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ABSTRACT

Packaging serves a lot of purposes, and would be hard to do without. Packaging
protects the goods during transport, saves costs, informs about the product, and
extends its durability. A transport package is required to be strong and lightweight in
order to be cost effective. Furthermore, it should be recycled because of
environmental and economical concerns. Corrugated board has all of these features.

This thesisis compiled of seven papers that theoretically and experimentally treat the
structural properties and behaviour of corrugated board and containers during
buckling and collapse. The aim was to create a practical tool for strength analysis of
boxes that can be used by corrugated board box designers. Thistool is based on finite
element analysis.

The first studies concerned testing and analysis of corrugated board in three-point-
bending and evaluation of the bending stiffness and the transverse shear stiffness. The
transverse shear stiffness was also measured using a block shear test. It was shown
that evaluated bending stiffness agrees with theoretically predicted values. However,
evaluation of transverse shear stiffness showed significantly lower values than the
predicted values. The predicted values were based on materia testing of constituent
liners and fluting prior to corrugation. Earlier studies have shown that the fluting
sustains considerable damage at its troughs and crests in the corrugation process and
thisis probably a major contributing factor to the discrepancy. Furthermore, the block
shear method seems to constrain the deformation of the board and consistently
produces higher values of the transverse shear stiffness than the three-point-bending
test. It is recommended to use the latter method.

Further experimental studies involved the construction of rigs for testing corrugated
board panels under compression and cylinders under combined stresses. The panel
test rig, furnishing simply supported boundary conditions on all edges, was used to
study the buckling behaviour of corrugated board. Post-buckling analysis of an
orthotropic plate with initial imperfection predicted failure loads that exceed the
experimental values by only 6-7 % using the Tsai-Wu failure criterion. It was
confirmed, by testing the cylindersthat failure of biaxially loaded corrugated board is
not significantly affected by local buckling and that the Tsai-Wu failure criterion is
appropriate to use.

A method for prediction of the top-to-bottom compression strength of corrugated
board containers using finite element analysis was developed and verified by alarge
number of box compression tests. Up to triplewall corrugated board is
accommodated in the finite element model. The described FE-method for predicting
the top-to-bottom compressive strength of corrugated containers has been used as the
basic component in the subsequent development of a user-friendly computer-based
tool for strength design of containers.

Keywords: analysis, bending, box, buckling, collapse, compression, corrugation,
corrugated board, crease, design, experiment, failure criterion, fluting, finite element
method, liner, local buckling, packaging, panel, paper, stiffness, strength, test method,
transverse shear
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INTRODUCTION AND SUMMARY
General remarks

In 2001 the European transport packaging market had an estimated value of
approximately $20 billion. Corrugated board represented 62 per cent of this market value
[1]. A transport package is required to be strong and lightweight in order to be cost
effective. Furthermore, it should be recycled because of environmental and economical
concerns. Corrugated board has al of these features. In its most common form, viz.
single-wall board, two face sheets, called liners, are bonded to a wave shaped web called
fluting or medium, see Figure 1. The resulting pipes make the board extremely stiff in
bending and stable against buckling in relation to its weight [1]. Consequently, the
strength of the wood fibres in the board is also utilised in an efficient way. The fluting
pipes are oriented in the cross-direction (y, CD) of board production, see Figure 1. The
orientation of the board in-line with production is called machine-direction (x, MD).
Orientation through the thickness of the board is denoted Z-direction (z, ZD). This
definition of principal directionsisalso used for the constituent paper sheets.

z,ZD

y, CD
L X, MD

Figure 1. Single-wall corrugated board.

In area, about 80 per cent of corrugated board production is single-wall board. The rest
is produced for more demanding packaging solutions that require double or triple-wall
board, illustrated in Figure 2.

Figure 2. Double and triple-wall corrugated board.

The profile of a corrugated web in Figure 3 is characterised by aletter, A, B, C, E or F,
specified in Table 1 [1]. Also listed in Table 1 are the take-up factors which quantify the
length of the fluting per unit length of the board. For example, one metre of corrugated
board with B-flute requires a 1.32 m long piece of paper prior to corrugation.
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Figure 3. The geometry of a corrugated web.

As seen in Table 1 the tallest core profile is A-flute, which is used in board for heavy
duty boxes. B and C-flute are used for the most common board grades. The E and F-
flutes are small and consequently used in board for smaller boxes, e.g. perfume
packages, where appearance and printability are important [1].

Table 1. Flute profiles.

Profile A B C E F
Wavelength, A (mm) | 8.3-10 6.1-69 | 7.1-83 | 3.2-36 | 2325
Flute height, he (mm) 4.67 2.46 3.61 1.15 0.76
Take-up factor, o 154 1.32 1.43 1.27 1.25

A corrugator is a set of machinesin line, designed to bring together liner and medium to
form single, double or triple-wall board. This operation is achieved in a continuous
process, see Figure 4.

The reels of liner and medium are fed into the corrugator. The medium is conditioned
with heat and steam and fed between large corrugating rolls forming fluting. In the
Single Facer, starch adhesive is applied to the tips of the flutes on one side and the inner
liner is glued to the fluting. The fluting with one liner attached to it is called single-face
web and travels along the machine towards the Double Backer where the single-face
web is bonded to the outer liner and forms corrugated board. The corrugated board is
then cut and stacked.

Double Backer

q Corrugated board
Single Facer TS
—_— Machine direction MD

Liner

Medium

Figure 4. Manufacture of corrugated board.



The first corrugators were built in the US at the start of the last century. However, up
until 1920, the majority of products shipped via railroads, for example, were packed in
wooden crates. The corrugated box was relatively new and few had any experience in
transporting them. In order to avoid liability for damage while shipping items in
corrugated boxes, railroads in the US established a standard known as Rule 41. Rule 41
was an important step in opening up the market for corrugated board packaging. Later
on, during World War 11, corrugated board packaging was called upon to deliver rations
and other war material to all corners of the earth. This contributed to the establishment
of corrugated board globally. After the war the market grew rapidly, and the range of
sizes and capabilities of corrugated boxes grew to fit the myriad of new products
developed. Recently, the combination of a plastic bag inside a corrugated board box
(bag-in-box) has resulted in many new opportunities, including the latest trend
packaging of wine.

Corrugated board is permeable to moisture and absorbs water. This will reduce its
strength and stiffness. However, it can be made both water and grease proof.

Many package styles and design options are possible, but often an international standard
of box styles [2], the FEFCO-code, is used in specifying a design. One of the most
common box styles is the regular slotted container (RSC) denoted FEFCO 0201, see
Figure 5. The box size is specified by LxWxH, i.e. length of the longest side panel,
width of the shortest side and height. The flap size is half of the width. In the logistics
chain in Sweden a transport package is usually adjusted to the EUR-pallet. Thus the
length and width of an RSC are usually uniform divisions of the pallet size (1200x800
mm), e.g. 300x200 mm or 600x400 mm.

Crease

=

Side panel

W

Figure 5. A regular slotted container, code FEFCO 0201.

RSC:s are produced with an in-line Slotter-Folder-Gluer, which in one operation
creases, cuts, folds and glues the blank into its final shape. The RSC is then palletised
and ready to be shipped flat to the customer.

Background and earlier work

Several experimental studies have been conducted on the compression strength of
corrugated board containers [3,4]. The most common failure mode for a corrugated box
loaded in top-to-bottom compression is post-buckling deflection of its side panels,



followed by biaxial compressive failure of the board in the highly stressed corner regions
of the box. Local instabilities of the liners and fluting may also interact with the failure
progression [5-8]. A detailed finite element analysis of a corrugated board panel has
shown that local buckling of one of the liners may occur before actual material failure[9].
This can also be observed visualy just prior to compression failure of panels and boxes
[10]. However, for shallow boxes and boxes with high board bending stiffness in
comparison to the box perimeter, failure is often caused by crushing of the creased board
at the loaded edges instead of collapse during buckling [11].

When considering the compression of panels in a box it is recognised that the flaps,
attached to the panels through the creases at top and bottom edges, introduce an
eccentricity in the loading [12, 13]. Furthermore, the top and bottom edges normally have
a much lower dtiffness than the interior of the panel due to the creases. It has been
concluded that the low stiffness prevents a redistribution of the stresses to the corners of
the box and consequently reduces the box compression strength.

Several previous investigations have involved finite element analysis of corrugated board.
Peterson [14] developed a finite element model to study the stress fields developed in a
corrugated board beam under three point loading. Pommier and Poustius studied bending
stiffnesses of corrugated board using a linear elastic finite element code [15]. Pommier
and Poustius also developed a linear elastic finite element model for prediction of
compression strength of boxes [16]. Likewise a linear elastic finite element model of a
corrugated board panel for prediction of compression strength was developed by Rahman

[17].

Patel developed a linear elastic finite element model in a study of biaxial failure of
corrugated board [18]. The model was used to predict buckling patterns of a circular tube
subjected to different loading conditions. In an investigation by Nyman, local buckling of
corrugated board facings was studied numerically through finite element calculations
[19].

Little published work is available on the use of non-linear constitutive models for
prediction of strength of corrugated board structures. However, a non-linear model of
corrugated board was developed by Gilchrist, Suhling and Urbanik [20]. In their model,
both material and geometrical non-linearities were included, in-plane and transverse
loadings of corrugated board were examined. Bronkhorst and Riedemann [21] and
Nordstrand and Hagglund [22] have developed non-linear finite element models for
corrugated board configurations. These investigations generated predictions for
compressive creep of abox and time-dependent sagging of a corrugated board tray.

Aim of present work

This project was initiated with the objective of developing a design method based on
fundamental engineering mechanics to predict the strength of corrugated containersin
top-to—bottom compression.



General assumptions and limitationsin present work
The major assumptions and limitations adopted in thiswork are as follows:

e Paper is regarded as a homogenous continuum with liner elastic orthotropic
properties.

¢ Influence of load duration, e.g. creep, moisture and inertia forces are not analysed.

e Deterministic characterisation of material properties, geometry and loading.

e Box strength analysed only for loading in top-to-bottom compression.

Summary of contents and major conclusions

In Paper 1, expressions for the transverse shear stiffnesses of corrugated board are
derived by considering a shear loaded element of the corrugated board and using the
theory of curved beams. It is shown how the transverse shear stiffness in the machine
direction is significantly changed by the transition from one core shape to another. An
experimental study of the transverse shear stiffness is given in Paper 2, where the
transverse shear stiffness is measured both by a block shear test and evaluated from a
three-point flexure test. The three-point flexure test is also simulated using finite element
analysis. Vaues of transverse shear stiffnesses obtained from the block shear test are
much larger than values evaluated from the three-point flexure test. The difference is
attributed to the highly constrained deformation of the facingsin the block shear test. It
is also shown that experimental values are significantly lower than calculated values
obtained in Paper 1 and obtained from the finite element analysis. This is probably
caused by delamination damage to the corrugated medium inflicted during the
corrugation process.

In Paper 3, an expression is derived for the buckling load of a simply supported
orthotropic plate including first order transverse shear deformation. The influence of the
transverse shear on critical buckling is studied and compared with ordinary sandwich
theory. Its primary use, however, is to verify the buckling load obtained in a finite
element analysis of a simply supported single-wall corrugated board panel in Paper 4.
The influence on the panel strength of different parameters such as asymmetry,
slenderness of the corrugated board and eccentric loading is studied in Paper 4. It was
concluded that panel strength is very sensitive to boundary conditions and change in
core thickness of the board, i.e. the change in bending stiffness of the board.

In Paper 5, a panel compression test rig, furnishing simply supported boundary
conditions on all edges, was designed and used to study the buckling behaviour of
corrugated board panels. An analysis of an orthotropic plate with initial imperfection is
presented in Paper 5 to predict the collapse load using the Tsai-Wu failure criterion. A
significant difference was observed between analytically predicted and experimentally
measured displacements at large out-of -plane deformation. This is probably caused by
non-linear material behaviour of paper and local buckling of the panel facings, i.e. the



liners. However, the analytically predicted failure load exceeds experimental values by
only 6-7 %. This suggests that collapse of the corrugated board panel is triggered by
material failure of the inner facing. It is aso concluded in Paper 6, where an
experimental study of biaxially loaded corrugated board is presented, that failure is not
significantly affected by local buckling of the corrugated board and that the Tsai-Wu
criterion is appropriate to use.

Finally, in Paper 7, afinite element method devel oped for stress and strength analysis of
corrugated containers using the failure criterion above is presented. The corrugated
board is represented by multi-ply eight node isoparametric shell elements, and the soft
creases at the loaded top and bottom edges are accommodated in the finite element
model by spring elements. Effective material properties of the homogenised corrugated
cores have been used, and each layer of the corrugated board is assumed to be
orthotropic linear elastic. It is shown that convergence is obtained with relatively few
elements, e.g. 144 elements are quite sufficient for aregular size box, i.e. 300x300x300
mm. Sensitivity of the collapse load to the imposed compliance at the loaded boundaries
is aso studied. Different buckling modes of a box are simulated giving an in-depth
understanding of the relation between the strength of a box and constraints imposed on
the panels by the corners of the box. Extensive testing of boxes made from B- and C-
board shows that predicted failure loads using the proposed finite element model have an
average error margin of 5% compared to measured box strengths.

Concluding remarks and future research

Box performance requirements range from its appearance, to its mechanical strength and
ability to protect its contents. Mechanical properties can be divided into two categories,
those that pertain to rough handling and stacking. Both of these types are difficult to
duplicate accurately in the laboratory. As a consequence, the box compression test or
BCT of an empty container has been widely used as a means of evaluating container
performance. However, in order to distinguish between factors that govern box
performance it is necessary to test the quality of the corrugated board and its components,
maintain good control of conversion operations and environmental influences such as
humidity and load duration. In addition to standard testing methods, a future challenge for
research is to develop more sophisticated testing methods that are based on finite element
models. Once the roles of liner and medium behaviour in box performance are properly
understood, material properties can be evaluated by mill and plant personnel so that
attention is given to the properties that govern end-use performance. For example,
corrugated containers that are stacked on top of each other will slowly deform with time
until one of the boxes collapses or the stack falls over. Consequently, the relevance of
studying creep behaviour of paper and board is that it can reduce stacking factors in
design of corrugated board packages. This is a future goal in the development of a user-
friendly computer-based tool for strength design of containers. Finally, this work shows
how far it is possible to predict box performance using an orthotropic linear elastic
material model, multi-ply eight node iso-parametric finite element and the Tsai-Wu
failure criterion.



Presented papers

Paper 1:

Paper 2:

Paper 3:

Paper 4:

Paper 5:

Paper 6:

Paper 7:

T. Nordstrand, H. G. Allen and L. A. Carlsson, "Transverse Shear Stiffness
of Structural Core Sandwich", Composite Structures, No. 27, pp. 317-329,
1994,

T. Nordstrand and L. A. Carlsson, "Evaluation of Transverse Shear Stiffness
of Structural Core Sandwich Plates', Composite Structures, Vol. 37, pp. 145-
153, 1997.

T. Nordstrand, "On Buckling Loads for Edge-Loaded Orthotropic Plates
including Transverse Shear". To be submitted to Composite Structures.

T. Nordstrand, "Parametrical Study of the Post-buckling Strength of
Structural Core Sandwich Panels’, Composite Structures, Vol. 30, pp. 441-
451, 1995.

T. Nordstrand, "Analysis and Testing of Corrugated Board Panels into the
Post-buckling Regime". To be submitted to Composite Structures.

P. Patel, T. Nordstrand and L. A. Carlsson, "Local buckling and collapse of
corrugated board under biaxial stress', Composite Structures, Vol. 39, No. 1-
2, pp. 93-110, 1997.

T. Nordstrand, M. Blackenfeldt and M. Renman, "A Strength Prediction
Method for Corrugated Board Containers', Report TVSM-3065, Div. of
Structural Mechanics, Lund University, Sweden, 2003.



Acknowledgements

Firstly, I am indebted to the vision of the late Alf de Ruvo for initiating a far-reaching
project at SCA called "Box Mechanics' in 1989. This project involved several staff
researchers at SCA, and | would like to acknowledge the contributions from Dr. M.
Blackenfeldt, Tekn.lic. M. Renman, Dr. P. Patel, Tekn. lic. Rickard Hagglund and M.
Sc. Andreas Allansson.

Secondly, the drive and support given by Dr. Leif Carlsson, Florida Atlantic University,
has been invaluable for completing this task. | would aso like to thank Dr. Per Johan
Gustafsson, Lund University, for his guidance, comments and suggestions while
completing thisthesis.

Finally, | would like to thank my family and friends for all their support.

Sundsvall in December 2002,

Tomas Nordstrand



References

1

10.

11.

12.

13.

R. Steadman, "Corrugated Board", Ch. 11, in Handbook of Physical Testing of Paper,
(R.E. Mark et a. eds.), pp. 563-660, Marcel Dekker, New Y ork, 2002.

FEFCO, Avenue Louise 250, B — 1050 Brussels, Belgium, www.fefco.org.

R. C. McKee and J. W. Gander, "Top-Load Compression”, TAPPI, Vol. 40, No. 1,
pp. 57-64, 1957.

R. C. McKeg, J. W. Cander, and J. R. Wachuta, "Compression Strength Formula for
Corrugated Boxes', Paperboard Packaging, 48, pp. 149-159, 1963.

M. W. Johnson and T. J. Urbanik, "Analysis of the Localized Buckling in Composite
Plate Structures with Application to Determining the Strength of Corrugated
Fiberboard", J. Comp. Tech. & Res., 11 (4), pp.121-127, 1989.

B. S. Westerlind and L. A. Carlsson, "Compressive Response of Corrugated Board",
TAPPI, 75 (7), pp.145-154, 1992.

P. Patel, T. Nordstrand and L.A. Carlsson, "Instability and Failure of Corrugated
Core Sandwich Cylinders Under Combined Stresses’, in Multiaxial Fatigue and
Deformation Testing Techniques, ASTM STP 1280(S. Kalluri and P.J. Bonacuse,
Eds.), pp. 264-289, 1997.

P. Patel, T. Nordstrand and L. A. Carlsson, "A Study on the Influence of Loca
Buckling on the Strength of Structural Core Sandwich Structures', Proceedings of
EUROMECH 360, Ecole des Mines de Saint-Etienne, 1997.

A. Allansson and B. Svérd, "Stability and Collapse of Corrugated Board", Master
thesis, Report TVSM-5102, Division of Structural Mechanics, Lund University,
Sweden, 2001.

E. K. Hahn, A.de Ruvo and L. A. Carlsson, " Compressive Strength of Edge-loaded
Corrugated Panels*, Exper. Mech., Vol. 32, pp. 252-258, 1992.

W. Vollmer, "Components of Compression Testing on Corrugated Board Packaging
", FEFCO. XIlIth Congress, 1974.

J. S. Buchanan, "The Effect of Crease Form on the Compressive Strength of
Corrugated Cases', Packaging, pp. 37-43, March, 1963.

M. Renman, "A mechanical characterization of creased zones of corrugated board”,
Licentiate thesis, Report 94:05, Division of Engineering Logistics, Lund University,
Sweden, 1994.



14

15.

16.

17.

18.

19.

20.

21.

22.

. W. S. Peterson, "Unified Container Performance and Failure Theory | : Theoretical
Development of Mathematical Model", TAPPI, Vol. 63(10), pp. 75-79, 1980.

J. C. Pommier and J. Poustis, "Bending Stiffness of Corrugated Board Prediction
Using the Finite Element Method, Mechanics of Wood and Paper Materials', ASME
AMD-Vol. 112, Edited by R.W. Perkins, pp. 67-70, 1990.

J. C. Pommier, J. Poustis,Bending, J. Fourcade and P. Morlier, "Determination of the
critical load of a Corrugated Box Subjected to Vertical Compression by Finite
Element Method", Proceedings of the 1991 International Paper Physics Conference,
pp. 437-447, Kona, HI, 1991.

A. Rahman, "Finite element buckling analysis of corrugated fiberboard panels’,
Proceedings of the 1997 joint ASME/ASCE/SES summer meeting entitled mechanics
of cellulosic materials, pp. 87-92; June 29-July 02, 1997.

P. Patel , "Biaxial Failure of Corrugated Board", Licentiate thesis, Division of Eng.
Logistics, Lund University, Sweden 1996.

U. Nyman, P.J. Gustafsson, "Material and Structural Failure Criterion of Corrugated
Board Facings', Accepted for publication in Composite Structures.

A. C. Gilchrigt, J. C. Suhling and T. J. Urbanik., "Nonlinear finite element modeling
of corrugated board", Mechanics of Cellulose Materidlss ASME AMD-Vol 231/MD-
Vol 85, pp. 101-106, 1999.

C. A. Bronkhorst and J. R. Riedemann, "The Creep Deformation Behaviour of
Corrugated Containers in a Cyclic Moisture Environment”, Proceedings of the
Symposium on Moisture Induced Creep Behaviour of Paper and Board, pp. 249-273,
Stockholm , Sweden, December 5-7, 1994,

T. Nordstrand and R. Hagglund, "Predicting Sagging of Corrugated Board Tray
Bottom Using Isochrones’, Proceedings of the 3 International Symposium on
Moisture and Creep Effects on Paper, Board and Containers, pp. 215-220, Rotorua,
New Zeeland, February 20-21, 1997.

10



Part |1

Appended Papers






Paper 1

Transverse Shear Stiffness of Structural
Core Sandwich

by
T. Nordstrand, Carlsson, L.A. and Allen, H.G.
Composite Sructures, Vol. 27, pp. 317-329, 1994.







Composite Structures 27 (1994) 317-329

Transverse shear stiffness of structural core
sandwich
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Leif A. Carlsson :
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Howard G. Allen
Department of Civil Engineering, Southampton University, Southampton S09 5NH, UK

Transverse shearing deformations in corrugated core sandwich plates cannot
always be disregarded in the calculation of their strength and stability. This
makes it necessary to accurately characterize the corresponding shear
stiffnesses. In an effort towards this goal a theoretical study on how various
core shapes influence the effective transverse shear moduli is presented. An
upper limit of the transverse shear modulus across the corrugations is
calculated assuming rigid facings. The reduction of the effective shear modulus
across the corrugation due to deformations of the facings is quantified and the
results are compared with classical theory and finite elements.

INTRODUCTION

Corrugated core sandwich plates possess high
strength and stiffness per unit weight. A common
application of this material is in corrugated board
boxes for shipment of goods. These boxes are
often stacked on top of each other during trans-
portation and in storage. Thus, an important
design parameter for a box is the top-to-bottom
compression strength.! Before collapse, the verti-
cal sides undergo large out-of-plane deformations
with loads often exceeding the critical buckling
load.2™ The processes of load redistribution and
final collapse are governed by the boundary con-
ditions, the transverse shear rigidities and the
flexural rigidities of the panel.>® The transverse
shear stiffness of a sandwich is always less than
that of a homogeneous member of the same flex-
ural stiffness, because of the use of a light-weight
and flexible core. Consequently, transverse shear-
ing deformations in the sandwich cannot always
be disregarded in the calculation of the strength
and stability.” For structural cores, such as the
corrugated one, it is convenient to define effective
elastic constants for an equivalent homogeneous
core material. This is adequate when the sandwich

317

plate width is many times greater than the cor-
rugation pitch.® Since the corrugated core is
orthotropic, two effective transverse shear
moduli, G,, and G, corresponding to shear
stresses 7,, and 7, have to be determined, see
Fig. 1.

Elastic stiffnesses for corrugated cores com-
posed of straight members were derived by
Libove and Hubka.” Ko'® modified Libove and
Hubka’s results to account for nonuniform cor-
rugation legs and compared the effective trans-
verse shear modulus G,, for the corrugated core
type above with a honeycomb core of the same
effective density.

This paper presents an analysis of G, based on
curved beam theory!! which is subsequently
applied to various geometrical shapes of the core
in order to illustrate how sensitive G,, is to the
curvature of the corrugation. Only sandwiches
with identical facings will be considered and the
corrugation pitch is assumed to be symmetrical.
An approximate expression for G,, is also pro-
vided. Results are compared with G,, obtained
from design curves given by Libove and Hubka’
and G, computed using the ANSYS finite ele-
ment computer code.!?

Composite Structures 0263-8223/94/ $06.00 © 1994 Elsevier Science Publishers Ltd, England. Printed in Great Britain
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ANALYSIS

In the first part of this section an expression for
the upper limit of the transverse shear modulus
G,, is derived based on rigid facings. The second
part deals with the reduction of G, due to elastic
facings. The third part gives an expression for
calculating G,, approximately.

Upper bound on the effective transverse shear
modulus G,

Consider a strip of the corrugated layer of thick-
ness 7, and width b from a trough to a crest repre-
sented by its centre line and clamped at point A,
see Fig. 2. The corrugation pitch is p and the core
height is /. The centre line is described by a func-
tion

£=fE) Y

Fig. 1. A sandwich plate with unidirectionally corrugated

core of total thickness 4. The thickness of the facings and the

corrugated sheet are # and ¢, respectively. The wavelength
of the corrugation pitch is 2p and the width s b.

Fig. 2. The centre line of a corrugation leg between a crest

and a trough,

where the horizontal £-axis lies in the middle
plane of the sandwich and is orthogonal to the
corrugations and the vertical {-axis is normal to
the middle plane.

Figure 3 shows an element CD of the corru-
gated layer before (dotted) and after (solid) defor-
mation due to applied forces and moments at
point D. If forces Hy,, V;, and moment M, are
applied at point D in Fig, 3 the reaction forces and
moment at a cross-section C' will be N, T and M.
In order to keep the corrugation element C-D in
equilibrium the following equations must be ful-
filled.

N=Hpcos ¢+ Vpysing (2)
T'=—Hpsin ¢ + Vp cos ¢ (3)
M=HD(%— c) ~Volp =€)+ M, @

where ¢ is the slope at C

d :
The deformation of the corrugation element con-
sidered as a curved beam is considered next. It is
assumed that the shear stresses are negligible and
that the deformation is due primarily to the
normal stresses. These stresses can be partitioned
into two parts, o, due to the longitudinal force N

and o, due to the bending moment M, see Fig. 4.
The total stress is

o=0,%0, (6)
where
N
= 7
o=y 7)
t

Fig. 3. A corrugation element CD before (dotted) and after
C'D' deformation (solid) due to applied forces and moments
atD.
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A=

Fig. 4. Normal stresses o, and 0, in a small element due to
the longitudinal force N and bending moment M produce
small changes in the radius of curvature r.

in which A_ is the cross-sectional area of the strip,
A.=bt,.

The bending stress, o, obtained from curved
beam theory,!! is

M

A (8)

O, =

where r, is the local radius of curvature. Hence
the strain ¢, in a fibre along the centre line will
depend not only on the force N but also on the
bending moment M

(9)

where E_ is Young’s modulus along the centre line
of the strip.

The rotation of the cross-section at point C in
Fig. 3, d¢, due to the deformation of the element
B-C in Fig. 4 is considered next. The length of the
infinitesimal element B—C is denoted ds and the
arc length of the centre line from A to D is
denoted S, see Fig. 2. From curved beam theory'!
the rotation of cross-section C relative to cross-
section B, Fig. 4, is

d¢ 1 1
d¢ 1 1,5 (10)
ds r r, 1,

where the change in curvature upon moment
application is

=2 (11)

J is the second moment of area of the cross-
section (I = br3/12) times a correction factor x.'*

x is given as an infinite series in Ref. 11 and is
reproduced herein as a truncated two term appro-
ximation

3 2 4
o=+ | b2 |k (12)
20 \r, 112 \r,
Substitution of (9) and (11) into (10) gives
d 11 N
do_ (L bV me (13)
ds EJ EA.r, E.A.r,

The rotation d¢ and elongation & ds at point C,
Fig. 4, produce axial and vertical displacements
du and dw and rotation d6 of point D in Fig. 3,
due to rigid body motion of the section C-D. If
the deformations and rotations along the centre
line are small the displacements du and dw at D
can be approximated as

du=[—% (E—C)+ss cos¢] ds (14)

ds\2
d
dw= d—¢(p—§)+eS sm¢:| ds (15)
s
The rotation at D is
do= —9—?} ds (16)
| ds

Integration of eqns (14-16) over the arc length S,
i.e. the distance between A and D along the centre
line, gives the total displacements u, w and rota-
tion 0

u=J[—j—f(%—C)+es cos¢} ds (17)

w=USH9£(p—§)+essin¢}ds (18)
[ _ae
H—ds_ ds} ds (19)

These three compatibility equations together with
the constitutive relationships (9) and (13) and the
equilibrium conditions (2) and (4) form a system
of equations which connects the applied loads and
moment at point D with the total displacements u,
wand rotation 6.
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u 1 C11 C12 C13 HD
w =ﬂ Cor, Cis || W (20)
0 e Sym. C33 MD

The coefficients C;; in the compliance matrix are
given in the Appendix.

