
 

Basics of Electrochemical Impedance Spectroscopy 

  
 

Introduction 

This document presents an introduction to 
Electrochemical Impedance Spectroscopy (EIS) theory 
and has been kept as free from mathematics and 
electrical theory as possible.  If you still find the material 
presented here difficult to understand, don't stop 
reading.  You will get useful information from this 
application note, even if you don't follow all of the 
discussions. 

Four major topics are covered in this Application Note. 

• AC Circuit Theory and Representation of 
Complex Impedance Values 

• Physical Electrochemistry and Circuit Elements 

• Common Equivalent Circuit Models 

• Extracting Model Parameters from Impedance 
Data  

No prior knowledge of electrical circuit theory or 
electrochemistry is assumed.  Each topic starts out at a 
quite elementary level, then proceeds to cover more 
advanced material. 

 

AC Circuit Theory and Representation of 
Complex Impedance Values 

Impedance Definition: Concept of Complex Impedance 
 

Almost everyone knows about the concept of electrical 
resistance.  It is the ability of a circuit element to resist 
the flow of electrical current.  Ohm's law (Equation 1) 
defines resistance in terms of the ratio between voltage, 
E, and current, I. 

R
E

I
≡    (1) 

While this is a well known relationship, its use is limited 
to only one circuit element -- the ideal resistor.  An ideal 
resistor has several simplifying properties: 

• It follows Ohm's Law at all current and voltage 
levels. 

• Its resistance value is independent of frequency. 

• AC current and voltage signals though a resistor 
are in phase with each other. 

However, the real world contains circuit elements that 
exhibit much more complex behavior.  These elements 
force us to abandon the simple concept of resistance, 
and in its place we use impedance, a more general 
circuit parameter.  Like resistance, impedance is a 
measure of the ability of a circuit to resist the flow of 
electrical current, but unlike resistance, it is not limited 
by the simplifying properties listed above.  

Electrochemical impedance is usually measured by 
applying an AC potential to an electrochemical cell and 
then measuring the current through the cell.  Assume 
that we apply a sinusoidal potential excitation.  The 
response to this potential is an AC current signal.  This 
current signal can be analyzed as a sum of sinusoidal 
functions (a Fourier series).   

Electrochemical impedance is normally measured using 
a small excitation signal.  This is done so that the cell's 
response is pseudo-linear.  In a linear (or pseudo-linear) 
system, the current response to a sinusoidal potential 
will be a sinusoid at the same frequency but shifted in 
phase (see Figure 1).  Linearity is described in more 
detail in the following section.   
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Figure 1. Sinusoidal Current Response in a Linear 
System 

 
The excitation signal, expressed as a function of time, 
has the form  

 E = E  sin( t)t 0 ω   (2) 

 

 where Et is the potential at time t, E0 is the amplitude 

of the signal, and ω is the radial frequency.  The 
relationship between radial frequency ω (expressed in 
radians/second) and frequency f (expressed in hertz) is: 

 ω π= 2 f    (3) 

In a linear system, the response signal, It, is shifted in 

phase (φ) and has a different amplitude, I0. 

 I = I  sin ( t + )t 0 ω φ         (4) 

 

An expression analogous to Ohm's Law allows us to 
calculate the impedance of the system as: 
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The impedance is therefore expressed in terms of a 
magnitude, Zo, and a phase shift, φ. 

If we plot the applied sinusoidal signal E(t) on the X-axis 
of a graph and the sinusoidal response signal I(t) on the 
Y-axis, the result is an oval (see Figure 2).  This oval is 
known as a "Lissajous Figure".  Analysis of Lissajous 
Figures on oscilloscope screens was the accepted 

method of impedance measurement prior to the 
availability of modern EIS instrumentation.  
 

 

Figure 2. Origin of Lissajous Figure 

 
With Eulers relationship,   

 exp( j ) =  cos  +  jsinφ φ φ   (6) 

it is possible to express the impedance as a complex 
function.  The potential is described as, 

 E = E  exp( j t)t 0 ω    (7) 

and the current response as, 

 I = I  exp( j t - )t 0 ω φ   (8) 

The impedance is then represented as a complex 
number,
 

Z( ) =   = Z exp( j ) = Z (cos  +  jsin0 0ω φ φ φ
E

I
)    (9) 

 

Data Presentation 

 
Look at Equation 8 in the previous section.  The 
expression for Z(ω) is composed of a real and an 
imaginary part.  If the real part is plotted on the X-axis 
and the imaginary part is plotted on the Y-axis of a 
chart, we get a "Nyquist Plot" (see Figure 3).  Notice that 
in this plot the Y-axis is negative and that each point on 
the Nyquist Plot is the impedance at one frequency.  
Figure 3 has been annotated to show that low frequency 



3 

data are on the right side of the plot and higher 
frequencies are on the left. 

