
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS  
 

Dhahran, Saudi Arabia  
 
 

 
 

Basic Properties of Reservoir 
Rocks  

 
 
 
 

By  
 

Dr. Sidqi A. Abu-Khamsin  
 

Professor, Department of Petroleum Engineering 
 
 
 
 
 
 
 
 
 
 

© Copyright by Dr. Sidqi A. Abu-Khamsin, August 2004  
All rights reserved. No part of this book may be reproduced, stored in a 

retrieval system, or transmitted, in any form or by any means, electronic, 
mechanical, photocopying, recording, or otherwise, without the prior written 

permission of the author. 



Contents 
 

Chapter 1. INTRODUCTION 1 

1.1 The nature of petroleum 1 

1.2 The petroleum reservoir 1 

1.3 Significance of rock properties 1 

Chapter 2. POROSITY 3 

 2.1 Definition 3 

 2.2 Types of porosity 6 

 2.3 Measurement of porosity 8 

  2.3.1 Direct methods 8 

  2.3.2 Indirect methods 13 

Chapter 3. ROCK COMPRESSIBILITY 15 

 3.1 Definition 15 

 3.2 Significance 15 

 3.3 Measurement of compressibility 17 

 3.4 Applications 19 

Chapter 4. FLUID SATURATION 20 

 4.1 Definition 20 

 4.2 Measurement of saturation 20 

  4.2.1 Direct methods 20 

  4.2.2 Indirect methods 22 

Chapter 5. ROCK RESISITIVITY 23 

 5.1 Definition 23 

 5.2 Significance 23 

 5.3 Mathematical formulations 24 

 5.4 Resisitivity log 25 

Chapter 6. ROCK PERMEABILITY 28 

 6.1 Definition 28 

 6.2 Differential form of Darcy’s law 29 

 6.3 Measurement of permeability 30 

 6.4 Applications 33 

  6.4.1 Linear flow 34 

  ii



  6.4.2 Radial flow 43 

 6.5 Complex flow systems 47 

 6.6 Averaging permeability 50 

  6.6.1 Beds in parallel 50 

  6.6.2 Beds in series 53 

 6.7 Multi-fluid saturations 56 

Chapter 7. FLUID-ROCK INTERACTION 60 

 7.1 Surface tension 60 

 7.2 Interfacial tension 62 

 7.3 Wettability 62 

 7.4 Capillary pressure 63 

 7.5 Capillary pressure in porous rock 67 

 7.6 Measurement of capillary pressure 71 

 7.7 Applications of capillary pressure 73 

 7.8 Correlating capillary pressure data 76 

Chapter 8. EFFECTIVE AND RELATIVE PERMEABILITY 81 

 8.1 Effective permeability 81 

 8.2 Measurement of effective permeability 83 

 8.3 Correlating effective permeability 87 

 8.4 Smoothing relative permeability data 87 

 8.5 Estimation of relative permeability 90 

 8.6 Three-phase relative permeability 93 

 8.7 Applications of relative permeability 95 

Appendix A. CONVERSION FACTORS 98 

References   99 

  iii



1. INTRODUCTION 
1.1: The nature of petroleum 

All chemical compounds found in nature are classified as either organic or inorganic. 

Organic compounds are those that contain carbon; and one condition in this classification is 

that the carbon atoms must be covalently bonded to some of the other atoms in the molecule. 

An important group within the organic family of compounds is the hydrocarbons, which are 

compounds composed of carbon and hydrogen only. Hydrocarbon molecules range in size 

and complexity from simple methane (CH4) to asphaltenes containing hundreds of carbon 

atoms. 

Like coal, petroleum constitutes a prime source of hydrocarbons in nature. It is a 

mixture of hundreds of thousands of compounds and is found in many forms: in the gaseous 

state as natural gas, in the liquid state as crude oil, or in the solid state as tar and bitumen. 

Petroleum is mostly found trapped within sedimentary rocks at various depths below the 

surface of the earth where it has accumulated over millions of years. 

1.2: The petroleum reservoir 

A petroleum trap is a geological structure where petroleum accumulates within a 

layer (formation) of sedimentary rock and cannot move out of it. The obstacle to the 

movement of petroleum is caused by the geometry of the layer or its properties, the 

properties of adjacent layers, or all of these factors combined. A typical trap is the anticline, 

formed when several sedimentary layers become folded as shown in Fig. 1.1. Here in this 

example, petroleum migrates from where it is generated deep under the surface into the 

limestone layer. By doing so, petroleum displaces water that originally fills the layer. 

Because petroleum is lighter than water, it accumulates at the top of the structure. However, 

the anhydrite layer above the limestone is too impervious to allow petroleum to continue its 

movement upwards, which causes the petroleum to remain trapped in the limestone. 

Discovering a petroleum trap does not necessarily mean that petroleum can be 

produced (recovered) economically from it. This depends on two key factors: (1) the quantity 

of petroleum within the trap and (2) the rate at which it can be produced. If these two 

parameters justify the cost of production then the trap is considered a petroleum reservoir. 

1.3: Significance of rock properties 

The quantity of recoverable petroleum in a trap and the rate at which it can be 

produced depend primarily on the properties of the trap rock and the fluids it contains. Some 

properties determine the total volume of petroleum in the trap; others limit the fraction of 
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this volume that can be recovered. The rate of flow is dictated by other rock properties and in 

conjunction with some fluid properties. In this book, basic rock properties that aid in 

determining the reservoir quality of a trap will be presented. Moreover, fluid properties that 

control, alone or with other rock properties, the rate of flow will be presented as well. 
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Fig. 1.1:  Anticline trap  
 
1.4: Sources of rock samples 

Most rock properties are estimated from rock samples obtained from the reservoir. 
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2. POROSITY 
2.1: Definition 

Sedimentary rocks are invariably made up of grains of various sizes that are held 

together by fusion forces or other cementing material. The grains are composed of fragments 

of crystals of one or more rock minerals, all fused together. In sandstone, the predominant 

mineral is quartz (SiO2); in limestone, the mineral is calcite (CaCO3). The cementing 

material is crystals of minerals that are deposited between the grains during or after the 

sedimentation process. These minerals could be similar to the ones that make up the grains or 

others such as anhydrite, dolomite, and clay minerals. 

If the grains have regular shapes with plain surfaces, e.g., cubes, then they could fit 

together in an orderly manner during sedimentation (Fig. 2.1-a). This way, no spaces are left 

between the grains and the whole body of the rock is solid material. However, rock grains 

are never regular in shape, which results in many spaces (pores) left between them (Fig. 2.1-

b). Even if the grains are perfect spheres, they could not be packed together perfectly - like 

the cubes - no matter how we try. Therefore, the body of the rock is not entirely solid, rather 

a fraction of it is actually space. The spaces between the grains are called pores and the total 

volume of pores in a sample of rock is called its pore volume. The net volume of the grains is 

called the grain volume. 

 
 
 
 
 
 
 
 
 

(a)  Ordered packing of cubes (b)  Random packing of irregular shapes  
 

Fig. 2.1:  Packing of two different sorts of grains  
 
 

Obviously, the total volume of a sample – termed the bulk volume – is the sum of 

both the grain volume, Vg, and the pore volume, Vp. 

 Vb  = Vp + Vg (2.1)  

where 

 Vb  : bulk volume, cm
3
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This leads to a basic rock property called the porosity, which is defined as the fraction of the 

bulk volume of a sample that is pore space. In mathematical terms, 

 ϕ = Vp / Vb (2.2) 

where 

 ϕ : absolute porosity, fraction 

Knowledge of the porosity of a sample of rock enables us to estimate its pore volume 

since its bulk volume can be easily determined. If this sample is representative of the 

reservoir, i.e., the reservoir rock is the same everywhere, then the pore volume of the entire 

reservoir can be estimated by Equ. 2.2 using the sample’s porosity. The bulk volume of the 

reservoir is computed by simple arithmetic from its area and average thickness. Since the 

maximum volume of fluids a reservoir can contain is equal to its pore volume, porosity 

becomes a primary property that must be determined most accurately. 

_______________________________________ 

Example 2.1 

Suppose a rectangular reservoir is 10 miles long, 3 miles wide and 100 feet thick; and 

suppose the porosity of a rock sample obtained from the reservoir is 22%. The bulk volume 

of the reservoir is then 

 Vb  = 10 x 5280 x 3 x 5280 x 100 

  = 8.364 x 1010 ft3

and its pore volume is 

  Vp  = 8.364 x 1010 x 0.22 

  = 1.840 x 108 ft3

  = 3.277 x 107 bbl 

Note: Units most commonly used in the petroleum industry and their conversion factors are 

listed in Appendix A. 

_______________________________________ 

Porosity is seldom constant within a reservoir; it varies with location and depth. To 

compute the average porosity, a simple weighted-mean formula is applied: 

 ϕ  = ( bii VϕΣ ) / Vb 

where 

 ϕ    : average porosity of whole reservoir 

 ϕ i    : average porosity of a given section (i) in the reservoir 

 Vbi     : bulk volume of section (i) 
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The summation should include all sections of the reservoir. 

_______________________________________ 

Example 2.2 

The contour map below depicts porosity variation within a reservoir. The lines connect 

points of equal porosity. If the reservoir is 10 miles long, 3 miles wide, and 100 feet thick, its 

average porosity is estimated as follows: 

There are 4 sections within the reservoir, the area and average porosity of each are computed 

to be: 

Section Area (ft2) Avg. Porosity (%)

1 155,399,147 12.5 

2 277,261,208 17.5 

3 122,322,723 22.5 

4 14,303,684 25.0 

Total   569,286,762  

Since the reservoir thickness is uniform, section areas only are used in the computation.  

 ϕ  = ( iiAϕΣ ) / A 

  = 9,904,413,847 / 569,286,762 

  = 17.4 

10 
15

20
25

 
_______________________________________ 
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2.2: Types of porosity 

Because of the variety and complexity of sedimentation processes, several types of 

porosity could be created. Usually, the porosity that arises after initial sedimentation is 

simple. All grains are loosely packed and pores within the sediments are connected. Fluids 

can later on move through and fill the entire pore space. Invariably, however, secondary 

processes alter the pore space by several ways. As the weight of the sediments increase, 

compaction presses grains closer to each other causing some pores to be closed and isolated 

from the rest of the pore space (Fig. 2.2). Although compaction reduces the pore volume a 

little, more importantly, it makes some of the pore space inaccessible to fluid flow. 

Therefore, part of the fluids within the reservoir cannot be produced as it is trapped within 

the isolated pores. The effective porosity is defined, hence, as the fraction of the bulk volume 

of a sample that is connected pore space.  

 
Isolated pores  

 

 

 

 

 

 

 
Fig. 2.2:  Isolated pores in a compacted bed  

Reduction of pore volume and isolation of pores can also be a result of secondary 

deposition. Brines that flow through the rock could deposit minerals of various types 

between the grains, usually at the grain-to-grain contacts. Such deposits cement grains 

together, but could also plug pore throats or even fill entire pores. In other instances, brine 

can dissolve some of the grain material causing pore enlargement, which creates extra 

porosity (Fig. 2.3-a). For this reason, the initial porosity is referred to as the primary, 

intergranular or matrix porosity while the added porosity is referred to as the secondary 

porosity. Secondary porosity can also be created by cation exchange between the water and 

the rock. For example, some of the calcium ions in a calcite crystal may be replaced by 

magnesium ions from the brine, which forms the mineral dolomite (MgCa(CO3)2). Since 

dolomite has a smaller molar volume than calcite, this causes shrinkage of the grains and, 

thus, secondary porosity (Fig. 2.3-b). Fractures created within the rock also contribute to 

secondary porosity (Fig. 2.3-c). 
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 (a)  Secondary porosity by solution 
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(b)  Secondary porosity by dolomitization of calcite           
 
 

Fracture 
 
 
 
 
 
 
 
 
 
 
 
 
 (c)  Secondary porosity by fractures  
 

Fig. 2.3:  Examples of secondary porosity  
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2.3: Measurement of porosity 

Estimates of reservoir porosity can be obtained from several sources both direct and 

indirect.  

2.3.1: Direct methods 

Direct measurements are conducted on samples of the reservoir rock recovered 

during drilling of wells. These samples could be rock fragments (cuttings) that are brought 

up to the surface by the drilling mud or samples cut during coring operations, which are 

called cores. Core samples are more desirable since they are relatively larger and more 

uniform, and their depth is known precisely. Small pieces, called core plugs, are usually cut 

from the cores for use in various tests. The plugs or cuttings are first cleaned with solvents to 

remove their fluid content of oil and water and then dried. 

To determine porosity of a sample, all that is needed is to estimate two of the three 

parameters in Equ. 2.1. We will start with the bulk volume since it is usually the easiest to 

determine. 

Bulk volume estimation 

If the sample is regular in shape, e.g., a cylindrical core plug, then Vb is computed 

from its length and cross-sectional area. 

 Vb  = Ac L (2.3)  

where Ac is the core plug cross-sectional area in cm
2 and L is the core plug length in cm. If 

the sample is irregular in shape, e.g., a cutting, then Vb is estimated by submerging it in 

water and measuring the volume of water it displaces (Fig. 2.4-a). To prevent water from 

entering the sample's pores, the sample is first coated with a thin layer of wax or varnish. The 

volume of the coating must obviously be subtracted later; this volume is determined from the 

mass of the coating and the density of the coating material. Mass of the coating is obtained 

from the difference in the mass of the sample before and after coating. 

Grain volume estimation 

If the rock is predominantly composed of one mineral, e.g., quartz, then the mass of 

the clean and dry sample, ms, divided by the density of the mineral, ρg, equals the total 

volume of the grains 

 Vg  = ms / ρg (2.4) 

If the rock is composed of many minerals whose types and volume fractions are 

known, an average grain density, gρ  must then be estimated as follows: 
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 gρ    = ∑ vi ρgi (2.5) 

where 

 vi  : volume fraction of mineral i 

 ρgi   : density of mineral i, g/cm3 
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(b) Grain volume (a) Bulk volume   
 
  
 
_______________________________________ 

Fig. 2.4: Measurement of volume by submerging in water 

Example 2.3 

An irregular piece of sandstone is 35.25 grams in mass. When coated with varnish, its mass 

increased to 36.55 grams. Compute the rock porosity if the coated sample displaces 15.7 ml 

of water when fully submerged. ρg = 2.65 g/cm3, ρw = 1.00 g/cm3, ρv = 1.80 g/cm3. 

 Vg  = 35.25 / 2.65 

  = 13.30 cm3

 Vv  = (36.55 – 35.25) / 1.80 

  = 0.72 cm3
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 Vb = 15.70 – 0.72 

  = 14.98 cm3

 ϕ = (14.98 – 13.3) / 14.98 

  = 0.112    =    11.2% 

Note: This value is the absolute porosity. 

_______________________________________ 

Sometimes the rock's mineral composition is unknown. We can still determine Vg by 

liquid displacement. An uncoated sample is submerged in water or another suitable liquid 

and left for a sufficient time to ensure that all the pore space has been filled. Then, while 

suspended in the liquid by a string, the sample is weighed (Fig. 2.4-b). The difference in the 

sample’s weight before and after submerging is equal to the weight of liquid displaced, 

whose volume must be equal to the grain volume. For this procedure to be effective, all the 

air present within the sample must be displaced by the liquid, which is rather impossible as 

some air will be trapped within the smaller pores. And even if complete air displacement is 

achieved, only the connected pore space will be filled leading to a Vg value larger than the 

true one. It should be noted, then, that while Equ. 2.4 results in computing the absolute 

porosity, the liquid displacement procedure results in the effective porosity. 

_______________________________________ 

Example 2.4 

The varnish coating on the sample of Example 2.3 was removed and the sample was 

submerged in water. When air bubbling stopped, the sample was weighed while suspended 

in water. It weighed 21300 dynes. Assuming that you don't know the rock composition, 

compute the rock porosity. 

 Weight of sample in air = 35.25 x 980 = 34,545 dynes 

 Weight of sample in water =  21,300 dynes 

 Weight of displaced water = 34545 – 21300 = 13,245 dynes 

 Volume of displaced water = 13245 / (980 x 1) = 13.52 cm3

 Vg  = 13.52 cm3

 ϕ = (14.98 – 13.52) / 14.98 

  = 0.097    =    9.7% 

Note: This value is the effective porosity. 

_______________________________________ 
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Pore volume estimation 

Estimating Vg requires simple procedures and, usually, available equipment. On the 

other hand, direct measurement of the pore volume provides a more accurate porosity value. 

However, this requires some additional instruments. A simple method starts with weighing 

the sample in air followed by placing the sample in a vacuum flask (Fig. 2.5-a) for a few 

hours. Water is then introduced into the flask gradually until the sample is completely 

submerged (Fig. 2.5-b). The sample is then removed from the flask, shaken to remove excess 

water and then weighed quickly. The increase in the mass of the sample is equal to the mass 

of water introduced into the sample, and the volume of the water is equal to the connected 

pore volume. Care must be taken to minimize water evaporation; and if the rock contains 

clay minerals that absorb water, another liquid – oil, mercury, or KCl brine – must be used 

instead. 

 

liquid 
reservoir 

Vacuum valve 

Vacuum gauge 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) under vacuum (b) saturated  
 
 Fig. 2.5: Pore volume measurement by the liquid saturation method 
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_______________________________________ 

Example 2.5 

A sandstone core plug is 1 inch in diameter, 2 inches long, and has a mass of 56.6 grams. 

When completely saturated with water, its mass increases to 60.9 grams. Compute the rock 

porosity. 

 Mass of water in sample = 60.9 – 56.6 = 4.3 grams 

 Volume of water  = 4.3 / 1 = 4.3 cm3

 Vb  = π (0.5 x 2.54)2 x 2 x 2.54 = 25.74 cm3

 ϕ = 4.3 / 25.74 = 16.7% 

Note: The absolute porosity of the sample computed from its estimated grain volume is 17%. 