If the facings are assumed rigid (6=0) and
there is no thickness reduction of the core (w=0)
this system of equations provides an upper bound
on the transverse shear stiffness of the sandwich.
These conditions in (20) gives

Hy,

1
=——I|[Cl| 1% (21)
A
EA, My

SO o=

where [C] denotes the compliance matrix. Elim-
ination of ¥}, and M, in the top row of (21) gives
the relation between the shear force Hy, and the
horizontal displacement u as follows

@ _ det[ Csub]

= 22
u 7 det[C] (22)
where
C,,C
[QM=[”2ﬂ (23)
C23C33

and det| | denotes the determinant of the matrix.
The effective transverse shear modulus G, is here
defined as

G = (24)
y.\'Z
where
Hy,
= 25
e (25)
and
u w
V=7t (26)
h p

in which 4 is the distance between the facing mid-
planes, Fig. 1,

h=h+t+¢ (27)
Because the vertical displacement w is assumed
zero it follows that

h H,
ze=——D (28>
pb u

Substitution of Hp/u by (22) in (28) gives an
expression connecting the transverse shear
modulus G, with the' Young’s modulus of the
corrugated layer

G, =TE, (29)

where I is a dimensionless factor

=E det[ Csub]

30
p det[C] (30)
For plates, replace E, with E/(1 — v2), where v, is
Poisson’s ratio.'?

Deformable facings

A shear loaded corrugated core sandwich with
deformable facings will typically deform as in-
dicated in Fig. 5. Points A and C, located on the
planes of symmetry perpendicular to the x-axis,
are fixed relative to the origin of the global co-
ordinate system x —z, see Fig. 5. Five degrees of
freedom u, w, 6,, 6y and 6. may be identified.
For a symmetric sandwich, however, the rotations
at points A, B and C must be equal, thus reducing
the number of degrees of freedom to three u, w
and 0=60,=0,= 6.

To enable use of the previously derived eqn
(20), the element shown in Fig, 5 is separated into
two free body diagrams, see Fig. 6. Local co-
ordinate systems (&,, ;) and (&,, £,) fixed in rota-
tion relative to points A and C are introduced at
the midplane of the sandwich. The local displace-
ment components of point B in the local co-
ordinate system are u,, w;, 6, and u,, w,, 6,, see
Fig. 6. For small rotations, 6 <1, it is possible to

A
Vet+ Vg

Fig. 5. Deformation of shear loaded corrugated core sand-
wich.
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Fig. 6. Local coordinate systems & —&; and &—§,
rotated an angle 6 around points A and C. Local displace-
ments and rotation are u; and w;and 0, withi=1,2.

relate local and global displacements according to

Uy =u—wh—hoé (31a)
w,=uf+w+pb (31b)
6,=0 (31c)
U,=—u+wb+ho (32a)
wy,=uf+w-p6 (32b)

)

6,=0 (32¢

6, and 6, must be zero because the cross-section
at B does not rotate relative to the cross-sections
at A and C as stated earlier.

Figure 7 shows the horizontal and vertical
shear forces H, V, and V;in the global system act-
ing on the structure and the resultant forces and
moments acting on the top and bottom facings
and the core in the form of a free-body diagram.
The internal moments are found through equili-
brium for the facing

The moment equilibrium of the core (with
M =pV;)yields

h
~-H-V,—2V,=0 (34)
p
The rotation 6 at points A, B and C in Fig. 7 is
determined by ordinary beam theory as

_P'V
3E: L

6 (35)

where F;is Young’s modulus and ; is the second
moment of area of each facing

_bit

I
12

(36)

The free-body diagrams shown in Fig. 6 and
detailed in Fig. 8, give the connection between
the global and local forces and moments. In the
free-body diagram for the left region in Fig. 8, the
forces and moment in the local coordinate system
(E,, ¢,) are denoted by H,, V; and M,. H,, V, and
M, similarly denote local forces and moment in
the (&,, &,)-system.

For small rotations, ie. 8<1, sinf@ can be
approximated by 6 and cos 6 by 1; equilibrium of
the element BB’ demands

H=H-V.0 (37a)
V,=HO+V, (37b)
L+t i+t
M=-M-V,Z——6+H—* (37¢)
2 2
H,=—H-V.0# (38a)
V,=HO-V, (38b)

— - B
\‘QQ
Q 2\2/M | —/4Vf e+
2M oy 13
[
he| h
£ o

C 1
Cle ¥
:g: H

gl

2p ;|

Vi \

Or=ia_ — —
- _— - —

G ST

Fig. 7. Free-body diagram illustrating forces and momernts

acting on the facings and core of a shear loaded corrugated
core sandwich.

N )
B H H B

5 M

; ()

H| . B B’ 'f +fc
Vo

K
K v,
./—‘B, H| Hz\EL
/ M, M, B \

Fig. 8. Free-body diagram connecting local and global
forces and moments.
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L+t L1, U: H.
My=M-V, 2 teg_phthk 38¢ ' ’

: 2 2 (38c) W, =E1A cl| |, i=1,2 (39)
o, B4 |y,

At this state, eqn (21) can be applied to connect  The two local systems are assembled to a global

the local displacements and rotations with the system by subtracting (or equivalently adding)

local forces and moments. local displacements and forces for the two systems
given by eqn (39),

U — i H,—H,
wi—w,|= 1 [C]| V,— V, (40)
6,—6, | E.A, M,—M, o

Substitution of the local entities given by eqns (1, 2, 7, 8) into (41) yields the connection between global
displacements and forces :

L+t
u '_WO _h0=EcAc ly (Cll +f_2_' C13) H+ CIZI/C —'pC13 I/fJ (418.)
1 L +t,
p0=EcAc [ (Clz‘*“f—z— Czs) H+Cy,V, —Pcszfjl (41b)
1 L+1,
0=E4: { (C13 +f—2‘ C33) H+CypV,—pCs, Vf:l (41c)

A relationship between the forces H, V, and V; may be obtained if eqns (34), (35), (41b) and (41c) are
assembled into the following system of equations

- _ _ -
- -1 =2 H 0
P
L+, p3EcAC
C, +’f_2_ Cys Gy - ( 3EL +PC23) V.1=10 (42)
L+, :
Cis +T Css Cy; —pCi; Vi 0

Multiplying the top row of the matrix above by C,, and adding it to the bottom row we obtain

ﬁ -1 =2 H 0

p
L+t p’E_A,

Cp,+ f2 Cy; Cy, - ( 3E,L +PC23) V.l =1 0 (43)
L, h

Ciz+—— Cy3 +; Cys 0 —(2C,y3 +pCs;) V 0
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In the same manner we can eliminate C,, in the middle row of the matrix giving

_ \ - _ _
— -1 =2 H 0
p
h ‘E A
Cpt C23 +— 0 e +pCy +2Cy, V.1 =10 (44)
2 p 3E;
Lt h
Ci;+ At 5 Cy3 +p Cys 0 —(2Cy; +pCs;) Ve 0
L _ I | ]

By symmetry arguments it may be shown that a non-trivial solution to (44)is given by

L+ h
C13 + C33 + C23 - O (458.)
2 p ,
and
2C); +pCs3;=0 (45b)

Thus the system (44) reduces to two equations

h

~H-V,-2V;=0 (46a)
p
— h P’EA,
C12 A 2 C23 +p C22) H'— ( 3Ef[f + 2C22) Vf = O (46b>
From these equations we can express the vertical shear forces ¥, and V;in the horizontal shear force H
Ve=DH (47a)
Vi=D,H (470)
h
p
where
Lt h
Cp +_f2_f Cys +; Cy
D,= A (47d)
P LA
+pCyy +2C.
3., PLas 22

Substitution of (47) and 6 given by (35) into (41a) and neglecting the second order term w6 we obtain

D,
E.A,

u= H (48)

where

L+, pzhECAc

D;=Cy + 5 Ci3+CpDy+ (3EI _PC13) D, ) (49>
t1f
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From (31)and (32) we obtain

0 L+t
Wl +W2=2u9 +2W= [szH'— C12+‘f_2—c C23) VC} (50)
Rearranging the equation above and substituting  and V, of (47a) and (48) give
0 i+,
W=E—C1‘4: |7C22_(C12+fT C23) Dl _D3]H (51)

The rotation 6 can be found from (35) after substitution of V; of (47b) as

_ P2D2
3E;

7 H (52)

Now all the global displacements and rotations u, w and 6 are expressed as functions of the horizontal
shear force H.

As illustrated in Fig. 5, only the horizontal displacement contributes to the shear deformation. Thus
the effective transverse shear modulus G,, can be expressed as

. H/b
G, = Te 10D (53)
Ve ulh
A non-dimensional shear modulus factor, I'*, may be defined as
I'*=G,/E, (54)
From eqns (48) and (53), I'* is obtained as
= (55)
pD;

Thus, I'* depends on the geometry and dimensions of the constituents and the ratio between the Young’s
moduli of the facings and the corrugated layer. For plates, replace E, and E; with E_/(1—v?) and E,/
(1—v#). It may be verfieid that I'* - I’ with increased facing stiffness (I is defined in eqn (29)).

An approximate expression for the transverse shear modulus G,

If it is assumed that the entire bending moment is carried by the facings and the shear force by the core
when the corrugated board is subjected to bending, the transverse shear deformation d,, can be modelled
as shown in Fig. 9. The transverse shear force T,, which is transmitted through the core will be

1,,=pbt, (56)
It Gy, is the inplane shear modulus of the corrugated layer, the transverse shear deformation o, will be

ST,
= (57)

where § is the arc length between a crest and a trough.
The transverse shear modulus G, is defined as

yzzﬂzz_ (58)
0,.pb
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Substituting (56) and (57) into (58), G, is obtained as

ht,
Gyz=—p5§ G12 (59}

COMPARISON WITH OTHER METHODS
AND NUMERICAL EXAMPLES

To examine the validity of the approach
described, the effective transverse shear modulus,
G,,, was calculated numerically for circular and
triangular cores using the ANSYS finite element
code.'? Two-noded elastic beam elements (STIF
3) were used to model 1 wavelength of the sand-
wich, Twenty elements were used to model the
core and ten for the each of the facings. The core
and the facings were rigidly connected to repre-
sent an ideal bond. Loads and boundary condi-
tions were applied as shown in Fig. 5. The
effective shear modulus for a circular-straight
core sandwich, Fig. 10, was extracted from the
design curves of Libove and Hubka,” and com-
pared ith the present analysis.

The effective transverse shear modulus, G, is
best quantified by the non-dimensional factor I'*
defined in eqn (54). T* was calculated using the
following dimensional parameters: p=h,,
t,=t4=p/20, R=p/2 for the circular core, while
R=0-18 p and 6=60° was used for the circular-
straight core. Furthermore, the elastic moduli for
the core material and the facings were set equal,
E.=E,.

Table 1 summarizes the results from the I'* cal-
culations based on the present analysis, finite ele-
ments and Libove and Hubka’ Very close
agreement is observed between the various analy-
sis methods which supports the validity of the
present analysis. The small difference (2%)
between the Libove and Hubka’s® results based
on straight beam segments and the present results,
based on curved beam theory, is evidently due to
the straight core geometry considered, Fig. 10(b),
and the slender core members. Larger differences
are expected for more curved and less slender
core members.

To illustrate the influence of core geometry and
deformable facing, the shear modulus coefficients
I'* and T were calculated for the core shapes
shown in Fig. 10. As discussed earlier in this
paper, I'* contains contributions from deforma-
tions of both facings and core while I' represents
the upper bound on G,, assuming rigid facings. I’
and I'* were calculated using the same dimen-

Fig. 9. Transverse shear loading of the corrugated core.
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Fig. 10. Various core shapes: (a) circular; (b) circular—
straight; (c) sinusoidal; (d) triangular.
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Table 1. Shear modulus coefficient I'* for various core shapes obtained by the present analysis, finite elements and Libove and

Hubka’®
Circular Circular—straight Triangular
Present analysis 0-430x 1073 0961 x 1073 872x1073
Finite elements 0-433x 1073 8-53x1073
Libove and Hubka 0-982 %1073
Difference (%) 065 200 —2:20

Table 2. Shear modulus coefficients I' and I'* for various core shapes and reduction in transverse shear modulus G, due to

deformable facings
Circular Circular—straight Sinusoidal Triangular
r'x103 0531 1-52 377 195
r*x10? 0-430 0-961 275 872
Reduction in G, (%) 194 371 271 552
Table 3. G,,/E, and G, /G, for various core shapes
Circular Circular-straight Sinusoidal Triangular
G, /E.,x10° 12-3 12-5 132 14-0
285 13-0 4-8 16

yel Yxz

sional parameters as for Table 1. Table 2 sum-
marizes I' and I'™* for the various core geometries
shown in Fig. 10, and the reduction in G,, due to
deformable facings. The results show that the
effective transverse shear modulus, G,,, is a small
fraction of the core elastic modulus. G,, is highly
. sensitive to the shape of the corrugations. It is
observed that the stiffest core shape (triangular) is
an order of magnitude stiffer than the most flex-
ible shape (circular). Furthermore, G, is very sen-
sitive to deformations of the facings, especially for
the triangular core where facing flexibility reduces
G5 by more than a factor of two.

The shear modulus along the corrugations, G,
was considered next. G, was calculated from eqn
(56) for the core shapes shown in Fig. 10 using the
same dimensional parameters as for Tables 1 and
2. For simplicity, the core and facing were
assumed isotropic (v=0-3). Table 3 shows G,
normalized with E(=E;) and G,,. The results
show that G, is also a small fraction of the elastic
modulus of the corrugated layer, and in contrast
to G,, not highly sensitive to the core shape.
Inspection of the ratio G,,/G,, shows that G,
exceeds G,, and that the transverse shear modu-
lus of corrugated core sandwich plates may be
highly anisotropic. For orthotropic core materials
like paper, where the stiffer direction is along the

x-axis, less anisotropy than shown in Table 3 is
expected.

CONCLUSIONS

An analysis of the transverse shear modulus G,
for various corrugated core structures has been
derived using curved beam theory. An approxim-
ate formula for the transverse shear modulus G,,
was derived based on deformation of the core
only. The analysis is in good agreement with finite
elements and previous analysis. An upper limit of
the transverse shear modulus G,, was found by
assuming rigid facings. The reduction of the trans-
verse shear modulus G,, due to elastic facing was
quantified. For the core and facing materials and
geometries investigated the reduction of G, was
between 20 and 50%. If the bonds between the
facings and the core are flexible there will be addi-
tional losses. The transverse shear modulus G,,
was found to be very sensitive to the corrugation
shape and the stiffest core had an effective trans-
verse shear modulus which was 20 times larger
than that of the most flexible core. The transverse
shear modulus G,, was found to be larger than
G,, and less sensitive to the corrugation shape.
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APPENDIX

Substitution of N and M in eqn (9) by the expressions given in eqns (2) and (4) gives

1 1 [h, 1 M
[ S R
Substitution of bz, with A in eqn (12) gives
2
t
J=2 4 (A2)
12

Making the same substitution as in (A1) for (13) and using the expression given in (A2) we obtain

dg 1 12 14\(h, cos ¢ 12 1 sin ¢ 12 1
L= - S+ |-+ Hy+| |[—S+5|(p—0)+ Vo—|—
ds E.A. H (th ri) (2 C) ¥y } P |:(7Cl‘3 ri)(p ¢ 7, } P (KZ‘C re

Inserting the expressions (A1) and (A2)for e, and d¢/ds in (14)~(16) gives

d 12 1\(h, _\? he 2
| [ R R I

MD] (A3)

o

¥ (12 1)<p 5)(——@) ¢<p g0

Ktc

ERTeE
L Kt., 1, ty :

(%~— §)+cos¢sin¢] 18
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S W N Y A e
J(if jo)<p &2 (p - §>+sm¢} Vot { (123+—1Z)<p——5>-—“ﬂMD} (AS)
e 5o 5o

Integration of all the individual terms in (A4)-(A6) over the arc length S gives the total displacements and
rotation at point B in Fig. 3 as follows

1
= ks =2 k] Hob (= g kg =y sl Vi [y = ) M) (A7)
1
W=ﬁ {["ké +k8 “k12+ k15] HD+[k4+2k11+ k14] VD+[_ kz ~k10] MD} (AS)
1
6=a {[k —k ]H +[ k kw] VD+ klMD} (A9)
where
12 1 (12 1
k1=J —+—|ds, ky=1|—=3+=|(p—§)ds,
A\xto 7 J\xte 7y
12 1\/[h (12 1
k3=J 3T (__C) ds, ky= 3T 73 (P_§>2d5>
AKte roj\2 T Kt 7,
k”121hc§2d k”12 1<§>hcg
o _ —_ —_—— S = — —_ _——
*o\x2 2\ 2 ’ RV T P 2
r r
ky= COS¢dS, ks= COS¢<p_'§>dS,
Js ¥ Js ¥
ko= COS¢(—_C) kig= Mdsa
Js I Js Yo
[ sin [ sing [h,
k= | 222 (p—g)as K= J(——c)ds,
Js I Js ¥ 2
r r
k3= cosz¢ds, k= sin2¢ds,
kis=| cos ¢sin ¢ ds
Js
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Writing (A6 )~(A8) in matrix form yields eqn (21) as

u 1 Ch Cnp Cy

wl= EA. Gy Gy

0 sym. Cy;
WeEre

Cll = ks _2k9 +k13
Co=kstks—k,+ kis

Ciz=ks—k;
Cos=—ky—kyg

Gy =k

H,,
I8
My,
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Effective transverse shear moduli in the principal material directions of
* corrugated board were examined experimentally for five corrugated board
types using the ASTM block shear test and the three-point bend test. It
was found that shear moduli determined by the three-point bend test
are significantly lower than those obtained from the block shear test.
The difference is probably caused by local indentation of the board at the
supports and contribution from bending deformation of the facings in
the three-point bend test. Experimental results were compared to shear
moduli obtained by finite-element analysis (FEA) and analytical
predictions. Shear modulus along the corrugations, determined with the
three-point bend test, was about half of the predicted value using FEA,
while the shear modulus transverse to the corrugations was substantially
below that prediction from FEA, apparently due to delamination damage
of the core material inflicted during the corrugation process. © 1997

Elsevier Science Ltd.

INTRODUCTION

Corrugated board (Fig. 1) is an efficient low-
cost structural material that is widely used for
transporting, storing and distributing goods. As
shown in Fig. 1, the corrugations are directed
along the cross-direction (CD) of each of the
constituents. The bending stiffness of the board
is generally much larger transverse to the corru-
gations, ie. in the machine-direction (MD),
than in the CDJ[1], while the reverse is true for
the out-of-plane shear stiffnesses [2,3]. This
means that the direction of large bending stiff-
ness (MD) coincides with the direction of low

Fig. 1. Corrugated core sandwich. MD and CD denote
machine- and cross-directions, respectively.

145

transverse shear stiffness, which may lead to
substantial shear deformation of transversely
loaded sandwich panels. For a corrugated core
plate this means that the overall structural stiff-
ness and stability may suffer due to low MD
shear rigidity. In addition to the inherent low
transverse shear rigidity in the MD, the corru-
gating process is known to cause delamination
damage to the core material (fluting) resulting
in further structural performance losses [4].

In a previous study [2] analytical models
based on mechanics of materials principles were
presented for calculation of the transverse shear
moduli of corrugated board. The analysis is
based on the geometry of the core, thickness
and material properties of the constituents,
measured prior to the corrugation process. The
corrugation process, however, is known to sub-
stantially damage the core due to the severe
mechanical deformations encountered as shown
by Whitsitt & Sprague [4]. In particular the
integrity of the material at the crest and trough
of the core may suffer due to delamination
damage [4], which is also likely to degrade the
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transverse shear moduli of the board. It is
therefore of importance for designers of corru-
gated packages to know how the performance
of the corrugated board is influenced by the
degradation of the core. ‘

In this study, transverse shear stiffnesses of
five commercial corrugated board types are
examined experimentally using two test
methods for determining shear moduli, i.e. the
ASTM C273-61 block shear test and the three-
point bend (TPB) test, ASTM C393-62. Test
results will be compared to predicted shear
moduli using a previously derived methodology
[2] and FEA [5].

EVALUATION OF BENDING AND SHEAR
RIGIDITIES

Two test methods were utilized to measure
transverse shear stiffness in the principal direc-
tions of the board (MD and CD), viz. the block
shear test ASTM C273-61 (Fig. 2) and the
three-point bend test (Fig. 3) descnbed in
ASTM standard C393-62.

Transverse shear deformation of a sandw1ch
panel is illustrated in Fig. 4. Shear stress, 7.,
with i =x, y, is acting on the facings that are
assumed to be rigid in shear. The shear dis-
placement, u;, is then given by

u;=cyo;=Hyp,;, i=x,y (1)

with x and y denoting MD and CD, réspectively.
Constants ¢ and H are the core and total sand-
wich thickness, respectively, and y.; and y,; are

Test specimen

Loading platens
Fig. 2. Block shear test principle.

-
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Fig. 3. Principle of the three-point bend test.
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Fig. 4. Tllustration of transverse shear deformation in a
sandwich panel.

the core and average shear strains, réspectively
(Fig. 4). The corresponding effective shear
moduli in MD and CD are defined by

C
‘Gciz=_;=—_=—Gaiz’i=x’ 2 N
iz o7 Caiz y (2)

The effective shear moduli for a corrugated
core, G.;, defined in this manner represent
those for an equivalent homogeneous core
material, see Nordstrand et al. [2]. The average
transverse shear moduli, G,.,will be slightly
higher. The block shear test (Fig. 2) is specific-
ally designed to measure the shear properties of
sandwich panels and core materials, and has
been standardized by the ASTM [6]. The line of
load application is slightly tilted with respect to
the specimen midplane so that the line of load
action is in the sandwich diagonal plane. By this
design the applied load causes an opening
moment that counteracts the closing moment
which tends to reduce the thickness of the
specimen. It is recognized that a state of pure
shear is not achieved by this design. However,
by suitable design it is possible to minimize the
influence of secondary stresses and end effects.

The three-point bend (TPB) test geometry
(Fig. 3) provides a combination of bending and
shear deformation. The sandwich beam is sub-
jected to bending by the lateral force W and the
shear force of magnitude W/2 will cause trans-
verse shear deformation that contributes to the
overall beam deflection. In thin facing sandwich
beam theory [7], the shear force is assumed to
be entirely carried by the core and the bending
stiffnesses of the facings are assumed to be neg-
ligible. For this situation, the vertical deflection,
A, under the central load, W, becomes [8]

wL® WL
= +
48bD, 4AG

c,iz

®3)
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where L is the beam span length, D;, is the
flexural rigidity per unit width of the beam and
AG.,,, is the shear stiffness of the sandwich. The
effective shear area of the beam cross-section is
A = bh?*/c, where b is the beam width and & the
distance between the centre lines of the facings.
Equation (3) provides a basis for experimental
determination of bending and shear rigidities
from two plots of the beam compliance [7], see
Fig. 5. Figure 5(a) shows A/WL plotted vs L.
The slope of the line provides a good estimate
of the value 1/48bD;, while the extrapolated
intercept on the abscissa approximately yields
1/44G.,,. Figure 5(b) shows A/WL> plotted vs
1/L*. The slope of the line provides a good
estimate of 1/44GC.,, while the intercept is an
approximate value of 1/48bD; [7]. The evalu-
ation of bending and shear rigidities according
to the above procedure requires that the faces
count as ‘thin’ which implies that the local flex-
ural rigidity of the facings is negligible
compared to the total bending stiffness, D,
Moreover, local deformations, ‘denting’, at the
load introduction and support regions may add
to the apparent beam compliance (A/W) [9]

(a)
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<
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Fig. 5. Plots for evaluation of bending and shear stiffness
from three-point bend specimen compliance.

Fig. 6. Unit cell of corrugated board modelled by key-
points and area elements.

which is not accounted for in the data reduction
procedure above (eqn (3)).

FINITE-ELEMENT ANALYSIS

Finite-element analysis was performed on the
three-point bend test to validate test results. A
finite-element model of an ‘unit cell’ of the
board was first constructed, see Fig. 6. The ‘unit
cell’ consists of two outer facings of thickness f;,
separated by a corrugated core of thickness C.
The corrugated medium has a thickness of 7,
and the corrugations are assumed sinusoidal in
shape with a wavelength of 2p. Thus, the length
of the unit cell is 4p and the width was set to
2p.
The finite element used is based on the
standard eight-node isoparametric shell formu-
lation given by Ahmad et al. [10], see Fig. 7. In
the ANSYS code [5] the clement is denoted
STIF93. The quadratic shape functions, which
describe both shape and displacements of the
element, allow modelling of curved structures
such as the corrugated core. The element for-
mulation includes orthotropic linear elastic
material behaviour, with the principal axis of
elastic symmetry aligned with the curvilinear
element coordinate system x.—y.—Z., shown in
Fig. 1.

Fig. 7. Eight-node isoparametric shell element, STIF93.
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Fig. 8. Deformation of the finite-clement model in three-
point bending.

The finite-element model of the corrugated
board (Fig. 8) was generated by an assembly of
‘unit cells’. The areas generated were meshed
with STIF93 elements using divisions of 2 along
the width of the unit cell, 8§ along the length of
the facings and 40 along the length of the
“corrugations. As the model consists of two-
dimensional elements, a distance of half the
thickness of the facing and core sheet separated
the three entities. Rigid connections between
the nodes on the tips of the corrugated core
and the facings were applied using constraint
equations between the separate degrees of free-
dom in each node pair of core and facing [5].

Finite-element models of corrugated board
specimens of various lengths were generated by
connecting several ‘unit cells’ in the MD and
CD. In the MD specimens 2 unit cells were
connected along the width, and 2.5, 3 and 4 unit
cells were connected along the MD. The CD
specimens employed 1.5, 2, 3, 4 and 5 unit cells
along the beam length and 2 unit cells for the
width dimension. Thus, all beam models were
8p in width. In the MD the beam length varied
between 10p and 16p, and in the CD between
6p and 20p.

Symmetry of the three-point bend test (Fig.
3) allowed modelling of only half of the speci-
men. Thus, the beam was ‘cut’ at the centre

section and the top and bottom facings were
fixed in rotation on the right-hand side in Fig. 8,
while axial displacement of the entire cross-sec-
tion of the beam was prevented. Only the
bottom facing was laterally supported allowing
thickness changes of the beam at the centre
section. Loading was accomplished by applica-
tion of a uniform lateral displacement of the
nodes of the cross-section at the beam end.

Material properties and geometry considered
in the finite-element modelling are the actual
ones listed in Tables 1 and 2. The in-plane
shear modulus of the fluting is calculated using
Baum's approximation [11] as follows

Glz,ﬂute = 0387‘/EMD, ﬂuteECD, flute (4)

After applying the boundary conditions, analysis
was performed using the frontal solver in the
ANSYS program [5]. The lateral nodal loads at
the simply supported end were added and the
applied displacement was divided by twice the
total load to yield the beam compliance. The
bending and shear rigidities of the beams were
evaluated according to Fig. 5, using the beam
compliance evaluated from the finite-element
analysis and the span length of the structure in
Fig. 3. Figure 8 shows the deformed finite-
element mesh for a board specimen loaded in
the MD. '

EXPERIMENTS
Materials

Five corrugated boards were examined. All
boards were manufactured by SCA Packaging,
Sweden, and are denoted 140B, 140C, 160C,
530C (all single wall) and 210BC (double-wall).
‘B> and ‘C’ represent different fluting (core)

Table 1. Composition (grammage in g/m?, type of fibre) and characteristics of corrugated boards. WK, SC and K denote
white kraft, semi-chemical (NSSC) and kraft fibres, respectively. The + range represents 1 standard deviation.
Wavelengths for B- and C-flutes are 6.08 and 7.26 mm, respectively

Board Composition Total Board Flute
(g/m”) grammage thickness, H height, C!
(mm) (mm) (mm)
140B 140WK/112SC/140K 43543 2.86+0.01 2.50
140C 140WK/112SC/140K 44843 3.91+0.01 3.50
160C 200WK/112SC/186K 556 +5 4.02+0.03 3.50
530C 300WK/1508C/200K 689 +5 4.21+0.02 3.50
210BC 140WK/112SC/1128C/ 70145 6.524+0.03 2.50, 3.50
112SC/140K

"Nominal flute height, see Fig. 1.
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Table 2. Thickness, ¢ (mm) and principal Young's moduli, E (GPa) for the board constituents

Board Property Ply number
1 2 3 4 5
140B t 0.204 0.205 0.172 — —
Eup 8.37 5.42 10.76 — —
Ecp 2.89 2.14 2.95 — —
140C { 0.211 0.185 0.169 —_— —
Eup 8.01 7.10 10.4 - —
Ecp 2.78 2.39 2.63 — —
160C t 0.268 0.217 0.244 — —
Evip 7.98 4.75 8.09 — —
Ecp 3.19 1.56 2.49 — —
530C t 0.240 0.283 0.369 — —
Euvp 8.20 4.75 6.70 — —_
Ecp 2.85 1.85 2.78 — —
210BC t 0.203 0.206 0.210 0.212 0.173
Eup 7.86 5.31 512 5.25 9.28
Ecp 2.18 1.94 1.69 1.69 247

geometry. The liners were made from chemical
kraft fibres and the fluting from neutral sul-
phite, semi-chemical pulp (NSSC). Table 1
presents compositions (lay-ups), total gramma-
ges and thickness of the boards. Thickness, f,
and Young's moduli, Eyp and Eqp, of each
constituent (before corrugation) were measured
using standard test methods [12,13] (Table 2).
The data listed are averages from 10 specimens.

