r}
into two disjoint subsets {j1, . . . , jp} (∅ when p = 0) and {jp+1, . . . , jr} (∅ when p = r).
Combining the general relation

{∪αAα}c = ∩αA
c
α , (B.7)

with (B.1) and (B.4), we find

I∪r
j=1

Aj = 1 − I∩r
j=1

Ac
j

= 1 −
r
∏

j=1

(1 − IAj ) ,

and arrive at (B.5) by use of (B.6).

B. Further aspects of indicators. The algebraic expressions in (B.4) and (B.5)
apply only to the finite case. For any collection {Aα} of sets indexed by α ranging in
an arbitrary space, possibly uncountable,

I∩αAα = inf
α
IAα (B.8)

and
I∪αAα = sup

α
IAα . (B.9)

In fact, inf and sup are attained here, so we can write min and max. In accordance
with the latter two results one may define supα Aα = ∪αAα and infα Aα = ∩αAα.

The relation (B.7) rests on elementary logical operations, but also follows from
1 − supα IAα = infα(1 − IAα).

The representation of sets by indicators supports the understanding of some con-
ventions and definitions in set theory. For instance, if {Aj}j=1,2,... is a disjoint sequence
of sets, some authors write

∑

j Aj instead of ∪jAj . This is motivated by

I∪jAj =
∑

j

IAj ,

valid for disjoint sets.
For any sequence {Aj} of sets one writes lim supAj for the set of points ω that

belong to infinitely many of the Aj , that is,

lim supAj = ∩j ∪k≥j Ak

(for all j there exists some k ≥ j such that ω belongs to Ak). By lim inf Aj is meant
the set of points ω that belong to all but possibly finitely many of the Aj , that is,

lim inf Aj = ∪j ∩k≥j Ak

(there exists a j such that for all k ≥ j the point ω belongs to Ak). This usage is in
accordance with

I∩j∪k≥jAk = inf
j

sup
k≥j

IAk

and
I∪j∩k≥jAk = sup

j
inf
k≥j

IAk ,

obtained upon combining (B.8) and (B.9).
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C. Indicators of events. Let (Ω,F , P) be some probability space. The indicator
IA of an event A ∈ F is a simple binomial random variable;

IA ∼ Bin(1,P[A]) .

It follows that
E [IA] = P[A] , V [IA] = P[A](1 − P[A]) . (B.10)

Since we often will need to equip indicator functions with subscripts, we will use
the notation 1[A] and IA interchangeably.



Appendix C

Distribution of the number

of occurring events

A. The main result. Let {A1, . . . , Ar} be a finite assembly of events, not neces-
sarily disjoint. Introduce the short-hand Ij = IAj . We seek the probability distribution
of the number of events that occur out of the total of r events,

Q =

r
∑

j=1

Ij .

It turns out that this distribution can be expressed in terms of the probabilities of
intersections of selections from the assembly of sets. Introduce

Zp =
∑

j1<...<jp

P
[

Aj1 ∩ · · · ∩Ajp

]

, p = 1, . . . , r, (C.1)

and define in particular Z0 = 1.

Theorem

The probability distribution of Q can be expressed by the Zp in (C.1) as

P[Q = q] =
r
∑

p=q

(−1)p−q

(

p

p− q

)

Zp , q = 0, . . . , r , (C.2)

P[Q ≥ q] =
r
∑

p=q

(−1)p−q

(

p− 1

p− q

)

Zp , q = 1, . . . , r . (C.3)

Proof: Obviously,

{Q = q} =
⋃

r\q

Aj1 ∩ · · · ∩ Ajq ∩Ac
jq+1

∩ · · · ∩Ac
jr
.

The elements in the union are mutually disjoint, and so

I{Q=q} =
∑

r\q

Ij1 · · · Ijq (1 − Ijq+1 ) · · · (1 − Ijr ) .

12
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Starting from this expression, the generating function of the sequence {I{Q=p}}p=0,...,r

can be shaped as follows by repeated use (B.6):

r
∑

p=0

spI{Q=p} =

r
∑

p=0

sp
∑

r\p

Ij1 · · · Ijp(1 − Ijp+1) · · · (1 − Ijr )

=

r
∑

p=0

∑

r\p

sIj1 · · · sIjp(1 − Ijp+1) · · · (1 − Ijr ) .

=

r
∏

j=1

(sIj + 1 − Ij)

=

r
∏

j=1

((s− 1)Ij + 1)

=

r
∑

p=0

∑

r\p

(s− 1)Ij1 · · · (s− 1)Ijp 1r−p ,

where the first term corresponding to p = 0 is to be interpreted as 1. Thus,

r
∑

p=0

spI{Q=p} =
r
∑

p=0

(s− 1)pYp , (C.4)

where

Yp =
∑

j1<...<jp

Ij1 · · · Ijp , p = 1, . . . , r, (C.5)

and Y0 = 1. Upon differentiating (C.4) q times with respect to s and putting s = 0,
we get

q!I{Q=q} =
r
∑

p=q

p(q)(−1)p−qYp ,

hence, noting that p(q)/q! =
(

p
q

)

=
(

p
p−q

)

,

I{Q=q} =
r
∑

p=q

(−1)p−q

(

p

p− q

)

Yp . (C.6)

Taking expectation, we arrive at (C.2).
To prove (C.3), insert I{Q=p} = I{Q≥p} − I{Q≥p+1} on the left of (C.4) and rear-

range as follows:

r
∑

p=0

sp (I{Q≥p} − I{Q≥p+1}
)

=
r
∑

p=0

spI{Q≥p} −
r
∑

p=1

sp−1I{Q≥p}

= 1 +
r
∑

p=1

(s− 1)sp−1I{Q≥p} .

Thus, recalling that Y0 = 1, (C.4) is equivalent to

r
∑

p=1

sp−1I{Q≥p} =

r
∑

p=1

(s− 1)p−1Yp .
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Differentiating here q − 1 times with respect to s and putting s = 0, gives

(q − 1)!I{Q≥q} =

r
∑

p=q

(p− 1)(q−1)(−1)p−qYp ,

hence

I{Q≥q} =

r
∑

p=q

(−1)p−q

(

p− 1

p− q

)

Yp , (C.7)

which implies (C.3). �

B. Comments and examples. Setting all Aj equal to the sure event Ω, all the
indicators Ij become identically 1. Thus Yp defined by (C.5) becomes

(

r
p

)

, and (C.7)
specializes to

1 =
r
∑

p=q

(−1)p−q

(

p− 1

p− q

)(

r

p

)

. (C.8)

For q = r, the theorem reduces to the trivial result

P [Q = r] = P[Q ≥ r] = P [A1 ∩ · · · ∩Ar] .

Putting q = 1 in (C.3) and noting that [Q ≥ 1] = ∪jAj , yields

P [∪jAj ] =
∑

j

P[Aj ] −
∑

j1<j2

P[Aj1 ∩ Aj2 ]

+ . . .+ (−1)r−1
P[A1 ∩ · · · ∩ Ar] ,

which also results upon taking expectation in (B.5). This is the well-known general
addition rule for probabilities, called so because it generalizes the elementary rule
P[A ∪ B] = P[A] + P[B] − P[A ∩ B] (see (B.3)). The theorem states the most general
results of this type.

As a non-standard example, let us find the probability of exactly two occurrences
among three events, A1, A2, A3. Putting r = 3 and q = 2 in (C.2), gives

P[Q = 2] = P[A1 ∩ A2] + P[A1 ∩A3] + P[A2 ∩A3] − 3P[A1 ∩ A2 ∩A3] .

From (C.3) we obtain the probability of at least two occurrences,

P[Q ≥ 2] = P[A1 ∩ A2] + P[A1 ∩A3] + P[A1 ∩A3] − 2P[A1 ∩ A2 ∩A3] .

The usefulness of the theorem is due to the decomposition of complex events into
more elementary ones. The observant reader may have asked why intersections rather
than unions are taken as the elementary events. The reason for doing so is apparent
in the case of independent events, since then P [∩p

i=1Aji ] =
∏p

i=1 P[Aji ], and the
expressions in (C.1) – (C.3) can be computed from the P[Aj ] by elementary algebraic
operations.

Note that the results in the theorem are independent of the probability measure
involved; they rest entirely on the set-relations (C.6) and (C.7).



Appendix D

Asymptotic results from

statistics

A. The central limit theorem LetX1, X2, . . . be a sequence of random variables
with zero means, E[Xi] = 0, and finite variances,

σ2
i = V[Xi] , i = 1, 2, . . . (D.1)

Define

b2n =

n
∑

i=1

σ2
i , n = 1, 2, . . . (D.2)

The celebrated Lindeberg/Feller central limit theorem says that if

∑n
i=1 E

[

X2
i 1[X2

i > εb2n]
]

b2n
→ 0 , ∀ε > 0, (D.3)

then
∑n

i=1Xi

bn

d→ N(0, 1) . (D.4)

B. Asymptotic properties of MLE estimators The asymptotic distribu-
tions derived in Chapter 11 could be obtained directly from the following standard
result, which is cited here without proof.

Let X1, X2, . . . be a sequence of random elements with joint distribution depending
on a parameter θ that varies in an open set in the s-dimensional euclidean space. As-
sume that the likelihood function ofX1, X2, . . . , Xn, denoted by Λn(X1, X2, . . . , Xn, θ),
is twice continuously differentiable with respect to θ and that the equation

∂

∂θ
ln Λn(X1, X2, . . . , Xn, θ) = 0s×1

has a unique solution θ̂n(X1, X2, . . . , Xn), called the MLE (maximum likelihood esti-
mator). Then, if the matrix

Σ(θ) =

(

−E

[

∂2

∂θ∂θ′
ln Λn

])−1

(D.5)

15
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tends to 0s×s as n → ∞, the MLE is asymptotically normally distributed,

θ̂ ∼as N(θ,Σ(θ)) .

C. The delta method Assume that θ̂ is a consistent estimator of θ ∈ Θ, an open
set in Rs, and that θ̂ ∼as N(θ,Σ). If g : Rs → Rr is a twice continuously differentiable
function of θ, then

g(θ̂) ∼as N

(

g(θ),
∂

∂θ′
g(θ)Σ

∂

∂θ
g(θ)

)

. (D.6)

The result follows easily by inspection of the first order Taylor expansion of g(θ̂) around
θ.



Appendix E

The G82M mortality table

Table E.1: The mortality table G82M

x µx f(x) `x = 105F̄ (x) dx qx

0 0.00057586 0.00057586 100 000 58 0.00057911
1 0.00058279 0.00058246 99 942 59 0.00058635
2 0.00059036 0.00058968 99 883 59 0.00059426
3 0.00059863 0.00059758 99 824 60 0.00060289
4 0.00060765 0.00060621 99 764 61 0.00061231
5 0.00061749 0.00061565 99 703 62 0.00062259
6 0.00062823 0.00062598 99 641 63 0.00063381
7 0.00063996 0.00063726 99 578 65 0.00064606
8 0.00065276 0.00064958 99 513 65 0.00065942
9 0.00066672 0.00066304 99 448 67 0.00067401

10 0.00068197 0.00067775 99 381 69 0.00068993
11 0.00069861 0.00069380 99 312 70 0.00070731
12 0.00071677 0.00071134 99 242 72 0.00072627
13 0.00073659 0.00073048 99 170 74 0.00074697
14 0.00075823 0.00075137 99 096 77 0.00076956
15 0.00078184 0.00077417 99 019 78 0.00079422
16 0.00080761 0.00079906 98 941 81 0.00082113
17 0.00083574 0.00082621 98 860 85 0.00085050
18 0.00086644 0.00085583 98 775 87 0.00088256
19 0.00089994 0.00088814 98 688 90 0.00091754

17



APPENDIX E. THE G82M MORTALITY TABLE 18

x µx f(x) `x = 108F̄ (x) dx qx

20 0.00093652 0.00092338 98 598 94 0.00095573
21 0.00097643 0.00096182 98 504 99 0.00099740
22 0.00102000 0.00100373 98 405 102 0.00104288
23 0.00106754 0.00104942 98 303 108 0.00109252
24 0.00111944 0.00109924 98 195 112 0.00114669
25 0.00117608 0.00115353 98 083 119 0.00120582
26 0.00123790 0.00121270 97 964 124 0.00127034
27 0.00130538 0.00127718 97 840 131 0.00134076
28 0.00137902 0.00134743 97 709 139 0.00141762
29 0.00145940 0.00142394 97 570 146 0.00150150

30 0.00154713 0.00150727 97 424 155 0.00159304
31 0.00164288 0.00159800 97 269 165 0.00169293
32 0.00174738 0.00169678 97 104 175 0.00180196
33 0.00186144 0.00180428 96 929 186 0.00192094
34 0.00198594 0.00192125 96 743 199 0.00205078
35 0.00212181 0.00204849 96 544 211 0.00219247
36 0.00227011 0.00218686 96 333 226 0.00234710
37 0.00243197 0.00233728 96 107 242 0.00251584
38 0.00260863 0.00250075 95 865 259 0.00269998
39 0.00280144 0.00267834 95 606 277 0.00290091

40 0.00301189 0.00287119 95 329 298 0.00312018
41 0.00324157 0.00308050 95 031 319 0.00335944
42 0.00349226 0.00330759 94 712 343 0.00362051
43 0.00376588 0.00355382 94 369 369 0.00390537
44 0.00406451 0.00382066 94 000 396 0.00421619
45 0.00439045 0.00410964 93 604 426 0.00455532
46 0.00474620 0.00442239 93 178 459 0.00492533
47 0.00513447 0.00476062 92 719 494 0.00532902
48 0.00555825 0.00512607 92 225 532 0.00576943
49 0.00602077 0.00552060 91 693 574 0.00624989

50 0.00652560 0.00594609 91 119 617 0.00677402
51 0.00707658 0.00640446 90 502 665 0.00734576
52 0.00767794 0.00689767 89 837 716 0.00796941
53 0.00833430 0.00742765 89 121 770 0.00864963
54 0.00905067 0.00799632 88 351 830 0.00939153
55 0.00983254 0.00860553 87 521 893 0.01020062
56 0.01068591 0.00925700 86 628 960 0.01108295
57 0.01161732 0.00995232 85 668 1 032 0.01204506
58 0.01263389 0.01069283 84 636 1 108 0.01309408
59 0.01374341 0.01147959 83 528 1 189 0.01423775
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x µx f(x) `x = 108F̄ (x) dx qx

60 0.01495440 0.01231325 82 339 1 275 0.01548448
61 0.01627611 0.01319402 81 064 1 366 0.01684342
62 0.01771868 0.01412149 79 698 1 460 0.01832447
63 0.01929317 0.01509456 78 238 1 560 0.01993841
64 0.02101162 0.01611127 76 678 1 664 0.02169690
65 0.02288721 0.01716867 75 014 1 771 0.02361259
66 0.02493430 0.01826263 73 243 1 882 0.02569916
67 0.02716858 0.01938769 71 361 1 996 0.02797145
68 0.02960717 0.02053690 69 365 2 112 0.03044546
69 0.03226874 0.02170163 67 253 2 229 0.03313851

70 0.03517368 0.02287138 65 024 2 345 0.03606928
71 0.03834425 0.02403370 62 679 2 461 0.03925790
72 0.04180475 0.02517403 60 218 2 573 0.04272605
73 0.04558167 0.02627566 57 645 2 680 0.04649704
74 0.04970395 0.02731973 54 965 2 781 0.05059590
75 0.05420317 0.02828534 52 184 2 873 0.05504946
76 0.05911381 0.02914974 49 311 2 953 0.05988641
77 0.06447348 0.02988871 46 358 3 020 0.06513740
78 0.07032323 0.03047703 43 338 3 069 0.07083506
79 0.07670789 0.03088920 40 269 3 102 0.07701411

80 0.08367637 0.03110030 37 167 3 111 0.08371127
81 0.09128204 0.03108704 34 056 3 098 0.09096537
82 0.09958318 0.03082907 30 958 3 059 0.09881727
83 0.10864338 0.03031033 27 899 2 994 0.10730975
84 0.11853205 0.02952051 24 905 2 901 0.11648747
85 0.12932494 0.02845661 22 004 2 781 0.12639675
86 0.14110474 0.02712418 19 223 2 635 0.13708534
87 0.15396168 0.02553851 16 588 2 465 0.14860208
88 0.16799427 0.02372520 14 123 2 274 0.16099656
89 0.18331000 0.02172028 11 849 2 066 0.17431855

90 0.20002621 0.01956945 9 783 1 845 0.18861740
91 0.21827096 0.01732660 7 938 1 619 0.20394126
92 0.23818401 0.01505134 6 319 1 392 0.22033622
93 0.25991791 0.01280578 4 927 1 172 0.23784520
94 0.28363917 0.01065073 3 755 963 0.25650675
95 0.30952951 0.00864156 2 792 772 0.27635358
96 0.33778728 0.00682433 2 020 601 0.29741104
97 0.36862894 0.00523248 1 419 453 0.31969526
98 0.40229077 0.00388474 966 332 0.34321126
99 0.43903065 0.00278447 634 233 0.36795078
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x µx f(x) `x = 108F̄ (x) dx qx

100 0.47913004 0.00192066 401 158 0.39389013
101 0.52289614 0.00127047 243 102 0.42098791
102 0.57066422 0.00080282 141 64 0.44918271
103 0.62280022 0.00048261 77 37 0.47839101
104 0.67970357 0.00027473 40 20 0.50850528
105 0.74181017 0.00014737 20 11 0.53939240
106 0.80959582 0.00007408 9 5 0.57089277
107 0.88357981 0.00003469 4 2 0.60281998
108 0.96432893 0.00001504 2 1 0.63496163
109 1.05246177 0.00000599 1 1 0.66708109

110 1.14865351 0.00000218 0 0 0.69892078



Appendix F

Exercises

Exercise 1

Acquaint yourself with the software Turbo and the program ’ode-1.pas’. Use the pro-
gram to solve the following simple problems:

(a) Compute the integrals
∫ 1

0
t2 dt and

∫ 1

0
t−1/2 dt and check the answers.

(b) Produce a table of values of the standard normal distribution function Φ(x) =
1√
2π

∫ x

−∞ exp(− t2

2
) dt. (Note that Φ(−x) = 1−Φ(x) so you only need to compute the

integral
∫ x

0
.)

(c) Consider the payment function At = t, t ∈ [0, 10], and let the rate of interest be
constant r = 0.05. Compute the cash balance Ut by a forward scheme and the reserve
Vt (which is here negative of course) by a backward scheme for t = 0, 1, . . . , 10.

Exercise 2

Draw a sketch of the payment function At and the cash balance Ut for the fol-
lowing deterministic payment streams, assuming that the interest rate is 4.5% p.a.
(r = ln(1.045)):

(a) A single payment (endowment) of 1 at time 5.

(b) An annuity-due with payments of 1 at times 0, 1, . . . , 9.

(c) An immediate annuity with payments of 1 at times 1, . . . , 10.

(d) An annuity paid continuously at rate 1 per time unit in the time interval [0, 10].
Compare the graphs in (b) – (d).

(e) Now consider the random payment function generated by premiums less benefits
on a temporary term assurance with sum 1, payable immediately upon death within 10
years, against premium payable continuously at level rate 0.00212 during the insurance
period. (This is the equivalence premium if the insured is 30 years old upon issue of

1
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the contract, and we use the Danish mortality law.) Draw a sketch of the payment
function and the cash balance in the case where the insured dies at time t = 5 and in
the case where the insured survives throughout the term of 10 years.

Exercise 3

Draw the graphs in Figures 3.1 - 3.7 in the lecture notes (Basic Life Insurance Math-
ematics). Use the program ’ode-1.pas’ to do the computations.

Exercise 4

Find expressions for f(t), F̄ (t), µ(t), f(t|x), and F̄ (t|x) and sketch graphs of these
functions for the following mortality laws, all of which have finite ω:

(a) De Moivre’s uniform mortality law,

F (t) =
t ∧ ω
ω

.

(b) The more general law given by

F (t) = 1 −
(

1 − t ∧ ω
ω

)α

,

α > 0. Look in particular at the case α = 1/2.

(c) The law given by

F (t) =
ln(1 + (t ∧ ω))

ln(1 + ω)
.

Exercise 5

Population statistics shows that more than half of all new-born are boys (e.g. in Nor-
way some 51.2% at the present). It also shows that the mortality law depends on the
sex. Denote by sm

0 the probability that a new-born is male and by sf
0 = 1 − sm

0 the
probability that a new-born is female. Let tp

m
0 and µm

t be the survival function and
mortality intensity, respectively, for males and let tp

f
0 and µf

t be the corresponding
functions for females.

(a) Find the probability sm
t that a randomly chosen t years old person is a male.

(b) Find the survival function tp0 and the mortality intensity µt in the population (of
males and females). If µm

t and µf
t are both of Gompertz-Makeham form, does it then

follow that also µt is Gompertz-Makeham?

(c) Assume that female mortality is lower than male mortality at all ages. (This is
typically the case, and a common way of modeling this difference is by age reduction,
e.g. take µf

t = µm
t−5.) Show that under this assumption sm

t is a decreasing function.
Give a sufficient condition for sm

t to tend to 0 as t tends to ∞.
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(d) Express the following quantities pertaining to the population in terms of sm
x , sf

x,
and the corresponding quantities specific for males and females, respectively: tpx,

m|nqx, nEx, and, in general the net premium reserve at any time during the term of
an insurance contract.

Exercise 6

A survival function of polynomial form can be fitted arbitrarily well to a given (finite)
set of (non-contradictory) constraints if we choose the degree of the polynomial high
enough. Obviously, the maximum attainable age ω must be finite for a polynomial
survival function.

Consider henceforth a trinomial survival function,

F̄ (t) = a0 + a1 t+ a2 t
2 + a3 t

3 ,

t ∈ [0, ω].

(a) Find the general expressions for the density f(t) and the mortality intensity µ(t).
Verify directly, by inspection of the expression, that limt↗ω µ(t) = ∞. Observe that
F̄ (t|x), considered as function of t, is also trinomial.

(b) Having four parameters, the coefficients (a0, . . . , a3), a trinomial survival functions
can be fitted to four independent constraints. It should certainly be required that
F̄ (0) = 1 and it is quite natural to fix an ω, hence require that F̄ (ω) = 0. Two more
constraints should be added, e.g. f(ω) = 0 and that the expected life length be equal
to a given age e0 ∈ (0, ω). Spell out the equations that the coefficients must satisfy.
One must, of course, check that the solution produces a F̄ that is decreasing and thus
is a genuine survival function.

Exercise 7

We adopt the Danish technical basis in (3.25) and consider a policy issued to a life at
age x = 30 and with term n = 30. Find and draw a sketch of the probability distri-
bution of the present value at time 0 of the following benefits: (a) A pure endowment
benefit of 1; (b) A term insurance with sum 1; (c) An endowment insurance with sum
1; (d) A life annuity of 1 per year.

Exercise 8

(a) Prove and explain the following relationships:

m+nEx = mEx nEx+m ,

m|nāx = mEx āx+m n ,

m|nĀx = mEx Āx+m n .

(b) A more general rule for expected present values of deferred benefits can be formu-
lated in terms of the prospective reserve: Verify that

Vt = V(t,u] + u−tEx+t Vu ,
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where V(t,u] is the expected present value at time t of benefits less premiums payable
in the time interval (t, u].

(c) Find formulas (analogous to those derived in Section 4.1) for the variances of the
present values with expected values listed in item (a) above.

Exercise 9

Let T > 0 be the time of occurrence of some event and let Nt = 1[T,∞)(t) be the (very
simple) counting function that, for each time t ≥ 0, counts how many times the event
has occurred by time t (none before time T and once at and after time T ).

Application of the rule of integration by parts to the product N 2
t = Nt Nt, gives

N2
t = N2

0 +

∫ t

0

Nτ dNτ +

∫ t

0

Nτ− dNτ . (F.1)

Check that this relation is true for all t ≥ 0 by finding the value of each individual
term for t < T (trivial) and for t ≥ T (almost trivial). The left-limit in the last integral
on the right hand side of (F.1) is now essential since the two factors in the product
certainly have a common jump. What happens if you ignore the left-limit?

Explain that the first integral on the right hand side of (F.1) is the same as
∫ t

0
(Nτ− + 1) dNτ and that

∫ t

0
Nτ− dNτ = 0 for all t. Thus (F.1) boils down to the

trivial fact that Nt =
∫ t

0
dNτ .

Exercise 10

Using the program ’ode-1.pas’, do Items (a), (b), and (c) below; for each item run the
program and print the output file.

(a) Compute the survival function tp0 for the mortality law in (3.25) in BL and output
values for t = 0, 10, ..., 100.

(b) Modify the program so that it computes tp70 and outputs its values for t = 0,1,...,30.
(Insert the following statements in the appropriate places: x := 70; term := 30; outp
:= 30;)

(c) Now consider the expected life length in t years for a new-born,

ē0:t =

∫ t

0
τp0 dτ .

Make the program compute and output values for t = 0, 10, ..., 100.

Exercise 11

Study the program ’thiele1.pas’, which solves Thiele’s differential equation numerically
for a fairly general single-life policy.

(a) Check the accuracy of the program by computing some functions that possess
closed formulas (e.g. ā30 = (1 − e−30r)/r by setting n = 30, µ = 0, ba = 1, and all
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other payments null).

In the following use the Danish technical basis given in the program.

(b) Compute 30−tE30+t, ā30+t 30−t , Ā 1
30+t 30−t

, Ā30+t 30−t , (15−t)+ | 15−(t−15)+ ā30+t

for t = 0, 5, . . . , 30.

(c) Compute the quantities listed in (b), now with r = 0, to find 30−tp30+t, ē30+t 30−t ,

30−tq30+t, 1 (!), and (15−t)+ | 15−(t−15)+ ē30+t. Compare with the results in (b) to get
an impression of the impact of interest.

(d) Setting instead the mortality rate µ equal to 0, compute the quantities in (b) again
(some of them are now trivial), identify their proper names and symbols in the world
of deterministic payments, and compare with the quantities obtained in (b) to get an
impression of the impact of mortality.

(e) Do the same exercise again, now assuming that both r and µ are 0, which means
that you just have to write down the total (not discounted)payments under some
simple deterministic contracts. Certainly you do not need the program to find the
answers. Compare the results with those obtained in the previous items.

(f) Going back to the full model with mortality and interest, compute the net pre-
mium level π and net premium reserve Vt at times t = 0, 5, 10, 15, 20, 25, 30 for the
standard forms of insurance treated in Chapter 3, first for the (rare) case with a single
premium at time 0 (has already been done in Item (b) above), and then for the case
with continuous premium at level rate. For the deferred annuity, take m = n = 15.
Draw the missing graphs in Figures 4.1 – 4.5.

(g) Compute the variances of the random variables whose expected values are listed
in (b).

Exercise 12

Revisit Exercise 11 Item (b), which lists the reserves for four contracts with standard
benefits against single premium at time 0. Compute the corresponding reserves under
the modified scheme where k Vt is paid back to the insured (i.e. his or her dependents)
upon death during the term of the contract. Use k = 0.5. (You have already the
numbers for the cases k = 0 and k = 1, and you should be able to explain why that is
so.)

Exercise 13

Prove that, if the mortality intensity is an increasing function of age, then the net
premium reserve for a deferred level benefit life annuity against level equivalence pre-
mium in the deferred period (both continuously paid) is an increasing function of time
throughout the deferred period, and thereafter is a decreasing function.

Exercise 14
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Consider the endowment insurance against continuously payable premium, which com-
prises the three main types of contingent payments: a death benefit of bt at time
t ∈ (0, n), a life endowment of bn at time n, and a life annuity with intensity −πt at
time t ∈ (0, n). Thiele’s differential equation for the reserve Vt is

d

dt
Vt = πt − bt µx+t + (r + µx+t)Vt , (F.2)

t ∈ (0, t), with side condition
Vn− = bn .

We remind of the direct construction of the differential equation at the beginning
of Section 4.4 and add here some further details: Denote by PV(t,u] the present value
at time t of benefits less premiums in the time interval (t, u]. By definition, Vt =
E[PV(t,n] |Tx > t]. We have

PV(t,n] = PV(t,t+dt] + e−r dtPV(t+dt,n] . (F.3)

Take expectation in (F.3), given that the policy is in force at time t. On the left we
get Vt. On the right we use the rule of iterated expectation, conditioning on what
happens in the small time interval (t, t+dt]: with probability µx+t dt the insured dies,
and the conditional expected value is then just bt; with probability 1 − µx+t dt the
insured survives, and the conditional expected value is then −πtdt+ e−r dt Vt+dt. We
gather

Vt = µx+t dt bt + (1 − µx+t dt)(−πtdt+ e−r dt Vt+dt) .

Subtracting Vt+dt on both sides, dividing by dt, and letting dt tend to 0, we arrive at
(F.2).

(a) Use the same technique to obtain a differential equation for the conditional second

order moment, V
(2)
t = E[(PV(t,n])

2 |Tx > t]. Start by squaring (F.3),

(PV(t,n])
2 = (PV(t,t+dt])

2 + 2PV(t,t+dt] e
−r dtPV(t+dt,n] + e−2r dt(PV(t+dt,n])

2 ,

and work along the lines above. Having obtained a differential equation for V
(2)

t , you

find also one for the conditional variance M
(2)
t = V

(2)
t − V 2

t upon differentiating:

d

dt
M

(2)
t =

d

dt
V

(2)
t − 2Vt

d

dt
Vt .

(b) Explain how you can compute the variance functionM
(2)
t by extending the program

’thiele1.pas’.



APPENDIX F. EXERCISES 7

Exercise 15

Poisson processes, which are totally memoryless, can of course be generated from
continuous time Markov chains, which are more general. For instance, let {Z(t)}t≥0

be a Markov chain on the state space {1, 2} with intensities of transition µ12(t) =
µ21(t) = µ. Then {N(t)}t≥0 defined by N(t) = N12(t) + N21(t) (the total number
of transitions in (0, t]) is a Poisson process with intensity µ; transitions counted by
N occur with intensity µ at any time regardless of the past history of the process.
Two independent Poisson processes, {N1(t)}t≥0 with intensity µ1 and {N2(t)}t≥0 with
intensity µ2, can be generated by letting {Z(t)}t≥0 be a Markov chain on the state
space {1, 2, 3, 4} with intensities µ12(t) = µ21(t) = µ34(t) = µ43(t) = µ1, µ13(t) =
µ31(t) = µ24(t) = µ42(t) = µ2, µ14(t) = µ41(t) = µ23(t) = µ32(t) = 0, and defining
N1(t) = N12(t)+N21(t)+N34(t)+N43(t) and N2(t) = N13(t)+N31(t)+N24(t)+N42(t).
Three independent Poisson processes can be generated from a Markov chain with 8
states (work out the details), and, in general, k independent Poisson processes can be
generated from a Markov chain with 2k states.

In the following let {Z(t)}t≥0 be a Markov chain on the state space {1, 2} and take
µ12(t) = µ21(t) = 1. The total time spent by Z in state 1 during the time interval
(t, n] is

T1(t, n] =

∫ n

t

I1(τ ) dτ ,

and the total number of transitions made from state 1 to state 2 in that interval is

N12(t, n] = N12(n) −N12(t) .

(These quantities can be viewed as present values of benefits of annuity type and as-
surance type, respectively, for a two-state policy with no interest.)

(a) Assume Z(0) = 1. What are the interpretations of the random variables T1(t, u]
and N12(t, u] in terms of the Poisson process N(t) = N12(t) +N21(t)?

(b) Find, by solving the relevant differential equations analytically, explicit expressions
for the first two state-wise conditional moments

V
(q)
j (t) = E[T q

1 (t, n] | Z(t) = j] ,

W
(q)
j (t) = E[Nq

12(t, n] | Z(t) = j] ,

j = 1, 2, q = 1, 2, and find also the corresponding variances. (You should obtain e.g.

E[T1(t, n] | Z(t) = 1] =
1

4µ

(

1 + 2µ− e−2µ
)

,

Var[T1(t, n] | Z(t) = 1] =
1

16µ2

(

1 + 4µ − (2 − e−2µ)2
)

.

