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Lecture notes  (these are from ny earlier version of the course - we may follow these at a 
slightly different order, but they should still be relevant!)   Physics 3220,  Steve Pollock.  
 
Basic Principles of Quantum Mechanics 
 
The first part of Griffith's Ch 3 is in many ways a review of what we've been talking about, just 
stated a little formally, introducing some new notation and a few new twists. We will keep coming 
come back to it -  
 
First, a quick review of ordinary vectors. Think carefully about each of these - nothing here is 
unfamiliar (though the notation may feel a little abstract), but if you get comfortable with each idea 
for regular vectors, you'll find it much easier to generalize them to more abstract vectors!  
 
• Vectors live in N-dimensional space.  (You're used to 3-D!)  
 
• We have (or can choose) basis vectors: 

€ 

ˆ e i   (N of them in N-dim space.)  (Example in an "older 

Phys 1110 notation" of these would be the old familiar unit vectors: 

€ 

ˆ i , ˆ j , ˆ k  
 
• They are orthonormal:  

€ 

ˆ e i ⋅ ˆ e j = δij   (This is the scalar, or inner, or dot product.) 

 
• They are complete:  

This means any vector 
  

€ 

 v = vi ˆ e i
i
∑  is a unique linear combo of basis vectors. 

 
• The basis set spans ordinary space. This is like completeness, but backwards - every linear 

combination of basis vectors is again an N-Dim vector, and all such linear combos generate all 
possible vectors in the space.  

 
• We can choose a specific representation of v, namely 

  

€ 

{v1,v2,v3,…vn} , but it is not unique, it 
depends on the choice of basis. (e.g. polar vs. rectangular, and even which particular rotation of 
the rectangular axes.)  

 
• Each number vi  is the projection of v in the 

€ 

ˆ e i  direction, and can be obtained by the formula 

  

€ 

vi =
 v ⋅ ˆ e i .  

 (This involves the same scalar product, again, as we used above in the statement of 
orthonormality.)   You can prove the last formula by using orthogonality and completeness. 

 
• Addition, or multiplication by a scalar (number), keeps you in the same N-dim "vector space". 

(adding or scaling vectors gives another vector.) 
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We can make very powerful analogies to all of the above in the world of square integrable 
functions: Note the one to one correspondence between each of the following statements about 
functions, with the preceding ones about vectors. 
 
• Square integrable functions live in Hilbert space. (Never mind what this means for now!)  
 
• We have (or can choose) basis functions: 

€ 

un (x) (Infinitely many of them.) 
(This infinity might be countable (discrete), or it might be uncountable, in which case you can't use 
integers as labels, but need real numbers.) 
We have already met some examples of both such types of un's, as eigenfunctions of operators. 
 
• They are orthonormal:  

€ 

dx un (x)∫ um (x) = δnm .  This is apparently our new way of writing 

the inner product.  (If the labeling is continuous, the right side will be a Dirac delta function!) 
 
• They are complete:  Any function 

€ 

ψ(x) = cnun (x)
n
∑  is a unique linear combo of the basis 

vectors.  (If the labeling is continuous, then 

€ 

ψ(x) = dE c(E)uE (x)∫ ) 
 
• The basis spans Hilbert space. This is similar to completeness, but backwards - any linear 

combo of basis functions is itself another square integrable function, and all such linear 
combos generate all possible functions in the space. 

 
• We can choose a specific representation of 

€ 

ψ , e.g. 
  

€ 

{c1,c2,c3,…cn,…c∞} if the labeling is 
discrete. (Otherwise, we need a function, like e.g. 

€ 

ϕ (p))  
   But, it is not unique, it depends on the choice of basis. (More on this soon!!) 
 
• The number cn  is the projection of 

€ 

ψ  in the 

€ 

un direction, and  

 

€ 

cn = un
* (x)ψ(x)dx∫ .  

 (This involves the same scalar product, again, as we used above in the statement of 
orthonormality)   

 You can prove the last formula by using orthogonality and completeness. 
 
• Addition, or multiplication by a scalar (number), keeps you in the same Hilbert space. (adding 

or scaling functions gives another function.) 
 
As I said, each of the above is a *direct analogy* to a familiar statement about regular vectors on 

the previous page. It's worth your while to go through them one at a time, side by side, so you 
can get a sense for how our ideas about vectors in 3-D and our ideas about wave functions in 
quantum mechanics are closely aligned (even though you might think a function and a little 
arrow are awfully different things. They're more alike than you might think!) 
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The analogies don't even end here!  
• Operators transform vectors (functions):  

  

€ 

ˆ O 
 

V 1 =
 

V 2,   or   ˆ O ψ1(x) =ψ2(x)  

• Linear operators are defined by: 
  

€ 

ˆ O (a1
 
V 1 + a2

 
V 2) = a1

ˆ O 
 
V 1 + a2

ˆ O 
 
V 2 

• Linear independence says: A is linearly independent of a set 
  

€ 

{  α ,
 
β ,  γ ,…}  if you cannot possibly 

write A as a linear combination of the vectors in that set, i.e 
  

€ 

 
A ≠ c1

 
α + c2

 
β + c3

 
γ +…  for any 

set of constants, c1, c2, c3,...  
 (Same for functions!)    
E.g, 

€ 

ˆ z ≠ a ˆ i + b ˆ j  for any "a" or "b", or  e.g. 

€ 

ex ≠ a + bx 2  for any "a" or "b". 
 
This analogy is powerful, because it allows us to think of wave functions more abstractly, and to 
make use of lots of math we know and understand regarding vectors.  
 
ψ (x) is, after all, just a collection of numbers, in the same way that v=(vx, vy, vz) is a collection of 
numbers. Think how often in physics it is better to work with the symbol, or concept, of v: 
independent of any particular representation, or basis choice. (Choosing polar or rectangular or 
rotated coordinates will change the numbers  vx, vy, vz, but it will not change the vector, v!) 
 
We will often use the notation 

€ 

v , instead of v, for the abstract vector. 
Similarly, we will work with the abstract wave function, and call it 

€ 

ψ . 
We sometimes call this a "ket". This is our first example of Dirac Notation. 
 
We may choose to write any abstract vector in terms of its components in some particular basis: 

  

€ 

 v = v = vi ˆ e i
i
∑ = vi ˆ e i

i
∑ = vi i

i
∑  

The first summation notation is the normal old one, the second is where I begin to think of my 
basis vectors as themselves abstract vectors (!!), and the third is just an obvious briefer notation (a 
shorthand notation for the basis vectors.) 
The components of any vector, you will recall, are found by 

  

€ 

vi = ˆ e i ⋅
 v ≡ ˆ e i

 v  
(This last is just a definition for an alternative notation for the dot product. Instead of writing "dot" 
I write a "bracket". Stare at it, we will need to get used to this!) 
 