On the Nyquist Plot the impedance can be represented 
as a vector (arrow) of length |Z|.  The angle between 
this vector and the X-axis, commonly called the “phase 
angle”, is φ (=arg Z).  

-ImZ

ReZ

¦Z¦

arg Z

R0

ω

ω =0ω =_ ∞

Figure 3. Nyquist Plot with Impedance Vector 

 

Nyquist Plots have one major shortcoming.  When you 
look at any data point on the plot, you cannot tell what 
frequency was used to record that point.   

The Nyquist Plot in Figure 3 results from the electrical 
circuit of Figure 4.  The semicircle is characteristic of a 
single "time constant".  Electrochemical impedance plots 
often contain several semicircles.  Often only a portion 
of a semicircle is seen.  
 

  

Figure 4. Simple Equivalent Circuit with One Time 
Constant 

 
Another popular presentation method is the Bode Plot. 
The impedance is plotted with log frequency on the X-
axis and both the absolute values of the impedance 
(|Z|=Z0) and the phase-shift on the Y-axis.  

The Bode Plot for the electric circuit of Figure 4 is 
shown in Figure 5.  Unlike the Nyquist Plot, the Bode 
Plot does show frequency information. 
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Figure 5. Bode Plot with One Time Constant 
 

Linearity of Electrochemistry Systems 
 

Electrical circuit theory distinguishes between linear and 
non-linear systems (circuits).  Impedance analysis of 
linear circuits is much easier than analysis of non-linear 
ones.   

The following definition of a linear system is taken from 
Signals and Systems by Oppenheim and Willsky: 

A linear system ... is one that possesses the 
important property of superposition:  If the 
input consists of the weighted sum of several 
signals, then the output is simply the 
superposition, that is, the weighted sum, of the 
responses of the system to each of the signals.  
Mathematically, let y1(t) be the response of a 

continuous time system to x1(t) ant let y2(t) be 

the output corresponding to the input x2(t).  

Then the system is linear if: 

1)  The response to x1(t) + x2(t) is y1(t) + y2(t) 

2)  The response to ax1(t) is ay1(t) ... 

For a potentiostated electrochemical cell, the input is 
the potential and the output is the current.  
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Electrochemical cells are not linear!  Doubling the 
voltage will not necessarily double the current.   

However, Figure 6 shows how electrochemical systems 
can be pseudo-linear.  If you look at a small enough 
portion of a cell's current versus voltage curve, it appears 
to be linear.   

 

Current

Voltage

 

Figure 6. Current versus Voltage Curve Showing 
Pseudo-Linearity 
 

In normal EIS practice, a small (1 to 10 mV) AC signal is 
applied to the cell.  With such a small potential signal, 
the system is pseudo-linear.  We don't see the cell's large 
nonlinear response to the DC potential because we only 
measure the cell current at the excitation frequency.   

If the system is non-linear, the current response will 
contain harmonics of the excitation frequency.  A 
harmonic is a frequency equal to an integer multipled 
by the fundamental frequency.  For example, the 
“second harmonic” is a frequency equal to two times 
the fundamental frequency. 

Some researchers have made use of this phenomenon.  
Linear systems should not generate harmonics, so the 
presence or absence of significant harmonic response 
allows one to determine the systems linearity.  Other 
researchers have intentionally used larger amplitude 
excitation potentials.  They use the harmonic response 
to estimate the curvature in the cell's current voltage 
curve.   

 

 

 

Steady State Systems 

 

Measuring an EIS spectrum takes time (often many 
hours).  The system being measured must be at a steady 
state throughout the time required to measure the EIS 
spectrum.  A common cause of problems in EIS 
measurements and analysis is drift in the system being 
measured.  

In practice a steady state can be difficult to achieve.  
The cell can change through adsorption of solution 
impurities, growth of an oxide layer, build up of reaction 
products in solution, coating degradation, or 
temperature changes, to list just a few factors.   

Standard EIS analysis tools may give you wildly 
inaccurate results on a system that is not at steady state. 

 

Time and Frequency Domains and Transforms 

 

Signal processing theory refers to data representation 
domains.  The same data can be represented in different 
domains.  In EIS, we use two of these domains, the time 
domain and the frequency domain.   

In the time domain, signals are represented as signal 
amplitude versus time.  Figure 7 demonstrates this for a 
signal consisting of two superimposed sine waves.   