Test procedures

According to the ASTM [6], the width of the
block shear specimen should exceed twice its
thickness while the length should exceed 12
times the thickness. Rectangular board speci-
mens, 12 cm long and 8 cm wide, were cut from
large corrugated board panels with the edges
aligned with the CD and MD. The specimens
were glued to the loading blocks with a two-
component epoxy glue (Loctite) that cures in a
couple of minutes at room temperature condi-
tions. To achieve good adhesion and alignment
of the board specimen with respect to the load-
ing blocks, a special specimen preparation
fixture was used. After adhesive bonding, the
specimens were conditioned at 23°C and 50%
RH for at least 24 h before testing in this
environment. The loading platens were 162 mm
long, 100 mm wide and 6 mm thick and made
from aluminium. Figure 9 shows the block shear
test fixture mounted in a 10kN Alwetron
TCT10 test machine. The crosshead speed was
3 mm/min. ‘

Shear loading is accomplished by application
of a tensile load, P. For evaluation of shear

strain, the horizontal displacement, u, was mea-
sured with an inductive displacement transducer
(Feinpruf Mabhr, type 1300) applied directly to
the specimen (see Fig. 9) to eliminate the influ-
ence of deformations in the load train. The
effective shear modulus, G, is calculated
directly from eqn (2) with <, = P/bL, where b
and L are the specimen width and length,
respectively.

Figure 10 shows the three-point bend (TPB)
fixture mounted in an Alwetron TCT10 univer-
sal test frame of 10kN load capacity. The
diameter of the load and support rolls was
15 mm. Beam deflection was measured by a

Fig. 9. Block shear test fixture mounted in the test frame.
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Fig. 10. Three-point bending fixture mounted in the test
frame.

linear voltage displacement transducer (LVDT)
attached directly to the specimen (Fig. 10). For
load measurement, a very sensitive load cell of
100 N load capacity was used. All measure-
ments were performed within the linear (visco-)
elastic response region. The crosshead speed
was 3 mm/min. When the bending axis is along
the corrugations (CD in Fig. 1) (referred to as
‘bending in the MD’) local denting of the fac-
ings is likely due to the concentrated loads in
the load introduction and support regions com-
bined with discontinuous lateral support of the
facings between the corrugations. To minimize
denting during bending in the MD, a polycarbo-
nate strip of 9 mm width and 1 mm thickness
was inserted between the central support and
lower facing. By selecting a 9 mm width, the
strip covered two flute tips for the boards con-
sidered.

Three-point bending tests of boards 140C and
160C were performed using 8 cm wide and
20cm long specimens. Ten specimens were
tested using span lengths of 10, 12, 14 and
16 cm. All tests were performed in an environ-
mentally controlled laboratory at 23+1°C and
50+2% RH (relative humidity).

160C CD
L =120 mm
20~ p =80 mm
=
ry 15_
z
o W
S 1ol
i |
5_
L b
| | | | | J
0 0.4 0.8 1.2 1.6 2.0 2.4

Deflection (A,mm)

Fig. 11. Load-deflection curve for corrugated board 160C
loaded in the CD.

RESULTS AND DISCUSSION
Experimental results

Figure 11 shows a typical load—displacement
curve (W-A) for a 160C specimen with the CD
along the beam axis. After the initial stiffening,
the W response is highly linear. The compli-
ance, A/W, was evaluated by a linear regression
fit to the linear part of the W-A curve.

Figure 12 shows examples of plots of beam
compliance from which bending and shear rigid-
ities can be determined, see Fig. 5. Evaluation
of bending and shear rigidities according to Fig.
5, wusing the data in Fig. 12, yields:
D,=450Nm, G, =134MPa (left) and
D,=449Nm, G.,=134MPa (right). Plots
similar to Fig. 12 were constructed for all board
specimens, and bending stiffness and shear
moduli were reduced from the slopes, see Table
3. The core material for both boards tested is
the same (Table 1) which is reflected in the
consistent values of effective shear moduli
observed in Table 3. The bending stiffness, on
the other hand, is dominated by Young's moduli
and the thickness of the facings (Tables 1 and
2), which explains the larger values for board
160C. :

Block shear testing was performed on boards
140B, 140C, 160C, 530C and 210BC. Inspection
of the bonds between the facing and test fixture
platens was performed after each test. Debond-
ing occurred occasionally for some specimens
with high shear stiffness (CD aligned with the
load axis). For the more compliant MD speci-
mens, debonding was never a problem. Only
specimens with good bonding were accepted for
the subsequent evaluation of shear moduli. At
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Fig. 12. Plots to determine the bending stiffness and effective transverse shear modulus for board 140C loaded in the CD.

least 10 acceptable load-displacement curves
were collected for each board and loading
direction. Figure 13 shows representative load—
displacement curves for boards 140C and 160C.
The load-displacement response is initially
linear, followed by a non-linear response and a
maximum in load corresponding to shear col-
lapse of the core. The corrugated board is much
stiffer in CD than in MD as evidenced from the
difference in load scales for the two directions
shown in Fig. 13.

An effective shear modulus was determined
from a linear least-squares fit to the initial
region of the load—displacement curve and eqn
(2). Table 4 summarizes effective shear moduli
for the boards investigated. It is observed that
the shear moduli are quite consistent for the C-
flute boards. The scatter in shear modulus is
substantial which reflects variable material
properties and processing conditions during
board manufacture. The double-wall board,
210BC, has similar shear moduli as the C-flute
boards, while the B-flute board has a much

Table 3. Bending stiffnesses and effective shear moduli
measured in the three-point bend test

Board Direction’ D, G,

(Nm (MPa)
140C MD 11.840.5% 1.80+0.3
140C CD 430-+0.2 11.6+3.2
160C MD 14.1+2.5 1.604+0.2
160C CD 5.404+0.1 11.242.7
'MD and CD denote the machine- and cross-directions,
respectively.

*The + range refers to the standard deviation calculated
for 10 specimens.

larger shear modulus G_,, which is evidently
due to its lower flute height/corrugation pitch
ratio, C/p = 0.82, whereas C/p = 1.04 for the C-
flute, see Table 1. Comparison with the shear
moduli for boards 140C and 160C determined
from the three-point bend (TPB) test (Table 3)
shows that the TPB shear moduli are about a
factor of 2 less. This is evidently a result of the
fact that facing deformations are unrestricted in
the TPB test (see Fig. 14), while the facings are
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Fig. 13. Typical block shear load—displacement curves for
boards 140C and 160C in the MD and CD, respectively.
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Table 4. Transverse shear moduli for corrugated board
determined from the block shear test

Table 6. Calculated and measured values of the transverse
shear moduli obtained from the block shear test

Giz,exp (Mpa)

Board Direction' G, ;. (MPa) Board Direction* Gi; carc (MP2)

140B MD 11.6+3.1 140B MD 54.5 11.6+3.1
140B CD 27.0+6.1 140B CD 54.7 27.0+6.1
140C MD 33+1.2 140C MD 29.2 33412
140C CD 31.5+6.2 140C CD 54.7 31.5+6.2
160C MD 2.8404 160C MD 29.9 2.84+0.4
160C CD 255428 160C CD 42.3 25.54+2.8
530C MD 3.04+0.6 530C MD 55.0 3.0+06
530C CD 17.446.0 530C CD 60.8 17.4+6.0
210BC MD 2.8+0.3 210BC MD 409 2.840.3
210BC CD 20.544.6 210BC CD 48.8 20.5+4.6

'MD and CD denote the machine- and cross-directions,
respectively.

highly constrained by the loading platens in the
block shear test.

Comparison with analytical and numerical
predictions

In this section the experimental bending and
shear rigidities will be compared with the corre-
sponding analytical and numerical (FEA) values
calculated based on elastic moduli, thickness of
the constituents listed in Table 2 and the geo-
metry of the cores. The bending stiffnesses were

Fig. 14. Deformation of corrugated board when shear
loaded in the MD.

Table 5. Calculated and measured bending stiffnesses

MD and CD denote the machine- and cross-directions,
respectively.

calculated based on a procedure outlined by
Carlsson et al. [1] and from compliance plots
(Fig. 5) of the finite-element analysis results
from the three-point bend test simulation.
Experimental and calculated bending stiffnesses
for boards 140C and 160C are listed in Table 5. -
As observed in Table 5, the measured bending
stiffnesses are overall in very good agreement
with the calculated ones.

For comparison between transverse shear
moduli measured with the block shear test, cal-
culations using analysis formulated and based
on curved beam theory [2] was used. The cal-
culated and block shear values of the transverse
shear moduli are shown in Table 6. In all cases
the calculated moduli are much larger than the
measured ones. The discrepancy between cal-
culated and measured values is much larger in
MD than in CD. This is attributed to the soft-
ening influence of delaminations in regions
close to the flute tips caused by large bending
and shear deformations during flute formation
[4]. There is also the possibility of the core
buckling when the sandwich is loaded in shear
which is not accounted for in the theoretical
analysis [2]. This would further reduce the
transverse shear stiffnesses of the board.

Table 7 lists numerically calculated and mea-
sured transverse shear moduli. Finite-element

Table 7. Finite-element calculated and measured values of
(three-point bend) transverse shear moduli

Board Direction® D; anal D, yx D, ., Board Direction® G.rE Gy, ex
(Nm)  (Nm) - (Nm) (MPa) (MPa
140C MD 11.9 12.1 11.84+0.5 140C MD 6.96 1.84+0.3
140C CD 3.89 445 43+0.2 140C CD 29.4 11.6+3.2
160C MD 14.6 15.1 141425 160C MD 543 1.6+0.2
160C CD 543 6.3 54+0.1 160C CD 21.8 11.23+2.7

MD and CD denote the machine- and cross-directions,
respectively.

IMD and CD denote the machine- and cross-directions,
respectively.
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simulation of the three-point bend test provides
shear moduli that are much less than the corre-
sponding analytically derived block shear
moduli listed in Table 6. It was demonstrated by
Nordstrand et al. [2] that analytical predictions
of the block shear moduli were in good agree-
ment with finite-element simulations of the
block shear test. The difference between three-
point bend and block shear moduli is attributed
to deformable facings in the three-point bend
test. Thus, deformable facings reduce the effect-
ive transverse shear modulus, but cannot
explain the difference between the numerical
and experimental TPB values. This discrepancy
is attributed to delamination damage of the
core inflicted during the corrugation process as
discussed earlier.

CONCLUSIONS

Effective transverse shear moduli of corrugated
board were measured using the three-point
bend (TPB) and block shear tests. The trans-
verse shear moduli obtained from TPB tests
were about a factor of 2 less than those
obtained by the block shear test. This discrep-
ancy is attributed to overall deformation of the
facings and local denting at the supports in the
TPB. It is believed that the TPB test gives more
realistic results. A similar discrepancy is
obtained between the analytical solution with
rigid facings and the numerical solution of the
TPB test. Experimentally the block shear test
and TPB test produced values of the transverse
shear stiffnesses that were significantly lower
than calculated values. The explanation is that
the theoretical predictions are based on
material properties measured before corruga-
tion and that the flute stiffness is greatly
reduced due to damage inflicted during the cor-
rugation process.
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On Buckling Loadsfor Edge-L oaded Orthotropic Plates
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Tomas Nordstrand
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ABSTRACT

Corrugated board usually exhibits low transverse shear stiffness, especially across the
corrugations. In the present study the transverse shear is included in an anaysis to
predict the critical buckling load of an edge-loaded orthotropic linear elastic sandwich
plate with all edges simply supported. In the analysis, effective (homogenised)
properties of the corrugated core are used. Classical elastic buckling theory of
orthotropic sandwich plates predicts that such plates have a finite buckling coefficient
when the aspect ratio, i.e. the ratio between the height and width of the plate, becomes
small. However, inclusion in the governing equilibrium equations of the additional
moments, produced by the membrane stresses in the plate at large transverse shear
deformations, gives a buckling coefficient which approaches infinity when the aspect
ratio goes to zero. This improvement was first included in the buckling theory of
helical springs by Harinx (1942) and later applied to orthotropic plates by Burt and
Chang (1972). Some inconsistencies in the latter analysis have been considered. The
critical buckling load calculated with corrected analysis is compared with a predicted
load obtained using finite element analysis of a corrugated board panel, and also with
the critical buckling load obtained from panel compression tests.



INTRODUCTION

Corrugated board usually exhibits low transverse shear stiffness, especially across
corrugationg 1, 2]. This will reduce the critical buckling load according to classical
theory of orthotropic sandwich panels [3, 4]. In this small-deflection theory it is
customary to assume that the membrane forces are unchanged during plate deflection
and equal to their initial values. However, due to the large transverse shear strains, the
change in direction of the membrane forces over a small plate element can not be
disregarded. This gives additional moments that are introduced in the governing
moment equilibrium equations of the panel. Such additional moments were first
included in the buckling theory of helical springs by Harinx [5]. Later thiswas applied
to shear deformable plates by Bert and Chang [6] although their work contains some
inconsistencies that are corrected herein. Furthermore, in the corrected analysis the
expression for the buckling coefficient is shown to reduce to the classical formulation
of an orthotropic plate without shear deformation when the transverse shear stiffnesses
become large. It is aso shown that the buckling coefficient goes to infinity when the
height-width ratio of the plate is decreased towards zero. In the following analysis the
corrugated board panel is regarded as a laminated shear deformable orthotropic linear
elastic plate[ 7]. Thus, effective (homogenised) properties of the corrugated core are
used [8, 9]. The papers in the facings are aso regarded as orthotropic linear elastic
materials [10,11]. The analysis was used to confirm predicted critical buckling load
from a finite element analysis of a corrugated board panel modelled with eight-node
multi-layered isoparametric shell elements [12-14]. Predicted critical buckling load is
also compared to buckling loads obtained from compression tests of corrugated board
panels[15].

ANALYSIS

Figure 1 shows an element of a corrugated board panel of thickness h. Core height is
h. and wavelength of corrugations is Am. Facing thickness is t; and thickness of core
sheet is t.. The principal axes of elastic symmetry of the face sheets and the core are
aligned with the Cartesian coordinate system xyz. The 2-axes of the corrugated
medium is parallel with the y-axes.

Figure 1. Schematic diagram of corrugated board.

It is assumed that the facings and core sheet are thin compared to the total thickness of
the panel and that the transverse shear strains are uniform in the core layer.



Furthermore, the deflections and slopes are assumed to be small compared to the
thickness of the plate. Transverse shear deformation of the plate is accommodated by
assuming that cross-sections remains straight but not necessarily normal to the mid-
plane of the plate during bending [6].

The membrane forces N,,N,,N, , transverse shear forces Q,,,Q,,, bending and
twisting moments M,,M ,M, are acting on respective four sides of a plate element,
see Figure 2.

The transverse shear strains, see Fig. 3, are determined by [4]
Ve = A55Q><Z (1)
Ve = AuQy,

where A44 and A55 are the transverse shear stiffnesses[1, 2].
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Figure2. Forces and moments acting on a plate element hdydx.

The plate displacement w is then related to the applied moments as follows [4]
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and D11, D2, D12 and Deggs are the bending and twisting stiffnesses defined according to
ref. [7-11].



Figure 3 shows a cross-sectional view of the deformed plate element in the x-z-plane.
Considering that the plate is loaded in compression, the normal forces Ny, Ny and the
shear force Ny, are much larger than the transverse shear forces Q,, and Qy, and have
to be accounted for in the lateral equilibrium of the differentia plate element.
Subsequently, after algebraic manipulation the equation of equilibrium in the z-
direction is obtained as,

&+&+Nxaﬁx+Ny%+2ny aﬁx-q_&ﬂyj:o (4)
A K

X N X

Figure3. Cross-section of adifferentia plate element.

The transverse shear strains at the left and right cross-sections in Figure 3 reduce the
slope slightly more of the right cross-section than the left cross-sections. This will
rotate the normal forces so that their action will not be through the centre of the
differential plate element. Consequently, the normal forces will generate additional
moments. These moments are taken into account in the present theory. This is the
basic difference between the present theory and the classical sandwich theory [4]. The
derivation of moment equilibrium around an axis through the centre of the differential
element and parallel with the y-axesin Fig. 3 isthen asfollows.

M
(MX +d\/|xdxjdy—MXdy+Myxdx— M, +——"dy [dx
X ¥

éQXZ d\lx 077)(2 _
_( o = dx]dydx+(NX +0~dejdydx(7xz + Y dx |=0 ®)

If both sides in eq. (5) are divided by dxdy and letting dx — 0 and dy — 0, eq. (5)
reduces to

oM, oM,
oX ay

'sz +N><’sz =0 (Ga)



Similarly, moment equilibrium around an axis through the centre of the differentia
element parallel with the x-axisyields

oM, oM,
ay ox

B Qyz + Nyyyz =0 (6b)

Substitution of egs. (1)-(3) in equilibrium egs. (4) and (6) forms a system of three
simultaneous differential equations in terms of the out-of-plane displacement w and
the transverse shear strainsy,, and vy .

It is assumed that the plate is simply supported along its edges, i.e. the edges of the
panel are prevented from moving out-of-plane and are not rotationally restrained. The
edges are a so free to move in-plane and transverse shear strains are prevented by edge
stiffeners. The edges of the panel, parallel to the x-axis, are compressed uniformly by
aload of intensity, py, per unit length, see Fig. 4.

X

Figure 4. Schematic diagram of asimply supported panel in edgewise compression.

Thus, boundary conditions at y=0 and y=b are
w=0 My =0 My, =0 V=0
and boundary conditionsat x =0 and x = aare
w=0 My=0 Myy =0 Y%.=0

According to Navier’s procedure [7], a solution of the three simultaneous differential
equations that satisfy the boundary conditions above can be obtained by assuming that
the out-of-plane displacement, w, and transverse shear strains Yy, Y, can be
represented by double trigonometric series. However, in the present analysis only one-

term solutions are used for w, Yy, and ¥y, , respectively.

w = Wsin(Ax)sin(By) (79)

Vxe =Tz COS(AX)sin(ByY) (7b)



7y, =T, SIn(Ax) cos(By) (7c)
where W, T, and I',, are corresponding amplitudes. A and B are
A=— , B=— (8)

Integers m and n are number of buckles, i.e. m and n half sine waves, in the x and y
directions. In the subsequent analysisit is convenient to define a number of parameters
of the homogenised sandwich plate [4]:

z D D D, +2D Ak ALk
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Py.cit, isthe critical load intensity (load/unit length) to cause panel buckling. The total
critical buckling load is Pyit theor-
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Substitution of the trigonometric expressions eg. (7) in the differential equations (4),
(6a) and (6b) leads to the following system of equations shown in matrix form

1 A W 0
k -K(k+syz) 'Esxz
1 1( 1 A
—+An -—=|—+w+k+ -—(n- =
A A[ﬂ{ v Syzj Slr-y) ||r.|=|0 (10)
1 A v
Al + -—(n- 2O+ +
_ {+n ~-v) B[C ﬂ S) . o]

Correct expressions of the elementsin the stiffness matrix of eg. (10) are given instead
of those in the stiffness formulation [6]. Solution of egs. (10) different than the trivia
one, W=T,, =T,, =0 are possible when the determinant of the matrix vanishes. This

criterion leads to a second order equation of k

Pk?+Qk+R =0 (11)

where
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Ui ac n
The non-trivial solution of eg. (8) can thus be found when
Q,|Q R
k=——+ -=
2P+ 4* P (13)

where only positive values of k are valid since the buckling load must be compressive.
The critical buckling load, Peit theor, 1S given by eq.(9), where n=1 and k is the smallest
positive value given by eg. (11). Using eq. (12), thetwo ratios in eg. (13) are:

y 2 2
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Attention is now turned to analysis of the limit case of infinite large transverse shear
stiffnesses in order to show that the buckling coefficient k, determined by eg. (13), for
that limit is reduced to the buckling coefficient for orthotropic plates without shear
deformation [7].



If the transverse shear dtiffnesses A, and A, corresponding to s, and s,,,
approach infinity then it is evident from egs. (14) that

Q5% (159
2P 2

and

% - —syz(/ig“ +2n+ /11§J (15b)

Substitution of egs. (15) into eg. (13) gives

1
o | s
k = - 1-1/1+ (16)

Sy,

The square root in eg. (16) can be expanded according to the binomial series

«/1+X=1+%X—%X2+ ..... (17)
where
1
AL +2n+——
_{ cran ﬂ;)
x= s (18)

yz

If eg. (17) and eg. (18) is substituted into eg. (16), the expression on the right hand
side is reduced to the buckling coefficient for an orthotropic plate [4]

|<=xc+zn+73C (19)

when s, goesto infinity.
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Figure5. Buckling coefficient k, according to present theory, eq.(13)-(14), the
theory for orthotropic plate without shear [4] and the classical sandwich
theory [4].

In Figure 5 the buckling coefficient for a plate with and without transverse shear is
plotted versus the plate width/height ratio. The material data used is typical for a
common corrugated board grade and defined in Table 2. Notice that the buckling
coefficient of the plate including transverse shear has no limit when the plate
height/width becomes small as classical sandwich buckling theory predicts[3,4].

COMPARISON WITH FINITE ELEMENT ANALYSISOF A CORRUGATED
BOARD PANEL

In a finite element analysis of a simply supported corrugated board panel, with side
lengths a = b = 400 mm, following eigenvalue analysis was made to obtain the critical
buckling load [12]. A multi-ply eight node isoparametric shell element where first
order transverse shear deformation is accounted for is used in the analysis. A quarter
of the panel was modelled, due to symmetry, in a 6x6 element mesh. The side length
ratio between the corner element and mid element was 1:5. The finite element
eigenvalue analysisis

(K ]+ 218l fw}=10} (20)

where [K] is the global stiffness matrix of the finite element model, [S] ; is the

"stress stiffness matrix", X is the factor used to multiply the loads which generate the
stresses and {y/} is the generalised displacement vector of the nodes [13]. The load



{P} isalso scaled by % and it alters the intensity of the membrane stresses but not the
distribution of the stresses such that

{Pl=x{Pls o[sl=1[8« (21)

AsX isincreased, the overall stiffness of the plate, ([K] + [S]), is reduced until acritical
load {P}, corresponding to the eigenvalue X is reached and the plate becomes
unstable, i.e. det([K] + [S]) goesto zero.

The corrugated board analysed has 0.23 mm thick liners and a corrugated medium with
wall thickness 0.25 mm and wavelength 7.26 mm. The height of the core layer ishe =
3.65 mm, see Fig. 1. Using the material data in Table 1, the buckling load of the
corrugated board panel was calculated to Per fem = 849 N. This value is in excellent
agreement with the value obtained by the closed form solution Pey theor = 846 N, see eq.
(9) and eg. (13). Sandwich theory gives a critical buckling Persand = 815 N and an
orthotropic plate without shear Per ortho = 898 N.

Tablel. Effective material properties of the layersin the panel.

Layer Ex (GPa) Ey (GPa) E, (GPa)
1 8.25 29 29
2 0.005 0.231 3.0
3 8.18 3.12 3.12
Layer Gy (GPa) Gyz (GPa) Gy, (GPa)
1 1.89 0.007 0.070
2 0.005 0.0035 0.035
3 1.95 0.007 0.070
Layer Vxy Vi + vy +
1 0.43 0.01 0.01
2 0.05 0.01 0.01
3 0.43 0.01 0.01

+ The Poisson's ratios are assumed small because of the plane stress condition in the board.

COMPARISON WITH EXPERIMENTS
Panels size 400x400 mm were cut from corrugated board and tested under

compression in arig that furnishes simply supported boundary conditions [15]. Panels
were oriented with the cross direction (CD) in the direction of loading, see Figure 6.
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Figure6. Rigand corrugated board panel tested under compression.

Material data for the board is given in Table 2. The critical buckling load as estimated
from the test results by means of a non-linear regression analysis method [15] was 814
N. Thisvalueis consistent with the analytically predicted critical buckling load of 870
N using the present buckling analysis, i.e. an analysis of a plate including transverse
shear deformation.

Table2. Corrugated board data. Transverse shear stiffnessis measured.

Basis weight, g/m’ 556
Thickness, mm h 4.02
Corrugation wavelength, mm Am 7.26
Bending stiffness, Nm D11 14.6
Dy, 5.43
D1, 2.71
Des 3.34
Transverse shear stiffness, KN/m Au 39.2
Ass 5.6

In comparison, a plate without shear deformation is predicted to have a critical
buckling load of 924 N, which is exactly the same result as obtained from the classical
theory of orthotropic plates|[7].

CONCLUSIONS

An explicit equation for the buckling load of a simply supported orthotropic linear
elastic plate in edgewise compression has been derived taking into account first order
transverse shear deformation. There is mgjor difference between present theory and
classica sandwich theory in the additional moments that are introduced in the
governing moment equilibrium equations of the panel, due to change in directions of
the membrane forces over a small plate element that has large transverse shear strains.
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When the transverse shear tiffness goes to infinity the critical buckling load,
predicted by the present theory, is shown to be reduced to the critical buckling load of
an orthotropic plate without transverse shear deformation. Furthermore, the buckling
coefficient does not have a limit in the present theory when the plate height/width
becomes small, as classical sandwich buckling theory predicts. The present theory is
approximate due to one-term approximations of the deflection w(xy) and the
transverse shear strains vy, (x,y) and yyz(x,y). Verification by finite element anaysis

suggests that the present explicit equation for the buckling load is accurate, the
deviation is typicaly less than 0.5%. However, the discrepancy is larger between
present theoretical buckling load and the experimental buckling load of corrugated
board panels. This may partly be due to the difficulties involved in evaluation of the
buckling load from the experimental results [15] partly due to the non-linear material
behaviour of paper.
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Parametric study of the post-buckling strength of
structural core sandwich panels

T. M. Nordstrand
SCA Research AB, Box 3054, 85003 Sundsvall, Sweden

Post-buckling strength of simply supported orthotropic corrugated board
panels subjected to edge compressive loading has been investigated using
geometrically non-linear finite element analysis (FEA). Adjustments of the
transverse shear stiffnesses in the FEA were necessary and performed by
comparing the critical buckling load calculated by FEA with a closed form
solution. The collapse load of the sandwich plate was calculated based on
material failure of the facings predicted from Tsai-Wu failure theory.
Parametric studies were performed to investigate the sensitivity of the collapse
load to changes in the transverse shear stiffnesses of the core, initial out-of-
plane imperfections, asymmetry in board construction, slenderness ratio and
eccentric loading of the plate. It was found that a reduction of the transverse
shear stiffnesses of the core below a certain limit produces a significant reduc-
tion in the collapse load. Panels are said to be insensitive to imperfections and
this holds true when the imperfections are the same as or lesser than the thick-
ness of the panel, but a 40% reduction of the collapse load is observed for
imperfections that are ten times the panel thickness. From a design point of
view it is shown that a symmetrical board is preferred because an asymmetric
board as well as eccentric loading of the panel significantly reduce the collapse
load. It is also shown that the critical buckling load is directly related to the
slenderness ratio of the panel whereas the collapse load is not.

1 INTRODUCTION

This paper considers a sandwich construction of
considerable practical use in the packaging
industry. The sandwich, referred to as corrugated
board, consists of a core made from a corrugated
paper sheet (fluting) attached at its troughs and
crests to flat facings (liners). Typically the board is
converted into a box which must sustain the
weight of other boxes and packages stacked on
top of the box. Often the box is designed for a
specific load level with an added factor of safety.
The safety factor compensates, to some extent, for
the lack of knowledge about the spread in
material properties of the constituents of the
board, but also for reductions in the load carrying
capability due to unknown factors such as initial
imperfections and eccentric loading induced by
the creases between the vertical panels and flaps
at top and bottom. Another factor that may
reduce the load carrying capability of a corru-
gated board panel is transverse shear deforma-
tion. Previous studies? have shown that the
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approximately sine wave shaped corrugated core
has low shear stiffnesses, especially in directions
perpendicular to the corrugations. The slender-
ness ratio and asymmetry due to differences in
thicknesses and elastic moduli of the facings, also
affect the performance of the panel.

It is the objective of this study to examine the
sensitivity of the collapse load of such sandwich
panels to changes in the transverse shear stiff-
nesses of the core, initial out-of-plane imperfec-
tions, slenderness ratio, asymmetry in board
construction and eccentric loading. Since the
panels are essentially flat, i.e. the magnitude of the
initial imperfection is much smaller than the thick-
ness of the panel, the panels will buckle in a stable
manner. This means that the collapse load of such
a panel may exceed the calculated elastic critical
buckling load and that the panels may undergo
large out-of-plane displacements, ie. deflections
many times the thickness of the panel.>”” Thus,
analysis of the collapse of such a sandwich plate
under in-plane compressive load requires incor-
poration of geometrical non-linearities due to
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large deflections. Several studies have been
published on the post-buckling behaviour of
isotropic and orthotropic plates.® 13 However, as
has been pointed out by Folie:'* ‘The complexity
of the sandwich equations has resulted in rela-
tively few analytical solutions being obtained, The
reason for this difficulty is that the partial differ-
ential equations for sandwich plates generally do
not have closed form or series solutions for all
possible boundary conditions’. Thus, in order to
achieve the objectives of our study, finite element
analysis (FEA) as reported in Refs. 15-17 was
employed. The study is limited to square panels.
The ANSYS finite element code!® was used for all
- computations. Numerical results are compared
with an analysis for a laterally loaded orthotropic
plate which does not incorporate transverse shear
deformation and a buckling analysis of ortho-
tropic plates including transverse shear deforma-
tion. ‘

2 ANALYSIS

The element formulation is based on the standard
isoparametric approach to plate problems, similar

Fig. 1. The eight-node isoparametric shell -element,

STIF99.

to that given by Ahmad et al'® In short, the
element used, denoted STIF99 in the ANSYS
finite element code,'® has four corner nodes and
four middle side nodes which are connected by
quadratic shape functions which describe both the
original shape and the displacements of the
element, see Fig. 1. Bending and shear deforma-
tions are accounted for by the degenerated solid
element approach, similar to that adopted in the
Mindlin plate theory, ie. cross-sections of the
plate remain straight but not necessarily normal to
the mid-plane during bending, see for example,
Ref. 17.