_______________________________________ 

Another method utilizes gas expansion to fill the pore space of the sample, and it 

requires a special instrument called a porosimeter (Fig. 2.6). In this method, the sample is 

first placed in a chamber and placed under vacuum to remove all air within it. Then gas, 

usually helium, is allowed to expand from a container of known volume and initial pressure 

into the chamber. By application of Boyle’s law, the final volume of the gas is computed 

from its final pressure. The increase in the gas volume is equal to the connected pore volume 

of the sample plus the dead volume in the chamber and tubing. 

 
 
 
 

Pressure 
gauge 

Core and core chamber 

Gas Container 

Valve

 
 
 
 
 To vacuum pump 

and gas source  
 
 
 
 
 
 
 
 

Fig. 2.6: Gas expansion porosimeter  
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2.3.2: Indirect methods 

Indirect methods of estimating porosity rely on measurement of other rock and fluid 

properties. These measurements are carried out in the well employing special instruments as 

part of well logging operations. Therefore, no core samples are needed and the porosity is 

estimated for the rock as it exists in the reservoir. Two of the most common well logs are 

discussed below. 

The sonic (acoustic) log 

In this log, the instrument - the sonde - generates sound waves, which travel through 

the reservoir - in the vicinity of the well bore - and are detected by the sonde upon their 

return. The time lapse between generation and detection – travel time - is recorded 

continuously versus the depth of the instrument. Since travel time is related to porosity by 

 Δtlog = ϕ Δtf + (1 - ϕ)Δtma (2.6) 

where 

 Δtlog  : sound travel time in the reservoir as measured by the log, μs   

 Δtma  : sound travel time in the grain material of the reservoir, μs    

 Δtf    : sound travel time in the fluids of the reservoir, μs 

and since Δtma and Δtf are usually known for the reservoir, the porosity can be estimated at 

all depths. 

The formation density log 

Another logging sonde emits gamma rays, which mostly pass through the reservoir rock and 

fluids, but some are scattered back into the well bore and are detected by the sonde. The 

fraction of scattered gamma rays is used to compute the bulk density - rock and fluids - of 

the reservoir, which is related to porosity by 

 ρlog = ϕ ρf + (1 - ϕ)ρma (2.7) 

where 

 ρlog  : bulk density of the reservoir as measured by the log, g/cm3   

 ρma  : density of the grain material of the reservoir, g/cm3

 ρf    : density of the fluids of the reservoir, g/cm3 

Since laboratory values of the porosity are more reliable, these are used to correct log-

estimated values at the same depth(s) of the core sample(s), and then the same correction is 

applied to the entire thickness of the reservoir. It should be noted that both logs provide 

estimates of the absolute porosity. 
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_______________________________________ 

Example 2.6 

A sonic log measured travel time of 58 μs for a formation. If the formation is primarily 

limestone (46 μs) and contains oil only (190 μs), compute the rock porosity. 

 Rearrange Equ. 2.6 

 ϕ = 
maf

malog

tt
tt

Δ−Δ

Δ−Δ
 

  = 
46190
4658

−
−  

  = 8.3% 

Note: This value is the average absolute porosity of the formation. 

_______________________________________ 

Exercises 

1. Suppose we pack spherical balls, all of the same size, in a cubic packing arrangement. 

What will the porosity of the medium be? 

2. Suppose the balls of Exercise 1 have 1 mm diameter. How big are the largest balls that 

we can fit in between them? What will the new porosity be? 

3. A core plug 1 inch in diameter and 2 inches long is placed in the chamber of a gas 

expansion porosimeter whose container is 20 cm3 large. The initial and final pressure 

readings are 25 and 21 psi, respectively. Ignoring the dead volume of the apparatus, 

what is the porosity of the sample? 

4. A dry and clean core sample 1 inch in diameter and 4 inches long weighs 120 grams. 

Mineral analysis shows that the grains are 80% (by volume) calcite and 20% anhydrite. 

Estimate the sample's porosity. (ρca = 2.71 g/cm3, ρan = 2.98 g/cm3) 

5. Suppose the core sample of Problem 4 was obtained from a formation which contains 

only water (ρw = 1 g/cm3). In one location of the formation, the density log measured a 

bulk density of 2.48 g/cm3, what is the formation's porosity at that location? 
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3. ROCK COMPRESSIBILITY 
3.1: Definition 

The compressibility of a substance is defined as the shrinkage of a unit volume of the 

substance per unit increase in pressure. In equation form: 

 c = - 
TP

V
V
1

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂  (3.1) 

where 

 c  : compressibility, psi-1 

 V  : volume, ft
3

 P  : pressure, psi 

 T : temperature, °F 

Since volume always decreases with increase in pressure, the partial derivative in Equ. 3.1 is 

negative. Therefore, the minus sign is added to give a positive compressibility value. Note 

that compressibility varies slightly with temperature, which explains why the derivative is 

fixed at a given T. All minerals found in sedimentary rocks are elastic, i.e., they show 

compressibilities of various magnitudes. Quartz, for example, has a compressibility of about 

2 x 10-8  psi-1 at 68 °F. 

3.2: Significance 

Buried deep under the surface, reservoir rock is exposed to a large overburden 

pressure, Pob, created by the weight of all rock strata above it. This pressure is transmitted 

from grain to grain at the points of contact. Another pressure that is exerted on the grains of 

the rock is the pressure of the fluids within the pore space. This pore pressure, Pp, is usually 

equal to the hydrostatic pressure at the depth of the reservoir and is mostly independent of 

Pob. One can imagine a wall built with hollow bricks. The Pob felt by the bottom bricks 

corresponds to the weight of the wall while Pp within the cavities of the bricks is the 

atmospheric pressure of air that can move freely through them. 

Reservoir engineers are interested in rock compressibility because of its effect on 

porosity, both in laboratory measurement and during the life of the reservoir. Let us first look 

into laboratory measurement. Suppose a core sample is cut from a sandstone reservoir 6000 

feet deep, where a reasonable Pob would be 6000 psia. If a quartz grain within the sample has 

a reservoir volume of 1 mm3, its volume in the laboratory where Pob is atmospheric, would 

increase by 

 ΔV = - c V ΔP 
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  = - 2 x 10-8 x 1 x (14.7 - 6000) = 0.00012 mm3

Remember, this is the expansion of one grain only; millions of other grains would expand as 

well. Since an increase in the grain volume causes an equal decrease in the pore volume of 

the core sample, an error, though very insignificant, would be inherent in the laboratory- 

determined porosity. However, a more significant error is introduced because of another 

effect. As Pob increases, the grains are also brought closer together because of compaction. 

Taking the core sample to the surface reverses this process and causes significant increases 

in both bulk and pore volumes. Both increases, though, are difficult to relate to the matrix 

(grain material) compressibility. 

Similarly, Pp in the laboratory is very low compared to its value in the reservoir, 

which causes further expansion of the grains and some collapse in the bulk volume. This 

phenomenon is similar to deflating a piece of sponge. Thus, an added error is introduced in 

porosity.  

The resultant effect of reduction in Pob and Pp on porosity is difficult to quantify 

analytically. Many workers in the field have proposed empirical correlations that predict 

variation of porosity with pressure. An example is the one presented by Fatt1 and shown in 

Fig. 3.1. In his correlation, Fatt defined the net overburden pressure, Pob,net , as 

 Pob,net = Pob – 0.85 Pp (3.2) 

and the pore volume compressibility as 

 cp = - 
Tp

p

p P
V

V
1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂

∂
 (3.3) 

Assuming that changes in Vb are small compared with changes in Vp, Equ. 3.3 can be 

rewritten as 

 cp = - 
Tnet,obP

1
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
ϕ∂

ϕ
 (3.4) 

Therefore, once cp is estimated from Fig. 3.1 Equ. 3.4 can be used to estimate reduction in 

porosity from lab to reservoir as follows 

 Δφ = - cp φlab ΔPob,net (3.5) 

_______________________________________ 

Example 3.1 

A core plug was obtained from a reservoir where the overburden pressure is 5000 psi and the 

pore pressure is 2200 psi. If the plug shows a porosity of 18% in the laboratory, what is its 
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porosity under reservoir conditions? Assume the pore compressibility follows curve E in Fig. 

3.1.  

 Pob,net  = Pob – 0.85 Pp

   = 5000 – 0.85 x 2200 = 3130 psi 

 From Fig. 3.1, cp = 10 x 10-6 psi-1

 Δφ = - cp φlab ΔPob,net  

  = - 10 x 10-6 x 0.18 x 3130 = 0.0056 

 Therefore, porosity under reservoir conditions is 

 ϕ = 0.18 – 0.0056 

  = 0.1744  or 17.44% 

Note: Under laboratory conditions, net overburden pressure is usually negligible. 

_______________________________________ 

0 2 4 6 8 10 12 

35 

30 

25 

20 

15 

10 

5 

0 

Net overburden pressure, 103 psi 

Cp, 10-6 psi-1
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E 

D 

C 

B 

Fig. 3.1: Variation of pore-volume compressibility with net overburden pressure 

(from Fatt1) 
       

3.3: Measurement of compressibility 

Pore-volume compressibility can be measured in the laboratory by measuring the 

variation in the pore volume of a core sample at different conditions of Pob and Pp. The pore 

volume of the sample is first measured at atmospheric pressure and the reservoir temperature 

following the procedures of Chapter 2. The saturated sample is then loaded into a core holder 
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(Fig. 3.2), which is a device that allows application of different combinations of overburden 

and pore pressures independently. At each set of Pob and Pp, the liquid that is squeezed out of 

the sample is collected, and its volume is used to compute the current porosity. A plot of φ 

versus Pob,net would yield the pore volume compressibility as depicted in Fig. 3.3. 

 
 To 

confining fluid 
pump 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Pressure gauge 
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“O” ring 
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Fig. 3.2: Schematic of a core holder  

 
 
 

Slope = ∂ φ/∂ Pob,net 

Porosity 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Net overburden pressure  
 
 Fig. 3.3: Computation of pore-volume compressibility  
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 3.4: Applications 

Rock compressibility – matrix, bulk or pore – is useful in correcting laboratory-

measured porosity as discussed above. However, other reservoir calculations also require 

compressibility. 

In some well testing techniques, the production rate of an oil well is changed 

suddenly while its pressure is monitored over a period of time.  The transient pressure 

response of the well is influenced by fluid as well as rock compressibilities, and these values 

are needed for an accurate interpretation of the test results.  

Some reservoir engineering calculations require reservoir pore pressure and total 

production data for the estimation of reserves. But since the pore volume of the reservoir 

changes as Pp decreases with production, cp is needed to correct the pore volume from its 

initial value. 

 

Exercises 

1. With the bulk, pore and grain compressibilities defined as 
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respectively, show that the definition of porosity implies 

cb   =    (1 - φ) cg + φ cp

2. The data below was obtained from a compressibility experiment on a core sample whose 

bulk volume is 52.0 cm3 and initial pore volume is 8.82 cm3. The sample's pore space is 

initially filled with water. Estimate the sample's pore-volume compressibility at 1000 

and 2000-psi net overburden pressures. 

Pp (psi) 14.7 50 50 100 100 500 500 1000 1000

Pob (psi) 500 750 1000 1500 2000 2500 3000 3500 4000

Vwp (cm3) 0.222 0.328 0.361 0.452 0.470 0.481 0.487 0.494 0.506
 Vwp is total water squeezed out of sample at each step. 

3. For a reservoir whose pore-volume compressibility is 17x10-6 psi-1, and where 

overburden pressure and pore pressure increase by 1 psi and 0.5 psi, respectively, per 

foot of depth,  show that the porosity decreases by 1% (φ2/φ1 = 0.99) for every 1000 feet 

increase in depth.  
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4. FLUID SATURATION 
4.1: Definition 

The pore space of a petroleum reservoir is never filled completely with hydrocarbons; 

water is always present in the liquid state, and the hydrocarbons can exist in one or more 

states – gas, solid or liquid. The saturation of a given fluid is defined as the fraction of the 

pore space occupied by that fluid. In equation form: 

 Sf  = Vf / Vp (4.1) 

where 

 Sf  : saturation of the fluid, fraction or percent   

 Vf   : total volume of fluid in reservoir or core sample, cm3

 Vp    : total pore volume of reservoir or core sample, cm3 

The sum of all fluid saturations in a reservoir is obviously equal to unity 

 1  = Sw + So + Sg (4.2) 

Knowledge of the average saturation of a fluid, say oil, in a reservoir allows the 

reservoir engineer to estimate the total volume of the fluid in the reservoir simply through 

application of Equ. 4.1. This is the prime utility of saturation. Another, equally important 

utility, is how some fluid-dependent rock properties vary with saturation as will be seen in 

the following chapters. 

The saturation of a fluid in a reservoir seldom remains constant. Water can enter the 

reservoir either naturally - from an adjacent aquifer - or artificially by water injection. Oil 

saturation decreases with oil production and the replacement of oil by another fluid such as 

water. Gas saturation could increase with gas injection into the reservoir or as gas evolves 

naturally from the oil when the pressure drops. The saturations of the different fluids in a 

reservoir are, therefore, measured periodically employing direct and indirect methods. 

4.2: Measurement of saturation 

4.2.1: Direct methods 

Direct measurement methods rely simply on the removal of all liquids – by 

evaporation or extraction - from a core sample and determining their individual volumes. 

Dividing each fluid volume by the pore volume of the sample yields the saturation of that 

fluid. One device used commonly for this purpose is the Modified ASTM Extraction Unit 

(Fig. 4.1). The procedure starts with placing the core sample in a paper thimble and weighing 

them together. The thimble is then placed in the flask, the heater is turned on, and water flow 

through the condenser is started. As the toluene in the flask boils, its vapors rise and exit the 

20 



flask, condense in the condenser and accumulate in the condenser’s graduated tube. Once the 

tube is full, excess toluene refluxes back into the flask flowing through the thimble. Oil 

present in the core sample is extracted by the refluxing toluene and ends up dissolved in the 

bulk toluene mass. 

 

Condenser

Flask

Toluene

Thimble

Core sample

Heater

 
 
 
 
 
 
 
 Graduated tube 
 

Water  
 
 
 
 
 
 
 
 
 
 
 

Fig. 4.1: ASTM extraction unit  
 

The water present in the sample evaporates and condenses back into the graduated 

tube. Since water is heavier than toluene, it sinks to the bottom of the tube rather than 

returning to the flask. Extraction is continued until no more water accumulates in the tube at 

which point heating is stopped and the volume of water is read. When the unit cools down, 

the sample and thimble are removed and placed in a vacuum oven to dry, after which they 

are both weighed again. The mass of the oil is computed by a mass balance on the core 

sample before and after extraction as follows 

 mo = Δmc – Vw ρw (4.3) 

and 

 Vo = mo / ρo

where 

 mo   : mass of oil extracted, g   

 Δmc   : reduction in mass of core sample, g 
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 Vo     : volume of oil extracted, cm3 

 Vw     : volume of water extracted, cm3 

The pore volume of the sample is determined by one of the methods described in 

chapter 2 and the liquid saturations are then computed. It should be noted that if oil and 

water saturations do not add up to 100%, gas must have been present in the sample. 

_______________________________________ 
Example 4.1 
A sandstone core sample 4” long, 1” in diameter with an absolute porosity of 23% was 

cleaned in an extraction unit. The reduction in the sample’s mass was 7.4 g, and 3.2 ml of 

water were collected. If the oil and water densities are 0.88 and 1.02 g/cm3, respectively, 

compute the fluid saturations. 

 

 mw = 3.2 x 1.02  =  3.26 g 

 mo = 7.4 – 3.26  =  4.14 g 

 Vo = 4.14 / 0.88  =  4.7 cm3 

 Vp = 
4
π (1)2 x 4 x 0.23  =  0.723 in3  =  11.84 cm3 

 Sw = 3.2 / 11.84  =  0.27  =  27% 

 So = 4.7 / 11.84  =  0.397  =  39.7% 

 Sg = 100 – 27 – 39.7  =  33.3% 

_______________________________________ 
 

4.2.2: Indirect methods 

Fluid saturations can also be estimated through indirect methods such as 

measurement of rock resistivity and well logging. Both of these techniques will be presented 

in the next chapter. 

 

Exercises 
1. Suppose the oil in a core sample contains material which cannot be dissolved by toluene, 

e.g. wax. How would the oil and water saturations determined by the extraction method 

be affected? 

2. A sandstone core sample (Vb = 49 cm3, Vp = 8.8 cm3, total mass = 115.2 g) contains 

both oil and water (ρo = 0.82 g/cm3, ρw = 1 g/cm3). Compute the fluid saturations. What 

are the uncertainties in your answer? 
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5. ROCK RESISTIVITY 
5.1: Definition 

Resistivity is a measure of the resistance of a substance to the flow of electrical 

current. It is equal to the resistance of a sample of the substance having a volume of unity. 

For samples with regular geometric shapes, the resistivity can be computed as follows 

 R = r A / L (5.1) 

where 

 R   : resistivity of sample, Ωm   

 r  : resistance of sample, Ω 

 A  : cross-sectional area of sample, m2

 L : length of sample, m 

The resistance is measured by a simple electric circuit (Fig. 5.1) where 

 r = V / I (5.2) 

Battery Ammeter 

V 

Sample 

 
 
 

I  
 
 
 
 
 

Fig. 5.1: Measurement of  electrical resistance  
 
 
 
5.2: Significance 

Most rock minerals have very high resistivities; so do all crude oils and natural gas. 