In complete analogy, we will write 

€ 

ψ = cn un
n
∑ = cn n

n
∑  

(The final notation is again just an obvious briefer notation, |n> is just a shorthand notation for the 
basis function |un>.) 
 
Again, I am thinking of my basis states as themselves being abstract kets!  
 
Any function, even basis functions, can be thought of as a ket, just like any vector, even basis 
vectors, are themselves just vectors. 
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The "ket" 

€ 

ψ  represents the state of a particle. But it doesn't have to be given in any particular 
representation, it's more general, more abstract. It's analogous to talking about some vector v:  
I don't have to tell you its components, I might describe it in some more general way, [perhaps it 
solves some particular equation....] If I need the components, I can pick some convenient 
coordinate system (rectangular, or polar, or whatever) and then figure them out.   
 
E.g., we have already learned that 

€ 

ψ(x) and 

€ 

ϕ(p) (the Fourier transform) refer to the exact same 
particle in the exact same state. They are fully equivalent, carry identical and complete information 
about the quantum state. It's just that one is specifically in position space, the other is in 
momentum space. They will turn out to be two different representations of the one and only true 
abstract state 

€ 

ψ .  
 
It is a little unfortunate that  we usually use the same Greek letter "Psi" for the name of the space 
wave function and also for the name of the abstract state. There's nothing special about the space 
wave function, it is really no better than 

€ 

ϕ(p) . We just had to pick some name for the abstract 
state, and 

€ 

ψ  seemed better than 

€ 

Fred . (Using kets has the same potential for simplifying our 
life as does using vectors without specifying a coordinate system ahead of time.) 
 
More Dirac Notation:  
  
As we have already said, any state can be expanded in basis states:  
 

€ 

ψ = cn un
n
∑ = cn n

n
∑  

We have also seen the formula for the coefficients in this expansion: 
 

€ 

cn = un
* (x)ψ(x)dx∫ ≡ un ψ ≡ n ψ  

 
This is our scalar product for functions, and as I've mentioned earlier, we often use the "bracket" 
notation instead of the integral. It's a definition, the bracket notation is a shorthand for the integral. 
(The final expression is just a lazy shorthand for the first, when I get tired of writing un, and just 
label it by "n" alone)  
 
By the way, the right half of a "bracket" symbol looks like this, , that's why we called it a "ket". 
And, I kid you not, the name for the left half, which we write like this,  is called a "bra".  
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There is already lots to observe about our new Dirac notation: 

€ 

cn = un ψ = un cmum
m
∑ = cm un um

m
∑  

(The first is just the usual old formula, cn is the inner product of Psi with un.   
The next statement is just obtained by expanding Psi as a linear combo of basis vectors. The final 
statement is just an observation that the summation comes out of the inner product [linearity!]) 
 
But 

€ 

un um = un
* (x)∫ um (x)dx = δnm :  this is our statement of orthonormality. 

What we had a few lines above now looks like 
 

€ 

cn = cm un um
m
∑ = cmδnm

m
∑ ,  

which is manifestly correct.   Don't let these formulas slip by, work through them. There's nothing 
very difficult here, it's largely NOTATION, but you want to get used to it. Try writing the above 
statements out for yourself, convince yourself there's less here than meets the eye!  
 

€ 

ϕ ψ = ϕ∫ *(x)ψ(x) dx  is in general a complex, constant number. (And, VERY important, don't 
ever forget the star, complex conjugate,  on the "bra"'d function when you do the integral!)  
 

€ 

ϕ ψ * = ϕ*(x)ψ(x) 
 
  

 
 ∫ * dx = ϕ(x)ψ*(x)∫ dx = ψ*(x) ϕ(x)∫ dx = ψ ϕ  

Starring a bracket just flips the two entries.  
You do not, in general, get back what you started with (unless it was real to begin with.) 
 

€ 

ϕ aψ = a ϕ ψ          (constants, even complex ones, slide right out of kets.) 

But, 

€ 

aϕ ψ = a* ϕ ψ       (note the complex conjugate! Convince yourself of this.)  

I keep writing 

€ 

ϕ ψ = ϕ∫ *(x)ψ(x) dx , but I should stop, because that is representation 
dependent!  It's like writing 

  

€ 

 a ⋅
 
b = axbx + ayby + azbz . The equation is correct, but it depends on 

my specific choice of Cartesian coordinates. (in polar coordinates, the formula for the dot product 
looks different, but it's still the same result.)  

For instance, it is equally true that 

€ 

ϕ ψ = ˜ ϕ ∫ *(p) ˜ ψ (p) dp, where the tilde on top means 
"Fourier transform of"... (We'll prove this later.) 
 
You should try to think of 

€ 

ϕ ψ  as an abstract dot product. (If that's hard, its not wrong to think of 
it as that specific integral, it's just a little limiting! It's like being "stuck" with always and only 
thinking of a vector as its components in a particular Cartesian coordinate system!) 
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The "bra", 

€ 

ϕ  is a slightly odder beast than the "ket", 

€ 

ψ .  
The latter is just like a vector.  
But the former is not a vector. In fact, it's more like an operator, except its not that either, because 
operators operate on vectors to give back another vector, while bras act on vectors to give back a 
scalar (a number).  
 
It's more like a function of vectors. If I want to think of it concretely, I usually think of it like this: 

  

€ 

ϕ … = dxϕ(x)…∫   
and you generally fill in the blanks with some ket. 
(It's formally called a dual, if you really want to know! And of course, this notation is back in my 
"x-space way of thinking", so you can see it's not wrong, but also not fully general)  
 
In the world of ordinary (complex) 3-D vectors, where 

€ 

b = bi ˆ e i
i
∑ = b1 ˆ e 1 + b2 ˆ e 2 + b3 ˆ e 3  (where the b's might be complex), you might be used to many 

equivalent notations, e.g. 