(c) Using the program prores1.pas, solve the differential equations also numerically
and compare the results with the exact solutions obtained in (b).

Exercise 16

Consider the Markov chain model for death, sickness, and recovery sketched in Figure
7.3, which is apt to describe insurances with payments that depend on the state of
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health of the insured (e.g. disability pension or waiver of premium during disability).
Apart from the names of the states and the symbols for the intensities, we adopt stan-
dard notation for the transition probabilities pjk(t, u) and the occupancy probabilities
pjj(t, u).

(a) Prove, both by a forward and a backward argument, that

paa(t, u) = exp

(

−
∫ u

t

(σ(s) + µ(s)) ds

)

.

(b) Given start in state a at time 0, write up the probability that the process remains
in a during the time interval [0, t1), then jumps to state i in [t1, t1 +dt1), then remains
in i during the time interval [t1 + dt1, t2), then jumps to state a in [t2, t2 + dt2), then
remains in a during the time interval [t2 + dt2, t3), and finally jumps to state d in the
time interval [t3, t3 + dt3). This is the probability of one particular full specification
of the history of the process.

(c) Write down the forward Kolmogorov differential equations for paa(s, t) and pai(s, t)
and their appropriate initial conditions at time t = s. (Since pad(s, t) = 1− paa(s, t)−
pai(s, t), there is no need to work with the differential equation for pad(s, t). This is a
useful property of the forward equations.)

(d) Find an explicit solution to the differential equations in (c) in the case where the
intensities are constant. Since the transition probabilities in this case depend only on
t − s, we can set s = 0 and simplify notation to pjk(0, t) = paa(t). (Hint: Differenti-
ate the differential equation for e.g. paa(t), and substitute expressions for pai(t) and
its first order derivative to obtain a second order differential equation involving only
paa(t). This equation can be solved by a standard techniques.)

Exercise 17

Continuing Exercise 16: We consider an insurance policy purchased by an x years old
person in active state. We are now interested in the life history after age x, conditional
on the state then being a. Therefore, to visualize the insured’s age at entry and the
time elapsed since issue of the policy, we put σ(t) = σx+t, ρ(t) = ρx+t, µ(t) = µx+t,
ν(t) = νx+t and tp

aa
x = paa(x, x+ t) etc.

From Exercise 16 (c) we fetch the (forward) differential equations for tp
aa
x =

paa(0, t) and tp
ai
x = pai(0, t) and their side conditions.

(a) Find closed form expressions for tp
aa
x , tp

ai
x , and tp

ii
x in the case without recovery

(ρx+t ≡ 0). You can either solve the differential equations or put up the expressions
by direct reasoning, see Chapter 7.

(b) The remaining lifetime Tx of (x) has survival function tp[x] = tp
aa
x +pai

x . What are
the conditional probabilities, tp̃

aa
x and tp̃

ai
x , of being active and invalid, respectively,

at time t, given survival to time t (and start as active at time 0)? Find the mortality
intensity µ[x]+t of the survival function tp[x]. Discuss the expression for µ[x]+t, observe
that it is select in general, and give a verbal explanation of the selective mechanism
which is at work here.
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(c) Assume now that µx+t = νx+t, usually referred to as the case of non-differential
mortality. In this case µ[x]+t = µx+t, of course. Verify that the conditional probabil-
ities tp̃

aa
x and tp̃

ai
x are the corresponding transition probabilities in the partial model

sketched in Figure F.1. (Check that they are solutions to the forward differential equa-
tions for the transition probabilities in the partial model.)

active invalid
-�

a iσx+t

ρx+t

Figure F.1: A partial Markov chain model for sickness and recovery, no death.

(d) Consider the following case: Age at entry is x = 30, term of contract is n = 30, the
benefit is a life insurance of 1, premium is payable at level rate while active (waiver
of premium during disability), interest rate and transition intensities are as given in
the standard version of the program ’prores1’. Fill in appropriate statements in the
program ’prores1’ to make it compute the state-wise reserves at times t = 0, 1, . . . , 30.

Exercise 18

Let Z(t), t ≥ 0 be a time-continuous Markov chain on a finite state space J = 1, . . . , J ,
starting in state 1 at time 0; Z(0) = 1 . Assume that it possesses transition inten-
sities, and adopt standard notation for basic entities: intensities of transition µjk(t),
transition probabilities pjk(t, u), and probabilities of uninterrupted sojourns pjj (t, u).

(a) Let t0 ≤ t1 ≤ · · · ≤ tr ≤ tr+1 be times in [0,∞) and let j0, j1, . . . , jr , jr+1 be states
in J . Express the following probabilities in terms of the basic entities:

P

[

r+1
⋂

i=0

Z(ti) = ji

]

;

P

[

r
⋂

i=1

Z(ti) = ji

∣

∣

∣

∣

∣

Z(t0) = j0, Z(tr+1) = jr+1

]

. (F.4)

(b) Let s and t be fixed times such that s < t, and let i and j be fixed states. Use the
result in (F.4) (if you got it right) to show that, conditional on Z(s) = i and Z(t) = j,
the process Z(τ ), τ ∈ [s, t], is a Markov chain.

(c) Suppressing the dependence on s, t and i, j from the notation, denote the condi-
tional Markov chain by Z̃(τ ), τ ∈ [s, t], and denote its transition probabilities and
intensities by p̃gh(τ, ϑ) and µ̃gh(τ ), respectively. Determine these probabilities and
intensities.
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(d) What is the limit of µ̃gh(τ ) as τ tends to t? Distinguish between the cases where
(i) g and h are both different from the “destination state” j, (ii) g 6= j and h = j, (iii)
g = j and h 6= j. Give a verbal explanation of the results.

(e) Now specialize to the disability model in Figure 7.3, and condition on Z(0) = a
and Z(t) = i. Write out the expression for σ̃(τ ) and the value of µ̃(τ ) (trivial). Find
an explicit expression for σ̃(τ ) in the case with constant intensities and no recovery,
and discuss it with particular attention to the limiting value as τ tends to t.

Exercise 19

(a) Describe in words the single life insurance policy for which Thiele’s differential
equation is

d

dt
Vt = r Vt + c − µx+t(1 − Vt) , 0 < t < n ,

subject to the condition
Vn− = 1 .

Integrate the equation, using the technique with integrating factor, to obtain the direct
prospective expression for the reserve Vt. Express the reserve in standard actuarial
notation. Explain how to determine c so as satisfy the equivalence requirement V0 = 0.
�

(b) Prove that if µx+t is an increasing function of t ∈ [0, n], then Vt is an increasing
function of t ∈ [0, n]. Construct an example where Vt is not an increasing function of
t for all t ∈ (0, n). �

Exercise 20

(a) Let T be a random lifetime with continuous survival function tp0, and let G be a
non-decreasing real-valued function such that E[G(T )] is finite. Prove the formula

E[G(T )] = G(0) +

∫ ∞

0
tp0 dG(t) . � (F.5)

Let w(t), defined on [0,∞), be a continuous and strictly positive function such
that

∫∞
0
w(s) ds = ∞. Define

W (t) =

∫ t

0

w(s) ds

and

tp0 =

(

δ

W (t) + δ

)γ

= (1 +W (t)/δ)−γ . (F.6)

(b) Show that tp0 is a survival function, and find the corresponding mortality intensity
µt. Find the conditional survival function tpx and observe that it is of the same form
as tp0, only with different W and δ. Prove that W (T ) + δ is Pareto-distributed with
parameters (γ, δ). �
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(c) Consider the special case where w(t) = 2t, and γ > 1. Use (F.5) to find an explicit
expression for E[T 2]. �

(d) The parameters γ and δ are to be estimated from data on n independent lives
observed from birth until attained age z or death, whichever occurs first. Thus, if
Tm is the life length of person No. m, the observations are Tm ∧ z, m = 1, . . . , n.
Write up the log likelihood function, derive the likelihood equations that determine
the ML estimators γ̂ and δ̂, and explain without doing calculations how to find their
asymptotic covariance matrix. �

(e) Assume that δ is known. Then there is an explicit expression for γ̂. Find this
expression and use (F.5) to show that γ̂ converges to γ with probability 1. �

(f) Assume now that the data available are the occurrence-exposure rates in years
j = 1, . . . , z. Explain how to estimate γ and δ by the technique of analytic graduation
by weighted least squares. �

Exercise 21

An x years old person buys a permanent disability pension policy specifying that pre-
mium is paid continuously at fixed rate c per time unit in active state and pension
is payable continuously at fixed rate b per time unit in disabled state. The policy
terminates z years after issue. The relevant Markov model is sketched in Fig. F.2.
Assume that the interest rate r is constant.

active disabled

dead

J
J

JĴ








�

-
a i

d

µx+t νx+t

σx+t

Figure F.2: A Markov chain model for permanent disability insurance.

(a) Derive the differential equations and their side conditions for the reserves in the
states a and i. �

(b) Suppose the reserve is paid back upon the insured’s death as active before time z.
How does this change the differential equations in Item (a)? �
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(c) Describe in words the product for which the reserves satisfy the differential equa-
tions

d

dt
Va(t) = rVa(t) + c − σx+t(Vi(t) − Va(t)) − µx+t(1 − Va(t)) ,

d

dt
Vi(t) = r Vi(t) − b− νx+t(1 − Vi(t)) ,

with side conditions Va(z−) = 1 and Vi(z−) = 1. �

(d) Write down, without proofs, explicit expressions for the probabilities paa(0, t),
pii(0, t), and pai(0, t). �

(e) Assume that n independent policies, identical to the one described above, are
observed in z years, and that the intensities are of the form:

µx+t = α+ β eγ (x+t) ,

νx+t = α+ β eγ′ (x+t) ,

σy+t = σ (constant) .

Explain how to estimate the parameters α, β, γ, γ′, and σ from the data. Write up
the log likelihood function and derive the likelihood equations that determine the ML
estimator. �

Exercise 22

Use the program ’actuary.pas’ to study how the (fixed) premium rate and the reserve
per survivor depend on the age of the insured, the length of the premium payment
period, the term of the contract, and the interest rate for various forms of insurance.
In the case of life annuities, compare with the corresponding bank savings solution.

Exercise 23

Prove that an FV function has at most a countable number of discontinuities. (Hint:
Consider a non-decreasing and finite-valued function X. Its set of discontinuities is

D(X) = ∪∞
m=1 ∪∞

n=1 Dm,n ,

where Dm,n = {t ; n−1 ≤ t < n , Xt+−Xt− ≥ 1
m
}. Show that Dm,n is finite, possibly

empty. Thus, D(X) is a countable union of finite sets, and is thus at most countable.)

Exercise 24

Define εu(t) = 1[u,∞)(t), which for fixed u is a very simple RC and PD function
of t. Apply (A.7) to the very transparent case where Xt = εt1(t),and Yt = εt2(t),
0 < t1 ≤ t2, and compare the results of the formal calculations to what you can put
up by direct reasoning.

Exercise 25
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Let X be an RC and PD function and let N count its discontinuities. Prove that

dXq
t = qXq−1

t xc
t dt+

q−1
∑

p=0

(

q

p

)

Xp
t−(xd

t )
q−p dNt , (F.7)

which generalizes the well-known rule dXq
t = qXq−1

t dXt for continuous X.

Exercise 26

Let N be a counting process and consider a process S defined by

St = exp(at+ bNt) ,

where a and b are constants. Use Itô’s formula to show that the dynamics of S is given
by

dSt = St−
(

a dt+ (eb − 1)dNt

)

.

In integral form

St = 1 +

∫ t

0

Sτ−
(

adτ + (eb − 1)dNτ

)

.

Assume now that N is a Poisson process with intensity λ. By the independent
increments property of N , we can heuristically conclude that Xτ− and dNτ are inde-
pendent, so

E[Sτ−dNτ ] = E[Sτ−]E[dNτ ] .

Use this together with E[Sτ−] = E[Sτ ] to obtain an integral equation for E[St]. Solve
it to find

E[St] = exp
(

at+
(

eb − 1
)

λt
)

.

Verify the result by direct calculation using that Nt has a Poisson distribution with
parameter λt.

Exercise 27

Verify (2.4). (A recommended text on functional equations is [2].)

Exercise 28

(a) Apply (A.8) to (2.14), takingXt = exp
(

∫ t

0
rs ds

)

and Yt =
∫ n

t
exp

(

−
∫ τ

0
rs ds

)

dBτ ,

to obtain (2.19) and integrate over (t, n] to obtain (2.22).

(b) Prove the relationship (2.24). by applying integration by parts (A.9) to
∫ n

t
e−

∫ τ
0 r dBτ

(it is convenient to put dBτ = d(Bτ − Bt)). Give a verbal interpretation of (2.24).
Then prove (2.23) by using (2.9).

(c) Observe that if B consists only of a unit payable at time n, then, essentially, all
the relationships (2.22), (2.23), and (2.24) reduce to (2.9).
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Exercise 29

(a) Let A = −B and A′ = −B′ be two payment functions with retrospective and
prospective reserves denoted by U and V and U ′ and V ′, respectively. Assuming that
the interest rate is always positive, verify the following rather obvious assertions: If
At ≤ A′

t for all t, then Ut ≤ U ′
t for all t. If, moreover, At < A′

t for some t, then
Uτ ≤ U ′

τ for all τ ≥ t. Similarly, if Bn is finite and Bn −Bt ≤ B′
n −B′

t for all t, then
Vt ≤ V ′

t for all t.

(b) In particular, any advancement of deposits will produce an increase of the ret-
rospective reserve if the interest rate is positive. This is the general circumstance
underlying results like the following about ordering of the present values in (2.28),
(2.29), and (2.31): an < ān < än .

Exercise 30

Let the payment stream A represent deposits less withdrawals on an n years savings
account that bears interest with strictly positive interest rate. It is required that
Ut ≥ 0 for all t, with strict inequality for some t, and that Un = 0, see (1.10) and
(1.11). Prove that An < 0, and explain this result.

Exercise 31

We refer to the theory of loans in Subsection 2.2. In practice amortizations are typically
due at whole years after the loan is paid out and, accordingly, interest is calculated
on an annual basis. Thus, the payment functions A, F , and R are pure jump func-
tions with jumps at, ft, and ρt, respectively, at times t = 1, . . . , n. (The symbol ρt

is chosen since rt is reserved for the instantaneous interest rate, which is something
different.) Denote the annual interest rate in year t by it and the corresponding dis-
count factor by vt = (1 + it)

−1. They are related to the instantaneous interest rate rt

by 1 + it = exp
(

∫ t

t−1
rτ dτ

)

.

(a) Rewrite the relationships appearing in Subsection 2.2 in terms of the At, at, Ft, ft,
Rt, ρt, it, and vt, restricting to discrete times t = 0, . . . , n. In particular, dynamical re-
lations like (2.38) are to be written out as recursive equations in the style of Chapter 1.

(b) Use the program ’actuary.pas’ on L:\KUFML (set mortality equal to 0) to study nu-
merically the properties of various forms of loans; fixed loan (ft = 0 for t = 1, . . . , n−1
and fn = 1), series loan (ft = f for t = 1, . . . , n), and annuity loan (at = a for
t = 1, . . . , n).

Exercise 32

By inspection of Fig. 3.1, estimate roughly the expected number of years spent in the
age intervals (0, 10], (10, 20], . . . , (90, 100] for a new-born. Compute the exact figures.
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Exercise 33

Starting from a given aggregate mortality intensity µx, there are uncountably many
ways of inventing a select mortality law µ[x],t with select period of a given length s
and ultimate mortality law µx+t, t ≥ s. We shall propose four possibilities:

(a) A duration dependent weighted mortality intensity,

µ[x],t =
w(t)

w(0)
νx+t +

(

1 − w(t)

w(0)

)

µx+t ,

where ν is some mortality intensity such that νx < µx for all x > 0, and w is some
non-increasing function such that w(0) > 0 and w(t) = 0 for t ≥ s. For instance, one
could take νx = µx−a for some a > 0 (assuming µ is increasing) and

w(t) = (1 − t/s)q ∨ 0

with q > 0. If q > 1, then the derivative of w at t = s is 0, making µ ”smooth” there.
Suggest another choice of w.

(b) A mortality intensity obtained by reducing age in the select period,

µ[x],t = µx+t−w(t)

with w as in item (a) above.

(c) A simple Cox regression model,

µ[x],t = exp(β1w(t) + β2w
2(t))µx+t

with w as in item (a) above.

(d) A piecewise constant intensity,

µ[x],t = λj + κk , j − 1 ≤ x+ t < j , k − 1 ≤ t < k ,

j = 1, 2, . . ., k = 1, 2, . . . , s.

(e) Discuss in general terms how the select mortality laws in items (a) - (d) can be
estimated from data. Matters may simplify in (a) - (c) if you assume that the ultimate
mortality law is known. Carry out a more formal analysis for the case (d).

Exercise 34

The bank proposes a savings contract according to which (55) saves a fixed amount
c annually in 15 years, at ages 55,...,69, and thereafter withdraws a fixed amount of
b = 1 anually in 10 years, at ages 70,...,79. The annual interest rate is i = 0.045. The
balance equation is

14
∑

j=0

(1 + i)24−jc−
24
∑

j=15

(1 + i)24−jb = 0 ,
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which gives

c =

∑24
j=15 v

j

∑14
j=0 v

j
= 0.381 b .

Find the annual premium for the corrresponding life annuity with benefits payable
contingent on survival.

Exercise 50

So-called Loss of profits insurance covers losses suffered by firms during cessation of
production caused by fire or other accidental events. Suppose that a firm at any time
is either in state “a = active” (normal production) or “i = inactive” (no production).
The insurance can be purchased when the firm is in active state. The indemnification
(benefit) is paid continuously at constant rate 1 per time unit in inactive state, and
premium is paid as a single amount upon issue of the policy at time 0 (say). Denote
the term of the contract by n. Let Z(t) denote the state of the firm at time t. Under
these conventions the total indemnification in respect of the policy is the time spent
in inactive state during the term of the contract,

Tn =

∫ n

0

I{Z(τ)=i} dτ .

Assume that Z is a time-homogeneous Markov chain as sketched in Figure F.3; the
intensities σ and ρ are constant. Put

pjk(t, u) = P[Z(u) = k | Z(t) = j] ,

0 ≤ t ≤ u ≤ n and j, k ∈ {a, i}.

Active Inactive
-�

a iσ

ρ

Figure F.3: A Markov chain model for loss of profit insurance.

(a) Show that

pai(t, u) =
σ

σ + ρ

(

1 − e−(σ+ρ)(u−t)
)

,

and paa(t, u) = 1 − pai(t, u). The probabilities pia(t, u) and pii(t, u) are given by the
same expressions when σ and ρ change roles. Explain why the probabilities pjk(t, u)
depend only on the length of the time interval, u− t. Notice that

lim
u→∞

pai(t, u) =
σ

σ + ρ
,

and explain why the result is reasonable.
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(b) Find the single premium πn = E[Tn] for the loss of profit insurance described above;
Employ the principle of equivalence assuming no interest. Show that the premium per
year, πn/n, is an increasing function of n, with upper limit σ/(σ + ρ) (compare with
the last formula in (a)).

(c) The intensities σ and ρ are to be estimated from statistical data from m indepen-
dent, identical firms, which have been insured and observed over the same period of
time, [0, n]. Assume first that for each firm there is a complete record of transitions be-
tween states in the observation period. Write up the likelihood function, explain how
the maximum likelihood (ML) estimators of the parameters are derived, and find their
asymptotic variances. Examine these variances as functions of n for fixed mn = w
(total time under observation), and comment.

(d) item For 0 ≤ s1 ≤ · · · ≤ sr ≤ t ≤ u ≤ n and j1, . . . , jr ∈ {a, i}, find the conditional
probability

p̃jk(t, u) = P[Z(u) = k |Z(s1) = j1, . . . , Z(sr) = jr, Z(t) = j, Z(n) = i] ,

a function of j, k, t, and u. Conclude that, conditional on Z(n) = i, the process Z
behaves like a Markov chain Z̃ with transition probabilities p̃jk(t, u). Find the transi-
tion intensities σ̃(t) and ρ̃(t) for Z̃.

(e) Assume now that ρ = 0 and that the data available are occurrence-exposure rates
in years j = 1, . . . , n for those firms that are inactive at time n and no information
about other firms in the portfolio. Using the results in (a) and (d), explain how to
estimate σ by the technique of analytic graduation. (Do not try to find an explicit
expression for the estimate of σ.)

Exercise 51

(a) Consider the Markov model for death, sickness, and recovery sketched in Figure
7.3. Apart from the special symbols for the intensities, we adopt standard notation
and assumptions: Z(t) is the state at time t ≥ 0, the process starts from active state,
Z(0) = a,

pjk(t, u) = P [Z(u) = k | Z(t) = j] , (F.8)

and
pjj(t, u) = P [Z(τ ) = j , τ ∈ [t, u] | Z(t) = j] . (F.9)

(a) item Derive forward differential equations for the probability p
(1)
ai (0, t) of being

disabled for the first time at time t and for the probability p
(1)
aa (0, t) of being active at

time t after having been disabled once. Proceed in the same manner to derive forward
differential equations for the probabilities p

(k)
ai (0, t) and p

(k)
aa (0, t) of being disabled and

active, respectively, at time t after exactly k onsets of disability, for k = 2, 3, ....
What is

∑∞
k=1 p

(k)
ai (0, t)?

(b) Express the probability

P [Z(τ ) = i; τ ∈ [t− q, t] | Z(0) = a]

in terms of the basic entities defined in (F.40) and (F.9).



APPENDIX F. EXERCISES 18

(c) At time 0 an active person buys an insurance policy which specifies that a pension
benefit is to be paid continuously with fixed intensity 1 as long as the insured is
disabled and has been so uninterruptedly for at least q years. (The term q is called the
qualifying period.) The policy expires upon death or, at the latest, at time n (> q). A
single premium π is paid at time 0.

Determine the premium π by the principle of equivalence, assuming that the in-
terest rate r is constant. Find the reserve at time t < n − q for an insured who is
disabled and is currently receiving the disability benefit.

(d) Consider the Markov chain model in Figure 7.3. Fill in appropriate statements
in the enclosed program ’prores1’ to make it compute the transition probabilities
pai(t, 10) and pii(t, 10) for t = 0, 1, . . . , 10 in the case where all the intensities are
constant: µ = ν = σ = 0.01 and ρ = 0.

Exercise 52

(a) We adopt the usual notation and assumptions of the theory of multi-life insurance
policies and consider two independent lives (x) and (y) with remaining life lengths Tx

and Ty, respectively. Assume that the benefit is an assurance of 1 payable at time
Ty if Tx + n/2 < Ty < n and that premium is payable at constant rate π until time
min(Tx, Ty, n/2), where n is the term of the contract (fixed). Determine the equiva-
lence premium π.

Exercise 53

The employees of a firm are automatically members of a pension scheme with salary
dependent premiums and benefits defined as follows. Consider an employee (x), who
enters the scheme x years old at time 0 (say), retires at pensionable age 65 at time
m = 65−x, and earns salary at rate S(t) per time unit at time t ∈ [0, m]. Contingent
on survival, premium is payable continuously at rate πS(t) at time t ∈ [0, m], and
pension is received as an endowment of 5S(m) upon retirement at time m.

Assume that the economy is governed by a continuous time Markov chain Y (t),
t ≥ 0, with state space J = {1, . . . , J}, constant intensities of transition λjk, j 6= k,
and initial state Y (0) = i, say. At any time t ≥ 0 the accumulation factor U(t) of the
investment portfolio is given by

U(t) = exp

(∫ t

0

r(s) ds

)

, r(s) =
∑

j

Ij(s)rj ,

and the salary rate is given by

S(t) = exp

(
∫ t

0

a(s) ds

)

, a(s) =
∑

j

Ij(s)aj .

Here, Ij(t) = 1[Y (t) = j], and the rj and the aj are known, fixed numbers; rj is the
interest rate and aj is the rate at which salary increases per time unit and per unit of
salary when the economy is in state j.
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(a) Demonstrate how to determine the premium rate π that makes expected discounted
benefits less premiums equal to 0 at time 0; Construct differential equations for bene-
fits and for premiums and specify appropriate side conditions.

(b) Explain that, if aj = rj for all states j so that salary is perfectly linked to in-
vestments, then equivalence can be attained in a large (in principle infinitely large)
portfolio of identical policies.

Exercise 54

(a) Describe briefly the main characteristics of with-profit insurance and unit-linked
insurance.

(b) Consider a pure endowment benefit at time n (the term of the contract) against
a single premium at time 0. Assume that the investment portfolio of the insurance
company bears interest at rate r(t) at time t, where r is driven by a Markov chain as
described in Question 6. Show how to determine the single premium for a unit-linked
contract with sum insured max(U(n), g), where U(n) is the index of the investment
portfolio given by U(t) as defined in Question 6, and g is a guaranteed minimum sum
insured.

Exercise 55

We adopt the usual notation and assumptions of the theory of multi-life insurance
policies and consider two independent lives (x) and (y) with remaining life lengths Tx

and Ty, respectively.

(a) Assume that the benefit is an assurance of 1 payable at time Ty if 2Tx < Ty < n
and that premium is payable at constant rate π until time min(Tx, Ty, n/2), where n
is the term of the contract (fixed). Determine the equivalence premium π.

(b) Propose a method for computing the premium numerically. (Hint: One possibil-
ity is to treat t/2px as a survival function tp̃x with intensity µ̃x+t, which you would
need to express in terms of µ, and then solve a Thiele differential equation numerically.)

(c) Determine the reserve at any time t, assuming that the insurer currently knows
the complete past history of the two lives. You need to distinguish between various
cases, whether (y) is alive or dead, whether t is before or after time n/2, and whether
x is alive or dead and, if dead, when. Is the reserve always non-negative?

(d) What is the variance of the present value of the benefit?

SURPLUS, BONUS, WITH PROFIT, GUARANTEES, UNIT-LINKED

A. Preliminaries. We are going to restate the theory of surplus and bonus and
related problems in the framework of the simple, still fairly general, single life con-
tract treated in Section 4.4 and add material on interest guarantees and unit-linked
insurance.
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The terms of the contract are set out in the expression for the prospective reserve,

Vt =

∫ n

t

e−
∫ τ
t (ru+µx+u) du(µx+τ bτ − πτ ) dτ + e−

∫n
t (ru+µx+u) du bn ,

and the equivalence relation
V0 = π0 , (F.10)

where π0 is the lump sum premium payment collected upon the inception of the policy
(it may be 0, of course). The equivalence relation (F.10) can be cast as

π0 +

∫ t

0

e−
∫ τ
0 (ru+µx+u) du(πτ − µx+τ bτ ) dτ − e−

∫ t
0 (ru+µx+u) duVt = 0 . (F.11)

The first two terms in (F.11) are the expected present value at time 0 of premiums less
benefits up to and including time t. The second term is minus the expected present
value at time 0 of benefits less premiums after time t. Thus, the equivalence principle
ensures that, at any time, net incomes in the past provide precisely the amount needed
to meet net liabilities in the future.

Thiele’s differential equation is

d

dt
Vt = πt − µx+t bt + (rt + µx+t)Vt , (F.12)

with the boundary condition
Vt− = bn . (F.13)

B. With profit contracts (participating policies); Surplus and Bonus. Insurance poli-
cies are long term contracts, with time horizons wide enough to capture significant
variations in interest and mortality. Therefore, at time 0 when the contract is writ-
ten with benefits and premiums binding to both parties, the future development of
(rt, µx+t), t > 0, is uncertain, and it is impossible to foresee which premium level will
satisfy (F.11) and establish equivalence in the end. If it should turn out that, due
to adverse development of interest and mortality, premiums are insufficient to cover
benefits, then there is no way the insurance company can avoid a loss; it cannot reduce
the benefits and it cannot increase the premiums since these were irrevocably set out
in the contract at time 0. The only way the insurance company can prevent such a
loss, is to charge a premium ’on the safe side’, high enough to be adequate under all
likely scenarios. Then, if everything goes well, a surplus will accumulate. This surplus
belongs to the insured and is to be repaid as so-called bonus, e.g. as increased benefits
or reduced premiums.

The usual way of setting premiums to the safe side is to base the calculation of
the premium level and the reserves on a provisional first order basis, (r∗t , µ

∗
x+t), t > 0,

which represents a worst case scenario and leads to higher premium and reserves than
are likely to be needed. We follow common practice and take the first order interest
rate to be constant, r∗. (From a mathematical point of view this is just a matter of
notation.) The reserve based on the prudent first order assumptions is called the first
order reserve, and we denote it by V ∗

t . It satisfies Thiele’s differential equation

d

dt
V ∗

t = πt + r∗ V ∗
t − µ∗

x+t(bt − V ∗
t ) , (F.14)

subject to the natural side condition V ∗
n− = bn. The premiums are determined so as

to satisfy the first order equivalence relation V ∗
0 = π0.
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Taking our stand at a given time t after the inception of the policy, the develop-
ment of interest and mortality in the past, (rτ , µx+τ ), τ ≤ t, is now known and can
be invoked in an updated calculation of the net incomes up to time t. The future
development of interest and mortality, (rτ , µx+τ ), τ > t, remains uncertain, however,
so for the assessment of future liabilities one must stick to the conservative first order
basis, (r∗, µ∗

x+τ ), τ > t. Thus, instead of the balance equation (F.11), which cannot
be set up since it involves unknown future rates of interest and mortality, we have the
following expression for the mean surplus per policy at time t:

St = π0 +

∫ t

0

e−
∫ τ
0 (ru+µx+u) du(πτ − µx+τ bτ ) dτ − e−

∫ t
0 (ru+µx+u) duV ∗

t . (F.15)

If the factual interest and mortality in the past were more favourable than the pes-
simistic first order basis, then this surplus is positive.

C. Emergence of surplus. To see how the surplus is emerges, we need to study the
dynamics of St. Differentiating (F.15), using (F.14), and rearranging terms, we obtain

d

dt
St = e−

∫ t
0 (ru+µx+u) du ct,

where

ct = (rt − r∗)V ∗
t + (µ∗

x+t − µx+t)(bt − V ∗
t ) . (F.16)

Obviously, ct is the rate at which surplus emerges per survivor and per time unit at
time t. Interpret the two terms on the right hand side of (F.16) as surplus emerging
from safety margins in the interest rate and in the mortality rate, respectively. We can
reasonably say that a first order element is set on the safe side if the corresponding
contribution to the surplus is positive. By inspection of the first term on the right of
(F.16), we see that r∗ is on the safe side as long as it is less than the true rt (provided
that the first order reserve is positive, as it should be for any meaningful contract).
By inspection of the second term on the right of (F.16), we see that the sign of the
sum at risk by death, bt − V ∗

t , determines how to set first order mortality to the safe
side: If the sum at risk is positive (e.g. term assurance or endowment assurance), then
µ∗

x+t is on the safe side if it is bigger than µx+t. If the sum at risk is negative (as is the
case for e.g. a pure endowment, a deferred annuity, or some other savings insurance
with bt = 0), then µ∗

x+t is on the safe side if it is less than µx+t.

D. Redistribution of surplus as bonus. The word bonus is Latin and means ’good’. In
insurance terminology it denotes various forms of repayments to the policyholders of
that part of the company’s surplus that stems from good performance of the insurance
portfolio, a sub-portfolio, or the individual policy. In the present context of life insur-
ance it denotes the repayments of surplus stemming from favourable development of
interest and mortality. Let us denote such repayments by b̃ in general. For the sake
of concreteness, suppose bonuses are paid back continuously at rate b̃t per survivor
for 0 < t < n and possibly with a lump sum b̃n per survivor at time t = n. By
statute, surplus is to be repaid in its entirety, which means that equivalence is to be
re-established on basis of the true interest and mortality conditions when these are
ultimately known at the term of the contract:

∫ n

0

e−
∫ τ
0 (ru+µx+u) ducτ dτ =

∫ n

0

e−
∫ τ
0 (ru+µx+u) du b̃τ dτ

+ e−
∫n
0 (ru+µx+u) dub̃n . (F.17)
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In the following Paragraphs E - G we will study some commonly used bonus schemes.