However, water, especially salt water, is an excellent conductor and, thus, shows low 

resistivity. It is this resistivity contrast that is utilized by reservoir engineers to look for oil 

and estimate its saturation within reservoir rock. To illustrate this principle, let us follow a 

simple experiment. Suppose we have an empty rubber tube fitted with a circuit to measure 

resistivity (Fig. 5.2). The copper plates are only to ensure good electrical contact with 

whatever substance that fills the tube’s cavity. With only air filling the tube, the resistivity 

would be near infinite as air is an excellent insulator. If sweet water fills the tube, the 

resistivity would drop to 30 Ωm, since water is a better conductor. Replacing sweet water 

with brine - salt water - the resistivity would drop to about 1 Ωm. Again brine is a good 
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conductor. Now suppose we insert in the tube a sandstone core sample saturated completely 

with the brine.  The resistivity would increase to 95 Ωm. The reason is that only part of the 

cross-sectional area of the core sample, namely the brine-saturated pores, is available for 

current flow since the sand grains are nonconductors. Another reason is that the current has 

to travel a longer distance between the terminals, having to follow a tortuous path between 

the grains. Finally, suppose we reduce the water (brine) saturation in the sample by replacing 

some of it with crude oil. The resistivity would jump to 300 Ωm, as oil is a poorer conductor 

than brine. If we repeat the last step with different water saturations, we can construct a 

graph of resistivity versus water saturation, which can be used to estimate other water 

saturations in the core sample by simply measuring its resistivity. However, such a graph 

would be limited to that particular sample. To generalize this technique to other core samples 

or the reservoir as a whole we need to develop a basic theory of rock resistivity. 

 
 Ammeter 

Rubber tube 

Copper 
plate 

Battery  
 
 
 
 
 
 
 
 
 
 

Fig. 5.2: Measurement of resistivity  
 
5.3: Mathematical formulations 

Let us begin with some definitions: 

 R w : resistivity of reservoir water, Ωm  

 R o : resistivity of reservoir rock saturated with reservoir water, Ωm  

 R t : resistivity of reservoir rock saturated with both oil and water, Ωm  

Define the formation factor, F, as 

 F = R o / R w (5.3) 

Obviously, the formation factor is always greater than unity since the only difference 

between the two resistivities is the presence of the rock matrix. The more tortuous the path of 

current flow, the larger R o becomes. Also, the smaller the fraction of pore area, relative to 

24 



the total area of the rock, the larger R o becomes. One can, therefore, conclude that the 

porosity of the rock has a considerable influence on F, and indeed it does. The two 

parameters have been found by Archie2 to relate to each other according to the following 

general correlation: 

 F = C φ –m (5.4) 

where 

 C  : tortuousity constant 

 m  : cementation factor 

The two parameters, C and m, vary with the type of rock. For clean sandstone, a widely used 

form of Archie’s correlation is the Humble equation: 

 F = 0.62 φ –2.15 (5.5) 

To introduce the effect of other fluids within the rock, let us define the resistivity 

index, I, as 

 I = R t / R o (5.6) 

Again, the resistivity index is always greater than unity since the only difference between the 

two resistivities is the presence of oil within the rock matrix. Therefore, it must be related to 

Sw. Archie was able to correlate this effect by his second equation: 

 I = 1 / Sw
n (5.7) 

where n is called the saturation exponent and varies with the type of rock; a common value 

used is 2. Combining Equs. 5.3 and 5.6, the following relationship is derived: 

 1/I = F R w / R t (5.8) 

Substituting for I  and F, Equs. 5.3 and 5.7, in Equ. 5.8 yields 

 Sw
n =  C φ –m R w / R t (5.9) 

Equation 5.9 is the basic tool of the theory of rock resistivity. All that is needed is the 

values of the three constants, C, m and n, which are usually fixed for a given reservoir and 

can be determined from simple laboratory experiments. Equation 5.9 is the basis of the 

laboratory resistivity test and the resistivity log, which is described below. 

5.4: Resistivity log 

The basic resistivity sonde sends current into the reservoir and measures its 

resistivity, R t, versus depth. A graph of a typical resistivity log is shown in Fig. 5.3. High 
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oil-saturation zones display large resistivity while water-saturated zones display the lowest 

resistivity. The logging engineer utilizes this information to identify oil zones within the 

reservoir as well as the aquifer, where Sw = 1 and R t = R o. If values of C, m and n are not 

available from laboratory tests on core samples, the engineer selects a few points within the 

aquifer and computes the values of C and m according to Equ. 5.4. Note that a porosity 

profile for the formation should be available from a porosity log. The computed values are 

assumed to apply for the reservoir as well since both aquifer and reservoir exist within the 

same rock formation. Finally, the engineer constructs a water saturation profile of the 

reservoir with Equ. 5.9. The value of n can be assumed. 
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Fig. 5.3: Resistivity log  
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_______________________________________ 
Example 5.1 
Consider the reservoir whose resistivity log is shown in Fig. 5.3. The reservoir water 

resistivity is 1.2 Ωm. If the Humble equation applies to this reservoir, and the saturation 

exponent is 2.2, estimate the oil saturation at 4226 ft where the porosity is 24%. 

 

At 4226 ft, the resistivity is approximately 400 Ωm. Applying Equ. 5.9 to this depth 

 Sw
n =  C φ –m R w / R t

 Sw
2.2  =  0.62 (0.24) –2.15 x 1.2 / 400 

  = 0.04 

 Sw = 0.232  =  23.2 % 

 So = 76.8 % 

_______________________________________ 
 

Exercises 
1. Estimate the electrical resistance of a round bar of copper (L = 50 cm, D = 1.27 cm) if 

copper has a resistivity of 1.59x10-8 Ωm. 

2. Sonic and resistivity logs on a sandstone aquifer (R w = 1.1 Ωm) yielded the following 

data: 

R o (Ωm) 40.1 28.2 19.1 55.0 17.9 33.8 

φ 0.16 0.19 0.22 0.14 0.23 0.17 
Estimate the tortuousity constant and cementation factor for this formation. 

3. An oil accumulation exists in another part of the formation of Exercise 2. Resistivity and 

porosity data on this part is listed below. Plot the oil saturation profile vs. depth 

assuming a saturation exponent of 2. 

Depth (ft) 4700 4800 4900 5000 5100 5200 5300 5400 5500 5600 5700 5800 5900 6000

R t (Ωm) 365 622 731 906 863 872 775 740 948 811 629 568 589 767 

φ 0.11 0.12 0.14 0.11 0.16 0.17 0.15 0.14 0.11 0.13 0.17 0.22 0.21 0.16
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6. ROCK PERMEABILITY 
All rock properties discussed in the previous chapters facilitate estimation of the 

quantity of various fluids within a reservoir. They do not provide, however, any information 

on the rate at which such fluids could flow through the reservoir rock, which is another basic 

requirement for reservoir engineering calculations. Such information is provided by rock 

permeability. 

6.1: Definition 

Permeability is defined as the ability of a porous medium, e.g., sedimentary rock, to 

conduct fluids. The larger the permeability, the more fluid flow can be achieved through the 

medium for a given set of conditions. The earliest attempt at quantifying permeability was 

the work of Henry Darcy in 1856. Conducting many experiments on beds of packed sand and 

using different liquids, Darcy observed the following relationships: 

 q ∝  ΔP 

 q ∝  A 

 q ∝  1 / L 

where 

 q : volumetric flow rate of the fluid through the medium, cm3/s 

 ΔP : difference in pressure between inlet and outlet of medium, atm 

 A : cross-sectional area of medium that is open to flow, cm2

 L : length of medium, cm 

Combining the three relationships, the following equation was obtained 

 q = c A ΔP / L (6.1) 

The proportionality constant, c, was found to be inversely proportional to the viscosity of the 

fluid used. Therefore, it was replaced with k / μ and Equ. 6.1 became 

 q = k 
μ
A

L
PΔ  (6.2) 

The new constant, k, was found to be the same for a given porous medium regardless 

of its dimensions, the type of fluid used or the pressure drop applied. It was an inherent 

property of the medium that controlled its ability to conduct fluids. Darcy termed this 

property the coefficient of permeability, which was later called simply the permeability, and 

Equ. 6.2 became known as Darcy’s law. It should be noted that implicit in the definition of 

permeability is the requirement that the fluid saturates the porous medium completely. 
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The units of permeability are a little confusing. If we substitute consistent units for all 

the variables in Equ. 6.2 – such as g/cm.s2 for pressure and g/cm.s for viscosity, we find that 

the unit of permeability is cm2 and this is indeed one of the units employed in the metric 

system of units. However, one cm2 is a very large permeability that is not encountered in 

natural rock. Therefore, reservoir engineers have adopted another, more practical, unit 

defined as follows: 

If 1 atmosphere of pressure drop is required to flow a liquid of 1 cp viscosity 

through a porous medium of 1 cm length and 1 cm2 cross-sectional area at a 

rate of 1 cm3 per second, then the medium has a permeability of 1 darcy.  

Thus, 1 darcy = 9.869 x 10-9 cm2. A more common unit of reservoir rock permeability is the 

millidarcy (md), which is one thousandth of a darcy. Since the petroleum industry still uses 

the system of field units, a conversion factor is introduced in Darcy’s law as follows 

 q = 1.127 k 
μ
A

L
PΔ  (6.3) 

where q, k, A, ΔP, μ and L are in bbl/day, darcy, ft2, psi, cp and ft, respectively. 

6.2: Differential form of Darcy’s law 

Equation 6.2 can be used in situations where the flow is linear and at steady state, i.e., 

the flow streamlines are parallel and all variables are constant with time at any given 

location. These conditions are highly idealized and are seldom encountered in real situations. 

The differential form of Darcy’s law, which is more general and can be the starting step in 

the solution of any flow problem, is expressed by Equ. 6.4. 

 qs = - ks 
μ

sA
s
P

∂
∂  (6.4) 

where s is the coordinate along which flow is calculated and subscript s denotes the value of 

the variable in the s-direction. Since flow always takes place in the direction of decreasing 

pressure, which means the pressure gradient – the partial derivative in Equ. 6.4 - is always 

negative, the negative sign is added in Equ. 6.4 to make the flow positive in the s-direction.  

Equation 6.4 applies to any flow system, and it can be used to compute the flow in the s-

direction at any given point in the system. 

To complete the differential form of Darcy’s law, one more detail has to be 

addressed. It is well known from fluid statics that the pressure increases with depth within 

any static body of fluid. This hydrostatic pressure, Ph, is the result of the weight of the fluid 

column above the depth of interest, and is given by 

 Ph = ρ g d (6.5) 
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where 

 ρ : density of the fluid, g/cm3

 g : gravitational acceleration (980 cm/s2) 

 d : depth measured from a reference horizon, cm 

Equation 6.5 provides Ph in dyne/cm2. In field units where ρ is in lb/ft3, depth is in ft and g = 

32.17 ft/s2, Equ. 6.5 becomes 

 Ph = ρ d / 144 (6.6) 

where Ph is in psi. 

However, the pressure at a point within the body of fluid may be greater than the 

hydrostatic pressure at that point. This could be caused by an external force applied to the 

fluid such as pump action. Suppose a flow system has its inlet and outlet at two different 

elevations – or depths. If the difference in fluid pressure between the inlet and outlet is equal 

to the difference in hydrostatic pressure at these two points, we intuitively know that no flow 

would take place. Therefore, the hydrostatic component of the pressure at any depth must be 

subtracted to yield the net pressure. This dynamic pressure component, which is the true 

driving force of flow, is called the flow potential and is defined as 

 Φ = P - Ph 

  = P - ρ g d 

  = P - ρ d / 144 (in field units) 

With this consideration, the generalized differential form of Darcy’s law becomes 

 qs = - ks 
μ

sA
s∂
Φ∂     =     - ks 

μ
sA

s
)gdP(

∂
ρ−∂      (6.7) 

It should be noted that if all points in the flow system are at the same depth, Equ. 6.7 reduces 

to Equ. 6.4. 

6.3: Measurement of permeability 

Permeability is almost always determined experimentally, and only if no laboratory 

data is available do we resort to empirical correlations. Such correlations will be discussed at 

the end of this section. Laboratory measurement is performed under steady-state conditions 

using a permeameter such as the one shown in Fig. 6.1. The clean and dry core sample is 

mounted in the core holder and then placed under a suitable confining pressure to simulate 

reservoir overburden conditions. The sample is then placed under vacuum for a sufficient 

period of time to remove all air from the sample. The fluid – usually brine, oil or air – is then 

flowed through the sample until steady-state flow is established; such state is characterized 

by equal fluid injection and production rates. The flow rate and the inlet pressure are then 
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recorded. Such data is sufficient to compute the permeability according to Equ. 6.2, however, 

the test is usually repeated at different sets of flow rate and inlet pressure and the data is 

plotted as shown in Fig. 6.2. The slope of the straight line is the core sample’s permeability 

multiplied by A/ μL. 
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Fig. 6.1: Measurement of permeability 
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_______________________________________ 
Example 6.1 
Compute the permeability of the core sample whose flow data is shown in Fig. 6.2 if the 

sample is 5 cm in diameter and 10 cm long. The fluid used in the experiment is an oil with a 

viscosity of 1.6 cp. 

The cross-sectional area of the sample is  

 A = 
4
π (5)2  =  19.63 cm2

The slope of the best-fit line, m, is 6.25 cm3/min/atm, or 0.1 cm3/s/atm. The core 

permeability is: 

 k = m μ L / A 

  = 0.1 x 1.6 x 10 / 19.63 

  = 0.0815 d  =  81.5 md 

_______________________________________ 
 

Several precautions must be observed with this method. First, if the sample is 

sandstone that contains shale (clay particles), distilled water must not be used. Second, the 

flow rate must be reasonably low, as Darcy’s law does not apply at excessive rates. Third, 

the inlet pressure should not be close to the confining pressure, as the fluid may bypass the 

sample and flow along the inner wall of the rubber sleeve. Finally, when gas is used, the 

mean gas pressure – average of inlet and outlet pressures – and the mean gas flow rate – rate 

measured at mean pressure – should be plotted instead. 

Empirical correlations for estimation of permeability, sometimes called permeability 

transforms, are based on core data gathered for a given reservoir. Such data include 

permeability, porosity, bulk density and mineral composition. The basic assumption is that 

for a given type of reservoir rock, permeability varies with other rock properties according to 

a particular trend. Once a good number of core samples have been collected and tested, and a 

trend has been established, such trend would apply everywhere in the reservoir. Thereafter, 

additional core data becomes unnecessary and permeability can be estimated from log-

derived data using the transform. 

For clean sandstone rock, permeability has been found to correlate reasonably with 

porosity according to the following formula 

 k = a φ b  (6.8) 

where a and b are empirical constants that should be determined for a given reservoir. If the 

sandstone contains a significant amount of shale, a correction is added as follows 
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 k = a φ b (1-Vsh)c  (6.9) 

where Vsh is the volumetric fraction of shale in the matrix and c is another empirical 

constant. 

For carbonate rocks – limestone, dolomite, gypsum – a similar permeability 

transform is almost impossible to find. This is attributed to the effect of post-sedimentation 

processes on both porosity and permeability. Mineral deposition has a minor effect on 

porosity but reduces permeability drastically. On the other hand, minute fractures add little to 

porosity but improve permeability considerably. A typical example is the carbonate Khuff-C 

reservoir in the Uthmaniya area of Ghawwar field in eastern Saudi Arabia. As Fig. 6.3 

shows, no correlation is evident in the data for this reservoir. In such cases, statistical 

analysis can sometimes provide meaningful trends. In general, permeability transforms 

involve variable margins of error, and they should be utilized mainly to provide a general 

estimate. Error margins could diminish as the transform’s database expands. 
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Fig. 6.3 : Core permeability versus log porosity for Khuff-C reservoir  
 

6.4: Applications 

In this section, the use of Darcy’s law to establish a flow equation is presented for 

various common flow systems. The main objective is to derive an equation that enables us to 

compute the flow rate through a porous medium from data on the fluid’s properties, the 

medium’s properties and geometry, and the pressure drop across the medium. We shall begin 

with simple flow systems and then move on to more complex ones. 
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6.4.1: Linear flow 

i. Horizontal, steady-state flow of an incompressible fluid 

Assume that an incompressible fluid – a fluid whose density does not vary with 

pressure – is flowing through a rectangular porous medium, which is perfectly horizontal as 

shown in Fig. 6.4. We shall adopt a Cartesian coordinate system for this problem where the 

x-direction is along the length of the medium. Since the entire cross-sectional area of the 

medium is open for flow, the flow is linear and only in the x-direction. The flow potential 

gradient becomes 

 
s∂
Φ∂ = 

x∂
Φ∂     =    

dx
dΦ  

Note that the partial derivative was replaced by the total derivative since the flow potential 

varies only in the x-direction. Expanding the derivative gives  

 
dx
dΦ = 

dx
d (P - ρ g d)  =  

dx
Pd  - ρ g 

dx
dd  (6.10) 
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 Fig. 6.4: Linear flow  
  

As both ρ and g are constant with x, they are taken out of the differential in Equ. 6.10. Since 

the medium is horizontal, depth does not change with x, and the second term in Equ. 6.10 

reduces to zero. The flow potential gradient then becomes equal to the pressure gradient of 

the fluid: 
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dx
dΦ =  

dx
Pd  (6.10) 

and Darcy’s law (Equ. 6.7) becomes 

 q = - k 
μ
A

dx
Pd  (6.11) 

Separating the variables in Equ. 6.11 and rearranging 

 
kA
qμ dx =  - dP 

Setting the integration limits at the two boundary conditions: P = P1 at x = 0 and P = P2 at x = 

L gives 

 ∫
μL

0 kA
q dx =  -  (6.12) ∫

2

1

P

P

dP

All the variables in the LHS integral are constant with x; therefore, they can be removed 

outside the integral. Upon integration, Equ. 6.12 becomes 

 
kA
qμ L =  - (P2 – P1) 

and after rearrangement 

 q = 
μ

kA
L

PP 21 −
 (6.13) 

Once again, Equ. 6.13 is written in the standard units. In field units, the conversion factor of 

1.127 is multiplied by the right-hand side of the equation. 

The pressure at any location x can be determined from Equ. 6.12 by setting the upper 

integration limits to P and x, which yields 

 P = P1 - 
kA
qμ x 

A graph of the pressure profile is shown in Fig. 6.5, where the prominent feature is the 

constant pressure gradient, 
dx

Pd , which is equal to 
L

PP 12 −
. This true only for linear, steady-

state flow. Note that the pressure gradient in this case is negative. 