  

€ 

b   or   
 
b    or  

b1
b2
b3

 

 

 
 
 

 

 

 
 
 

 

In this "new notational world" we're building, the notation for the dual would be 
 

€ 

a  =  a1
* a2

* a3
* 

 
  

 
  

With this notation, the dot product is very simple: 

€ 

a b  =  a1
* a2

* a3
* 

 
  

 
 

b1
b2
b3

 

 

 
 
 

 

 

 
 
 
 = ai

*bi
i
∑   

You're not used to those stars, but then, you're probably not used to complex vectors!  
The reason we put them there is so that the norm of any vector, namely the dot product of the 
vector with itself, is guaranteed to be positive: 

€ 

a a  = ai
*ai

i
∑ = ai

2

i
∑ ≥ 0. 

 
The norm is technically the square root of this:  

Norm(a) = Length(a)

€ 

= a a  = ai
2

i
∑ ,  

 
For ordinary vectors you're used to, the star is irrelevant, and you just get the usual dot product and 
the usual norm. 
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A rather abstract and formal looking relation (but very useful), can now be introduced. First, think 
in ordinary vector space, and consider a projection operator, 

€ 

ˆ P ̂  n , which operates on a vector, and 
returns the projection of the vector in the n direction (which is again a vector.) 

I claim that I can write the projection operator 
as 

€ 

ˆ P ̂  n = ˆ e n ˆ e n  
We need to think about this -  
Why should this be?  

Well, just operate P on a vector, and see what happens:  (Think carefully about this one...) 

€ 

ˆ P ̂  n v = ˆ e n ˆ e n v = ˆ n (v ⋅ ˆ n ),  precisely what the projection operator is supposed to do! 
It returns a vector in the n direction, with length

€ 

v ⋅ ˆ n .  Look at the notation, think about vectors, 
convince yourself this is all ok. 
 
In Hilbert space, this projection operator is written 

€ 

ˆ P n = un un , it projects into the "un" 
direction. (Yikes!)  This means 

€ 

ˆ P n ψ = un un ψ = cn un  
In words: projecting in the "n direction" gives back a "vector in the n direction" (here, the ket un) 
with a magnitude cn. 

Now, I claim that 

€ 

ˆ P n
n
∑ = un un

n
∑ = 1  

(That 1 is the unit operator, since projections are themselves operators.) 
This mathematical statement is formally called "completeness", it says that if you add up 
projections in all possible directions, you always get back what you started with.   
We'll use it OFTEN! 
It's rather abstract, and admittedly a bit hard to understand at first!   Here's a rough proof: 
 
Take any vector 

€ 

ψ = cn un
n
∑ = un ψ un

i
∑  

The above familiar looking statement is equivalent to 

€ 

1ψ = un ψ un
n
∑ = un un ψ

n
∑  

(The bracket of 

€ 

un with psi is just a number; it can be freely moved around) 

But since this relation is true for any psi, we have an operator identity:    

€ 

1 = un un
n
∑ . 

You might want to check with ordinary vectors, to see how the identity looks: 

€ 

ˆ e i
i
∑ ˆ e i = ˆ x ˆ x + ˆ y ˆ y =

1
0
 

 
 
 

 
 1 0( ) +

0
1
 

 
 
 

 
 0 1( ) =

1 0
0 0
 

 
 

 

 
 +

0 0
0 1
 

 
 

 

 
 =

1 0
0 1
 

 
 

 

 
 = 1 

 
Note that putting the bra and ket in the other order gives 

€ 

un un =1, a number not an operator. (It's a totally different beast!) 
 

V

n
Pn V
=(V.n)n  
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Next, we add operators to the Dirac notation game we're playing: 
 
Suppose we have an operator O that does something like this: 
 

€ 

ˆ O ψ(x) = β(x),  or abstractly ˆ O ψ = β  

Then, we will define a new ket, which we call 

€ 

ˆ O ψ .  

This is simply the name, or label, of a new ket. It is defined by 

€ 

ˆ O ψ ≡ ˆ O ψ  

We thus have 

€ 

ˆ O ψ = β   
 
These are just two different labels for the same ket, so naturally  

€ 

β = ˆ O ψ  
 
Putting these together with any other bra, ϕ  gives 

€ 

ϕ β = ϕ ˆ O ψ = ϕ ˆ O ψ  
(The last two expressions are interchangeable notation, the 2nd vertical bar is basically there to 
guide the eye.) 
 
This all looks awfully abstract, but we know what it means when we look at it in our more familiar 
"x-representation": 
 

€ 

ϕ ˆ O ψ = ϕ ˆ O ψ = ϕ*(x)β(x)dx∫ = ϕ*(x) ˆ O ψ(x)dx∫  
 
For reasons we'll see later, this expression is usually referred to as a matrix element of operator O.   
 
In the expression 

€ 

ϕ ˆ O ψ  or equivalently ϕ ˆ O ψ  the operator O operates on psi (i.e. to its right) 
as usual. It does not operate on phi, which is to its left.  
 
However, I can define a new operator, related to O but possibly quite different, cleverly designed 
so that if it operates on phi, we somehow get back the same number as when O operates on psi. 
(Remember, the matrix element we're looking at is just some complex number.)  
 
This new operator is called the adjoint of O, or the Hermitian adjoint, or sometimes the Hermitian 
conjugate, or sometimes the dagger of O, and is denoted 

€ 

O+ . (That little "plus sign" should really 
look like a cross or "dagger symbol", †, but my Word formula processor doesn't have that symbol!)  
All the above words are stated mathematically as follows, we define  

€ 

O+  by: 
 

€ 

O+ϕ ψ ≡ ϕ ˆ O ψ  for all functions phi and psi (!!!) 

 
(I suppose it is not at all obvious that such a dagger operator even exists, but it really does for all 
operators O of interest to us. We will not prove it - it's getting into some pretty hairy linear algebra 
theory.) 
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If you star (complex conjugate) the expression above defining 

€ 

O+ , and remember from earlier that 
starring a bracket just reverses it: 

€ 

ˆ O ψ ϕ ≡ ψ O+ϕ         (which is again true for all functions phi and psi.) 

 
If you stare at this, you should be able to convince yourself that it means 

€ 

O++ =O .  (Perhaps a little reminiscent of c**=c for NUMBERS?) 
 
We can also write the definition of the dagger in integral form: 

€ 

O+ϕ 
 
  

 
 
*
ψ(x)dx∫ ≡ ϕ*(x) ˆ O ψ(x) dx∫  for all functions phi and psi. 

