BASIC MEDICAL GENETICS CONCEPTS

- mutation effect on protein function
- phenotypic expression
- > classes of genetic disease

Mutations result in different alleles

- alleles are classified as "dominant" or "recessive"
- dominant phenotypes observable in heterozygotes
- recessive phenotypes observable only in homozygotes

Mutations are classified by effect on protein function

- loss-of-function (most common)
 - e.g. Decreased amount normal protein:
 Inborn errors of metabolism as in Tay-Sachs [recessive]
 Haploinsufficiency as in FH [dominant]
- gain-of-function
 - e.g. Gene dosage effects as in **trisomy 21** [dominant]; Dominant-negative effect as in **OI** [dominant] Abnormal protein properties as in **HD** [dominant]
- novel property
 - e.g. HbS [recessive]
- inappropriate expression
 - e.g. Oncogenes in cancer

Variations in phenotypic manifestation of mutant alleles are due to:

- complementation as in XP, profound hearing loss
- penetrance (100% achondroplasia unusual)
- variable expression

Causes of variable expression:

- allelic heterogeneity: hemophilia variants
- locus heterogeneity: hyperphenylalanemias
- modifier loci: Waardenburg syndrome (methylation); Alzheimer's (multiple genes); SNPs
- environment (XP, α -1 antitrypsin deficiency)

Common classes of genetic disease:

- 1. enzyme defects (PKU; Lesch-Nyhan; Tay-Sachs; I-cell disease; XP)
 - Almost always recessive.
 - Pathophysiology due to substrate accumulation, product deficiency, or both.
 - When substrate is diffusible, the pathophysiology is unpredictable; when substrate can't diffuse, the cell in which it accumulates is damaged.
 - Several enzyme functions can be affected.

Common classes of genetic disease (cont.):

- 2. Defects in receptor proteins (Familial hypercholesterolemia)
- 3. Transport defects (Cystic fibrosis)
- 4. Disorders of structural proteins (Duchenne muscular dystrophy; Osteogenesis imperfecta)
- 5. Neurodegenerative disorders (Alzheimer's disease; triplet repeat disorders)
- 6. Mitochondrial diseases (MELAS, MERRF)
- 7. Pharmacogenetic diseases (malignant hyperthermia; G6DP)

Triplet Repeat Disorders

- Dynamic expansion of DNA triplet repeats
- Normal alleles polymorphic
- Inheritance dominant or recessive
- Presymptomatic, symptomatic expansion size varies
- Base sequence, location of repeat varies
- Parent-of-origin effects on repeat expansion varies (anticipation)
- Stability during meiosis and mitosis varies (variable expression)

Polyglutamine disorders

- Huntington Disease (autosomal dominant)
- Spinobulbar muscular atrophy (X-linked recessive; androgen receptor)
- CAG repeat
- Anticipation: expansion occurs preferentially during male gametogenesis
- Variable expression: mitotic instability low (limited
 - mosaicism)
- Protein aggregation, not loss-of-function

Fragile X Syndrome

- X-linked recessive
- CGG repeat in 5' untranslated region of FRA gene (posttranscriptional regulator; methylation effects)
- Most common form of hereditary mental retardation
- Anticipation: expansion occurs preferentially in female gametogenesis
- Variable expression: Mitotic instability high
- Disease caused by <u>loss of function</u>; very large expansions needed

Myotonic Dystrophy

- Autosomal dominant
- CTG repeat in 3' untranslated region of protein kinase gene; mechanism of pathophysiology unknown.
- Anticipation: either parent can transmit amplified copy; massive expansion occurs only in maternal gametogenesis
- Variable expression: mitotic instability high
- Abnormal transcript processing, not deletions, point mutations, etc.