E. Cash Bonus. This means that surplus is being repaid continually as it emerges,
i.e. b̃t = ct, 0 < t < n, and b̃n = 0. It may for instance take the form of a premium
deductible payable at rate ct as long as the insured is alive during the contract period.
In the case of a term assurance contract it could reasonably take the form of an
additional payment b̂t upon death at time t ∈ (0, n), and a natural choice is b̂t =
ct/µx+t.

Exercise 1-12

Verify that the two cash bonus schemes described above comply with the ultimate
equivalence requirement (G.36). Construct a scheme that is a combination of the two
proposed here.

F. Terminal Bonus. This means that surplus is repaid as a lump sum b̃n to survivors
at the end of the term, and b̃t = 0, 0 < t < n.

Exercise 1-13

Determine b̃n by (G.36).

G. Purchase of Additional Insurance. Under this bonus scheme the surplus is spent
on purchase of additional insurance. Additional insurance is written on the first order
basis and will therefore also generate surplus, which in its turn will be used for further
purchase of additional insurance, and so on. The scheme is non-trivial and requires a
bit of theoretical reasoning:

For a policy in force at time t let V ∗+
t denote the expected present value, on the

first order basis, of future benefits only;

V ∗+
t =

∫ n

t

e−
∫ τ
t (r∗+µ∗

x+u) duµx+τ bτ dτ + e−
∫n

t (r∗+µ∗
x+u) du bn .

It satisfies the Thiele’s differential equation

d

dt
V ∗+

t = r∗ V ∗+
t − µ∗

x+t(bt − V ∗+
t ) , (F.18)

with natural side condition V ∗+
n− = bn.

The quantity V ∗+
t is the single premium payable at time t if the insured then were

to purchase an additional insurance for the balance of the term, with the same benefits
as in the original contract. Spending the surplus ct dt generated in [t, t+dt) as a single
premium for additional benefits of the form specified in the original contract, will buy
the insured a fraction qt dt of future benefits given by

ct = qt V
∗+

t . (F.19)

At any time t ∈ (0, n) the death benefits from the original contract and from the
additional benefits purchased during (0, t] total

(1 +Qt) bt , (F.20)

where

Qt =

∫ t

0

qτ dτ . (F.21)
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Likewise, the total endowment benefit at the term of the contract is

(1 +Qn) bn . (F.22)

At time t the total surpluses from the original contract and the additional benefits
purchased during (0, t] emerge at rate

ct = (rt − r∗) (V ∗
t +QtV

∗+
t ) + (µ∗

x+t − µx+t)
(

(1 +Qt)bt − V ∗
t −QtV

∗+
t

)

. (F.23)

Now all elements needed are in place, and a dynamic computation will deliver the
solution. First, at the time of the inception of the contract, the functions V ∗

t and V ∗+
t

and the equivalence premium πt are determined by use of the program ’prores1.pas’
(or ’prores2.pas’). The computation goes backwards starting from the side conditions
V ∗

t− = bn and V ∗+
t− = bn. Then, as time goes by and surpluses are being observed

and disposed of, one computes simultaneously the functions V ∗
t and V ∗+

t (again) and
the random function Qt as solutions to the differential equations (F.14), (F.18), and
(rewrite (F.19))

d

dt
Qt =

1

V ∗+
t

ct , (F.24)

with ct given by (F.23). The computation goes forwards, starting from time t = 0
with the initial conditions

V ∗
0 = 0 ,

V ∗+
0 = V ∗+

0

(picked from the first computation), and

Q0 = 0 .

Having determined Q, the benefits under this bonus scheme are now given by (F.20)
and (F.22).

H. Prognostication of bonus. At regular times (typically annually) the customer re-
ceives a statement of his policy account, informing about bonus earned from surplus
in the past and also predicting future bonuses based on a qualified guess as to the
future development of interest and mortality.

Exercise 1-14

Outline such a statement with these pieces of information for the standard contract
considered so far, including the relevant formulas, and basing the prognostication of
future surplus on the assumption that rτ = r∗ + ∆r and µx+τ = µ∗

x+τ − ∆µ for some
given positive ∆r and ∆µ.

Exercise 1-15

Apply the present theory to a pension insurance policy for which benefits are an m
year deferred life annuity payable at level rate 1 per year in n years, and premiums are
payable at level rate during the deferred period. Write out all relations and formulas
that differ from the corresponding ones above. Will surplus emerge also in the benefit
period [m,m+ n)?
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Exercise 1-16

Extend the theory so as to include expenses. Consider an endowment insurance with
constant sum insured b and constant gross premium rate π′ (no down payment π′

0 at
time 0). Assume that true expenses incur with a lump sum α′ + α′′b at time 0 and

thereafter continuously at rate β′
t + β′′

t π
′ + γ′

t + γ′′
t b + γ′′′

t V
∗′

t at time t ∈ (0, n) as

long as the policy is in force. Here V ∗′
t denotes the gross premium reserve on first

order basis. First order assumptions specify that expenses incur with a lump sum α∗b
at time 0 and thereafter continuously at constant rate β∗π′ + γ∗b. Discuss how the
first order elements can be set on the safe side. Observe that there is a lump sum
contribution to surplus at time 0.

I. Stochastic interest. The uncertain development of the second order elements can
be built into the model by describing the interest rate and the (parameters of the)
mortality rate as stochastic processes. To keep things simple, we will focus on interest,
which is the more important of the two, and assume that the mortality is perfectly
predicted by the first order basis: µ∗

x+t = µx+t. This means that contributions to
surplus stem only from interest gains, so that

ct = (rt − r∗)V ∗
t . (F.25)

As a simple, but flexible, model for stochastic interest, we will assume that {rt}t≥0

is generated by the Markov chain model in Section 7.8 of BL, see also Exercise 2. To
save space, we will write Yt and rt instead of Y (t) and r(t) and, since subscripts are
now used for the time variable t, denote the state-wise interest rate by re.

The statement of account, which is regularly sent to the insured, usually comes
with a prognosis of future bonuses on the insurance. Such a prognosis must be based
on a qualified guess about the future development of the factual valuation basis – in
our simplified situation about r. This guess may be exogenous to the model, e.g. based
on combined opinions of experts in the finance department of the company. Having
adopted a stochastic model for r, the insurer can make an endogenous, model-based
forecast of future bonus payments. Thus, consider a policy which is still in force at
time t, and suppose the insurer wants to inform the insured about the conditional
expected value of future bonuses, given that the current interest rate is rt = re (which
means Yt = e, assuming that all re are different). We will consider a few examples.

J. Cash bonus: The rate at which bonus will be paid at some fixed future time u,
provided the insured is then alive, is

W = (ru − r∗)V ∗
u .

At time t < u, given rt = re, W is predicted by its conditional expected value

We(t) = E[W | rt = re] .

Exercise 1-17

Show that the functions We(t) are the solution to the differential equations

d

dt
We(t) =

∑

`;f 6=e

λef (We(t) −Wf (t)) ,
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subject to the conditions
We(u) = (re − r∗)V ∗

u ,

e = 1, . . . , JY .

K. Terminal bonus: Bonus payable as a lump sum at the term of the contract n,
provided the insured is then alive, is

W =

∫ n

0

e
∫n
τ rs ds(rτ − r∗)V ∗

τ dτ

= W ′
t

∫ t

0

e
∫ t
τ rs ds(rτ − r∗)V ∗

τ dτ +W ′′
t ,

where

W ′
t = e

∫n
t rs ds ,

W ′′
t =

∫ n

t

e
∫n

τ rs ds(rτ − r∗)V ∗
τ dτ .

The random variables W ′
t and W ′′

t , which are unknown at time t, are predicted by

W ′
e(t) = E[W ′

t | rt = re] ,

W ′′
e (t) = E[W ′′

t | rt = re] .

Exercise 1-18

Writing

W ′
t = ert dt W ′

t+dt ,

W ′′
t = W ′

t (rt − r∗)V ∗
t dt + W ′′

t+dt ,

show that the functions W ′
e(t) and W ′′

e (t) are the solution to the differential equations

d

dt
W ′

e(t) = −reW
′
e(t) +

∑

f ;f 6=e

λef (W ′
e(t) −W ′

f (t)) ,

d

dt
W ′′

e (t) = −W ′
e(t)(r

e − r∗)V ∗
t +

∑

f ;f 6=e

λef (W ′′
e (t) −W ′′

f (t)) ,

subject to the conditions

W ′
e(n−) = 1 ,

W ′′
e (n−) = 0 ,

e = 1, . . . , JY .

L. Additional benefits: At a fixed future time u bonus is paid as a multiple Qu of the
contractual benefits provided the insured is then alive. At time t we decompose Qu

into Qt, which is known, and Qu −Qt, which is unknown, and we need to predict the
latter. Recalling (F.19) and (F.25), start from the differential equation

d

dt
Qt = (rt − r∗) (

V ∗
t

V ∗+
t

+Qt)
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and use the technique with integrating factor to obtain

Qu = W ′
t Qt + W ′′

t ,

where

W ′
t = e

∫u
t (rs−r∗) ds ,

W ′′
t =

∫ u

t

e
∫u
τ (rs−r∗) ds(rτ − r∗)

V ∗
τ

V ∗+
τ

dτ .

Exercise 1-19

Derive differential equations for the state-wise predictions W ′
e(t) and W ′′

e (t) of W ′
t and

W ′′
t .

Exercise 1-20

(a) Predict discounted future cash bonuses given survival to n,

∫ n

t

e−
∫ τ

t rs ds(rτ − r∗)V ∗
τ dτ .

(b) Predict discounted future cash bonuses,

∫ n

t

e−
∫ τ

t (rs+µx+s) ds(rτ − r∗)V ∗
τ dτ .

(c) Find differential equations for the conditional variance, given rt = re, of the fu-
ture cash bonuses. You may try your hand also on the conditional variance of future
terminal bonus.

As we have said before, the Markov model proposed here can hardly be 100 per
cent realistic. Now, the usefulness of a model depends on its purpose. The sole pur-
pose of the interest rate model is to provide the insured with a reasonable guess as to
his future prospects of bonus, and for that purpose a rough model can certainly be
adequate. Anyway, at the end of the day the bonus payments will be determined en-
tirely by the factual interest rate and will not depend on the assumptions in our model.

M. Guaranteed interest. Recall the basic rules of the ’with profit’ insurance contract:
On the one hand, any surplus is to be redistributed to the insured. On the other
hand, benefits and premiums set out in the contract cannot be altered to the insured’s
disadvantage. This means that negative surplus, should it occur, cannot result in
negative bonus. Thus, the with profit policy comes with an interest rate guarantee to
the effect that bonus is to be paid as if factual interest were no less than first order
interest, roughly speaking. For instance, cash bonus is to be paid at rate

(rt − r∗)+V
∗

t

per survivor at time t, hence the insurer has to cover

(r∗ − rt)+V
∗

t . (F.26)
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Similarly, terminal bonus (typical for e.g. a pure endowment benefit) is to be paid as
a lump sum

(∫ n

0

e
∫n
τ rs ds(rτ − r∗)V ∗

τ dτ

)

+

per survivor at time n, hence the insurer has to cover
(
∫ n

0

e
∫n
τ rs ds(r∗ − rτ )V ∗

τ dτ

)

+

. (F.27)

(We write a+ = max(a, 0) = a ∨ 0.)
An interest guarantee of this kind represents a liability on the part of insurer. It

cannot be offered for free, of course, but has to be compensated by a premium. This
can certainly be done without violating the rules of game for the participating policy,
which lay down that premiums and benefits be set out in the contract at time 0. Thus,
for simplicity, suppose a single premium is to be collected at time 0 for the guarantee.
The question is, how much should it be?

Being brought up with the principle of equivalence, we might think that the ex-
pected discounted value of the liability is an agreeable candidate for the premium.
However, the rationale of the principle of equivalence, which was to make premiums
and benefits balance on the average in an infinitely large portfolio, does not apply to
financial risk. Interest rate variations cannot be eliminated by increasing the size of
the portfolio; all policy-holders are faring together in one and the same boat on their
once-in-a-lifetime voyage through the troubled waters of their chapter of economic his-
tory. This risk cannot be averaged out in the same way as the risk associated with the
lengths of the individual lives. None the less, in lack of anything better, let us find the
expected discounted value of the interest guarantee, and just anticipate here that this
actually would be the correct premium in an extended model specifying a so-called
complete financial market. Those who are familiar with basic arbitrage theory know
what this means. Those who are not should just imagine that, in addition to the
bank account with the interest rate rt, there are some other investment opportunities,
and that any future financial claim can be duplicated perfectly by investing a certain
amount at time 0 and thereafter just selling and buying available assets without any
further infusion of capital. The initial amount required to perform this duplicating
investment strategy is, quite naturally, the price of the claim. It turns out that this
price is precisely the expected discounted value of the claim, only under a different
probability measure than the one we have specified in our physical model. With these
reassuring phrases, let us proceed to find the expected discounted value of the interest
guarantee.

(a) Cash bonus with gurantee given by (F.26): Given that r0 = re (say), the price of
the total claims under the guarantee, averaged over an infinitely large portfolio, is

E

[
∫ n

0

e−
∫ τ
0 r(r∗ − rτ )+V

∗
τ τpx dτ

∣

∣

∣

∣

r0 = re

]

. (F.28)

A natural starting point for creating some useful differential equations by the backward
construction is the ’price of future claims under the guarantee’ in state e at time t,

We(t) = E

[
∫ n

t

e−
∫ τ

t r(r∗ − rτ )+V
∗

τ τpx dτ

∣

∣

∣

∣

rt = re

]

, (F.29)

e = 1, . . . , JY , 0 ≤ t ≤ n. The price in (F.28) is precisely We(0).
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Conditioning on what happens in the time interval (t, t+ dt] and neglecting terms
of order o(dt) that will disappear in the end anyway, we find

We(t) = (1 − λe·dt)
(

(r∗ − re)+V
∗

t tpx dt+ e−redtWe(t+ dt)
)

+
∑

f ; f 6=e

λefdtWf (t) .

From here we easily arrive at the differential equations

d

dt
We(t) = −(r∗ − re)+V

∗
t tpx + reWe(t) −

∑

f ; f 6=e

λefdt (Wf (t) −We(t)) , (F.30)

which are to be solved subject to the conditions

We(n−) = 0 . (F.31)

(b) Terminal bonus at time n given by (F.27): Given r0 = re, the price of the claim
under the guarantee, averaged over an infinitely large portfolio, is

E

[

e−
∫n
0 rs ds

(
∫ n

0

e
∫n
τ rs ds(r∗ − rτ )V ∗

τ dτ

)

+

npx

∣

∣

∣

∣

∣

r0 = re

]

= E

[

(∫ n

0

e−
∫ τ
0 r(r∗ − rτ )V ∗

τ dτ

)

+

∣

∣

∣

∣

∣

r0 = re

]

npx . (F.32)

Let us try and copy the method of Item (a) and look at the ’price of the claim at
time t’, which should be the conditional expected discounted value of the claim, given
what we know at the time:

E

[

e−
∫n

t rs ds

(
∫ n

0

e
∫n
τ rs ds(r∗ − rτ )V ∗

τ dτ

)

+

npx

∣

∣

∣

∣

∣

rτ ; 0 ≤ τ ≤ t

]

= E

[

(

Ut +

∫ n

t

e−
∫ τ
t r(r∗ − rτ )V ∗

τ dτ

)

+

∣

∣

∣

∣

∣

rτ ; 0 ≤ τ ≤ t

]

npx .

(F.33)

where

Ut =

∫ t

0

e
∫ t
τ r(r∗ − rτ )V ∗

τ dτ .

The quantity in (F.33) is more involved than the one in (F.29) since it depends effec-
tively on the past history of interest rate through Ut. We can, therefore, not hope to
end up with the same simple type of problem as in Item (a) above and in all other
situations encountered so far, where we essentially had to determine the conditional
expected value of some function depending only on the future course of the interest
rate. Which was easy since, by the Markov property, we could look at state-wise con-
ditional expected values We(t), e = 1, . . . , JY , say. These are deterministic functions
of the time t only and can be determined by solving ordinary differential equations.

Let us proceed and see what happens. Due to the Markov property (conditional
independence between past and future, given the present) the expression in (F.33) is
a function of t, rt and Ut. Dropping the uninteresting factor npx, consider its value
for given Ut = u and rt = re,

We(t, u) = E

[

(

u+

∫ n

t

e−
∫ τ

t r(r∗ − rτ )V ∗
τ dτ

)

+

∣

∣

∣

∣

∣

rt = re

]

.
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Use the backward construction:

We(t, u) =

(1 − λe·dt)E

[

(

u + (r∗ − re)V ∗
t dt+ e−re dt

∫ n

t+dt

e−
∫ τ
t+dt r(r∗ − rτ )V ∗

τ dτ

)

+

∣

∣

∣

∣

∣

rt+dt = re

]

+
∑

f ; f 6=e

λefdtWf (t, u) =

(1 − λe·dt)e
−re dtWe(t+ dt, ere dtu+ (r∗ − re)V ∗

t dt) +
∑

f ; f 6=e

λefdtWf (t, u) .

Insert here e±re dt = 1 ± redt+ o(dt),

We(t+ dt, ere dtu + (r∗ − re)V ∗
t dt) =

We(t, u) +
∂

∂t
We(t, u) dt+

∂

∂u
We(t, u)(u r

e + (r∗ − re)V ∗
t ) dt+ o(dt) ,

and proceed in the usual manner to arrive at the partial differential equations

∂

∂t
We(t, u)+(ure+(r∗−re)V ∗

t )
∂

∂u
We(t, u)−reWe(t, u)+

∑

f ; f 6=j

λef (Wf (t, u)−We(t, u)) = 0 .

These are to be solved subject to the conditions

We(n−, u) = u+ ,

e = 1, . . . , JY .
Since the functions we are interested in involved both t and Ut, we are lead to

state-wise functions in two arguments and, therefore, quite naturally end up with
partial differential equations for those.

N. Unit linked insurance. We have been discussing the participating (or with profit)
policy, characteristic of which is that benefits and premiums are set out in nominal
amounts in the contract at time 0. Thus, For the fairly general contract described
in the introduction to this note, the functions bt and πt would be deterministic, not
dependent on the development of the interest rate over the term of the contract.
Introduce

Ut = e
∫ t
0 ru du ,

which is the value at time t of a unit deposited in the investment portfolio at time
0. We may call it the price index of the investment portfolio. Recast the equivalence
relation (F.11) as

−π0 +

∫ n

0

U−1
τ τpx(µx+τ bτ − πτ ) dτ + U−1

n npx bn = 0 . (F.34)

With bt and πt fixed at time 0 there is no way one can make them fulfill (F.34) for
all possible future courses of the interest rate process. Depending on the economic
development there will be inequality in the one or the other direction. The financial
risk thus introduced is hedged (hopefully perfectly) by setting premiums on a prudent
first order basis, i.e. replacing the unknown rt in (F.34) by some r∗ set to the ’safe
side’.
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An alternative scheme for management of financial risk in life insurance is known
as unit linked insurance (also called variable life insurance). The idea of this concept
is to link benefits and premiums to the performance of the investment portfolio, that
is, let contractual payments be inflated by the index U instead of being fixed nominal
amounts.

Under a perfect unit linked contract we would have bt = Utb
◦
t and πt = Ut π

◦
t for

some ’baseline’ benefits b◦t and premiums π◦
t , t ∈ [0, n], determined at time 0. Inserting

this into (F.34) gives

−π0 +

∫ n

0
τpx(µx+τ b

◦
τ − π◦

τ ) dτ + npx b
◦
n = 0 . (F.35)

We see that, for a given baseline benefit function b◦t , the equivalence relation can be
fulfilled by a suitable choice of baseline premium rate π◦

t . The future course of the
interest rate process has disappeared from the relation upon discounting the indexed
payments and, thus, the problem with financial risk has been resolved by the perfect
unit linked device.

However, in practice unit-linked contracts are usually not perfect in the sense
described above. Typically, only the benefits are linked to the investment index,
whereas premiums are not. Furthermore, the unit linked contract is typically equipped
with a guarantee specifying that the benefit cannot fall below a certain pre-specified
nominal minimum. Such modifications to the perfect linking re-introduce financial
risk, of course.

Before we return to mathematics, we dare to suggest that guarantees, whether
they apply to benefits under unit linked contracts or to interest under with profit
contracts, are remains of the social security concern that traditionally was paramount
in life insurance. They introduce a discrimination between various forms of saving;
unlike those who invest in stocks, bonds, or real estate, those who invest in life or
pension insurance are granted the privilege of gaining from booms without loosing
from recessions. However, parity can be restored by letting the insured pay for the
guarantee. Thus we proceed to determine its right price.

For an example, let us try and determine the single premium payable at time 0 for
a term insurance with sum bt = (Ut ∨ g) at time t ∈ (0, n), where g is the guaranteed
minimum sum insured specified at time 0. The premium is

π = E

[∫ n

0

e−
∫ τ
0 r
(

e
∫ τ
0 r ∨ g

)

τpxµx+τ dτ

]

= E

[∫ n

0

(

1 ∨ e−
∫ τ
0 rg

)

fτ dτ

]

,

where we have abbreviated
ft = tpxµx+t .

Following the recipe in Item (b) of Paragraph M, consider the ’price of future claims
at time t’,

E

[
∫ n

t

e−
∫ τ
t r
(

e
∫ τ
0 r ∨ g

)

fτ dτ

∣

∣

∣

∣

rτ ; 0 ≤ τ ≤ t

]

= E

[∫ n

t

(

Ut ∨ e−
∫ τ

t rg
)

fτ dτ

∣

∣

∣

∣

rτ ; 0 ≤ τ ≤ t

]

. (F.36)

Arguing as before, the expression in (F.36) is a function of t, rt and Ut. Consider its
value at time t for given Ut = u, and rt = re,

We(t, u) = E

[∫ n

t

(

u ∨ e−
∫ τ
t rg

)

fτ dτ

∣

∣

∣

∣

rt = re

]

.
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When r0 = re, the premium we seek is We(t, 1)
Now use the backward construction, this time leaving details aside:

We(t, u) =

(1 − λe·dt)E

[

(u ∨ g) ft dt+ e−redt

∫ n

t+dt

(

eredtu ∨ e−
∫ τ
t+dt rg

)

fτ dτ

∣

∣

∣

∣

rt+dt = re

]

+
∑

f ; f 6=e

λefdtWf (t, u)

= (1 − λe·dt)
(

(u ∨ g) ft dt+ e−redtWe(t+ dt, eredtu)
)

+
∑

f ; f 6=e

λefdtWf (t, u) .

Insert e±re dt = 1 ± redt+ o(dt) and

We(t+ dt, eredtu) = We(t+ dt, u+ uredt) + o(dt)

= We(t, u) +
∂

∂t
We(t, u) dt+

∂

∂u
We(t, u)u r

e dt+ o(dt) ,

and fill in some details to arrive at the partial differential equations

(u∨g)ft−reWe(t, u)+
∂

∂t
We(t, u)+

∂

∂u
We(t, u)u re+

∑

f ; f 6=e

λef (Wf (t, u)−We(t, u)) = 0 .

These are to be solved subject to the conditions

We(n−, u) = 0 ,

e = 1, . . . , JY .

O. Salary dependent premiums and benefits. The employees of a firm are enrolled in a
pension scheme with salary dependent premiums and benefits. Consider an employee
(x), who enters the scheme x years old at time 0 (say), retires at pensionable age 65 at
time m = 65 − x, earns salary at rate S(t) per time unit at any time t < m, and will
receive pension continuously at level rate Q (yet to be determined) for n years after
retirement. Let us first work under the assumption that the interest rate r is constant
and known for the entire term of the contract up to time m+ n.

(a) We will first consider a ’defined contributions’ scheme under which a fixed propor-
tion of the salary is used as premium for additional pension benefits. It will turn out
that equivalence is automatically attained regardless of the development of the salary.

In any small time interval [t, t + dt), t < m, the insured earns S(t) dt. A fixed
proportion πS(t) dt, 0 < π < 1, of this salary is used as a single premium for a pension
of q(t) dt per time unit in the time interval [m,m+n]. By the principle of equivalence,
qt is given by

π S(t) dt = q(t) dtm−t|nāx+t ,

that is,

q(t) = π
S(t)

m−t|nāx+t
= π

S(t)

m−tEx+t āx+m n
.

The total rate of pension per time unit purchased by a survivor at time m is

Q =

∫ m

0

q(τ ) dτ = π

∫ m

0

S(τ )

m−τEx+τ āx+m n
dτ .
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It should be fairly obvious that the equivalence requirement is fulfilled by this
scheme since, no matter how much or little salary the insured will earn and no matter
if it can be predicted or not at the outset, the benefits are entirely determined by
the salary-dependent contributions. Let us, however, just check: For any given salary
function, S, the expected discounted premiums are

π

∫ m

0

e−
∫ τ
0 (r+µx+s) ds S(τ ) dτ = π

∫ m

0
τEx S(τ ) dτ ,

and the expected discounted benefits are

Qm|nāx = π

∫ m

0

S(τ )

m−τEx+τ āx+m n
dτ mEx āx+mn = π

∫ m

0
τEx S(τ ) dτ ,

where we have used the well-known identity mEx = τEx m−τEx+τ .

(b) Suppose now that, instead of letting the contributions determine the benefits, the
benefits are linked to the salary whereas the premiums are not. More specifically,
suppose pension is payable continuously at rate 0.75S(m) (i.e. 75% of the salary rate
at the time of retirement) for n years after retirement, and that premium is payable
at a prefixed level rate π while active (both contingent on survival, of course). To
determine the premium level π at time 0, we now need to make assumptions about
the future development of the salary. Let us also abandon the unrealistic assumption
that the future development of the interest rate is known:

Assume that the economy is governed by a continuous time Markov chain Y (t),
t ≥ 0, with state space J = {1, . . . , J}, constant intensities of transition λjk, j 6= k,
and initial state Y (0) = i, say. At any time t ≥ 0 the accumulation factor U(t) of the
investment portfolio is given by

U(t) = exp

(
∫ t

0

r(s) ds

)

, r(s) =
∑

j

Ij(s)rj , (F.37)

and the salary rate is given by

S(t) = exp

(∫ t

0

a(s) ds

)

, a(s) =
∑

j

Ij(s)aj .

Here, Ij(t) = 1[Y (t) = j], and the rj and the aj are known, fixed numbers; rj is the
interest rate and aj is the rate at which salary increases per time unit and per unit of
salary when the economy is in state j.

Exercise 1-21

Determine the premium rate π that makes expected discounted benefits less premiums
equal to 0 at time 0; Construct differential equations for benefits and for premiums
and specify appropriate side conditions.

Exercise 1-22
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Consider the Markov chain interest model outlined in Figure F.5. Fill in appropriate
statements in the program ’prores2’ to make it compute the state-wise expected dis-

count factors E

[

exp
(

−
∫ 5

0
r(s) ds

)
∣

∣

∣
Y (0) = j

]

, j = 1, 2, 3.

Exercise 1-22

Let the benefit be an n years unit-linked pure life endowment with guaranteed sum
insured max(U(n), g), and let premium be payable continuously at level rate π during
the insurance period. Show how to determine π.

Exercise 56

Let {N(t)}t≥0 be Poisson process with intensity λ. This is a counting process of even
simpler type than the counting processes associated with a Markov chain; N is not
only Markov, but also has independent increments. Thus, in any small time interval
[t, t+ dt) the process N makes a jump of 1 with probability λ dt regardless of the past
history of the process in [0, t).

Let the price S(t) of a share of stock at time t be modelled as a so-called geometric
Poisson process with drift,

S(t) = exp (αt+ βN(t)) ,

t ≥ 0. If β = 0, then S(t) is just the accumulation factor for a bank account with fixed
interest rate. The Poisson term in the exponent adds jumps at random times, and
a jump at time t makes the stock price jump from S(t−) to S(t) = S(t−) eβ. Thus,
γ = eβ − 1 is the relative change (S(t)− S(t−))/S(t−) in the stock price at the jump
time. Between the jumps the stock price increases at fixed “rate of interest” α.

(a) Find the expected value E[S(t)] at time 0 of the stock price at time t, and do this
in two ways: First, work directly with the Poisson distribution of N(t) and, second,
solve a differential equation obtained by the direct backward construction (condition
on “what happens in the small time interval [0, dt)”). Explain that, having determined
the expected value, higher order moments are easily obtained.

(b) Find the dynamics dS(t) of the stock price by applying the change of variable rule,
see Appendix A.

(c) Using the direct backward construction, show that the expected present value of a
perpetuity (an everlasting annuity), is

E

[
∫ ∞

0

S−1(τ ) dτ

]

= (α+ λ(1 − e−β))−1 .

(d) Let {N1(t)}t≥0 and {N2(t)}t≥0 be independent Poisson processes with intensities
λ1 and λ2, respectively. Let the price S(t) of a share of stock at time t be

S(t) = exp (αt+ β1N1(t) + β2N2(t)) ,

t ≥ 0. Letting β1 and β2 have opposite signs, we have created a stock price which may
increase or decrease with instantaneous jumps. Write out the straightforward analogs
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of the formulas in Items (a) - (c) for this more general model.

Exercise 57

(a) Let A and A′ be two payment functions with retrospective reserves denoted by
U and U ′, respectively. Assuming that the interest rate is always positive, verify the
following rather obvious assertion: If At ≤ A′

t for all t, then Ut ≤ U ′
t for all t. (In

particular, any advancement of deposits will produce an increase of the retrospective
reserve if the interest rate is positive. This is the general circumstance underlying
results like the following about ordering of expected present values: an ≤ ān ≤ än .)

(b) Let the payment stream A represent deposits less withdrawals on an n years
savings account that bears interest with strictly positive interest rate. It is required
that Ut ≥ 0 for all t, with strict inequality for some t, and that Un = 0. Prove that
An < 0, and explain this result.

Exercise 58

(a) Show that, for t ≤ s ≤ u, pjj(t, u) = pjj(t, s) pjj(s, u), which is obvious.

(b) Given start in state a at time 0, write up the probability that the process remains
in a during the time interval [0, t1), then jumps to state i in [t1, t1 +dt1), then remains
in i during the time interval [t1 + dt1, t2), then jumps to state a in [t2, t2 + dt2), then
remains in a during the time interval [t2 + dt2, t3), and finally jumps to state d in the
time interval [t3, t3 + dt3). This is the probability of one particular full specification
of the history of the process.

Exercise 59

Read Sections 9.1 and 9.2 in ’Basic Life Insurance Mathematics’. Suppose n indepen-
dent lives, which follow the same Gompertz-Makeham mortality law with intensity
µ(t) = α+ β exp(γt), are observed from birth until death. Find the equations for the
Maximum likelihood estimators for the parameters α, β, and γ, and find the asymp-
totic properties of the estimators.

Exercise 60

In the situation of Paragraphs 9.1.B-E, consider the problem of estimating µ from the
Di alone, the interpretation being that it is only observed whether survival to z takes
place or not. Show that the likelihood based on Di, i = 1, . . . , n, is

qN (1 − q)n−N ,

with q = 1−e−µz, the probability of death before z. (Trivial: it is a binomial situation.)
Note that N is now sufficient, and that the class of distributions is a regular

exponential class. The MLE of q is

q∗ =
N

n
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with the first two moments

Eq∗ = q, Varq∗ =
q(1 − q)

n
.

It is UMVUE in the class of estimators based on the Di.
The MLE of µ = − ln(1− q)/z is µ∗ = − ln(1− q∗)/z. Apply standard asymptotic

results about MLE to show that

µ∗ ∼as N

(

µ,
q

nz2(1 − q)

)

.

The asymptotic efficiency of µ̂ relative to µ∗ is

asVarµ∗

asVarµ̂
=

(

e
µz
2 − e−

µz
2

µz

)2

=

(

sinh(µz/2)

µz/2

)2

(sinh is the hyperbolic sine function defined by sinh(x) = (ex−e−x)/2). This function
measures the loss of information suffered by observing only death/survival by age z
as compared to inference based on complete observation throughout the time interval
(0, z). It is ≥ 1 and increases from 1 to ∞ as µz increases from 0 to ∞. Thus, for small
µz, the number of deaths is all that matters, whereas for large µz, the life lengths are
all that matters. Reflect over these findings.

