

Basic Statistical Inference for Survey Data

Professor Ron Fricker Naval Postgraduate School Monterey, California

Goals for this Lecture

- Review of descriptive statistics
- Review of basic statistical inference
 - Point estimation
 - Sampling distributions and the standard error
 - Confidence intervals for the mean
 - Hypothesis tests for the mean
- Compare and contrast classical statistical assumptions to survey data requirements
- Discuss how to adapt methods to survey data with basic sample designs

Two Roles of Statistics

- **Descriptive**: Describing a sample or population
 - Numerical: (mean, variance, mode)
 - Graphical: (histogram, boxplot)
- Inferential: Using a sample to *infer* facts about a population
 - Estimating (e.g., estimating the average starting salary of those with systems engineering Master's degrees)
 - Testing theories (e.g., evaluating whether a Master's degree increases income)
 - Building models (e.g., modeling the relationship of how an advanced degree increases income)

A Descriptive Statistics Question: *What was the average survey response to question 7?*

An Inferential Question: *Given the sample, what can we say about the average response to question 7 for the population?*

Lots of Descriptive Statistics

- Numerical:
 - Measures of location
 - Mean, median, trimmed mean, percentiles
 - Measures of variability
 - Variance, standard deviation, range, inter-quartile range
 - Measures for categorical data
 - Mode, proportions
- Graphical
 - Continuous: Histograms, boxplots, scatterplots
 - Categorical: Bar charts, pie charts

Continuous Data: Sample Mean, Variance, and Standard Deviation

- PRAESTANTIA PER SCIENTIAM
- Sample average or sample mean is a measure of location or central tendency:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

• Sample variance is a measure of variability

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

• Standard deviation is the square root of the variance $s = \sqrt{s^2}$

Statistical Inference

- Sample statistics used to estimate true value of population called estimators
- Point estimation: estimate a population statistic with a sample statistic

- Interval estimation: estimate a population statistic with an interval
 - Incorporates uncertainty in the sample statistic
- Hypothesis tests: test theories about the population based on evidence in the sample data

Classical Statistical Assumptions vs. Survey Practice / Requirements

- Basic statistical methods assume:
 - Population is of infinite size (or so large as to be essentially infinite)
 - Sample size is a small fraction of the population
 - Sample is drawn from the population via SRS
- In surveys:
 - Population always finite (though may be very large)
 - Sample could be sizeable fraction of the population
 - "Sizeable" is roughly > 5%
 - Sampling may be complex

Point Estimation (1)

- Example: Use sample mean or proportion to estimate population mean or proportion
- Using SRS or a self-weighting sampling scheme, usual estimators <u>for the mean</u> calculated in all stat software packages are generally fine
 - Assuming no other adjustments are necessary
 - E.g., nonresponse, poststratification, etc
- Except under SRS, usual point estimates for standard deviation almost always wrong

Point Estimation (2)

- Naïve analyses just present sample statistics for the means and/or proportions
 - Perhaps some intuitive sense that the sample statistics are a measure of the population
 - But often don't account for sample design
- However, when using point estimates, no information about sample uncertainty provided
 - If you did another survey, how much might its results differ from the current results?
- Also, even for mean, if sample design not selfweighting, need to adjust software estimators₁

Sampling Distributions

Abstract from people and surveys to random variables and their distributions

Sampling Distributions

• Sampling distribution is the probability distribution of a sample statistic

Demonstrating Randomness

http://www.ruf.rice.edu/~lane/stat_sim/sampling_dist/index.html

Simulating Sampling Distributions

http://www.ruf.rice.edu/~lane/stat_sim/sampling_dist/index.html

Central Limit Theorem (CLT) for the Sample Mean

- Let $X_1, X_2, ..., X_n$ be a random sample from any distribution with mean μ and standard deviation σ
- For large sample size *n*, the distribution of the sample mean has approximately a normal distribution
 - with mean μ , and
 - standard deviation σ / \sqrt{n}
- The larger the value of *n*, the better the approximation

Example: Sums of Dice Rolls

Demonstrating Sampling Distributions and the CLT

http://www.ruf.rice.edu/~lane/stat_sim/sampling_dist/index.html

Interval Estimation for μ

- Best estimate for μ is \overline{X}
- But \overline{X} will never be *exactly* μ - Further, there is no way to tell how far off
- BUT can estimate μ's location with an interval and be right some of the time
 - Narrow intervals: higher chance of being wrong
 - Wide intervals: less chance of being wrong, but also less useful
- AND with confidence intervals (CIs) can define the probability the interval "covers" μ!

