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Goals for this Lecture

• Review of descriptive statistics 
• Review of basic statistical inference

– Point estimation
– Sampling distributions and the standard error
– Confidence intervals for the mean
– Hypothesis tests for the mean

• Compare and contrast classical statistical 
assumptions to survey data requirements

• Discuss how to adapt methods to survey data 
with basic sample designs
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Two Roles of Statistics

• Descriptive:  Describing a sample or population
– Numerical: (mean, variance, mode)

– Graphical: (histogram, boxplot)

• Inferential:  Using a sample to infer facts about 
a population
– Estimating (e.g., estimating the average starting salary of 

those with systems engineering Master’s degrees)

– Testing theories (e.g., evaluating whether a Master’s degree 
increases income)

– Building models (e.g., modeling the relationship of how an 
advanced degree increases income)



A Descriptive Statistics Question: What was 
the average survey response to question 7?



An Inferential Question: Given the sample, 
what can we say about the average 
response to question 7 for the population?



Lots of Descriptive Statistics

• Numerical:
– Measures of location

• Mean, median, trimmed mean, 
percentiles

– Measures of variability
• Variance, standard deviation, 

range, inter-quartile range
– Measures for categorical data

• Mode, proportions

• Graphical
– Continuous: Histograms, boxplots, scatterplots
– Categorical: Bar charts, pie charts



Continuous Data: Sample Mean, 
Variance, and Standard Deviation

• Sample average or sample mean is a 
measure of location or central tendency:

• Sample variance is a measure of variability

• Standard deviation is the square root of the 
variance

1

1 n

i
i

x xn =

= ∑

2 2

1

1 ( )
1

n

i
i

s x xn =

= −
− ∑

2ss =
7



Statistical Inference

• Sample mean,   , and sample variance
, s2, are statistics calculated from data

• Sample statistics used to estimate true 
value of population called estimators

• Point estimation: estimate a population 
statistic with a sample statistic

• Interval estimation: estimate a population statistic 
with an interval
– Incorporates uncertainty in the sample statistic

• Hypothesis tests: test theories about the population 
based on evidence in the sample data

x
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Classical Statistical Assumptions vs. 
Survey Practice / Requirements

• Basic statistical methods assume:
– Population is of infinite size (or so large as to be 

essentially infinite)
– Sample size is a small fraction of the population
– Sample is drawn from the population via SRS

• In surveys:
– Population always finite (though may be very large)
– Sample could be sizeable fraction of the population

• “Sizeable” is roughly > 5%
– Sampling may be complex
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Point Estimation (1)

• Example: Use sample mean or proportion to 
estimate population mean or proportion

• Using SRS or a self-weighting sampling 
scheme, usual estimators for the mean 
calculated in all stat software packages are 
generally fine
– Assuming no other adjustments are necessary

• E.g., nonresponse, poststratification, etc
• Except under SRS, usual point estimates for 

standard deviation almost always wrong
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Point Estimation (2)

• Naïve analyses just present sample statistics 
for the means and/or proportions
– Perhaps some intuitive sense that the sample 

statistics are a measure of the population
– But often don’t account for sample design

• However, when using point estimates, no 
information about sample uncertainty provided
– If you did another survey, how much might its 

results differ from the current results?
• Also, even for mean, if sample design not self-

weighting, need to adjust software estimators11



Sampling Distributions

• Abstract from people and surveys to random 
variables and their distributions
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Sampling Distributions

• Sampling distribution is the probability 
distribution of a sample statistic
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Demonstrating Randomness

http://www.ruf.rice.edu/~lane/stat_sim/sampling_dist/index.html

http://www.ruf.rice.edu/~lane/stat_sim/sampling_dist/index.html


Simulating Sampling Distributions

http://www.ruf.rice.edu/~lane/stat_sim/sampling_dist/index.html

http://www.ruf.rice.edu/~lane/stat_sim/sampling_dist/index.html


Central Limit Theorem (CLT) 
for the Sample Mean

• Let X1, X2, …, Xn be a random sample from 
any distribution with mean µ and standard 
deviation σ

• For large sample size n, the distribution of the 
sample mean has approximately a normal 
distribution 
– with mean µ, and
– standard deviation