It is very pertinent, at this point, to explain the concept of steady-state flow, which 

tends to be confusing in some instances. The condition of steady state requires that all 

variables remain constant with time at any given point within the flow system. This does not 

necessarily mean that a variable cannot change between two locations. The pressure in the 

present case, for instance, drops from P1 to P2 between 0 and L, yet at any location x the 
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pressure is constant with time. On the other hand, the pressure gradient is the same 

everywhere in the system. In later cases, we will find that even the pressure gradient may 

vary across the flow system, yet the flow is still considered steady state. One variable that 

must be the same everywhere in the system is the mass flowrate, 
.
m , which is dictated by a 

fundamental condition of steady state that no mass accumulation occurs within the system. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
_______________________________________ 
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Fig. 6.5: Example pressure profile in linear flow 

P1 

P2 

Example 6.2 
Compute the steady-state flow of water in a core sample 4” long, 1” in diameter with 

permeability of 150 md if the inlet pressure is 50 psia and the outlet pressure is atmospheric. 

The viscosity of water at the conditions of the test is 0.95 cp. 

 

The cross-sectional area of the sample is 

 A = 
4
π (1)2  =  0.785 in2  =  5.45 x 10 -3 ft2 

Substituting in Equ. 6.13 with other variables 

 q = 1.127
95.0

10x45.5)1000/150( 3−

)12/4(
7.1450 −  

  = 0.103 bbl/d 

  = 0.189 cm3/s 

_______________________________________ 
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ii. Horizontal, steady-state flow of a slightly compressible fluid 

This case is identical to the one presented in part (i) above except that the fluid’s 

density, and consequently its viscosity, are weak functions of pressure. The conditions of the 

problem will lead us again to Equ. 6.12.  

 ∫
μL

0 kA
q dx =  -  (6.12) ∫

2

1

P

P

dP

Since pressure decreases from inlet to outlet, the fluid undergoes continuous 

expansion as it flows through the porous medium. This makes q vary with x and, hence, 

cannot be taken outside the integral. We can go around this obstacle by replacing the 

volumetric flowrate with the mass flowrate according to 

  = ρ q 
.
m

Therefore, 

 ∫
L

0 kA
m
.

dx =  - ∫ μ
ρ2

1

P

P

dP  (6.14) 

All the variables in the LHS integral are now constant with x and, therefore, can be 

removed outside the integral. Since both density and viscosity vary slightly with pressure, we 

can approximate them by their mean values, ρ and μ , which are computed at the mean 

pressure of the system: P = (P1 + P2)/2. Performing the integration in Equ. 6.14 yields 

  = 
.
m

μ
kA

ρ
L

PP 21 −
 (6.15) 

Equation 6.15 can be used to compute q at any location in the medium by the 

following steps: 

1. Compute the pressure at the desired location. This is obtained from the linear 

pressure gradient. 

2. Compute the fluid density at the computed pressure. 

3. Compute the flowrate from q = / ρ 
.
m

We should note that while  and all other parameters in Equ. 6.15 are constant, q 

varies with location. For such systems, the flowrate is commonly reported in two ways: 

.
m

1. The mean flowrate: 

 q  = 
μ

kA
L

PP 21 −
 (6.16) 

 which is the flowrate based on the mean density. 
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2. The base flowrate: 

  = oq
μ

kA

oρ
ρ

L
PP 21 −

 (6.17) 

 where the subscript (º) refers to some base pressure, , adopted for the system. oP

_______________________________________ 
Example 6.3 
Rework Example 6.2 but for a fluid whose density varies with pressure according to: 

  ρ = 0.86 e P / 2500 

where P is in psia and ρ is in g/cm3. Compute the mean flowrate and the base flowrate (at 

= 14.7 psia). Assume a mean viscosity of 0.6 cp. oP

The mean pressure is: P = (50 + 14.7)/2 = 32.35 psia. The mean density is then 

  ρ  = 0.86 e 32.35 / 2500  =  0.871  g/cm3

and the base density is 

   = 0.86 eoρ  14.7 / 2500  =  0.865  g/cm3

Equation 6.16 yields 

 q  = 1.127
6.0

10x45.5)1000/150( 3−

)12/4(
7.1450 −  

  = 0.163 bbl/d 

Equation 6.17 yields 

  = 1.127oq
6.0

10x45.5)1000/150( 3−

865.0
871.0

)12/4(
7.1450 −  

  = 0.164 bbl/d 

_______________________________________ 
 

iii. Horizontal, steady-state flow of an ideal gas 

This case is identical to the one presented in part (ii) above except that gases are 

compressible, and their properties, especially density, vary appreciably with pressure. The 

conditions of the problem will lead us straight to Equ. 6.14.  

 ∫
L

0 kA
m
.

dx =  - ∫ μ
ρ2

1

P

P

dP  (6.14) 

For ideal gases, the ideal gas law provides a precise relationship between density and 

pressure: 
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 ρ = 
TR
MP  

where M is the molecular mass of the gas, R is the universal gas constant and T is the 

absolute temperature of the gas. Substituting for ρ in the RHS integral of Equ. 6.14 yields 

 ∫
L

0 kA
m
.

dx =  - ∫ μ

2

1

P

P

dPP
RT
M  (6.18) 

 

Assuming a mean viscosity and performing the integration in Equ. 6.18 yields 

 
kA
mL
.

 =   
μRT

M
2

)PP( 2
2

2
1 −  (6.19) 

  

Substituting (P1 + P2)(P1 – P2) for (P1
2 – P2

2) in Equ. 6.19 yields 

 
kA
mL
.

 =   
μRT

M
2

)PP)(PP( 2121 −+
 (6.20) 

 

Substituting P  for (P1 + P2)/2 and noting that ρ  = 
TR
MP , Equ. 6.20 becomes 

 
kA
mL
.

 =   
μ
ρ (P1 – P2) (6.21) 

Substituting q  for 
.
m / ρ  and rearranging, we obtain the desired flow equation 

 q  = 
μ

kA
L

PP 21 −
 (6.22) 

which is exactly the same as Equ. 6.16 for the slightly compressible fluid. We can also use 

Equ. 6.17 for the base flowrate case. 

_______________________________________ 
Example 6.4 
Rework Example 6.2 but for an ideal gas whose molecular mass is 18. The system is at 150 

ºF and the average gas viscosity is 0.015 cp. Compute the mean flowrate and the base 

flowrate at base conditions of = 15 psia and  = 60 ºF. oP oT

Equation 6.22 yields 

 q  = 1.127
015.0

10x45.5)1000/150( 3−

)12/4(
7.1450 −  
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  = 6.50 bbl/d 

At a mean pressure of P = 32.35 psia, the mean density is 

  ρ  = 
TR
MP   =  

)460150(73.10
18x35.32
+

 

   = 0.0890 lb/ft3

Note that in the field system of units R = 10.73 
Rlbmole

ftpsi 3

°
. Similarly, the base density is 

   = oρ
)46060(73.10

18x15
+

  =  0.0484 lb/ft3

The base flowrate is then computed: 

  = 1.127oq
015.0

10x45.5)1000/150( 3−

0484.0
0890.0

)12/4(
7.1450 −  

   = 11.96 bbl/d 

Note that by multiplying each flowrate by its corresponding density the same mass flowrate 

of 3.25 lb/d would be obtained. 

_______________________________________ 
 

Gas flowrate is not usually reported in bbl/d, rather the unit of ft3/d is used. And since 

rate depends on the flow conditions, gas flowrate is normally expressed at the standard 

conditions of 14.7 psia and 60 ºF. Thus, the unit SCF means one cubic foot of gas measured 

at the standard conditions, and SCF/D means one SCF per day. The prefix M indicates 

thousands and MM indicates millions. 

iv. Inclined, steady-state flow of an incompressible fluid 

Petroleum reservoirs are seldom perfectly horizontal; they are usually tilted in one 

direction, two opposite directions – the anticline – or in all directions like in the case of a 

dome. A reservoir’s angle of dip is the angle between the horizontal plane and the plane of 

the reservoir’s main flow path. Considering the case depicted in Fig. 6.6, the direction of 

flow, s, is taken to be along the reservoir’s main flow path in the downward direction. The 

flow potential gradient then becomes: 

 
ds
dΦ = 

ds
d (P - ρ g d)  =  

ds
Pd  - ρ g 

ds
dd  (6.23) 

Depth increases with s according to 

  
ds
dd  = sin θ 
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Fig. 6.6: Inclined flow 
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Therefore, Equ. 6.23 becomes 

 
ds
dΦ = 

ds
Pd  - ρ g sin θ (6.24) 

which upon substitution in Darcy’s law (Equ. 6.7) gives 

 q = - k 
μ
A [

ds
Pd - ρ g sin θ] (6.25) 

Separating the variables and setting the integration limits at P = P1 at s = 0 and P = P2 at s = 

L yields 

 ][ sing
kA
qL

0

θρ−
μ

∫ ds   =  -  (6.26) ∫
2

1

P

P

dP

Since all parameters in the LHS integral are constant, integration would yield 

 [
Ak

q μ - ρ g sin θ] L   =  P1 – P2 (6.27) 

After rearrangement, the desired flow equation is obtained 

 q = 
μ
Ak

L
sinLg)PP( 21 θρ+−

 (6.28) 

and in field units, Equ. 6.28 is written 

 q = 1.127
μ
Ak

L

sinL
144

)PP( 21 θ
ρ

+−
 (6.29) 

It should be noted that for upward flow 
ds
dd = - sin θ and Equs. 6.28 and 6.29 must be 

modified accordingly. 
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_______________________________________ 

Example 6.5 
A sandstone aquifer 8 miles long, 2 miles wide and 70 feet thick with a dip angle of 6 

degrees and permeability of 80 md is conducting water from the ocean floor to a reservoir at 

the other end as shown in Fig. 6.7. The ocean floor is 600 feet deep, and sea water has a 

density of 68 lb/ft3 and viscosity of 1.4 cp. If the reservoir pressure is 1600 psia, compute the 

steady-state rate at which the aquifer is charging water into the reservoir. 

 

 A = 2 x 5280 x 70  =  739200 ft2

The inlet pressure is the hydrostatic pressure at the ocean floor 

 P1 = 68 x 600 / 144 + 14.7  =   298 psia 

Since the aquifer’s outlet pressure is equal to the reservoir pressure, water flowrate through 

the aquifer is computed by Equ.6.29 as 

 q = 1.127
4.1

739200x08.0
5280x8

6sin5280x8
144
68)1600298( +−

 

   = 882.4 bbl/d 

_______________________________________ 
 

 

Fig. 6.7: Aquifer of Example 6.5 

ocean floor 

reservoir 
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6.4.2: Radial flow 

Fluids are produced from or injected into a petroleum reservoir via wells, which are 

cylindrical in shape and may penetrate the reservoir vertically, horizontally or at an angle. 

The well may penetrate the entire thickness of the reservoir or part of it. In any case, the 

whole circumference of the well is open for flow, which allows reservoir fluids to flow into 

the well from all directions and at all depths. This configuration makes the well act like a 

cylindrical sink into which fluids flow radially from nearby parts of the reservoir (Fig. 6.8). 

Radial flow is assumed, therefore, to be the predominant mode of flow in petroleum 

reservoirs, and most analytical techniques of reservoir engineering are based on this 

assumption. The pressure in the wellbore is uniform while the pressure in the reservoir at any 

given distance from the well is essentially the same no matter in which direction we look. 

Because of the symmetry of the system, the flow equation is written in radial coordinates, 

which are: vertical direction, z, radial direction, r, and radial angle, ϕ. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 6.8: Radial flow into a well  
 

i. Horizontal, steady-state flow of an incompressible fluid 

The flow system is depicted in Fig. 6.9 where a cylindrical porous medium with 

radius re and thickness h is penetrated along its axis by a well with radius rw. The fluid flows 

from the outside boundary, where the pressure is Pe, towards the well where the pressure is 

Pw. 
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 Fig. 6.9: Radial flow 
 
 

Because the fluid flows in the radial direction only, the flow potential gradient exists 

only in the r-coordinate; and given that the medium is horizontal, the potential gradient 

reduces to the pressure gradient: 

 
s∂
Φ∂ = 

dr
Pd   

Darcy’s law for this case becomes: 

 q = k 
μ
A

dr
Pd  (6.30) 

The negative sign disappears from the RHS of Equ. 6.30 because pressure increases 

in the r-direction, which renders the radial pressure gradient (dP/dr) positive. Separating the 

variables and applying the integrals between the medium’s boundary conditions gives 

 ∫
μe

w

r

r kA
q dr =   (6.31) ∫

e

w

P

P

dP

All the variables in the LHS integral are independent of r except A. Remember that A 

is the cross-sectional area through which the flow passes. It is not the surface area of the 

medium, rather it is the circumferential area, which varies with radial distance according to 

 A = 2π r h 

Substituting for A and performing the integration in Equ. 6.31 yields 
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kh2

q
π

μ ln
w

e

r
r  =  Pe - Pw  

Upon rearrangement, the desired flow equation is obtained 

 q = 
μ
πkh2

w

e

we

r
r

ln

PP −
 (6.32) 

In field units, Equ. 6.32 is written 

 q = 7.082 
μ
kh

w

e

we

r
r

ln

PP −
 (6.33) 

The pressure profile can be established with Equ. 6.32 by substituting r for re and P 

for Pe. This profile, shown in Fig. 6.10, reveals a variable pressure gradient, which is largest 

near the well. This important observation indicates that most of the pressure drop occurs near 

the production end of the system, a feature of radial flow that calls for considerable care 

when drilling and completing petroleum wells.  
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Fig. 6.10: Example pressure profile in radial flow 
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_______________________________________ 
Example 6.6 
A horizontal reservoir is nearly circular in shape with an area of 730 acres, thickness of 120 

feet and permeability of 250 md. One well penetrates the reservoir at its approximate center 
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with a diameter of 9”. If the pressure is 3200 psig at the periphery of the reservoir and 1500 

psig at the wellbore; and if the reservoir oil is 2.5 cp in viscosity, compute the well’s daily 

production rate assuming all pressures remain constant with time. 

 

All parameters in Equ. 6.33 are provided except re. Since the reservoir is nearly radial, we 

can compute an equivalent radius by the following approximation: 

 re = 
π
A   =  

π
43560x730  

  = 3181.5 ft 

 rw = 
2x12

9   =  0.375 ft 

 q = 7.082 
5.2
120x25.0

375.0
5.3181ln

15003200 −  

  = 15971 bbl/d 

_______________________________________ 
 

ii. Horizontal, steady-state flow of an ideal gas 

This case is identical to the one presented in section 6.4.1 part (iii) except for the 

radial geometry. Thus, we will begin with Equ. 6.18, but modified for radial coordinates. 

 ∫ π

e

w

r

r rkh2
m
.

dr =  ∫ μ

e

w

P

P

dPP
RT
M  (6.34) 

Assuming an average viscosity, integrating Equ. 6.34 yields 

 
kh2

m
.

π
ln

w

e

r
r  =  

μRT
M

2
PP 2

w
2

e −  (6.35) 

Adopting base conditions of  and at which oP oT oρ  = 
o

o

TR
MP

 and substituting oq oρ for , 

Equ. 6.35 becomes after rearrangement 

.
m

  = oq
μ

πkh

o

o

TP
T

w

e

2
w

2
e

r
r

ln

PP −
 (6.36) 

In oil field units, Equ. 6.36 is written 
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  = 19.88oq
μ
kh

o

o

TP
T

w

e

2
w

2
e

r
r

ln

PP −
 (6.37) 

where  is in ftoq 3/d measured at base conditions. Typical base conditions for gas wells are 

the standard conditions of 60 ºF (520 ºR) and 14.7 psia. For these conditions, Equ. 6.37 

becomes 

 qsc = 703.2 
T

kh
μ

w

e

2
w

2
e

r
r

ln

PP −
 (6.38) 

where qsc is in standard cubic feet per day or SCF/d. 

_______________________________________ 
Example 6.7 
Rework Example 6.6 if the reservoir is at 180 ºF and contains gas of 0.055 cp viscosity. 

Report the flowrate in standard conditions. 

 

  qsc = 703.2 
640x055.0

120x25.0

375.0
5.3181ln

7.15147.3214 22 −  

  = 532.7 x 106 SCF/d 

  = 532.7 MMSCF/d 

_______________________________________ 
 

6.5: Complex Flow Systems 

In the previous section, only linear and radial flow systems were presented. While 

such types of flow can be encountered in real reservoirs, they are not usually seen across the 

entire reservoir, especially linear flow. The reason is that fluids are produced through wells, 

which force the flow to be radial at least in their vicinity. 

A typical case is a well producing from an elongated reservoir as shown in Fig. 6.11. 

Far away from the well the flow is almost linear because the effect of the well is too small to 

be felt. As the fluid approaches the well, it is forced to converge upon the wellbore and, thus, 

shifts from linear to radial flow. To illustrate how a flow equation is derived for such a case 

let us first assume that the fluid is incompressible and is flowing at steady-state through this 

horizontal reservoir. Next, we must decide where in the reservoir we expect the flow to be 

linear or radial. Near the well, the flow is certainly radial; however, the question is: how far 

away from the well does radial flow start? We can safely assume that no linear flow exists 

47 



along the edge of the reservoir at the location of the well, and that only radial flow exists in 

this direction. This sets the width of the reservoir as the diameter of the radial flow region, 

which is depicted by a circle in Fig. 6.11. That is re = W/2, where W is the width of the 

reservoir. 