Confidence Intervals: Main Idea

- Based on the normal distribution, we know \overline{X} is within 2 s.e.s of μ 95% of the time
- Alternatively, μ is within 2 s.e.s of \overline{X} 95% of the time

A Simulation

Another Simulation

Confidence Interval for μ (1)

• For \overline{X} from sample of size *n* from a population with mean μ , $T = \frac{\overline{X} - \mu}{\frac{s}{\sqrt{n}}}$

has a *t* distribution with *n*-1 "degrees of freedom"

- Precisely if population has normal distribution
- Approximately for sample mean via CLT
- Use the *t* distribution to build a CI for the mean:

$$\Pr(-t_{\alpha/2,n-1} < T < t_{\alpha/2,n-1}) = 1 - \alpha$$

Review: the *t* Distribution

Z= number of SE's from the mean

Confidence Interval for μ (2)

• Flip the probability statement around to get a confidence interval:

(1) $\Pr\left(-t_{\alpha/2,n-1} < T < t_{\alpha/2,n-1}\right) = 1 - \alpha$ (2) $\Pr\left(-t_{\alpha/2,n-1} < \frac{\bar{X} - \mu}{s/\sqrt{n}} < t_{\alpha/2,n-1}\right) = 1 - \alpha$ (3) $\Pr\left(\bar{X} - t_{\alpha/2,n-1} \frac{s}{\sqrt{n}} < \mu < \bar{X} + t_{\alpha/2,n-1} \frac{s}{\sqrt{n}}\right) = 1 - \alpha$

Example: Constructing a 95% Confidence Interval for μ

- Choose the confidence level: 1- α
- Remember the degrees of freedom (v) = n 1
- Find $t_{\alpha/2,n-1}$ - Example: if α = 0.05, df=7 then $t_{0.025,7}$ = 2.365
- Calculate \overline{X} and s/\sqrt{n}
- Then $\Pr\left(\overline{X} - 2.365 \frac{s}{\sqrt{n}} < \mu < \overline{X} + 2.365 \frac{s}{\sqrt{n}}\right) = 0.95$

Hypothesis Tests

- Basic idea is to test a hypothesis / theory on empirical evidence from a sample
 - E.g., "The fraction of new students aware of the school discrimination policy is less than 75%."
 - Does the data support or refute the assertion?

One-Sample, Two-sided *t*-Test

• Hypothesis:

 $H_0: \mu = \mu_0$

- H_a: $\mu \neq \mu_0$ Standardized test statistic: $t = \frac{X \mu_0}{\sqrt{s^2 / n}}$
- p-value = $\Pr(T < t \text{ and } T > t) = \Pr(|T| > t)$, where T follows a t distribution with n-1degrees of freedom
- Reject H_{0} if $p < \alpha$, where α is the predetermined significance level

One-Sample, One-sided *t*-Tests

- Hypotheses:
 - $\begin{array}{ll} \mathsf{H}_{0}: \ \mu = \mu_{0} \\ \mathsf{H}_{a}: \ \mu < \mu_{0} \end{array} \quad \text{or} \quad \begin{array}{l} \mathsf{H}_{0}: \ \mu = \mu_{0} \\ \mathsf{H}_{a}: \ \mu > \mu_{0} \end{array}$
- Standardized test statistic: t

$$t = \frac{\overline{X} - \mu_0}{\sqrt{s^2 / n}}$$

- *p*-value = Pr(T < t) or *p*-value = Pr(T > t), depending on H_a, where T follows a t distribution with n-1 degrees of freedom
- Reject H_0 if $p < \alpha$

Applying Continuous Methods to Binary Survey Questions

- In surveys, often have binary questions, where desire to infer proportion of population in one category or the other
- Code binary question responses as 1/0 variable and for large n appeal to the CLT
 - Confidence interval for the mean is a CI on the proportion of "1"s
 - T-test for the mean is a hypothesis test on the proportion of "1"s

Applying Continuous Methods to Likert Scale Survey Data

- Likert scale data is inherently categorical
- If willing to make assumption that "distance" between categories is equal, then can code with integers and appeal to CLT

Adjusting Standard Errors (for Basic Survey Sample Designs)

- Sample > 5% of population: finite population correction
 - Multiply the standard error by $\sqrt{(N-n)/N}$

- E.g.
$$s.e.(\overline{x}) = \sqrt{(N-n)/N} \times s/\sqrt{n}$$

• Stratified sample, weighted sum of the strata variances:

s.e.
$$(\overline{x}) = \sqrt{\sum_{h=1}^{H} (N_h/N) \operatorname{Var}(\overline{x}_h)}$$

What We Have Just Reviewed

- Review of descriptive statistics
- Review of basic statistical inference
 - Point estimation
 - Sampling distributions and the standard error
 - Confidence intervals for the mean
 - Hypothesis tests for the mean
- Compare and contrast classical statistical assumptions to survey data requirements
- Discuss how to adapt methods to survey data with basic sample designs