• The larger the value of n, the better the 
approximation

n
σ
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Example: Sums of Dice Rolls

Roll of a Single Die
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Demonstrating Sampling 
Distributions and the CLT

http://www.ruf.rice.edu/~lane/stat_sim/sampling_dist/index.html

http://www.ruf.rice.edu/~lane/stat_sim/sampling_dist/index.html


Interval Estimation for µ

• Best estimate for µ is    
• But     will never be exactly µ

– Further, there is no way to tell how far off
• BUT can estimate µ’s location with an interval 

and be right some of the time
– Narrow intervals:  higher chance of being wrong
– Wide intervals:  less chance of being wrong, but 

also less useful
• AND with confidence intervals (CIs) can 

define the probability the interval “covers” µ!

X
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Confidence Intervals: Main Idea
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• Alternatively, µ is within 2 s.e.s of     95% of 
the time
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A Simulation
intervals not including population mean: 2

95% Confidence Intervals for mean = 50, sd = 10, n = 5
sample
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Another Simulation
intervals not including population mean: 10

95% Confidence Intervals for mean = 50, sd = 10, n = 95
sample
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Confidence Interval for µ (1)

• For from sample of size n from a population 
with mean µ, 

has a t distribution with n-1 “degrees of freedom”
– Precisely if population has normal distribution
– Approximately for sample mean via CLT

• Use the t distribution to build a CI for the mean:
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Review: the t Distribution
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Confidence Interval for µ (2)

• Flip the probability statement around to get a 
confidence interval:
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Example: Constructing a 95% 
Confidence Interval for µ

• Choose the confidence level: 1-α
• Remember the degrees of freedom (ν) = n -1
• Find 

– Example:  if α = 0.05, df=7 then = 2.365
• Calculate      and        

• Then 
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Hypothesis Tests

• Basic idea is to test a hypothesis / theory on 
empirical evidence from a sample
– E.g., “The fraction of new students aware of the 

school discrimination policy is less than 75%.”
– Does the data support or refute the assertion?

27

p̂p=0.75 = 0.832    
If we assume this is true, how likely are we to see this

(or something more extreme)?

This is the probability.
If it’s small, we don’t

believe our assumption.



One-Sample, Two-sided t-Test

• Hypothesis:
H0: µ = µ0

Ha: µ ≠ µ0

• Standardized test statistic: 

• p-value = Pr(T<-t and T>t) = Pr(|T|>t), 
where T follows a t distribution with n-1 
degrees of freedom

• Reject H0 if p < α, where α is the 
predetermined significance level
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One-Sample, One-sided t-Tests

• Hypotheses:
H0: µ = µ0 H0: µ = µ0
Ha: µ < µ0 Ha: µ > µ0

• Standardized test statistic: 

• p-value = Pr(T < t) or p-value = Pr(T > t), 
depending on Ha, where T follows a t
distribution with n-1 degrees of freedom

• Reject H0 if p < α
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Applying Continuous Methods to 
Binary Survey Questions

• In surveys, often have binary questions, 
where desire to infer proportion of population 
in one category or the other

• Code binary question responses as 1/0 
variable and for large n appeal to the CLT
– Confidence interval for the mean is a CI on the 

proportion of “1”s
– T-test for the mean is a hypothesis test on the 

proportion of “1”s
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Applying Continuous Methods 
to Likert Scale Survey Data

• Likert scale data is inherently categorical
• If willing to make assumption that “distance”

between categories is equal, then can code 
with integers and appeal to CLT

Strongly agree
Agree
Neutral
Disagree
Strongly disagree

1
2
3
4
5
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Adjusting Standard Errors 
(for Basic Survey Sample Designs)

• Sample > 5% of population: finite population 
correction
– Multiply the standard error by
– E.g.

• Stratified sample, weighted sum of the strata 
variances:
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What We Have Just Reviewed

• Review of descriptive statistics 
• Review of basic statistical inference

– Point estimation
– Sampling distributions and the standard error
– Confidence intervals for the mean
– Hypothesis tests for the mean

• Compare and contrast classical statistical 
assumptions to survey data requirements

• Discuss how to adapt methods to survey data 
with basic sample designs
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