The element features a multi-layer capability
which enables modelling of sandwich structures
such as corrugated board. However, since each
layer is assumed to be homogeneous and ortho-
tropic, the corrugated core has to be transformed
to -an equivalent homogenous core layer with
‘effective’ material properties, see Fig. 2.

With x, y and z being the cartesian coordinate
system of the corrugated board panel and 1, 2 and
3 the curvilinear coordinate system of the corru-
gated core, where the y- and 2-axes are coincident
and parallel to the core ridges, the 1-axis follows
the curvature of the corrugated sheet and the
z-axis is oriented in the thickness direction, see
Fig. 3, the effective core moduli, E; ; (i = direc-
tions x and y, j =layer No.) can be approximated
as follows:

E,,~0 (1a)

_as,,

E,, .

(1b)

where a (take-up factor) is the ratio between the
arc length and the wavelength of the corrugation
pitch, A, is the core thickness and S, is the

Fig. 2.

Transition of the structural core (left) to a homogeneous core (right).
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tensile stiffness of the corrugated core sheet in the
2-direction, see Fig. 3. This approximation pro-
vides correct in-plane extensional moduli and
bending stiffness D,, but the bending stiffness D,
may be incorrect. However, using the approach
given by Carlsson et al.’® to calculate the moment
of inertia of the core cross-section, I, ., the error
in bending stiffness can be shown to be less than
5%, see Appendix.

Libove and Hubka?® showed that if the corru-
gated core is symmetrical, its contribution to the
in-plane shear and twisting stiffnesses of the panel
can be neglected. Consequently the effective in-
plane shear modulus, G, ,, of the core was set to
a very small value. The effective transverse shear
moduli of the core G,, , and G, , were calculated
from measured transverse shear stiffnesses of the
board.?

Concerning the facings, the principal axes of
elastic symmetry are assumed to be aligned with
the cartesian coordinate system of the corrugated
board panel. Consequently, the in-plane Young’s
moduli, E, ; and E, ;, coincide with the measured
principal Young’s moduli, E;; and E,; of the
facings (/ =1, 3). The in-plane shear moduli G,,,
of the facings are difficult to measure, but have
been found empirically to be aproximated by:*!

Fig. 3. Dimensions and coordinate systems of the corru-
gated board.

Fig. 4. Edge-wise loading of a simply supported plate
where w denotes the out-of-plane deformation.

G,y,; =Gy, 0387E, ;E, (2)

wherej=1, 3.

Loading and boundary conditions for a com-
pressively loaded simply supported plate are
shown in Fig. 4 where w denotes the lateral dis-
placement in the z-direction. The load intensity is
P, and a and b are the length and width of the
panel, respectively. All edges are constrained to
deform only in the x-y plane and rotate freely.
The loaded edges are assumed to displace
uniformly along the x-axis, i.e. the in-plane dis-
placement v is constant along the loaded edges.
Thus:

v = const.
w=0 w=0 (3)
_ . y=0,a:
0P A Fw_,
ox* x>

For the square panel considered (a =b), it may
be shown that the panel buckles in its first mode,
i.e. in half a wavelength along the x- and y-direc-
tions respectively [22]. This is illustrated in Fig. 5
where the buckling coefficient k, defined as

2
- b P cr, theor

k
7D

(4)

where D =yD,D, and P, .., is the critical buck-
ling load, is plotted versus the aspect ratio, a/b.

1:st mode

2:nd mode

0 L | . | L 1 L
0 05 1 1.5 2

ahb

Fig. 5. The buckling coefficient of the reference panel
versus the aspect ratio a/b.
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The shift between the first and second mode
occurs at a/b= 1-1. Biaxial symmetry thus applies
to the square panel considered which means that
only a quarter of the panel needs to be modelled.

For plates where the planar dimensions are
large compared to the thickness, large transverse
shear stress gradients exist near the corners.?
Consequently, accurate numerical analysis
requires that the mesh be refined in that area. A
6 X 6 element mesh was chosen with a side ratio of
1:5 between the corner and middle element, see
Fig. 6. To check for accuracy, the model was
compared with an analytical solution for a later-
ally pressure loaded, simply supported, homo-
- geneous plate given by Reddy.>* The out-of-plane
displacement at the center was found to be within
0-5% of the analytical solution, which indicates
that the mesh is appropriate.

In homogeneous plate analysis where the trans-
verse shear strain and stress are assumed to be
constant through the thickness it is common to
reduce the transverse shear moduli by a ‘shear
correction factor’ of 12 to compensate for the
excessive amount of shear strain energy pro-
duced, as in Ref. 17. In the current finite element
formulation the transverse shear moduli of each
layer are reduced by a factor fgiven by:

f=12 (5a)

or

f= [1-o+o-2 ?54]?} (5b)

whichever is greater, where A and h are the area
of the element and the thickness of the panel,

SYM

SYM

Fig. 6. Finite element mesh of the corrugated board panel.
Due to loading, geometry and deflection symmetries only
one quarter of the panel is considered.

respectively. Equation (5b) is included in order to
prevent shear locking,!®

Thus the transverse shear moduli of the
elements are commonly modified to achieve the
appropriate transverse shear stiffnesses for the

panel. This is, however, only required when the

bending stiffnesses of a layer are large enough to
significantly contribute to the total bending stiff-
ness of the panel. For the corrugated core sand-
wich panels considered, the bending stiffnesses of
the core are inherently low compared with the
contributions from the facings.!:? Thus the correc-
tion made above should not be performed for the
core.'” The transverse shear stiffnesses of the
facings are considered later in this section.

The stress/strain relationship of each layer, j,
can be expressed by:

{U}j=[Q]j{8}j (6)

where {0}, and {e}; are the stresses and strains,
respectively, and the elastic stiffness matrix [Q]; is
defined as:

1
[Q)=7————x
Vay,iVyxj - (7)
E,; Vi By 0 0 0
Vo /By i 0 0 0
0 G,, O 0
0 0 0 (—}fﬂ 0
0 0 o o S
- f
where v, . and v, ; are the Poisson’s ratios. The

Xy ] Yx,J
stiffness matrix can be integrated through the

thickness 7 of the panel to obtain the membrane,
coupling and bending stiffness matrices as follows:

(k)2

[A]= / Z[Q]] dz (8a)
J—h2 ]
(hf2

[Cl=| 2z[Q];dz (8b)
J-hf2
(h/2

[Dl=| 22%Q];dz ~ (8¢)
J-hi2

These stiffness matrices in turn can be com-
bined with the strain/displacement matrix [B],
which connects the displacements to the strains
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and curvatures of the element, to form the ele-
ment stiffness matrix [k] as follows

[k]= J ([BoI"[AI[Bo ]+ [B, ) [C][B]

+[B,I7[C[B,] + [B,]'[D][B,]) dA (9)

where [B]=[B,] + z[B,], as in Ref. 17. The element
stiffness matrices are subsequently assembled to a
global stiffness matrix [K], which is used in an
eigenvalue analysis of the finite element model to
determine a suitable load step for the non-linear
analysis. The following equation is solved in the
- eigenvalue analysis:

([K]+A[S]r){y}=1{0} (10)

where [S],¢ is the ‘stress stiffness matrix’, A4 is the
factor used to multiply the loads which generate
the stresses, and {y} is the generalized displace-
ment vector for the nodes.!® [S]. is obtained by
applying consistent nodal forces {P},; corre-
sponding to a uniform unit pressure on the edges
as indicated in Fig. 4, and performing a static
linear analysis to obtain the membrane stresses
which generate the matrix [S], according to Ref.
15. The load {P} can be scaled by a factor A which
also alters the intensity of the membrane stresses
but not the distribution of the stresses such that:

{P} = {P}ref© [S] = [S]ref (1 1 )

As A is increased, the overall stiffness of the plate,
([K]+[S]), is reduced until a critical load {P},,
corresponding to the eigenvalue 4, is reached and
the plate becomes unstable, i.e. ([K]+[S]) goes to
Zero.

In the stiffness matrix [Al, eq. (8a), the trans-
verse shear stiffnesses are found by integrating the
transverse shear moduli through the thickness of
each layer. Since the facings are much thinner
than the core, the transverse shear stiffnesses of
the facings will have a minor influence on P This
is not the case, however, when we consider the
matrix elements corresponding to the transverse
shear moduli in the bending stiffness matrix [D],
eq. (8c), because the shear moduli of each layer
are multiplied by the second moment of area of
respective layer. Thus the transverse shear moduli
of the facings have to be realistic in relation to the
transverse shear moduli of the core to produce a
correct value of P. This was done by comparing
the calculated P, with P, ., obtained from the
buckling analysis including transverse shear
deformation,?? eq. (4), and adjusting the trans-
verse shear moduli of the facings accordingly. The

transverse shear moduli of the facings were set to
twice the effective transverse shear moduli of the
core by this procedure.

The panel may collapse at a load much higher
than the critical buckling load P, according to
Ref. 7. In this so-called post-buckled state the
deflection of the panel is larger than its thickness
and this introduces a geometric non-linearity
between the load and displacement of the panel
because approximations, like sin ¢ = ¢, made in
linear analysis become inaccurate. This means
that the stiffness matrix [K] of the panel becomes a
function of the unknown displacements, i.e.

[K(y)l{y}={P} (12)
where {¥} is a set of known and unknown nodal
displacements and {P} represents a set of external
loads which act on the nodes. In order for the
finite element model of the panel to exhibit out-
of-plane deformation, it must contain an imper-
fection which in our case is introduced by a
slightly curved shape of the panel. The shape of
the imperfection is assumed to be described by
the product of two sine functions in x- and
y-directions of amplitude w,. The non-linear
problem is solved step-wise using the
Newton-Raphson method.!®* The general
algorithm proceeds as follows.

1. Prescribe known displacements {y*}; of the
notes on the edges parallel to the y-axis, in
this case a uniform displacement. The
superscript k denotes known displacements
and the subscript i is the load step.

2. Compute the unknown forces {P}; and dis-
placements {y"}; using the stiffness matrix
from the earlier step [K];_; (for the first step,
i=1, the global stiffness matrix of the
undeformed panel is used [K];,). Then
[K];— ({"} +{y"}) = {P}:

3. Compute the updated stiffness matrix [K],
corresponding to the configuration
{9 +{y:

4. Calculate restoring force {P7}, and the
change in displacements {Ay};, as
(KL ({9 +{y}h+{Aph) = {P}+ {P}.

5. Convergence is checked by Max{Ay},=c,
where ¢ is an arbitrary small number for
which  equilibrium is approximately
obtained.

6. If the solution is not converged, add {Ay};
to {y*};, add {P}; to {P}; and repeat steps 3
to 5.

7. If the solution is converged continue with
the next load step {y*;,, ={y*};+{y"};+
{Awl+{AyH;,,.
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The loading is terminated when the stress state
at any point in the facings of the panel exceeds a
predefined failure criterion, in this case the
Tsai-Wu theory?> which postulates that a failure
surface in the stress space exists which in tensor
form is written as:

Fo+Fyo0=1, ij=1,..,6 (13)

where F; and Fj; are strength tensors of the second
and fourth ranks, respectively. Contracted stress
notation with o0,=1,;, 0;=15; and o;,=r1,, is
used. The facings are assumed orthotropic with
the principal directions 1 and 2 coincident with
the x- and y-axes of the corrugated board panel. It
is also assumed that the facings are under plane
stress, i.e. 0;=0,=0, and that the transverse
shear stresses are negligible, i.e. 0,= 05 =0, which
reduces eqn (13) to:

+2F),0,0,=1 (14)

The failure criterion, eqn (14), represents a
surface of an ellipsoid in the stress space spanned
by o,, 0, and 7, see Fig. 7, where:

pod 1 gt 1 F =0
oxl o x© T oxIoxse e
(15)
1 1 1
Fy=———=, F,= and Fy, =—
BT xIxe T2 xTxS 6~ g2

The terms X,T, X¢ (i=1, 2,) and S, are the
tensile, compressive ancL shear strengths respec-
tlvely (notlce that X¢ and X§ are <0). For paper,

F, and S have been shown to be closely approxi-
mated by:?

Fi,= —036VF, Fyy (16)

fallure surface

Ty
Fig. 7. Failure surface in the stress space spanned by the
in-plane stresses, o,, 0, and 1,, according to Tsai-Wu’s
fallure crltenon

and
Sg= X1 X5 (17)

These approximations reduce the amount of
testing of paper to only tensile and compressive
strength measurements in the principal directions.

The investigation is divided into three parts.
The first part deals with the sensitivity of the
collapse load to initial imperfections and changes
in transverse shear stiffnesses of the panel. These
are accounted for by changing the imperfection
amplitude w, and the effective transverse shear
moduli of the core, G,, and G,,. The second part
focuses on how the slenderness of the panel and
asymmetry of the board might influence the
strength of the panel. The slenderness ratio, a/A,
is changed by varying both the side length a and
core thickness /. Asymmetry of the board is
varied by changing the ratio between the tensile
stiffnesses of the facings, #,,E, ; /t;3E,; ; (i=x, y)
where f;; and E,; are the thicknesses and the
elastic modul of the facings (j=1, 3). The third
part deals with eccentric loading of the panel and
how it reduces the collapse load. Load eccen-
tricity is achieved by introducing nodes parallel
with the x-axis at the loaded edges and at a
distance e from the midplane of the panel, see Fig.
8. The loaded nodes are rigidly connected to the
nodes on the edges and nodal loads are intro-
duced corresponding to a uniform displacement.

A reference panel made from board denoted
by 170C of dimensions 40 X 40 cm was chosen
for comparison. The reason for utilizing this
board is that a complete set of stiffnesses are
readily available from previous measurements.’
The board consists of 0:23 mm thick facings and a
corrugated core with a wall thickness of 0:25 mm
and a wavelength of 7:26 mm. The height of the
core layer is #,=3:65 mm, see Fig. 3. The tensile
stiffness .S, . of the corrugated sheet is 570 kN/m.

Fig. 8. Illustration of eccentric loading of the panel.
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Assuming a sinusoidal core shape and a take-up
factor a =142, the effective Young’s modulus
, of the core was obtained according to eqn (1).
The effective Young s moduli of each layer of
the panel are listed in Table 1. The Poisson’s
ratios in Table 1 are taken from Paetow and
Gottsching®” and the in-plane shear moduli of the
facings are estimated using Baum’s formula,*' eqn
(2). From Table 1 it is clear that the board chosen
is not perfectly symmetrical. This means that the
neutral surface in bending will not coincide with
the middle plane of the board. In addition, a
board with an orthotropic structural core has
different neutral surfaces in x- and y-directions.
However, the difference in Young’s moduli of the
facings are small and the coupling effects can be
neglected. With the above mechanical and geo-
metric properties the membrane, coupling and
bending stiffnesses are calculated by the finite
element program. Table 2 lists the stiffnesses for
the element at the centre of the panel. The
strength properties of the facings are listed in
Table 3.

y

Table 1. Effective material properties of the layers in the

panel
Layer No. E, (GPa) E, (GPa) E,(GPa)
1 825 29 29
2 0-005 0231 30
3 818 312 312
Layer No. G,, (GPa) G,, (GPa) G,, (GPa)
1 1-89 0-007 0-070
2 0-005 00035 0-035
3 1:95 0-007 0-:070
Layer No. Vi v v
1 0-34 001 001
2 005 001 001
3 0-34 0-01 0-01

*The Poisson’s ratios are assigned small numbers because of
the plane stress condition assumed for the board.

Table 2. Stiffnesses of the centre element of the reference

panel

A, C, D,
(kN/m) (kN) (Nm)

A, =3928 C, =401 D,,= 14780
A=A, =431  Cpp=C,=384  Dy=D, =1625
Ay =2284 Cp=1288 D,,=63
A44=97 C44=0'0 D44=0‘137
An=12 Ces=0-0 Deg=0021
A, =884 C. =414 D,,=3350

3 RESULTS AND DISCUSSION

Using the material data in Tables 1 and 2 the
buckling load of the reference panel was calcu-
lated to P, ;=849 N according to eqn (10). This
value is in excellent agreement with the value
obtained by a closed form solution, eqn (4), where
the  coupling  effects are  omitted,*
Pcr,theor =846 N.

To evaluate the sensitivity of the buckling and
collapse load to changes in the transverse shear
stiffnesses of the core, the transverse shear moduli
of the core were varied over wide ranges. It should
be pointed out that G,, is generally much less than
G,, according to Refs. 1 and 2. The amplitude, w,,
of the initial imperfection was set to 1 mm.

The results in Table 4 show that by excluding
the adjustments of the transverse shear moduli of
the core, eqn (5), and reducing the transverse
shear moduli of the facings, the buckling loads
obtained by finite elements are within 4% of the
theoretical predictions over the range of trans-
verse shear moduli investigated. Furthermore, the
collapse load is much larger than the buckling
load and is rather insensitive to changes in the
transverse shear moduli of the core. Below certain
values of G,, and G, however, the collapse load
will decrease in proportion to the decrease in
buckling load.

Based on the FEA results, the facing on the
compressive side would fail in a corner region due

Table 3. Tensile and compressive strengths of the facings

Layer No./| Strength (MPa)
Stress
x-direction y-direction
1/Tensile 81-4 284
1/Compressive 247 13-3
3/Tensile 82-1 315
3/Compressive 239 130

Table 4. Buckling and collapse load (w,/h=0-25) versus
the transverse shear moduli of the core

Transverse Shear Buckling Collapse
Moduli Load Load
(GPa) - (N) (N)
ze sz Pcr, theor Pcr Pcol
0 - 898 927 1410
35 35 846 849 1397
0-875 875 727 737 1220
035 35 584 608 1020
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to the high in-plane shear stress acting in the
corner regions. In panel compression experi-
ments’ a wrinkle was observed to initate in a
corner region of the panel at approximately a 45°
angle to the loading direction. The wrinkle then
propagated rapidly towards the center of the
panel. This is experimental indication that the
collapse was due to high shear stresses.

The sensitivity to initial imperfection was
examined by varying the amplitude w, of the
initial imperfection of the panel from 0-1 to 10
times the panel thickness. While large impeifec-
tions are unlikely to occur during board manufac-
ture they can be introduced by warpage of the
board when the humidity changes, e.g. from 50 to
90% RH, if the facings have different hygro-
expansion coefficients.

Figure 9 shows the normalised collapse load,
P,/ P ¢ versus the amplitude, w,, of the initial
imperfection of the panel. For reasonable imper-
fections, the collapse load is not very much
affected, but for large imperfections, the collapse
load is reduced by about 40%. Similar conclu-
sions were obtained experimentally, Ref. 7. Fai-
lure occurred in the corner regions of the panels
in a manner as discussed above.

The effect of stiffness asymmetry of the facings
was studied by changing the thickness of the
facings while maintaining constant total thickness
of the facings and the board. The amplitude of the
initial imperfection was set to w,=1 mm. The
normalized collapse load is plotted versus the
stiffness ratio of the facings in Fig. 10. The col-
lapse load is quite sensitive to the asymmetry, but
the failure initation mechanism according to the
FEA was the same as described earlier. When the
thickness of the facing on the concave side of the
panel is increased and the thickness of the facing

Fgo" / F?:r

2

1.6t

0.5

0 2 4 6 8 10 12
w,/h

Fig. 9. Normalised collapse load versus imperfection
amplitude (w,/h) of the panel.

on the convex side is decreased (S 3/S, s is
decreased from unity) a rise in the collapse load is
observed in Fig. 10 until a certain asymmetry
ratio is reached. Then a drastic reduction of the
collapse load is observed because the panel
abruptly starts to buckle in the direction opposite
to the initial imperfection, i.e. the ‘weakest or
thinnest’ liner becomes loaded in compression.
This in turn is caused by the fact that the load is
introduced at the middle plane of the panel and
that the neutral plane shifts towards the facing on
the concave side, which produces an eccentricity
moment at the loaded edges. If the thickness of
the facing on the concave side is decreased (S, 3/
S, 1 is increased from unity), the facing on the
compressive side will become weaker which
produces a steady decrease of the collapse load.
Eccentric loading, Fig. 8, was studied using a
symmetrical panel with an imperfection,
w,=1 mm. The results in Fig. 11 shows a 15%
reduction in the load carrying capability for a

Boll/ F::r
1.8
W,/h=0.25

17}

16

1561

14

B
1.3 1 1 1 1
0 0.5 1 15 2 2.5
S2,f3/ Sz,ﬁ

Fig. 10. Normalised collapse load versus the stiffness ratio
of the liners, i.e. the asymmetry of the board.

|?:oll/ Fér
2

W,/ h = 0.25

15|

0.5

-0.25 » 0 3 . .2
e/h

Fig. 11. Normalised collapse load versus eccentricity e/h.
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panel with an eccentricity (e) of one quarter of the
panel thickness (). The change in collapse load is
almost the same regardless of the eccentricity,
being towards or opposite the direction of the
imperfection, see Fig. 8.

The moments at the horizontal edges, pro-
duced by eccentric load, bend the panel in a direc-
tion opposite the direction of the eccentricity. The
eccentricity thus governs the direction of the
buckling of the panel from the start because there
is no shift in the neutral plane to balance this
effect. The reduction in collapse load is partly
attributed to additional compressive stress in the
facing on the concave side of the panel due to the
bending moments introduced by the eccentric
load. The failure zone is expected to move closer
to the corners because the in-plane shear stress
becomes more concentrated at the corners. Thus,
the introduction of load into a panel is very
important for its load bearing capability.

Finally, the sensitivities of the buckling and
collapse loads to the slenderness ratio, a/h, of the
panel were analyzed. Both the side length a and
the core thickness %, of the panel were changed
while the aspect ratio, a/b, and the thicknesses of
the facings were kept constant. Figure 12 shows
that the buckling load is proportional to the
inverse square of the slenderness ratio which is
also evident from eqn (4).

The collapse load responds quite differently to
the changes in slenderness ratio, see Fig. 13. If the
side length of the panel is increased at constant
panel thickness, a rapid increase of the collapse
load occurs for small slenderness ratios followed
by a moderate increase in the collapse load for
large slenderness ratios. In contrast, increasing the
core thickness at constant panel side length and

P, (kN)
2.5
[ : Thickness is constant, h=4.11 mm
271 = % : Side length is constant, a =40 cm
]

1.5 o

1t oe

-]
e

0.5]

0 1 i A 1 1 1

0 20 40 60 80 100 120 140

a/h

Fig. 12. Buckling load versus slenderness ratio of the
panel.

thereby decreasing the slenderness ratio, will
increase the collapse load. The collapse load of
the panel is much more sensitive to changes in the
core thickness, /., than to changes in the side
length.

These results may give a somewhat misleading
indication of how effectively the panels can carry
compressive load. As illustrated in Fig. 14, by
plotting the average stress on the loaded edges at
collapse, G, versus the slenderness ratio it is
demonstrated that panels with small slenderness
ratios carries load more effectively, as expected.

4 CONCLUSIONS

A parametric study of the influences of geometry,
loading and material parameters on the buckling
load and collapse load of a corrugated board
panel has been presented. The parameters studied

Ron (kN)
2
*
1.5 a
] ®
o [m]
L 4
1 O
05|
3 : Thickness is constant, h = 4.11 mm
€ : Side length is constant, a = 40 cm

0 1] s Il i 1 1
0 20 40 60 80 100 120 140

a/h
Fig. 13. Collapse load versus slenderness ratio of the
panel.
Gcoll (MPa)
25
O {1: Thickness is constant, h=4.11 mm
5 0 4 : Side length is constant, a = 40 cm
15| =
]
i ®
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05/

0 L 1 i 1 1 i
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Fig. 14. Average stress on the loaded edges at collapse
versus slenderness ratio of the panel.
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are directly connected to the design, manufacture
and use of corrugated boxes. Properties which are
influenced by the manufacturing process are the
transverse shear stiffness and initial imperfections.
It was shown that they normally have a minor
influence on the collapse load of panels. However,
when the imperfection becomes large, e.g. ten
times the thickness of the board, the collapse load
is reduced by about 40%. Design factors such as
stiffness asymmetry and slenderness ratio of the
panel were shown to significantly influence the
collapse load of the panel. Especially the stiffness
asymmetry was shown to be important. The
collapse load dropped about 20% when the
buckling direction was reversed at a certain stiff-
ness ratio. From a design point of view, the safest
design should be a symmetrical board because it is
difficult to predict at what level of asymmetry the
change in buckling direction will occur.

The collapse load was found to be very sensi-
tive to changes in core thickness, while it was
rather insensitive to the panel size above a
slenderness ratio of 40. By plotting the average
stress on the loaded edges at collapse versus
slenderness ratio it was shown that panels with a
small slenderness ratio are most effective in carry-
ing compressive load. The FEA indicated failure
initiation at the corner regions in the facing on the
compressive side of the panel due to high in-plane
shear stress for all the parameters studied. The
failure zone shifted towards the corner and the
in-plane shear stress intensity increased when
an eccentric load was introduced. Furthermore
eccentic loading significantly reduced the collapse
load of the panel thus stressing the importance of
the load introduction to the panels.
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APPENDIX
Estimation of error in bending stiffness along the corrugations

The bending stiffness along the corrugations of the corrugated board is given by Ref. 19

(h_tfl)z (h_tfs)z I

+ SZ,C;_y‘C (Al)

¢

D}'zSZ,fl +S2,f3

where S, 41, S, 3 and S, . are the tensile stiffnesses of the facings and the corrugated sheet respectively.
The second moment of area of the core /. is given in Ref. 19. £, 5, ¢, and h are the thicknesses of the
constituents and the board respectively, see Fi ig, 3. If the wall thlckness of the corrugated sheet is small

compared to the core height, the wavelength is about twice the core height and the thicknesses of the
constituents are similar, the bending stiffness can be approximated as

(h=t;,)° (h=t5,)°

h,
S2 JS1 _Z—"+ SZ f3 + aSz,(.-— (A2)

12

}’ app

where «a is the take-up factor, i.c. the ratio between the arc-length and wavelength of the corrugated sheet.
Using the data for the reference panel one obtains

D,
298 ()-958 (A3>
D

y

Thus the error is less than 5% which is acceptable for our purpose.






Paper 5

Analysis and Testing of Corrugated Board
Panels into the Post-buckling Regime

by
T. Nordstrand

To be submitted to Composite Structures.







Analysisand Testing of Corrugated Board Panelsinto
the Post-buckling Regime

Tomas Nordstrand
SCA Research, Box 716, 851 21 Sundsvall, Swveden

ABSTRACT

Testing of the load bearing capacity of corrugated board boxes is often associated
with uncertainties, e.g. the creases along the edges of the side panels introduce
eccentricities. An alternative to the testing of boxes is therefore attractive. One
suggestion is testing of panels. However, panels are sensitive to the boundary
conditions. A panel compression test (PCT-) rig, similar to a test frame for metal
plates designed by A. C. Waker, was therefore built to achieve accurately defined
load and boundary conditions. The PCT-rig furnishes simply supported boundary
conditions, i.e. the edges of the panel are prevented from moving out-of-plane
without any rotational restraint. The edges are also free to move in-plane. In order to
describe the buckling behaviour, a non-linear buckling analysis of orthotropic plates,
derived by Banks and Harvey, was modified to include initial imperfections. The
critical buckling load of the panels was evaluated by fitting the analytical expression
by non-linear regression to experimentally measured |oad-displacement curves. The
results show a difference in the order of 15-20 % between experimentally estimated
critical buckling load and the analytically predicted critical buckling load for
orthotropic plates. This is mainly attributed to transverse shear deformations. A
corresponding difference was observed between analytically predicted and
experimentally measured |oad-displacement curves at large out-of-plane deformation,
i.e. twice or three times the board thickness. Thisis probably caused by the non-linear
response of paper at high stresses and local buckling of the panel facings, i.e. the
liners. A predicted failure load of the corrugated board panel was determined when
stresses in the facings reached the Tsai-Wu failure criterion. The predicted failure
load and measured average experimental failure load were close, indicating that
collapse of the panel istriggered by material failure of one of theliners.



NOTATIONS
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Plate sizein x and y directions
Amplitudes of thetotal and initial plate deflection functions

Relative amplitude of the shape function
Bending stiffness of the plate

Modulus of elasticity of liner

Modulus of elasticity of medium

Shear modulus of liner
Airy’sstress function
Plate thickness

Core thickness

Liner thickness

Medium thickness
Take-up factor

Bending and twisting moments per unit distance in middle

surface of the plate

Membrane forces per unit distance in middle surface of the
plate

Load

Critical buckling load

Displacementsin x, y and z directions

Strain energy

Cartesian co-ordinates

Unit shear strain

Unit normal strainsin x and y directions of the facings
Poisson’ sratio

Unit normal stressesin x and y directions

Unit shear stress on plane perpendicular to the x-axis and
paralel to the

y-axis



INTRODUCTION

Corrugated board is one of our most common transport packaging materials. Large
retailers and distributors are under increasing pressure to cut the cost of corrugated
packaging. With the increasing scale of business it has become unacceptable to over
design boxes. Consequently, it is necessary to predict box strength in order to obtain
boxes at the lowest possible cost.