Exercise 61

We refer to the disability model.
(a) Consider an x years old insured who enters an insurance scheme at time 0. The
probability paa(0, t) = exp(−

∫ t

0
(µx+s + σx+s) ds) can be viewed as the probability

p
(0)
aa (0, t) of being active at time t after having been disabled 0 times. Derive forward

differential equations for the probability p
(1)
ai (0, t) of being disabled for the first time

at time t and for the probability p
(1)
aa (0, t) of being active at time t after having been

disabled once.

(b) Find the probability of being disabled for the first time at time t and that the
disability has lasted for at least q years.

(c) At time 0 an active person aged x buys a disability pension insurance with the
following terms: The benefit is a pension payable at level rate 1 during the first dis-
ability, but only after it has lasted for at least q years (the qualifying period). Premium
is payable at level rate π as long as the insured is active and has not yet been disabled,
but not after time n − q, where n is the contract period (n > q). Determine the pre-
mium π by the principle of equivalence, assuming that the interest rate r is constant.
Find the reserve at time t < n− q for an insured who is disabled for the first time and
is currently receiving the disability benefit.

Exercise 62

The two-state Markov chain Z sketched in Fig. F.1 can be given many interpretations;
it could describe transitions of a person into and out of the work-force (’active’ means
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employed, ’invalid’ means unemployed, and mortality is disregarded), or the transitions
of a person between marital states (’active’ means single, ’invalid’ means married), or
the transitions of a machine or mechanical device between states of functioning (’active’
means intact, ’invalid’ means out of order), and so on.

Let us take the model as a description of a lamp, which is always switched on
(it is installed in a submarine), and which is ’active’ when the bulb is intact and
’invalid’ or ’inactive’ when the bulb is burnt-out. One can assume that the life-time
of a bulb is exponentially distributed, and it also seems reasonable to assume that
the lapse of time from a bulb burns out until the failure is discovered and the bulb is
replaced, is exponentially distributed. Then the intensities σ and ρ are constant (σ is
the ’mortality’ intensity of the life length of a bulb or the expected number of ’deaths’
per time unit for an burning bulb, and ρ is the expected number of maintenance
inspections per time unit.).

We follow the lamp from time 0 when it is active. Let Nai(t) and Nia(t) denote the
number of failures and replacements of bulb, respectively, in the time interval [0, t],
and let Ia(t) and Ii(t) be the indicators of the events ’active at time t’ and ’inactive
at time t’, respectively. Of course, Ii(t)+Ia(t) = 1, and Nia(t)−Nai(t) is either 0 or 1.

(a) Find E[Ii(t)] = pai(0, t) by solving Kolmogorov’s forward equations, using paa(0, t) =
1 − pai(0, t).

(b) Find the expected time as inactive in [0, t], E[
∫ t

0
Ii(τ ) dτ ]. You may just integrate

the function pai(0, τ ) in (a). Explain why.

(c) Find E[Nai(t)]. You may also find the answer by just integrating the function
paa(0, τ ) in (a) and multiplying with σ. Explain why.

(d) Divide the expected values in (b) and (c) by t and find the limit as t→ ∞. Discuss
the expressions as functions of σ and ρ.

(e) Find the failure intensity σ̃(t), 0 < t < n, for the Markov chain Z, conditional on
Z(n) = i.
(f) If σ = ρ, then Nai(t) +Nia(t) is a Poisson process with intensity σ. Explain why.
What is then Nai(t) in terms of the Poisson process?

Exercise 63

The situation is as described in Exercise 62. Suppose data are available for m inde-
pendent lamps observed over the same time interval [0, n], all active at time 0.

(a) Assume complete histories have been recorded for each lamp. Find the MLE for
σ and find its asymptotic distribution.

Exercise 64

(b) The parameter ρ is subject to control since it is the frequency with which the lamps
are being checked by maintenance personnel. Show that the asymptotic variance of
the MLE in (a) is a decreasing function of ρ.
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(c) Suppose that, at time n, data are available only for lamps that are inactive at
the time. Then it is the conditional process in 7.8e which is the relevant stochastic
model for the individual histories. Find the MLE in this situation and find also its
asymptotic variance.

Exercise 65

Go through Paragraphs 9.1 A-E and G in ’BL’ and add all details in proofs.

Exercise 66

At your disposal are data from m independent lives insured under one and the same
scheme. You know for each individual the time of entry into the scheme, the age upon
entry, the length of the observation period, whether he/she died during the observation
period, and - if died - the age at death.

Find the ML estimators under the assumption of piece-wise constant intensities
and explain how they can be fitted by analytic graduation by a Gompertz Makeham
function.

Exercise 67

Consider the continuous time version of an n-year endowment insurance of 1 (say)
against level premium π during the insurance period. Assume that the interest rate r
is constant. Prove that the premium rate π is a decreasing function of n and that the
premium reserve Vt for fixed t is a decreasing function of n for n > t. Note that the
results are valid for all specifications of interest rate and mortality rate.

Exercise 68

We refer to Basic Life Insurance Mathematics (BL), Section 7.5, Paragraph J, Widow’s
pension. The situation is depicted in Figure F.4. At time t = 0 (say) the husband (x)
is x years old and the wife (y) is y years old. Their remaining life lengths after time 0
are denoted by S and T , respectively. The joint distribution of S and T is determined
by the mortality rates named in the figure: for instance, at any time t ≥ 0, (x) has
mortality rate µ(t) if (y) is still alive and µ′(t) if (y) is dead.

(a) Find integral expressions for the marginal survival probabilities P[S > s], P[T > t],
and for the joint survival probability P[S > s , T > t].

(b) Prove that, if the mortality rates are independent of marital status, µ = µ′ and
ν = ν′, then S and T are stochastically independent:

P[S > s , T > t] = P[S > s] P[T > t] .

Adopt the independence assumption in (b) and assume that x = y = 30 and that
(x) and (y) are subject to the same law of mortality, G82M, irrespective of marital
status. Thus, at any time t ≥ 0,

µ(t) = ν(t) = µ′(t) = ν′(t) = 0.0005 + 0.000075858 × 1.0914430+t . (F.38)



APPENDIX F. EXERCISES 38

The couple buys a combined life insurance and widow’s pension policy specifying that
a pension is to be paid with intensity b = 0.5 as long as the wife is alive and husband
is dead, a life assurance with sum s = 1 is due immediately upon the death of the
husband if the wife is already dead (a benefit to their dependents), and the equivalence
premium is to be paid with level intensity c as long as both husband and wife are alive.
The policy terminates at time n = 30. Interest is earned on the reserve at constant
rate r = ln(1.045).

(c) Using the direct backward argument, derive the differential equation for the non-
central moments of first and second order of the discounted future benefits in state 0.
(The first order moment is just the reserve.)

(d) Using the program ’prores1.pas’, compute the three first moments of discounted
benefits less premiums at times 0,5,...,30. Do the same for a modified contract, by
which 50% of the current reserve (in state 0) is to be paid back immediately to the
husband in case the wife dies before him during contract period.

(e) Let us now drop the independence assumption in (b) and instead assume that, for
each party, the mortality rate increases upon the death of the spouse (a ’grief effect’):

µ′ > µ , ν′ > ν . (F.39)

In a forthcoming note ’Dependent lives’ it will be proved that, under the assumption
(F.39), S and T are positively dependent in the sense that

P[S > s , T > t] > P[S > s] P[T > t] .

Give some numerical evidence in support of this result by e.g. computing P[S >
30 , T > 30], P[S > 30], and P[T > 30] in the case where µ and ν are as in (F.38) and
µ′(t) = µ(t) + 0.0005 and ν ′(t) = ν(t) + 0.0005.

(f) Under the assumptions of Item (e) find the covariance between the present values
at time 0 of a term insurance of 1 in 30 years on (x) and a similar insurance on (y).
(The relationship Cov(X + Y ) = 1

2
[Var(X + Y ) − Var(X) − Var(Y )] may be useful.)

Exercise 69

The uncertain development of interest can be accounted for by letting the interest rate
r(t) at any time t depend on the “state of the economy” Y (t) modeled as a stochastic
process. We will assume that {Y (t)}t≥0 is a continuous time Markov chain with finite
state space J Y = {1, . . . , JY }. The probability of transition from state e to state f
in the time interval from t to u is denoted by

pef (t, u) = P[Y (u) = f | Y (t) = e] . (F.40)

We assume that the process is homogeneous, which means that the transition proba-
bilities pef (t, u) depend on t and u only through u− t, the length of the time interval.
This implies that the process has constant intensities of transition,

λef = lim
dt↓0

pef (t, t+ dt)

dt
. (F.41)

Just like the mortality intensity, λef is a ”probability of transition per time unit”. The
total intensity of transition out of state e at time t is denoted by

λe· =
∑

f ; f 6=e

λef .
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Both alive Husband dead
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Figure F.4: Sketch of a Markov model for two lives.

r1 = 0.02 r2 = 0.05 r3 = 0.08
-λ12 = 0.5

�
λ21 = 0.25

-λ23 = 0.25

�
λ32 = 0.5

Figure F.5: Sketch of a simple Markov chain interest model.

(a) Use the ”direct backward argument” to derive the so-called backward Kolmogorov
differential equations for the transition probabilities:

∂

∂t
pef (t, u) =

∑

g;g 6=e

λeg(pef (t, u) − pgf (t, u)) .

The side conditions are
pef (u, u) = δef ,

i.e. 1 if e = f and 0 otherwise (the Kroenecker delta). These differential equations
can easily be solved numerically with a suitable variation of the program ’prores1.pas’
or ’prores2.pas’.

Stochastic interest is now modeled by letting the interest rate assume JY possible
values r1, . . . , rJY and, at any time t, the interest rate is r(t) = rY (t) (dependent on
the state of the economy).

Figure F.5 shows a flow-chart of a simple Markov chain interest rate model with
three states, 0.02, 0.05, 0.08. Direct transition can only be made to a neighbouring
state, and the total intensity of transition out of any state is 0.5, that is, the interest
rate changes once in two years on the average. By symmetry, the long run average
interest rate is 0.05.
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(b) Use the direct backward argument to derive differential equations for the state-wise
expected discount factors

We(t) = E[e−
∫n
t r(s) ds | Y (t) = e] ,

t ∈ [0, n), What are the side conditions?

Remark: It has been said that ”all models are wrong, but some are useful”. The
Markov model proposed here is, of course, unable to mimic perfectly the development
of the true interest rate. We can, however, by judicious choice of the state space (suf-
ficiently big) and the transition intensities, make it catch the basic features of the real
world interest fairly well.

(c) Consider the model in Fig. F.5. Fill in appropriate statements in the program

’prores2.pas’ to make it compute the state-wise expected discount factors E

[

exp
(

−
∫ 5

0
r(s) ds

)∣

∣

∣
Y (0) = e

]

,

e = 1, 2, 3.

Exercise 70

Poisson processes, which are totally memoryless, can of course be generated from
continuous time Markov chains, which are more general. For instance, let {Y (t)}t≥0

be a Markov chain on the state space {1, 2} with intensities of transition µ12(t) =
µ21(t) = λ. Then {N(t)}t≥0 defined by N(t) = N12(t) +N21(t) (the total number of
transitions in (0, t]) is a Poisson process with intensity λ; transitions counted by N
occur with intensity λ at any time regardless of the past history of the process. Two
independent Poisson processes, {N1(t)}t≥0 with intensity λ1 and {N2(t)}t≥0 with in-
tensity λ2, can be generated by letting {Y (t)}t≥0 be a Markov chain on the state
space {1, 2, 3, 4} with intensities µ12(t) = µ21(t) = µ34(t) = µ43(t) = λ1, µ13(t) =
µ31(t) = µ24(t) = µ42(t) = λ2, µ14(t) = µ41(t) = µ23(t) = µ32(t) = 0, and defining
N1(t) = N12(t)+N21(t)+N34(t)+N43(t) and N2(t) = N13(t)+N31(t)+N24(t)+N42(t).
Three independent Poisson processes can be generated from a Markov chain with 8
states (work out the details), and, in general, k independent Poisson processes can be
generated from a Markov chain with 2k states.

(a) Let {Y (t)}t≥0 be a Markov chain on the state space {1, 2}, and take µ12(t) =
µ21(t) = 1. Denote the corresponding indicator processes and counting processes be
Ie(t) and Nef (t). The total time spent by Y in state 1 during the time interval (t, n]
is

T1(t, n] =

∫ n

t

I1(τ ) dτ ,

and the total number of transitions made from state 1 to state 2 in that interval is

N12(t, n] = N12(n) −N12(t) .

(These quantities can be viewed as present values of benefits of annuity type and as-
surance type, respectively, for a two-state policy with no interest.)

(a) Assume Y (0) = 1. What are the interpretations of the random variables T1(t, u]
and N12(t, u] in terms of the Poisson process N(t) = N12(t) +N21(t)?



APPENDIX F. EXERCISES 41

(b) Find, by solving the relevant differential equations analytically, explicit expressions
for the first two state-wise conditional moments

V (q)
e (t) = E[T q

1 (t, n] | Y (t) = e] ,

W (q)
e (t) = E[Nq

12(t, n] | Y (t) = e] ,

e = 1, 2, q = 1, 2, and find also the corresponding variances. (You should obtain e.g.

E[T1(0, 1] | Y (0) = 1] =
1

4µ

(

1 + 2µ − e−2µ) ,

Var[T1(0, 1] | Y (0) = 1] =
1

16µ2

(

1 + 4µ − (2 − e−2µ)2
)

.

(c) Using the program prores1.pas (or prores2.pas), solve the differential equations
also numerically and compare the results with the exact solutions obtained in (b).

Exercise 71

Let {N(t)}t≥0 be Poisson process with intensity λ. This is a counting process of even
simpler type than the counting processes associated with a Markov chain; N is not
only Markov, but also has independent increments. Thus, in any small time interval
[t, t+ dt) the process N makes a jump of 1 with probability λ dt regardless of the past
history of the process in [0, t).

Let the price S(t) of a share of stock at time t be modelled as a so-called geometric
Poisson process with drift,

S(t) = exp (αt+ βN(t)) ,

t ≥ 0. If β = 0, then S(t) is just the accumulation factor for a bank account with fixed
interest rate. The Poisson term in the exponent adds jumps at random times, and
a jump at time t makes the stock price jump from S(t−) to S(t) = S(t−) eβ. Thus,
γ = eβ − 1 is the relative change (S(t)− S(t−))/S(t−) in the stock price at the jump
time. Between the jumps the stock price increases at fixed “rate of interest” α.

(a) Find the expected value E[S(t)] at time 0 of the stock price at time t, and do this
in two ways: First, work directly with the Poisson distribution of N(t) and, second,
solve a differential equation obtained by the direct backward construction (condition
on “what happens in the small time interval [0, dt)”). Explain that, having determined
the expected value, higher order moments are easily obtained.

(b) Find the dynamics dS(t) of the stock price by applying the change of variable rule,
see Appendix A.

(c) Using the direct backward construction, show that the expected present value of a
perpetuity (an everlasting annuity), is

E

[∫ ∞

0

S−1(τ )dτ

]

= (a+ (1 − e−β))−1 .

(d) Let {N1(t)}t≥0 and {N2(t)}t≥0 be independent Poisson processes with intensities
λ1 and λ2, respectively. Let the price S(t) of a share of stock at time t be

S(t) = exp (αt+ β1N1(t) + β2N2(t)) ,
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t ≥ 0. Letting β1 and β2 have opposite signs, we have created a stock price which may
increase or decrease with instantaneous jumps. Write out the straightforward analogs
of the formulas in Items (a) - (c) for this more general model.

Exercise 72

(a) Using your Turbo Pascal program with the Danish basis, compute the net pre-
mium rate π and the net premium reserve Vt (at selected times t) for an endowment
insurance with age at entry x = 30, term n = 30, sum insured bt = bn = b = 1, and
premium payable continuously at constant rate throughout the contract period.

(b) Compute the gross premium rate π′ and the gross premium reserve V ′
t assuming

that administration expenses consist of a lump sum cost of 0.003 + 0.001 b at time 0,
costs incurring continuously at rate 0.0001 + 0.01 π′ + 0.005 V ′

t at any time t in the
insurance period, a cost of 0.002 due immediately upon possible payment of the death
benefit, and a cost of 0.0001 due at time n upon possible payment of the endowment
benefit. Compare with the quantities net of expenses found in Item (a).

Exercise 73

In connection with a pension insurance there is an additional benefit which is a sum
insured to possible dependent children less than 18 years old at the time of death of
the insured. I the technical basis we therefore need to make assumptions about births.
We have to distinguish by sex, and in the following we are going to consider insured
women only. The Figure below shows a flowchart describing a life history with births
(at most J). To keep things simple, we will assume that the process is Markov, that
all participants enter the insurance scheme in state 0 at age 0, and that the individual
life histories are independent replicates of the process. Assume furthermore that the
mortality intensity µj(t) and the birth intensity φj(t) for a t year old woman, who has
given birth to j children, are given by

µj(t) = αj + βct , j = 0, . . . , J, (F.42)

φj(t) = ηjf(t) , j = 0, . . . , J − 1, (F.43)

where c and the function f are known and the parameters αj , β, and ηj are unknown.

(a) Assume for the time being that, at the time of consideration, we have complete
information about the past history for all individuals that have previously been or
currently are insured under the scheme (i.e. we know the exact times of possible
births and death). Put up the equations for determining the ML (maximum likeli-
hood) estimators for the unknown parameters and, to the extent possible, find explicit
expressions for the estimators. Explain also how to determine the asymptotic covari-
ance matrix.

(b) In our model there is non-differential mortality if

α0 = · · · = αJ . (F.44)

Derive the likelihood ratio test for the null hypothesis (F.44) and determine the rejec-
tion limit such that the asymptotic level is 10%.
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Assume now that the past history of births and death is being observed only upon
death of the insured, when the additional benefit to the possible dependents is due.
Suppose that the statistical data comprise only those who are dead at the time of
consideration and that for each of those there is a complete record of the times of
possible births and of death. In these data the observed life history of a woman, who
entered the scheme u years ago, is governed by a Markov process as described above,
but with intensities

µ∗
j (t) = µj(t)

1

pjd(t, u)
, (F.45)

φ∗
j (t) = φj(t)

pj+1,d(t, u)

pjd(t, u)
. (F.46)

It is to be proved that, if the mortality increases with the number of births, that is,

µj(t) ≤ µj+1(t) , t > 0, j = 0, . . . , J − 1, (F.47)

then
φ∗

j (t) ≥ φj(t) , t > 0, j = 0, . . . , J − 1 . (F.48)

Introduce

pj(t, u) = 1 − pjd(t, u) , (F.49)

the probability that a t year old with j births will survive to age u. Build the proof
as follows:

(c) Prove that, for t ≤ τ ≤ u,

pj(t, u) =
∑

k≥j

pjk(t, u) =
∑

k≥j

pjk(t, τ )pk(τ, u) . (F.50)

(d) Prove that

pj(t, u) = e−
∫ u

t µj(t,ϑ)dϑ , (F.51)

where

µj(t, u) =

∑

k≥j pjk(t, u)µk(u)
∑

k≥j pjk(t, u)
, (F.52)

the mortality intensity at age u for a woman who is in state j at time t < u).

(e) Show (preferably by direct reasoning), that

pj(t, u) = e−
∫u
t (φj+µj) +

∫ u

t

e−
∫ τ

t (φj+µj)φj(τ )pj+1(τ, u) dτ . (F.53)

(d) Use the results (F.50) – (F.53) to show that (F.47) implies

pj+1(t, u) ≤ pj(t, u) , j = 0, . . . , J − 1 , (F.54)

which by (F.46) and (F.49) implies (F.48). The relationship (F.54) is easy to prove
for j = J − 1, and the result then follows by induction.
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- - - -
φ0 φj−1 φj φJ−1
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d. Dead

Commment: The inequality (F.48) means that the fertility rates will be overestimated
if one uses the estimators for the φ∗

j based on diseased participants in the scheme. If
the inequalities (F.47) are reversed, then also the inequality (F.48) will be reversed,
and the estimators the φ∗

j will underestimate the fertility. In particular it follows that,
under the hypothesis of non-differential mortality, the fertility rates will be unbiasedly
estimated from the selected material of diseased participants.

Exercise 74

We adopt the usual notation and assumptions of the theory of multi-life insurance
policies and consider two independent lives (x) and (y) with remaining life lengths Tx

and Ty, respectively.

(a) Assume that the benefit is an assurance of 1 payable at time Ty if 2Tx < Ty < n
and that premium is payable at constant rate π until time min(Tx, Ty, n/2), where n
is the term of the contract (fixed). Determine the equivalence premium π.

(b) Propose a method for computing the premium numerically. (Hint: One possibil-
ity is to treat t/2px as a survival function tp̃x with intensity µ̃x+t, which you would
need to express in terms of µ, and then solve a Thiele differential equation numerically.)

(c) Determine the reserve at any time t, assuming that the insurer currently knows
the complete past history of the two lives. You need to distinguish between various
cases, whether (y) is alive or dead, whether t is before or after time n/2, and whether
x is alive or dead and, if dead, when. Is the reserve always non-negative?

(d) What is the variance of the present value of the benefit?

Exercise 75

Find an expression for the mortality intensity of the life length of the last-survivor
status x1 . . . xr. Do this by direct reasoning and also the hard way by calculating

µx1...xr (t) = − d

dt
lnt px1...xr .
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Exercise 76

An example of an insurance policy with benefits that are ’path-dependent’, that is,
dependent on the past history of the policy:

(a) Consider two independent lives (x) and (y). Find the expected present value
at time 0 of a life annuity payable continuously at rate 1 from time Txy until time
max(Txy + 20 , Txy + 10). In words, payments start at the time of the first death and
continues thereafter for a term of 20 years or until 10 years after the death of the
survivor, whichever is the longer period.

(b) Suppose premium is payable continuously at level rate π from time 0 until time
Txy. What is the reserve for this policy? This question is difficult and will be addressed
later, but you can start thinking about it.

Exercise 77

Another example of ’path-dependent’ payments: Consider three independent lives (x),
(y), and (z). Find the expected present value of a sum insured of 1 payable at time
Tx if Tx < min(Tz, Ty + 20). State in words what this contractual benefit is.

Exercise 78

Use the program ’prores1.pas’ to compute

π =
Ā20,20,n

ā20,20,n
,

assuming that both lives follow the mortality law G82M and that the interest rate is
r = ln(1.05). What are the terms of the policy for which π is the level equivalence
premium rate?
Exercise 80

We refer here to Section 7.9 ’Dependent lives’ in BL.

(a) Prove the rather obvious statements PQD(T, T ), AS(T, T ), and RTI(T |T ).

(b) Prove that the Definitions PQD – RTI are equivalent to the modified definitions
obtained upon replacing the strict inequalities S > s and T > t with the non-strict
inequalities S ≥ s and T ≥ t. For instance, for PQD prove that (7.92) is equivalent to

P[S ≥ s , T ≥ t] ≥ P[S ≥ s] P[T ≥ t] for all s and t.

(c) Negative dependence in the PQD sense: Prove that PQD(−S, T ) is equivalent to

P[S > s , T > t] ≤ P[S > s] P[T > t] for all s and t.

(d) Negative dependence in the AS sense: Prove that AS(−S, T ) is equivalent to
Cov(g(S, T ), h(S, T )) ≤ 0 for all real-valued functions g and h that are decreasing in
S and increasing in T (and for which the covariance exists).

(e) Negative dependence in the RTI sense: Prove that RTI(−S|T ) is equivalent to
RTD(S|T ).
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(f) Consider the model in Figure 7.6, and let µ = µ′ and ν = ν′. We have shown in
Exercise 1 that S and T are then independent.

Now, add a cause of simultaneous death (due to ’catastrophe’) with intensity µ03 =
κ. Does it follow that RTI(S|T )?

Assume instead, maybe more reasonably, that catastrophe risk is present inde-
pendently of the state of the marriage: µ01(t) = µ(t), µ02(t) = ν(t), µ03(t) = κ(t),
µ13(t) = ν(t) + κ(t), µ23(t) = µ(t) + κ(t). Prove that RTI(S|T ), hence PQD(S, T ).

Exercise 81

We refer to Chapter 8 of BL and Exercise paper No. 6. Note the following correction
to Exercise paper No. 6, page 8, line 2 from top: ”Recalling (10) and (14),...”.

A 30 years old buys a pure life endowment of 1 in n = 30 years against premium
payable continuously at level rate as long as the policy is in force. The first order basis
specifies G82M mortality and interest at instantaneous rate 0.02. The second order
basis specifies the same mortality G82M and stochastic interest as given in Fig. 1 of
Exercise 2.

(a) See Exercise 20a. Suppose surpluses are to be repaid immediately as cash bonus.
Compute the state-wise expected present values (under second order interest) at time
0 of future bonuses, given that the insured survives 30 years. Use the program
’prores2.pas’. It may be a good idea to define two ’alive’ states which do not commu-
nicate, one for computation of the first order reserve, the other for computation of the
expected present values of bonuses.

(b) See Exercise 19. Suppose instead that that surpluses are currently spent on pur-
chase of additional benefits. Compute the state-wise expected values at time 0 of the
additional benefit Q30.

OK TO HERE

(b) Give an alternative proof of (3.16) along the following lines: Write

(T ∧ b) − (T ∧ a) =

∫ b

a

It dt ,

where It = I{T>t}. By Itô’s formula,

(
∫ b

a

It dt

)k

=

∫ b

a

(
∫ t

a

Is ds

)k−1

It dt .

Use IsIt = It for s < t and Ik
t = It, and take expectation.

Exercise 2

Find the q-th non-central moment of PV a;m|n in (4.21). Start from

(V a;m|n)q =
1

rq

q
∑

p=0

(

q

p

)

vp(Tx∧m)v(q−p)(T∧(m+n)) .

Exercise 4

Dependence of expected present values on age, duration, and technical basis.
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Commence with the pure endowment treated in Paragraph A. The expected present
value in (4.2) can be written as

tEx = e−rt−
∫ t
0 µx+s ds. (F.55)

The dependence of tEx on the deferred period t, the age x, and the technical basis r
and µ is to be discussed. Some qualitative aspects are obvious by inspection of (F.55)
and also on intuitive grounds: tEx decreases with increasing t; tEx decreases with
increasing x if µ is an increasing function; tEx decreases with increasing r (or interest
rate i); tEx decreases by a general increase of µ.

A closer study, also of the quantitative aspects, can be based on the derivatives

∂

∂t
tEx = − tEx (r + µx+t), (F.56)

∂

∂x
tEx = − tEx (µx+t − µx) (F.57)

(the derivative of
∫ t

0
µx+s ds =

∫ x+t

0
µy dy−

∫ x

0
µy dy with respect to x is µx+t − µx ),

∂

∂r
tEx = −tExt, (F.58)

and, if µx = µ(x, α) is a differentiable function of some finite-dimensional parameter
α = (α1, . . . , αr),

∂

∂αj
tEx = − tEx

∂

∂αj

∫ t

0

µ(x+ s, α) ds. (F.59)

In particular, if the force of mortality is of G-M type,

µx = α+ βcx,

then
∫ t

0

µx+s ds = αt+ βcx (ct − 1)/ ln c

= αt+ (µx+t − µx)/ ln c.

One easily finds (check the details)

∂

∂α

∫ t

0

µx+s ds = t,

∂

∂β

∫ t

0

µx+s ds =
cx(ct − 1)

ln c

=
µx+t − µx

β ln c
,

∂

∂c

∫ t

0

µx+s ds = βcx−1

{

(x+ t)ct − x

ln c
− ct − 1

ln2 c

}

=
1

c ln c

{(

x− 1

ln c

)

(µx+t − µx) + t(µx+t − α)

}

.
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Thus, in the G-M case (F.59) specializes to

∂

∂α
tEx = − tEx t, (F.60)

∂

∂β
tEx = − tEx

1

β ln c
(µx+t − µx), (F.61)

∂

∂c
tEx = − tEx

1

c ln c

{(

x− 1

ln c

)

(µx+t − µx) + t(µx+t − α)

}

. (F.62)

The expressions in (F.59) and (F.58) are the same, of course, since tEx depends on
r and α only through their sum r + α. In general, a constant change in the force of
mortality is equivalent to a change in the force of interest.

A comparison of (F.57) and (F.61) reveals that a change of β is essentially the
same as a change of x. In fact, replacing β by β′ = βch (say) is equivalent to a shift
from x to x+ h.

The expression in (F.62) is not so transparent, but one may say that a change of
c to c′ = ch (say) amounts to an expansion or contraction in age by a factor h.

All right hand side expressions in (F.56)–(F.62) include − tEx as a factor. Division
by − tEx gives the derivative of − ln tEx, which is the relative decrease of tEx (in units
of tEx) by a unit increase in the argument. The factors multiplying − tEx form a basis
for comparing the arguments with respect to the import of changes. Roughly speaking,
for common values of the arguments, they can be ordered as follows according to their
impacts on the value of tEx, starting with the less important: x, t and α, β, and c. In
fact, a change in t is generally of greater importance than a similar change in x. This
result is immediately meaningful since t and x are measured in the same units.

Other comparisons that can be made are not so lucid since the arguments are not
”commensurable”. For instance, even though changes in β are more important than
changes in x in the sense that ∂

∂β tEx >
∂

∂x tEx (for common values of the arguments,
that is), it must be kept in mind that the relevant changes in these two arguments
are of quite different order of magnitude. Usually β is confined to values below 10−3,
whereas x typically ranges between 20 and 70. To account for this aspect, one should
rather compare the two differentials ∂

∂β tEx db and ∂
∂x tEx dx for representative changes

db and dx, and (presumably) conclude that x produces the greater changes in tEx.
Here is another comment along the same line: Despite the fact that r and α play
equivalent roles in tEx from a purely mathematical point of view, the interest rate is
widely held to the most important element in the technical basis. The reason is, of
course, that the interest rate nowadays varies by percentages whereas the mortality is
fairly stable and varies by less than per milles.

Now, consider an n-year temporary level life annuity with expected present value
given by (4.14). Taking derivatives under the integral sign, one obtains results about
āx n by just inserting the expressions from (F.56)–(F.62). The dependence on n is
obtained immediately from (4.14). The results are

∂

∂n
āx n = nEx, (F.63)

∂

∂x
āx n = −Ā1

x n
+ µxāx n

= −{1 − (r + µx) āx n − nEx} , (F.64)

∂

∂r
āx n =

∂

∂α
āx n = −(Ī ā)x n , (F.65)
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∂

∂i
āx n = −(Ī ā)x n v, (F.66)

∂

∂β
āx n = − 1

β ln c
{1 − (r + µx) āx n − nEx} , (F.67)

∂

∂c
āx n = − 1

c ln c

{(

x− 1

ln c

)

(

Ā1
x n

− µx āx n

)

+
(

Ī Ā
)x

x n
− α

(

Ī ā
)

x n

}

= − 1

c ln c
[

(

x− 1

ln c

)

{1 − (r + µx)āx n − nEx}

+ āx n − (r + α)(Īā)x n − n nEx]. (F.68)

Finally, the dependence of Ā1
x n

(and Āx n ) on the arguments is obtained from the

results above upon putting Ā1
x n

= 1 − rāx n − nEx. Work out the details.

Clearly, since the expressions in (F.56)–(F.62) are all negative when µ is increasing,
so are also the expressions in (F.63)–(F.68). As a by-product one obtains that

1 > (r + µx)āx n + nEx,

which can easily be established by direct calculation.

Exercise 2

In the situation of the present paragraph consider the problem of estimating µ from
the Di alone, the interpretation being that it is only observed whether survival to z
takes place or not. Show that the likelihood based on Di, i = 1, . . . , n, is

qN (1 − q)n−N ,

with q = 1−e−µz, the probability of death before z. (Trivial: it is a binomial situation.)
Note that N is now sufficient, and that the class of distributions is a regular

exponential class. The MLE of q is

q∗ =
N

n

with the first two moments

Eq∗ = q, Varq∗ =
q(1 − q)

n
.