 
Hermitian operators are operators whose expectation values are always real, like the operators for 
physical observables we've used all term. There is a very different definition of Hermitian 
operators, a more basic one, and we will see the connection between the two definitions later (we'll 
prove that they're really equivalent).  
Our new definition will be that  an operator, O, is Hermitian iff (if and only if)  

€ 

O+ =O . 
Using our definitions above, this says that if O is Hermitian, then 

€ 

ˆ O ϕ ψ ≡ ϕ Oψ  for all functions phi and psi. 
Hermitian operators are very special, and as we've already stated, they play a key role in quantum 
mechanics. (We'll see more reasons shortly)  
Example 1: 
O=c    (That means our operator is the "multiply by a complex constant "c" operator.) 
Is this operator Hermitian? Let's test it out: 
 

€ 

ϕ cψ = c ϕ ψ

cϕ ψ = c* ϕ ψ
 

These two expression are not equal, unless c is real.  
So, the operator "3" is Hermitian, but the operator "i" is not.  
 
It seems like a Hermitian operator might mean "real operator" in some way. This is sort of true: 
remember our old definition, O is Hermitian means <O> is real. 
But you have to be a bit careful, the presence of "i" can be misleading: 
 
Example 2: 

€ 

ˆ O ≡ d
dx

, the derivative operator. It sure looks "real". Is it Hermitian? 

€ 

ϕ ˆ O ψ = ϕ*(x) dψ(x)
dx∫ dx =  ϕ*ψ

−∞

∞
−

dϕ*

dx

 

 
 
 

 

 
 
 ∫ ψ dx = −

dϕ*

dx

 

 
 
 

 

 
 
 ∫ ψ dx

ˆ O ϕ ψ =
dϕ*

dx

 

 
 
 

 

 
 
 ∫ ψ dx

 

The signs disagree, the two lines are not the same. This operator is most certainly not Hermitian! 
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Example 3: 

  

ˆ O ≡ 
i

d
dx

, the momentum operator. Is it Hermitian? 

  

€ 

ϕ ˆ O ψ = ϕ*(x) 
i
dψ(x)
dx∫ dx =



i
ϕ*ψ

−∞

∞
−

dϕ*

dx

 

 
 
 

 

 
 
 ∫ ψ dx

 

 

 
 

 

 

 
 

ˆ O ϕ ψ =


i
dϕ
dx

 

 
 

 

 
 ∫
*
ψ dx =



−i
dϕ*

dx

 

 
 
 

 

 
 
 ∫ ψ dx

 

The explicit presence of an "i" has fixed up the minus sign. The two lines above agree, for any psi 
and phi (as long as they vanish off at infinity, which is true for any physically valid wave 
functions)  and thus this operator is Hermitian. 
So momentum is Hermitian, and its expectation value in ANY state is always real. (You could 
have seen this from the momentum space representation, 

€ 

< p >= ϕ * (p)∫ pϕ(p) dp, manifestly 
real!) 
 
Example 4: 

€ 

ˆ O ≡V (x) .   (This is the "multiply by a [real] function V(x)" operator.) 
If V(x) is real,  this is just like case 1, the operator is Hermitian. 
 
Earlier this semester, even before the introduction of Dirac notation, we used to write that the 
expectation value of O in a state psi is 

€ 

ˆ O ≡ ψ*(x) ˆ O ψ(x) dx∫  
Now we see that the proper Dirac notation for this expression is  

€ 

ψ ˆ O ψ , and the above is a pretty obvious shorthand notation! 
 
Brief mathematical digression- Matrices 
 
Go back to N-dimensional vector spaces, and define the operator O by 

€ 

ˆ O α = β     We can 
understand what O does in general, as long as we know what it does only to our basis vectors!  
 

  

€ 

ˆ O ˆ e 1 = some vector ≡O11 ˆ e 1 + O21 ˆ e 2 + … + On1 ˆ e n
ˆ O ˆ e 2                        ≡O12 ˆ e 1 + O22 ˆ e 2 + … + On2 ˆ e n


ˆ O ˆ e j  ≡ Oij ˆ e i
i=1

n
∑

 

(Note the slightly screwy ordering of indices above - it's a definition!) 
As always with formal equations like this, stare at it for a moment, just get used to this notation.  
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Given the above, how do I know what O does to 

€ 

α ? 
Just expand 

€ 

α  in some basis, and you see 

€ 

ˆ O α = ˆ O a j
j
∑ ˆ e j  ≡ a j

ˆ O ˆ e j
j
∑ = a jOij ˆ e i

i=1

n
∑

j
∑  

By inspection, we find 

€ 

β ≡ ˆ O α = Oija j ˆ e i
ij
∑ , or in component form, 

€ 

bi = Oija j
j
∑   

Now the ordering of subscripts is making some sense, this looks like a matrix multiplication: 

  

€ 

β ≡ ˆ O α =

O11 O12 

O21 



 

 

 
  

 

 

 
  

a1
a2


 

 

 
  

 

 

 
  
 

The N2 elements in that matrix fully characterize the operator! If you know those N2 numbers, you 
can figure out what O does to any vector! So an operator can also be described by a set of numbers 
(typically written in matrix form, and know as "matrix elements"... Kind of cool!  
The particular numbers are, unfortunately, representation dependent. If you change your choice of 
basis vectors, all the elements of that matrix can change.   
 
This means that operators can be expressed explicitly as matrices, although the specific numerical 
entries do depend on the choice of basis vectors. 
 
Once you've got this, you can work out products of matrices quite easily, e.g. 

€ 

ˆ O 1
ˆ O 2 ⇒ (O1O2)i j = (O1)i l(O2)l j

l
∑  

If you have a product of operators, just multiply the matrices! 
 
And now, some definitions of matrix terminology, basically some linear algebra review: 
 
Transpose:   

  

€ 

˜ O i j ≡Oj i,           i.e. ˜ O =  

O11 O21 

O12 O22
 

 

 

 
 
 

 

 

 
 
 
 

You can transpose a vector too, 

  

€ 

a =

a1
a2


 

 

 
  

 

 

 
  

⇒ ˜ a = a1 a2 ( )  
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Conjugate:  

 

  

€ 

O*i j ≡ Oi j
 
 
 

 
 
 
*
,          i.e. O* =  

O*11 O*12 

O*21 O*22
 

 

 

 
 
 
 

 

 

 
 
 
 

 

Adjoint:  (or, Hermitian Adjoint)  

  

€ 

O+ = ˜ O *,          i.e. O+ =  

O*11 O*21 

O*12 O*22
 

 

 

 
 
 
 

 

 

 
 
 
 

  

Which means 

€ 

O++ =O  (daggering twice gets back to where you started, like complex 
conjugating twice does for a number)  
You can adjoint a vector too, 

  

€ 

a1


 

 
 

 

 
 
+

= a1
*


 
 
  

 
  

Note that our Dirac notation for vectors now looks like: 
 

  

€ 

α β = a1
*b1 + a2

* b2 + ... =
a1


 

 
 

 

 
 
+ b1


 

 
 

 

 
 =α+β

i.e. α = α +

 

 
Which tells us in a more formal way what the "bra" is - it's the adjoint of the ket.  
 