However, analysis of top-to-bottom compression loading of boxes is often associated
with uncertainties, e.g. the creases between flaps and side panels introduce
eccentricities along the loaded edges [1]. Since the buckling behaviour is of primary
interest, it was decided to test corrugated board panels with clean cut edges in a
specialy designed panel compression rig, similar to a test frame for metal plates[2].
The panel compression rig furnishes ssmply supported boundary conditions, i.e. the
edges of the panel are prevented from moving out-of-plane without any rotational
restraint. The edges are also free to move in-plane. It was decided to measure the out-
of-plane displacement at the centre of the panel versus the compressive load. Out-of-
plane measurement of the panel deformation is easier than in-plane measurement. It
also simplifies (de-)mounting of the panel in therig.

One objective of the testsisto obtain the critical buckling load. Since post-buckling of
apand is stable, an analytical expression was needed that relates the compressive load
to the deformation of the panel. Banks and Harvey [3] originadly derived a post-
buckling analysis, which has been modified in the presented model to include initial
imperfections. Panels are assumed to have orthotropic elastic constants as described by
Jones [4]. The critical buckling load of the panels was evaluated by fitting an
analytical expression for the load-deformation curve to the experimentally measured
curves. The fitting was made by non-linear regression analysis and comprised the
determination of three parameters in the analytical expression, one being the buckling
load, another the post-buckling coefficient and the third the amplitude of the initial
imperfection of the panel.

Results show a discrepancy of 15-20 % between experimentally estimated critical
buckling load and the theoretically predicted buckling load for orthotropic plates. This
difference is mainly attributed to transverse shear. A corresponding load difference
was observed between analytically predicted and experimentally measured post-
buckling curves at large deflections, i.e. twice or three times the board thickness. This
is probably caused by the non-linear material response of paper at high stresses and by
local buckling of the panel facings, i.e. the liners. A failure load of the corrugated
board panel was predicted by determining when stresses in the facings reached the
Tsai-Wu failure criterion [5]. The predicted failure load and measured average
experimental failure load were close, indicating that collapse of the panel is triggered
by material failure of one of the liners. Thus, the strength of the material is efficiently
utilised.



THEORETICAL MODEL
Basic assumptions and mechanics principles of a corrugated board panel

A simply supported corrugated board panel, loaded in compression, buckles in a
stable manner and carries load beyond the critical buckling load until compressive
failure occurs. Since the paper sheets used in the panel are thin compared to the
overal thickness of the panel, the variations of stresses in the thickness direction of
each sheet are ignored.

Figure 1. Geometry and orientation of a symmetrical corrugated board panel.

The paper is assumed to have orthotropic elastic properties with the elastic planes of
symmetry of the facings coinciding with the Cartesian coordinate system xyz of the
panel, see Figure 1. Total thickness of the panel is h, core height is ¢ and facings and
core sheet are assumed to have thickness t; and tc, respectively.

The membrane forces N,, Ny and N,y are shown in Figure 2. These forces are oriented
according to the orientation of the panel in the loaded state. The displacements are
assumed to be small in the sense that sin(ow /9x;)=0ow/9x;, i = 1, 2 and the projected

membrane forces in the x-y plane are in equilibrium.

Figure 2. Membrane forcesin the corrugated board panel.



It is assumed that the membrane strains are constant through the thickness of the panel
and that membrane forces carried by the corrugated core in x-direction can be
disregarded. The strainsin panel facings due to membrane forces are

h v, h# 0 N,
e 2E, 2 E, h
* N
&y |= _hvlz h h — (l)
2tf Eil 2tf E22 h
" 0 0 h | Do
I 2,G, | ]
where 7= tl and v, E; ij=12and G,,are the Poisson’s ratio, elastic and
o 1, Exc
2ty Ey

shear modulus of the facings, respectively. E,, . is the elastic modulus of the core

sheet in the cross direction CD and « is the take-up factor, i.e. the ratio between the
length of the corrugated core sheet and the length of the board.

Figure3. Bending of the corrugated board panel.

(h_tf)

2

The bending and twisting curvatures and strainsin the facings z=+

g, (2)-¢g,(0)_ 9*w e,(2)-¢,(0 9w _ Ty (2)-71,(0) S 0w @

K = =— K, =——mMmMmm— = — , K =

X z ox? z ay> ¥ z oxay

are connected to the bending and twisting moments acting on the panel in Figure 3 by

M X Dll D12 0 Kx
M, [=|Dy, Dy 0 Ky 3
M xy 0 0 Dy Ky

where D, are elements of the bending stiffness matrix [4,5].
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Buckling of a corrugated board panel

When a panel with a small initial curvature is subjected to a compressive load it
bends, and the deflection may become large in comparison with the thickness of the
board, see Figure 4. Hence the geometrical non-linearity due to membrane stretching
has to be included in the analysis [6]. It is assumed that the membrane strains are
constant through the thickness of the panel, and can be expressed in terms of the
displacements at z=0 as follows

ou 1(8wj2
€, =—+—| —
ox 2\ ox
_ov 1 aw)’
&=t alay
y y ) @)
_du  dv oW ow

ny_ay oX  ox dy

By adding the second derivative of €, with respect of y and second derivative of &,
with respect of x and subtracting the second derivative of y,with respect of x andy,

a compatibility relation is obtained between the membrane strains and the out-of-
plane displacement [6].

o%, 0%, 0%, _(dw) _dwow .
dy?  ox*  oxdy | oxdy ox? oy’

If the expression in the stiffness matrix is substituted with the effective elastic
stiffnesses of the panel asfollows

N 2tf * 2tf * 2tf *
En :TEua Ex :ThEzz’ Gp :TGH’ Vip =hvy, ©®)

and the strains are subsequently substituted in eg. (2) we obtain

hE, x> h

1N, 11 2V 9N, 1 N, _(9fw)_9'wow
oxdy hE. dy* | oxay

= g WOW 7
G, E| ox? oy? )

The solution of eg. (7) can be greatly simplified by introducing Airy's stress function,
F [6]. With this stress function the membrane forcesin eg. (7) can be expressed as
2 2 2
N, =h?F N, =h2F N =ndF (®)
ay ox oxay

where F=F(x,y). With these expressions for the forces, eg. (7) becomes



10°F (1 2V) o*F 1 9°F (ow) 9°wow
+ = 9)

i - fz +— = - = 5
E ox' (G, E, Jox®y* E_ ody* (oxdy) ox* dy?
If w=w(x)y) is the total out-of-plane displacement and w,=w,(X)y) is an initial
imperfection of the plate, eq. (9) can be written as

19°F (1 2v.) 9*F 1 9%
= et | T oz T aud
E, ox ox°dy® E_ dy

G, E,
20, \2 2.2 2 2 2 2
o°w _a%va%v_ oW, | d V\210 ) V\2/0 (10)
oxdy ox~ oy oxoy ox° oy

provided that the total displacements and the initial imperfections have the same
shape, differing only in magnitude. This equation links the membrane stresses with
out-of -plane displacements of orthotropic plates.

e <

W

s

Figure4. Simply supported corrugated board panel with compression of top and
bottom edges.

Boundary conditions

It is assumed that the panel is simply supported, see Figure 4. This means that edges
are rotationally unrestrained and no out-of-plane displacement is present. Neither are
in-plane shear stresses allowed. Thus at the unloaded edges x=0, a :



ERY ERY (11)
M :_Dll(a)(Z+v212J:O

The compressive displacements are constant along the loaded edges. Thus, at y = ig ,
the conditions are

w=0

(12)

Solution strategy

In order to obtain a relationship between the compression v and out-of-plane
displacement w the principle of minimum potential energy is used [3]. The tota
potential strain energy V in the buckled plate consists of two parts - the potential
energy of bending and twisting, V;, and the membrane strain energy, V,,

V=V, +V,
;J:Jj n(g: (w— WO)J +2D11v21(§(2 (w— Wo)j(g; (w— Wo)J"‘
PL ? 2 13)
+D22(8y2 (w— W)j +4D66(axay(w WO)J }dydx

U'—al\)\o'

M\:r

o" F) 2 (0% 0°F) 1 (0°F o L(oFY dyc
Ey En (¥ & ) Gplokdy) Ep| o

Before minimising the total energy V , the out-of-plane displacement w and the initial
imperfection wg are prescribed as follows [3]

W= AX(x)cos(ﬂg) (14

“alle

N

w,=A OX(x)co{ﬂg) (15)



where A and A, are the amplitude of the out-of-plane displacement and initial im-
perfection, respectively. The panel is accordingly assumed to have a sinusoidal shape

iny-direction and X (x) isapolynomial
x (x) (x)*
X =3.2{—2(j +() J (16)
a \a a

that describes the deflected shape of the panel in x-direction, see Figure 5.
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Figure 5. Shape function used to model the buckled plate.

Integration of the membrane deformation dv/dy in eq.(4) is equa to the uniform
compression of the panel given by eg.(12)

b
2l 1w’ 1[aw0]2
v=|le,—=| =— | += d 17
Iiy 2(3)/} 2l oy ) [V an
2

Combining eq.(1), (6) and (8) gives

1 (9%F J°F
_1 ~ 18
&y EZZ(E)X2 Va asz (18)

Assuming a solution to eq.(10) [3] for a panel with uniform compression of its edges
asshownin Figure 4

F=F(x)+ Fz(x)co{zzyj (19)

Substitution of eq. (14), (15), (18) and (19) into eq.(17) and integrating gives

0°F, . Vv E,(=x 2 -
Ih _p Y B2 (p2_ p2)x2 2
S =Eapt 4@( A) (20)

Substitution of eq.(14), (15), (19) and (20) into egs. (13) and minimising with respect
to A yields the relationship between A and v

_[1A)C (a2 a2)Cs
v—[ A]C2 (A Aa)cl (21)

where constants C; , C; and C; are presented in the Appendix with a detailed solution.



Substitution of eq.(21) into (20) the relationship between the applied load P and out-
of-plane displacement A is given by integrating the stress oy, over the loaded edge
y=b/2

2 a 2
d EdXZ—hJa F
ox 5

" dx (22)

P= —hjaydx = —hjil
0 0

Further integration of eq.(22) gives

P=P, (1—§J+\P(A2 -A?) (23)
where the critical buckling load
_p oG (24)
crit 22 b Cl

and the post-buckling parameter is
. 25)
E ah (
Y= {b G zcl}

Failurecriterion

From the solution above, the total stresses in the inner facing z=—(h—t,)/2of the
panel in Figure 4

2 2 2
g =0 OF +D“(a(w—wo)+v21a(w—wo))
f

o2t 9y* (h—t)t, | ox ay?
hi 0°F D 9? 9°
Oy =21T axz +(h—t2f2)tf(ay2(w_ W0)+V128X2(W_W0)J (26)

h 9o°F 2D, [ 02
Txy =4 + (W_WO)
2t oxdy (h-t,)t,  dxdy

can be obtained for a specified value of the out-of-plane deformation A.
Subsequently, the stresses in eq. (26) are inserted in the Tsai-Wu failure criterion
assuming plane stress [5]

Lo, +1,0,+1,07 +T,0, + T + 21,00, =1 (27)
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1"2 = i + i , F66 — 1
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The subscript j=t or j=c of strength o; ,i=x,y, denote the strength in tension and
compression, respectively. The expressions for 'y, and I'es are approximations for
paper materials [7]. A geometrical interpretation of the failure criterion, eq. (27), is
depicted in Figure 6. Failure occurs when the total stress vector [oy, Oy, Txy] Of afacing
reaches the surface of the ellipsoid in Figure 6.

failure
surface

X

AN
J

Xy

Figure 6. Geometrical interpretation of the Tsai-Wu failure criterion.

PANEL COMPRESSION TESTS

A panel compression rig was built similar to a test frame for metal plates designed by
A. C. Waker [2], see Figure 7. The rig is composed of a frame that supports the
bottom and side edges of the panel, and a crosshead that slides in the frame, supports
the top edge and loads the panel. In thisway the crosshead is guided to prevent out-of-
plane movements. Furthermore, top and bottom supports consist of sectioned slotted
rollers supported by needle bearings and mounted in grooves in the base plate and the
crosshead. The panel is subsequently inserted into the slots.

The side edges are prevented from moving out-of-plane by knife-edge supports.
Furthermore, the out-of-plane displacement at the panel centre is measured by a
digital displacement gauge, see Figure 7 and Figure 8. Panels size 400x400 mm were
cut from corrugated board and tested under compression with the cross-direction (CD)
oriented in the direction of loading. Only flat panels with an imperfection less than
half the thickness were selected for testing. Specimens were preconditioned for 24
hours at 30% RH, 23 °C, and subsequently conditioned for 24 hours at 50% RH, 23
°C, before testing. A total of 12 panels were tested and material and panel data is
presented in Tables 1 and 2, respectively.



Figure 7. Panel compression rig and a corrugated board panel loaded to failure.

Figure 8. Measuring the deflection of a corrugated panel.

Table 1. Material datafor liner and fluting of the corrugated board.

Outer.
Inner Facing| Core Semi- Facing
Unit |Direction | Kraft Liner | Chemical | Kraft Liner

Single Facer | Medium Double

Backer

Basis weight gm? 184.3 140.2 187.4
Thickness, t mm 0.268 0.217 0.244
Elastic modulus, E;;  |[N/mm? | MD 7980 4750 8090
Elastic modulus, E, |N/mm? | CD 3190 1560 2490
Tensilestrength, ox; | N/mm? | MD 814 46.9 82.1
Tensile strength, oy,  |N/mm* | CD 284 18.8 315
Compr. Strength, yc | N/mm? | MD 30.8 23.1 29.9
Compr. Strength, oy | N/mm? | CD 16.6 13.4 16.2
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Table 2. Corrugated board data calculated using material datain Table 1. Transverse
shear stiffness values are measured values using three-point bending [8].

Basis weight gm? 556
Thickness, h mm 4.02
Corrugutation wavelength, A mm 7.26
Bending stiffness, D;3 Nm 14.6
Bending stiffness, Dy, Nm 5.43
Bending stiffness, D;» Nm 271
Bending stiffness, Des Nm 3.34
Transverse shear stiffness, Ay N/mm 39.2
Transverse shear stiffness, Ass N/mm 5.6

RESULTSAND DISCUSSION

The load-displacement curves of the tested corrugated board panels show consistent
buckling behaviour, see Figure 9. The dashed line is the analytical solution according
to eg. (23) using the material and panel data in Tables 1 and 2, giving the critical
buckling load Pgit = 958 N, which is in accordance with classical buckling theory for
orthotropic plates[4,11], and the post-buckling parameter W= 8.6 N/mm?, see Table 3.

Load [kN]

14} /

1.0

0.8

0.6

0.4

! 1 1 1 1 1 1 1

0 2 4 6 8 10 12 14
Out-of-Plane Displacement [mm]

Figure9. Load-displacement curves of 12 corrugated board panels. The dashed
curve is the theoretical model with the analytical buckling load and post-
buckling parameter. Failure predicted using the Tsai-Wu failure criterion.
The dot-dashed curve is the theoretical model fitted to experimental
Curves.
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Table3. Analytically and experimentally determined parameters.

Pcrit,exp Pcrit AO "Pap ¥ I::'fail, exp I::'fail
Unit N N | mm | N/mm® | N/mm? N N
Average 814 958 0.8 3.55 8.6 1195 | 1265
Std 16 0.3 0.59 60
Max 844 13 4.68 1288
Min 786 0.5 2.88 1138

When the analytical out-of-plane deflection A has reached levels about half the plate
thickness, the difference in analytical and experimental loads is about 20%. The
brown dot-dashed line was determined by fitting the analytical expression in eqg. (23),
i.e. parameters Puitep , e and Ao, to the experimental curves using non-linear
regression.

The regression was made using commercially available software called SAS[9]. The
experimental critical buckling load Pgitexp = 814 N and the post-buckling coefficient
Wep=3.55 N/mm? for the tested panels, see Table 3. The analytically and
experimentally determined critical buckling loads differ by 18 %.

The discrepancy between analytical and experimental post-buckling parameters in
Table 3 is probably due to the non-linear response of the paper material at high
stresses and local buckling of the facings, see Figure 10 [10]. However, the
analytically calculated failure load P4 =1265 N differs only 6 % from the
experimental failure load of Prilee = 1195 N. The anaytical failure load was
obtained by checking when the stresses [ox, Gy, Tyy] in the inner facing satisfied the
Tsai-Wu failure criterion in eq. (16). In Figure 11, failure of the inner facing is
depicted by a range of colour fields indicating how close the material is to failure.
This is expressed by the ratio between the length of the vector [ox, Oy, Txy] and an
aligned vector that reaches the surface of the ellipsoid in Figure 6.

Figure 10. Local buckling of the facing on the concave side is visible just prior and
after failure.
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Figure 11. Colour fields indicate how close to material failure different areas of the
inner facing are according to the Tsai-Wu criterion. Due to symmetry only
the top-left quarter of the panel is shown.

CONCLUSIONS

A rig that furnishes ssmply supported boundary conditions has been designed to test
corrugated board panels. Experimental results are consistent. An expression linking
applied load with the out-of-plane deformation is derived. The first part of the
expression is similar to ordinary Euler buckling of a column, where the maximum
compressive load is limited by the critical buckling load. In the second part of the
expression the membrane forces produce a parabolic relationship between the
compressive load and out-of-plane displacement. The expression was fitted to
experimental measured curves using non-linear regression to evaluate the critical
buckling load and post-buckling coefficient for corrugated board panels. The results
show an 18 % difference between experimentally estimated critical buckling load and
the analytically predicted critical buckling load for orthotropic plates. This is partly
attributed to excluded transverse shear deformation in the analytical solution.
Compare the experimental value of 814 N with 870 N obtained from an analysis of a
panel including transverse shear deformation [11,12]. A significant difference was
also observed between analytically predicted and experimentally measured load-
displacement curves at large out-of-plane deformation. Thisis probably caused by the
non-linear material behaviour of paper and local buckling of the panel facings, i.e. the
liners. However, the 6 % difference between the analytically calculated failure load
and the experimental failure load is quite small. This suggests that collapse of the
corrugated board panel is triggered by material failure of the inner facing. The
strength of the material istherefore efficiently utilised.
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APPENDIX

Marquerre's differential equation linking in-plane stresses with out-of-plane
displacements for orthotropic platesis as follows

10 (1 2v,) 9F 19
= e T iz T A
EZZ @( G12 Ell &( w Ell &

(W) Pwarw |[(dPw,) 9w, 97w, "
- 03(03/ 0—5(2 WZ 0—5(0—5’ 0—5(2 0—y2

If the deflections w and w, are of the same form and their magnitudes are related by the
expression

w= AX(X) cos(”% ) 2)

and the initial imperfections as

W, = A, X (X) cos(”% ) ©)

then a solution of eq. (1) for a plate with uniform compressive displacements of its
ends, asshownin Fig. 4, is

F=F,(x)+ Fz(x)cos(zm% ) (4)

Substituting egs. (2-4) into (1) gives

Lo 4 leoar o s(e] ©
1F|v_[2ﬂ)2HF u+(27rj41|: _
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1(x ? 2 P fvavalll ViR
Z(b) (A _A) XXX _(X )] (6)
where H:i*—zv*;.
G E

12 11

Thus F, isindependent of y and hence constant along the length of the plate. While F,

can not give a stress in the x-direction, it does give a stress in the y-direction which is
found by integrating equation (5) twice.
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Thisgives

Y 2

E,(x) X
F" =2?2(b) (AZ—AOZ)7+ Bx+C @)

where B and C are constants and found from the membrane boundary conditions on the
loaded ends.

To obtain an expression for F, we assume that the deflections across the plate are in the
form of apolynomial series

X=>AX, 8

where |A |<1 is the relative amplitude of the normalised shape function X, which in
turn is assumed to take the general algebraic form

X=3cu( %] ©

p=1 a

Substituting eg. (8) into eqg. (6) gives
2 4
i*Fz'V —(2”) HF," +(2”j 1 F,=
E,, b b ) E,

(2] A3 Am X" -, (10

Inserting the expression for X, eg. (9), into eg. (10) and manipulating gives
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under the condition that C =C

(s+2-g<1)n (s+2-g>r)n

=0. A solution for F, can be found by
putting F, in the same form as the right hand side of eq. (11),

F, =12[”j (4= A2 A A g (ED" (13)

2a b n=1 m=1

Substituting eg. (13) into eg. (11) gives

1w (27 v (2 1 AP B x\°
* ¢mn _( j H¢mn +( ) * ¢mn = *Smn - (14)
E, b o) B L Epila

If @ pare 1N tUN is assumed to take the same form as the right-hand side of
Eq. (14),

Do part = Z Lsmn( j (15)

we obtain, by substituting eg. (15) into eg. (14) and equating coefficients from each
term, for s=2(r-1) to 2(r-1)-1
Lo =2 (16)

andfor s=2(r-2)to2(r-1)-3
B H 1 2
=D (s+ )(82+ )L(M)mn
(27) 1(%) 2

E,

7

and for 0< s<2(r -1)
By  H(s+1)(s+2)
s — 4 + 2 (s+2)mn
(7)1 [m) o
En
Ei* (s+1)(s+2)(s+3)(s+4)
2z L(s+4)mn (18)

1(2;:]“4
—x | a
E,l b

Egs. (16) - (18) thus give the particular integral solution for eq. (14) when evaluated in
the right order. To obtain a complete solution for ¢, the complementary function
solution must be added to eq. (15). There are three possible solutions to the
homogeneous equation,

v 2” 2 * I 2” 22
¢mn _[bj E22H¢mn +(\J Ell ¢mn_ (19)

consistent with the values of E; , E; and H.
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1. If E;sz >4E—32, then all roots arereal.
1
. E, . . .
2. If E222H 2=4—2 then theroots are equal. This corresponds to the isotropic case.
1

3. 1f E),°H?< 4E—32, then all roots are complex.
1

Only the first of these conditions is dealt with since this is consistent with the class of
materials considered. Thus the solution to equation (19) is

B rom = Cim COSNK X+ C, sinhk x+C,  coshk,x+C, , sinhk,x (20)
where
1
2 * 2
= [2”) Dems [EneoaBe (219
b) 2 Ex
and
1
2 * 2
K, = (2”] e B He el (21b)
b ) 2 E.
The complete solution for ¢, is
2(r-1) \° .
O =D Lm(a) +C,,, coshk x+C,, sinhk X+
s=0
+C, coshk,x+C,, ., sinhk,x (22)

The values of the constants C, _ are obtained by considering the boundary conditions at

Imn

x=0 and x=a. It can be shown that if the unloaded edges are free to move in the plane of
the plate, the shear stress 7, and the stress normal to the edge o, must be 0.

2 2
Since o, :i_ylzzand 7, :_jx ; it follows by substituting eq. (13) into eq. (4) and

differentiate eq. (4) accordingly that

$m(0)=0; ¢,,(a)=0¢,,'(0)=04,,'(a)=0 (23)

The constants are thus found to be

C]_m — k1T3(T1rm +T6rm) _TA(TZmn +T7rm)
" T4T5 - les2
C2mn —_ -I—S(Tlnn +T6rm) _TS(-IZ—Zmn +T7rm) (24)
T4T5 - k1T3
C, =-C L

3mn lmn — —0mn
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e - ke _lm

4mn _ki2 1mn k2a

where

2(r-1)
Tlmn = Z I-smn
s=0
2(r-1)-1

Tom= >, —0™ (s5+1)

s=0 a

T, = cosh(k,a)— cosh(k,a)
T, = sinh(kla)—%si nh(k,a)

2

T, =k sinh(k,a)-k, sinh(k,a)

Torm = —Lom cosh(k,a) - Lim sinh(k,a)
k,b
T = —Lomk, Sinh(k,a)— Lit;"" cosh(k,a)

The stress function F is completely determined in terms of the deflection given by egs.
(2) and (3). The constantsin eg. (7) are found by compressing the plate uniformly along
the loaded edges an amount v=-A4, see Fig. 4. During compression of the plate, it is
assumed that no shear stresses are introduced along the loaded edges.

Thus 7, = 0 when y=——and y:g and the compressive displacement must be
g an) 1(aw, Y
v= I £, —() +(°) dy (25)
o 2l 2l
2
From Hooke's law we obtain
&, = i*ay —V—ilax (26)
E22 Ezz
and if
2 2
o, = i'yf o, = 0;('2: (27

acombination of equations (25) - (27) gives
b

21 (9?F 9%F) 1fow) 1w, )
fJE(anM A5 }"y )

Substituting for F, w andw, and integrating eq. (28), F," isfound to be
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F'= Ezz‘é+E4(bj2(A2 —AZ)X? (29)

Substituting eg. (7) into eq. (29) gives

V=L*(BX+C) (30)
E22

To obtain uniform end displacement across the plate, B must be zero and the remaining
coefficient will be

Y
C=E,— 31
2 (31)

which isthe stressinduced in an unbuckled plate by the compression v.

The strain energy in the buckled plate consists of two parts: the potential energy of
bending and twisting, V; , and the membrane stretch energy, V,

ol ol

92 i 9 i
+Dzz(ayz(W_W0)J +4Dse(axay(w_wo)j ]dydx (32)
E 2
h#? 1(d%F) 2V, (9%F J%F
Vy Z*J.J. — > | ——=° 2 z |T
20 bl E11 W Ell w @(
2
2 2\?
d oF 1 J '2: dydx (33)
G | Koy E_\ X

Substituting the derivatives of F andw using egs. (2) - (4), (8), (13) and (29) in egs.
(32) - (33) and integrating with respect to y gives

Vs =(A-A)’ N DLy > AAX, X, -

0 n=1 m=1
2

_(7;) V21D112N:ZN:A1AanXm” +

n=1 m=1

(j 2ZZZA‘A“X {j 6622&”\% X }dx} (34)

n=1l m=1 n=1l m=1

A6



N N

w2l w2 %iimwx X

n=1 m=1 p=1 g=1

2\ 4E1*1b8 N N N N
TR
2 ‘v *lb8 N N N N |
(3)(5) 2 EEEEAaansaen'+
(7 Enzb8 NN Lo
(2= TS ARA A, }m

. (VY3 ., oz )Vbh . (vE& Y
+2E22(\é) £ dx}+(A —Ab{;’) 4E22(ZJ£ZZA1A“Xndey (35)

n=1l m=1

The total strain energy is obtained by adding V; andV,, ,
V=V, +V, (36)

In order to minimise this expression with respect to A we have to know the values of
A, i=1.N, i.e the relative amplitudes of the shape functions. Assuming that the

imperfect plate will have the same deflected shape as a perfect plate, with A, =0, we
can obtain an accurate description of A by the first buckling mode. Initialy, limited

bending can be produced with negligible membrane stretching of the middle plane, and
we need to consider only the bending energy and the corresponding work done by the
external forces acting in the middle plane of the plate, i.e. all terms that include v in eq.
(35). Subsequently, all terms in eq. (36) that contain the fourth power of A can be

omitted. Thus equation (36) can be written as

n=1 m=1

Hm o, %, ] 0%, ) (Y ex H(] an
b b b b 2 \b

The minimum of V isfound by differentiating V with respect to A and using

b,:‘z ZN:ZN:A]A“{.HDHX ' X - (bTVHDanXm” +

8V oV
V=" dAZ+ ...... +—dA =0 (38)
8A1 Az oA,
which in turn gives N linear simultaneous eguations, from which the value of v=-A
to cause buckling can be found. The relative values of A can aso be obtained. Thus

crit
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(39
8l () _. h

Qnm = “(I).l:(bj E22 anm:ldx
gives

= =T =|_ _

[S+ S —-2A, Q} A=0 (40)
and the non-trivial solution of eq. (42) demands that

= =T =

S+S -2A,, (42)

Solving eg. (41) for A, and inserting the value of A, in eq. (40) enable us to obtain
the normalised eigenvector A. Thusal A :sare determined.

Inserting the values of A in eguation (36) and minimising V with respect to A yields the
relationship between A and v as follows;

v= —(1— AAOJ% —(Az- AOZ)% (42)
where
e[ 1] BT 3 An XX, @)

n=1l m=1 0

T 2
bj DX, X +(bj D,, X, X :ldy} (44)

bdh < t I 1l T ? 1l
2 gzz&p\n j D11Xn Xm _(bj V21D11anm +

+

(

ZZN:ZN:Z’T:ZN:%A“AP%{H —2 X XX p KXo+

n=1 m=1 p=1 q=1

1 2 V[ 2v., ;o
|:E¢mn ¢pq +(bj |: Ei ¢mn¢pq :2 ¢mn ¢pq +

2r\" 1
+(bj E;-l¢mn¢pq:|]:ldx} (45)
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Local buckling and collapse of corrugated
board under biaxial stress

Poorvi Patel®, Tomas Nordstrand®, Leif A. Carlsson”

“SCA Research, Box 3054, 850 03 Sundsvall, Sweden
b Department of Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA

The collapse mechanism of biaxially loaded corrugated board cylinders with
the corrugations parallel to the cylinder axis has been experimentally
examined. Axial compression, torque, external pressure and combinations
thereof were examined. The cylinder dimensions were sized to avoid global
buckling prior to failure of the material using finite clement analysis (FE).
Failure analysis of the board was based on the stress state in the facings in
conjunction with a combined stress failure criterion (Tsai-Wu quadratic
criterion). For cylinders under compression parallel to the corrugations,
local buckling was observed but did not influence the collapse load. For
biaxial load cases - involving substantial shear and compression
perpendicular to the corrugations, the experimental collapse stresses were
substantially below predictions based on stresses in the facings in
conjunction with the failure criterion. Such a discrepancy is explained by
the tendency of the facings to buckle locally. before material failure.
Consequently, local buckling appears to govern failure of corrugated board
when there are large transverse normal and shear stresses acting. © 1997
Elsevier Science Ltd.

constituents, i.e. the machine direction (MD),
cross direction (CD) and thickness direction (z)
(Fig. 1). The facings of the corrugated board
are commonly denoted as ‘liners’. Structural
design of a corrugated board package is cur-
rently based on empirical methods that require
manufacture of the board and package and
strength tests of the actual package. This paper
aims to assist the process of bringing in appro-

Liner

cD mMbD

Fluting

Fig. 1. Single wall corrugated board and its principal
directions.