It is UMVUE in the class of estimators based on the Di.
The MLE of µ = − ln(1 − q)/z is µ∗ = − ln(1 − q∗)/z. Apply (D.6) in Appendix

D to show that

µ∗ ∼as N

(

µ,
q

nz2(1 − q)

)

.

The asymptotic efficiency of µ̂ relative to µ∗ is

asVarµ∗

asVarµ̂
=

(

e
µz
2 − e−

µz
2

µz

)2

=

(

sinh(µz/2)

µz/2

)2

(sinh is the hyperbolic sine function defined by sinh(x) = (ex−e−x)/2). This function
measures the loss of information suffered by observing only death/survival by age z
as compared to inference based on complete observation throughout the time interval
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(0, z). It is ≥ 1 and increases from 1 to ∞ as µz increases from 0 to ∞. Thus, for small
µz, the number of deaths is all that matters, whereas for large µz, the life lengths are
all that matters. Reflect over these findings.

Exercise 3

Use the general theory of the present section to prove the special results in Section 11.1.

Exercise 4

Work out the details leading to (11.42) – (11.42).

Exercise 5

An insurance company is to carry out a mortality study based on complete records
for n life insurance policies with unlimited term period. Policy No. i was issued zi

years ago to a person who was then aged xi. The actuary sets out to maximize the
likelihood

n
∏

i=1

µ(xi + Ti, θ)
Di exp

(∫ xi+Ti

xi

µ(s, θ)ds

)

,

where the notation is selfexplaining.
One employee in the department objects that the method represents a neglect of

information; it is known that the insured have survived, not only the period they were
insured, but also the period from birth until entry into the scheme. Thus, he claims,
the appropriate likelihood is rather

n
∏

i=1

µ(xi + Ti, θ)
Di exp

(∫ xi+Ti

0

µ(s, θ)ds

)

.

Settle this apparent paradox. (Hint: A suitable framework for discussing the problem
is an enriched model with three states, ”uninsured”, ”insured”, and ”dead”.)

Exercise 6

(a) Modify the formulas to the situation where person No. i entered the study zi years
ago at age xi.

(b) Find explicit expressions for the entries of the asymptotic covariance matrix of the
MLE.

Exercise 1

Prove (C.6) in the theorem by induction: Verify that it is true for r = 1 and, assuming
it is true for a given r, prove that it is true also for r + 1.

Exercise 2

Derive the binomial distribution by applying the theorem to the situation where
A1, . . . , Ar are independent and equally probable, P[Aj ] = p, j = 1, . . . , r.
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Exercise 3

Use the theorem to find E[Q] and V[Q] expressed in terms of the Zp.

Exercise 4

Find the probability that at least 3 out of 4 events occur.

Let the price at time t of a stock be

S(t) = eαt+βN(t) ,

where N(t) is a Poisson process with intensity λ. The money market account bears
interest at spot rate r.

At time 0 our hero (x) purchases an n-year unit linked pure life endowment with
sum insured S(n) ∨ g against a single premium π. Here g is the guaranteed minimum
sum insured introduced to protect the insured against poor performance of the stock; if
β is negative (in which case α should certainly be positive), then a Poisson event at time
t represents a sudden drop in the stock price from S(t−) to S(t) = S(t−)eβ (a crash in
the stock market if the absolute value of β is big). Combining basic principles in finance
(no arbitrage) and insurance (equivalence), π should be the expected discounted value
of the claim under a suitable probability measure (equivalent martingale measure for
the market and physical measure for the life length):

π = E
[

e−rn (S(n) ∨ g) 1[Tx > n]
]

= E [S(n) ∨ g] e−rn
npx . (F.69)

We need to find the expected value appearing in the last expression.
Start as usual from the conditional expected value of the random variable S(n)∨g,

given everything that is known by time t:

E[S(n) ∨ g |N(τ ); 0 ≤ τ ≤ t]

= E

[

eαn+βN(n) ∨ g
∣

∣

∣
N(τ ); 0 ≤ τ ≤ t

]

= E

[

eαt+βN(t)eα(n−t)+β(N(n)−N(t)) ∨ g
∣

∣

∣
N(τ ); 0 ≤ τ ≤ t

]

.

Here we have separated out what pertains to the past (known under the conditioning)
and what pertains to the future (remains random under the conditioning), and it is
seen that we can work with the function

W (t, u) = E

[

u eα(n−t)+β(N(n)−N(t)) ∨ g
]

.

Preparing for a backward construction, write

W (t, u) = = E

[

u eαdt+β(N(t+dt)−N(t))eα(n−t−dt)+β(N(n)−N(t+dt)) ∨ g
]

,

and proceed as usual, conditioning on what happens in (t, t+ dt):

W (t, u) = (1 − λdt)W
(

t+ dt, ueαdt
)

+ λdtW
(

t+ dt, ueαdt+β
)

+ o(dt)

= W
(

t+ dt, ueαdt
)

− λ dtW (t, u) + λdtW
(

t, ueβ
)

+ o(dt)

= W (t+ dt, u + uα dt) − λ dtW (t, u) + λ dtW
(

t, ueβ
)

+ o(dt)

= W (t, u) +
∂

∂t
W (t, u) dt +

∂

∂u
W (t, u)uα dt

−λdtW (t, u) + λ dtW
(

t, ueβ
)

+ o(dt) .
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We arrive at

∂

∂t
W (t, u) +

∂

∂u
W (t, u)uα − λW (t, u) + λW

(

t, ueβ
)

= 0 ,

which is to be solved subject to the condition

W (n, u) = u ∨ g .

Remark: We could have written (F.69) as

π = E

[

eβN(n) ∨ ge−α n
]

e(α−r) n
npx ,

and, redefining W (t, u) accordingly, essentially get rid of e−α t. We have chosen the
present approach since it gives us an opportunity to see the different roles of the
(non-stochastic) smooth function e−α t and the (stochastic) jump process N(t).
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Solutions to exercises

Exercise 1

(a) Exact value
∫ 1

0
t2 dt = 1/3 = 0.3333.... Can be computed by solving numerically

the ordinary differential equation

v′(t) = a(t) + b(t) v(t) (G.1)

by ’Ode-1.pas’. Take

v(t) =

∫ t

0

s2 ds , v′(t) = t2 ,

hence a(t) = t2 and b(t) = 0. Compute forwards (’F’) starting from v(0) = 0. Insert
the following statements in the program:

(*SPECIFY DIMENSION OF v !*)
dim := 1;

(*SPECIFY DIRECTION OF COMPUTATION - FORWARD (’F’) OR BACKWARD
(’B’):!*)
BF := ’F’;

(*SPECIFY THE TIME INTERVAL [0,T] BY INSERTING T IN ”term” AND - IF
NEEDED - THE AGE OF THE LIFE AT TIME 0 ! *)
term := 1;

(*SPECIFY BOUNDARY CONDITION(S) AT TIME t = 0 IF FORWARD (BF =
’F’) AND AT t = T if BACKWARD (BF = ’B’): !*)
v[1] := 0;

(*SPECIFY THOSE COEFFICIENTS a AND B AND DERIVATIVES a’ and B’
THAT ARE NOT 0 !*)
a[1] := t∗t;
a1[1] := 2∗t;

1
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Similar for
∫ 1

0
t−1/2 dt = 0.5. Take

v(t) =

∫ t

0

s−1/2 ds , v′(t) = t−1/2 ,

hence a(t) = 1/
√
t and b(t) = 0. Statements as above, except

(*SPECIFY THOSE COEFFICIENTS a AND B AND DERIVATIVES a’ and B’
THAT ARE NOT 0 !*)
a[1] := 1/sqrt{t};
a1[1] := -0.5∗a[1]/t;

(b) Since Φ(−x) = 1 − Φ(x), we need only compute Φ(x) for positive x. Moreover,
Φ(0) = 0.5, hence

Φ(x) = 0.5 +
1√
2π

∫ x

0

exp

(

− t
2

2

)

dt .

Put

v(t) = Φ(t) , v′(t) =
1√
2π

exp

(

− t
2

2

)

,

and use ’Ode-1.pas’ for (G.1) with a(t) = 1√
2π

exp(− t2

2
) and b(t) = 0, working for-

wards (’F’) starting from v(0) = 0.5. Statements as above, except

(*SPECIFY THOSE COEFFICIENTS a AND B AND DERIVATIVES a’ and B’
THAT ARE NOT 0 !*)
a[1] := (1/sqrt{2∗pi})∗exp(-t∗t/2);
a1[1] := a[1]∗(-t);

(c) Ut: Use ’Ode-1.pas’ forwards for the differential equation U ′
t = rUt + 1.

Vt: Use ’Ode-1.pas’ backwards for the differential equation V ′
t = rVt − 1.

Exercise 3

Fig 3.1: The functions we are interested in are

v1(t) = F̄ (t) = exp

(

−
∫ t

0

µ(s) ds

)

= exp

(

−α t− β
eγ t − 1

γ

)

,

v2(t) = f(t) = F̄ (t)µ(t) = v1(t) v3(t) ,

v3(t) = µ(t) = α + β eγ t .

They can be computed directly since they are given by explicit formulas. Thus, the
program ’Ode-1.pas’ is not really needed, but it is still useful since it can produce a
nicely arranged output. One could drop everything that has to do with the difference
scheme and just put in the following statements beginning from line 27:

dim := 3;

(*auxiliary quantities from Danish life table :*)
alpha := 0.0005; (*Gompertz-Makeham parameters*)
beta := 0.00007585775;
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gamma := 0.038*ln(10);

for l := 0 to 100 do (*Do not confuse the letter l with the number 1*)
begin
writeln; writeln(odeout); (*Line shift*)
t := l;
v[3] := alpha + beta∗exp(gamma∗t);
v[1] := exp ( - alpha∗t - beta∗( exp(gamma∗t) - 1)/gamma );
v[2] := v[1]∗v[3];
write(t:4,’ ’); write(odeout,t:4,’ ’);
for j := 1 to dim do
begin
write(’ ’,v[j]); write(odeout,’ ’,v[j]);
end;
end;
close(odeout);
end.

Alternatively, one could use the program as it is to compute F̄ and add statements
to compute f and µ. We have

v′1(t) = b11(t) v1(t) ,

where
b11(t) = −α− β exp(γ t)) .

Having computed b11(t) and v1(t), we compute

v3(t) = −b11(t) ,
v2(t) = v1(t) v3(t) .

Statements:

(*SPECIFY DIMENSION OF v !*)
dim := 1;

(* SPECIFY DIRECTION OF COMPUTATION - FORWARD (’F’) OR BACK-
WARD (’B’): !*)
BF := ’F’;

(*auxiliary quantities from Danish life table :*)
alpha := 0.0005; (*Gompertz-Makeham parameters*)
beta := 0.00007585775;
gamma := 0.038*ln(10);

(*SPECIFY THE TIME INTERVAL [0,T] BY INSERTING T IN ”term” AND - IF
NEEDED - THE AGE OF THE LIFE AT TIME 0 ! *)
x:= 0; term:= 100;

(*SPECIFY STEPS IN DIFFERENCE SCHEME AND OUTPUT !: *)
steps := 10000; (*number of steps in difference method*)
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outp := 100; (*number of values in output*)
h := term/steps; (*steplength*)
count := steps/outp - 0.0005;

(* SPECIFY BOUNDARY CONDITION(S) AT TIME t = 0 IF FORWARD (BF =
’F’) AND AT t = term if BACKWARD (BF = ’B’): !*)
v[1] := 1;

(*SPECIFY THOSE COEFFICIENTS a AND B AND DERIVATIVES a’ and B’
THAT ARE NOT 0 !*)
B[1,1] := - alpha - beta∗exp(gamma∗(x+t));
B1[1,1] := - beta∗exp(gamma*(x+t))∗gamma;

(Then comes the difference scheme, and we do not need to do anything until we come
to the output at times t = 0,1,... :)

if countout > count then
begin
v[3] := - B[1,1]; v[2] := v[1]∗v[3]; (*this comes extra*)
countout := 0;
writeln; writeln(odeout);
write(t:4,’ ’); write(odeout,t:4,’ ’);
for j := 1 to 3 do (*NB! 3 instead of dim*)
begin
write(’ ’,v[j]); write(odeout,’ ’,v[j]);
end;
end;
end; (*difference scheme*)
close(odeout);
end.

Exercise 4

(a) A special case of (b) - just put α = 1.

(b) Write out the defining expression in each interval where there is one analytic
expression:

F (t) =







0 , t ≤ 0 ,
1 −

(

1 − t
ω

)α
, 0 < t < ω ,

1 , t ≥ ω .

F̄ (t) =







1 , t ≤ 0 ,
(

ω−t
ω

)α
, 0 < t < ω ,

0 , t ≥ ω .

f(t) =

{

−α
(

ω−t
ω

)α−1 (− 1
ω

)

= α
ω

(

ω−t
ω

)α−1
, 0 < t < ω ,

0 else.

The mortality intensity is µ(t) = f(t)/(1 − F (t)), defined for all t such that the
denominator is positive:

µ(t) =

{

α
ω

(

ω−t
ω

)−1
= α

ω−t
, 0 < t < ω ,

undefined , t ≥ ω .
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Note that µ(t) ↗ +∞ as t ↗ ω (as is always the case if ω < ∞ and µ is non-
decreasing).

For x and x+ t both in (0, ω),

F̄ (t|x) =
F̄ (x+ t)

F̄ (x)
=

(

ω − x− t

ω − x

)α

,

the same type of distribution as F̄ , only with ω replaced by ω−x. Thus we find f(t|x)
and µ(t|x) by just replacing ω with ω − x in the formulas above.

(c) Do as above.

Exercise 5

(a)

tp0 = P[T > t] = P[M ] P[T > t|M ] + P[F ] P[T > t|F ] = sm
0 tp

m
0 + sf

0 tp
f
0 .

sm
t = P[M |T > t] =

P[M ∩ (T > t)]

P[T > t]
=

P[M ] P[T > t|M ]

P[T > t]
=

sm
0 tp

m
0

sm
0 tpm

0 + sf
0 tp

f
0

.

(b)

µt = −
d
dt t
p0

tp0
= −s

m
0

d
dt tp

m
0 + sf

0
d
dt tp

f
0

sm
0 tpm

0 + sf
0 tp

f
0

=
sm
0 tp

m
0 µm

t + sf
0 tp

f
0 µ

f
t

sm
0 tpm

0 + sf
0 tp

f
0

= sm
t µm

t + sf
t µ

f
t ,

a weighted average of the mortalities at age t for males and females, the weights being
the conditional probabilities of being male and female, respectively, given survival to
age t.

(c)

sm
t =

sm
0

sm
0 + sf

0 tp
f
0/tpm

0

=
sm
0

sm
0 + sf

0 exp
[

∫ t

0
(µm

s − µf
s ) ds

] ,

a decreasing function of t if µm
t − µf

t > 0 for all t > 0.
If
∫∞
0

(µm
s − µf

s ) ds = ∞, then sm
t → 0 as t→ ∞.

(d)

tpx =
x+tp0

xp0
=

sm
0 x+tp

m
0 + sf

0x+tp
f
0

sm
0 xpm

0 + sf
0xp

f
0

= sm
x tp

m
x + sf

x tp
f
x .

(From this expression we could have derived the mortality intensity µx upon forming
limt↘0(1 − tpx)/t, which would give the result in (b).)

Similarly

m|nqx = sm
x m|nq

m
x + sf

x m|nq
f
x ,

nEx = sm
x nE

m
x + sf

x nE
f
x .
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Exercise 6

F̄ (t) = a0 + a1 t+ a2 t
2 + a3 t

3 , t ∈ [0, ω] , a3 6= 0, .

(a)
f(t) = −F̄ ′(t) = −a1 − 2a2 t− 3a3 t

2 , t ∈ [0, ω] .

µ(t) =
f(t)

F̄ (t)
= − a1 + 2a2 t+ 3a3 t

2

a0 + a1 t+ a2 t2 + a3 t3
, t ∈ [0, ω] .

Proof of

lim
t↗ω

µ(t) = lim
t↗ω

f(t)

F̄ (t)
= ∞ : (G.2)

We know that limt↗ω F̄ (t) = 0. If limt↗ω f(t) 6= 0, then (G.2) holds. If limt↗ω f(t) =
0, then we have a 0/0 expression in the limit and use l’Hospital’s rule:

lim
t↗ω

µ(t) = − lim
t↗ω

f ′(t)

f(t)
.

If limt↗ω f
′(t) 6= 0, then (G.2) holds. If limt↗ω f

′(t) = 0, use l’Hospital again:

lim
t↗ω

µ(t) = − lim
t↗ω

f ′′(t)

f ′(t)
.

But f ′′(t) = −6a3 6= 0, and so (G.2) holds.

Observe that F̄ (t|x), considered as function of t, is also trinomial.

(b)

F̄ (0) = 1 : a0 = 1 ,

F̄ (ω) = 0 : a0 + a1 ω + a2 ω
2 + a3 ω

3 = 0 ,

f(ω) = 0 : a1 + 2a2ω + 3a3 ω
2 = 0 ,

∫ ω

0

F̄ (t) dt = e0 : a0 ω +
a1

2
ω2 +

a2

3
ω3 +

a3

4
ω4 = e0 .

Exercise 7

The probability distribution of the random variable Tx is given by P[Tx ≤ t] = tpx,
t ≥ 0. We are interested in the probability distribution of a present value PV (Tx)
which is just a real-valued function of the random variable Tx: P[PV (Tx) ≤ u],
u ∈ (−∞,∞). Thus for each value of u we need to determine the set of values of
Tx that make PV (Tx) ≤ u and determine its probability. It may be helpful to draw
a graph of the function, with Tx on the horizontal axis and PV (Tx) on the vertical
axis, and for each given u on the vertical axis determine the set on the horizontal axis
where the graph is under u. We summarize the results:

(a) Pure endowment benefit of 1:

PV (Tx) = e−rn 1[Tx > n] =

{

0 , Tx ≤ n ,
e−rn , Tx > n .
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A very simple non-decreasing function with just two values.

P[PV (Tx) ≤ u] =







0 , u < 0 ,
1 − npx , 0 ≤ u < e−rn ,
1 , e−rn ≤ u .

(b) Term insurance with sum 1:

PV (Tx) = e−r Tx 1[Tx ≤ n] =

{

e−r Tx , Tx ≤ n ,
0 , Tx > n .

A simple non-increasing function starting from its maximum value 1 at Tx = 0, de-
creasing exponentially for Tx ∈ (0, n], dropping to 0 at Tx = n and remaining 0
thereafter.

P[PV (Tx) ≤ u] =















0 , u < 0 ,

npx , 0 ≤ u < e−rn ,

− lnu / rpx , e−rn ≤ u < 1 ,
1 , 1 ≤ u .

The third line on the right is the only one that takes a small bit of calculation: For
e−rn ≤ u < 1 solve e−rt = u to find t = − lnu / r, and conclude that PV (Tx) ≤ u is
equivalent to Tx ≥ t.

(c) Endowment insurance with sum 1: Same problem as (b), only simpler:

P[PV (Tx) ≤ u] =







0 , u < e−rn ,

− lnu / rpx , e−rn ≤ u < 1 ,
1 , 1 ≤ u .

(d) Life annuity of 1 per year:

P[PV (Tx) ≤ u] =







0 , u < 0 ,
1 − − ln(1−ru) / rpx , 0 ≤ u < ān ,
1 , ān ≤ u .

Exercise 8

(a) There are several ways of proving these things. We will sketch two:

First method works directly on the expressions for the expected values:
Life endowment:

m+nEx = e−
∫m+n
0 (r+µx+u) du = e−

∫m
0 (r+µx+u) du e−

∫m+n
m (r+µx+u) du

or just

m+nEx = vm+n
m+npx = vm

mpx v
n

npx+m .

Deferred life annuity:

m|nāx =

∫ m+n

m

vt
tpx dt = vm

mpx

∫ m+n

m

vt−m
t−mpx+m dt = mEx āx+m n ,

the last step by substituting τ = t−m in the integral.



APPENDIX G. SOLUTIONS TO EXERCISES 8

Second method works with the indicator functions It = 1[Tx > t] and the rule of
iterated expectation E[X] = EE[X |Y ]. (Seems like shooting sparrows with cannons
in these simple examples, but serves to illustrate a technique that may be useful):
Life endowment:

m+nEx = E
[

vm+nIm+n

]

= vm vn
E [Im+n] ,

and (just to illustrate)

E [Im+n] = E [E[Im+n | Im]] = mpx E[Im+n | Im = 1] + mqx E[Im+n | Im = 0]

= mpx npx+m .

Deferred annuity:

m|nāx = E

[
∫ m+n

m

vt It dt

]

= vm
E

[

E

∫ m+n

m

v(t−m) It dt

∣

∣

∣

∣

Im

]

= vm
mpxE

[

E

∫ m+n

m

v(t−m) It dt

∣

∣

∣

∣

Im = 1

]

+vm
mqxE

[

E

∫ m+n

m

v(t−m) It dt

∣

∣

∣

∣

Im = 0

]

= vm
mpx āx+m n .

Similar for deferred endowment insurance.

(b) Here we use the second method, which is general. Let PV(t,u] denote the random
present value at time t of benefits less premiums in (t, u], and abbreviate PVt =
PV(t,∞]. We have

PVt = PV(t,u] + vu−t PVu . (G.3)

Then
Vt = E[PVt | It = 1] = E[PV(t,u] | It = 1] + vu−t

E[PVu | It = 1] .

Here E[PV(t,u] | It = 1] = V(t,u], and

E[PVu | It = 1] = E [E[PVu | It = 1, Iu] | It = 1] = u−tpx+t Vu + u−tqx+t · 0 .

From this you gather the stated result.

(c) Second method is the superior one. We start from (G.3) for payments deferred in
m years:

PV0 = vm PVm .

Denote variance by V. We have

V[PV0] = v2m
V[PVm]

and

V[PVm] = V [E[PVm | Im]] + E [V[PVm | Im]]

= V [ Im E[PVm | Im = 1]] + E [Im V[PVm | Im = 1]]

= V[Im] (E [PVm | Im = 1])2 + E[Im] V [PVm | Im = 1] ,
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hence

V[PV0] = v2m
{

mpx mqx (E [PVm | Im = 1])2 + mpx V [PVm | Im = 1]
}

=
(

mE
(2r)
x − mE

2
x

)

(E [PVm | Im = 1])2 + mE
(2r)
x V [PVm | Im = 1] . (G.4)

For instance, for an m year deferred n year annuity (G.4) gives the variance (see (4.16)
in BL)

mE
(2r)
x

2

r

(

āx+m n − ā
(2r)
x+m n

)

− mE
2
x ā

2
x+m n .

Apply the result to the pure life endowment (a deferred benefit by its very definition)
and to a deferred life insurance. (You could put up the expressions immediately using
the trick shown in Chapter 4.)

Exercise 9

N2
t = N2

0 +

∫ t

0

Nτ dNτ +

∫ t

0

Nτ− dNτ .

For t < T : All terms on both sides are 0, so the equation holds.
For t ≥ T : On the left N2

t = 1. On the right N2
0 = 0,

∫ t

0
Nτ dNτ = 1, and

∫ t

0
Nτ− dNτ = 0, so the equation holds. Ignoring the left limit gives 2 on the right

when t > T (the jump of N at T ) has been “counted twice”).
The relationship

∫ t

0

Nτ dNτ =

∫ t

0

(Nτ− + 1) dNτ

is true for any counting process, not only the simple one considered here. By definition

∫ t

0

Nτ dNτ =
∑

τ≤t

N(τ )(N(τ ) −N(τ−))

The sum on the right ranges effectively over the (finite number of) time points τ where
N jumps, and at such a time τ it jumps (by 1) from the value it had just before the
jump, N(τ−), to the value at the jump time, N(τ ) = N(τ−) + 1.

In particular, if N has only one jump, then N(τ−) = 0 at the time jump time τ ,
and the integral is therefore 0.

Exercise 10

(c) Set v1(t) = tp0, v2(t) = ē0:t . They satisfy the differential equations

v′1(t) = −v1(t)µt ,

v′2(t) = −v2(t) v1(t) ,
with side conditions v1(0) = 1, v2(0) = 0.
Statements:

(*SPECIFY DIMENSION OF v !*)
dim := 2;

(* SPECIFY DIRECTION OF COMPUTATION - FORWARD (’F’) OR BACK-
WARD (’B’): !*)
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BF := ’F’;

(*auxiliary quantities from Danish life table :*)
alpha := 0.0005; (*Gompertz-Makeham parameters*)
beta := 0.00007585775;
gamma := 0.038*ln(10);

(*SPECIFY THE TIME INTERVAL [0,T] BY INSERTING T IN ”term” AND - IF
NEEDED - THE AGE OF THE LIFE AT TIME 0 ! *)
x:= 0; term:= 100;

(*SPECIFY STEPS IN DIFFERENCE SCHEME AND OUTPUT !: *)
steps := 10000; (*number of steps in difference method*)
outp := 100; (*number of values in output*)
h := term/steps; (*steplength*)
count := steps/outp - 0.0005;

(* SPECIFY BOUNDARY CONDITION(S) AT TIME t = 0 IF FORWARD (BF =
’F’) AND AT t = term if BACKWARD (BF = ’B’): !*)
v[1] := 1; v[2] := 0;

(*SPECIFY THOSE COEFFICIENTS a AND B AND DERIVATIVES a’ and B’
THAT ARE NOT 0 !*)
B[1,1] := - alpha - beta∗exp(gamma∗(x+t));
B1[1,1] := - beta∗exp(gamma*(x+t))∗gamma;
B[2,1] := 1;

Exercise 13

Premium payable at rate π in the deferred period t < m and pension payable at rate 1
in the pension period m < t < m+n, say. Use Thiele’s differential equation: Inspect it
directly, or integrate it from 0 to t and from t to n to obtain the retrospective formula
for t in the deferred period and the prospective formula in the benefit payment period:

Vt =

{

π
∫ t

0
exp

(

∫ t

τ
(r + µx+u) du

)

dτ , 0 ≤ t < m ,
∫m+n

t
exp

(

−
∫ τ

t
(r + µx+u) du

)

dτ , m ≤ t < m+ n .

It is seen that Vt is an increasing function for t < m, no matter if µ is increasing or
not; increasing t gives a bigger integrand integrated over a longer interval. We know
from the theory in Chapter 4 of BL that, for t ≥ m, Vt = āx+t m+n−t is decreasing if
µ is increasing.

Exercise 14

(a)

Vt = E
[

PV(t,n]

∣

∣ Tx > t
]

= E

[

PV(t,t+dt] + e−r dtPV(t+dt,n]

∣

∣

∣ Tx > t
]

= (1 − µx+t dt) E

[

PV(t,t+dt] + e−r dtPV(t+dt,n]

∣

∣

∣
Tx > t+ dt

]
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+µx+t dtE
[

PV(t,t+dt] + e−r dtPV(t+dt,n]

∣

∣

∣
t < Tx < t+ dt

]

= (1 − µx+t dt)
[

−πt dt+ e−r dtVt+dt

]

+ µx+t dt
[

bt + e−r dt · 0
]

+ o(dt)

= −πt dt+ (1 − µx+t dt)(1 − r dt)(Vt +
d

dt
Vt dt) + µx+t dt bt + o(dt)

= −πt dt+ Vt − (µx+t + r) dt Vt +
d

dt
Vt dt+ µx+t dt bt + o(dt)

Cancel Vt, divide by dt, and let dt go to 0, to arrive at Thiele’s diff. eq.

(b)

V
(2)

t = E
[

PV 2
(t,n]

∣

∣ Tx > t
]

= E

[

(PV(t,t+dt])
2 + 2PV(t,t+dt] e

−r dtPV(t+dt,n] + e−2r dt(PV(t+dt,n])
2
∣

∣

∣
Tx > t

]

= (1 − µx+t dt) E

[

(PV(t,t+dt])
2 + 2PV(t,t+dt] e

−r dtPV(t+dt,n] + e−2r dt(PV(t+dt,n])
2
∣

∣

∣ Tx > t+ dt
]

+µx+t dtE
[

(PV(t,t+dt])
2 + 2PV(t,t+dt] e

−r dtPV(t+dt,n] + e−2r dt(PV(t+dt,n])
2
∣

∣

∣
t < Tx < t+ dt

]

= (1 − µx+t dt)
[

(−πt dt)
2 + 2(−πt dt)e

−r dtVt+dt + e−2r dtV
(2)
t+dt

]

+µx+t dt
[

b2t + 2bte
−r dt · 0 + e−2r dt · 02

]

+ o(dt)

= (1 − µx+t dt) 2 (−πt dt) (1 − r dt)

(

Vt +
d

dt
Vt dt

)

+ (1 − µx+t dt)(1 − 2r dt)

(

V
(2)
t +

d

dt
V

(2)
t dt

)

+µx+t dt b
2
t + o(dt)

= −2πt dt Vt + (1 − (µx+t + 2r) dt)V
(2)

t +
d

dt
V

(2)
t dt + µx+t dt b

2
t + o(dt)

Cancel V
(2)

t , divide by dt, let dt go to 0, and rearrange a bit to arrive at

d

dt
V

(2)
t = 2πt Vt + (µx+t + 2r)V

(2)
t − µx+t b

2
t .
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Exercise 15

(a) Let τ1, τ2, . . . denote the times of transition of Z listed in chronological order. The
process Nt =

∑

i 1[τi ≤ t], t ≥ 0, which counts the total number of transitions, is a
homogeneous Poisson process with intensity µ. (Write µ instead of λ to make the for-
mulas given in item (b) meaningful.) The times τ1, τ3, . . . are the times where N takes
odd values, and τ2, τ4, . . . are the times where N takes even values. Thus N12(t, u] is
the number odd numbered occurrences of Poisson events between time t and time u.
In particular, N12(t) =

[

N(t)+1
2

]

. Likewise, N21(t) =
[

N(t)
2

]

. T1(t, u] is the total time

in (t, u] with odd value of N .

(b) We could derive the backward differential for the functions V
(q)
j (t) and W

(q)
j (t),

but they are really special cases of Thiele’s differential equation for the reserve and
its generalization to higher order moments: T1(t, n] is the present value at time t of
an n-year annuity of 1 per time unit running in state 1 in the present simple Markov
model, and with no interest. Similarly, N12(t, n] is the present value at time t of an
n-year insurance 1 payable upon every transition from state 1 to state 2.

Thiele for the annuity:

d

dt
V

(1)
1 (t) = −1 − µ (V

(1)
2 (t) − V

(1)
1 (t)) , (G.5)

d

dt
V

(1)
2 (t) = −µ (V

(1)
1 (t) − V

(1)
2 (t)) , (G.6)

subject to

V
(1)
1 (n) = V

(1)
2 (n) = 0 . (G.7)

There are many ways of solving these equations and we mention a few:
(1) Differentiate (G.5) and substitute expressions for the first order derivatives from

(G.5) and (G.6) to obtain a second order differential equation in V
(1)
1 (t) subject to

conditions V
(1)
1 (n) = 0 and d

dt
V

(1)
1 (n) = −1, the latter obtained from (G.5). There are

standard methods for this problem, see solution to Exercise No 15 in Exercise paper
No 5.
(2) Add (G.5) and (G.6) to obtain

d

dt
(V

(1)
1 + V

(1)
2 )(t) = −1 ,

subject to (V
(1)
1 + V

(1)
2 )(n) = 0. Solution:

V
(1)
1 + V

(1)
2 (t) = n− t . (G.8)

Subtract (G.6) from (G.5) to obtain

d

dt
(V

(1)
1 − V

(1)
2 )(t) = −1 − 2µ (V

(1)
1 − V

(1)
2 )(t) ,

subject to (V
(1)
1 − V

(1)
2 )(n) = 0. Solution (we recognize the differential equation and

side condition for the reserve on a deterministic annuity of 1 at interest rate 2µ):

V
(1)
1 (t) − V

(1)
2 (t) =

∫ n

t

e−2 µ(τ−t) dτ dτ =
1 − e−2 µ (n−t)

2µ
.
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We find

V
(1)
1 (t) =

n− t

2
+

1 − e−2 µ (n−t)

4µ
, (G.9)

V
(1)
2 (t) =

n− t

2
− 1 − e−2 µ (n−t)

4µ
.