 
Inverse: 

  

€ 

ˆ O −1 : ˆ O −1 ˆ O = ˆ O ˆ O −1 = 1 =

1 0 0
0 1 0
0 0 

 

 

 
  

 

 

 
  
 

 
Unitary: 
A matrix (or operator) O is unitary iff (if and only if)  

€ 

ˆ O + = ˆ O −1 
 
Hermitian: 
A matrix (or operator) O is Hermitian iff 

€ 

ˆ O + = ˆ O  
(This is really the same definition as I gave above for vector operators, can you see why?  
I'll talk about this on the next page, think about it yourself a bit first!) 
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Products of operators:  If you write out the indices, you should not have too hard a time proving: 

  

€ 

(ST)
~

= ˜ T ̃  S ,   and

(ST)+ = (T)+(S)+
 

(See below for an alternative proof of the latter relation**) 
 
When we were dealing with operators, I had a rather different looking definition of the adjoint 
(also called the Hermitian conjugate). My old definition, written now for vectors, looked like: 

€ 

O+α β ≡ α ˆ O β    for all vectors α,β. 

 
My new definition is 

€ 

O+ = ˜ O *.  
Are these two definitions equivalent?  Yes!  
Using only the new matrix definitions we can derive the old definition: 

€ 

α ˆ O β =α+ ˆ O β = (O+α)+ β  (because O++ = O)

= O+α β  
 

 
** Similarly, here's a proof that 

€ 

( ˆ A ̂  B )+ = ˆ B + ˆ A + (using my older  "function" defs:) 

€ 

α (AB)+β = ABα β = A(Bα) β = (Bα) A+β

= α B+A+β  
 

This is no matter what alpha and beta are, so it must be that 

€ 

(AB)+ = B+A+ 
 
A Ridiculous Example: 

€ 

ϕ ABψ λ x y( ) + = y  x λ* ψ B+A+ ϕ  
Just stare, think about the ordering and stars, this is the "game" of daggering! 
____________________________________ 
 
We've been defining operators in vector space, but as we've seen, we can continue with our 
analogy and now think about operators as matrices in Hilbert space. (They may, however, be 
infinite dimensional matrices, that's the price we pay!) 
 
So, e.g. we can continue to use notations like 

€ 

ψ = ψ +  
even though psi isn't really an ordinary column vector anymore! 
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One immediate consequence of all the above is that we can often make quick proofs of important 
things, like e.g., we already know that momentum (p) was Hermitian. How about p2? 

€ 

( ˆ p ˆ p )+ = ˆ p + ˆ p + = ˆ p ˆ p  
This statement proves that p2 is Hermitian!  
(Stare at it, and convince yourself that you understand this quick and simple little proof.) 
 
Since we just showed p2 is Hermitian, and in an earlier example we showed that V(x) is Hermitian, 
it means that the Hamiltonian  

€ 

ˆ H = ˆ p 2 /2m + V (x)   is also Hermitian. 
 
What's the deal here? Why do we care whether an operator is Hermitian? 
It's because of a few theorems: 
 
1) The eigenvalues of Hermitian operators are always real. 
 
2) The expectation values of Hermitian operators are always real. 
 
3) The eigenvectors of Hermitian operators span the Hilbert space. 
 
4) The eigenvectors of Hermitian operators belonging to distinct eigenvalues are orthogonal. 
 
In quantum mechanics, these characteristics are essential if you want to associate measurements 
with operators.  Operators must be Hermitian so that observables are real.  
And, you must be able to expand in the eigenfunctions (the expansion coefficients, as we have 
seen, give you probabilities!) 
 
We proceed to prove these (I'll skip number 3, which will probably become fairly obvious, and the 
proof really doesn't teach us anything especially useful...) 
 
Proof of theorem 1):  The eigenvalues of Hermitian operators are real. 
Let O be Hermitian, and write the usual eigenvalue eqn: 

€ 

ˆ O un (x) = onun (x)    with  on  some number, the eigenvalue of O. 
In Dirac notation, we would write this equation as 

€ 

ˆ O un = on un  

Now hit the left hand side with 

€ 

un , giving 

€ 

un
ˆ O un = on un un = on  

But, since O is Hermitian, then we also find 

€ 

un
ˆ O un ≡ ˆ O +un un = ˆ O un un   (because ˆ O + = ˆ O )

= on un un = on
* un un = on

*
 

Combining with the previous expression, we see 

€ 

on
* = on  

Which proves that each and every eigenvalue is real.  (Don't glaze over - go through the steps! ) 
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Proof of theorem 2):  Expectation values of Hermitian operators are real. 
 
Let O be Hermitian, and let ψ  be any state at all, then 

€ 

ψ ˆ O ψ = ψ*(x) ˆ O ψ(x) dx∫ = ˆ O +ψ 
 
  

 
 
*
ψ dx∫ = ˆ O ψ( )*ψ dx∫

= ψ(x) ˆ O ψ(x)( )* dx∫ = ψ*(x) ˆ O ψ(x) dx∫   
 
 
 
*

= ψ ˆ O ψ( )*
 

Comparing the beginning and end of that expression, we see that  

€ 

ψ ˆ O ψ  must always be real, no matter what.  
 
I can give you an alternative proof of theorem 2, which is a little cooler because it is "coordinate 
free", I never need to invoke functions in x-space: 
 

€ 

ψ ˆ O ψ = ψ ˆ O un
n
∑ un ψ   (this is "completeness"**!)

= ψ onun
n
∑ un ψ = on ψ un

n
∑ un ψ = on ψ un

n
∑ ψ un

*

= on ψ un
n
∑

2

  =  real, manifestly.

 

It's real because theorem 1 proved the on's are all real, and the absolute value squared of any 
bracket is always real. 
 
 
(** This proof shows one of the nice uses of "completeness" - you can always stick 

€ 

1 = un un
n
∑  into the middle of just about any expression. ) 

 
Proof of theorem 3)  E-vectors of Hermitian operators span the Hilbert space.    As I mentioned, 
we won't prove this one. (In the next theorem, though, we will prove it for a special case.)  
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Proof of theorem 4) The eigenvectors of Hermitian operators belonging to distinct eigenvalues 
are orthogonal. 
 