INTRODUCTION

Corrugated board (Fig. 1) is a sandwich struc-
ture used in a wide variety of packaging
applications [1]. Corrugated board is an ortho-
tropic sandwich with the surface plies (facings)
providing bending stiffness, separated by a light-
weight corrugated core (fluting) that provides
shear stiffness. The principal directions of elas-
tic symmetry are defined as those of the paper
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priate engineering principles in the structural
design.

-It has long been recognized that corrugated
board panels loaded in compression display
local buckling of the facings between the corru-
gations [2-5] (Fig. 2). Local buckling and
failure of such a panel has been found to initi-
ate in the facing in regions where the facings
are under high shear and compressive stresses
[4,5]. Local buckling thus appears to be an
important failure mechanism of corrugated
board. To the knowledge of the authors, very
few studies of local buckling instability of corru-
gated board have been published [2,3,6-8].
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e

Fig. 2. Local buckling of corrugated board.

Johnson & Urbanik [2,3] analyzed local buck-
ling instability of flat plates under axial
compression. Anderson [6] and Zahn [7
Jinvestigated compressive buckling coefficients
for local buckling of single- and double truss
cores. Starlinger [8] developed a finite element
formulation for analysis of honeycomb and
foam core sandwich shells addressing global and
local instabilities. Analysis of the stress condi-
tions when local buckling is deteriorating the
load-bearing capability of corrugated board
panels is complicated by the many imperfec-
tions present in the material. Improved analysis
methods thus require experimental back-up
which is the objective of this study.

A wide range of combined uniform stress
states is most conveniently achieved by subject-
ing cylinders to axial load, torque and external
pressure. An initial experimental study of the
failure mechanism of corrugated board loaded
in pure axial compression along the corruga-
tions and combined axial compression and
torsion is presented by the authors in Ref. 9.
The relatively low torque capacity of the test
frame used in that study, however, does not
allow application of large shear stress and the
results are limited to compression dominated
loading. In the present study, a larger variety of
biaxial fields are conmsidered. Cylinders were
subjected to pure torsion using a specially
developed torque fixture. A system for applying
external pressure was also developed. In paral-
lel to the experimental studies, analysis of local
buckling and failure of the facings was per-
formed using finite element analysis (FEA).

Experimental and analytical results are com-
pared.

STRESS ANALYSIS OF CORRUGATED
BOARD CYLINDERS

Local buckling and collapse of corrugated board
cylinders loaded in axial compression, torsion
and external pressure and combinations thereof
are examined herein. To relate the axial load,
external pressure and torque applied to the
stresses in the facings of the board, a simplified
stress analysis was performed. Through this
analysis, the local buckling and collapse stresses
in the facings may easily be established. The
analysis is subsequently compared with stresses
obtained from detailed finite element stress
analysis.

Coordinate system and loading conditions

A global cylindrical coordinate system (r—¢-z)
was assigned to the cylinder, and a local Carte-
sian system (x-y-z) to the cylinder wall (Fig. 3).
The radial direction of the cylinder coincides
with the thickness coordinate of the board. The
machine direction (MD) of the board is along
the hoop direction of the cylinder and the cross
direction (CD) of the board is aligned with the
cylinder axis (Fig. 3). The axial force, F, corre-
sponds to normal stress, g,, and the torque, 7,
to shear stress, t,,. Hoop stress, a,, is achieved
by internally or externally pressurizing the
cylinder.

Approximate stress analysis

Normal stresses, o, and g,, and shear stress, t,,,
in the facings are calculated as functions of

T x
—
L z Ox

Fig. 3. Coordinate systems and loading of the cylinder.
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torque, 7, axial force, F, and pressure, P. The
corrugated board is considered symmetric, i.e.
the facings are assumed to be identical. Further,
the board is assumed to be under uniform strain
(equal in-plane strains in both facings and
core).

The axial force per unit w1dth of an axially
compressed cylinder may be expressed as

F
27R

f= M

where F is the load applied, and R is the mean
radius. Equilibrium in the axial direction
requires (Fig. 4)

f = ZILO' ,L+OCO- th (2)

where #; and ¢ are the facing (liner) and fluting
thicknesses, and o i and o, are normal stresses
in the facings (L) and core (©);

o L=ELegL (3a)
0,C=E CeC (3b)

where E,; and E, are the Young’s moduli of
the facing and core in the CD, and ¢, and ¢,
are the strains in the facings and core. Assum-
ing uniform strain, ¢, = ¢, in Eqgs. yields

EC

oL 4)

Substitution of eqns (2) and (4) in eqn (1)
gives

®)

Fig. 4. Corrugated board element under axial load.

For a cylinder under external pressure, P, the
stresses o, and o, in the facings are

PR (60)
o,= —— a
21y, .
PA
%= EC (6b)
2R\ 2t; +o te
E L

the subscript L on the stress is dropped from
now on. A is the area of the end caps. The
corrugated core is assumed not to carry hoop
stress, g,, in Egs. , but the core contributes to
the axial force, eqn (6b).

For a torqued cylinder, the shear stress in the
facings is

T
Tyy =
Y 4nR%ty

(7

where T is the torque applied. The contribution
of the corrugated core to the torque is small
compared with that from the faces [10] and is
therefore neglected.

Tsai—Wu failure criterion

Failure prediction of the corrugated board
under combined loading is performed based on
the one hypothesis that the board fails when the
stresses in the facings reach their ultimate com-
bination. This assumption neglects possible
reduction of the failure stress in the facings
caused by local buckling. For anisotropic
materials such as paper, the Tsai-Wu failure
criterion [11] is commonly applied [12,13]. For
plane stress (g, g, and t,,) the Tsai—-Wu criter-
ion [11] is '

Fy0,+F,0,+F,0% +F220 +F 66T, +2F 1,0, o,=1

(8)

Equation (8) describes an ellipsoid in a space
spanned by the stresses o,, 0,, and 7,, where all
stress states on or outside the surface of the
ellipsoid indicate failure. The parameters F; and
F; in eqn (8) are related to the tension and
compression strengths in the x and y directions,

and the shear strength in xy plane as follows

1 1 1
X xe T e

P

(%2)

F1=
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1 1 1
Fi=—5 —7c Fn= (9b)
Xy Xy X, Xy
1
Fee= t?—i; (9¢)

where X represents tension and compression
strengths and superscripts T and C indicate ten-
sion and compression. Subscripts x and y denote
the coordinate directions, and S,, is the inplane
shear strength. For paper, F;, and S§,, are
approximated as [13]:

Flzz —'0'36VF11F22 (10)
and
S VXTXS 11)

Tsai—Wu factor

The left hand side of eqn (8) at any stress state
is herein denoted the “T'sai—-Wu factor’, k, thus:

k=F10-x+F26 +F110’ +F220' +F66T +2F120- O'

(12)
If
k <1 material failure has not yet initiated
k>1 material failure has initiated. (13)

The Tsai-Wu factor is used to localize the
failure initiation region of the cylinder at dif-
ferent load combinations from contour plots of
k over the cylinder surface as obtained from FE

analysis. Regions where k is maximum are thus
expected to fail first.

Board specifics

The board considered in the previous study [9]
was further examined. The board consists of a
200 g/m* outer facing made from kraft liner
coated with a 25 g/m* polyethylene (PE) film
barrier on the outside, an inner facing of 186 g/
m? kraft liner, separated by a 150 g/m”
corrugated semichemical fluting core. The
wavelength of the fluting is 7-2 mm and the core
height is 3-6 mm corresponding to a ‘C-type’
flute. The geometry and material properties of
the board are listed in Tables 1 and 2. The
effective core properties listed in Table 2 are
homogenized properties obtained as explained
in Ref. 9 for subsequent use in the FE analysis
of buckling and collapse.

BUCKLING ANALYSIS OF CYLINDRICAL
TEST SPECIMEN

Cylinder specimens were manufactured and
subjected to combinations of compressive force,
torque and external pressure as schematically

Table 1. Geometry parameters of the corrugated board

examined
mm
to 0-266
t 0231
t, 0-252
t; 36
A 72

t,, t; and ¢, are the thicknesses of the outer, inner facings
and fluting, respectively; f; is the flute height and A is the
flute wavelength.

Table 2. Material properties of the board constituents (at 23°C and 50% RH)

Outer liner Fluting Inner liner Effect. core prop.*

E, (MPa) 8510 5270 8220 0-5
E (MPa) 3810 2260 3010 227
G (MPa) 2200 1340 1920 0-23
ze (MPa) 45 45 45 35

G,, (MPa) 45 45 45 35
vxy 0-17 0-17 0-17 0-004
SCT, (kN/m) 86 — 7-0 —
SCT,, (kN/m) 5-4 — 38 —

*Effective core properties for use in FE-analysis (core is considered homogeneous).
E, and E, are the in-plane Young’s moduli, G, G,,, G,, are the shear moduli, v,, is the in-plane (major) Poisson’s ratio,
and SCTx, SCT, are the compression strengths (load per unit width) in the MD “and CD. The CD compression strength

of the board (EyCT) is 11.3 kN/m.
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Table 3. Axial load (F), torque (7) and pressure (P) at collapse calculated by FE and approximative stress analyses

(MPa)
FEM Approximate
Loading case F (kN) T (Nm) P (kPa) F (kN) T (Nm) P (kPa)
Axial compression —156 — — —16-1 — —
Torsion — 3450 — e 3455 —
External pressure —73 - —374 - 173 — —373

illustrated in Fig. 3. The cylinder manufacturing
technique and details of the test frame are out-
lined in Ref. 9. Cylindrical shells are prone to
imperfection sensitivity [14]. This implies that
large factors of safety have to be implied in the
design of such shells. Since the objective of this
study was to examine collapse of the cylinder
wall material under biaxial loading, the cylin-
ders had to be designed to avoid global
buckling. Thus, the cylinder dimensions should
be sized properly. Analysis of compression and
torsion loaded cylinders in Ref. 9 showed that
the cylinder should have a diameter less than
1-6 m to avoid buckling failure. In this study,
cylinders of 0-5m diameter and 0-4 m length
were considered. To examine the possibility of
global buckling of the cylinders loaded in the
various combinations of axial compression,
torsion and external pressure considered in this
study, further analysis was performed. FE
models of the cylinder are described in detail in
the previous study, Ref. 9. The FE code
ANSYS [15] was used for this purpose. An
eight-noded layered shell element (STIF99) was
employed for modelling the board cylinder. The
entire cylinder was modeled since the cylinder
may not buckle symmetrically. The model con-
sists of 1024 nodes (6 dof per node) and 320
elements. The end caps were not modeled in
the buckling analysis. Boundary conditions were
defined to represent the conditions of the tests,
i.e. the ends were assumed to displace uni-
formly, and rotations of the ends were not
allowed. |

In order to examine the accuracy of the
approximate stress analysis, the axial compres-
sion load, torque and external pressure at
collapse of the cylinder were calculated from
FE stress analysis and approximate stress analy-
sis in conjunction with the Tsai—-Wu failure
criterion and compared. In this analysis, the FE
model consists of a symmetry section of the
cylinder, i.e. one end cap and half the cylinder
(buckling was not considered). The calculated

collapse load, torque and external pressure are
listed in Table 3. Inspection of Table 3 reveals
that the collapse load, torque and external pres-
sure calculated from the approximate analysis
are within 5% of those from the FE analysis,
which shows that the approximate stress analy-
sis is quite accurate.

Buckling analysis of torqued cylinder

The ends of the corrugated board cylinders are
attached to end caps as shown schematically in
Fig. 5. Torsion loading of the cylinder was
achieved by application of a tangential force on
each of the upper end nodes of the cylinder.
Uniform displacement of the loaded end was
guaranteed by coupling the end nodes to each
other in axial and tangential translations. The
lower end of the cylinder was considered
clamped, i.e. all displacements and rotations
were zero. An eigenvalue analysis of the
torqued cylinder yields static load multipliers
(SLMs) [15] corresponding to each buckling
mode. The critical buckling torque, T, is
obtained by multiplying the smallest SLM with
the total number of nodes on the loaded edge
and the radius of the cylinder (7., = 64R SLM).

Top plate

£ ~— ?—Bottom plate

Fig. 5. Cylinder bonded to end caps.

1

Cylinder
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Fig. 6. (a) Buckled shape of a cylinder under torsion at
T=91kNm, (b) Buckled shape of a cylinder under
external pressure at P = —35-6 kPa.

FE analysis yielded a critical buckling torque
of 9018 Nm, corresponding to a shear stress t,,
of 462 MPa in the facings (eqn (7)). The buck-
ling mode shape is illustrated in Fig. 6(a). The
cylinder buckles in six wavelengths tangentially
and in one wavelength axially. For comparison,
the shear stress at failure of the facings was
estimated from the approximate stress analysis
in conjunction with the Tsai~Wu failure criter-
ion (Egs. ). Table 4 lists buckling and failure
stress predictions and the ratio between the
buckling and failure stresses. It is observed that
the critical buckling stress exceeds the failure
stress by a factor of 2-4, which would indicate
material failure prior to global buckling of the
cylinder.

Buckling analysis of cylinder under external
pressure

In the buckling analysis of an externally pressur-
ized cylinder, surface pressure was applied on
all the elements of the cylinder wall. Because
the pressure also acts on the end caps of the
cylinder, axial compression will develop:

F = PAplate (14)

plate

with A, being the area of the end caps (nR?)
and P the applied external pressure.

The FE analysis predicts that the cylinder will
buckle in one half wavelength along its axis and
six wavelengths circumferentially (Fig. 6(b)).
The critical combination of buckling load and
pressure is Fp,. = —7°0 kN and P = —35-6 kPa
(Table 4). Inspection of the stresses listed in
Table 4 reveals that the ratio between the criti-
cal buckling stresses and failure stresses is 0-88,
which indicates that global buckling occurs
before the material of the cylinder wall fails.
This analysis, however, does not include the
possibility for local buckling of the board which
will decrease the collapse stresses as will be dis-
cussed later.

Buckling analysis of biaxially loaded cylinders

Analysis of cylinders subjected to combined
loading requires consideration of the manner in
which axial compression load, torque and
external pressure are applied. In this study the
shear and normal stresses in the facings, t,,, o,
and o, (Fig. 3), were proportionally increased.
Expressions for the proportional constants are
derived in Appendix A. The proportional con-
stants that define the relation between the
stresses are conveniently expressed in terms of
‘phase angles’, see Fig. 7. Certain phase angles
were chosen for the various loading cases and
used both in the experimental and analytical
work. The phase angles selected and the cal-
culated constants are listed in Table 5.

FE analysis of a cylinder subjected to com-
bined compression and external pressure gave
the following critical buckling stresses in the
facings: o, = —35-8 MPa and ¢,= —12-7 MPa
(Table 4). Comparison of these stresses with the
calculated failure stresses in the facings, Table
4, reveals that the buckling stresses are more
than twice the failure stresses which indicates
that the cylinder will fail by material failure.

For a cylinder under torsion and external
pressure, the calculated combination of torque,

Table 4. Buckling analysis results for cylinder with R =0.25 m and L = 0.4 m

Loading case Critical buckling Buckling stresses Failure stresses™ Buckling-to-
load/torq./pressure (MPa) (MPa) failure stresses
(kKN/kNm/kPa) 0,/ Ty /0, 0y/t,l0, ratio
Torsion 191 ... 462/ ... 1192/ 2:4
External pressure —70/.../—356 —60/.../—179 —6:87/.../—204 0-88
Comp./ext. pressure —41'5/.../—256 —358/.../—127 —140/.../—~496 2:6
Torsion/ext. press. —5:9/1-79/-30-4 —51/9-2/—153 —55/9-8/—16'3 0-94
Comp./tor./Ext. press. —18-1/2-04/—23-0 —15-6/10-4/—11-.6 —11-4/7-4/—84 1.4

*Estimated from approximate stress analysis and Tsai—Wu failure criterion.
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Fig. 7. Definition of phase angles ¢, f, 6, ¢ and ¥ quan-
tifying relation between stresses 7, and o, (a), 0, and o,
(b), 7, and g, (¢), 7, and g, and o, and g, (d).

pressure and induced compression load at buck-
ling was 179 kNm, —30-4kPa and —59kN
(Table 4). This combination corresponds to
stresses 1, =92 MPa, o,= —153MPa and
o,= —51MPa in the facings. The buckling
stresses are slightly less than the failure stresses,
Table 4, which indicates that global buckling of
the cylinder is a possibility for this case.

In the case of combined axial compression,
torsion and external pressure, the calculated
buckling stresses are (Table 4y
o, = —15:6 MPa, T,y = 104 MPa and
o, = —11-6 MPa. The results in Table 4 show
that the buckling stresses are 40-50% larger
than the failure stresses which indicates that the
cylinder should not fail by buckling.

DETAILED FINITE ELEMENT STRESS
ANALYSIS AND FAILURE PREDICTION

Detailed FE stress analyses of the corrugated
board cylinders under combinations of axial
compression, torsion and external pressure are
presented. Buckling was not considered in this
section. FE models incorporating the end caps
and the cylinder were developed, see Fig. 8.
The end caps were reinforced with radial T-

beam reinforcements mounted at 45°
increments. FE models of the cylinder and end
caps and boundary conditions are described in
Ref. 9. The thicknesses and material properties
of the board constituents used in the analyses
are listed in Tables 1 and 2. Note that the outer
facing is slightly thicker than the inner facing.
Hence, the board is not completely symmetric.
Compressive load and torque were applied at
the center of the end caps and external pressure
was applied on the elements of the cylinder
wall. The proportional constants between load,
torque and external pressure are listed in Table
5. Initial values of the force, torque and pres-
sure were set to 20% of the previously
computed critical buckling load, torque and
external pressure combinations (Table 4). The
stresses are calculated in both facings to detect
which facing is the first to fail. The magnitudes
of axial load, torque and external pressure were
increased until the Tsai—Wu failure criterion,
eqn (8), was fulfilled. This analysis thus pro-
vides the loads, torques and external pressures
and the stresses at failure for both the inner
and outer facings. The location of failure initia-
tion is determined from the Tsai—Wu factor.
Pure torsion was considered first. The cal-
culated torques at collapse and the Tsai-Wu
factor of the inner and outer facings are listed
in Table 6. Table 6 reveals that the Tsai-Wu
factor of the inner facing reaches the critical
value of one prior to the outer facing. The tor-
ques at collapse calculated for the inner and
outer facings were 3-45 and 3-98 kNm, respec-
tively. The analysis thus indicates that the inner
facing would fail prior to the outer facing. Fig. 9
shows a contour plot of the Tsai—-Wu factor
(eqn (12)) for the inner facing at a torque of
3-45kNm. Based on Fig. 9, failure of the

cylinder is expected to initiate in regions where

the Tsai-Wu factor is close to one, thus
between the radial reinforcements of the end
caps between 0 and 5cm from the cylinder
ends. The reinforcements apparently induce
stress concentrations in the cylinder wall.
Failure may also be initiated at the middle

Table 5. Phase angles ans proportional constants for combined loading

Loading case Phase angles

Proportional constants

Comp./ext. pressure p="170°
Torsion/ext. press. 6 =30°
Comp./tor./ext. press. E=40°, y =45°

kep=61x10"" mm™2
krp=17x10"¥mm~—>
kcp =1-3x 107 mm 2 and ke = 112 mm
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region of the cylinder as indicated by the Tsai—
Wau factor (Fig. 9).

For an externally pressurized cylinder, the
inner facing is predicted to first collapse at a
pressure of —37-4 kPa (Table 6). Figure 10 illu-
strates that the pressurized cylinder assumes an
hour-glass shape because of the end constraints
from the end caps. Failure initiation is expected
9-12 cm from the cylinder ends.

For a cylinder loaded in a combination of
torsion and external pressure, the normal and
shear stresses at collapse of the facings are
listed in Table 6. Inspection of the Tsai-Wu
factor for this load case, Table 6, reveals that
the inner facing would fail prior to the outer
facing. The Tsai—-Wu factor plot (not shown)
reveals that the collapse of the cylinder wall is
expected to occur in a region between 9 and
20 cm from the cylinder ends at a torque of

1-99kNm and an external pressure of
—33-7kPa (Table 6).
i

Fig. 8. Model of symmetry sections of cylinder and load-
ing plate.
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For an axially compressed and externally
pressurized cylinder, stress analysis predicts col-
lapse of the outer facing (prior to the inner
facing) at a load and pressure of —13-5kN and
—9-4kPa (Table 6). A contour plot of the
Tsai-Wu factor for the outer facing of the
cylinder at collapse (not shown) indicates that
failure is expected between 5 and 12 cm from
the cylinder ends in regions of the cylinder
between the radial reinforcements of the end
caps.

For combined axial compression, torsion and
external pressure, the calculated combination of
collapse load, torque and external pressure is
—13-1 kN, 1-48 kNm and —16-7 kPa (Table 6).
Failure is expected to initiate in the outer facing
between 8 and 10 cm from the cylinder ends in
regions between the reinforcements of the end
caps.

ANALYSIS OF LOCAL BUCKLING

FE analysis of local buckling was performed on
an element of the cylinder wall. The board ele-
ment analysed must be representative for the
sandwich and must consider enough flute wave-
lengths to accommodate the local buckling
pattern. To reduce the influence of the edge
effects, a square section of four wavelengths in
side length was considered. Buckling analysis
was performed using the ANSYS finite element
code.8,12,15 Three load cases were studied, viz.
axial compression in the CD, axial compression
in the MD and pure in-plane shear loading. The
material properties of the constituents and the
board geometry parameters used in the analysis
are listed in Tables 1 and 2.

The constituents of the corrugated board
were modeled by using the isoparametric shell
element STIF93 which is particularly well suited
for modeling of curved shell structures. The

Table 6. Calculated collapse load, torque, pressure, and stresses of the facings (50% RH and 23°C)

Loading case Inner facing

Outer facing

F T P 0, Ty Ty
(kN) (Nm) (kPa) (MPa) (MPa) (MPa)

Torsion 0 3450 0 0 185
External pressure —73 0 —-374 —-62 0
Torsion/ext. press. —6:6 1985 —33-7 —49 107
Ax. comp./ext. press. —10-8 0 —-97 -100 0

Comp./tor./ext. press. —11-8 1100 —166 —107 65

0

—193
—177

—49
—79

T-W* F T P o, Toy o, T-W*
(kN) (Nm) (kPa) (MPa) (MPa) (MPa)

0 0 3980 0 0 213 0 099

10 —620 0 —385 —52 0 —199 096

10 —57 2400 —347 —43 120 —182 095

091 —135 0 —94 —124 0 —48 10

093 —131 1480 —167 —118 86 —79 10

*T—W is the Tsai—Wu factor.
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Failure region

Failure region

Fig. 9. Tsai~Wu factor for inner facing of a cylinder under
torsion. 7= 3-45 kNm.

panel was generated by describing the geo-
metry, Fig. 11, using keypoints and area
elements. The core was assumed to have a sinu-
soidal shape. A total of 825 elements were used
to discretize the corrugated board element. The
nodes on the fluting tips were rigidly coupled to
the corresponding nodes on the facings using
constraint equations [15].

For an element loaded in compression, dis-
placements of the nodes at the bottom
supporting edge were set to zero. The unloaded
edges were assumed to be constrained from

Failure region

B0 WA
=
g

Failure region ———aJ

Fig. 10. Deformed shape and Tsai-Wu factor for the
inner facing of an externally pressurized cylinder.
P = —374kPa.

/17177 I //
777717177777 llllllll /]
'5",'/,5'/,'%,1, ..’I',%
I

{ 29 mm

Fig. 11. Corrugated board element used in analysis of
local buckling. The thickness is 43 mm and the planer
dimensions are 29 mm X 29 mm.

Table 7. Line loads (N/mm) at local buckling of the
facings

Inner facing Outer facing

Compression load in the CD 10-0 12-8
Compression load in the MD 36 49
Shear load 10-9 e

transverse displacements. The loaded edge was
subjected to a uniform axial displacement to
represent compression loading. Transverse dis-
placements were prohibited at the loaded edge.
Shear loading of the board element was simu-
lated by application of equal magnitude shear
forces (F, and F,) in the x and y directions on
all edge nodes of the facings. One corner of the
element was fixed to prevent rigid body transla-
tion of the element, and the edges were
constrained from all rotations, i.e. the edges
were required to remain straight after deforma-
tion, and opposite parallel edges remained so
after deformation.

The calculated critical local buckling loads of
the facings are listed in Table 7. For a corru-
gated board panel loaded in the CD, the inner
facing buckles at N, = 10 N/mm, and the outer
facing at N, = 12-8 N/mm. Notice that the inner
facing is thinner than the outer facing (Table 1)
which explains its lower buckling load.
Figure 12(a) displays the buckling pattern for
the CD compression loaded board element. The
inner facing buckles at N . = 10 N/mm between
two fluting tips at a wavelength (4,) of 14-5 mm
in the MD, which is approximately twice the
fluting wavelength, and in approximately 2-5
wavelengths (4, =109 mm) in the CD. The
outer facing is predicted to buckle at
N, =12-8 N/mm in about three wavelengths in
the CD (4,=9-7mm) and two wavelengths in
the MD (4, = 14 mm, not shown here).

For the board element loaded in compression
in the MD, the inner facing buckles at 3:6 N/
mm prior to the outer facing at 49 N/mm
(Table 7). The inner facing buckles only in the
MD at a wavelength A, =14 mm, which is
approximately twice the fluting wavelength
(Fig. 12(b)). The outer facing buckles in two
wavelengths in  both MD and CD
(A = 4, = 14 mm). When the outer facing buck-
les, the wavelength of the inner facing in the
MD decreases to A, =97 mm. At this load the
inner facing also buckles in the CD in one
wavelength (4, = 14-5 mm).
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For shear loading, buckling of the inner fac-
ing is predicted at a shear stress
T, = 10-9 N/mm. Figure 12(c) illustrates the
local buckling pattern of the inner facing at
T = 10-9 N/mm. It is noted that the inner fac-
ing buckles in a wavelength of approximately
11 mm (two and a half fluting wavelengths) in
both MD and CD. We were not able to cal-
culate the local buckling load for the outer
facing. Up to 30 SLMs were examined and none
of them revealed buckling of the outer facing.

EXPERIMENTAL SET-UP

The corrugated board cylinders were fabricated
as detailed in Ref. 9. The cylinder were
attached to end caps using Roses metal [16].
Eighteen cylinders were tested on a servohy-
draulic MTS test frame, and three cylinders
were tested in pure torsion on a specially
designed frame.

Inner facing

Outer facing

oOuter facing Inner facing

Inner facing

(e

Fig. 12. (a) Local buckling pattern of the inner facing for
an axially compressed board panel in CD. N, =10 N/m.
(b) Local buckling of the inner facing for an axially com-
pressed board panel in MD. N_=3-6N/m. (c) Local
buckling pattern of the inner facing for a shear loaded
corrugated board panel. N, = 10-9 N/m.

Rectangular
frame

Bottom axie

Torque lever
Fig. 13. Torque loading frame.

The torque limit of the MTS loading frame
was 1 kNm. Larger torques are required to fail
the cylinder, and therefore a special torque fix-
ture, capable of 4 kNm, was designed. The
fixture consists of a 06 x0-85m frame made
from four quadratic (45 x 45 mm) steel rods of
3 mm wall thickness welded together (Fig. 13).
A 0-85-m-long torque lever (Fig. 13) also made
from 45 x45 mm steel rod, transferred torque
to the frame. The lever and the frame are fit
onto a solid axle at the bottom of the frame
with a rotational degree of freedom only
(Fig. 13). The top of the frame contains a solid
circular axle with both rotational and transla-
tional degrees of freedom. Two pistons,
activated through pressurized air, were attached
between the torque lever and the frame to pro-
vide the torque. For purposes of transferring
torque to the cylinder and centering the
cylinder, cross-shaped grooves were machined
in the end caps, fitting cross-shaped heads
machined at the top and bottom ends of the
axles (Fig. 13). To examine and record local
buckling and failure of both facings, three high
shutter speed video cameras (25 pictures/sec)
were placed on each side of the cylinder (front
and back) and inside the cylinder, see Fig. 14.