Freidreich ataxia

- Autosomal recessive
- GAA repeat in intron of mitochondrial gene frataxin (involved in iron metabolism).
- Anticipation: no parent of origin effects
- Variable expression: mitotic instability low
- Loss of function
- 4% are compound heterozygotes (expansion/point mutation)

Mitochondrial Disorders

3 types of mutations

- missense mutations in coding regions of genes that alter activity of OXPHOS proteins (Leigh disease-ATPase)
- point mutations in tRNA or rRNA genes that impair mitochondrial protein synthesis (MELAS; MERRF)
- rearrangements that generate deletions/duplications in mtDNA (not usually transmitted from affected mother to offspring; disorders occur as sporadic new cases-Kearns-Sayre syndrome)

Maternal inheritance

<u>Usually heteroplasmic</u> (phenotypic expression: reduced penetrance, variable expression, pleiotropy)

Pharmacogenetic Diseases

- Unanticipated reactions to medications largely/entirely genetic (6.7% incidence in American hospitals; 0.3% fatal).
- Single gene defects or multifactorial

Examples:

- Malignant hyperthermia (autosomal dominant-Ca⁺ release channel; other loci)
- Acute Intermittent Porphyria (autosomal dominant disease: drug-related alteration in gene expression of heme biosynthetic enzyme)
- **G6PD** (X-linked recessive; more than 400 variants; most common disease-producing single gene enzyme defect of humans)
- Acetylation polymorphism (slow or rapid drug inactivation)

PRINCIPLES OF CLINICAL CYTOGENETICS

- Common chromosome structural disorders
- Chromosome banding
- Aneuploidies: nondisjunction
- Chromosome breakage syndromes; translocation
- Faulty DNA metabolism chromosome syndromes
- Genomic imprinting; UDP
- Sex reversal

AUTOSOMAL D)ISO	RD	ERS
-------------	------	----	-----

Common Aneuploidies

Trisomy 21 (Down syndrome)

Trisomy 18 (Edward syndrome)

Trisomy 13 (Patau syndrome)

Structural Abnormalities: Deletion Syndromes

Cri du Chat syndrome (5p-)

Structural Abnormalities: Microdeletion Syndromes

Di George syndrome (22q11)

Prader-Willi syndrome (pat 15q11-q13)

Angelman syndrome (mat 15q11-q13)

Structural Abnormalities: Trinucleotide Expansion Disorders

Huntington Disease (4p16.3)

Myotonic Dystrophy (19q13.2)

Freidreich Ataxia (9q13)

SEX CHROMOSOMAL DISORDERS

Common Aneuploidies

Klinefelter syndrome (47,XXY)

47,XYY syndrome

Turner syndrome (45,X and variants)

Structural Abnormalities

Fragile X syndrome (trinucleotide expansion; Xq27.3)

Sex Reversal (deletion, translocation; Yp11.32)

Banding

CORRELATION OF STRUCTURE AND FUNCTIONAL PROPERTIES IN EUCHROMATIN

Light G Bands	Dark G Bands	
GC-rich	AT-rich	
Fluorescence with G-specific	Fluorescence with AT-specific	
fluorochromes	fluorochromes	
Early replicating	Late replicating	
Gene-rich	Gene-poor	
Alu repeats	LINE repeats	
SINE repeats	HMG-1 nonhistone proteins	
	bound to AT-rich areas	
Z-DNA conformation possible	Minisatellites	

Banding

MAIN TYPES OF CHROMOSOME BANDS				
Banding Methods	Туре	Principle Use		
Trypsin-induced Giemsa stain	G	Differentiates light and dark bands		
AT-specific fluorochrome (quinicrine, Hoechst 3325B)	Q	Light fluorescence in the region of dark G- bands, some centromere regions, distal long arm of Y-chromosome		
Reverse bands	R	Opposite of G		
Centromere stain	С	Centromere region darkly stained		
Bromodeoxyuridine (BrdU) for 2 cell cycles	SCE	Differential staining of sister chromatids (SCEs)		
Distamycin A-DAPI	DA/DAPI	Light fluorescence in the short arm of chromosome 15, centromere regions of 1, 9, and 16; distal long arm of Y		
Silver nitrate stain	NOR	Short arms of all acrocentric chromosomes		
Giemsa II	GII	Centromere of chromosome 11		

Sister chromatid exchanges in Bloom syndrome

Banding (FISH)

Aneuploidy: Nondisjunction

The phenotypes associated with sex chromosome trisomies are less severe than those associated with autosomal trisomies.

Follow-Up C	bservations on	Patients with S	ex Chromosome A	neuploidy	
Disorder	Karyotype	Phenotype	Sexual Development	Intelligence	Behavioral Problem
Klinefelter syndrome	47,XXY	Tall male (see text)	Infertile; hypogonadism	Learning difficulties (some	May have poor psychosocial

Normal

Usually normal

Infertile: streak

gonads

adjustment

Frequent

Rare

Occasional

patients) Normal

patients)

Normal (but see

difficulties (some

Learning

text)

TABLE 10-4

XYY syndrome

syndrome

Trisomy X

Turner

47,XYY

47,XXX

45,X

Tall male

usually tall

Short female,

features (see text)

Female.

