
Introduction to CS VBA #1 – introduction lbabout@iis.p.lodz.pl

MS office offers a functionality of building complex actions and quasi-programs by means of a
special scripting language called VBA (Visual Basic for Applications). In this lab, you will learn
how to use the Macros module and get familiar with basic syntax and formulation of VBA in the
case of Excel. Note that getting acquainted with VBA programming is central for your pair-project.

BASIC MACROINSTRUCTIONS (MACROS)

Exercise 1
MS Office offers a wide variety of built-in macros that can facilitate edition or customization of
tacks in both Excel and Word. All are programmed in VBA but their code is not accessible.
However, it is a good practice to test one of these to get a view on the possibilities offered for future
programming. The Macros that is proposed to be tested in part of Word: the Mail Merge Manager
(MMM). Note that you may find some interest in using such macro for you project. Just to make it
clear: it is expected NOT TO BE USED FOR YOU OWN PAIR-PROJECT!

How to proceed. Very simple:
1. Open a blank document in Word and save it as VBA1_yourname.docx
2. Open a blank document in Excel and save it as VBA1_yourname.xlsx
3. In Excel and first spreadsheet (sheet1. You can rename it “ex1” if you wish), enter some

name of people that you would like to invite, for instance, for Your birthday (e.g. column A:
firstname, column B: last name). Max. 10 entries. Save and go back to word. To remember
the category, write in cell A1, “firstname” and in cell A2, “lastname”. You will see that this
will be also very useful later on.

4. Go back to Word and write some lines of text for your birthday invitation. The purpose of
MMM is to generate X instances of a document in which some fields (e.g. names of invited
persons) will be automatically changed based on the Excel entries.

5. Click now on the Mailings tab, then select Step by Step Mailing Merge Wizard...
a) Choose the type of document you want to create. In our case, select Letters.
b) Click Next: Starting document to move to Step 2. Then, Select Use the current

document
c) Click Next: Select recipients to move to Step 3. This step simply links with the

document where are located the list of interest (in our case names in excel document). So
in the new window, click on Browse... since your list already exists in
VBA1_yourname.xlsx.

d) Select the spreadsheet where are located the data. Also, tick option First row of data
contains column header (see previous point 3). Press OK, then in new window uncheck
any list member that you don't want to use in the final merging document. Press OK.

e) Step 4. Place fields where they will appear in your text, e.g. firstname and lastname. For
that, place the cursor in the appropriate place of you text, then click in the MMM
window on More items... and select the fields.

f) After it is just a matter of preview the results and finish the merging to be ready for
printing or mailing.

As already mentioned, we cannot access to the code that is behind the MMM. Fortunately, this is
not always the case as it is possible in MS Office to record some macros and later on see their
corresponding VBA codes. The 2 next exercises are intended to illustrate such approach.

page 1 of 8

Introduction to CS VBA #1 – introduction lbabout@iis.p.lodz.pl

Exercise 2

1. Enter the following data to a worksheet (e.g. in sheet2 of VBA1_yourname.xlsx):

Ensure, that the total values are calculated using the SUM function.
2. Formatting procedure:

• select any single cell

• click the Home tab, then click on the Find&Select button in the Editing group . Select

Go To...
• in a Go To dialog choose Special button:

• Select constants option and leave unchecked options Numbers, Logicals and Errors (only
Text is checked):

• click OK
• format the selection as follows:

• rrepeat the steps for Formulas resulting in Numbers and apply the format:

• repeat the steps for Constants - Numbers and apply the format. Then, add the legend (add
new rows and place the legend cells there):

page 2 of 8

special

text

formula

Introduction to CS VBA #1 – introduction lbabout@iis.p.lodz.pl

Exercise 3
Knowing, how to format the cells, you can start recording a macro.
1. Select the whole worksheet (e.g. pressing Ctrl+A) and then clear the formatting (click on Clear

in the Editing group on Home tab. Select Clear Formats from the list). Remove the rows
containing the legend.

2. Macro recording procedure:
• select Macros on the View Tab → Record Macro...
• call the macro with any name (but I propose to give a meaningful name, e.g. FormatTable),

add the description:

• click OK
• repeat all the steps performed in the previous exercise
• when finished, choose Stop Recording from the list displayed after clicking on the Macros

button
• in order to test the macro, again remove the worksheet format. Choose View Macros. Select

your macro and press Run.
• Save As your file and change the extension to .xlsm (e.g. VBA1_yourname.xlsm). Why?

Because your file now contains VBA macros (m stands for macro).

Exercise 4
Recorded macro very often needs some modifications. In order to edit the macro, you must find the
worksheet containing it. In our case, we have chosen “this workbook” when creating macros, so it is
enough to open macro dialog, select the macro and press Edit button.
Visual Basic Editor window opens, while the standard MS Excel windows still remains open. If
you want to close the editor, use File menu → Close and return to Microsoft Excel (or just close
the editor).
The internal frame contains the code of our macro (note that it may look different than the example
shown below). Notice, that the lines prefixed with apostrophe “ ' ” are not interpreted – they are the
comment lines displayed in green. The comments (code documentation) are very important for the
code conservation and maintenance. They also allow to “switch off” the code fragments that we do
not want to execute, but they may be useful later. The comment explaining the code line meaning

page 3 of 8

description

macro's name

Introduction to CS VBA #1 – introduction lbabout@iis.p.lodz.pl

should look as follows:
ColorIndex = 5 'changes colour to blue

while the explanation for the whole code block should be placed as a separate line before the block.