Flow streamline 

L 

Pw
Pi

P* 

 
Fig. 6.11: Flow regimes near a well in a linear reservoir 

 

Let the pressure at the reservoir inlet be Pi and at the well be Pw, and assume that P* - 

which is unknown - is the pressure at the boundary between the linear and radial flow 

regions. The production rate from the well is estimated by Equ. 6.32: 

 qw = 
μ
πkh2

w

w
*

r
2/Wln

PP −
 (6.39) 

To determine P*, we must utilize the linear-flow region of the system. The length of this 

region can be approximated to be L - W/2. Therefore, the flowrate in this region is: 

 qL = 
μ

kWh
2/WL

PPi *

−
−  (6.40) 

Note that qw is the total flow that arrives at the well from both right and left directions. Since 

the system is flowing at steady state, qL must equal half of qw (qw = 2 qL). Combining both 

equations to solve for P*, and substituting in Equ. 6.39 yields: 

 qw = 
μ
πkh2

w

wi

r2
Wln)

2
1

W
L(

PP

+−π

−
 (6.41) 
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Equation 6.41 provides the well production rate, qw , and is written in terms of the 

known parameters of the system. In field units, the term 2π should be replaced by the 

conversion factor 7.082. 

Another example of a complex-flow system is when the reservoir is not perfectly 

linear. Consider the case shown in Fig. 6.12 where the width of the reservoir is variable. 

W2

W1

L 

P1

P2

 
 Fig. 6.12: Semi-linear reservoir with variable width 

 

Horizontal, steady-state flow of an incompressible fluid is assumed once again for 

ease of analysis. Choosing the x-coordinate to be along the centerline of the reservoir, the 

flow equation is identical to Equ. 6.11: 

 q = - k 
μ
A

dx
Pd  (6.11) 

However, this equation cannot be readily integrated since the area, A, is not constant with x. 

 A = hW 

where W is the width of the reservoir at any distance x from the inlet. From the geometry of 

the system,  

 W = W1 - L
x (W1 – W2) 

Substituting for W in Equ. 6.11, and integrating after rearrangement yields: 

 q = 
μ
kh

2

1

21

W
Wln

WW −
L

PP 21 −  (6.42) 
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Comparing Equ. 6.42 with Equ. 6.13 shows that the quotient 

2

1

21

W
Wln

WW −  can be viewed as the 

effective width of the reservoir. In mathematical terms, such parameter is called the log-

mean width. 

6.6: Averaging permeability 

Petroleum reservoirs seldom show uniform permeability throughout, especially the 

larger ones. Seasonal and geographic variations in the sedimentation environment and post-

sedimentation processes alter the nature of the sediments and the way they are packed 

together. This gives rise to a range of values for any rock property, with permeability being 

the most sensitive one. Core sample data provide a reasonable map of the distribution of 

permeability within a heterogeneous reservoir; and based on such data, an average 

permeability is usually estimated. An average permeability is a useful parameter, which 

allows application of the flow equation to the whole reservoir rather than to each segment at 

a time. In this section, various cases of reservoir heterogeneity will be treated. 

6.6.1: Beds in parallel 

The most common type of heterogeneity encountered in petroleum reservoirs is when 

the reservoir is made up of several stacked layers, or zones, each having a different 

permeability and thickness. Vertical communication between the zones is usually minimal 

and the predominant path of flow is along the plane of the reservoir. We shall consider both 

linear and radial flow configurations. 

i. Linear flow 

Assume that the porous medium is L feet long, W feet wide and h feet thick and is 

made up of n horizontal layers each with its own thickness, hi , and permeability, ki , as 

depicted in Fig. 6.13. All layers are exposed to the same inlet pressure, P1 , and outlet 

pressure, P2. To simplify the analysis, we shall assume steady-state flow of an 

incompressible fluid of viscosity μ for this case and all subsequent cases. 

The flowrate through any layer, qi , is computed by Equ. 6.13: 

 qi = 
μ

iiAk
L

PP 21 −
 

The total flowrate through the medium is, then, simply the sum of all individual flowrates 

 q = ∑
=

=

ni

1i μ
iiAk

L
PP 21 −

 

Since Ai = W hi, the sum reduces to: 
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 q = 
L
PP 21

μ
− W k∑

=

=

ni

1i
i hi (6.43) 

 

q3 

q2 

q1 
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h2

q4 

k4
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k1
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k2

h1

h3

h4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.13: Linear flow in parallel beds  
 

If we are to consider the porous medium as one homogeneous unit with an average 

permeability, k , Equ. 6.13 would be written for this medium as 

 q = 
μ
Ak

L
PP 21 −  

  = 
L
PP 21

μ
− k W  (6.44) ∑

=

=

ni

1i
ih

Comparing Equ. 6.43 with Equ. 6.44, we can conclude that 

 k  = 
∑

∑
=

=

=

=
ni

1i
i

ni

1i
ii

h

hk
  =  

h

hk
ni

1i
ii∑

=

=  (6.45) 

ii. Radial flow 

This case is similar to case (i) above except for the circular geometry of the porous 

medium. All layers have radius re and are penetrated by a well of radius rw as depicted in Fig. 

6.14. 

The common inlet and outlet pressures are Pe and Pw, respectively. For each layer, 

Equ. 6.32 is written as: 
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Fig. 6.14: Radial flow in parallel beds 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 qi = 
μ

π iihk2

w

e

we

r
r

ln

PP −
 

and the total flowrate is 

 q = 
μ
π2

w

e

we

r
r

ln

PP − ∑
=

=

ni

1i
iihk  (6.46) 

Employing an average permeability, k , Equ. 6.32 for the whole medium will be 

 q = 
μ
π hk2

w

e

we

r
r

ln

PP −
 

  = 
μ
π2

w

e

we

r
r

ln

PP −
k ∑

=

=

ni

1i
ih  (6.47) 

Comparing Equ. 6.46 with Equ. 6.47 yields 

 k  = 
∑

∑
=

=

=

=
ni

1i
i

ni

1i
ii

h

hk
  =  

h

hk
ni

1i
ii∑

=

=  (6.48) 
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6.6.2: Beds in series 

Occasionally, heterogeneity in a petroleum reservoir is in the form of changing 

permeability along the path of flow, which allows representation of the reservoir as several 

sections in series. Such heterogeneity could be the result of natural causes as explained 

earlier, or it could be artificially introduced into the reservoir, primarily, in the vicinity of 

wellbores. A typical example of the latter case is damage to reservoir permeability caused by 

mud invasion during drilling operations. Clay and other foreign particles are carried into the 

rock by the drilling mud and get lodged between the grains causing severe pore-throat 

restriction. Well stimulation techniques, e.g., acidizing and fracturing, cause the opposite 

effect of improving reservoir permeability. We shall again consider both linear and radial 

flow configurations. 

i. Linear flow 

Assume that the porous medium is L feet long, W feet wide and h feet thick and is 

made up of n serial sections each with its own permeability, ki , and length, Li , as depicted in 

Fig. 6.15. The medium is exposed to inlet pressure P1 and outlet pressure P2. 

 
 P2 P1
 

k4 k3 k2 W
k1

 h
               q 
 
 L4 L2L3 L1 
 

Fig. 6.15: Linear flow in serial beds  
 

Steady-state conditions dictate no accumulation of mass within the system, which 

means that the flowrate is the same throughout the medium. We can, therefore, write Equ. 

6.13 for each section (i) separately but in terms of its own inlet pressure, P1,i , and outlet 

pressure, P2,i . 

 q = 
μ
Aki

i

i,2i,1

L
PP −

 (6.49) 

Rearranging Equ. 6.49 yields 

 P1,i – P2,i  =  
A
qμ

i

i

k
L  (6.50) 
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Remember that we can write n equations, all in the form of Equ. 6.50, for the n sections of 

the medium. Conditions of hydraulic continuity dictate that the outlet pressure of a given 

section (i) is equal to the inlet pressure of the adjacent section (i+1) downstream. That is 

 P2,i = P1,i+1 (6.51) 

Summing up all n equations and applying the condition of Equ. 6.51 yields 

 P1,1 – P2,n  =  
A
qμ ∑

=

=

ni

1i i

i

k
L  (6.52) 

Note that P1,1 = P1 and P2,n = P2. The general flow equation for the medium in terms of its 

average permeability is 

 P1 – P2  =  
A
qμ

k
L  (6.53) 

Comparing Equ. 6.52 with Equ. 6.53 yields 

 k  = 
∑
=

=

ni

1i i

i

k
L

L  (6.54) 

ii. Radial flow 

In this case, the circular medium has radius re, is penetrated by a well of radius rw, 

and is exposed to inlet and outlet pressures Pe and Pw, respectively, as depicted in Fig. 6.16.  
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Fig. 6.16: Radial flow in serial beds 
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The medium is made up of n concentric sections each with its own permeability, ki, 

inner radius, rw,i, and outer radius, re,i. For each section, Equ. 6.32 is written, separately, in 

terms of its own inlet pressure, Pe,i, and outlet pressure, Pw,i. 

 q = 
μ

π hk2 i

i,w

i,e

i,wi,e

r
r

ln

PP −
 

The general flow equation for the medium in terms of its average permeability is 

 q = 
μ
π hk2

w

e

we

r
r

ln

PP −
 

Following the same procedure for the linear flow case yields the formula for the average 

permeability 

 k  = 

∑
=

=

ni

1i i

i,w

i,e

w

e

k
r
r

ln

r
rln

 (6.55) 

 
_______________________________________ 
Example 6.8 
A 3000-ft diameter unit in a reservoir has a permeability of 320 md, and is produced by a 9” 

well. While drilling the well, the reservoir permeability is damaged down to 130 md in a 

zone 5 feet in diameter around the well. Acid stimulation of the well elevated the damage 

zone permeability up to 560 md. Compute the unit’s average permeability before and after 

stimulation. 

 

This is a case of radial flow in series. The effected zone has 4.5" (0.375 feet) inner radius and 

2.5 feet outer radius, while the rest of the reservoir unit has 2.5 feet inner radius and 1500 

feet outer radius. Equation 6.55 yields the following unit average permeabilities: 

a. Before stimulation 

 k  = 

320
5.2

1500ln

130
375.0

5.2ln

375.0
1500ln

+

 

  = 239.8 md 
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b. After stimulation 

 k  = 

320
5.2

1500ln

560
375.0

5.2ln

375.0
1500ln

+

 

  = 354.8 md 

_______________________________________ 
 

Example 6.8 demonstrates the considerable loss of productivity caused by such a 

small damage zone, and the significant improvement gained by stimulation. Such a 

phenomenon is a direct consequence of the fact, presented in section 6.4.2-i, that most of the 

pressure drop in radial flow occurs near the wellbore. 

 

6.7: Multi-fluid saturations 

An implicit assumption in all flow equations derived in this chapter is that the porous 

medium is fully saturated with the fluid in question, which permitted use of the permeability 

as it is. But as indicated in chapter 4, the pore space of a petroleum reservoir is never fully 

saturated with one fluid. This raises the question of how to estimate the flowrate of a fluid in 

a reservoir where other fluids, either flowing or static, are present. One intuitive answer 

would be to divide the permeability among the fluids according to their saturations. 

Unfortunately, the problem is not that simple. Many forces come into play when two fluids 

come in contact with each other in the presence of a solid surface. It is true that such forces 

are very weak; however, within their microscopic domain they exert considerable influence 

on the fluids, which causes their flow behavior to change dramatically. A detailed look at 

fluid-rock interaction will be presented in the next chapter first before the permeability 

question is addressed in the final chapter. 

 

Exercises 
1. If 10-6 m is called a micrometer (μm) and 10-12 m2 is called a micrometer squared (μm2), 

convert 230 md to μm2. 

2. Water (μ = 1 cP) is flowing through a core sample (L = 10 cm, D = 2.5 cm) of 170 md 

permeability. Compute the flowrate if inlet and outlet pressures are 5 and 2 atm, 

respectively. Give your answer in cm3/s and bbl/d. 

3. Repeat Exercise 2 by converting all data to field units and applying Equ. 6.3. 
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4. Compute the absolute pressure at the bottom of the Arabian Gulf (depth = 820 ft) if sea 

water has an average density of 64 lb/ft3 and atmospheric pressure is 14.7 psia. 

5. Prove that the flow potential of water at sea level is the same as at the bottom of the sea. 

6. The following core data were obtained from a sandstone reservoir. 

Porosity Permeability (md)
0.03 5
0.18 160
0.13 90
0.22 96
0.15 104
0.24 301
0.27 310
0.25 121
0.08 35
0.11 86
0.20 175
0.28 370

a. Fit the data with an equation similar to Equ. 6.8. 

b. Explain why some points lie outside the general trend.   

c. Predict the permeability of a core sample from the reservoir if its porosity is 0.17. 

7. Derive an equation for the linear, steady-state flowrate of an incompressible fluid 

upwards through a porous bed that is inclined with the horizontal at an angle θ. 

8. A linear reservoir is 7 km long, 2 km wide and 20 m thick. It has a porosity of 22%, 

permeability of 350 md and it is inclined at 4° with the horizontal plain. If water (ρ = 1 

g/cm3, μ = 1 cP) enters the reservoir at a pressure of 150 atm, flows downwards through 

it, and exits the reservoir at 75 atm pressure. Compute the steady-state flowrate of water 

in m3/d and in bbl/d. 

9. Derive an equation for the linear, steady-state flow rate of an ideal gas downwards 

through a porous bed that is inclined with the horizontal at an angle θ. 

10. A well with a diameter of  
8
39  inches is drilled through an 80-ft thick reservoir with k = 

220 md. If the bottom-hole pressure of the well is 2400 psig, and if the pressure 3000 

feet away from the well (in all directions) is 5000 psig, what will the oil production rate 

be? Assume μo = 2.5 cP. 

11. For Exercise 10, compute the pressure gradient (psi/ft) at 10, 1000 and 10,000 feet away 

from the well. 

12. A well 4” in diameter penetrates a tight gas reservoir (h = 76 ft, k = 20 md). A recent test 

indicated that the reservoir pressure 2000 feet away from the well is 2750 psig. If the 

well pressure is maintained at 1450 psig, estimate the well production rate in standard 
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cubic feet per day (SCFD). The gas viscosity at the reservoir temperature of 180 °F and 

various pressures is given below. 

 
Pressure ( psia) 1450 2100 2750
Viscosity (cP) 0.016 0.019 0.021
 

13. A linear reservoir (k= 350 md, φ = 22%) is 23000 ft long, 3200 ft wide, 65 ft thick and is 

perfectly horizontal. Oil (ρ = 55 lb/ft3, μ = 2.1 cP) enters the reservoir from one end at a 

pressure of 2940 psi, and it is produced from a well on the other end (see sketch below) 

at 880 psi pressure. If the well is 12 inches in diameter, compute the steady-state 

production rate of oil in bbl/d. 

 
 
 
 
 
 
 
 
 

Hints: 
a. The flow is linear in the first 21400 ft then becomes radial in the last 1600 ft. 
b. Only the right-hand half of the well is draining (producing) oil. 

 
14. A horizontal layer of rock has the shape and dimensions shown below. 

a. Derive an equation for the steady-state flow of an incompressible fluid through this 

layer if pressure P1 is larger than pressure P2 . 

b. For the data given below, compute the flowrate in barrels/day. 

 h = 30 ft   L1 = 3 miles L2 = 1.2 miles  W   = 0.8 miles  
 k = 150 md  μ = 2 cP P1 = 3400 psia  P2 = 1200 psia 
 θ   = 30°  rw = 0.5 ft 

 
 

L1 L2  
 
 
 
 

 
θ

P1

P2 
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15. Derive an equation for the steady-state flowrate of an incompressible fluid in a spherical 

system. In such system, the flow converges from all directions on a hole of radius rw. 

16. A reservoir is 142 feet thick and consists of 7 horizontal zones with different 

permeabilities as listed below. Compute the average permeability of this reservoir. 

Zone Thickness (ft) Permeability (md) 
1 10 42 
2 25 280 
3 5 10 
4 17 215 
5 28 87 
6 43 300 
7 14 110 
   

17. Because of low permeability, the well of Exercise 12 was acidized. This stimulation 

process increased the rock permeability to 95 md in a zone only 5 feet in diameter 

around the well. 

a. Estimate the reservoir's average permeability after acidizing. 

b. Estimate the well production rate after acidizing 

c. How much increase (or decrease) in the well’s production do we gain with 

acidizing? 

18. A 2-mile wide reservoir consists of several layers as shown below. An incompressible 

liquid with 1.5 cp viscosity flows through the reservoir at steady-state. Compute the 

flowrate (bbl/day) of the liquid through the layer with k = 200 md. 

 
k = 250 md             h = 50 ft 
k = 120 md             h = 30 ft 
k = 200 md             h = 60 ft 

 

k = 140 md 

k = 70 md               h = 10 ft 

 
P = 750 
psia 

L = 2.4 miles L = 3.6 miles 

 
P = 2300 
psia 
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7. FLUID-ROCK INTERACTION 
The study of fluid-rock interaction is of fundamental importance to reservoir 

engineering. Not only does such interaction influence fluid flow through the reservoir, it also 

plays a dominant role in the distribution of fluids within the reservoir’s pore space and, more 

importantly, it dictates the maximum amount of a fluid that can be withdrawn from the 

reservoir. We shall start with the simplest form of such interaction and then move up to more 

complex ones. 

7.1: Surface tension 

The molecules of any substance are held together by inter-molecular forces whose 

magnitude depends on the molecular composition and structure of the substance. Different 

substances may display different levels of forces, and one way of illustrating such difference 

is to bring samples of two substances into contact. Since fluids are more noticeable in their 

interaction than rigid solids, we will conduct a simple experiment with water and air. 

Fill a slim and clean glass cylinder with water, and observe the shape of the water 

surface. You will notice that it is concave as depicted in Fig. 7.1. The cause of surface 

concavity is that water molecules at the surface are pulled downward by other water 

molecules beneath them, while from above, they are pulled by air molecules with their much 

weaker inter-molecular forces. Since this force imbalance is equal everywhere on the surface, 

its effect cannot be readily detected. On the other hand, at the edge of the surface where water 

meets the wall of the cylinder, the opposite effect takes place. There, water molecules are 

attracted by glass molecules stronger than by air molecules. The result is that water creeps up 

the inner wall of the cylinder causing the surface to deform. This phenomenon is well known 

in surface science and is called surface tension. 