Suppose I have two different eigenvectors of O, labeled 1 and 2, 

€ 

ˆ O u1 = o1 u1
ˆ O u2 = o2 u2

 

and suppose further that o1 differs from o2. (The eigen-values are distinct.) 
Hit the 1st eqn. on the left with the bra <u2| , and hit the 2nd eqn with <u1|: 

€ 

u2
ˆ O u1 = o1 u2 u1

u1
ˆ O u2 = o2 u1 u2

 

Now, star the second equation. What happens to the LHS?  

€ 

u1
ˆ O u2

*
= ˆ O u2 u1 = u2

ˆ O + u1 = u2
ˆ O u1    (because ˆ O  is Hermitian). 

Meanwhile, starring the RHS of the second equation gives 

€ 

o2
* u2 u1 = o2 u2 u1   (Theorem 1) . 

Putting together the last two lines, we just showed that  

€ 

u2
ˆ O u1 = o2 u2 u1   

Above, we began with two equations, the first of which was 

€ 

u2
ˆ O u1 = o1 u2 u1  

Subtracting these last two equations from each other, and recalling that  o1 and  o2 are by 
assumption different, the only way this can make sense is if 

€ 

u2 u1 = 0, the two states are orthogonal. (As desired!) 
 
In N-dimensional vector space, if all eigenvalues of O are distinct, there will be N of them [since 
O is an NxN matrix], and they're all orthogonal by the last theorem, so they must span the space 
(Theorem 3 is proven in this case).  
 
In Hilbert space, and/or if some eigenvalues are repeated, the proof is trickier, but still true. 
 
Our formalism is mostly complete now. We'll be making lots of use of it, working out many 
examples where Dirac notation (and/or Hermiticity, the "matrix picture", completeness, etc.) will 
help us solve problems quickly and efficiently.  
 
At this point, we're ready to try to pull everything we've learned so far this semester together, and 
summarize it all in some formal way. 
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The general structure of quantum:  
 
The postulates of Quantum Mechanics... (The numbering, and even ordering, of these is 
not especially universal, and may differ from what we did in class)  
 
(1) The state of a particle is completely represented by a normalized vector in Hilbert space, which 
we call 

€ 

ψ . 
 
(2) All physical observables, Q, are associated with Hermitian operators 

€ 

ˆ Q , and the expectation 
value of Q in some state 

€ 

ψ  is 

€ 

ψ ˆ Q ψ . 
 
(3) A measurement of Q on a particle in state 

€ 

ψ  is certain to return a particular value, 

€ 

λ , iff ("if 
and only if") 

€ 

ˆ Q ψ = λψ  
(i.e. if and only if 

€ 

ψ  is already an eigenvector of 

€ 

ˆ Q , with eigenvalue 

€ 

λ ) 
 
(3a)  If you measure Q (in any state 

€ 

ψ ), you are certain to obtain one of the eigenvalues of 

€ 

ˆ Q . 

The probability of measuring some eigenvalue 

€ 

λ  is given by 

€ 

uλ ψ
2
,  

(where 

€ 

uλ  is defined to be the eigenvector of 

€ 

ˆ Q , with eigenvalue 

€ 

λ .) 

 
(The above has to be modified slightly if there are degenerate eigenvectors.  
It is always possible to arrange the set of 

€ 

uλ 's form an orthonormal basis, no matter what, but 

when we discuss degeneracy we'll see that it isn't always trivial. We'll talk about degeneracy 
shortly.) 
 
(3b)  After a measurement gives you the value 

€ 

λ , the system will collapse into the state 

€ 

uλ . 

(Again, modulo some subtleties if eigenvalues are degenerate) 
 
(4)  The time evolution of the state 

€ 

ψ  is given by Schrodinger's equation: 

  

€ 

i
∂ψ

∂t
= ˆ H ψ  

 
These statements are a modification of Griffith's collection of the postulates of quantum 
mechanics. They are perhaps a little redundant (The statements 3a and 3b are closely related to 3, 
so I didn't give them separate numbers), and they are all consistent with one another. I claim that 
the above is pretty close to all you need to "derive" everything else in quantum mechanics...) 
 
Read them over again, think about them, try to "translate" them back into the way you've been 
thinking throughout the semester. This is the formal basis for quantum mechanics!  
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I claim that statements 2 and 3b  are also closely related, as follows: 

€ 

ψ ˆ Q ψ = ψ ˆ Q uλ
λ
∑ uλ ψ    

(This is completeness again, just math, inserting a projection operator sum like we've done before!)  

€ 

= ψ λ uλ
λ
∑ uλ ψ = λ uλ ψ

2

λ
∑  

But postulate 3b says that 

€ 

uλ ψ
2

 is the probability of measuring 

€ 

λ , 

so what we have written is equivalent to 
 

€ 

ψ ˆ Q ψ = λ Prob(
λ
∑ λ),  

which is precisely what you would think the expectation value of an observable should be.  
 
 
START DIGRESSION:  Some rather advanced material about  representations: 
[The following is a pretty intense discussion of how you pull explicit functions out of the abstract 
kets, which is in the end what we usually want.] 
We're very used to thinking in the x-representation, i.e.  
I usually think of  

€ 

ψ  as being equivalent to 

€ 

ψ(x).  
They are closely related, but 

€ 

ψ  is more general (it's like a vector V, while 

€ 

ψ(x) is like the 
specific components   (Vx, Vy, Vz) in some particular frame.)  
Just as we can extract the components of a vector, we can also extract 

€ 

ψ(x) from 

€ 

ψ . Here's how: 
 
Consider the x operator, and it's eigenfunctions, which we'll call 

€ 

x . 
To be specific, 

€ 

ˆ x x0 = x0 x0  

I normally use completeness to write 

€ 

un un
n
∑ = 1, but now, with x having continuous (not 

discrete) eigenfunctions, I should write completeness as 

€ 

d∫ x0 x0 x0 = 1.  (Seem reasonable? 

Just replace the sum with an integral, since the eigenvalues of x are continuous, not discrete.)  
Now Look at 

€ 

ψ ψ = d∫ x0ψ
*(x0)ψ(x0).    But, I can also use completeness here,  to say 

€ 

ψ ψ = d∫ x0 ψ x0 x0 ψ = d∫ x0 x0 ψ
*
x0 ψ   

 (Are you getting used to the 

"completeness" math trick yet?) Comparing the two expressions, apparently  

€ 

ψ(x0) = x0 ψ ,   or  ψ(x) = x ψ  

 
Stare at that last expression:    

€ 

ψ   is the general Q.M. state vector. 