(3) Already before we arrived at relation (G.8) we ought to have realized the following:
Given Z(t) = 1, T1(t, n] is the time that remains to spend in the current state. Given
Z(t) = 2, T1(t, n] is the time that remains to spend in the other state. Given Z(t) = 1,
T2(t, n] = (n− t) − T1(t, n] is the time that remains to spend in the other state. Due
to symmetry, the two last mentioned cases are probabilistically identical, so we can
conclude that

V
(1)
2 (t) = (n− t) − V

(1)
1 (t) ,

which is (G.8). Substituting this into (G.5), we get

d

dt
V

(1)
1 (t) = −1 + µ ((n− t) − 2V

(1)
1 (t)) ,

which is to be solved subject to V
(1)
1 (n) = 0. We easily arrive at the solution above.

Now to non-central second order moments, and we proceed with method (3) using
the general differential equation, which specializes to

d

dt
V

(2)
1 (t) = µV

(2)
1 (t) − 2V

(1)
1 (t) − µ V

(2)
2 (t) ,

subject to
V

(2)
1 (n) = 0 .

Using the symmetry again, we realize that

V
(2)
2 (t) = (n − t)2 − 2 (n − t)V

(1)
1 (t) + V

(2)
1 (t) .

Substituting this and reorganizing a bit, the differential equation above becomes

d

dt
V

(2)
1 (t) = 2 (µ (n− t) − 1)V

(1)
1 (t) − µ (n − t)2 .

Inserting the expression (G.9), we get

V
(2)
1 (t) = −

∫ n

t

(

2 (µ (n− τ ) − 1)

(

n− τ

2
+

1 − e−2 µ (n−τ)

4µ

)

− µ (n− τ )2
)

dτ .

Substituting n − τ , we are left with the simple task of integrating some standard
functions. One should finally arrive at

Var[T1(t, n] | Z(t) = 1] = V
(2)
1 (t)−(V

(1)
1 (t))2 =

1

4µ






n − t+

1 −
(

2 − e−2µ (n−t)
)2

4µ






.

Exercise 16

(a) Obviously, for t < s < u,

paa(t, u) = paa(t, s)paa(s, u) .
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Details:

P[Z(τ ) = a, τ ∈ (t, u] |Z(t) = a]

= P[Z(τ ) = a , τ ∈ (t, s] |Z(t) = a]P[Z(τ ) = a , τ ∈ (s, u] |Z(t) = a , Z(τ ) = a , τ ∈ (t, s]] ;

The first factor here is paa(t, s), and the second factor is (due to the Markov property)
paa(s, u).

For instance forward argument (put u and u + du in the roles of s and u):

paa(t, u + du) = paa(t, u)paa(u, u+ du) = paa(t, u)(1 − (µ(u) + σ(u))du) .

From this we get
∂

∂u
paa(t, u) = −paa(t, u)(µ(u) + σ(u)) .

Integrating, using the side condition paa(t, t) = 1, we arrive at the answer.

(b) Using the Markov property:

paa(0, t1)σ(t1) dt1 pii(t1 + dt1, t2) ρ(t2) dt2 paa(t2 + dt2, t3)µ(t3) dt3

(plus o(dt1) + o(dt2) + o(dt3), strictly speaking). Due to the factors dti we can replace
the arguments ti + dti appearing here by ti.

(d) The Kolmogorov forward equations with constant intensities, letting differentiation
w.r.t. t be denoted by primes:

p′aa(t) = −paa(t)(µ+ σ) + pai(t)ρ , (G.10)

p′ai(t) = paa(t)σ − pai(t)(ν + ρ) . (G.11)

Side conditions:

paa(0) = 1 , pai(0) = 0 . (G.12)

Differentiate (G.10):

p′′aa(t) = −p′aa(t)(µ+ σ) + p′ai(t)ρ . (G.13)

Substitute here p′ai(t) from (G.11):

p′′aa(t) = −p′aa(t)(µ+ σ) + (paa(t)σ − pai(t)(ν + ρ))ρ . (G.14)

Now solve pai(t) from (G.10) and substitute into (G.14) and rearrange a bit to arrive
at

p′′aa(t) + p′aa(t)((µ+ σ) + (ν + ρ)) + paa(t)((µ+ σ)(ν + ρ) − σρ) = 0 . (G.15)

This is a simple homogeneous second order ordinary differential equation, which is to
be solved subject to the conditions

paa(0) = 1 , p′aa(0) = −(µ+ σ) , (G.16)

the latter obtained by setting t = s in (G.10). The general solution to (G.15) - (G.16)
is

paa(t) = c1e
r1t + c2e

r2t ,
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when r1 and r2 are distinct solutions to

r2 + r((µ+ σ) + (ν + ρ)) + ((µ+ σ)(ν + ρ) − σρ) = 0 .

Here c1 and c2 are constants that are to be determined so as to match the side condi-
tions (G.16):

c1 + c2 = 1 ,

c1r1 + c2r2 = −(µ+ σ) .

If the roots r1 and r2 coincide, r1 = r2 = r (say), then the general solution is of the
form (c1 + c2t)e

rt. You find

r1
r2

}

= − (µ+ σ) + (ν + ρ) ±
√

((µ+ σ) − (ν + ρ))2 + 4σρ

2

Fill in the details yourself.

Exercise 17

Recall the forward equations:

∂

∂t
paa(0, t) = −paa(0, t)(µx+t + σx+t) + pai(0, t)ρx+t , (G.17)

∂

∂t
pai(0, t) = paa(0, t)σx+t − pai(0, t)(νx+t + ρx+t) . (G.18)

Side conditions

paa(0, 0) = 1 , pai(0, 0) = 0 . (G.19)

Note the following: The forward differential equations for the transition probabilities
are usually easier to work with than the backward differential equations. Under the
forward construction we work with the functions pjk(t, · ), k = 1, 2, ..., J , for fixed j
and t. These functions sum to one and therefore we need only solve J − 1 equations.
Under the backward construction we work with the functions pjk( · , u), j = 1, 2, ..., J ,
for fixed k and u, which do not sum to 1 or anything else that could be helpful. If one
should never the less want to use the backward equations in the present situation, one
would face a quasi-difficulty which is due to the notation: e.g. in tp

aa
x , which means

paa(x, x + t), x appears in both time variables. To apply the backward construction
one must parametrize time as in the general theory, letting starting time and ending
time be functionally unrelated.

(a) When ρx+t = 0, (G.17) reduces to

∂

∂t
paa(0, t) = −paa(0, t)(µx+t + σx+t) ,

which subject to the first condition in (G.19) integrates to

paa(0, t) = exp

(

−
∫ t

0

(µx+s + σx+s) ds

)

,
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the same as the occupancy probability paa(0, t), of course. The equation (G.18) reduces
to

∂

∂t
pai(0, t) = paa(0, t)σx+t − pai(0, t) νx+t ,

or
∂

∂t
pai(0, t) + pai(0, t) νx+t = paa(0, t)σx+t ,

where the function on the right is now known. Multiply by integrating factor exp
(

∫ t

0
νx+s ds

)

,

integrate from 0 to t, use the second condition in (G.19), and arrive at

pai(0, t) =

∫ t

0

exp

(

−
∫ τ

0

(µx+s + σx+s) ds

)

σx+τ exp

(

−
∫ t

τ

νx+s ds

)

dτ ,

or

pai(0, t) =

∫ t

0
τp

aa
x σx+τ t−τp

ii
x+τ dτ .

This expression can be read aloud; Under the integral sign is the probability that the
policy stays in a until an intermediate time τ , then makes the transfer to state i in the
time interval (τ, τ + dτ ], and thereafter stays in state i until time t, and the integral
sums up the probabilities of these mutually exclusive events. See Section 7.F of BL.
The reason why we get explicit expressions here is that there is no return to a state
once the policy has left it. It should be made clear, however, that computation of the
probabilities goes by numerical solution to the differential equations, which is just as
easy with recovery as without. The explicit expressions are useful mainly because they
can be directly understood and also because they give us a possibility of discussing
how the transition probabilities depend on the intensities.

In the same manner as for paa(0, t) we find in the case without recovery that

pii(0, t) = exp

(

−
∫ t

0

νx+s ds

)

.

(b) The conditional probability of being active at time t, given alive at time t (and
start as active at time 0), is

tp̃
aa
x = P[Z(t) = a |Z(t) ∈ {a, i}] =

P[Z(t) = a ∩ Z(t) ∈ {a, i}]
P[Z(t) ∈ {a, i}]

=
paa(0, t)

paa(0, t) + pai(0, t)
.

Likewise,

tp̃
ai
x =

pai(0, t)

paa(0, t) + pai(0, t)
.

Differentiating tp[x] = paa(0, t) + pai(0, t) and using (G.17) and (G.18), one finds

µ[x]+t = −
∂
∂t tp[x]

tp[x]

= −
∂
∂t
paa(0, t) + ∂

∂t
pai(0, t)

paa(0, t) + pai(0, t)

= −−paa(0, t)(µx+t + σx+t) + pai(0, t)ρx+t + paa(0, t)σx+t − pai(0, t)(νx+t + ρx+t)

paa(0, t) + pai(0, t)

=
paa(0, t)µx+t + pai(0, t)νx+t

paa(0, t) + pai(0, t)

= tp̃
aa
x µx+t + tp̃

ai
x νx+t ,
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a weighted average of mortality for active and mortality for invalid, the weights being
the conditional probabilities of being active and invalid, respectively, given survival.

The select mechanism is in this case due to the fact that the insured is known to
be, not just alive and x years old at time 0, but also in active state.

(c) If µx+t = νx+t for all t ≥ 0, then µ[x]+t = µx+t, of course, and

tp[x] = exp

(

−
∫ t

0

µx+s ds

)

.

We have

tp̃
aj
x = tp

aj
x /tp[x] = tp

aj
x exp

(
∫ t

0

µx+s ds

)

,

j = a, i. Differentiating w.r.t. t, and rearranging a bit, you will see that the tp̃
aj
x ,

j = a, i, satisfy the differential equations (G.17) - (G.18) with ρ = 0, which are the
Kolmogorov forward equations for in the partial model. They also satisfy the side
conditions (G.19). Thus, in the case of non-differential mortality, the transition prob-
abilities can be obtained by first determining the transition probabilities in the simpler
partial model with only two states, and then multiplying them with the survival prob-
ability.

(d) Statements:

(* SPECIFY NON-NULL PAYMENTS AT TIME t ! *)
bi[1,3] := 1; bi[2,3] := 1;
ca[1] := 1;

(* SPECIFY MAXIMUM ORDER OF MOMENTS AND NUMBER OF STATES !
*)
q := 1; (*moments*)
JZ := 3; (*number of states of the policy*)

(* SPECIFY TRANSITION INTENSITIES FOR POLICY Z ! Here Danish basis ex-
tended with recovery; States 1 = active, 2 = disabled, 3 = dead:*)
alpha[1,3] := 0.0005;
beta[1,3] := 0.00007585775;
gamma[1,3] := 0.038*ln(10);
alpha[2,3] := 0.0005;
beta[2,3] := 0.00007585775;
gamma[2,3] := 0.038*ln(10);
alpha[1,2] := 0.0004;
beta[1,2] := 0.000003467368;
gamma[1,2] := 0.06*ln(10);
alpha[2,1] := 0.005;

(*SPECIFY AGE x, TERM t, INTEREST RATES AND NON-NULL LIFE ENDOW-
MENTS ! *)
x:= 30; (*age*)
t := 30; (*term*)
r := ln(1+0.045); (*interest rate*)
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be[1] := 0; be[2] := 0; (*endowments at term of contract*)

(*SPECIFY LUMP SUM PREMIUM AT TIME 0: PUT c0 := 1 IF ALL OTHER
PREMIUMS ARE 0 AND ONLY MOMENTS OF BENEFITS ARE WANTED ! *)
c0 := 0; b0 := 0;

(*SPECIFY NUMBER OF STEPS IN RUNGE-KUTTA (OPTIONAL) ! *)
steps := 3000; (*number of steps*)
h := t/steps; (*steplength*)
count := 30; (*number of output times*)
count := steps/count - 0.5;

Result:
state: 1 2

time: 30.00

NC 1: 0.000000 0.000000

time: 29.00
NC 1: 0.009740 0.013915

time: 28.00
NC 1: 0.017861 0.025918

time: 27.00
NC 1: 0.024547 0.036236

..... ..... .....

time: 15.00
NC 1: 0.038582 0.081542

..... ..... .....

time: 1.00
NC 1: 0.002763 0.066309

time: 0.00
NC 1: 0.000000 0.064598

pi = 0.004336

Exercise 18

The process must start somewhere, so let us say Z(0) = 1.

(a)

P

[

r+1
⋂

i=0

Z(ti) = ji

]

= P

[

r
⋂

i=0

Z(ti) = ji

]

P

[

Z(tr+1) = jr+1

∣

∣

∣

∣

∣

r
⋂

i=0

Z(ti) = ji

]
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= P

[

r
⋂

i=0

Z(ti) = ji

]

pjr ,jr+1(tr, tr+1) .

We have here used the Markov property of the process. Repeating this, we obtain

P

[

r+1
⋂

i=0

Z(ti) = ji

]

= p1j0 (0, t0)

r+1
∏

i=1

pji−1,ji (ti−1, ti) . (G.20)

Next, using (G.20),

P

[

r
⋂

i=1

Z(ti) = ji

∣

∣

∣

∣

∣

Z(t0) = j0, Z(tr+1) = jr+1

]

=
P
[
⋂r+1

i=0 Z(ti) = ji
]

P [Z(t0) = j0 , Z(tr+1) = jr+1]

=
p1j0 (0, t0)

∏r+1
i=1 pji−1,ji(ti−1, ti)

p1j0 (0, t0) pj0,jr+1 (t0, tr+1)

=

∏r+1
i=1 pji−1,ji (ti−1, ti)

pj0,jr+1 (t0, tr+1)
. (G.21)

(b) For s = t0 < t1 < · · · < tr < tr+1 = t:

P

[

Z(tr) = jr

∣

∣

∣

∣

∣

r−1
⋂

i=1

Z(ti) = ji , Z(s) = i, Z(t) = j

]

= P

[

Z(tr) = jr

∣

∣

∣

∣

∣

r−1
⋂

i=1

Z(ti) = ji , Z(t0) = j0, Z(tr+1) = jr+1

]

=
P
[
⋂r+1

i=0 Z(ti) = ji
]

P

[

⋂

i=0,...,r−1,r+1 Z(ti) = ji
]

=
p1j0 (0, t0)

∏r+1
i=1 pji−1,ji (ti−1, ti)

p1j0 (0, t0)
∏

i=1,...,r−1 pji−1,ji (ti−1, ti) pjr−1,jr+1 (tr−1, tr+1)

=
pjr−1,jr (tr−1, tr) pjr ,j(tr, t)

pjr−1,j(tr−1, t)
. (G.22)

For given tr = t, jr+1 = j (and t0 = s, j0 = i) this is just a function p̃jr−1,jr (tr−1, tr)
(say) of jr−1, jr, tr−1, and tr, showing that the conditional Markov chain is itself
Markov.

The intensities of the conditional Markov chain are

µ̃gh(τ ) = lim
dτ↘0

p̃gh(τ, τ + dτ )

dτ

= lim
dτ↘0

pgh(τ, τ + dτ ) phj(τ + dτ, t)

dτ pgj(τ + dτ, t)

= µgh(τ )
phj(τ, t)

pgj(τ, t)
. (G.23)

lim
τ↗t

µ̃gh(τ ) =











µgh(t)
µhj (t)

µgj (t)
, g 6= j, h 6= j ,

∞ , g 6= j, h = j ,
0 , g = j, h 6= j .
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The expression in the case g 6= j, h 6= j is obtained upon writing

phj(τ, t)

pgj(τ, t)
=
phj(τ, t)/(t− τ )

pgj(τ, t)/(t− τ )

before taking the limit.
Think about these results - they are quite natural.

(e)

σ̃(τ ) = σ(τ )
pii(τ, t)

pai(τ, t)
,

µ̃(τ ) = µ(τ )
pdi(τ, t)

pai(τ, t)
= 0 .

Constant intensities and no recovery:

σ̃(τ ) = σ
e−ν (t−τ)

∫ t

τ
e−(µ+σ)(s−τ) σ e−ν (t−s) ds

=
1

∫ t

τ
e(ν−µ−σ)(s−τ) ds

=

{

ν−µ−σ

e(ν−µ−σ)(t−τ)−1
, ν − µ− σ 6= 0 ,

1
t−τ

, ν − µ− σ = 0 .

Exercise 19

(a) An n-year endowment insurance with sum insured 1 against level premium c per
time unit, continuous time, age of insured upon issue of contract is x.

(b) Integration is book-work, see lecture notes. One obtains

Vt =

∫ n

t

e−
∫ τ

t (r+µx+s) ds(µx+τ − c) dτ + e−
∫n
t (r+µx+s) ds

= Āx+t n−t − c āx+t n−t .

Determine c by equivalence requirement V0 = 0 (no down payment at time0):

c =
Āx n

āx n
.

(b) One must first prove

Āx+t n−t = 1 − r āx+t n−t ,

which is book-work (there are several ways). See lecture notes.
Then write

Vt = 1 − r āx+t n−t − c āx+t n−t = 1 − (r + c) āx+t n−t .

Thus, the problem reduces to proving that if µx+t is an increasing function of t, then
āx+t n−t is a decreasing function of t. This is book-work, see lecture notes.
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To construct an example where Vt is not an increasing function, i.e āx+t n−t is not
a decreasing function, we must obviously take a µx+t that is not increasing. Fix t < n
and write

āx n =

∫ n

0

e−
∫ τ
0 (r+µx+s) ds dτ

=

∫ t

0

e−
∫ τ
0 (r+µx+s) ds dτ + e−

∫ t
0 (r+µx+s) ds

∫ n

t

e−
∫ τ

t (r+µx+s) ds dτ

= āx t + tExāx+t n−t .

Keep µx+s fixed for t ≤ s ≤ n. By increasing µx+s for 0 ≤ s ≤ t, we can obviously make
āx t and tEx arbitrarily small. In particular we can arrange that āx t < 0.5 āx+t n−t

and tEx < 0.5, hence āx n < āx+t n−t .

Exercise 20

(a) Book-work. See lecture notes.

(b) tp0 is a survival function since it is decreasing and 0p0 = 1, ∞p0 = 0. The mortality
intensity is

µt = −
d
dt tp0

tp0
= · · · =

γw(t)

δ +W (t)
. (G.24)

tpx =
x+tp0

xp0
=

(

δ +W (x)

δ +W (x+ t)

)γ

=

(

δ +W (x)

(δ +W (x)) + (W (x+ t) −W (x)

)γ

.

This is of the same form as tp0, only with W (t) and δ replaced by W (x+ t) −W (x)
and δ +W (x), respectively.

P[W (T ) + δ > x] = P[T > W−1(x− δ)] =

(

δ

W (W−1(x− δ)) + δ

)γ

=

(

δ

x

)γ

,

x > δ, a Pareto distribution with shape parameter γ and truncation parameter δ.

(c) Use (F.5) with G(t) = t2, hence dG(t) = 2 t dt

E[T 2] =

∫ ∞

0

2 t
1

(1 + t2/δ)γ
dt .

Substitute u = 1 + t2/δ. We have du = 2 t/δ dt and u is an increasing function of t,
u = 1 for t = 0, and u = ∞ for t = ∞. Thus

E[T 2] = δ

∫ ∞

1

u−γ du =
δ

γ − 1
.

One could also observe directly that
∫ ∞

0

2 t
(

1 + t2/δ
)−γ

dt =
δ

−γ + 1

∫ ∞

0

d
(

1 + t2/δ
)−γ+1

=
δ

−γ + 1

[

(

1 + ∞2/δ
)−γ+1 −

(

1 + 02/δ
)−γ+1

]

=
δ

1 − γ
.
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(d) Recall (G.24). We need

lnµt = ln γ + lnw(t) − ln(δ +W (t))

and
∫ T∧z

0

µt dt =

∫ T∧z

0

γ
w(t)

δ +W (t)
dt = γ (ln(δ +W (T ∧ z)) − ln δ) .

Log likelihood is

ln Λ =
∑

m; Tm< zm

[ln γ + lnw(Tm) − ln(δ +W (Tm))]

− γ
∑

m

[ln(δ +W (Tm ∧ z)) − ln δ] .

First order derivatives:

∂

∂γ
ln Λ =

∑

m; Tm< zm

γ−1 −
∑

m

[ln(δ +W (Tm ∧ z)) − ln δ] ,

∂

∂δ
ln Λ = −

∑

m; Tm< zm

1

δ +W (Tm)
− γ

∑

m

(

1

δ +W (Tm ∧ z) − 1

δ

)

.

Put N(z) = ]{m; Tm < z}, the number of deaths within age z. The ML equations
are

γ̂ =
N(z)

∑

m ln(1 +W (Tm ∧ z)/δ̂)
, (G.25)

∑

m; Tm< zm

1

δ̂ +W (Tm)
+ γ̂

∑

m

(

1

δ̂ +W (Tm ∧ z)
− 1

δ̂

)

= 0 . (G.26)

These equations have to be solved numerically. Insert the expression (G.25) for γ̂ into
(G.26) and solve the latter w.r.t. δ̂. Substitute the solution into (G.25) to find γ̂.

To find the asymptotic variance matrix, form the second derivatives ∂2

∂γ2 lnΛ,
∂2

∂δ2 ln Λ, ∂2

∂γ∂δ
ln Λ, find their expected values, change sign, and invert the informa-

tion matrix.

(e) If δ is known, then (G.25) with δ̂ replaced by δ is an explicit expression for γ̂.
Divide by n in denominator and numerator, let n go to ∞, and use the law of large
numbers to conclude that

γ̂ → P[T1 ≤ z]

E[ln(1 +W (T1 ∧ z)/δ)]
. (G.27)

From (F.6) we have

P[T1 ≤ z] = 1 − tp0 = 1 −
(

δ

W (z) + δ

)γ

.

Use (F.5) with tp0 given by (F.6) and G(t) = ln(1 +W (t ∧ z)/δ), for which G(0) = 0
and

dG(t) =

{

w(t)
δ+W (t)

dt , 0 < t < z ,

0 t > z .
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We find

E[ln(1 +W (T1 ∧ z)/δ)] =

∫ z

0

(

δ

W (t) + δ

)γ
w(t)

δ +W (t)
dt

= δγ

∫ z

0

w(t)

(W (t) + δ)γ+1
dt

= δγγ

(

1

(W (0) + δ)γ
− 1

(W (z) + δ)γ

)

= γ

(

1 −
(

δ

W (z) + δ

)γ)

Inserting these expressions in (G.27), we find that the limit is γ.

(f) OE rate in year j is

µ̂ =
Nj

Wj
,

where Nj = ]{m; j − 1 < Tm ≤ j} and Wj =
∑

m((Tm ∧ j) − (j − 1)) ∨ 0. Choose
representative age τj ∈ (j − 1, j] and weights wj and minimize

Q =

n
∑

j=1

wj (µ(τj ; γ, δ) − µ̂j)
2 =

n
∑

j=1

(

γw(τj)

δ +W (τj)
− µ̂j

)2

.

Minimize by forming the partial derivatives,

∂

∂γ
Q =

n
∑

j=1

wj 2

(

γw(τj)

δ +W (τj)
− µ̂j

)

w(τj)

δ +W (τj)
,

∂

∂δ
Q =

n
∑

j=1

wj 2

(

γw(τj)

δ +W (τj)
− −µ̂j

) −γ w(τj)

(δ +W (τj))2
,

setting them equal to zero and solving for γ∗ and δ∗

Exercise 21

(a) Direct backward argument, conditioning on what happens in the small time interval
(t, t+ dt) and splitting payments in (t, z] into payments in (t, t+ dt] and payments in
(t+ dt, z]:

Va(t) = (1 − µx+t dt− σx+t dt)(−c dt + e−r dt Va(t+ dt))

+σx+t dt (O(dt) + e−r dt Vi(t+ dt)) + µx+t dtO(dt) + o(dt) ,

where O(dt) is of order dt and o(dt) is of order less than dt (i.e o(dt)/dt→ 0 as dt→ 0).
Insert (Taylor expansion to first order)

e−r dt = 1 − r dt+ o(dt) ,

Vj(t+ dt) = Vj(t) +
d

dt
Vj(t) dt + o(dt) , j = a, i,
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and collect all terms of order dt2 or less in o(dt):

Va(t) = − c dt+ (1−µx+t dt−σx+t dt− r dt)Va(t) +
d

dt
Va(t) dt+ σx+t dt Vi(t) + o(dt) .

Subtract Va(t) on both sides, divide by dt and let dt go to zero, to arrive at

d

dt
Va(t) = rVa(t) + c− σx+t(Vi(t) − Va(t)) + µx+tVa(t) .

Similarly
d

dt
Vi(t) = r Vi(t) − b+ νx+tVi(t) .

Side conditions Va(z) = Vi(z) = 0.

(b) The differential equations now become

d

dt
Va(t) = rVa(t) + c− σx+t(Vi(t) − Va(t)) .

d

dt
Vi(t) = r Vi(t) − b+ νx+t Vi(t)) .

Side conditions remain the same.

(c) Same product as in (a) plus an endowment insurance with sum 1.

(d)

paa(s, t) = e−
∫ t
s (µx+u+σx+u) du ,

pii(s, t) = e−
∫ t
s νx+u du ,

pai(s, t) =

∫ t

s

e−
∫ τ

s (µx+u+σx+u) duσx+τe
−
∫ t
τ νx+u du dτ ,

pad(s, t) = 1 − paa(s, t) − pai(s, t) .

(e) As usual, let Ij(t) and Njk(d) denote, respectively, the number of policies in state
j at time t and the total number of transitions j → k up to and including time t. The
log likelihood function is

ln Λ =

∫ z

0

lnσ dNai(t) +

∫ z

0

ln(α+ βeγ(x+t)) dNad(t) +

∫ z

0

ln(α+ βeγ′(x+t)) dNid(t)

−
∫ z

0

(α+ βeγ(x+t) + σ) Ia(t) dt−
∫ z

0

(α+ βeγ′(x+t)) Ii(t) dt .

1st derivatives:

∂

∂α
ln Λ =

∫ z

0

1

α+ βeγ(x+t)
dNad(t) +

∫ z

0

1

α+ βeγ′(x+t)
dNid(t)

−
∫ z

0

(Ia(t) + Ii(t)) dt ,

∂

∂β
ln Λ =

∫ z

0

eγ(x+t)

α+ βeγ(x+t)
dNad(t) +

∫ z

0

eγ′(x+t)

α+ βeγ′(x+t)
dNid(t)

−
∫ z

0

(eγ(x+t)Ia(t) + eγ′(x+t)Ii(t)) dt ,
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∂

∂γ
ln Λ =

∫ z

0

βeγ(x+t)(x+ t)

α + βeγ(x+t)
dNad(t) −

∫ z

0

βeγ(x+t)(x+ t)Ia(t) dt ,

∂

∂γ′ ln Λ =

∫ z

0

βeγ′(x+t)(x+ t)

α + βeγ′(x+t)
dNid(t) −

∫ z

0

βeγ′(x+t)(x+ t)Ii(t) dt ,

∂

∂σ
ln Λ =

∫ z

0

1

σ
dNai(t) −

∫ z

0

Ia(t) dt .

Set equal to 0 and solve for the ML estimators.

Exercise 23

Assume that X is non-decreasing. Note that

D(X) = ∪∞
m=1 ∪∞

n=1 Dm,n ,

where Dm,n = {t ; t ≤ n , Xt+ −Xt− ≥ 1
m
}. Since

∞ > Xn ≥ X0 +
∑

t∈Dm,n

(Xt+ −Xt−) > X0 +
1

m
]Dm,n ,

we conclude that ]Dm,n is finite. Thus, being a countable union of finite sets, D(X)
is (at most) countable.

Exercise 25

dXq
t = qXq−1

t xc
t dt+

(

(Xt− + xd
t )

q −Xq
t−

)

dNt .

Exercise 26

(See also Exercise 56. Here notation is changed: a and b are called α and β)

dS(t) = eαt+βN(t)αdt+ dN(t)
(

eαt+β(N(t−)+1) − eαt+βN(t−)
)

= eαt+βN(t−)αdt+ dN(t)eαt+βN(t−)
(

eβ − 1
)

= S(t−)
(

αdt +
(

eβ − 1
)

dN(t)
)

= S(t−)
(

α+ λ
(

eβ − 1
))

dt + S(t−)
(

eβ − 1
)

dM(t) ,

where M(t) = N(t) − λt, a so-called martingale (a process with conditionally zero
mean and uncorrelated increments, here actually independent increments).

The rest is straightforward .

Exercise 34

Balance equation

14
∑

j=0

(1 + i)24−jc `55+j −
24
∑

j=15

(1 + i)24−jb `55+j = 0
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gives

c =

∑24
j=15(1 + i)−j `55+j

∑14
j=0(1 + i)−j `55+j

= 0.381 .

Exercise 50

(a) Kolmogorov forward, using the obvious paa(t, u) = 1 − pai(t, u):

pai(t, u+ du) = pai(t, u)(1 − ρ du) + (1 − pai(t, u))σ du,

∂

∂u
pai(t, u) + pai(t, u)(ρ+ σ) = σ

∂

∂u

(

pai(t, u)e
(ρ+σ)u

)

= σe(ρ+σ)u

Integrate from t to u using pai(u, u) = 0 to find

pai(t, u)e
(ρ+σ)u =

σ

ρ+ σ

(

e(ρ+σ)u − e(ρ+σ)t
)

,

hence the claimed formula. It depends only on u− t due to homogeneity.

(b) Either direct integration

πn =

∫ n

0

pai(0, τ ) dτ =
σ

ρ+ σ

(

n − 1 − e−(ρ+σ)n

ρ+ σ

)

,

or use Thiele’s differential equations.
Single premium per unit of time insured is

πn

n
=

σ

ρ+ σ

(

1 − 1 − e−(ρ+σ)n

(ρ+ σ)n

)

.

The function

g(x) =
1 − e−x

x
(G.28)

has derivative

g′(x) =
e−x

x
− 1 − e−x

x2
= e−x 1 + x− ex

x2
,

which is < 0. It follows that, as n ↗ +∞,

πn

n
↗ σ

ρ+ σ
.

Reasonable: Increasing function of σ, decreasing function of ρ.

(c) Likelihood
Λ = σNaiρNiae−σWa−ρWi ,

where Wa =
∑m

`=1 T
(m)
n , the total time spent in active state (and Wi = nm−Wa the

total time spent in inactive state).

∂

∂σ
ln Λ =

Nai

σ
−Wa ,
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∂2

∂σ2
ln Λ = −Nai

σ2
,

plus similar expressions for derivatives w.r.t. ρ, and

∂2

∂σ∂ρ
lnΛ = 0 .

Thus, the ML estimators are the occurrence-exposure rates

σ̂ =
Nai

Wa
, ρ̂ =

Nia

Wi
,

which are asymptotically independent, normally distributed and unbiased, and

as.Varσ̂ =
σ2

ENai
=

σ

mn(1 − πn/n)
,

where we have used

ENai = m

∫ n

0

paa(0, τ )σ dτ = mσ

∫ n

0

(1 − pai(0, τ )) dτ = mnσ(1 − πn

n
) ,

see item (b).
For fixed w = mn (i.e. m = w/n)

as.Varσ̂ =
σ

w(1 − πn
n

)
,

which is an increasing function of the time span n by the results in item (b).
We also find

as.Varρ̂ =
ρ2

ENia
=

ρ

w πn
n

,

where we have used

ENia = m

∫ n

0

pai(0, τ )ρ dτ = mnρ
πn

n
.

We see that as.Varρ̂ is a decreasing function of the time span n for fixed w.
Comment: The asymptotic variance of an intensity estimator is better the longer

the total expected time spent in the state from which the the relevant transition is
made. All policies start from state a at time 0. For fixed total exposure the estimation
of σ will be good for many policies observed over a short time (when they are likely to
remain active), and estimation of ρ will be good for few policies observed over a long
time when they can make it to inactive state.