Add a few comments:
• find the line:

Selection.SpecialCells(xlCellTypeConstants, 2).Select

add a new line before. Place there your comment (remember about the apostrophe):
'find and format the cells containing text

• do the same with:
Selection.SpecialCells(xlCellTypeConstants, 1).Select

adding the comment about the number cells
• again, for:

Selection.SpecialCells(xlCellTypeFormulas, 1).Select

add the comment about cells containing formulae resulting in numbers
• find the instruction (the row number may be different):

Rows("1:1").Select

and add a comment above about code block responsible for creating the legend.

The code above shows you some characteristics of VBA programming. One main attribute is the
use of so-called VBA objects that are specific for MS environments, i.e. Word, Excel of even
PowerPoint. For instance, you can see above that Range, Selection or Rows are typical Excel
objects. VBA objects are characterized by attributes (or properties, e.g. Font, Orientation) and
methods (or functions, e.g. Select). When you change their characteristic in VBA, their appearance
and content may change in the MS environment. You will learn more about objects and hierarchy
of objects in the next sections.

page 4 of 8

Introduction to CS VBA #1 – introduction lbabout@iis.p.lodz.pl

Exercise 5
Record macro to clear format and delete the 3 rows of legend. Name it ClearFormat.

PROCEDURE AND FUNCTION DECLARATION

Exercise 6
Macroinstructions (macroprocedures or simply procedures) start with a keyword Sub and end with
keywords End Sub. After Sub you should place the macro's name and a pair of parenthesis.
Optionally, input parameters can be declared within the parenthesis. The macro body in contained
between Sub and End Sub. It contains instructions executed by Visual Basic every time the macro is
called.
The VBA expressions usually represent dot-expressions, where dot “ . ” separates an object from its
field or function performed on it, e.g.:

Rows("1:1").Select 'select rows from 9 to 9 (in fact it is a single row)
Selection.Insert Shift:=xlDown 'insert a new row on the selected range and

 'shift the other rows down
Range("B1").Select 'Select cell B1 to add text legend
Selection.FormulaRlC1 = "formulas" 'enter into an active cell “text” value
Range("A1").Select 'Select cell A1 to fill with corresponding color legend
With Selection.Interior 'perform the following operations on the whole

 'selection's interior
 .ColorIndex = 3 'set color to red
 .Pattern = xlSolid 'set pattern to solid
 .PatternColorIndex = xlAutomatic 'set pattern color to automatic
End With 'end the loop

Note that the code above is duplicated 2 times to create legend for constant-numbers (colorindex=4,
so green) and constant-text (colorindex=5, so blue). You can easily understand here that there is
a redundancy in code writing and this could be easily replaced by a new macroprocedure .
This is the aim of the following exercise instructions.

Tasks to be done:
• Declare a new procedure called CreateLegend (so write sub CreateLegend() and the end

sub will appear automatically)
• Cut the code related to legend creation and paste it in the body part of the new procedure.
• Now, in order to be able to execute it, you need to call the procedure in the main procedure,
i.e. in FormatTable (or the name you gave to the procedure you recorded). So, where appropriate
write call CreateLegend. Execute the code (press Run Macro button from Standard tab

).

ATTENTION: normally, you should execute first ClearFormat to test your procedure.
However, be careful with it, because if already executed, you may delete data from the table.
But, as programmers, you could later on find a fancy way to make this not possible.

As we said previously, the code is still redundant, because we use 3 times the same instruction
block to create the 3 rows of legend in the Excel document. So to simplify this, we will use the
possibility to pass variable inputs to the program to simplify it. Indeed, if we analyze the code, we
see that colorindex value and the string parsed to the FormulaR1C1 attribute (e.g. “Formulas”)
correspond to variables. So proceed as follows:

page 5 of 8

Introduction to CS VBA #1 – introduction lbabout@iis.p.lodz.pl

• Keep only one block of code
• add 2 variables between the brackets of the procedure header: one called iColorCell (declare
the datatype as integer; colorcell As Integer) and the second called sLegend (declared as
string).
• Now, in the procedure body, replace where needed the piece of codes by the variables (so
where the cell color and the legend corresponding values have been specified).
• In FormatTable, add to the Call statement values of the variables to be parsed, e.g.:

Call CreateLegend(3,"Formulas") 'create legend for the Formula resulting
in numbers

• Click anywhere in FormatTable and run. Do you get same results?

This exercise has introduced another VBA aspect, i.e. variable declaration. You have to know that,
alike C or Java, variable declaration is not obligatory (depend of case actually). If not declared,
they will be automatically set as Variant, the VBA mastertype that takes 16 bytes for numbers and
16 bytes per character for strings. So very space consuming. So even optional, it is still a good
practice to declare variables. We will see this in next exercise and in more details in lab4.