€ 

ψ(x) is the probability amplitude fn for finding a particle at a location x 
By postulate 3a, with Q=x, this is completely consistent: 
Probability according to 3b is 

€ 

x ψ
2

= ψ(x) 2 

Completeness says that 

€ 

ψ = d∫ x0 x0 x0 ψ = d∫ x0 x0 ψ(x0). 
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Of course I could equally well have chosen P as my operator instead of x, with eigenfunctions up: 
 

€ 

ˆ p p = p p , in which case completeness would tell me 

€ 

ψ = d∫ p p p ψ  
and I would know from Postulate 3a that 

€ 

p ψ
2

= ϕ(p) 2  = probability of finding momentum p. 
 
This is telling me that 

€ 

ψ(x) = x ψ :  "What does the state 

€ 

ψ  look like as a function of x?" 

€ 

ϕ(p) = p ψ :  "What does the state 

€ 

ψ  look like as a function of p?" 
 
It is interesting to ask what, e.g., 

€ 

x p  is.  
(What does the eigenfunction of momentum look like, as a function of x?) 
 
Recall that 

  

€ 

ϕ(p) = dx 1
2π∫ e−ipx /ψ(x), so I have 

€ 

p ψ = dx∫ p x x ψ = dx∫ x p *ψ(x) , 

comparing these tells me 
  

€ 

x p =
1
2π

e+ipx /  

(We've seen this before! These are plane waves, the eigenfunctions of p, written in x space)  
Similarly, 

€ 

x x0 = δ(x0 − x), the eigenfunctions of x, i.e. 

€ 

x0 , written in x space.   

 
I can also write the above in the following equivalent pair of expressions: 

€ 

x'ψ = dx∫ x ' x x ψ

ψ(x') = dx∫ δ(x '−x)ψ(x)
 

 
But we're getting awfully abstract, and I think will stop with "pushing on Dirac notation" so hard at 
this point!  
 
-END DIGRESSION 
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Degeneracy and simultaneous observables: 
 
Suppose we have Hermitian operators A and B, each of which of course has its own complete set 
of eigenfns. Let's define the e-vectors and values of A: 

€ 

ˆ A ua = a ua  

Suppose further that each and every eigenfunction 

€ 

ua  is also an eigenfunction of B.  

This might be possible, or it might not!  
(We've seen that, e.g., the eigenfunctions of H are also all eigenfunctions of Parity, P, as long as 
V(x) is symmetric).   
 
Anyway, if this supposition is o.k., then we have 

€ 

ˆ B ua = b ua . 

But now observe the following: 

€ 

ˆ A ˆ B ua = ˆ A b ua = b ˆ A ua = ba ua
ˆ B ˆ A ua = ˆ B a ua = a ˆ B ua = ab ua

⇒ ( ˆ A ˆ B − ˆ B ˆ A ) ua = 0

 

 
This wouldn't be all that interesting except remember that I'm supposing that it is true for each and 
every eigenfunction 

€ 

ua ! Consider what the commutator [A,B] does when acting on any old 

function, 

€ 

ψ(x).  
A is Hermitian => the eigenfunctions of A span the space=>  
we can expand ψ (x)  in eigenfunctions of A => 

€ 

[ ˆ A , ˆ B ]ψ(x) = ( ˆ A ˆ B − ˆ B ˆ A )ψ(x) = ( ˆ A ˆ B − ˆ B ˆ A ) ca ua
a
∑

= ca( ˆ A ˆ B − ˆ B ˆ A ) ua
a
∑ = 0

 

which  means that [A,B]=0.   
 
We say that A and B are compatible in this case. We can simultaneously know the eigenvalue of 
both of the operators, or we say A and B have simultaneous eigenvectors.  (Remember, that was 
our starting assumption at the top - that every eigenfunction of A was also an eigenfunction of B.)  
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We have only shown that if A and B have simultaneous eigenvalues, then they must commute. 
Does it work the other way?  
It does, although there are again some subtleties involved if there are degeneracies.  
To see it work the other way, suppose [A,B]=0. Then:  

€ 

ˆ A ˆ B ua = ˆ B ˆ A ua = ˆ B a ua = a ˆ B ua

⇒ ˆ A ˆ B ua( ) = a ˆ B ua( )
 

Stare at that last line. It is of the form A ("something") = a ("something"), 
and implies that the "something" is an eigenvector of A, with eigenvalue a. 
Now, if the eigenfunctions of A are non-degenerate, then each eigenvalue has by definition one 
and only one corresponding eigenfunction, implying: 

€ 

ˆ B ua ∝ ua   ,    i.e.  ˆ B ua = b ua  . 

Thus, if A and B commute, then indeed the operators will have simultaneous eigenvectors, but 
only if A has a "non-degenerate" spectrum. 
 
What if A does have some degeneracy? Let's suppose for simplicity that it is just 2-fold, i.e. 

€ 

ˆ A ua
(1)(x) =aua

(1)(x)

ˆ A ua
(2)(x) =aua

(2)(x)
 

Knowing (as I showed above) that 

€ 

ˆ A ˆ B ua
(i) 

 
 

 
 
 = a ˆ B ua

(i) 
 
 

 
 
  merely tells me that 

€ 

ˆ B ua
(i)  must 

be some linear combination of 

€ 

ua
(1)   and ua

(2) . 

The Gram-Schmidt  procedure is what you use here two find 2 orthogonal combinations of 

€ 

ua
(1)   and ua

(2)  which are themselves eigenfunctions of B.  

(They might be degenerate in B, or might not be.)  
 
Bottom line:  If [A,B]=0, then (even if A has degeneracies), we can still always generate an 
orthogonal basis of vectors which are all simultaneously eigenfunctions of B as well. 
 