 
 
 
 
 
 
 
 
 
 
 
 Fig. 7.1: Curvature of water meniscus 
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To quantify surface tension, we need to imagine another experiment. Suppose we have 

a container one side of which can be moved freely as shown in Fig. 7.2. Let us fill the 

container with a liquid, say water, and leave the container to stand in equilibrium. If we want 

 

 
ΔL  

 

B 

 
 
 F
 
 
 
 

Fig. 7.2: Hypothetical measurement of surface tension  
 

to enlarge the surface area of the water, we need to pull the movable side outwards. In doing 

so, we will find that a certain force, F, is required to overcome the resistance by the water, 

which doesnot want to expose more of its surface to air. To create new surface, water 

molecules have to be brought from within the body of the water, where they experience a zero 

net attraction force, to the surface where they are pulled by a net force downward. By creating 

a new surface, the whole body of water is raised to a higher level of internal energy, and work 

must be expended to supply the extra energy. This work is provided by the force F. Therefore, 

if the side is moved for a distance Δl, the work done is equal to 

 W = F Δl 

Therefore, surface tension, σ, is defined as the amount of energy, Es, needed to create a unit 

area of new surface. This energy is equal to 

 Es = 
A

W
Δ

  =  
lB
lF

Δ
Δ  

And, 

 σ = 
B
F  

where B is the container width. The units of surface tension are thus Joules/cm2; but since a 

Joule is equivalent to one dyne-cm, surface tension is commonly expressed in dyne/cm. Note 

that surface tension is a vector whose direction is parallel to the surface of the substance and 

opposite to the direction of area increase, i.e., opposite to F. 
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There are more accurate techniques to measure surface tension of a substance, and 

they all require, by definition, that the gas phase surrounding the substance be either air or the 

substance’s own vapor. Surface tension decreases with temperature; for liquids it reaches zero 

at the boiling point. For pure distilled water, σ is 72 dyne/cm at 20 ºC while a typical value for 

a crude oil is 40 dyne/cm at room temperature. 

7.2: Interfacial tension 

Suppose the experiment of the glass cylinder is repeated with water covered by crude 

oil. Tension would still exist at the oil-water interface, which would still be concave but to a 

lesser degree as oil-water attractive force is stronger than air-water. Such tension is called 

interfacial tension; its units and direction are the same as surface tension and a useful formula 

to compute it is: 

 σ12 = σ1 – σ2 

where 

 σ12 : interfacial tension between substances 1 and 2, dyne/cm 

 σ1 : surface tension of substance 1, dyne/cm 

 σ2 : surface tension of substance 2, dyne/cm 

A typical value of water-oil interfacial tension, σwo, at room temperature is 32 dyne/cm. 

7.3: Wettability 

All of us have observed how mercury drops tend to retain their spherical shape when 

they are placed over a glass surface while water drops tend to spread. We would normally say 

that water wets the glass, but mercury doesn’t. In reservoir engineering terminology, we 

characterize water as a wetting phase to glass and mercury as a non-wetting phase. To 

understand the mechanics of wettability of a phase in relation to a particular solid, let us 

inspect closely a drop of water placed over a clean sheet of glass (Fig. 7.3-a). At point a, three 

 
 
 
 
 
 
 
 
 
 

σgm 

(a) Water (wetting) (b) Mercury (non-wetting) 

σg σg
σm

θ 
σw 

σgw

a θ 

Glass plate 

Fig. 7.3: Wettability and contact angle  
 
forces are acting on the water surface: σgw (between glass and water), σg (between glass and 

air), and σw (between water and air); and each force is acting to decrease the area of interface 
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between the two substances concerned. Since the drop is at static equilibrium, the resultant 

force acting on the edge of the drop must be zero. Take one centimeter length of drop 

circumference and apply a force balance in the horizontal plane: 

  σg = σgw + σw cos θw (7.1) 

where θw is called the contact angle in water-air-glass system. Define the adhesion tension as: 

 At = σg - σgw

Thus, 

  At = σw cos θw (7.2) 

If the contact angle is less than 90, as in the case of θw, At will be positive, which makes glass 

pull the water drop to spread over. In other words, the glass prefers to be in contact with water 

rather than with air, which makes water the wetting phase to glass in the presence of air. If the 

contact angle is greater than 90, as in the case of mercury (Fig. 7.3-b), At will be negative, 

causing the glass to repel the mercury drop forcing it to contract. This makes air the wetting 

phase to glass in the presence of mercury. If the contact angle is close to 90, neither fluid will 

be the wetting phase and both will have neutral wettability. Note that the contact angle is 

always measured within the denser fluid. 

Wettability in an oil reservoir can be determined by a similar experiment with 

reservoir water, crude oil and a crystal of the predominant mineral in the reservoir rock. In 

general, water is the wetting phase to quartz in the presence of oil, while oil is the wetting 

phase to carbonate minerals in the presence of water. Natural gas is always the non-wetting 

phase in the presence of other liquids except mercury. 

Classification of wettability based on contact angle alone is not always correct. Other 

criteria have been proposed based on other manifestations of fluid-rock interaction. These will 

be presented in due course. For the time being, we shall look at the contact angle as a simple 

rule-of-thumb to characterize wettability. 

7.4: Capillary pressure 

Capillary pressure is another manifestation of fluid-solid interaction. To explain this 

phenomenon, we have to recall a familiar experiment in which one end of a glass capillary 

tube is immersed in a beaker full of water, which causes water to rise in the tube up to a 

particular height. The force that pulls water into the tube against gravity has to do with the 

adhesion tension. To investigate this force, let us look closely at the water meniscus illustrated 

in Fig. 7.4-a. At the periphery of the meniscus, the adhesion tension is given by Equ. 7.2 and 

it acts vertically upwards along the inner wall of the tube. Since this tension is a force per unit 

length of periphery, the adhesion force, Ft, is then computed by: 
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Fig. 7.4: Liquid rise in a capillary tube 

 
 
 
 
  

 Ft =  At (2πr)  =  2πr σw cos θw (7.3) 

where r is the radius of the capillary tube. At equilibrium, the adhesion force must be equal to 

the weight of the water column in the tube, Fg, given by: 

 Fg = π r2 h ρw g (7.4) 

where h  is the height, in cm, of the water column above the free water surface. 

Equating the two forces yields: 

 h = 
rg

cos2

w

ww

ρ
θσ  (7.5) 

It is informative to consider the effect of modifying some the experimental parameters. 

Using a larger tube would result in a shorter water column; so would replacing water with oil. 

However, using mercury would cause a depression in the mercury level (Fig. 7.4-b) because 

cos θm is negative. 

_______________________________________ 
Example 7.1 
One end of a glass tube, 1 mm in diameter, is dipped in a beaker full of distilled water at 20 

ºC. Compute the rise of water in the tube if water-air-glass contact angle is 30º and water 

density is 1 g/cm3. 

 

Applying Equ. 7.5 

 h = 
05.0x980x1

30cos72x2  
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  = 2.55 cm 

_______________________________________ 
 

To understand the concept of capillary pressure, let us examine Fig. 7.4-a from the 

prospective of pressure. The pressure at the free water surface (level 2) outside the tube is 

atmospheric in both the air and water phases: 

 Pw,2 = Pa,2  =  Patm 

Because of hydrostatic equilibrium, the water pressure inside the tube at level 2 should be 

atmospheric too. Due to the negligible density of air, the pressure in the air phase just above 

the water meniscus (level 1), Pa,1, is also atmospheric. We are ready now to calculate the 

pressure in the water phase just below the meniscus, Pw,1. Due to the weight of the water 

column, this pressure is: 

 Pw,1 = Pw,2 -  ρw g h    =   Patm -  ρw g h (7.6) 

which is less than atmospheric. In other words, there is a drop in pressure as we move across 

the meniscus from the air phase into the water phase. Such a drop in pressure is termed the 

capillary pressure, Pc, and it arises as a result of the preferential wettability of a solid (glass) 

towards one phase (water) over another phase (air) when both phases are in contact with the 

same solid. We can look at it as a difference in pressure which is created between the non-

wetting and wetting phases as soon as these two phases come in contact with the solid. In 

terms of interfacial parameters, the capillary pressure in our example can be computed by 

combining Equs. 7.5 and 7.6 as 

 Pc = Pa,1 - Pw,1

  = 
r
cos2 ww θσ  (7.7) 

It should be emphasized that, due to surface phenomena, the pressure in the wetting 

phase is always smaller than the pressure in the non-wetting phase by the magnitude of the 

capillary pressure. 

Suppose we repeat the capillary tube experiment but with oil overlaying the water as 

shown in Fig. 7.5. Following the same analysis above we conclude that: 

 Pw,2 = Po,2 

and 

 Pw,1 = Pw,2 -  ρw g h 

However, the hydrostatic pressure drop in the oil phase cannot be ignored in this case because 

oil density, ρo, is appreciable, and Po,1 is computed to be: 
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 Po,1 = Po,2 -  ρo g h 
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Fig. 7.5: Liquid rise in oil-water system  
 
The capillary pressure would then be given by: 

 Pc = Po,1 - Pw,1

  = (ρw - ρo) g h (7.8) 

Performing a force balance as previously, the adhesion force is given by: 

 Ft =  At (2πr)  =  2πr σwo cos θwo (7.9) 

where σwo is the water-oil interfacial tension and θwo is the water-oil contact angle. When 

computing the weight of the water column, the effect of buoyancy has to be included this 

time. The buoyancy force, Fb, acting on the water column is equal to the weight of displaced 

oil, which is: 

 Fb = π r2 h ρo g 

Therefore, the net weight of the water column is: 

 Fg = π r2 h g (ρw - ρo) (7.10) 

Equating Equs. 7.9 and 7.10 yields: 

 h = 
rg)(

cos2

ow

wowo

ρ−ρ
θσ  (7.11) 

By substituting Equ. 7.11 into Equ. 7.8, the capillary pressure can also be expressed by: 

 Pc = 
r
cos2 wowo θσ  (7.12) 

_______________________________________ 
Example 7.2 
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Rework Example 7.1 but with oil (0.85 g/cm3 density and 42 dyne/cm surface tension) 

overlaying water, and water-oil-glass contact angle is 50º. Also compute the capillary 

pressure in the tube. 

 

Applying Equ. 7.11: 

 h = 
05.0x980)85.01(
50cos)4272(x2

−
−  

  = 5.25 cm 

The capillary pressure is computed by Equ. 7.12 

 Pc = 
05.0

50cos)4272(x2 −  

  = 771 dyne/cm2

  = 0.011 psi 

_______________________________________ 
 

7.5: Capillary pressure in porous rock 

The pore space within reservoir rock is comprised of a large number of pores of 

different sizes and shapes, which are interconnected into a complex network of channels and 

pathways. A pore may be accessible through one or several entrances, or may be completely 

isolated. Due to the nature of inter-granular pore space, pore entrances – or throats – are 

usually smaller in diameter than the pore itself. This fact plays a crucial role in the distribution 

of fluids within the pore space as will be illustrated shortly. 

When two or more fluids share the pore space of a rock, the wetting fluid will readily 

coat the walls of the pores whenever possible, and a capillary pressure will exist at the 

interface between the wetting fluid and the non-wetting fluid(s). The magnitude of the 

capillary pressure will vary from pore to pore according to pore geometry. To illustrate this 

phenomenon, we shall follow the developments of a simple experiment. Assume that a 

sandstone core sample is fully saturated with water, the wetting phase, and is loaded in the 

setup shown in Fig. 7.6. Oil, the non-wetting phase, can be injected at one end and water can 

be produced from the other. 

A magnified picture of the core’s inlet, Fig. 7.7-a, shows water filling all the pores and 

oil is just coating the inlet face of the core. Since the system is at hydrostatic equilibrium, we 

expect that an infinitesimal increase in the oil pressure would cause the oil to enter the core 

displacing water inwards. However, this is not the case as every pore acts like a minute 
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capillary tube that develops capillary pressure at the two-phase interface. To start the 

displacement, we would have to increase the oil pressure until the pore(s) with the smallest Pc 

give way first, at which instant the oil-water pressure difference, ΔP, would be just above the 

required Pc. Intuitively, such pores would be the largest ones. This minimum Pc is called the 

threshold pressure, Pc,th, and is thus given by: 

 Pc,th = 
max

wowo

r
cos2 θσ  (7.13) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7.6: Capillary displacement in a core sample 
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Once oil enters the core through the largest pores, it will continue displacing water 

until it reaches a pore whose diameter requires a larger ΔP to push through (Fig. 7.7-b). At 

this stage, raising the oil pressure would carry water displacement forward in these pores as 

well as invading the next smaller pores at the inlet. Successive increases in oil pressure, 

hence, Pc, would cause more water to be displaced out of the core and reduce the water 

saturation progressively (Figs. 7.7-c and d). Therefore, a relationship between Pc and Sw can 

be deduced where a larger Pc leads to a smaller Sw. Such a relationship can actually be 

obtained by plotting the Pc versus Sw values computed from the experiment producing what is 

termed the capillary pressure curve for the water-oil-rock system. 
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(a) Pc = 0 (b) Pc = Pc,th

(c) Pc > Pc,th (d) Pc >> Pc,th

Oil 

Fig. 7.7: Microscopic views of water displacement by oil (drainage) 
 

A typical capillary pressure curve is shown in Fig. 7.8-a. One can readily identify the 

Pc,th, the minimum Pc value required to invade the rock, thus reducing Sw below 100%. One 

can also see how Pc increases steadily with decrease in Sw as smaller and smaller pores are 

invaded. A typical and interesting feature of the Pc curve is observed at the lower range of Sw 

where it seems that the curve approaches a certain saturation in an asymptotic mode. In other 

words, it appears that there exists a saturation value, which can never be achieved no matter 

how large a capillary pressure is exerted. Such a saturation is called the irreducible water 

saturation, Swi, and it results from isolated droplets of water surrounded and trapped in some 

pores by oil (refer to Fig. 7.7). 

The process described above in which the wetting phase is displaced out of a porous 

medium by a non-wetting phase is called a drainage process, and the Pc curve that results is 

called a drainage curve. A question may be raised as to what would happen if at the end of the 
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drainage process, water were reintroduced into the core sample. Such a process is called 

imbibition, and the resulting capillary pressure curve would look like curve 2 in Fig. 7.8-b. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0   100

Pc 

(a) Drainage capillary pressure curve 

Pc 

Sor 

2. Imbibition 

1. Drainage 

Pc,th 

Swi 

0   100

(b) Effect of direction of displacement 
      on capillary pressure 

Sw Sw 

Fig. 7.8: Typical capillary pressure curves for water-wet rock  
 
 

A striking feature of Fig. 7.8-b is the difference between the two curves. Specifically, 

the drainage Pc is greater than the imbibition Pc at every Sw. This phenomenon is attributed to 

three effects. First, it has been shown that the contact angle when the wetting phase is 

receding is smaller than when it is advancing, which reduces the Pc for any given Sw. Second, 

because of complex pore geometry, some pores may have two inlets with different diameters. 

It may well happen that one such pore could not be invaded by oil from one side during 

drainage because of its small pore throat (Fig. 7.9-a). The Pc at the prevailing Sw would be 

high. Yet, during imbibition, this same pore would be invaded by water through the other 

larger inlet, at a lower Pc, causing complete oil displacement and restoring Sw to its former 

value (Fig. 7.9-b). Therefore, for the same Sw, a smaller Pc is required during imbibition. The 

third effect has to do with hysterisis, which is, basically, a gradual shift in the wettability 

preference of a solid towards a fluid that it has been coated with for a prolonged time. 

Therefore, originally water-wet grains that were coated with oil during drainage become less 

water wet with time, causing them to display a somewhat larger contact angle. 
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 Oil flow (Drainage) Water flow (Imbibition) 
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Oil  
 
 
 
 
 
 
 
 
 
 (a) High capillary pressure (b) Low capillary pressure 
 

Fig. 7.9: Effect of displacement direction on capillary pressure 
 

Another feature of the imbibition Pc curve is an apparent maximum Sw, or an apparent 

minimum So. This residual oil saturation, Sor, is caused by a similar entrapment process 

where oil globules become isolated within large pores. The negative Pc associated with Sor is a 

consequence of the definition of Pc. Remember that Pc is defined as the difference between 

non-wetting and wetting phase pressures regardless of which phase is being displaced. 

A reservoir engineer should apply the capillary pressure curve that is appropriate to 

the process taking place in the reservoir. Usually, all reservoir rock becomes saturated with 

water during sedimentation or shortly thereafter. Migrating hydrocarbons that accumulate in 

the rock gradually displace water out of the pores in a drainage process. When the reservoir is 

discovered, capillary forces would have distributed water in such a way that Sw is close to Swi 

within the oil column, then comes an interval over which Sw increases gradually from Swi to 

100%, and finally the water aquifer lies beneath. The depth interval over which Sw changes 

from Swi to 100% changes is called the transition zone, and its characteristics must be 

analyzed according to the drainage Pc curve. Later in the life of the reservoir when water is 

injected to boost the pressure or displace the oil, the imbibition Pc curve must be applied. 

7.6: Measurement of capillary pressure 

Many methods, both direct and indirect, have been devised to measure the capillary 

pressure for rock samples. In this section, the centrifuge method, which is the most widely 

used direct technique, will be presented. 

The centrifuge is a devise with a rotating shaft to which several core holders, usually 

eight, are held by radial arms. Figure 7.10 illustrates design of the core holder. One core 
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sample saturated with water or another wetting fluid is placed in each holder and the shaft is 

rotated at a constant speed for a sufficient time. The centrifugal force causes the pressure 

within the core sample to drop below atmospheric. Such pressure drop allows air to drive the 

water out of the core sample where it accumulates in a receiving tube at the end of the core 

holder. The difference between the atmospheric pressure of air and the new pressure of water, 

which can be computed by a simple formula, simulates a capillary pressure exerted on the 

water by air. Raising the rotation speed, which simulates a higher capillary pressure, drains 

more water from the core providing another reading.  

