Basic Programming Concepts

CS10001: Programming \& Data Structures

Pallab Dasgupta
Professor, Dept. of Computer Sc. \& Engg.,
Indian Institute of Technology Kharagpur

Some Terminologies

- Algorithm / Flowchart
- A step-by-step procedure for solving a particular problem.
- Independent of the programming language.
- Program
- A translation of the algorithm/flowchart into a form that can be processed by a computer.
- Typically written in a high-level language like C, C++, Java, etc.

Variables and Constants

- Most important concept for problem solving using computers
- All temporary results are stored in terms of variables
- The value of a variable can be changed.
- The value of a constant do not change.
- Where are they stored?
- In main memory.

Contd.

- How does memory look like (logically)?
- As a list of storage locations, each having a unique address.
- Variables and constants are stored in these storage locations.
- A variable is like a bin
- The contents of the bin is the value of the variable
- The variable name is used to refer to the value of the variable
- A variable is mapped to a location of the memory, called its address

Memory map

Every variable is mapped to a particular memory address

\square Address N -1

Variables in Memory

Instruction executed
Variable X

$$
X=10
$$

T

$$
X=20
$$

20
m
e

$$
X=X+1
$$

21
$X=X * 5$
 105

Variables in Memory (contd.)

Instruction executed

$$
X=20
$$

$$
Y=15
$$

m
e

$$
X=Y+3
$$

T

Data Types

- Three common data types used:
- Integer :: can store only whole numbers
- Examples: 25, -56, 1, 0
- Floating-point :: can store numbers with fractional values.
- Examples: 3.14159, 5.0, -12345.345
- Character :: can store a character
- Examples: 'A', 'a', ‘*', '3', '’, '+'

Data Types (contd.)

- How are they stored in memory?
- Integer ::
- 16 bits
- 32 bits
- Float ::
- 32 bits

Actual number of bits vary from one computer to another

- 64 bits
- Char ::
- 8 bits (ASCII code)
- 16 bits (UNICODE, used in Java)

Problem solving

- Step 1:
- Clearly specify the problem to be solved.
- Step 2:
- Draw flowchart or write algorithm.
- Step 3:
- Convert flowchart (algorithm) into program code.
- Step 4:
- Compile the program into object code.
- Step 5:
- Execute the program.

Flowchart: basic symbols

Computation

Input / Output

Decision Box

Start / Stop

Contd.

Connector

Example 1: Adding three numbers

Example 2: Larger of two numbers

Example 3: Largest of three numbers

Example 4: Sum of first N natural numbers

Example 5: $S U M=1^{2}+2^{2}+3^{2}+N^{2}$

Example 6: SUM = 1.2 + 2.3 + 3.4 + to N terms

Example 7: Computing Factorial

Example 8: Computing e^{x} series up to N terms

Example 8: Computing e^{x} series up to 4 decimal places

Example 10: Roots of a quadratic equation

$a x^{2}+b x+c=0$

TRY YOURSELF

Example 11: Grade computation

```
MARKS \geq90 }\quad->\mathrm{ Ex
89 \geqMARKS \geq80 }->\mathrm{ A
79 \geqMARKS \geq70 }->\mathrm{ B
69 \geqMARKS \geq60 }->\mathrm{ C
59 \geqMARKS \geq50 }->\mathrm{ D
49 \geqMARKS \geq35 }->\mathrm{ P
34\geqMARKS }\quad->\mathrm{ F
```


Grade Computation (contd.)