(d) We find

p̃jk(t, u) =
P[Z(s1) = j1, . . . , Z(sr) = jr, Z(t) = j, Z(u) = k, Z(n) = i]

P[Z(s1) = j1, . . . , Z(sr) = jr, Z(t) = j, Z(n) = i]

=
paj1 (0, s1) · · · pjr−1jr (sr−1, sr)pjrj(sr, t)pjk(t, u)pki(u, n)

paj1(0, s1) · · · pjr−1jr (sr−1, sr)pjrj(sr, t)pji(t, n)

=
pjk(t, u)pki(u, n)

pji(t, n)
.
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Corresponding intensities:

σ̃(t) = lim
u↘t

pai(t, u)

u− t

pii(u, n)

pai(t, n)
= σ

pii(t, n)

pai(t, n)

and, similarly,

ρ̃(t) = ρ
pai(t, n)

pii(t, n)
,

with pai(t, n) and pii(t, n) given by expressions in item (a). Full expression for σ̃(t) is
useful later:

σ̃(t) = σ
1 − ρ

σ+ρ

(

1 − e−(σ+ρ)(n−t)
)

σ
σ+ρ

(1 − e−(σ+ρ)(n−t))
=
σ + ρe−(σ+ρ)(n−t)

1 − e−(σ+ρ)(n−t)
.

(e) When ρ = 0,

σ̃(t) =
σ

1 − e−σ(n−t)
.

Let the occurrence-exposure rate in year j = 1, . . . , n be

σ̂j =
Nai;j

Wa;j
,

where Nai;j and Wa;j are the number of claims and the total time at risk in year j (time
interval [j−1, j)). Graduation means estimating σ by minimizing the weighted squares
differences between the observed rates σ̂j and the theoretical intensities σ̃(j−0.5), with
weights equal to the inverse estimated variances ˆVarσ̂j = Nai;j/W

2
a;j:

n
∑

j=1

W 2
a;j

Nai;j

(

σ̂j − σ

1 − e−σ(n−j+0.5)

)2

.

Exercise 51

(a)

p
(1)
ai (0, t+ dt) = p

(1)
ai (0, t)(1 − (ν(t) + ρ(t)) dt) + paa(0, t)σ(t) dt

leads to
d

dt
p
(1)
ai (0, t) = −p(1)

ai (0, t)(ν(t) + ρ(t)) + paa(0, t)σ(t) ,

with side condition
p
(1)
ai (0, 0) = 0 .

(Integrating gives the following integral expression, which could be put up by direct
reasoning:

p
(1)
ai (0, t) =

∫ t

0

exp(−
∫ s

0

(µ+ σ))σ(s)ds exp(−
∫ t

s

(ν + ρ)) .)

Next,
p(1)

aa (0, t+ dt) = p(1)
aa (0, t)(1 − (µ(t) + σ(t)) dt) + p

(1)
ai (0, t) ρ(t) dt

leads to
d

dt
p(1)

aa (0, t) = −p(1)
aa (0, t)(µ(t) + σ(t)) + p

(1)
ai (0, t) ρ(t) ,
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with side condition
p(1)

aa (0, 0) = 0, .

(Integral expression, which could be put up by direct reasoning:

p(1)
aa (0, t) =

∫ t

0

p
(1)
ai (0, s) ρ(s) ds exp(−

∫ t

s

(µ+ σ)) .)

Repeating the argument for k = 2, 3, ...:

d

dt
p
(k)
ai (0, t) = −p(k)

ai (0, t)(ν(t) + ρ(t)) + p(k−1)
aa (0, t)σ(t) ,

p
(k)
ai (0, 0) = 0 ,

and
d

dt
p(k)

aa (0, t) = −p(k)
aa (0, t)(µ(t) + σ(t)) + p

(k)
ai (0, t) ρ(t) ,

p(k)
aa (0, 0) = 0 .

Introducing p
(0)
aa (0, t) = paa(0, t) would save work.

Obviously,
∞
∑

k=1

p
(k)
ai (0, t) = pai(0, t) .

(b)
P [Z(τ ) = i; τ ∈ [t− q, t] | Z(0) = a] = pai(0, t− q)pii(t− q, t) .

(c)

π =

∫ n

q

e−rτpai(0, τ − q)pii(τ − q, τ ) dτ .

Reserve:
∫ t+q

t
e−r(τ−t)pii(t, τ ) dτ +

∫ n

t+q
e−r(τ−t)pii(t, τ − q)pii(τ − q, τ ) dτ .

Exercise 52

Expected PV at time 0 of benefits is

∫ n

n/2

e−rτ (1 − τ−n/2px)τpyµy+τ dτ .

Expected PV at time 0 of premiums is π times

∫ n/2

0

e−rτ
τpxτpy dτ .

Equivalence premium π is the ratio between these expressions.

Exercise 53

(a) Expected present value at time 0 of benefits is 5 times
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W b = E

[

e
∫m
0 (−r(s)+a(s)−µ(x+s))ds

∣

∣

∣Y (0) = i
]

. (G.29)

Consider the functions

W b
j (t) = E

[

e
∫m

t (−r(s)+a(s)−µ(x+s))ds
∣

∣

∣
Y (t) = j

]

,

t ∈ [0, m], j = 1, . . . , J . We need to determine W b = W b
i (0). Backward construction:

W b
j (t) = (1 − λj·dt)e

(−rj+aj−µ(x+t)) dtW b
j (t+ dt) +

∑

k;k 6=j

λjkdtW
b
k(t) + o(dt)

leads to

d

dt
W b

j (t) = (λj· + rj − aj + µ(x+ t))W b
j (t) −

∑

k; k 6=j

λjk W
b
k (t) .

Solve backwards subject to conditions

W b
j (m) = 1 ,

j = 1, . . . , J .

Expected present value at time 0 of premiums is π times

W c = E

[∫ m

0

e
∫ τ
0 (−r(s)+a(s)−µ(x+s))ds dτ

∣

∣

∣

∣

Y (0) = i

]

. (G.30)

Consider the functions

W c
j (t) = E

[
∫ m

t

e
∫ τ

t (−r(s)+a(s)−µ(x+s)) ds dτ

∣

∣

∣

∣

Y (t) = j

]

.

t ∈ [0, m], j = 1, . . . , J . We need to determine W c = W c
i (0). Backward construction:

W c
j (t) = (1 − λj·dt)

(

dt+ e(−rj+aj−µ(x+t)) dtW c
j (t+ dt)

)

+
∑

k;k 6=j

λjkdtW
c
k (t) + o(dt)

leads to

d

dt
W c

j (t) = −1 + (λj· + rj − aj + µ(x+ t))W c
j (t) −

∑

k; k 6=j

λjk W
c
k (t) .

Solve backwards subject to conditions

W c
j (m) = 0 ,

j = 1, . . . , J .
Solve both systems numerically by e.g. ’prores2’ and determine π = W b/W c.

(b) If aj = rj for all j, then a(t) = r(t) for all t and they cancel out of the expressions
for the present values when we drop the expectation. Thus, equivalence in the sense
defined can be attained.
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Exercise 54

(a) With profit contract: Stipulating benefits and premiums in nominal values, binding
to both parties. Charge a premium ’on the safe side’, typically by using conservative
technical (first order) valuation basis. If everything goes well, surplus will accumulate.
This surplus belongs to the insured and is to be repaid as so-called bonus, e.g. as
increased benefits or reduced premiums.

Unit linked: Unit linked contract: Stipulating benefits and (possibly) premiums
in units of a share of the investment portfolio, that is, let contractual payments be
inflated by the ’price index’ of the investment portfolio rather than being fixed nominal
amounts. With all payments perfectly linked, the financial risk will be eliminated in
a large portfolio.

(b) Single premium, given Y (0) = i, is

π = E

[

e−
∫n
0 r(U(n) ∨ g)

∣

∣

∣
Y (0) = i

]

npx .

Disregarding the uninteresting term npx henceforth, we need to determine

W = E

[

(1 ∨ e−
∫n
0 rg)

∣

∣

∣
Y (0) = i

]

.

The starting point is the ’price’ of the claim at time t, given the current information
about the past,

E

[

e−
∫n
t r (U(n) ∨ g)

∣

∣

∣
Y (τ ); 0 ≤ τ ≤ t

]

= E

[(

U(t) ∨ e−
∫n

t rg
)∣

∣

∣
Y (τ ); 0 ≤ τ ≤ t

]

.

Due to the Markov property this expression is a function of t, Y (t) and U(t). Consider
its value at time t for given U(t) = u, and Y (t) = j,

Wj(t, u) = E

[(

u ∨ e−
∫n
t rg

)
∣

∣

∣
Y (t) = j

]

.

The premium we seek is Wi(0, 1)
Now use the backward construction, disregarding terms of order o(dt):

Wj(t, u) = (1 − λj·dt)E
[(

u ∨ e−rjdte−
∫ τ
t+dt rg

)∣

∣

∣Y (t+ dt) = j
]

+
∑

k; k 6=j

λjkdtWk(t, u)

= (1 − λj·dt) e
−rjdt

E

[(

u erjdt ∨ e−
∫ τ

t+dt rg
)∣

∣

∣
Y (t+ dt) = j

]

+
∑

k; k 6=j

λjkdtWk(t, u)

= (1 − λj· dt) e
−rj dtWj(t+ dt, uerj dt) +

∑

k; k 6=j

λjkdtWk(t, u)

Insert e±rj dt = 1 ± rjdt+ o(dt) and

Wj(t+ dt, erjdtu) = Wj(t+ dt, u+ urjdt) + o(dt)

= Wj(t, u) +
∂

∂t
Wj(t, u) dt+

∂

∂u
Wj(t, u)u rj dt+ o(dt) ,

and fill in some details to arrive at the partial differential equations

−rjWj(t, u) +
∂

∂t
Wj(t, u) +

∂

∂u
Wj(t, u)u rj +

∑

k; k 6=j

λjk (Wk(t, u) −Wj(t, u)) = 0 .
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These are to be solved subject to the conditions

Wj(n, u) = (u ∨ g) ,

j = 1, . . . , J .

Exercise 55

(a) Expected PV at time 0 of benefits:

∫ n

0

e−rτ (1 − τ/2px)τpyµy+τ dτ .

Expected PV at time 0 of premiums is π times

∫ n/2

0

e−rτ
τpxτpy dτ .

Equivalence premium π is the ratio between these expressions.

(b) (Do not spend too much time on this.) A straightforward method for computation
is to define v1(t) = 1 − t/2px, v2(t) = tpy,

v3(t) =

∫ t

0

e−rτ (1 − τ/2px)τpyµy+τ dτ .

and solve numerically the system of differential equations

v′1(t) = µx+t/2 (1/2) v1(t) ,

v′2(t) = −µy+t v2(t) ,

v′3(t) = e−rtv1(t) v2(t)µy+t ,

by a forward difference scheme starting from the conditions v1(0) = 0, v2(0) = 1,
v3(0) = 0.

A more sophisticated method hinted at in the problem: Observe that

t/2px = exp

(

−
∫ t/2

0

µ(x+ s) ds

)

= exp

(

−
∫ t

0

1

2
µ(x+

1

2
s) ds

)

,

formally a survival function with intensity µ̃(t) = µ(x + t/2)/2. Then the sin-
gle premium is the difference between the single premiums of two well-known sim-
ple products, which may be computed by solving their Thiele differential equations
numerically. Or compute by e.g. the program ’prores1’ the expected discounted
value of an assurance of 1 payable upon transition from state 1 to state 3 in a four
states Markov model on {0, 1, 2, 3}, starting from state 0, with transition intensities
µ01(t) = µ23(t) = µ(x+ t/2)/2, µ02(t) = µ13(t) = µ(y + t), and all other intensities 0.

(c) Reserve Vt at time t ∈ [0, n] depends on what is currently known about (x) and
(y):
(y) dead: Vt = 0.
(y) alive, t ≥ n/2, Tx > n/2: Vt = 0.
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(y) alive, t ≥ n/2, Tx ≤ n/2: Vt =
∫ n

2Tx∨t
e−r(τ−t)

τ−tpy+tµy+τ dτ .

(y) alive, t < n/2, Tx ≤ t: Vt =
∫ n

2Tx
e−r(τ−t)

τ−tpy+t µy+τ dτ .

(y) alive, t < n/2, Tx > t: Vt =
∫ n

2t
e−r(τ−t)(1−τ/2−tpx+t) τ−tpy+tµy+τ dτ−π

∫ n/2

t
e−r(τ−t)

τ−tpx+t τ−tpy+t dτ .

(d) In general, for a unit due at some random time, the non-central 2nd moment of
present value is the same as the expected value, only with 2r instead of r.

Exercise 21

(b) The expected present value at time 0 of the benefits is 0.75 times

W b = E

[

S(m)

∫ m+n

m

U(τ )−1
τpx dτ

∣

∣

∣

∣

Y (0) = i

]

= E

[

e
∫m
0 a(s) ds

∫ m+n

m

e−
∫ τ
0 (r(s)+µ(x+s)) ds dτ

∣

∣

∣

∣

Y (0) = i

]

.

Proceed along the lines of Problems 4.7 - 4.11. The conditional expected value of the
discounted benefits, given what is known at time t ∈ [0, m+ n], is 0.75 times

W b(t) = E

[

e
∫m
0 a(s) ds

∫ m+n

m

e−
∫ τ
0 (r(s)+µ(x+s))ds dτ

∣

∣

∣

∣

Y (τ ); 0 ≤ τ ≤ t

]

.

The gist of the matter in the backward construction is to separate out what relates
only to the past and what relates to the future here, and to work with the conditional
expected values of the latter, given the relevant pieces of current information.

Firstly, for m ≤ t ≤ m+ n,

W b(t) = e
∫m
0 a(s) ds

∫ t

m

e−
∫ τ
0 (r(s)+µ(x+s))ds dτ

+ e
∫m
0 a(s) ds−

∫ t
0 (r(s)+µ(x+s))ds

E

[

W̃ b(t) |Y (τ ); 0 ≤ τ ≤ t
]

,

where

W̃ b(t) =

∫ m+n

t

e−
∫ τ
t (r(s)+µ(x+s)) ds dτ .

In the expression for W b(t) we need to determine the conditional expected value
of W̃ b(t) in the last term. Due to the Markov property (conditional independence
between past and future, given the present), this conditional expected value depends
only on the time t and the current state of the economy, Y (t). Therefore, we can
restrict attention to the state-wise conditional expected values,

W̃ b
j (t) = E

[

W̃ b(t)
∣

∣

∣
Y (t) = j

]

,

m ≤ t ≤ m+ n, j = 1, . . . , J . These are the solution to the differential equations

d

dt
W̃ b

j (t) = (rj + µ(x+ t)) W̃ b
j (t) − 1 −

∑

k; k 6=j

λjk (W̃ b
k(t) − W̃ b

j (t)) = 0 , (G.31)

subject to the conditions

W̃ b
j (m+ n) = 0 , (G.32)
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j = 1, . . . , J . Outline of details (which you shouldn’t spell out unless you are explicitly
asked to do so):

W̃ b(t) =

∫ t+dt

t

e−
∫ τ
t (r(s)+µ(x+s)) ds dτ

+ e−
∫ t+dt

t (r(s)+µ(x+s)) ds

∫ m+n

t+dt

e−
∫ τ

t+dt(r(s)+µ(x+s)) ds dτ

= eO(dt) dt+ e−(r(t)+µ(x+t))dt W̃ b(t+ dt) + o(dt) ,

where O(dt) is of order dt and o(dt) is of order (dt)2, hence

W̃ b(t) = dt+ (1 − (r(t) + µ(x+ t)) dt) W̃ b(t+ dt) + o(dt) .

(We have lumped negligible terms into o(dt): For instance, by Taylor expansion,
dt exp(O(dt)) = dt (1 +O(dt)) = dt+ o(dt) and dt W̃ b

k (t+ dt) = dt (W̃ b
k(t) +O(dt)) =

dt W̃ b
k (t)+o(dt).) Now, condition on what happens in the small time interval (t, t+dt):

W̃ b
j (t) = (1 − λj · dt) E

[

dt+ (1 − (r(t) + µ(x+ t)) dt) W̃ b(t+ dt) + o(dt)
∣

∣

∣ Y (τ ) = j, τ ∈ [t, t+ dt]
]

+
∑

k; k 6=j

λjkdtE

[

dt+ (1 − (r(t) + µ(x+ t)) dt) W̃ b(t+ dt) + o(dt)
∣

∣

∣
Y (t) = j, Y (t+ dt) = k

]

= (1 − λj · dt) [ dt+ (1 − (rj + µ(x+ t)) dt) W̃ b
j (t+ dt)] +

∑

k; k 6=j

λjkdt W̃
b
k (t) + o(dt)

= dt+ W̃ b
j (t+ dt) − (rj + µ(x+ t) + λj ·) dt W̃

b
j (t) +

∑

k; k 6=j

λjkdt W̃
b
k (t) + o(dt) .

(The first step in the above derivation is made here just to make sure you understand
the argument - it need not be given in an answer to the Problem.) Subtracting
W̃ b

j (t + dt) on both sides, dividing by dt, and letting dt go to 0, we arrive at (G.31).
Another way to do it is to set

W̃ b
j (t+ dt) = W̃ b

j (t) +
d

dt
W̃ b

j (t) dt+ o(dt) ,

cancel W̃ b
j (t) on both sides, and finally divide by dt.

Secondly, for 0 ≤ t ≤ m,

W b(t) = e
∫ t
0 (a(s)−r(s)−µ(x+s)) ds

E

[

W̃ b(t)|Y (τ ); 0 ≤ τ ≤ t
]

,

where now

W̃ b(t) = e
∫m

t (a(s)−r(s)−µ(x+s)) ds

∫ m+n

m

e−
∫ τ

m(r(s)+µ(x+s)) ds dτ .

The state-wise conditional expected values of this function are

W̃ b
j (t) = E

[

W̃ b(t)
∣

∣

∣
Y (t) = j

]

,

0 ≤ t ≤ m, j = 1, . . . , J . These are the solution to the differential equations

d

dt
W̃ b

j (t) = (rj + µ(x+ t) − aj) W̃
b
j (t) −

∑

k; k 6=j

λjk (W̃ b
k (t) − W̃ b

j (t)) = 0 . (G.33)
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At time t = m the defining expressions for W̃ b(t) in [0,m] and [m,m + n] coincide,
so we just proceed backwards in [0,m] from the values W̃ b

j (m) obtained after having
completed the backward scheme in [m,m+ n].

Brief outline of details of the derivation of the differential equations:

W̃ b(t) = e
∫ t+dt
t (a(s)−r(s)−µ(x+s)) ds W̃ b(t+ dt)

= (1 + (a(t) − r(t) − µ(x+ t)) dt) W̃ b(t+ dt) ;

W̃ b
j (t) = (1 − λj · dt) (1 + (aj − rj − µ(x+ t)) dt)W̃ b

j (t+ dt)

+
∑

k; k 6=j

λjkdt W̃
b
k (t+ dt) + o(dt) ,

and the rest is trivial.
The expected present value of future benefits at time 0, when the economy starts

in state i, is
W b = W̃ b

i (0) .

The expected present value at time 0 of the premiums is π times

W c = E

[
∫ m

0

U(τ )−1
τpx dτ

∣

∣

∣

∣

Y (0) = i

]

= E

[∫ m

0

e−
∫ τ
0 (r(s)+µ(x+s))ds dτ

∣

∣

∣

∣

Y (0) = i

]

.

The situation is now simpler than in the case of the benefits. For t ∈ [0, m] it suffices
to look at the state-wise conditional expected values

W c
j (t) = E

[∫ m

t

e−
∫ τ

t (r(s)+µ(x+s)) ds dτ

∣

∣

∣

∣

Y (t) = j

]

,

0 ≤ t ≤ m, j = 1, . . . , J . These we determine as the solution to the differential
equations (copy arguments for the case t ∈ [m,m+ n] above)

d

dt
W c

j (t) = (rj + µ(x+ t))W c
j (t) − 1 −

∑

k; k 6=j

λjk (W c
k (t) −W c

j (t)) = 0 , (G.34)

subject to the conditions

W c
j (m) = 0 , (G.35)

j = 1, . . . , J .
The expected present value at time 0, when the economy starts in state i, is

W c = W c
i (0) .

Finally, determine π from the equivalence relation πW c
i (0) = 0.75W b

i (0):

π = 0.75W b
i (0)/W c

i (0) .

This solution was filled with details that would not make any good in an exam;
you should just write the essential steps. To check your understanding of these things,
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try your hand on the modified contract where the benefit is a lump sum of 4S(m)
payable upon retirement at time m. (A simpler problem, of course.)

Problem 4.15

This is a small perturbation of Problem 4.11, and actually it is simpler. We treat only
the benefits (for premiums we do as in Problem 4.13).

Suppose Y (0) = i. The expected discounted value of the benefits is npx times

W = E

[

e−
∫n
0 r(U(n) ∨ g)

∣

∣

∣
Y (0) = i

]

= E

[

(1 ∨ e−
∫n
0 r g)

∣

∣

∣
Y (0) = i

]

.

A suitable starting point is the ’price’ of the claim at time t, given the current infor-
mation about the past,

E

[

e−
∫n
t r (U(n) ∨ g)

∣

∣

∣
Y (τ ); 0 ≤ τ ≤ t

]

= E

[(

U(t) ∨ e−
∫n

t rg
)∣

∣

∣
Y (τ ); 0 ≤ τ ≤ t

]

.

Arguing as in Problem 4.10 of the Exercises, we realize that this expression is a function
of t, Y (t) and U(t). Consider its value at time t for given U(t) = u, and Y (t) = j,

Wj(t, u) = E

[(

u ∨ e−
∫n
t rg

)∣

∣

∣
Y (t) = j

]

.

The value W we seek is Wi(0, 1).
Now use the backward construction, disregarding terms of order o(dt):

Wj(t, u) = (1 − λj·dt)E
[(

u ∨ e−rjdte−
∫ τ
t+dt rg

)
∣

∣

∣
Y (t+ dt) = j

]

+
∑

k; k 6=j

λjkdtWk(t, u)

= (1 − λj·dt) e
−rjdt

E

[(

u erjdt ∨ e−
∫ τ

t+dt rg
)∣

∣

∣Y (t+ dt) = j
]

+
∑

k; k 6=j

λjkdtWk(t, u)

= (1 − λj· dt) e
−rj dtWj(t+ dt, uerj dt) +

∑

k; k 6=j

λjkdtWk(t, u) .

Now do as in 4.11 and fill in some details to arrive at the partial differential equations

−rjWj(t, u) +
∂

∂t
Wj(t, u) +

∂

∂u
Wj(t, u)u rj +

∑

k; k 6=j

λjk (Wk(t, u) −Wj(t, u)) = 0 .

These are to be solved subject to the conditions

Wj(n, u) = (u ∨ g) ,

j = 1, . . . , J .
The expected discounted premiums are found as in Problem 4.13.

Exercise 57

(a) Direct from the Poisson distribution:

E[S(t)] = eαt
E

[

eβN(t)
]

= eαt
∞
∑

n=0

eβn (λt)n

n!
e−λt
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= eαte−λt
∞
∑

n=0

(eβλt)n

n!

= eαte−λt exp
(

eβλt
)

= exp
(

αt+ (eβ − 1)λt
)

.

Backward construction, particularly simple here since αt + bN(t) has stationary
and independent increments:

V (t) = E

[

eαt+βN(t)
]

= (1 − λdt)eαdtV (t− dt) + λdt eαdt+βV (t− dt) + o(dt)

= eαdtV (t− dt) − λ dt eαdtV (t− dt) + λ dt eαdt+βV (t− dt) + o(dt)

= (1 + αdt)(V (t) − d

dt
V (t) dt)

−λdt eαdtV (t− dt) + λdt eα dt+βV (t− dt) + o(dt) .

Cancel V (t), divide by dt and let dt go to 0 to obtain a simple differential equation,
to be solved subject to V (0) = 1.

For non-central q-th moments, just replace α and β with qα and qβ.

(b)

dS(t) = eαt+βN(t)αdt+ dN(t)
(

eαt+β(N(t−)+1) − eαt+βN(t−)
)

= eαt+βN(t−)αdt+ dN(t)eαt+βN(t−)
(

eβ − 1
)

= S(t−)
(

αt+ λ
(

eβ − 1
))

dt + S(t−)
(

eβ − 1
)

dM(t) ,

where M(t) = N(t) − λt, a so-called martingale (a process with conditionally zero
mean and uncorrelated increments, here actually independent increments).

(c) Replace α and β in (a) with −α and −β, and integrate the expression for the
expected value, to obtain the claimed answer (misprint: a λ is missing).

(d) This is now trivial.

BEGIN From 305exsol

Exercise 55

(a) Expected PV at time 0 of benefits:

∫ n

0

e−rτ (1 − τ/2px)τpyµy+τ dτ .

Expected PV at time 0 of premiums is π times

∫ n/2

0

e−rτ
τpxτpy dτ .
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Equivalence premium π is the ratio between these expressions.

(b) (Do not spend too much time on this.) A straightforward method for computation
is to define v1(t) = 1 − t/2px, v2(t) = tpy,

v3(t) =

∫ t

0

e−rτ (1 − τ/2px)τpyµy+τ dτ .

and solve numerically the system of differential equations

v′1(t) = µx+t/2 (1/2) v1(t) ,

v′2(t) = −µy+t v2(t) ,

v′3(t) = e−rtv1(t) v2(t)µy+t ,

by a forward difference scheme starting from the conditions v1(0) = 0, v2(0) = 1,
v3(0) = 0.

A more sophisticated method hinted at in the problem: Observe that

t/2px = exp

(

−
∫ t/2

0

µ(x+ s) ds

)

= exp

(

−
∫ t

0

1

2
µ(x+

1

2
s) ds

)

,

formally a survival function with intensity µ̃(t) = µ(x + t/2)/2. Then the sin-
gle premium is the difference between the single premiums of two well-known sim-
ple products, which may be computed by solving their Thiele differential equations
numerically. Or compute by e.g. the program ’prores1’ the expected discounted
value of an assurance of 1 payable upon transition from state 1 to state 3 in a four
states Markov model on {0, 1, 2, 3}, starting from state 0, with transition intensities
µ01(t) = µ23(t) = µ(x+ t/2)/2, µ02(t) = µ13(t) = µ(y + t), and all other intensities 0.

(c) Reserve Vt at time t ∈ [0, n] depends on what is currently known about (x) and
(y):
(y) dead: Vt = 0.
(y) alive, t ≥ n/2, Tx > n/2: Vt = 0.
(y) alive, t ≥ n/2, Tx ≤ n/2: Vt =

∫ n

2Tx∨t
e−r(τ−t)

τ−tpy+tµy+τ dτ .

(y) alive, t < n/2, Tx ≤ t: Vt =
∫ n

2Tx
e−r(τ−t)

τ−tpy+t µy+τ dτ .

(y) alive, t < n/2, Tx > t: Vt =
∫ n

2t
e−r(τ−t)(1−τ/2−tpx+t) τ−tpy+tµy+τ dτ−π

∫ n/2

t
e−r(τ−t)

τ−tpx+t τ−tpy+t dτ .

(d) In general, for a unit due at some random time, the non-central 2nd moment of
present value is the same as the expected value, only with 2r instead of r.

Exercise 75

We work under the independence hypothesis (should have been stated in the exercise
text.)

First the brute force method:

tpx1...xr = 1 −
∏

j

(1 − tpxj ) .
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Using the rule for differentiating a product (special case of Itǒ),

d

dt
tpx1...xr = −

∑

k

− d

dt
tpxk

∏

j; j 6=k

(1 − tpxj ) = −
∑

k

tpxk µxk+t

∏

j; j 6=k

(1 − tpxj ) .

It follows that

µx1...xr (t) =

∑

k tpxk µxk+t

∏

j; j 6=k (1 − tpxj )

1 − ∏

j (1 − tpxj )
.

Second, direct reasoning: The conditional probability that the last survivor dies
in (t, t+ dt), given that there are survivors at time t, is dt times the expression above.

Exercise 76

(a) Apology: Problems of this kind are one of the favorite sports of classical actuaries,
not because they are so common in practice (market share in the per mille range), but
rather because they can entertain and stimulate the brains of actuaries. The proposed
product is not totally inconceivable, however: it might be useful for a couple that needs
to secure economically the last survivor and also their children after the possible early
death of the last survivor. It is also of some theoretical interest beyond that of mere
parlor games as it is an example of a product where payments are dependent on the
past history of the driving process. This is seen clearly if the problem is formulated
in the set-up of the Markov chain models for two lives. Now to work:

As is almost always the case, the best method is to find the expected value of the
discounted payment in each small time interval (τ, τ+dτ ) and then sum over all times.
For τ ≤ 20 the benefit is running if (and only if) Txy < τ . For τ > 20 the benefit is
running if τ − 20 < Txy < τ or if Txy < τ − 20 and τ − 10 < Txy < τ . We gather the
following expected value of future discounted payments at time 0:

∫ 20

0

e−rτ (1 − τpx τpy) dτ

+

∫ ∞

20

e−rτ [τ−20px τ−20py − τpx τpy] dτ

+

∫ ∞

20

e−rτ [(1 − τ−20px) (τ−10py − τpy) + (1 − τ−20py) (τ−10px − τpx)] dτ .

(b) The premium rate π is the ratio between the expected present value in item (a)
and the expected present value

∫ ∞

0

e−rτ
τpx τpy dτ .

The reserve is a long and tedious story. One must, at each time of consideration t,
distinguish between all possible past histories of the two lives along. For instance, if
Txy > t, then the reserve is simply the first expression above minus π times the second
expression above, with x and y replaced by x+ t and y + t.

Exercise 77

∫ 20

0

e−rτ
τpx µx+τ τpz dτ +

∫ ∞

20

e−rτ
τpx µx+τ τ−20py τpz dτ .
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A benefit of 1 payable immediately upon the death of (x) if (z) is then still alive and
(y) was alive 20 years ago.

Exercise 78

Let us say n = 30. Use the set-up of the four states Markov chain for two lives. Set age
x = 0 (we could have taken x = 20 since, accidentally, the two start at same age, but
the x in the program, which refers to a single life, doesn’t really apply to the general
case). Account of starting age of the two by writing α+ βeγ (20+t) = α+ β∗eγ t with
β∗ = β eγ 20:

(* SPECIFY NON-NULL PAYMENTS AT TIME t ! *)
bi[2,4] := 1; bi[3,4] := 1;
ca[1] := 1;

(* SPECIFY MAXIMUM ORDER OF MOMENTS AND NUMBER OF STATES !
*)
q := 1; (*moments*)
JZ := 4; (*number of states of the policy*)

(* SPECIFY TRANSITION INTENSITIES FOR POLICY Z ! *)
alpha[1,2] := 0.0005;
gamma[1,2] := 0.038*ln(10);
beta[1,2] := 0.00007585775*exp(gamma[1,2]*20);
alpha[1,3] := 0.0005;
gamma[1,3] := 0.038*ln(10);
beta[1,3] := 0.00007585775*exp(gamma[1,3]*20);
alpha[2,4] := 0.0005;
gamma[2,4] := 0.038*ln(10);
beta[2,4] := 0.00007585775*exp(gamma[2,4]*20);
alpha[3,4] := 0.0005;
gamma[3,4] := 0.038*ln(10);
beta[3,4] := 0.00007585775*exp(gamma[3,4]*20);

(*SPECIFY AGE x, TERM t, INTEREST RATES AND NON-NULL LIFE ENDOW-
MENTS ! *)
x:= 0; (*age*)
t := 30; (*term*)
r := ln(1+0.045); (*interest rate*)
be[1] := 0; be[2] := 0; (*endowments at term of contract*)
(*SPECIFY LUMP SUM PREMIUM AT TIME 0: PUT c0 := 1 IF ALL
OTHER PREMIUMS ARE 0 AND ONLY MOMENTS OF BENEFITS ARE
WANTED ! *)
c0 := 0; b0 := 0;

Exercise 1-12

Pure verification - just insert the appropriate expressions on the right hand side.
Any combination of cash bonus at rate b̃t = αt ct and additional death benefit of
b̂t = (1 − αt) ct/µx+t, 0 ≤ α ≤ 1, produces a right hand side equal to the left hand
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side.