If we are unlucky, and some degeneracy in B still exists, there must be a 3rd operator, C, which 
satisfies [A,C]=[B,C]=0 and now we can find an orthonormal basis which are simultaneously e-fns 
of A,B, and C, and (hopefully) with distinct eigenvalues for operator C. (If not, you may need a D, 
and E, etc...) At some point, you will have a set of operators, A, B, C, ... M, which all commute 
with each other, and which have a common set of eigenfunctions, and each and every such 
eigenfunction will have a distinct set of eigenvalues.  
This set of operators (and eigenvalues) completely characterizes any wave function: 

€ 

ˆ A uabc...m (x) =auabc...m (x)

ˆ B uabc...m (x) =buabc...m (x)
 

etc. , and the set of numbers a,b,... m characterize the state fully. 
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What if [A,B] is not  zero? Then, we cannot simultaneously know the eigenvalues of A and B, in 
general. Let's quantify: 
 
Pick a state, 

€ 

ψ0 , any state. Define the uncertainty of an operator, A, in that particular state in the 
usual way we have all semester: 

€ 

(ΔA)2 ≡ A2 − A 2
= A2 − 2 A 2

+ A 2
= A2 − 2A A + A 2

= A − A( )2 , 
 
The Schwartz inequality is a completely general theorem, which says  

€ 

ψ ψ ϕ ϕ ≥ ψ ϕ
2
 for any phi and psi. (Kind of looks like (1)(1) >=cos 2 θ , doesn't it?) 

 
Next, we define a particular psi and phi (which, like anything, will have to obey the above 
Schwartz inequality): 

€ 

ψ ≡ ˆ A − A( )ψ0 ,

ϕ ≡ ˆ B − B( )ψ0 ,
 

Observe: 

€ 

ψ ψ ≡ ψ0
ˆ A − A( ) ˆ A − A( )ψ0 ≡ ΔA2. 

and, similarly,  

€ 

ϕ ϕ ≡ ΔB2. 
So the Schwartz inequality for this particular case reads 

€ 

(ΔA)2(ΔB)2 ≥ ψ0 A − A( ) B − B( )ψ0
2

= ψ0 AB − A B − B A + A B( )ψ0
2

= ψ0 AB − A B( )ψ0
2

 

But we know expectation values of Hermitian operators are always real. And we can also write 
that the square of any complex number z obeys the following inequality: 

€ 

z 2 = (Re z)2 + (Imz)2 ≥ Im(z)2 =
1
2i
(z − z*)

 

  
 

  

2

 

Making use of this in our last expression we find 

€ 

(ΔA)2(ΔB)2 ≥
1
2i

ψ0
ˆ A ̂  B ψ0 − ψ0

ˆ A ̂  B ψ0
* 

 
 

 

 
 

 

 
 

 

 
 

2

=
1
2i

ψ0
ˆ A ̂  B ψ0 − ψ0

ˆ B ̂  A ψ0( ) 

  
 

  

2

=
1
2i

ψ0 [ ˆ A , ˆ B ]ψ0
 

  
 

  

2

=
1
4

i[ ˆ A , ˆ B ]
2

 

If [A,B]=0, then we just showed basically nothing at all, we have the trivial identity

€ 

(ΔA)2(ΔB)2 ≥ 0 
(Which implies that you could know A and B both, simultaneously) 
But if [A,B] is NOT zero, then you get something interesting!  
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Consider for example x and p, where we have   

€ 

[x, p] = i ,   

this means 
  

€ 

(Δx)2(Δp)2 ≥ 1
4
i i 2

= 2 /4  

i.e., 
  

€ 

ΔxΔp ≥  /2 
 
Apparently, x and p are incompatible observables. (Incompatible observables do not share a 
complete set of common eigenvectors) 
 
We have just derived the Heisenberg Uncertainty principle purely by using operator properties. 
There was no discussion of waves, or wavefunctions, or Fourier transforms, or anything! 
It depends only on the observed properties, and not on the particular object which you are looking 
at!  It is a fundamental statement about the operators x and p!  
 
Final topic: Time dependence 
 
Consider the time evolution of the expectation value of any operator, O: 

€ 

d
dt

ˆ O =
d
dt

ψ ˆ O ψ =
∂ψ
∂t

ˆ O ψ + ψ
∂ ˆ O 
∂t

ψ + ψ ˆ O ∂ψ
∂t

. 

 
The Schrod equation tells us what the time evolution of wave fns is: 

  

€ 

i ∂ψ
∂t

= ˆ H ψ  

 
Putting this into the first equation gives  

  

€ 

d
dt

ˆ O =
1
−i

ˆ H ψ ˆ O ψ +
∂ ˆ O 
∂t

+
1
i
ψ ˆ O ˆ H ψ  

But H is Hermitian => 

€ 

ˆ H ψ ˆ O ψ = ψ ˆ H ˆ O ψ  
 
We thus have 

  

€ 

d
dt

ˆ O =
i

ψ ˆ H ˆ O − ˆ O ˆ H ψ +

∂ ˆ O 
∂t

=
i

ψ [ ˆ H , ˆ O ]ψ +

∂ ˆ O 
∂t

 

 
Most operators don't have any explicit time dependence, so that last term generally vanishes!  (E.g. 
if O is x, or p, or p^2/2m, or V(x), or Parity, or anything like this, the last term vanishes.) It's only 
if you explicitly see a "t" in the operator that you must include it, like e.g. if you had a potential 
which looked like V= Asin ωt , or something...  
 
Example 1:  
 

  

€ 

d
dt

x =
i

ψ [ p

2

2m
+V (x),x]ψ  

[V(x),x]=0, and it's not hard to work out 
  
[ p2 , x] = 2

i
p  which means 

€ 

d
dt

x = p /m       An old friend! We've seen and used this many times this term.  
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Example 2:  

  

€ 

d
dt

p =
i

ψ [ p

2

2m
+V (x), p]ψ  

 
This time, [p2,p]=0, and we need to work out [V(x), p]: 
 

  

€ 

[V (x), p] f (x) =V (x) 
i
∂f
dx

−


i
∂
dx
(V (x) f (x)) = −



i
∂V (x)
dx

f (x)

⇒ [V (x), p] = −


i
V '(x)

 

In this case, 

€ 

d
dt

p = − ψ
dV (x)
dx

ψ  

 
which is Ehrenfest's theorem. Proving it directly using Schrodinger's equation (integrating by parts 
repeatedly) is a big pain, and took over a full page of algebra in my solutions to an old homework 
problem from a very early set.  With this technique, it's an easy 2 liner! 
 
Example 3: 
 

  

€ 

d
dt

ˆ H =
i

ψ [ ˆ H , ˆ H ]ψ +

∂ ˆ H 
∂t

 

 
Clearly, any operator commutes with itself. So, unless the Hamiltonian has an explicit time 
dependence (e.g. an explicitly time dependent potential), the expectation value of energy is 
conserved, as you would certainly hope! Nice.... 
 