Three cylinders were tested for each loading
combination in the MTS frame and three in the
torque frame. Cylinders subjected to torsion
only and external pressure only were condi-
tioned (for 48 hours) and tested at 50 +2% RH
and 24 +1°C. Humidity was controlled by circu-
lating humid air (of 50% RH and 24°C)
between a humidity generator and the interior
of the cylinder. The PE-coating on the outer
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Fig. 14. Placement of the three high shutter speed video cameras.

facing sealed the board from the laboratory
environment. Fifteen cylinders were condi-
tioned and tested in the MTS frame at between
20 and 26% RH and 23+1°C. The strength of
the board is not expected to be significantly
altered in the relative humidity range between
20 and 50% RH,17 and therefore, we did not
attempt to correct the strength for changes in
RH.

External pressure loading of a cylinder is
most simply obtained by applying vacuum inside
the cylinder. The PE coating of the outer facing
seals the board and prevents air transport
through the cylinder wall. The cylinder ends are
sealed by fixing the cylinder ends to the end
caps using Roses metal [16]. Thus, when
vacuum is applied in the cylinder, the cylinder
will experience action of the external atmo-
spheric pressure. Control of the external
pressure level is achieved through a feedback
vacuum control system employing a pressure
gage placed inside the cylinder. To obtain a
state of pure hoop stress, uniaxial compression
tests of side supported laser-cut dog-bone
shaped specimens shown in Fig. 15 were per-
formed according to a procedure detailed in
Ref. 18. These specimens were conditioned
before and during testing at 24°C and 50% RH.

EXPERIMENTAL RESULTS

Three cylinders were tested in pure torsion. The
torque was increased by 200 Nm/s. Torque ver-
sus twisting angle plots for the three cylinders
are shown in Fig. 16. Very little scatter between
the responses of the cylinders is observed. The
torque increases linearly until about 2-5 kNm
and failure occurs at approximately 2-8 kNm.
Figure 17 shows the inside and outside of a

torqued cylinder. At approximately 2-3 kNm,
local buckles were observed on the inner facing
close to the cylinder end, Fig. 17(a). After onset
of local buckling of the inner facing, failure of
the cylinder initiated near one end.
Figure 17(b) shows that the collapse zone prop-
agated in a direction approximately 45° with
respect of the cylinder axis, since transforma-
tion of the inplane shear stress reveals that one
of the two principal stresses is compressive in
the 45° direction. The measured local buckling
and collapse torques for the cylinders are listed
in Table 8.

Three cylinders were subjected to external
pressure. The external pressure was increased
by 1kPa/s. Below pressures of —12 and
—13 kPa, no indication of local buckling or
failure was observed by visual inspection of the
outer facing. The inner facing of the cylinder
was not observed in these tests. Between pres-
sures of —15 and —17 kPa, the outer facing
buckled and collapsed between two fluting tips,

l\ 175 mm
MD

' CcD
| / | 17.5 mm

50 mm

150 mm S5 mm

100mm
Fig. 15. MD compression test specimen.
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Fig. 16. Torque versus twisting angle.

and the cylinder wall buckled inwards (Fig. 18).
Collapse pressures and loads (F,.) measured
for the three cylinders are listed in Table 9. For
comparison, eight MD specimens (Fig. 15) were

Fig. 17. (a) Local buckling of the inner facing at

T =2-4kNm. (b) Photo of the outside of the cylinder.
Failure initiates near the cylinder end at T'= 2-78 kNm.

tested in uniaxial compression at a crosshead
speed of 10 mm/min. The facings of the speci-
men collapsed between two fluting tips at a
stress, g, between —7-0 and —7-9 MPa (aver-
age —7-6 MPa), see Table 9 (uniaxial). Note in
Table 9 that the uniaxial collapse stress closely

Table 8. Torsion test results (50% RH and 24°C)

Test Local Local Collapse Collapse
buckling® buckling torque stress
torque stress™ (Nm) T,y (MPa)
(Nm) Ty (MPa)
1 2370 121 2710 139
2 2430 125 2780 142
3 2370 121 2780 142

*Inner facing.

Fig. 18. Photo of an externally pressurized cylinder at
P=—158kPa.
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Table 9. External pressure test results (50% RH and

Table 10. Combined axial compression and external

24°C) pressure test results (25% RH and 23°C)

Test External  Collapse  Fj,.. at  Collapse Test Collapse Collapse Collapse Collapse

pressure at stress collapse stress load external stress stress

collapse ¢, (MPa) (kN) o, (MPa) kN) pressure o, Ty
(kPa) (kPa) (MPa) (MPa)

1 —158 —80 —-31 27 1 —11+4 —-69 —9-8 —35
2 —14-8 —75 —2:9 —2:5 2 —12-8 —77 —11-0 -39
3 —157 —79 —31 —27 3 —11-7 —~T72 —101 —3-6
Uniaxial* —76 .

*Results from uniaxial MD-tests.

agrees with data from the external pressure
tests.

For axially compressed and externally pres-
surized cylinders, the pressure was increased in
proportion to the axial force. The proportional
constant listed in Table 5, kep=61x10""7
mm 2, means that the magnitude of axial force
was increased by 2 kN/min and the pressure in
the cylinder was decreased by 1-2kPa/min.
Below loads of —7 kN, there was no indication
of local buckling or failure. Between —11 and
—13kN, the outer facing buckled inwards
between two fluting tips near the overlap region
of the cylinder and the cylinder wall collapsed
shortly thereafter near its mid-section (Fig. 19).
The failure loads and pressures and correspond-

Fig. 19. Collapse of an axially compressed and externally
pressurized cylinder at F = —11-4 kN and P = —6°9 kPa.

ing stresses for the three cylinders are listed in
Table 10.

For torqued and externally pressurized cylin-
ders, the pressure decreased in proportion to
the applied torque by a factor of
krp=17x10"*mm > (Table 5). The torque
increased by 100 Nm/min and the external pres-
sure was decreased by 1:7 kPa/min. At a torque
of about 500Nm and pressure of about
—9 kPa, the cylinders failed in an inward buck-
ling mode before any indication of local
buckling. Fig. 20 shows a collapsed cylinder.
Thus, the cylinders appeared to globally buckle.
The collapse torque and pressure and corre-
sponding stresses for the three cylinders are
listed in Table 11. For the axially compressed,
torqued and externally pressurized cylinders the
proportional - constants, ko and kep, are

Fig. 20. Collapse of a torqued and externally pressurized
cylinder at 7'= 510 Nm and P = —89 kPa.

Table 11. Combined torsion and external pressure test results at collapse (23% RH and 22°C)

Test Torque External pressure Foiae Ty Oy o,
(Nm) (kPa) (kN) (MPa) (MPa) (MPa)
1 440 —76 —15 22 —38 -1-3
2 530 —-92 —1-8 27 —46 —-15
3 510 -89 —17 2:6 —4-5 —1-4
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112mm and 13x10"°mm > respectively
(Table 5). The magnitude of the compression
load was increased by 2 kN/min, the torque by
112 Nm/min and the external pressure was
decreased by 1-3kPa/min. For compression
loads below —4 kN, local buckling and failure
was not observed. At loads between —4 and
—5-5kN, the outer facing buckled inwards
between two fluting tips. The cylinder collapsed
totally at loads between —6-2 and —7-:5kN
(Fig. 21). The collapse initiated between 10 and
20 cm from the cylinder ends and the collapse
zone propagated in a direction approximately
45° with respect to the cylinder axis (Fig. 21).
No indication of global buckling of the cylinder
was observed prior to failure. Collapse loads,

Fig. 21. Collapse of an axially compressed, torqued and
externally .. pressurized .. cylinder . .at . F=.—67KkN,
T'=740 Nm and P = —8:5 kPa,

torques, pressures and collapse stresses for the
three cylinders are listed in Table 12.

COMPARISON BETWEEN ANALYSIS AND
EXPERIMENTS

In this section the experimental local buckling
and collapse stresses will be compared with the
global buckling, local buckling and collapse
stresses obtained from FE analysis.

Axial compression

Axially compressed cylinders were examined
experimentally in Ref. 9. Local buckling of the
outer facing was observed at ¢, = —83 MPa
(Table 13). Unfortunately, the inner facing was
not observed. Local buckling was predicted to
occur at g,= —13-6 MPa and —17-3 MPa for
the inner and outer facings, respectively (Table
13). Thus, the local buckling analysis provides a
highly unconservative prediction of the local
buckling stress for the outer facing. The cylin-
ders are predicted to collapse by material
failuore of the wall at a stress, o, of
—13-9 MPa,9 which is within 3% of the experi-
mental collapse stress (o, = —14-3 MPa; Table
14). The local buckling observed prior to col-
lapse therefore does not appear to influence the
failure stress of the board for this loading case,
Table 13Table 14.

Table 12. Combined axial compression, torsion and external pressure test results (21% RH and 23°C)

Test .. Collapse load = Collapse external

Collapse torque  Collapse stress g,

Collapse stress.a,  Collapse stress 1.,

(kN) pressure (Nm) (MPa) (MPa) (MPa)
(kPa) f
1 =67 —85 740 =58 —43 3-8
2 —62 —82 710 —53 —4-1 3:6
3 =75 —95 840 —64 —4-8 43

Table 13. Comparison between experimental and analytical local buckling stresses (MPa)

Loading case Experimental FEM
Outer facing Inner facing Outer facing Inner facing
o, Ty 0y a, Ty o, o, Ty 0y o, Ty 0,
Axial compression —83 _ = - — — —17:3 — —13:6 — —
Torsion — _ = = 122 —_ — — — — 21-8 —
External pressure — — —_ 76 — — —-98 — — 72
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Table 14. Comparison between experimental and analytical collapse stresses (MPa)

Loading case Experimental FEM

o, Ty Oy o, Ty Oy
Axial compression* —14-3 — — —139 e —
Torsion — 141 — —_— 177 —
External pressure —2:6 — —~7-8 —62 — —188
Ax. comp./ext. press. —~10-3 — =37 —11-8 — —4-7
Ax. comp./torsion* —14-5 46 — —142 4:5 —
Torsion/ext. press. —1:4 2:5 —43 —57 10-2 —-169
Comp./tor./ext. press. —5-8 39 —4-4 —11-3 7-6 -84

*Data from Ref. 9.

Torsion

Local buckling was observed on the inner facing
(Fig. 17(a)), at a shear stress t,, = 12:2 MPa
(Table 13). FE analysis predicts a much larger
local buckling stress of the inner facing
(1, =21:8 MPa, Table 13). Consequently, the
linear elastic eigenvalue analysis over predicts
the critical local buckling stress. The measured
shear stress at collapse is 141 MPa (Table 14)
which is close to the observed local buckling
stress (Table 13). FE stress analysis in combina-
tion with the Tsai-Wu failure criterion
somewhat overpredicts the collapse stress
(tp =17-7 MPa; Table 14). The collapse mech-
anism of the torqued cylinders thus seem to be
governed by local buckling of the inner facing.

External pressure

The cylinders collapsed by local buckling at a
stress g,= —7-6 MPa (Table 9). FE analysis
predicts local buckling of the inner facing at
o,= —72MPa and at o,= —9-8 MPa for the
outer facing (Table 13). The Tsai—Wu criterion
predicts  collapse of the cylinder at
g, = —18-:8 MPa, which is more than twice the
magnitude of the measured collapse stress
(0,= —7-8 MPa; Table 14). The cylinder
apparently collapsed as a result of local buck-
ling instability of the inner facing.

Combined loadings

For cylinders loaded in combined axial com-
pression and  external  pressure, the
FE-predicted collapse stresses g, and o, (Table
14) are in reasonable agreement with experi-
mental data (Table 14). The global buckling
stresses listed in Table 4 are approximately
twice the FE-predicted collapse stresses, and
there were no experimental indications that the

cylinders failed by global instability. Local buck-
ling of the outer facing was observed just before
the cylinder collapsed. It should be kept in
mind that axial loading dominated (f = 70°,
Table 5), which seems to diminish the influence
of local buckling on the collapse mechanism.

For the torqued and externally pressurized
cylinders, failure occurred at a shear stress
T, =2'5MPa and hoop stress o, = —4:3 MPa
(Table 14). Comparing these stresses with the
predictions from the FE stress analysis (Table
14) it is noted that the experimental failure
stresses are approximately one fourth of the
predictions. Experimental observations, how-
ever, indicated that the cylinders buckled
globally at collapse before local buckling or
material failure occurred. The FE analysis of
global buckling also showed that torsion and
external pressure loading may lead to global
buckling of the cylinder. The combined strength
data for this loading case should thus be viewed
with caution.

For cylinders subjected to combined axial
compression, torsion and external pressure,
comparison between experimental and FE pre-
dicted collapse stresses (Table 14) reveals that
the experimental collapse stresses are approxi-
mately 50% less than the predicted. The
experimental collapse stresses are, however, less
than half the critical buckling stresses (Table 4)
which would indicate that the cylinders did not
fail due to global buckling instability. Inspection
of the cylinders (Fig. 21) and the above discus-
sion point to collapse induced by local buckling.

FAILURE ENVELOPES

The experimental failure envelope for the fac-
ings of corrugated board is obtained by plotting
the experimental failure locus in stress space.
For this purpose the approximate stress analysis
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and the measured loads, torques and pressures
were employed. Experimental axial compression
and combined axial compression and torsion
data of Ref. 9 are also included in this section.
Figure 22(a) shows failure envelopes g, ver-
sus 1,, (0, =0) generated by visually fitting a
curve through the experimental collapse stres-
ses, and the Tsai-Wu prediction. Note in

(@) o e

12 10 -8 -6 -4 2

Experimental

T T,,(MPa)

25 -

® , : _—
25 20 15 0T E )

“Na
54

Experimental

T G, (MPs)

-30 1
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Tsai-Wu

a0 +

Fig. 22. Experimental and analytical (Tsai—Wu) failure

envelopes for the facings (liners) of corrugated board: (a)

o, and 1., stress quadrant; (b) 7, and o, stress quadrant;
(c) 0, and g, stress quadrant.

Fig. 22(a) that the experimental collapse stres-
ses (squares) closely follow the Tsai—Wu failure
criterion for pure axial compression and com-
pression combined with a small shear stress, but
falls below the Tsai—-Wu envelope for shear
dominated fields due to the strong influence of
local instability of the facings. Figure 22(b)
shows experimental and Tsai-Wu failure enve-
lopes in the stress o, versus shear stress t,,
quadrant. The magnitudes of the experimental
failure stresses (squares) fall much below the
Tsai—Wu predictions. For combined torsion and
external pressure, the Tsai—Wu failure criterion
overpredicts the collapse stresses by a factor of
about four because the cylinders appeared to
fail by global buckling. It should be noticed,
however, that the pure compression and shear
strengths of the board are not influenced by
global buckling of the cylinder, but are
governed by local buckling of the facings. The
odd shape of the experimental failure envelope
occurs because the torsion/external pressure
strength data are too low as a result of global
buckling of the cylinders, and hence should be
viewed with caution. The experimental and
Tsai-Wu failure envelopes for o, versus o,
quadrant (7, =0) are displayed in Fig. 22(c).
As discussed in connection with Fig. 22(a), the
pure axial compression failure stress is in good
agreement with the Tsai—~Wu failure criterion.
The experimental strength data, however, fall
much below the Tsai—-Wu failure envelope at
large magnitudes of the normal stress o,. In
loadings dominated by o, the experimental
strengths are about one third of the predictions
from the Tsai—-Wu criterion. This strength loss
is attributed to the strong influence of local
buckling on the collapse mechanism for this
loading case.

CONCLUSIONS

An experimental study of failure of corrugated
board under combined stress has been per-
formed. Biaxial loading of the board was
obtained by subjecting corrugated board cylin-
ders with the corrugations along the cylinder
axis to combinations of axial compression,
torsion and external pressure. The effective col-
lapse stresses of the board in the absence of
local buckling were predicted from stress analy-
sis of the cylinder in combination with the
Tsai—Wu failure criterion. Local buckling stres-




Collapse of corrugated board under biaxial stress 109

ses for the facings were predicted from linear
elastic FE eigenvalue analysis of a small board
element.

For pure axial compression parallel to the
corrugations (CD), and compression in the CD
superimposed with small torsion, material
failure of the facings appeared to govern the
collapse mechanism of the board. Local buck-
ling was observed near the ends of the cylinder
well before collapse. Hence, the facings dis-
played post buckling strength in compression
dominated loading along the corrugations (CD).

Cylinders subjected to pure torsion buckled
locally just before collapse. The experimental
collapse stresses were approximately 80% of the
Tsai-Wu predicted stresses. The torqued cylin-
ders thus seem to collapse when the inner
facing locally buckled. A local buckling analysis
of a shear loaded board element gave very
unconservative results for the critical buckling
load.

For loading combinations where compression
stress acts perpendicular to the corrugations
(MD), the measured collapse stresses fall much
below the Tsai-Wu predictions. Local buckling
analysis of an axially compressed panel in MD
predicts buckling of the facings at a load close
to the experimental collapse loads. For such
loadings, the collapse of the board is thus
governed by local buckling of the facings.
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APPENDIX

PROPORTIONAL CONSTANTS FOR
CYLINDERS UNDER COMBINED LOADING
For combined axial compression and torsion
loading, the relation between the shear and nor-
mal stresses in the facings (Fig. 3) is

— TXy
tan ¢ = (A1)

Ty

where ¢ is the ‘phase angle’ (Fig. 7(a)) between
the magnitudes of the shear and normal stres-

ses. This means that 7T should increase in
proportion to the magnitude of F, i.e.

where the proportional constant, kgp, iS
obtained by substituting Eqs. into Egs. , which
yields

2Rty

kgy= tan ¢
E.c
E,.

where R is the cylinder radius, #; and ¢ are the
thicknesses of the facings and core, and E; and
E are the Young’s moduli for the facing and
core.

For cylinders under axial compression and
external pressure loading, the relation between
the normal stresses in the facings is

(A3)

tan f= 2 (A4)

ag

X

where f is the ‘phase angle’ (Fig. 7(b)) between
the magnitudes of the normal stresses, o, and
o,. The proportional constant, kyp, between the
axial compression load, F, and external pres-
sure, P, is then

where
F=F cy1+F plate (A6)

where F_, is the applied axial compression load
on the cylinder and Fij, = PApiae With A
being the area of the end caps. kgp is expressed
as

k
kpp= — (A7)
1+k lAplate
where
; .
ky= - (A8)

nR* tan ,B<2tL+oc Ere tc>
E,.

For cylinders subjected to torsion and
external pressure, the normal stress, o,, in the
facings is increased proportionally to the shear
stress in the facings, ,,, as defined by the phase
angle 6 (Fig. 7(c))

Ty
tan 6= — (A9)

g

X
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The pressure and torque relation is expressed
by;

Substituting Eqs. into Eqs. yields
krp= ! (Al1)
™7 2nR? tan

In this case the pressure acting on the end
caps will contribute to an axial compression
load:

F plate=Ap1ateP = _AplatekTPT (A12)

For the combined axial compression, torsion
and external pressure case, the torque and
external pressure are increased in proportion to
the axial compression load. The relations
between the stresses in the facings o, and t,,
and o, and o, are;

T

tan ¢ = —= (A13)
O'),
and
fan y = (A14)
ag

X

with ¢ being the ‘phase angles’ between the
magnitude of normal stress, o,, and shear stress,
1., and ¥ being the ‘phase angle’ between the
magnitude of normal stresses o, and o,
(Fig. 7(d) and (e)). This means that T is
increased proportionally to F by a constant kg;

ker=k,(1— AplatekFP) (A15 )
where
2Rty
ko= tan & (A16)
2 +0 2=t
yL

in which kgp is the proportional constant
between the axial compression, F, and pressure,
P, expressed as

k
fepp = ————— (A17)
1"'16314p1ate

10.
11.

12.
13.

14.
15.
16.
17.

18.

where
t
ks = - Al18
£ (A18)
nR? tan Y\ 2t; 00—t
yL.
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ABSTRACT

A method for prediction of the top-to-bottom compression strength of corrugated
board containers using finite element analysis was developed. Up to triple-wall
corrugated board is accommodated in the finite element model. In order to keep
computational time down, the corrugated core layer(s) is considered to be
homogeneous with effective material properties, and the complete corrugated board is
represented by a multi-ply eight node isoparametric shell element. The shell elements
represent the side panels of the box. Coupling elements are used to represent creases
at the top and bottom edges.

Buckling and large displacements are considered in the analysis, and container
collapse loads are predicted using the Tsai-Wu failure criterion. It is assumed that
failure is triggered by material failure in one of the facings of the corrugated board.
Loca buckling of the corrugated board constituents is not considered in this study,
and orthotropic linear elastic material properties are assumed for each layer.

The boxes analysed fail in a post-buckled state. A non-linear finite element method
involving Newton-Raphson iterations is discussed in conjunction with the buckling
analysis. Convergence of the predicted collapse load with the number of elements
used in the model is studied, as well as the sensitivity of the collapse load to the
imposed dtiffness at the loaded boundaries. Different buckling modes of a box are
simulated, giving an in-depth understanding of the relation between the strength of a
box and constraints imposed on the panels by the corners of the box. Finaly, the
results of an extensive testing program comprising about 1,300 box strength tests are
summarised and used to verify the container strength prediction method devel oped.



INTRODUCTION

Although corrugated board has been used for over a century, the packaging design
process is still mostly empirical or semi-empirical. Research on corrugated board has
been lagging behind its industrial application [1]. There are many reasons for this.
Oneisthat the mechanics of corrugated board and packaging are quite complex due to
the structure of the board, difficulties in loading and control of boundary conditions.

Consideration of the corrugated board market in recent years, with fewer companies
increasing their market shares, has been a driving force for improvement of design
procedures. Production volumes have increased considerably. Even small savingsin
raw material achieved through improved design procedures imply significant cost
savings[2].

In addition, with the development of powerful computing tools and structural analysis
codes such as finite element software, it is now possible to obtain numerical solutions
for the stresses and deformations in corrugated board structures when loaded [3]. The
benefits of such an analysis are apparent since the analysis is based on the geometry
of the corrugated board and the physical properties of the constituent liners and
corrugated medium. In contrast, the empirical approach to design reguires
manufacture of the board and tedious making and testing of boxes and specimens, cut
from board [4].

This work was initiated with the objective of developing a design method based on
finite element analysis to predict top-to-bottom compression strength of corrugated
containers. The finite element model includes multi-ply eight node isoparametric
shell elements for the side panels and coupling elements representing creases at top
and bottom edges [5, 6]. Creases are scored folding lines between flaps and sides.
McKee and Gander [4] found that 90% of the compression deformation of a box
occurs in the creases. The residual compressive and rotational stiffness of the creases,
being most important [7], are accommodated using coupling elements [5].
Extensional, shear and bending stiffnesses of the corrugated board are cal culated from
the geometry and material properties of the constituent liners and medium [8-11]. The
material properties are assumed to be orthotropic linear elastic.

In aprevious study of collapse of corrugated board panels it was shown that the Tsai-
Wu failure criterion [12-13] could be used to predict material failure in one of the
facings of the corrugated board panels. The same failure criterion is used in the
present analysis of boxes, and local buckling of the outer facings is disregarded [14].
The buckling of side panels requires a non-linear finite element analysis that is solved
using the Newton-Raphson method [15, 16]. The solution is terminated when the
failure criterion is satisfied.

Convergence of the predicted collapse load with the number of elements used in the
model is studied, aswell as the sensitivity of the collapse load to the imposed stiffness
at the loaded boundaries. Different buckling modes of a box are simulated, giving an
in-depth understanding of the relation between the strength of a box and constraints
imposed on the panels by the corners of the box.



Finally, extensive testing of boxes made from two different corrugated board gradesis
used for comparison with finite element predictions.

A commercially available finite element code called ANSY S [5] was chosen to solve
these tasks for two main reasons. The software is adapted to operate in Microsoft's
Windows NT environment, and the ANSY S Parametric Design Language (APDL) [5]
makes it easy to implement algorithms for processing the finite element models.

NUMERICAL MODEL
Material stiffness properties

Up to triple-wall corrugated board is accommodated in the finite element model. To
keep computational time down the corrugated core(s) is homogenised [8-11] and the
complete corrugated board is represented by a multi-ply eight node isoparametric shell
element, SHELL99 [5]. Each layer, from three to seven, of the homogenised
corrugated board is described by its thickness and orthotropic elastic properties, i.e. the
elastic moduli (EX, EY, EZ), Poisson’s ratio (NUXY, NUYZ, NUXZ) and the shear
moduli (GXY, GYZ, GXZ). The elastic planes of symmetry are aligned with the
machine direction(M D) and cross direction (CD) of the board, see Figure 1.

Figure 1. Homogenisation of the corrugated core of single-wall corrugated board.

Model and boundary conditions used for a regular slotted container

In a finite element analysis of a corrugated board container, a quarter of the box is
represented by ixk+jxk 8-node elements, i=j and k=2i, where i represents the number
of elements parallell with the x-axis, j the number of elements parallell with the y-axis
and k the number of elements parallell with the z-axis, see Figure 3. Then the number
of nodes is (16+5(i+j-2)+10(k-1)+3(i+j-2)(k-1)). Each node has six degrees of
freedom, viz. trandation and rotation along axis paralell to the nodal coordinate
system. When considering a box loaded under compression, it is recognised that the
creases at the top and bottom affect the loading of the box [4]. In order to predict top-
to-bottom compression of boxes the properties of the creases were measured in earlier
work [7]. The soft creases are accommodated in the FEM-model by edge springs
attached at the loaded top and bottom edges. The springs are modelled using element
COMBIN14 [5] and the stiffness of the springs is adjusted in order to introduce
consistent nodal forces on the shell elementsif uniformly compressed [16]. The creases
also introduce an eccentricity of the applied loads [7], which is smulated by



introducing a moment that is constant at the top and bottom edges using element
COMBIN37 [5], see Figure 2. The vertical edges at the four corners of the box are
connected in trand ation only with no rotational constraint.

load

e

edge stifftiess
COMEIN14

I
==
=
ST eccentricity moment
COMEIN3T

panel, box side

Figure 2. Elements used to simulate the response of the creases.

A quarter of the box is analysed due to symmetry. Boundary conditions are imposed on
the nodes along the edges and nodes at the planes of symmetry according to Figure 3.
Only the two symmetry planes indicated in the figure are utilized since the boxes
analysed in general have more complex geometry than the box shown in figure 3.

z

L7 L13

k=16

Figure 3. Quarter of abox model with boundary conditions:

L9: DX=0, DZ=displacement step, (nodes are free to move in y-direction except where L9 intersectsL7)
L12: DY=0, DZ=displacement step

L2: DX=0,DZ=0

L3: DY=0,DZ=0

L10: Translation coupling of the nodes at the corner .

L7: DY=0, RotX=0, RotZ=0 (symmetry)

L13: DX=0, RotY=0, RotZ=0 (symmetry)

L9, L12, L2, L3: Connected to elements shown in Figure 2.



Analysis
The stress-strain relationship of each layer, |, can be expressed by [8]
{O-}j = [Q]j{g}j (1)

where {c}j and {&}j are the vector stress and strain, respectively, in a plate. Plane
stressis assumed and the elastic stiffness matrix [Q]j isdefined as

E, V,E, O 0 0
v, E, E, 0 0 0
0 0 G. 0 0
1 Xy, )

[Q] = G. . 2
" l-vgivei| 0 0 0 fy“ 0
ze'
0 0 0 0 f"

where v, ; and v, ; are the Poisson's ratios, E,; and E,; are the elastic moduli and

G, G,,; and G,,; are the in-plane and transverse shear moduli, respectively. In a

finite element analysis where the transverse shear strain is assumed to be constant
through the thickness of each layer, it is common to reduce the transverse shear moduli
by a "shear correction factor" of 1.2 to compensate for the excessive amount of shear
strain energy produced [5]. In the current finite element formulation the transverse
shear moduli of each layer are reduced by afactor f given by

f=12or f=10+ O.Z% whichever is greater, where A is the area of the element

and h the thickness of the panel. The latter expression is included in order to prevent
shear locking [5]. The homogeneous properties of the corrugated core layers are
obtained according to ref. [8].

The stiffness matrix can be integrated through the thickness h of the panel to obtain the
extensional, coupling and bending stiffness matrices as follows

Al-3la) -2 3
SENICICEA @)
D=3 3-[) z-72) )

where z; are the ply coordinates [8] and N= 3, 5, 7. These stiffness matricesin turn can
be combined with the strain-displacement matrix [B], which connects the
displacements to the strains and curvatures of the element, to form the element
stiffness matrix [k] asfollows



[]= [ (B, [aTB, )+ (B, [clB, ]+ [B,T [cIB, ]+ [B,] [D]B,])dA (4

where [Bo]+z[B1] = [B], see e.g. [16]. The element stiffness matrices are subsequently

assembled to a global stiffness matrix [K], which is used in an eigenvalue analysis of
the finite element model to determine a suitable load step for the non-linear analysis.
The following equation is solved in the eigenvalue analysis

([K]+ 2[Sla Nw}=10} (5)

where[S] , isobtained by applying consistent nodal forces {P},, on the top and bottom
edges corresponding to a uniform unit pressure, and performing a static linear analysis
to obtain the membrane stresses that generate the "stress stiffness matrix” [S],, [16]. X
is the factor used to multiply the loads that generate the stresses, and {y} is the
generalised displacement vector for the nodes[16]. Theload {P} is scaled by the factor

X which aso altersthe intensity of the membrane stresses but not the distribution of the
stresses such that

{P}=1{Pl4 = [s]=1[S]« (6)

AsX isincreased, the overal stiffness of the box, ([K] + [9]), is reduced until a critical

load {P}, corresponding to the eigenvalue X is reached and the box becomes
unstable, i.e. det([K] + [S]) goesto zero.