Exercise 1-13

b̃n must solve
∫ n

0

e−
∫ τ
0 (ru+µx+u) ducτ dτ = e−

∫n
0 (ru+µx+u) dub̃n , (G.36)

hence

b̃n =

∫ n

0

e
∫n

τ (ru+µx+u) ducτ dτ . (G.37)

Exercise 1-14

Relation (7) becomes
ct = ∆r V ∗

t + ∆µ(bt − V ∗
t ) .

Here are some examples of time t prognosis of future bonuses, assuming that the
insured will survive the term of the contract:
1. Rate of cash bonus payments at time u ∈ (t, n) is just cu defined above.
2. Present value of future cash bonuses:

∫ n

t

e−(r∗+∆r)(τ−t) cτ dτ ,

3. Value of terminal bonus (not discounted):
∫ n

0

e
∫n
τ (µ∗

x+s + ∆µ + r∗ +∆r) ds cτ dτ .

Exercise 1-15

All that is needed is to put m+n in the role of n and work with the general formulas.
Here V ∗

t is given by

d

dt
V ∗

t = (µ∗
x+t + r∗)V ∗

t + π , 0 < t < m,

d

dt
V ∗

t = (µ∗
x+t + r∗)V ∗

t − 1 , m < t < m+ n .

This is the only place where the particulars of the contract matter: Thiele’s differential
equation is needed for the computation of V ∗

t alongside that of ct.
Since V ∗

t > 0 for all t ∈ (m,m+ n), also ct > 0 throughout this time interval.

Exercise 1-16

Expenses can be treated as benefits in addition to those specified in the contract (see
Chapter 5). We need the differential equation for the first order gross reserve,

d

dt
V ∗′

t = V ∗′
t r∗ + π − β∗π − γ∗b − µ∗

x+t(b − V ∗′
t ) (G.38)

(with side condition V ∗′
n− = b), and the equivalence relationship,

V ∗′
0 = −α∗b ,
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which determines π. The discounted mean surplus per policy at time t is now

St = −(α′ + α′′b)

+

∫ t

0

e−
∫ τ
0 (rs+µx+s) ds(π − µx+τ b− β′

τ − β′′
τ π

′ − γ′
τ − γ′′

τ b− γ′′′
τ V

∗′
τ ) dτ

− e−
∫ t
0 (rs+µx+s) dsV ∗′

t .

It is seen that
S0 = −(α′ + α′′b) − V ∗′

0 = α∗b − (α′ + α′′b) ,

which is the surplus arising immediately upon issue of the contract due to prudent
first order assumptions about the initial cost. It is positive (and indeed prudent) if

α∗b > (α′ + α′′b) ,

which means that the first order initial cost is set on the safe side. (This cannot be
achieved for all b > 0 if α′ > 0; one then has to assume that b is greater than a certain
minimum, which is certainly the case in practice.)

The dynamics of the surplus is

dSt = e−
∫ t
0 (rs+µx+s) ds(π − µx+t b− β′

t − β′′
t π

′ − γ′
t − γ′′

t b− γ′′′
t V

∗′
t ) dt

+ e−
∫ t
0 (ru+µx+u) du (rt + µx+t)V

∗′
t − e−

∫ t
0 (ru+µx+u) du dV ∗′

t .

Inserting dV ∗′
t = d

dt
V ∗′

t dt from (G.38), we gather

dSt = e−
∫ t
0 (rs+µx+s) ds ct dt ,

where

ct = (rt − r∗)V ∗′
t + (β∗π′ − β′

t − β′′
t π

′)

+ (γ∗V ∗′
t − γ′

t − γ′′
t b− γ′′′

t V
∗′

t ) + (µ∗
x+t − µx+t)(b− V ∗′

t )

is the mean contribution to surplus per survivor at time t. This contribution decom-
poses into gains stemming from safety loadings in the various first order elements –
interest, expenses of β type, expenses of γ type, and mortality – and how these el-
ements can be set on the safe side. Just as for the initial cost, there is a problem
with the safety loading on expenses of β and γ type: if e.g. γ ′

t > 0, then there will
inevitably be a loss on the γ expenses for small t since the gross reserve starts from a
negative value. This loss has to be compensated by setting other first order elements
sufficiently to the safe side to make ct (or at least St) non-negative for all t ∈ (0, n).

Exercise 1-17

This is a trivial one, and the same goes for the conditional expected value of any
random variable that depends only on the state of Y at some fixed future time. Starting
from

We(t) = (1 − λe · dt)We(t+ dt) +
∑

`;f 6=e

λef dtWf (t+ dt) + o(dt) ,

we get

We(t) −We(t+ dt) = −λe ·We(t+ dt) +
∑

`;f 6=e

λef dtWf (t+ dt) + o(dt) ,
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and, dividing by dt and letting dt ↘ 0, we arrive at the answer. The side conditions
are obvious (as always).

Exercise 1-18

We start with W ′
e and supply details (to be precise, add a term o(dt) on the right of

the two expressions given for W ′
t and W ′′

t in the exercise):

W ′
e(t) = (1 − λe ·dt)E

[

ert dtW ′
t+dt

∣

∣

∣
Yτ = e , t ≤ τ ≤ τ + dτ

]

+
∑

f ;f 6=e

λef dtE
[

ert dtW ′
t+dt

∣

∣

∣ Yt = e , Yt+dt = f
]

+ o(dt)

= (1 − λe ·dt)e
re dtW ′

e(t+ dt) +
∑

f ;f 6=e

λef dt e
O(dt)W ′

f (t+ dt) + o(dt) ,

where O(dt) signifies a term of order dt (i.e. such that O(dt)/dt is bounded as dt↘ 0).
Inserting the Taylor expansions

ere dt = 1 + redt+ o(dt) ,

W ′
e(t+ dt) = W ′

e(t) +
d

dt
W ′

e(t) dt+ o(dt) ,

eO(dt) = 1 +O(dt) ,

W ′
f (t+ dt) = W ′

f (t) +O(dt) ,

multiplying out, gathering all o(dt) terms and rearranging a bit, one obtains the dif-
ferential equations for the functions W ′

e.
Next, the W ′′

e , a bit more sketchy and gathering o(dt) terms currently as they arise
without further mentioning:

W ′′
e (t) = (1 − λe ·dt)

(

W ′
e(t) (re − r∗)V ∗

t dt + W ′′
e (t+ dt)

)

+
∑

f ;f 6=e

λef dtW
′′
e (t) + o(dt) .

Proceeding as above, we obtain the differential equations for the functions W ′′
e .

The side conditions are obvious.

Exercise 1-19

Goes along the lines of Exercise 18.

Exercise 1-20

(a) Same thing again. Introduce

Wt =

∫ n

t

e−
∫ τ

t rs ds(rτ − r∗)V ∗
τ dτ ,

and write
Wt = (rt − r∗)V ∗

t dt + e−rt dtWt+dt + o(dt) .
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Apply the direct backward construction to We(t) = E[Wt |Yt = e]. Start from

We(t) = (1 − λe ·dt)
(

(re − r∗)V ∗
t dt + e−re dtWe(t+ dt)

)

+
∑

f ;f 6=e

λef dtWf (t) + o(dt) ,

and do a small piece of paper-work to arrive at

d

dt
We(t) = We(t) r

e − (re − r∗)V ∗
t −

∑

f ;f 6=e

λef (Wf (t) −We(t)) .

Side conditions are: We(n−) = 0, e = 1, . . . , JY .

(b) Basically the same exercise as (a).

(c) For discounted cash bonuses use the general formula for higher order moments of
present values of payment streams with state-dependent payment intensity and interest
intensity.

Forget about the variance of terminal bonus (too cumbersome).

Exercise 80

Items (a) - (e) are rather theoretical and not typical exam questions in ST305. Any-
way, we offer something for students who accept only statements that have been firmly
proved.

(a) RTI(T |T ) is easy to prove:

P[T > s |T > t] =
P[T > max(s, t)]

P[T > t]
=

{

P[T>s]
P[T>t]

, t < s ,

1 , t ≥ s .

This is obviously an increasing (non-decreasing) function of t for fixed s. PQD(T, T )
and AS(T, T ) then follow.

We could also prove PQD(T, T ) directly:

P[T > s , T > t] = P[T > max(s, t)] ≥ P[T > s] P[T > t] .

A direct proof of AS(T, T ) goes as follows: Let g(s, t) and h(s, t) be increasing
functions in both arguments. Then g̃(t) = g(t, t) and h̃(t) = h(t, t) are increasing
functions in t. Thus, marginal association is enough, see notes ’depend-l.pdf’.

(b) Proof of the continuity property of probabilities: Let An, n = 1, 2, . . . be an
increasing sequence of events, that is, An ⊆ An+1 for all n. Write

∪∞
j=1Aj = A1 ∪

∞
⋃

j=2

(Aj ∩Ac
j−1) ,

which is a union of mutually exclusive sets. (Here Ac denotes the complement of the
event A.) Then

P
[

∪∞
j=1Aj

]

= P[A1] +
∞
∑

j=2

(P[Aj ] − P[Aj−1])



APPENDIX G. SOLUTIONS TO EXERCISES 45

= lim
n→∞

(

P[A1] +
n
∑

j=2

(P(Aj) − P[Aj−1])

)

,

hence
P
[

∪∞
j=1Aj

]

= lim
n→∞

P[An] .

Let An, n = 1, 2, . . ., be a decreasing sequence of events, that is, An ⊇ An+1 for all n.
Then

P
[

∩∞
j=1Aj

]

= lim
n→∞

P[An] .

The two statements are equivalent. For instance, the latter follows by applying the
former to the increasing sequence Ac

n:

P
[

∩∞
j=1Aj

]

= 1 − P
[(

∩∞
j=1Aj

)c]
= 1 − P

[

∪∞
j=1A

c
j

]

= 1 − lim
n→∞

P [Ac
n]

= 1 − lim
n→∞

(1 − P[An]) = lim
n→∞

P[An] .

Now,

P[S > s , T > t] = P

[

⋃

n

(

S ≥ s+
1

n
, T ≥ t+

1

n

)

]

= lim
n→∞

P

[

S ≥ s+
1

n
, T ≥ t+

1

n

]

,

hence

P[S > s]P[T > t] = lim
n→∞

P

[

S ≥ s+
1

n

]

P

[

T ≥ t+
1

n

]

,

and

P[S ≥ s , T ≥ t] = P

[

⋂

n

(

S ≥ s− 1

n
, T ≥ t− 1

n

)

]

= lim
n→∞

P

[

S ≥ s− 1

n
, T ≥ t− 1

n

]

,

hence

P[S ≥ s]P[T ≥ t] = lim
n→∞

P

[

S > s− 1

n

]

P

[

T > t− 1

n

]

.

It follows that the strict inequalities > in the definition of PQD and RTI can be re-
placed by ≥. (The definition of AS is no issue here.)

(c) PQD(−S|T ) means

P[−S > −s , T > t] ≥ P[−S > −s] P[T > t]

for all s (or all −s, which is the same, of course) and all t. This is the same as

P[S < s , T > t] ≥ P[S < s] P[T > t] ,

which is the same as

P[T > t] − P[S ≥ s , T > t] ≥ (1 − P[S ≥ s]) P[T > t] ,

which is the same as

P[S ≥ s , T > t] ≤ P[S ≥ s] P[T > t] .

Due to the result in (b), this is the same as the asserted result.
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(d) Misprint in the exercise text: ≤ should be ≥. Now, AS(−S, T ) means that

C(g(−S, T ), h(−S, T )) ≥ 0

for all g and h that are increasing in both arguments. But this is equivalent to the
asserted result.

(e) RTI(−S|T ) means that P[−S > −s |T > t] is increasing in t for fixed s. Rewriting

P[−S > −s |T > t] = 1 − P[S ≥ s |T > t]

and recalling the result in (b), we arrive at the asserted result.

(f) The Markov model is sketched in the figure below. Only small amendments are
needed in the calculations made in the theory (’depend-l.pdf’), but the results are a
bit surprising. We will discuss the matter under the more general assumption that
µ′

t ≥ µt and ν′t ≥ νt.
First the case s ≤ t:

P[S > s |T > t] =
e−

∫ t
0 µ+ν+κ +

∫ t

s
e−

∫ τ
0 µ+ν+κ µτ e

−
∫ t

τ ν′

dτ

e−
∫

t
0 µ+ν+κ +

∫ t

0
e−

∫

τ
0 µ+ν+κ µτ e−

∫

t
τ ν′

dτ

= 1 −
∫ s

0
e−

∫ τ
0 µ+ν+κ−ν′

µτ dτ

e−
∫ t
0 µ+ν+κ−ν′

+
∫ t

0
e−

∫ τ
0 µ+ν+κ−ν′

µτ dτ
.

Both alive Husband dead

Wife dead Both dead

? ?

-

-

@
@

@R

0 1

2 3

ν ν′

µ

µ′

κ

We need to discuss this expression as a function of t, which appears only in the
denominator. The derivative of the denominator is

e−
∫ s
0 µ+ν+κ−ν′

(ν′t − νt − κt) .

It follows that, in the presence of a positive κt, P[S > s |T > t] is not in general an
increasing function function of t if ν ′

t ≥ νt. For ν′t = νt it is actually decreasing. We
have thus already answered the question and need not look into the case s < t.

The second part of the question is now easily sorted out in the case s < t by setting
µ′

t = µt + κt and ν′t = νt + κt in the result above. We find that P[S > s |T > t] is
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independent of t for s < t. Therefore, the RTI issue is so far unsettled and we need to
investigate the case s > t:

P[S > s |T > t] =
e−

∫ s
0 µ+ν+κ +

∫ s

t
e−

∫ τ
0 µ+ν+κ ντ e

−
∫ s
τ µ+κ dτ

e−
∫

t
0 µ+ν+κ +

∫ t

0
e−

∫

τ
0 µ+ν+κ µτ e−

∫

t
τ ν+κ dτ

= e−
∫ s

t κ
P
∗[S > s |T > t] ,

where P
∗ denotes probability under the independence hypothesis µ′

t = µt and ν′t = νt

(see expression in ’depend-l.pdf’). This is an increasing function of t, and we have
proved RTI(S|T ).

Exercise 81

See ’EXERC22A.pas’ on public folder.

END From 305exsol

Exercise 57

(a) Inspect (2.16) in BL. It should be quite obvious that the cash balance at any time
will get bigger if at any time a bigger amount has been deposited on the account (when
interest is positive). In particular this is true if a given amount of deposits is being
advanced, i.e. payed earlier.

(b) If Ut > 0 for some t ∈ (0, n), then, by right-continuity of U , Uτ > 0 for τ ∈ [t, t+ε),

some non-degenerate interval, hence
∫ t+dt

t
Uτ rτ dτ > 0 if r is strictly positive. If,

moreover, Ut ≥ 0 for all t ∈ (0, n), it follows that
∫ n

0
Uτ rτ dτ > 0. Then, if Un = 0, it

follows from (2.15) that

0 = An +

∫ n

0

Uτ rτ dτ ,

and so An < 0.
Think of a savings account: Deposits are made first, interest is earned on these,

and at the end one can withdraw more than the total deposited. For instance, a unit
deposited at time 0 grows with interest to exp(

∫ n

0
r) in n years, which can then be

withdrawn to make the balance nil at time n. In this case At = 1 for 0 ≤ t < n and
An = 1 − exp(

∫ n

0
r), which is negative if interest is positive.

Exercise 58

(b)
paa(0, t1)σ(t1) dt1 pii(t1, t2) ρ(t2) dt2paa(t2, t3)µ(t3) dt3 + o(dt) ,

where dt = max(dt1, dt2, dt3). We have used the differentiability of the transition
probabilities to write e.g. pii(t1 + dt1, t2) = pii(t1, t2) + o(dt1).

Exercise 61

(a)

p
(1)
ai (0, t+ dt) = p

(1)
ai (0, t)(1 − (ν(t) + ρ(t)) dt) + paa(0, t)σ(t) dt

leads to
d

dt
p
(1)
ai (0, t) = −p(1)

ai (0, t)(ν(t) + ρ(t)) + paa(0, t)σ(t) ,
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with side condition
p
(1)
ai (0, 0) = 0 .

Integrating gives the following integral expression, which could be put up by direct
reasoning:

p
(1)
ai (0, t) =

∫ t

0

exp(−
∫ s

0

(µ+ σ))σ(s)ds exp(−
∫ t

s

(ν + ρ)) .

Next,
p(1)

aa (0, t+ dt) = p(1)
aa (0, t)(1 − (µ(t) + σ(t)) dt) + p

(1)
ai (0, t) ρ(t) dt

leads to
d

dt
p(1)

aa (0, t) = −p(1)
aa (0, t)(µ(t) + σ(t)) + p

(1)
ai (0, t) ρ(t) ,

with side condition
p(1)

aa (0, 0) = 0, .

Integral expression, which could be put up by direct reasoning:

p(1)
aa (0, t) =

∫ t

0

p
(1)
ai (0, s) ρ(s) ds exp(−

∫ t

s

(µ+ σ)) .

As an exercise, repeat the argument for k = 2, 3, ... to find differential equations
for the probability p

(k)
ai (0, t) of being disabled for the k-th time and the probability

p
(k)
aa (0, t) of being active after having been disabled k times.

One could attack this problem by redefining the state-space of the process as
indicated in Figure G.1, where the notation speaks for itself:

a(0) i(1) a(1) i(> 1)

d a(> 1)

-σx+t -ρx+t -σx+t

?
µx+t

?
νx+t

?
µx+t

?
ρx+t

6
σx+t

�
�

�	
νx+t

�µx+t

Figure G.1: Problem 7.7

(b)

p
(1)
ai (0, t− q)pii(t− q, t) =

∫ t−q

0

paa(0, τ )σx+τ pii(τ, t) dτ .

You should be able to interpret the integral expression as a sum of probabilities of
mutually exclusive favourable events.
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(c)

π =

∫ n

q
e−rτp

(1)
ai (0, τ − q)pii(τ − q, τ ) dτ
∫ n

0
e−rτpaa(0, τ ) dτ

.

Comment: The premium plan is unacceptable in practice since it will produce a neg-
ative reserve if the insured is in premium paying state after time n− q (then, for sure,
no benefits will be received, but premium will still be paid). Therefore, the premiums
should be paid only over a shorter period and certainly not after time n− q.
Reserve:

∫ t+q

t
e−r(τ−t)pii(t, τ ) dτ +

∫ n

t+q
e−r(τ−t)pii(t, τ − q)pii(τ − q, τ ) dτ .

Exercise 62

(a) Use Kolmogorov forward, taking advantage of the obvious relationship paa(t, u) =
1 − pai(t, u):

pai(t, u+ du) = pai(t, u)(1 − ρ du) + (1 − pai(t, u))σ du .

You obtain a (very simple) differential equation for pai(t, · ), which you integrate from
t to u using pai(u, u) = 0, and find

pai(t, u) =
σ

ρ+ σ
− σ

ρ+ σ
e−(ρ+σ)(u−t) . (G.39)

Then calculate paa(t, u) = 1 − pai(t, u):

paa(t, u) =
ρ

ρ+ σ
+

σ

ρ+ σ
e−(ρ+σ)(u−t) . (G.40)

The transition probabilities depend only on u − t due to homogeneity. Discuss the
probabilities as functions of u− t and look at the limits as u− t tends to +∞.

(b) Thiele is actually not a good idea (it is doable, of course, but being a backward
equation it does not make use of the fact that paa(t, u) + pai(t, u) = 1). Since we have
an explicit expression for pai(t, u), the easiest way is to calculate

E

[
∫ t

0

Ii(τ ) dτ

]

=

∫ t

0

E[Ii(τ )] dτ =

∫ t

0

pai(0, τ ) dτ =
σ

ρ+ σ
t− σ

(ρ+ σ)2

(

1 − e−(ρ+σ)t
)

.(G.41)

(c)

E [Nai(t)] = E

[∫ t

0

dNai(t)

]

=

∫ t

0

paa(0, τ )σ dτ =
ρσ

ρ+ σ
t +

σ2

(ρ+ σ)2

(

1 − e−(ρ+σ)t
)

.(G.42)

(d) From (G.41) the expected proportion of inactive time in t years is

σ

ρ+ σ
− σ

(ρ+ σ)2
1 − e−(ρ+σ)t

t
. (G.43)

The function

g(x) =
1 − e−x

x
(G.44)



APPENDIX G. SOLUTIONS TO EXERCISES 50

is 1 for x = 0 (l’Hospital). It has derivative

g′(x) =
e−x

x
− 1 − e−x

x2
= −e−x e

x − 1 − x

x2
,

which is < 0 for x > 0 (Taylor expansion), hence g is decreasing. Thus, as t → +∞,
the proportion in (G.43) is increasing from 0 to

σ

ρ+ σ
.

Reasonable: Increasing function of σ, decreasing function of ρ.
From (G.42) the expected number of onsets of invalidity per time unit in t years is

ρσ

ρ+ σ
+

σ2

(ρ+ σ)2
1 − e−(ρ+σ)t

t
.

As t increases from 0 to +∞ the value of this expression decreases from σ (of course!)
to (ρσ)/(ρ+σ). It is interesting to note that the limiting expression here is symmetric
in ρ and σ. You should try and figure why.

(e) If ρ were 0, we could pick the result from Item 7.2 (e) above, setting µ = ν = 0:

σ̃(t) =
σ

1 − e−σ (n−t)
, 0 < t < n . (G.45)

In general we have

σ̃(t) = σ
pii(t, n)

pai(t, n)
=
σ + ρe−(ρ+σ)(n−t)

1 − e−(ρ+σ)(n−t)
, 0 < t < n . (G.46)

Here we have used (with a view to (G.40), just switch roles of σ and ρ)

pii(t, u) =
σ

ρ+ σ
+

ρ

ρ+ σ
e−(ρ+σ)(u−t) .

(f) Constant intensity of transition (whether a → i or i → a) means that the transi-
tions are generated by a Poisson process. Nai and Nia count every second transition:
Nai counts transition No. 1,3,... and so on, i.e. Nai(t) is distributed as [N(t) + 1]/2,
where N(t) is a Poisson variate with parameter σ t. Nia counts transition No. 2,4,...
and so on, i.e. Nia(t) is distributed as [N(t)]/2, where N(t) is a Poisson variate with
parameter σ t.

Exercise 64

Problem 9.3

(a) To simplify notation, put Nai = Nai(n) and Nia = Nia(n). The likelihood is

Λ = σNaiρNiae−σWa−ρWi ,

where Wa =
∑m

`=1 T
(m)
n , the total time spent in active state (and Wi = nm−Wa the

total time spent in inactive state).

∂

∂σ
ln Λ =

Nai

σ
−Wa ,
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∂2

∂σ2
ln Λ = −Nai

σ2
,

plus similar expressions for derivatives w.r.t. ρ, and

∂2

∂σ∂ρ
lnΛ = 0 .

Thus, the ML estimators are the occurrence-exposure rates

σ̂ =
Nai

Wa
, ρ̂ =

Nia

Wi
,

which are asymptotically independent, unbiased, and normally distributed with asymp-
totic variances

as.Varσ̂ =
σ2

ENai
, as.Varρ̂ =

ρ2

ENia
. (G.47)

By (G.40),

ENai = m

∫ n

0

paa(0, τ )σ dτ (G.48)

= mσ

∫ n

0

(

ρ

ρ+ σ
+

σ

ρ+ σ
e−(ρ+σ)τ

)

dτ

= mσ

(

ρ

ρ+ σ
n +

σ

(ρ+ σ)2

(

1 − e−(ρ+σ)n
)

)

,

(G.49)

hence

as.Varσ̂ =
σ (ρ+ σ)

m
(

ρ n + σ
ρ+σ

(1 − e−(ρ+σ)n)
) . (G.50)

Similarly

as.Varρ̂ =
ρ (ρ+ σ)

mσ
(

n − 1
ρ+σ

(1 − e−(ρ+σ)n)
) . (G.51)

(b) One can discuss the explicit expression (G.51), but there is an easier way: By
(G.47) and (G.48)

as.Varσ̂ =
σ

m
∫ n

0
paa(0, τ ) dτ

, (G.52)

so it suffices to show that paa(0, τ ) is an increasing function of ρ or, what is the same,
an increasing function of ρ+ σ. By (G.40)

paa(0, τ ) =
ρ

ρ+ σ
+

σ

ρ+ σ
e−(ρ+σ) τ = 1 − σ τ

1 − e−(ρ+σ) τ

(ρ+ σ) τ
,

so you need only recall that the function g in (G.44) is decreasing.

(c) General comment: The theory of conditional Markov chains worked out in Problem
7.2 is often needed in statistical analysis of insurance data where one does not have
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access to the complete ’life histories’ of the policies. It is often the case that one must
work with data that are selected somehow. For instance, suppose data on disabilities
can be seen only from the claims records of those that are currently disabled. Then the
relevant probabilities and intensities are the conditional one, given that the process is
now in disabled state.

In the present situation you must therefore work with the intensities in 7.8 (e).

Exercise 66

To conform with the notation in ’Basic Life Insurance Mathematics’, let us call the
number of lives n instead of m. We will throughout refer to formulas in the general
theory in ’Basic Life Insurance Mathematics’.

Assume piece-wise constant mortality intensity, see (9.58):

µ(t) = µq , q − 1 ≤ t < q , j = 1, 2, . . .

The log likelihood (9.53) is

ln Λ =
∑

q

(lnµqNq − µqWq) ,

where Nq and Wq are, respectively, the number of deaths and the total time spent
alive in the age interval [q − 1, q).

Each µq is a parameter which is functionally unrelated to all the others, so there
are many parameters in this model! For instance, if we are interested in mortality up
to age 100 and have data in the age range from 0 to 100, there are 100 parameters,
which is quite a lot. Remember, however, that this model is just a first step in a two-
stage procedure where the second step is to graduate (smoothen) the ML estimators
resulting from the present naive model with piece-wise constant intensity.

The ML estimators are the occurrence-exposure rates

µ̂q =
Nq

Wq
,

which are well defined for all q such that Wq > 0 (i.e. in age intervals where there
were survivors exposed to risk of death). The µ̂q are asymptotically (as n increases)
normally distributed, mutually independent, unbiased, and with variances given by

σ2
q = as.V[µ̂q ] =

µq

E[Wq]
, (G.53)

where the expected exposure is

E[Wq] =

n
∑

m=1

∫ q

q−1

p(m)(τ ) dτ ,

p(m)(τ ) being the probability that individual No. m is alive and under observation at
time τ .

The variance σ2
q is inversely proportional to the corresponding expected exposure.

In the present simple model, with only one intensity of transition from the state ’alive’
to the absorbing state ’dead’, we find explicit expressions for the expected exposure.
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For instance, suppose we have observed each individual life from birth until death
or until attained age 100, whichever occurs first (i.e. censoring at age 100). Then, for
τ ∈ [q − 1, q) with q = 1, . . . , 100, we have

p(m)(τ ) = exp

(

−
∫ τ

0

µ(s) ds

)

= exp

(

−
q−1
∑

p=1

µp − (τ − (q − 1))µq

)

, (G.54)

hence

E[Wq] = n

∫ q

q−1

exp

(

−
q−1
∑

p=1

µp − (τ − (q − 1))µq

)

dτ

= n exp

(

−
q−1
∑

p=1

µp

)

1 − exp (−µq)

µq
,

and

σ2
q =

1

n

µ2
q

exp
(

−∑q−1
p=1 µp

)

(1 − exp (−µq))
, (G.55)

You should look at other censoring schemes and discuss the impact of censoring on
the variance. Take e.g. the case where person No m enters at age z(m) and is observed
until death or age 100, whichever occurs first (all z(m) less than 100).

Estimators σ̂2
q of the variances are obtained upon replacing the µj in (G.55) by

the estimators µ̂j . Simpler estimators are obtained by just replacing µq and E[Wq] in
(G.53) with their straightforward empirical counterparts: σ̂2

q = µ̂q/Wq = Nq/W
2
q .

Now to graduation. The occurrence-exposure rates will usually have a ragged ap-
pearance. Assuming that the real underlying mortality intensity is a smooth function,
we therefore will fit a suitable function to the occurrence-exposure rates. Suppose we
assume that the true mortality rate is a Gompertz Makeham function, µ(t) = α+βeγt.
Then, take some representative age ξq (typically ξq = q− 0.5) in each age interval and
fit the parameters α, β, γ by minimizing a weighted sum of squared errors

Q =
∑

q

aq

(

µ̂q − α − βeγt
)2
.

This is a matter of non-linear regression. Optimal weights aq are the inverse of the
variances, but since these are unknown, we plug in the estimators and use aq = 1/σ̂2

q .

Belongs to what?:
For fixed w = mn we have n = w/m and

as.Varσ̂ =
σ

w(1 − πw/m

w/m
)
,

which is a decreasing function of m by the results in item (b).
We also find

as.Varρ̂ =
ρ2

ENia
=

ρ

w
πw/m

w/m

,
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where we have used

ENia = m

∫ n

0

pai(0, τ )ρ dτ = mnρ
πn

n
.

We see that as.Varρ̂ is an increasing function of m for fixed w.
Comment: The asymptotic variance of an intensity estimator is better the longer

the total expected time spent in the state from which the the relevant transition is
made. All policies start from state a at time 0. For fixed total exposure the estimation
of σ will be good for many policies observed in a short time (when they are likely to
remain active), and estimation of ρ will be good for few policies observed over a long
time when they can make it to inactive state.

Exercise 67

If r is constant, then

π =
1

āx n
− r ,

which is a decreasing function of n.
For t < n the premium reserve is

Vt = 1 − āx+t n−t

āx n
= 1 − 1

tEx

x+t | n−tāx

āx t + x+t | n−tāx
.

For fixed t this is a decreasing function of n.
In particular, a whole life insurance has smaller premium than an n-year temporary

endowment insurance, and it has also smaller reserve for t < n.
Exercise 3

Follows from () and the fact that U is right-continuous, hence strictly positive in some
interval. The result says that total withdrawals exceed total deposits, which is due to
earned interest.
Exercise 3

(a) Prove (3.11) along the following lines: By definition,

E[G(T )] = G(0)F (0) +

∫ ∞

0

G(t) dF (t) . (G.56)

Observe that
∫ ∞

0

G(t) dF (t) = −
∫ ∞

0

G(t)dF̄ (τ ) . (G.57)

Integrate by parts to obtain

∫ n

0

G(t) dF̄ (t) = G(n)F̄ (n) −G(0)F̄ (0) −
∫ n

0

F̄ (t−) dG(t) . (G.58)

Assuming first that G is non-negative and non-decreasing, we have

G(n)F̄ (n) = G(n)

∫ ∞

n

dF (t) ≤
∫ ∞

n

G(t) dF (t) → 0 ,
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hence G(n)F̄ (n) → 0, as n → ∞. The same holds true for an integrable G of finite
variation, which is the difference between two integrable non-decreasing functions.
Thus, letting n→ ∞ in (G.58), we obtain

∫ ∞

0

G(t) dF̄ (t) = −G(0)F̄ (0) −
∫ ∞

0

F̄ (t−) dG(t) . (G.59)

Now combine (G.56) – (G.59) to arrive at (3.11).

Exercise 1

Assume that X is non-decreasing. Note that

D(X) = ∪∞
m=1 ∪∞

n=1 Dm,n ,

where Dm,n = {t ; t ≤ n , Xt+ −Xt− ≥ 1
m
}. Since

∞ > Xn ≥ X0 +
∑

t∈Dm,n

(Xt+ −Xt−) > X0 +
1

m
]Dm,n ,

we conclude that ]Dm,n is finite. Thus, being a countable union of finite sets, D(X)
is (at most) countable.

Exercise 2

dXq
t = qXq−1

t xc
t dt+

(

(Xt− + xd
t )

q −Xq
t−

)

dNt .