Figure 7. Two Sine Waves in the Time Domain 

 

Figure 8 shows the same data in the frequency domain.  
The data is plotted as amplitude versus frequency.   
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Figure 8. Two Sine Waves in the Frequency Domain 

 

You use a transform to switch between the domains.  
The Fourier Transform takes time domain data and 
generates the equivalent frequency domain data.  The 
common term, FFT, refers to a fast, computerized 
implementation of the Fourier transform.  The inverse 
Fourier transform changes frequency domain data into 
time domain data.   

In modern EIS systems, lower frequency data are usually 
measured in the time domain.  The controlling 
computer applies a digital approximation to a sine wave 
to the cell by means of a digital-to-analog converter.  
The current response is measured using an analog-to-
digital converter.  The FFT is used to convert the current 
signal into the frequency domain.   

Details of these transforms are beyond the scope of this 
Application Note. 

 

Electrical Circuit Elements 
 

EIS data is commonly analyzed by fitting it to an 
equivalent electrical circuit model.  Most of the circuit 
elements in the model are common electrical elements 
such as resistors, capacitors, and inductors.  To be 
useful, the elements in the model should have a basis in 
the physical electrochemistry of the system.  As an 
example, most models contain a resistor that models the 
cell's solution resistance.  

Some knowledge of the impedance of the standard 
circuit components is therefore quite useful.  Table 1 
lists the common circuit elements, the equation for their 
current versus voltage relationship, and their 
impedance.  

 

Component Current Vs.Voltage Impedance 

resistor E= IR Z = R 

inductor E = L di/dt Z = jωL 

capacitor I = C dE/dt Z = 1/jωC 

Table 1. Common Electrical Elements 

 
Notice that the impedance of a resistor is independent 
of frequency and has no imaginary component.  With 
only a real impedance component, the current through 
a resistor stays in phase with the voltage across the 
resistor. 

The impedance of an inductor increases as frequency 
increases.  Inductors have only an imaginary impedance 
component.  As a result, the current through an inductor 
is phase-shifted -90 degrees with respect to the voltage.  

The impedance versus frequency behavior of a 
capacitor is opposite to that of an inductor.  A 
capacitor's impedance decreases as the frequency is 
raised.  Capacitors also have only an imaginary 
impedance component.  The current through an 
capacitor is phase shifted 90 degrees with respect to the 
voltage.  
 

Serial and Parallel Combinations of Circuit Elements  

 

Very few electrochemical cells can be modeled using a 
single equivalent circuit element.  Instead, EIS models 
usually consist of a number of elements in a network.  
Both serial (Figure 9) and parallel (Figure 10) 
combinations of elements occur.   

Fortunately, there are simple formulas that describe the 
impedance of circuit elements in both parallel and series 
combination.   

 
 

1
Z Z

2
Z
3

 
Figure 9. Impedances in Series 
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For linear impedance elements in series you calculate 
the equivalent impedance from: 

Z  =  Z  +  Z  +  Zeq 1 2 3        (9) 

 

1
Z

Z
2

Z
3

 

Figure 10. Impedances in Parallel 
 

For linear impedance elements in parallel you calculate 
the equivalent impedance from: 

 

       (10) 

We will calculate two examples to illustrate a point 
about combining circuit elements.  Suppose we have a     
1 Ω and a 4 Ω resistor in series.  The impedance of a 
resistor is the same as its resistance (see Table 1).  We 
thus calculate the total impedance as: 

Z  =  Z  +  Z  =  R +  R  =  1   +  4    =  5 eq 1 2 1  2 Ω Ω Ω
 
Resistance and impedance both go up when resistors 
are combined in series. 

Now suppose that we connect two 2 µF capacitors in 
series.  The total capacitance of the combined 
capacitors is 1 µF. 
 

 

Z  =  Z  +  Z  =  1 / j C +  1 / j C   

       =   1 / j +  1 / j 2

       =   1 / j

eq 1 2 1 2 ω ω

ω ω

ω

( ) ( )

( )

2 6 6

1 6

e e

e

− −

−
 

Impedance goes up, but capacitance goes down when 
capacitors are connected in series.  This is a 
consequence of the inverse relationship between 
capacitance and impedance. 

Physical Electrochemistry and Equivalent 
Circuit Elements  

Electrolyte Resistance 
 

Solution resistance is often a significant factor in the 
impedance of an electrochemical cell.  A modern 3 
electrode potentiostat compensates for the solution 
resistance between the counter and reference 
electrodes.  However, any solution resistance between 
the reference electrode and the working electrode must 
be considered when you model your cell. 