 Receiving tube Centrifuge arm Core sample  
 
 
 
 
 
 
 
 

Porous disc Window  
 
 

Fig. 7.10: Centrifuge core holder assembly  
 

The air-water drainage capillary pressure curve is then graphed from the pressure drop 

values versus the water saturation remaining in the core sample at the end of each rotation 

step. 

The reservoir Pc curve is generated from the laboratory data by a simple conversion 

technique employing Equ. 7.12. For any pore within the core sample, 

 Pc,L = 
r
cos2 ww θσ  

and  

 Pc,R = 
r
cos2 wowo θσ  

where subscripts “L” and “R” refer to laboratory and reservoir conditions, respectively. Note 

that for the lab data, air-water contact angle is applied, while for the reservoir oil-water angle 

is applied. Combining the two equations above yields: 

 Pc,R =  
ww

wowo

cos
cos

θσ
θσ Pc,L (7.14) 
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Note that the pore radius has disappeared from Equ. 7.14, which means that this equation 

applies to any pore within the rock. Therefore, for any Sw compute Pc,R from the 

corresponding value of Pc,L using Equ. 7.14. 

_______________________________________ 
Example 7.3 
The following capillary pressure data was generated in the lab using air and water. For each 

water saturation, compute the corresponding reservoir capillary pressure for the same rock but 

saturated with oil and water. σw =  72 dyne/cm, σo =  32 dyne/cm, θw = 20°, θwo = 40°. 

Sw (%) 20 30 40 50 60 70 80 

Pc,L (psi) 4.91 4.52 4.26 4.11 4.04 3.95 3.77 

 

σwo =  72 – 32  =  40  dyne/cm 

From Equ. 7.14, the conversion factor is: 

ww

wowo

cos
cos

θσ
θσ  =  

20cosx72
40cosx40  =  0.46 

The reservoir capillary pressure is then computed as below. 

Sw (%) 20 30 40 50 60 70 80 

Pc,R (psi) 2.26 2.08 1.96 1.89 1.86 1.82 1.73 

_______________________________________ 
 

7.7: Applications of capillary pressure 

The capillary pressure curve provides valuable insight into the fluid-rock system under 

study. Much information can be inferred from a simple inspection of the curve. This includes: 

a. Largest pore diameter within the rock: The higher the threshold pressure, the smaller the 

largest pore is. 

b. Pore-size distribution: The slope of the Pc curve follows the gradual change in pore-

diameters. A steep curve indicates a wide distribution. 

c. Swi and Sor from the limits of the curve. 

The threshold pressure can also indicate the wettability preference of the rock. A 

positive Pc,th in an oil-displacing-water process indicates preferential wettability to water, and 

the relative magnitude of Pc,th reflects the strength of such wettability. In fact, the concept of 

the contact angle as an indicator of wettability is refined by the incorporation of Pc,th through 

the wettability number, Nwet, which is defined as: 
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 Nwet  = 
oa,thoawo

wo,thwoo

Pcos
Pcos

θσ
θσ

 (7.15) 

where subscripts “wo” and “oa” refer to water-oil and oil-air systems, respectively. A 

wettability number of one indicates complete wettability to oil, while a value larger than 1 

indicates more wettability to water. Based on the definition of the wettability number, we can 

define an apparent contact angle, θapp, as: 

 cos θapp = 
oa,thwo

wo,tho

P
P

σ
σ

 (7.16) 

If available, the apparent contact angle is a better indicator of wettability preference than the 

ordinary contact angle. 

The most important application of capillary pressure data is, probably, the 

construction of the Sw profile within the transition zone. First, we have to define the free 

water table, which is the uppermost horizon (depth) within the reservoir where the capillary 

pressure is zero. The free water table is actually the upper limit of the water aquifer where Sw 

is naturally 100%. Above the free water table, pc increases with height according to Equ. 7.8 

rewritten as follows: 

 h = 
g)(

P

ow

c

ρ−ρ
 

and in field units: 

 h = 
ow

cP144
ρ−ρ

 (7.17) 

Equation 7.17, thus, provides the Pc profile within the transition zone. Recall that every Pc 

corresponds to a water saturation. Hence, Equ. 7.17 establishes the Sw profile in the transition 

zone too. An example profile is shown in Fig. 7.11. Note that this profile is generated in 

nature from top to bottom, not the other way around. This is because when oil migrates into 

the reservoir it is kept at the top portion by buoyancy forces, which causes water displacement 

downwards. In this drainage process, capillary forces, however, prevent complete 

displacement of water and some water is retained in the oil zone as irreducible water. 

Moreover, water is not drained out equally everywhere in the reservoir; there will be a gradual 

increase in water saturation as we move closer to the aquifer. With more accumulation of oil, 

the transition zone grows thicker as a result of continued shift in equilibrium between 

capillary and buoyancy forces. 
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Fig. 7.11: Water saturation profile in the transition zone  

 

It is interesting to note that 100% water saturation extends even above the free water 

table in Fig. 7.11. This, seemingly, contradictory situation is explained by the threshold 

pressure. Recall that at and below the free water table the capillary pressure is zero, and it 

starts increasing as we move into the transition zone. Since the smallest capillary pressure, 

Pc,th, corresponds to Sw = 100, this necessitates that this saturation should also exist in the 

transition zone up to a height dictated by the threshold pressure. 

If a well penetrates the transition zone, well logs could provide the water saturation 

profile within this zone. Coupled with Equ. 7.17, this profile provides an indirect means of 

establishing the capillary pressure curve for the reservoir. 

_______________________________________ 
Example 7.4 
The capillary pressure curves for a sandstone reservoir are shown in Fig. 7.12. Estimate the 

height, in feet above the free water table, where Sw drops below 100% and where it is equal to 

45%. Oil and water densities are 55 and 64 lb/ft3, respectively. 
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The drainage Pc curve is used. Sw drops 

below 100% when Pc exceeds Pc,th, which is 

1.2 psi. From Equ. 7.17, 

h (Sw =100) = 
5564

2.1x144
−

 

 

        = 9.2 ft 

For Sw of 45%, Pc is 3.0 psi. Therefore, 

h (Sw=45)   = 
5564

0.3x144
−

 

        = 48.0 ft 

Consulting saturation logs, the two heights 

can help estimate the depth of the free water 

table. 
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    2 
 
 
   0
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Fig. 7.12: Capillary pressure curves 
for Example 7.4 

Sw (%) 

_______________________________________ 
 

7.8: Correlating capillary pressure data 

It is evident from discussions presented in the previous section that the pore-size 

distribution within the core sample under study greatly influences the magnitude of the 

sample's Pc curve. Since this distribution has a strong influence on the porosity and 

permeability of the sample, it is, therefore, expected that different core samples from the same 

reservoir would display different Pc curves. The range in Pc curves would become wider as 

the reservoir rock displays greater porosity and permeability variation. Having to deal with a 

multitude of capillary pressure data would render many reservoir calculations more 

cumbersome. If all such data were reduced to one “master” curve, in a fashion similar to a 

permeability-porosity transform, the capillary pressure curve for a given section of the 

reservoir would be derived from the master curve utilizing local properties only. Leverett3 

was able to derive the correlating function, called the Leverett J-function, which he defined 

as: 

 J = 
wowo

c

cos
P

θσ ϕ
k  (7.18) 

For a given core sample, the J-function is dimensionless and varies with Sw only since 

all parameters in the right-hand side of Equ. 7.18 are independent of saturation except Pc. 
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Note that for Equ. 7.18 to be consistent, Pc must be in dynes/cm2, k in cm2, and ϕ in fractions. 

Figure 7.13 shows how capillary pressure data for six core samples from a dolomite reservoir 

collapsed into one narrow band once it was converted according to Equ. 7.18. An equation 

describing the smooth curve drawn through the data can be obtained by any curve-fitting 

technique. For any location within the reservoir, the capillary pressure at any Sw can now be 

approximated by reading the J-function value at that Sw and combining it with relevant core 

data in the form: 

 Pc = J σwo cos θwo k
ϕ  (7.19) 

 

            k           ϕ 
 223 0.27 
 314 0.29 
 117 0.09 
   78 0.09 
 182 0.20 
 406 0.38 

2 

3 

4 

J = 
wowo

c

cos
P

θσ ϕ
k  

0 
0      20 40        60    80         100

Water saturation, percent 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 1 
 
 
 
 
 
 
 
 
 
 Fig. 7.13: Capillary pressure data for a dolomite reservoir 
 

_______________________________________ 
Example 7.5 
A sandstone core sample with 240 md permeability and 27% porosity was used to determine 

the drainage water-air capillary pressure curve in the laboratory (T = 75 ºF). For Sw of 35%, 
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Pc was measured at 1.65 psi. Estimate the Pc for Sw of 35% (So = 65%) in a location within the 

reservoir (T = 180 ºF) where k = 160 md and ϕ = 15%. Relevant fluid and rock data are given 

below. 

Air-water-quartz contact angle @ 75 ºF: 24º 

Oil-water-quartz contact angle @ 180 ºF: 40º 

Water surface tension @ 75 ºF:  73 dyne/cm 

   @ 180 ºF:  21 dyne/cm 

Oil surface tension @ 75 ºF:   39 dyne/cm 

   @ 180 ºF:  10 dyne/cm 

 

The core sample’s equivalent reservoir Pc for Sw of 35% is computed first by Equ. 7.14: 

Pc,R =  
ww

wowo

cos
cos

θσ
θσ Pc,L

 =  
24cos73

40cos)1021( − 1.65 

 = 0.21 psi 

 = 14,470 dynes/cm2

Note that data at reservoir temperature are used. At reservoir conditions, Leverett’s J-function 

for the core sample at Sw of 35% would be: 

J = 
40cos)1021(

14470
− 27.0

10x87.9x240.0 9−
 

= 0.1608 

At any other location within the reservoir, the J-function at Sw of 35% would always be 

approximately 160.8. Therefore, for the second location: 

Pc = J σwo cos θwo k
ϕ  

 = 0.1608 x (21-10) cos 40 
910x87.9x160.0

15.0
−

 

 = 13,206 dynes/cm2

= 0.19 psi 

Note that non-consistent units could have been employed in the computation of J since the 

same units would be used again in estimating the final Pc. 

_______________________________________ 
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Exercises 

1. Compute the depression of mercury in a glass tube (D = 0.5 mm) immersed in a beaker of 

mercury. 

σHG = 470 dyne/cm θHG = 150° ρHG = 13.4 g/cm3. 

2. If water overlays mercury in Exercise 1, what will the depression be?  (θwHG = 150°) 

3. What is the capillary pressure in Exercise 2? 

4. For a capillary glass tube of 1 mm diameter, compute the rise of water above the water 

surface if the water is overlain by oil. Also compute the capillary pressure in the tube. 

 σw = 72 dyne/cm   σo =  35 dyne/cm 

 ρw = 1 g/ml   ρo =  0.82 g/ml 

 θ (water/oil/glass) = 47°  θ (oil/air/glass) = 65° 

5. The grains of a sandstone core sample are 10 microns in diameter and are packed in the 

cubic arrangement. The core is saturated with water at atmospheric pressure (14.7 psia). 

If we want to displace the water from the core completely by using the oil of Exercise 4, 

what is the minimum oil pressure required? Water/oil/quartz contact angle is 45°. 

Hint:  To estimate the radius of a pore, assume it to be a circle of the same area as the 

pore. 

6. Consider Example 7.4. Suppose a drainage experiment was conducted on the same 

sandstone but with oil and air, and the threshold pressure was 0.6 psia. Compute the 

wettability number for this rock assuming the same fluid data as Exercise 4. 

7. A resistivity log in the transition zone of a reservoir produced the water saturation data 

given below. Construct the capillary pressure curve for this reservoir if ρw = 1 g/ml and 

ρo = 0.8 g/ml. 

Depth, ft 4000 4100 4200 4300 4400 4500 4600 4700 4800 4900 5000

Sw, % 25.6 25.6 25.7 26.0 27.0 29.0 31.0 34.2 37.8 41.5 46.2

 
Depth, ft 5100 5200 5300 5370 5430 5550 5700 5800 5900 6000*

Sw, % 52.0 59.4 70.8 82.0 93.0 98.0 100.0 100.0 100.0 100.0

* Free water table 

8. The Leverett capillary pressure function for a reservoir is shown in the figure on the next 

page. For a core sample from this reservoir whose properties are given below, compute 

the irreducible (interstitial) water saturation and the threshold pressure. 

k = 520 md  φ = 18% 
σo = 38 dyne/cm  σw = 73 dyne/cm θ  = 27° wo
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9. In a certain part of the reservoir of Prob. #8, k = 315 md and φ = 21%. The free water 

table is at 5300 feet subsea. Compute the water saturation at a depth of 5265 feet. 
3  3ρo = 53.0 lb/ft ρw = 62.6 lb/ft

 

 

 80



8. EFFECTIVE AND RELATIVE PERMEABILITY 
In the last section of chapter 6, a question was posed as to how to estimate the flowrate 

of a fluid in a reservoir where other fluids, either flowing or static, were present. It should 

have become obvious by now that for every fluid within the pore space of a porous medium 

there exists a critical saturation, irreducible or residual, that cannot be reduced unless 

excessively large pressure gradients are applied. Under normal reservoir conditions, such 

gradients cannot be attained, which makes a fluid near or at its critical saturation virtually 

immobile. This provides a partial answer to the question above; that is a fluid can flow only 

when its saturation is greater than the critical value. This condition is dictated by capillary 

forces. The magnitude of a fluid’s mobility (ability to flow) is, intuitively, proportional to the 

fluid’s saturation as long as such saturation is above the critical value. If we are to distribute 

the permeability of the medium among the fluids, we must take this fact into consideration. 

8.1: Effective permeability 

When several fluids are flowing through a porous medium, the flowrate of each fluid 

will be governed by Darcy’s law. Basically, such flowrate is dictated by the fluid’s viscosity 

and flow potential gradient, the portion of the total cross-sectional area of the medium that is 

available to the fluid’s flow, and the permeability of the medium. In equation form, Darcy’s 

law is written: 

 qi = - k 
i

iA
μ s

i

∂
Φ∂  (8.1) 

where subscript “i” refers to fluid i. Since Ai is difficult and impractical to determine, the total 

cross-sectional area of the medium is preferred instead. This necessitates replacing k with ki, 

which is termed the effective permeability to fluid i. Equation 8.1 is, therefore, rewritten: 

 qi = - ki 
i

A
μ s

i

∂
Φ∂  (8.2) 

The effective permeability to a fluid is, thus, defined as the ability of a porous medium to 

conduct that fluid when the fluid’s saturation in the porous medium is less than 100%. 

The units of effective permeability are obviously the same as permeability. Besides the 

permeability of the medium, the effective permeability to a fluid depends also on the fluid’s 

saturation, the types and saturations of other fluids present in the medium, the wettability 

preference of the medium, and its pore characteristics and size distribution. In essence, the 

effective permeability is affected closely by the capillary characteristics of the fluid-rock 

system. 

81 



A set of typical water and oil effective permeability curves for a strongly water-wet 

rock is shown in Fig. 8.1. Several features of those curves deserve close examination. 
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 Fig. 8.1: Typical effective permeability curves  
 

a. The most prominent feature occurs at the critical saturations where both effective 

permeabilities drop to zero. In other words, water becomes immobile (kw = 0) at Sw = 

Swi and oil becomes immobile (ko = 0) at So = Sor or Sw = 1 - Sor. 

b. At their maxima, neither kw nor ko equals k. This feature is expected since at either 

point, the pore space is partially occupied by the other fluid, which deprives the 

flowing fluid of conductive pore space. 

c. Swi is larger than Sor. Due to wettability preference, water ceases to flow at a larger 

saturation because adhesion binds water to the grain surfaces with a stronger force. 

d. Even though Swi is larger than Sor, which means that the pore space available to oil at 

Swi is smaller than that available to water at Sor, the maximum kw is less than the 

maximum ko. To explain this feature, we have to look closely at the distribution of 

each fluid at its critical saturation as depicted in Fig. 8.2. Being the wetting phase, 

water at Swi is reduced to rings lodged at the smallest pore throats and/or droplets 
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filling the smallest pores. Since these locations contribute little to the permeability of 

the medium, compared with their contribution to the pore volume, oil enjoys the most 

conductive part of the pore space. Compare this situation with that of oil at Sor, where 

oil is reduced to globules isolated at the largest pores posing a significant restriction to 

water flow. 

 
Water 

Oil 

 
 
 
 
 
 
 
 
 
 
 Water at Swi Oil at Sor 

Fig. 8.2: Distribution of oil and water at critical saturations  
 
 

e. At any Sw, the sum of kw and ko does not add up to k. Once again, capillary forces 

hinder the movement of water through the medium in the presence of oil, which 

reduces the overall conductivity of the medium. 

 

8.2: Measurement of effective permeability 

Effective permeability is measured by several methods classified according to the 

nature of the flow experiment. The steady-state method is simple and accurate, though very 

time consuming. In this method, a permeameter similar to the one shown in Fig. 6.1 is used 

with minor modifications. First, both water and oil are simultaneously injected into the core 

sample at different flowrates, and, second, the production rates of oil and water are measured 

individually. 

A test begins with mounting the core sample, whose pore volume is known and is 

fully saturated with water, into the core holder. Once the confining pressure is applied, some 

water would squeeze out of the sample, which requires recalculation of its initial pore volume. 

Then both oil and water are injected into the sample at constant, but different, rates. Normally, 

the qo /qw ratio is set initially at a small value. Injection is continued until steady state is 

achieved where the production rate of each fluid is equal to its injection rate. At this point, the 

saturation of each fluid in the sample is computed by material balance, and the effective 
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permeability to each fluid is computed by Equ. 8.2. Note that the flow potential gradient for 

each fluid is approximately equal to the total pressure gradient applied to the core sample. 