The panels collapse at aload much higher than the critical buckling load P,. In this so-
called postbuckled state, the deflection of a panel is large enough to introduce
geometric non-linearities between the load and displacement of the panel. This means
that the stiffness matrix [K] of the box becomes a function of the unknown
displacements, i.e.

[K(w)fw}=1{P} @)

where {y} is a set of known and unknown nodal displacements and {P} represents a

set of external loads that act on the nodes. In order for the finite element model of the
box to exhibit out-of-plane deformation, it must contain an imperfection, which in our
case isintroduced as an eccentricity of the applied loads [7] simulated by introducing a
moment that is proportional to the load at the top and bottom edges using element
COMBIN37. The nonlinear problem is solved step-wise using the Newton-Raphson
method [15, 16]. The general algorithm proceeds as follows [5].

1. Prescribe known displacements {* } of the nodes on the edges parallel to the y-

axis, in this case a uniform displacement. The superscript k denotes known dis-
placements and the subscript i isthe load step.

2. Compute the unknown forces {P}, and displacements {*} using the stiffness
matrix from the earlier step [K], , (For thefirst step, i = 1, the global stiffness
matrix of the un-deformed panel isused [K]; ).



[K ]i-l ({l//k }i + {l//u }i ): {P}i

3. Compute the updated stiffness matrix [K]; corresponding to the configuration
i+l

4. Calculate restoring force {P’ }i and the change in displacements {Ay} asfollows
K] (Gt} + e} +{avh)={PL +{P].

5. Convergenceis checked by Max{Ay} <c wherecisan arbitrary small number
for which equilibrium is approximately obtained.

6. If the solution isnot converged, add {Ay}, to {y*}, , add {P'} to {P}, and repeat
steps 3 - 5.

7. If the solution is converged continue with the next load step
i ha=lvtl +lutl Havl Hap .

Theloading is terminated when the stress-state at any point in the facings of the panels
exceeds a predefined failure criterion.

Failurecriterion
In this study the Tsai-Wu tensor failure theory [13] is used to obtain the ultimate |oad-

carrying capacity of a box. According to this theory, in the plane stress condition,
material failure develops when f=1, where

f =To, +T,0, +T,0; + 1,0, + 75 + 213,00, (8)
1 1 1 1
where I, =—— I, =—— I}, =-036F,F, . I, =—+—,
xtY x.c O-y,t y.C xt  Oxc
1 1 1
=t — T =
0-th y,.C O-X,Co-y,c

The subscript j=t or j=c of strength o;; ,i=X,y, denotes the strength in tension and
compression, respectively. The expressions for I';, and T'y; are approximations for

paper materials [13]. It is assumed that the box fails as soon as this failure criterion is
fulfilled in any point of the outer facings of the corrugated board.

EVALUATION OF MODEL

Boxes of different sizes and board grades, B-140T/112R/140T, C-140T/112R/140T, C-
140K/112R/140K and C-180L/112R/180L were studied. The corrugated board is
coded, the first letter indicates the geometry of the core, see Table 2. The three
following sets of a number and aletter indicate the liner and fluting composition of the
board, see Table 1. Material data for the liners and fluting, measured according to the
Scandinavian pulp, paper and board standard SCAN-P 67:93 and SCAN-P 46:83, is
shown in Table 1 and geometry of the corrugated cores in Table 2. Observe that the
compression strength is assumed to be 0.78*SCT (Short-span Compression Test) due
to the small specimen size used in the SCT [17]. The finite element models do not



include any imperfections. Instead, eccentricity moments are introduced at the top and
bottom edges.

Evaluation of the element density requirements

When performing afinite element analysis the chosen number of elementsisabalance
between accuracy and calculation time. A larger number of elements could give amore
precise solution, but the calculation time increases dramatically with the number of
elements. In order to check the influence of element size on the calculated failure load,
finite element solutions were generated for boxes with a size of 300x300x300 mm
(LengthxWidthxHeight). Eccentricity moments bending the panels outward, obtained
in Ref. [7] as the residual after folding the flaps, are introduced at the top and bottom
edges with 0.6 Nmm/mm for B-140T/112R/140T and C-180L/112R/180L. Stiffness of
the creases is 20.0 (N/mm)/mm for both boards. As can be seen in Table 3, the number
of elements has little influence on the box strength estimates. The largest differenceis
for the 16 element B-140T/112R/140T box, suggesting that the element size is more
important for light and thin board grades than for heavy and thick board grades. Figure
4 shows the effect of element size on the Tsai-Wu failure criterion f , eq.(16), where 16
elements give too low precision. So generally, 16 elements seem to be too few but 64
elements and upwards give good accuracy for both B- and C-flute.

Table 1. Material datafor liners and flutings (Compression strength is 0.78* SCT and
stiffnessin compression is set equal to stiffnessin tension)

140 T Tedliner 3 Avg n 180 L Tedtliner 2 Avg n
Grammege (g/n) 136 [ 09 [ 30 Grammege (g/n) 178 | 13 | 0
Thickness (um) 225181130 Thickness (umm) 283 | 95 | 30
Tenglediff MD (kN/m) [ 830 18 10 Tensledtiff MD (kN/m) | 1190 18 10

Tensledtiff CD (KN/m) | 460 10 | 10 Tendletiff CD (kN/m) | 550 15 10
Tendlestr MD (kN/m) 64 | 071 | 10 Tendlestr MD (KN/m) 997 [ 098 [ 10
Tenglestr CD (kN/m) 38 1043 | 10 Tenglestr CD (kN/m) 463 | 054 | 10

SCT MD (kN/m) 33 | 022 10 SCT MD (kN/m) 498 [ 021 | 10
SCT CD (kN/m) 24 | 018 | 10 SCT CD (kN/m) 329 | 016 | 10
140 K Kraftliner Avg < n 112RRecydedfluting Avg < n
Grammege (g/n) 139 | 12 | 30 Grammege (g/nT) 114 |087 |30
Thickness (um) 195 | 58 | 30 Thickness (um) 199 |82 |30
Tenslesiff MD(kN/m) | 1300 [ 23 | 10 Tenslesiff MD(kN/m) [ 911 [ 19 [ 10

Tensledtiff CD (KN/m) | 490 21 | 10 Tenglestiff CD (kKN/m) | 354 13 10

Tendlestr MD (kN/m) 140 | 031 | 10 Tendlestr MD (kN/m) | 7.32 0.26 | 10
Tendlestr CD (kN/m) 53 1024 10 Tendlestr CD (KN/m) 29 016 | 10

SCT MD (kN/m) 51 1012 | 10 SCT MD (kN/m) 38 016 | 10

SCT CD (kN/m) 27 1008 | 10 SCT CD (kN/m) 212 (012 |10




Table 2. Flute profiles. aisthe ratio of flute to liner length.

Profile B C

Wavelength, A (mm) 6.3 7.8
Flute height, he (mm) 2.46 3.61
Take-up factor, o 1.32 1.43

Table 3. Failure load (N) of the whole box versus number of elements.

300x300x300 mm, C-180L/112R/180L
No. of elements | FEM (N) | Index

16 4768 1.04
36 4631 1.01
64 4630 1.01
144 4605 1.00
256 4590 1.00

300x300x300 mm, B-140T/112R/140T
No. of elements | FEM (N) | Index

16 2516 115
36 2275 1.04
64 2188 1.00
144 2181 1.00
256 2165 0.99

TSAT

- 000
.l, 0.1z
0.23
0.35

PSSy v

77

=

Figure4. Tsai-Wu valuef of theinner facings, eq.(16), for the 300x300x300 mm box,
B-140T/112R/140T with 16 and 144 elements respectively.

Evaluation of Tsai-Wu failure criterion vs. compression load

The collapse load of boxes size 300x300x100 mm and 300x300x300 mm is predicted
using the Tsai-Wu failure criterion, eq. (8). Eccentricity moments bending the panels
outward are introduced at the top and bottom edges with 0.6 Nmm/mm for C-



140T/112R/140T. Crease stiffness is 20 (N/mm)/mm. In order to make the analyses
converge within reasonable time, a Tsai-Wu value between f = 0.95 and f = 1.05 is
used. Typically, the maximum difference in strength predictions between f = 0.95 and f
= 1.05 iswithin 4%. However, when small differences between subsequent predictions
need to be studied a more accurate prediction is necessary. Figures 5 and 6 show
typical load vs. Tsai-Wu curves and the load vs. out-of-plane displacements. Since
there is amost alinear relationship between the Tsai-Wu value and the load in Figures
5 and 6, the result from the FEM-calculation, P; , can be adjusted using the present and
previous Tsai-Wu value, f; and fi.; and load step AP to obtain the failure load.

P =20 -1)+R ©)

The box strength estimated using eq. (9) is Pr = 3052 N for C-140T/112R/140T,
300x300x300mm and P = 4873 N for C-140T/112R/140T, 300x300x100mm. For the
boxes in chapter 4 ( Appendix Table A1 and A2) the maximum correction with eq. (9)

is2.9% and the average correction is 1.2%.

out-of-plane displacement panel center (mm)

350 O 1 2 3 4 5 6 7 8 9
: :
300
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~ 1 a
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< [}
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g a) .
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[m) *
) .
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Tsai-Wu, f

Figure5. Load vs. Tsa-Wu value f and out-of-plane displacement for C-
140T/112R/140T, 300x300x300mm. P; = 3052 N. Since eccentricity
moments bending the panels outward are introduced at the top and bottom
edges, the Tsai-Wu value and out-of-plane displacement are not zero at zero

load.
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A out-of-plane displacement panel center (mm)
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Figure6. Load vs. Tsa-Wu value f and out-of-plane displacement for C-
140T/112R/140T, 300x300x100mm. P = 4930 N.

Additional failurecriterion

If boxes do not buckle, failure load islimited by the crushing strength of the corrugated
board, see Figure 7. The crushing strength of the creased corrugated board is about
50% of the edge crush test strength (ECT) [7], and the ECT can be predicted from the
short-span compression test (SCT) of the board constituents [17]. Thus the crushing
strength per unit length of the creased corrugated board, CBS, in the CD, see Figure 7,
is

M
CBS= %(o.mscn +°0.78(0 3 SCT . +SCT 01 )J (10)
k=1

where o is the take-up factor of the corrugated core layer 2k and when M =1, 2, 3 it
corresponds to single, double or tripleewall board, see Figure 1. For board C-
140T/112R/140T CBS = 2.59 N/mm. In chapter 3.2 the crushing strength of box no.1
C-140T/112R/140T, 300x300x100mm, see Appendix Table A2, is Perus = 3108 N and
corresponding experimental value is P; e = 2932 N. Perysh = 3823 N and P g = 3290
N for box no.13 C-180L/112R/180L, 300x300x100mm, see Appendix Table A2.

Figure 7. A crushed shallow box.
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Influence of the edge stiffness

The edge/crease tiffness is an important property for box compression strength
because it affects the load distribution on the top and bottom edges when the side
panels buckle. Thus, a soft edge prevents a redistribution of the load towards the
corners of a box during buckling. This increases the bending of the panels and reduces
box strength. Edge/crease stiffness can be measured by using a specia rig [7]. Figures
8a and 8b show the predicted failure load as a function of the edge stiffness for a box
with B- and C-board, respectively. The predicted failure load increases rapidly with
stiffness until stiffness gets close to the stiffness of a cut-edge. For the B-flute box the
strength increases by about 16% between stiffness 2 and 100, whereas for C-flute the
increase is about 8%.

3150 T
3100 T
3050 T

106

3000 T

Failur%é&a(g‘)Pf, (N)

2950 T

2900 T

100
2850 t

0 10 20 30 40 50 60 70 80 90 100
Edge stiffness (N/mm?)

Figure 8a. Predicted failureload for B-140T/112R/140T, 300x300x300 mm. An index
isincluded for stiffness 2.0, 20.0 and 100 (N/mm)/mm.
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1950
0 10 20 30 40 50 60 70 80 90 100
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Figure 8b. Predicted failureload for C-140T/112R/140T, 300x300x300 mm. An
failureindex isincluded for stiffness 2, 20 and 100 (N/mm)/mm.
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Influence of eccentricity moments orientation on buckling modes

Applying different eccentricity moments at the loaded edges triggers different buckling
modes. Two aternative moment directions are used corresponding to a panel buckling
direction inwards or outwards, see Figure 9. Results in Table 4 show that outward
moment for all panels clearly gives the strongest box and inward moment gives the
weakest box. Since the panels are completely identical and the value of the moment is
0.6 Nmm/mm in al cases, the difference in strength is only caused by geometrical
differences in the buckling patterns. Displacements of the box cornersin particular will
be different, see Figure 10.

P

Figure 9. Applied eccentricity moments.

Table 4. Boxes size 300x300x300 mm and symmetrical board C-140K/112R/140K

Driving moment Failureload, N Index Buckling
all out 3942.9 100 all out
alin 3565.8 90 alin

2out/2in 3673.5 93 2out/2in
3out/lin 3671.8 93 3out/lin
3in/1 out 3566.3 90 3in/l out
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Figure 10. Schematics of deformed corner cross-sections at the centre of the box. The

dot-dashed lines indicate original position of the corners. The schematics

are not drawn to scale. The three first buckling modesin Table 4 are shown
at index load 90.

If the ratio between height and width of the panelsis different panels can buckle in
completely different ways, see Figure 11.

00
noiz
023
035

0,47

058
n.7a
n.az

1/4 model

1/4 model
300x300x300

400x200x300

Figure11. Tsai-Wu valuef of the inner facings, eq.(16). Different buckling modes of
boxes with the same perimeter.
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EXPERIMENTSAND VERIFICATION OF FINITE ELEMENT MODEL

Boxes made from board with either a B-flute or a C-flute profile, see Table 2, have
been tested to verify the finite element model. About fifty different box geometries for
each flute profile and a total of 1,316 boxes were tested. All boxes were unprinted and
manually creased, dotted, glued and erected. All boxes were conditioned at 23°C and
at 50% RH for at least 24 hours. Some of the tests were performed at SCA Packaging
Munksund with a rigid platen box compression tester, and some at SCA Packaging
Research, Aylesford, with a floating platen (rotational unrestrained) box compression
tester. Compression speed was 10 mm per minute and time to failure was about one
minute.

Specifications, box compression test (BCT) results and FEM estimates of the tested
boxes are listed in Table A1 and Table A2 in the Appendix together with materia data
for the liners and mediums in Table A3. All predicted strengths are based on an edge
stiffness of 2 N/mm? and an element density of 144 elements. Moment applied at the
loaded edgesis 0.6 Nmm/mm [7] in the conservative configuration in/out, see Table 4.

Figures 12 and 13 show comparisons between box strength estimated with FEM and
the strength of tested handmade boxes according to Table A1 and A2, respectively. On
average, the finite element simulation predicted strength 3 % above the tested average
of boxes in Figure 12 and 5 % below average of boxes in Figure 13. However, two of
the tested boxes in Figure 13 (box no.1 and 13) have a strength that is significantly less
than predicted. These boxes are shallow, which makes them less inclined to buckle and
they fail due to crushing instead, see chapter 3.3. No explanation has yet been found
for the over-conservative predictions for box geometries Nos. 29, 30 and 49.

5000 T o
A
Z 4500 T
IS *
o T A
g 4000 .
» 1
5 3500 A .
3 - . o A N A Test
9 3000 T LN
*
g Abyieqede ‘ﬁ"’A’éAA% ¢ ¢ FEM
5] + . R S A A e
§ 2500 N
é A A ‘e
A
@ 2000 ”‘uﬁémég 2 X“Nf%
AA *
1 s
1500
1000 g 10 20 30 40 50

Box geometry no.

Figure 12. FEM-estimate box strength compared to test results for a range of
handmade boxes according to Table Al. Flute profile B, see Table 2.
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Figure 13. FEM-estimate box strength compared to test results for a range of
handmade boxes according to Table A2. Flute profile C, see Table 2.

CONCLUSIONSAND REMARKS

A finite element model of corrugated board containers is shown to predict the failure
load of boxes, made from B- and C-board, within an average error margin of 5%.
Effective materia properties of the homogenised corrugated cores have been used, and
each layer of the corrugated board is assumed to be orthotropic linear elastic. It is
shown that convergence is obtained with relatively few elements, e.g. 64 elements are
quite sufficient for a regular size box, i.e. 300x300x300 mm. The edge stiffness has a
significant influence on the predicted failure loads because it affects the load
distribution on the top and bottom edges when the side panels buckle. Thereis dso a
variation of about 10% in the failure load due to different buckling modes, see Table 3.
Thisisattributed to different constraints imposed on the side panels by the corners of a
box. Boxes of different sizes and board grades were tested and compared to predicted
strengths. On average, the difference between experimental and predicted values was
small. However, for some boxes the difference was significant because the boxes did
not buckle but were crushed instead.

The described FE-method for predicting the top-to-bottom compressive strength of
corrugated containers has been used as the basic component in the subsequent devel op-
ment of a user-friendly computer-based tool for strength design of containers. The
graphical interface of this design tool is shown in Figure 14. The example shows
menus that relate to input data definition.
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Figure 14. The graphical interface of a design tool for corrugated boxes.
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Appendix

Table Al. Specifications, test results and FEM -estimates for handmade B-flute boxes,
COV was about 5 % for all tested boxes.

Box no. Length Width Height Flute Board grade no. of Mean BCT FEM BCT/FEM
samples
(mm) (mm) (mm) (N) (N)
1 200 150 300 B 125MK/150RF/125T 6 1801 1794 1.004
2 300 225 300 B 125MK/150RF/125T 6 1939 1908 1.015
3 350 350 300 B 125MK/150RF/125T 6 2072 1942 1.066
4 400 300 300 B 125MK/150RF/125T 6 2020 1881 1.074
5 400 300 200 B 125MK/150RF/125T 6 1924 1824 1.054
6 400 300 400 B 125MK/150RF/125T 6 1820 1892 0.962
7 400 300 600 B 125MK/150RF/125T 6 1839 1915 0.960
8 400 300 800 B 125MK/150RF/125T 6 2042 1950. 1.047
9 450 250 300 B 125MK/150RF/125T 6 1842 1850. 0.996
10 500 200 300 B 125MK/150RF/125T 6 1646 1723 0.955
11 535 400 300 B 125MK/150RF/125T 6 1931 1964 0.983
12 550 150 300 B 125MK/150RF/125T 6 1631 1554 1.049
13 300 300 100 B 140T/112RF/140T 10 2216 2543 0.871
14 300 300 200 B 140T/112RF/140T 10 1794 1866 0.962
15 300 300 300 B 140T/112RF/140T 10 1981 1954 1.013
16 300 300 450 B 140T/112RF/140T 10 1657 1959 0.846
17 300 300 600 B 140T/112RF/140T 10 1657 1975 0.839
18 400 400 400 B 140T/112RF/140T 10 2148 1953 1.099
19 500 300 400 B 140T/112RF/140T 10 2040 1903 1.072
20 600 200 400 B 140T/112RF/140T 10 1893 1771 1.069
21 600 200 300 B 140T/112RF/140T 10 1863 1815 1.026
22 300 300 100 B 180L/112RF/180L 20 2703 3229 0.837
23 300 300 200 B 180L/112RF/180L 20 2702 2493 1.084
24 300 300 300 B 180L/112RF/180L 20 2567 2629 0.976
25 300 300 450 B 180L/112RF/180L 20 2301 2608 0.882
26 300 300 600 B 180L/112RF/180L 19 2370 2656 0.892
27 400 400 400 B 180L/112RF/180L 20 2597 2606 0.997
28 400 400 600 B 180L/112RF/180L 17 2377 2642 0.899
29 400 400 133 B 180L/112RF/180L 20 2754 2675 1.029
30 375 250 400 B 186K/112RF/200T 10 3020 2670 1.131
31 420 280 400 B 186K/112RF/200T 10 2471 2595 0.952
32 450 300 400 B 186K/112RF/200T 10 2618 2608 1.003
33 480 320 400 B 186K/112RF/200T 10 2785 2635 1.057
34 510 340 400 B 186K/112RF/200T 10 3118 2710 1.151
35 540 360 200 B 186K/112RF/200T 9 2726 2697 1.011
36 540 360 400 B 186K/112RF/200T 10 2540 2743 0.926
37 540 360 600 B 186K/112RF/200T 10 2824 2782 1.015
38 570 380 400 B 186K/112RF/200T 10 3158 2740 1.152
39 590 390 400 B 186K/112RF/200T 10 2805 2740 1.024
40 300 300 100 B 186K/150RF/180T 10 2716 2839 0.956
41 300 300 200 B 186K/150RF/180T 10 2657 2425 1.096
42 300 300 300 B 186K/150RF/180T 10 2795 2694 1.037
43 300 300 450 B 186K/150RF/180T 10 2569 2625 0.979
44 300 300 600 B 186K/150RF/180T 10 2481 2722 0.911
45 400 400 400 B 186K/150RF/180T 10 3109 2887 1.077
46 500 300 400 B 186K/150RF/180T 10 3442 2479 1.388
47 600 200 400 B 186K/150RF/180T 10 2932 2251 1.302
48 600 200 300 B 186K/150RF/180T 10 2893 2234 1.295
49 400 400 400 B 280K/150RF/280K 19 4762 4240 1.123
50 500 300 400 B 280K/150RF/280K 20 4866 3814 1.276
51 600 200 400 B 280K/150RF/280K 20 3987 3378 1.180
Total 566 Mean| 1.0314
CV% 11.4
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Appendix

Table A2. Specifications, test results and FEM-estimates for handmade C-flute boxes,
COV was about 5 % for all tested boxes.
Box no. Length Width Height Flute Board grade no. of Mean BCT FEM BCT/FEM
samples
(mm) (mm) (mm) (N) (N)
1| 300 300 100 C 140T/112RF/140T 10 2932 4931 0.595
2 300 300 200 C 140T/112RF/140T 10 2177 2597 0.838
3 300 300 300 C 140T/112RF/140T 10 2187 2873 0.761
4 300 300 450 C 140T/112RF/140T 10 2138 2857 0.748
5 300 300 600 C 140T/112RF/140T 10 2118 2947 0.719
6] 300 300 150 C 140T/112RF/140T 30 2546 2932 0.868
7 300 300 300 C 140T/112RF/140T 30 2411 2873 0.839
8 300 300 450 C 140T/112RF/140T 30 2246 2857 0.786
9 400 400 400 C 140T/112RF/140T 10 2540 2812 0.903
10 500 300 400 C 140T/112RF/140T 10 2442 2685 0.909
11 600 200 400 C 140T/112RF/140T 10 2324 2368 0.981
12| 600 200 300 C 140T/112RF/140T 10 2226 2385 0.933
3] 300 300 100 C 180L/112RF/180L 20 3290 6113 0.538
14 300 300 200 C 180L/112RF/180L 19 2996 3481 0.861
15 300 300 300 C 180L/112RF/180L 20 3168 3844 0.824
16 300 300 450 C 180L/112RF/180L 20 2806 3807 0.737
17 300 300 600 C 180L/112RF/180L 20 2889 3928 0.735
18 400 400 400 C 180L/112RF/180L 20 3417 3738 0.914
19| 400 400 600 C 180L/112RF/180L 19 3178 3720 0.854
20 400 400 133 C 180L/112RF/180L 20 4134 4762 0.868
21 400 400 400 C 186K/112RF/180T 19 3488 3701 0.942
22 500 300 400 C 186K/112RF/180T 20 3289 3369 0.976
23 600 200 400 C 186K/112RF/180T 19 2929 2906 1.008
24 375 250 400 C 186K/112RF/200T 10 3275 3775 0.867
25| 395 260 400 C 186K/112RF/200T 10 3265 3750 0.871
26 420 280 400 C 186K/112RF/200T 10 3403 3746 0.908
27| 450 300 400 C 186K/112RF/200T 9 3805 3720 1.023
28] 480 320 400 C 186K/112RF/200T 10 3913 3735 1.048
29 510 340 400 C 186K/112RF/200T 10 3971 2764 1.437
30 540 360 200 C 186K/112RF/200T 10 4638 3197 1.451
31 540 360 600 C 186K/112RF/200T 10 3775 3904 0.967
32 540 360 400 C 186K/112RF/200T 20 4011 3807 1.053
33 570 380 400 C 186K/112RF/200T 10 4226 3835 1.102
34 590 390 400 C 186K/112RF/200T 10 4324 3841 1.126
35] 300 300 300 C 186K/150RF/180T 29 3606 4170 0.865
36 300 300 100 C 186K/150RF/180T 10 4423 4959 0.892
37 300 300 200 C 186K/150RF/180T 10 3707 3542 1.046
38 300 300 300 C 186K/150RF/180T 10 3373 4170 0.809
39 300 300 450 C 186K/150RF/180T 10 3285 3818 0.860
40[ 300 300 600 C 186K/150RF/180T 10 3167 3904 0.811
41| 360 240 300 C 186K/150RF/180T 30 3730 3393 1.099
42| 400 200 300 C 186K/150RF/180T 29 3545 3026 1172
43[ 400 400 400 C 186K/150RF/180T 10 3864 3846 1.005
44 500 300 400 C 186K/150RF/180T 10 4030 3491 1.155
45 600 200 400 C 186K/150RF/180T 10 3462 3002 1.153
46 600 200 300 C 186K/150RF/180T 10 3275 2945 1.112
47| 400 400 400 C 280K/150RF/280K 19 6596 6097 1.082
48] 500 300 400 C 280K/150RF/280K 20 6315 5306 1.190
29] 600 200 400 C 280K/150RF/280K 18 5811 4465 1.301
Total 750 Mean 0.950
CV%| 196
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Appendix

Table A3. Material datafor liners and flutings.

125 Testliner 186 Kraftliner

Grammage (g/m?) 121 Grammage (g/m?) 182
Thickness (um) 200 Thickness (um) 223
Tensile stiffness MD (M N/m) 0.968 Tensile stiffness MD (M N/m) 1.681
Tensile stiffness CD (MN/m) 0.363 Tensile stiffness CD (M N/m) 0.614
Tensile strength MD (KN/m) 7.744 Tensile strength MD (kKN/m) 16.59
Tensile strength CD (kN/m) 2.783 Tensile strength CD (kN/m) 7.05
SCT MD (KN/m) 3.509 SCT MD (kKN/m) 6.07
SCT CD (kN/m) 1.815 SCT CD (kN/m) 3.51
125 Kraftliner 200 Testliner

Grammage (g/m?) 125 Grammage (g/m?) 200
Thickness (um) 164 Thickness (um) 315
Tensile stiffness MD (M N/m) 1.374 Tensile stiffness MD (M N/m) 1.537
Tensile stiffness CD (MN/m) 0.503 Tensile stiffness CD (M N/m) 0.501
Tensile strength MD (KN/m) 12.8 Tensile strength MD (KN/m) 12.34
Tensile strength CD (kN/m) 4.15 Tensile strength CD (kN/m) 4.24
SCT MD (kN/m) 4.74 SCT MD (kKN/m) 5.68
SCT CD (kN/m) 2.53 SCT CD (kN/m) 3.16
140 Testliner 280 Kraftliner

Grammage (g/m?) 136 Grammage (g/m?) 280
Thickness (um) 225 Thickness (um) 338
Tensile stiffness MD (M N/m) 0.83 Tensile stiffness MD (MN/m) 2.376
Tensile stiffness CD (MN/m) 0.46 Tensile stiffness CD (M N/m) 0.875
Tensile strength MD (KN/m) 6.4 Tensile strength MD (KN/m) 23.8
Tensile strength CD (kN/m) 3.8 Tensile strength CD (kN/m) 9.76
SCT MD (kN/m) 3.33 SCT MD (kN/m) 8.65
SCT CD (kN/m) 2.38 SCT CD (kKN/m) 5.06
140 Kraftliner 112 Recycled fibre fluting

Grammage (g/m?) 139 Grammage (g/m?) 114
Thickness (um) 195 Thickness (um) 199
Tensile stiffness MD (M N/m) 1.39 Tensile stiffness MD (M N/m) 0.911
Tensile stiffness CD (MN/m) 0.49 Tensile stiffness CD (M N/m) 0.354
Tensile strength MD (KN/m) 14.0 Tensile strength MD (KN/m) 7.32
Tensile strength CD (kN/m) 5.3 Tensile strength CD (kN/m) 2.9
SCT MD (kN/m) 5.1 SCT MD (kN/m) 3.8
SCT CD (kN/m) 2.7 SCT CD (kN/m) 2.12
180 Testliner (L) 150 Recycled fibre fluting

Grammage (g/m?) 178 Grammage (g/m?) 151
Thickness (um) 283 Thickness (um) 231
Tensile stiffness MD (M N/m) 1.19 Tensile stiffness MD (M N/m) 1.142
Tensile stiffness CD (MN/m) 0.55 Tensile stiffness CD (M N/m) 0.449
Tensile strength MD (KN/m) 9.97 Tensile strength MD (KN/m) 8.95
Tensile strength CD (kN/m) 4.63 Tensile strength CD (kN/m) 3.45
SCT MD (kN/m) 4.98 SCT MD (kN/m) 4.82
SCT CD (kN/m) 3.29 SCT CD (kN/m) 2.76
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