Exercise 7
This exercise and following ones show you how to create a new spreadsheet and name it, if the
name hasn't been taken by another one. It also introduces a bit in more details object hierarchy,
function declaration and variable declaration.

First, see below the code of the function SheetCheck that checks if a given worksheet exists. Copy
its code to the VBA editor:

Function SheetCheck(WB As Workbook,WorkSheetName As String) As Boolean
Dim WorkSht As Worksheet
'returns if a worksheet name is an empty string
If Len(WorkSheetName) = 0 Then

SheetCheck = True
Exit Function
End If
'checking if a worksheet exists
For Each WorkSht In WB.Sheets

If WorkSht.Name = WorkSheetName Then
 SheetCheck = False

Exit Function
End If

Next WorkSht
SheetCheck = True
End Function

Try to understand the function structure. More importantly, answer the following questions:
• How many variables are parsed to the function?
• What is different between the function structure and the procedure structure?
• Which variable is returned by the function? What is so specific with VBA function

declaration?

Exercise 8

page 6 of 8

Introduction to CS VBA #1 – introduction lbabout@iis.p.lodz.pl

Like procedures, functions are called by other functions/procedures. In our case, it will be called in
a procedure that is responsible to add a new worksheet to the current Excel document. So copy the
code below and again paste it to your VBA editor.

Sub SimpleSheetAdd()
Dim Workbk as Workbook
Dim NameNotExist As Boolean
Dim BookName As String
 BookName = "SomeDocument.xlsm"
'check if a worksheet "new worksheet" exists in ".xlsm"
workbook. Replace SomeDocument by a more clever name (e.g. VBA1_yourname.xlsm)
Set Workbk = Workbooks(BookName) 'create object
NameNotExist = SheetCheck(Workbk,"new worksheet")
'if a worksheet with name "new worksheet" does not exist, VBA creates it
If NameNotExist Then

Workbk.Sheets.Add
ActiveSheet.Name = "new worksheet"

End If
Set Workbk = Nothing
End Sub

Few important remarks:
The previous examples show you the use of object hierarchy in Excel (but we can extend this to
any MS Office software). For instance, above you can see that Workbook and Worksheet are
object types, but you can also see that Worksheet is a sub-member of Workbook . At the top of
this hierarchy is the Application object (here Excel). The “.” symbol makes the link between them,
e . g . Application.Workbooks(“Book1.xlsx”).Worksheets(“sheet1”).Range(“A1”).Value,
which can be read as “the value of the cell “A1” in the worksheet “sheet1” of the Excel document
“book1.xlsx”. You can easily think of the hierarchy in MS Word also.

Again, you are not always forced to declare object variables in VBA (like standard variables) but
you are highly advised to do so, first for good programming habit, and also for practical reasons:
you may end with handling in one program several excel documents that will have to communicate
data between each other. You can easily understand that declaring object variables may
significantly reduce typing long hierarchical expressions as the one above. To do so, you will have
to:
• declare object variable, usually at the beginning of the procedure/function (see examples above)
• initialize the object using the Set statement (see also example above).
• It is also good practice to remove from memory an object when not used using the Set

objectname= Nothing statement (see again above).

Last but not least, the code also shows example of standard variable declarations, i.e. of type
boolean or string. Even not compulsory, it is advised again to declare. Why? Because VBA is a
interpreted language, it does not check by default variable declaration. This has some advantages of
flexibility. However, this is prone to error (especially spelling error). If a variable contains a
spelling error, it is treated as a new variable and therefore will cause syntax error. If you want to
force VBA to declare all variables, you will have to write at the top of your module (before any
procedure/function declaration, the Option Explicit statement.

Run the code above. What Happen? Any problem?

page 7 of 8

Introduction to CS VBA #1 – introduction lbabout@iis.p.lodz.pl

Exercise 9
Add to the code from the previous exercise some functionality so that it asks a user to enter the new
worksheet name. Use:

 NewName = InputBox("Enter a worksheet name:", "Add new worksheet", "whatever")

where NewName should be declared as:
Dim NewName As String
The prompt will appear:

Exercise 10

Create a macro prompting for a name of a worksheet to delete and then deleting it (if exists). If a
worksheet does not exist, an appropriate dialog should be displayed. Use the code:

If Not NameNotExist Then
Workbooks(BookName).Sheets(NameToDelete).Activate
ActiveWindow.SelectedSheets.Delete
Else
MsgBox "Worksheet” & NameToDelete & " not found...", vbOKOnly, "Warning"
End If

The two last exercises have introduced 2 popular VBA built-in functions: Msgbox and Inputbox.
Msgbox displays a message to the screen while Inputbox is an interrogation window waiting for
an input to be parsed for a (declared or not declared) variable. Also, in the Msgbox first field, see
the use of the ampersand “&” as string concatenation operator. These are popular Visual Basic
functions and language symbols. A broader view of the language structure will be approached in
the next lab.

page 8 of 8