This step provides one value each for kw and ko at the corresponding Sw in the sample. The 

procedure is repeated for progressively larger qo /qw ratios and the steady-state effective 

permeabilities are computed at each new Sw. In the last step of this sequence, only oil is 

injected into the sample. Steady state is achieved when water production ceases signaling the 

complete removal of all mobile water from the sample. This step provides both Swi and ko at 

Swi

The procedure described above involves a drainage process. Accordingly, the effective 

permeability curves that result are drainage curves. For the imbibition curves, the procedure 

has to be repeated starting with the core sample fully saturated with oil, and the oil saturation 

is reduced stepwise. Note that in the last step of this procedure, only water is injected until oil 

ceases to flow out of the sample. This step provides Sor and kw at Sor. 

It is interesting to note that the drainage and imbibition ko curves usually differ, while 

the kw curves are virtually the same. A typical example of effective permeability curves is 

shown in Fig. 8.3. It is customary to plot those curves versus the wetting-phase saturation. 
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 Fig. 8.3: Drainage and imbibition effective permeability curves 
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_______________________________________ 
Example 8.1 
A steady-state flow test was conducted on a core sample 1” in diameter and 2” long. The table 

below lists the total pressure drop, fluid flowrates and saturation data for each step of the test. 

Compute and plot the effective permeability curves for this core and estimate Swi  and Sor. Oil 

and water viscosities are 2.5 and 1.1 cp, respectively. 

ΔP (psi) 3.9 5.2 4.9 3.7 3.5 3.2 3.8 3.7

qo  (cm3/min) 0.000 0.000 0.023 0.089 0.573 1.680 3.570 4.570

qw (cm3/min) 12.300 7.890 5.050 3.560 1.170 0.207 0.004 0.000

Sw  (%) 100.0 79.5 73.9 70.0 60.0 50.1 40.2 36.3
 

From the test data, we observe: 

qo = 0 @ Sw = 79.5 Therefore, Sor = 100 – 79.5 = 20.5% 

qw = 0 @ Sw = 36.3 Therefore, Swi = 36.3% 

Oil flowrate is given by Equ. 8.2: 

 qo = - ko 
o

A
μ s

o

∂
Φ∂

  =   ko 
o

A
μ L

PΔ    

Rearrangement of the above equation yields: 

 ko = 
PA
Lq oo

Δ
μ

  

Applying this equation, with consistent units, to every step yields the effective permeability to 

oil. For example, at Sw = 70%, 

 ko = 
)7.14/7.3)(54.2x1

4
(

)54.2x2)(5.2)(60/089.0(
22π

 

  = 0.0148  darcy  =  14.8 md 

Similarly, the effective permeability to water is computed by: 

 kw = 
PA
Lq ww

Δ
μ

 

At Sw = 70%, 

 kw = 
)7.14/7.3)(54.2x1

4
(

)54.2x2)(1.1)(60/560.3(
22π

 

  = 0.2599  darcy  =  260 md 
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The effective permeability values are plotted in the figure below with smooth curves drawn 

through the data points. Note that at Sw = 100, kw is the permeability of the core sample. 
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_______________________________________ 

 

A faster method for determining effective permeability employs unsteady-state 

displacement of oil by water. The procedure is similar to that of the steady-state method 

except that only water is injected into the core and at one constant rate. During displacement, 

both oil and water are produced from the core sample at variable rates and the pressure drop 

across the sample varies as well. A mathematical technique to analyze the data had been 

developed by Johnson et al.4 in 1959 and was later modified by Jones and Rozelle5 in 1978. 

The technique provides the relative permeabilities, defined in the following section, rather 

than the effective permeabilities. 

Effective permeabilities can also be obtained from field production data. An oil well 

would produce both oil and water if the saturations of the two fluids within the well’s 

production area were above their respective critical values. The production rate of each fluid 

would be controlled by Equ. 8.2. Assuming that the flow potential gradients for both fluids 

are equal, the ratio of production rates would be given by: 
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w

o

q
q  = 

w

o

k
k

o

w

μ
μ  (8.3) 

The effective permeabilities would correspond to the average water saturation within 

the well’s area of the reservoir, which could be estimated from well logs. Other wells 

producing from the same reservoir could supply additional data points to complete the curves. 

Note that only the ratio of effective permeabilities is provided by Equ. 8.3. 

This technique is not wholly reliable for several reasons. Daily fluctuations in the 

production rates compel the engineer to resort to average rates, which introduces inaccuracies 

in the analysis. Also, both fluids are not uniformly distributed around the well making average 

water saturation a difficult parameter to assess. Lastly, assuming the computed effective 

permeability ratio to correspond to the average water saturation is not technically correct. 

 

8.3: Correlating effective permeability 

Similar to the problem of the capillary pressure curves, heterogeneous reservoirs 

display a range of effective permeabilities as wide as permeability variation. To overcome this 

problem, reservoir engineers have adopted the concept of the relative permeability, which is 

simply the ratio of the effective permeability to some base permeability, kb. Therefore, 

 kri = 
b

i

k
k  (8.4) 

where kri is the relative permeability to fluid i at the saturation of ki. Relative permeability is 

dimensionless and varies with the wetting-phase saturation in a form identical to that of 

effective permeability. Plotting all sets of relative permeability curves for a reservoir, each set 

based on its own base permeability, usually collapses all such curves into one set. 

There are no criteria for the choice of base permeability; however, convention has 

settled on the effective permeability to oil at irreducible water saturation ( ko at Swi). The 

relative permeability curves corresponding to the example of Fig. 8.3 are shown in Fig. 8.4. 

8.4: Smoothing relative permeability data 

Effective permeability and, consequently, relative permeability data usually show 

scatter caused by experimental errors. Smoothing relative permeability data is achieved by 

two techniques. 

a. Relative permeability ratio 

The ratio of non-wetting to wetting-phase relative permeability, e.g., kro/krw or krg/kro, has 

been found to fall on a semi-logarithmic straight line over most saturations as illustrated in 
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Fig. 8.5. Once plotted and fitted by the best straight line, the smoothed data could be used 

instead of the original one. 
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 Fig. 8.4: Drainage and imbibition relative permeability curves 
 
 
b. Dimensionless saturation 

For water-wet rock, dimensionless water saturation is defined as: 

 SwD = 
orwi

wiw

SS1
SS
−−

−  (8.5) 

Employing this definition, the following correlations have been found to fit most relative 

permeability data: 

 kro = (1 - SwD)b (8.6) 

 krw = a SwD
c (8.7) 

where a, b and c are empirical constants to be determined by regression on the data. Once 

the data is fitted, Equs. 8.6 and 8.7 can be employed for generating relative permeability 

data. 
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Fig. 8.5: Variation of relative permeability ratio with water saturation  
 
_______________________________________ 
Example 8.2 
Compute the relative permeability data for Example 8.1 and smooth it using Equs. 8.5, 8.6 

and 8.7. 

 

In Example 8.1, the effective permeability to oil at Swi was found to be 758.4 md. This shall 

be employed as the base permeability. Converting normal water saturation to dimensionless 

water saturation is done according to Equ. 8.5: 

 SwD = 
205.0363.01

363.0Sw

−−
−

   =    
432.0

363.0Sw −
 

All effective permeability values are converted to relative permeabilities using the base 

permeability. For example, at Sw = 70%: 

 SwD = 
432.0

363.07.0 −    =   0.78 
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krw   =    
4.758

260   =   0.343 kro =    
4.758

8.14   =   0.02 

The relative permeability data is plotted in 

the figure shown to the right. Best-fitting 

curves of the form given by Equs. 8.6 and 

8.7 are determined by plotting log krw vs. 

log SwD to find a and c, and log kro vs. Log 

(1 - SwD) to find b. The two curves are also 

shown in the figure, and their equations 

are: 

 kro = (1 - SwD)2.5

 krw = 0.64 SwD
3.15
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_______________________________________ 
 

8.5: Estimation of relative permeability 

Because of difficulties associated with displacement experiments, a number of 

techniques have been proposed for the estimation of relative permeability from other sources 

of fluid-rock data. One such technique was outlined by Purcell6 in 1949 utilizing capillary 

pressure data. For a water-wet system, Purcell derived equations which have been modified as 

follows: 

 krw = 

∫

∫
− or

wi

w

wi

S1

S
2

c

w

S

S
2

c

w

p
dS

p
dS

 (8.8) 

 kro = 

∫

∫
−

−

or

wi

or

w

S1

S
2

c

w

S1

S
2

c

w

p
dS

p
dS

 (8.9) 

The integrals in Equs. 8.8 and 8.9 are evaluated by graphical means as shown in Fig. 8.6. 
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 Fig. 8.6: Estimating relative permeability by Purcell’s method  
 

The relative permeabilities computed by Purcell’s method are based on the 

permeability of the porous medium. One limitation exists with this method, namely, the sum 

of krw and kro is equal to one for any given Sw, which is not correct. Another limitation relates 

to the value of Pc at Sor, which is usually zero for the imbibition curve. We can work around 

this problem by using the closest data to Sor and then setting kro at Sor to zero.  

_______________________________________ 
Example 8.3 
Estimate the imbibition relative permeability data for the reservoir of Example 7.4. 

 

Imbibition Pc values are read from Fig. 7.12 at various water saturations, then 1/Pc
2 is 

computed: 

Sw 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.85 0.90

Pc (psi) 10.0 5.0 3.5 2.5 1.4 0.8 0.3 0.2 0
1/Pc

2 (psi-2) 0.010 .040 .082 0.160 0.510 1.56 11.1 25.0 -
 

1/Pc
2 is then plotted vs. Sw, as shown below, and the integrals in Equs. 8.8 and 8.9 are 

determined graphically at various saturations. The relative permeability curves that result are 

also shown below. 
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Note that krw at Sor (Sw = 90%) is equal to 1, which is not always true especially for water-wet 

rock. This is another artifact of the Purcell method. 

_______________________________________ 
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8.6: Three-phase relative permeability 

Petroleum reservoirs often contain three phases: water, oil and gas. The gas phase 

could be present initially or may evolve out of the oil phase during the life of the reservoir. It 

may also be introduced into the reservoir to assist displacement of oil. In any case, the 

flowrate of any phase is controlled by its own effective permeability as stated by Equ. 8.2. 

Measurement of 3-phase effective, or relative, permeabilities is carried out by 

experiments similar to those involving two phases; the amount of work is much larger, 

though. The difficulty lies, however, in the presentation of such data. While a tabular form is 

simple, it would render interpolation between data points rather inaccurate. A graphical form 

is more practical. 

For a given rock, studies have shown that the relative permeability to the wetting 

phase varies with its saturation only. In a water-wet system, for example, krw appears to be 

dependant on Sw only regardless of So or Sg. This observation is explained by the fact that 

water tends to occupy the smallest pores and it considers all other fluids as non-wetting 

phases. Therefore, water behaves as though it is flowing in a 2-phase system. On the other 

hand, relative permeability to gas, the least wetting of all three fluids, varies mainly with gas 

saturation. Gas considers both oil and water as wetting phases and thus occupies the largest 

pores. In a close fashion to water, gas behaves as though it is flowing in a 2-phase system 

with it being the non-wetting phase. This leaves oil whose relative permeability has been 

observed to depend on both Sw and Sg. Having intermediate wettability, oil is limited to 

intermediate-size pores where its flow is hindered by both water and gas. 

Leverett and Lewis7 presented 3-phase relative permeability data on a water-wet, 

unconsolidated sand pack. Figure 8.7 shows the krw curve for this medium. Notice that for 

some water saturations more than one value of krw are plotted. These were measured at the 

same Sw but at different combinations of So and Sg. Nevertheless, all krw data fall on a narrow 

band and can be smoothed by a single curve. 

The kro data is presented in ternary-diagram form as shown in Fig. 8.8. In a ternary 

diagram, each corner of the triangle represents complete saturation by one phase and the base 

opposite to a corner represents zero saturation of that same phase. Phase saturations between 0 

and 100% are represented by lines parallel to the base. For example, point α in Fig. 8.8 

represents 50% Sw, 30% So, and 20% Sg, while point β represents 10% Sw, 30% So, 60% Sg. 

Points of constant kro are connected by a curve with the kro value denoted next to the curve. 

For points α and β, kro equals 5% and 2%, respectively. Sor is estimated at 20%. The krg data 

for the sand pack is shown in the ternary diagram of Fig. 8.9. The critical gas saturation, Sgc, 
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is estimated at about 10%. The base permeability in Leverett and Lewis’s data is the 

permeability of the sand pack as can be deduced from Fig. 8.7. 
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Liquid flow is severely curtailed when gas is present at appreciable saturations. 

Consider point γ in Fig. 8.8 where So = 20% and Sw = Sg = 40%. The relative permeabilities in 

this case are krw = 3%, kro < 1% and krg = 10%. With a viscosity two orders of magnitude 

smaller than those of oil and water, gas flowrate could be hundred of times larger than oil. 

Such domination by gas affects oil production adversely and drains the energy out of the 

reservoir. For this reason, reservoir engineers plan exploitation of an oil reservoir in a way 

that obviates build up of significant gas saturation in the oil zone. 

8.7: Applications of relative permeability 

Any reservoir analysis that involves estimation of multi-phase flow requires relative 

permeability. Examples of such analyses are too many to present in this introductory course. 

We will select one application to illustrate the utility of relative permeability. 

At a certain stage in the life of an oil reservoir, water is injected into the reservoir to 

displace the oil and, consequently, enhance the recovery. This process is called waterflooding. 

In areas swept by water, complete oil displacement is not possible due to capillary effects; 

rather, both oil and water would flow simultaneously.  The ratio of oil to water flowrates 

within the swept area would be given by Equ. 8.3, which indicates that such ratio varies with 

water saturation. If we are to maximize the qo/qw ratio, we must keep the effective 

permeability ratio at a maximum. This is achieved by either maintaining Sw within the swept 

area to a minimum, which is rather difficult since buildup of water in this area is inevitable, or 

modifying the relative permeability characteristics of the reservoir. The second option is not 

too difficult for we only need to adjust the properties of injected water - which is within our 

control - in such a way that reduces the capillary pressure. Equation 7.12 provides the clue: 
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 Pc = 
r
cos2 wowo θσ  (7.12) 

If we reduce the water-oil interfacial tension, the capillary pressure for any pore radius would 

drop. The relative permeability curves would, then, shift towards the left, i.e., smaller Sw, and 

the qo/qw ratio would increase for all Sw values. Reducing σwo is achieved by dissolving 

special chemicals, called surfactants, in the water at pre-determined concentrations, and the 

water flood becomes a surfactant flood. Note that we can also increase the ratio by dissolving 

polymers in the water to raise μw, and the water flood becomes a surfactant/polymer flood. 

 

Exercises 

1. The table below gives the flow rate and saturation data for a steady-state  test to 

estimate effective permeability. The pressure drop across the core sample was 

constant throughout the test. 

 
Sw  (%) qo  (cc/min) qw  (cc/min)  

100.0 0.000 12.300  

79.5 0.000 7.890  

73.9 0.023 5.050 μo = 2.5 cP 

70.0 0.089 3.560 μw = 1.0 cP 

60.0 0.573 1.170  

50.1 1.680 0.207  

40.2 3.570 0.004  

36.3 4.570 0.000  
 
a. Estimate Swi and Sor . 

b. Compute and plot the relative permeability curves for this core. The base 

permeability is ko @ Swi 

Note: you don’t need to compute ko and kw individually 

2. Prepare a semi-logarithmic graph of the relative permeability ratio (kro/ krw) vs. Sw for 

Exercise 1 and determine the range over which the trend is linear. 

3. Suppose the data of Exercise 1 applies to the reservoir of Exercise 6.10. If ko @ Swi is 

170 md, compute oil and water flowrates at locations in the reservoir where the 

saturations are as follows: 

a. Sw = 45%  b. Sw = 55%  c. Sw = 65% 
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4. If the well of Exercise 3 produces 900 bbls/d and 230 bbls/d of oil and water, 

respectively, what and where in the reservoir is the corresponding water saturation? 

5. Smooth the data of Exercise 1 by applying Equs. 8.6 and 8.7. 

6. Using Figs. 8.7, 8.8 and 8.9, estimate krw , kro  and krg at the following conditions: 

a) Sw = 32% So = 50% 

b) Sw = 20% So = 35% 

c) Sw = 10% So = 72% 

7. A well 6” in diameter penetrates a reservoir, which is 80 feet thick and has an absolute 

permeability of 120 md. The reservoir pressure 4000 feet away from the well is 3750 

psig and the well pressure is maintained at 1650 psig. If the relative permeabilities are 

the same as Exercise 6, and oil and water saturations are the same as Exercise 6(b), 

compute the well’s oil, water and gas (at reservoir conditions: P = 1650 psig, T = 180 

°F) production rates. 

 μo = 2.5 cP μw = 1.0 cP  μg = 0.015 cP 

Note :  Assume the absolute permeability to be the base permeability. 

8. If you have the relative permeability curves for a rock sample, is it possible to extract 

the capillary pressure curve from them using Purcell's method (Equs. 8.8 and 8.9)? 
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Appendix A. CONVERSION FACTORS 
 
 

1 darcy   = 9.87x10-9 cm2

   = 0.987  μm2

 
1 atm   = 1.013  bar 
   = 101,300 Pascal 
   = 1,013,000 dyne/cm2

   = 14.7   psi 
 
1 barrel (bbl)  = 5.615  ft3

   = 42  gallons 
   = 159  liters 
   = 159,000 cm3

   = 0.159  m3 

 

1 pound (lb)  = 454  grams 
 
1 short ton  = 2,000  lb 
 
1 metric ton  = 1,000  kg 
   = 2,203  lb 
 
1 foot (ft)  = 12  inches 
   = 30.5  cm 
 
1 mile   = 5,280  ft 
   = 1,609  m 
 
1 acre   = 43,560  ft2

   = 4,047  m2

 
1 sq. mile  = 2,560,000 m2

   = 640  acres 
 
1 centipoise (cP) = 1  mPa.s 
   = 0.01  g/cm.s 
   = 0.000672 lb/ft.s 
 
°K   = °C + 273.1 
°R   = °F + 460  
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