Clinical phenotype of Turner syndrome is due to haploinsufficiency.

Structural chromosome abnormalities arising from chromosome breakage:

- Deletions
- Ring chromosomes
- Isochromosomes
- Translocation

Deletions

Ring Chromosomes; Isochromosomes

FREQUENCY OF TURNER SYNDROME KARYOTYPES			
Karyotype	Frequency		
45,X	50%		
46,X,i(Xq)	15%		
45,X/46,XX mosaics	15%		
45,X/46,X,i(Xq) mosaics	About 5%		
45,X,other X abnormality	About 5%		
Other 45,X/? mosaics	About 5%		

Translocation

examples and consequences

Translocation

Robertsonian translocation

Reciprocal translocation

46,XY,t(11;16)(q24;q23)

Translocation

<u>Translocation:</u> <u>non-random X-inactivation</u>

Structural chromosomal abnormalities arising from faulty DNA metabolism:

- Slipped mispairing during DNA replication
- Nonreciprocal recombination

Slipped mispairing during DNA replication

TABLE 12-12

Four	Representative	Examples	of	Triplet	Repeat	Diseases	

							Repeat Number	
Disease	Inheritance Pattern	Triplet Repeat	Gene Affected	Location in Gene	Mechanism of Disease	Normals	Unstable Intermediate	Affected
Huntington disease	Autosomal dominant	CAG	huntingtin	coding region	Ptoxic effect of glutamines	<36	29-35 usually unaffected	>35
Fragile X	X-linked	CGG	FMR1	5' untranslated	causes excessive methylation leading to reduced FMR1 expression	<60	60–200 usually unaffected	>200
Myotonic dystrophy	Autosomal dominant	CTG	DMPK	3' untranslated	Punclear	<30	50-80 usually mildly affected	80-2000
Friedreich ataxia	Autosomal recessive	AAG	frataxin	intron	interferes with RNA processing, leading to reduced frataxin expression	<34	36–100 (uninterrupted)	>100

N = normal

P = unmethylated premutation

MN/P = methylated normal or premutation

F = methylated full mutation

EclXI: methylation sensitive

Non-reciprocal recombination

Non-reciprocal recombination

TABLE 10-2

Microdeletion or Contiguous Gene Syndromes Involving Recombination Between Repeated Sequences

¥.¥		Rearrange		
Disorder	Location	Туре	Size (kb)	Repeat Length (kb)
Smith-Magenis syndrome dup(17)(p11.2) Prader-Willi/Angelman	17p11.2	Deletion Duplication	5000	200
syndromes	15q11-q13	Deletion	4000	$\sim 50 - 400$
Williams syndrome	7q11.23	Deletion	2000	>30
Ichthyosis	Xp22.3	Deletion	1900	20
Neurofibromatosis	17q11.2	Deletion	1500	$\sim 15 - 100$
Charcot-Marie-Tooth (CMT1A)/HNLPP	17p12	Duplication Deletion	1500	24
DiGeorge syndrome/ velocardiofacial syndrome	22q11	Deletion	3000	200
Cat-eye syndrome		Duplication		

Genomic Imprinting:

- mechanism
- distribution
- consequences

Map of Imprinted Regions in Human Genome

Maternally inherited homolog (left)

Paternally inherited homolog (right)

Genomic Imprinting

T 8	-		-	-
	ж	I -	-	-3
			_	

Molecular Mechanisms Causing Prader-Willi and Angelman Syndromes				
	Prader-Willi Syndrome	Angelman Syndrome		
15q11-q13 deletion	~70 percent (paternal)	~70 percent (maternal)		
Uniparental disomy	~30 percent (maternal)	~3-5 percent (paternal)		
Single-gene mutation	ND	E6-AP ubiquitin-protein ligase (2-4 percent of total but seen only in familial cases)		
Imprinting center mutation	1−2 percent	7-9 percent		
Other	ND	10-20 percent		

Etiology of Uniparental Disomy

Sex Reversal: Role of the *sry* gene

Sex reversal due to translocation of SRY from Y to X