The resistance of an ionic solution depends on the ionic 
concentration, type of ions, temperature, and the 
geometry of the area in which current is carried.  In a 
bounded area with area, A, and length, l, carrying a 
uniform current, the resistance is defined as, 

 R
l

A
= ρ         (11) 

ρ is the solution resistivity. The reciprocal of ρ (κ) is 
more commonly used.  κ is called the conductivity of 
the solution and its relationship with solution resistance 
is: 

 R
l

A

l

RA
= ⇒ =
1

κ
κ.        (12) 

Standard chemical handbooks will often list κ values for 
specific solutions.  For other solutions, you can calculate 
κ from specific ion conductances.  The unit of κ is the 
Siemens per meter (S/m). The Siemen is the reciprocal 
of the ohm, so 1S=1/ohm.   

Unfortunately, most electrochemical cells do not have 
uniform current distribution through a definite 
electrolyte area.  The major problem in calculating 
solution resistance therefore concerns determination of 
the current flow path and the geometry of the 
electrolyte that carries the current.  A comprehensive 
discussion of the approaches used to calculate practical 
resistances from ionic conductances is well beyond the 
scope of this manual. 

Fortunately, you usually don't calculate solution 
resistance from ionic conductances. Instead, you 
calculate it when you fit experimental EIS data to a 
model.   
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Double Layer Capacitance 
 

An electrical double layer exists on the interface 
between an electrode and its surrounding electrolyte. 
This double layer is formed as ions from the solution 
"stick on" the electrode surface.  The charged electrode 
is separated from the charged ions.  The separation is 
very small, often on the order of angstroms.   

Charges separated by an insulator form a capacitor.  On 
a bare metal immersed in an electrolyte, you can 
estimate that there will be 20 to 60 µF of capacitance 

for every 1 cm2 of electrode area.   

The value of the double layer capacitance depends on 
many variables.  Electrode potential, temperature, ionic 
concentrations, types of ions, oxide layers, electrode 
roughness, impurity adsorption, etc. are all factors. 

 

Polarization Resistance 
 

Whenever the potential of an electrode is forced away 
from its value at open-circuit, that is referred to as 
“polarizing” the electrode.  When an electrode is 
polarized, it can cause current to flow through 
electrochemical reactions that occur at the electrode 
surface.  The amount of current is controlled by the 
kinetics of the reactions and the diffusion of reactants 
both towards and away from the electrode.  

In cells where an electrode undergoes uniform corrosion 
at open circuit, the open circuit potential is controlled 
by the equilibrium between two different 
electrochemical reactions.  One of the reactions 
generates cathodic current and the other anodic 
current.  The open circuit potential ends up at the 
potential where the cathodic and anodic currents are 
equal.  It is referred to as a mixed potential.  The value 
of the current for either of the reactions is known as the 
corrosion current. 

Mixed potential control also occurs in cells where the 
electrode is not corroding.  While this section discusses 
corrosion reactions, modification of the terminology 
makes it applicable in non-corrosion cases as well. 

When there are two simple, kinetically controlled 
reactions occurring, the potential of the cell is related to 
the current by the following equation.   

( ) ( )

)(

303.2303.2

c

EocE

a

EocE

corr eeII ββ
−−−

−=   (13) 

 

where, 
 

 
If we apply a small signal approximation to equation 13, 
we get the following: 

I
R

corr
a c

a c p

=
+

β β
β β2 303

1

. ( )
.( )  (14) 

which introduces a new parameter, Rp, the polarization 
resistance.  As you might guess from its name, the 
polarization resistance behaves like a resistor.   

If the Beta coefficients are known, aka the Tafel 
constants, you can calculate the Icorr from Rp using 
equation 14.  Icorr in turn can be used to calculate a 
corrosion rate.   

We will discuss the Rp parameter in more detail when 
we discuss cell models. 
 

Charge Transfer Resistance 
 

A similar resistance is formed by a single kinetically-
controlled electrochemical reaction.  In this case we do 
not have a mixed potential, but rather a single reaction 
at equilibrium. 

Consider a metal substrate in contact with an 
electrolyte.  The metal can electrolytically dissolve into 
the electrolyte, according to, 

 Me Me nen⇔ ++ −
 (15) 

or more generally 

 
−+⇔ neOxedR    (16) 

In the forward reaction in the first equation, electrons 
enter the metal and metal ions diffuse into the 
electrolyte.  Charge is being transferred. 

This charge transfer reaction has a certain speed.  The 
speed depends on the kind of reaction, the 
temperature, the concentration of the reaction products 
and the potential.   

I = the measured cell current in amps, 

Icorr = the corrosion current in amps, 

Eoc = the open circuit potential in volts, 

βa = the anodic Beta coefficient in volts/decade, 

βC = the cathodic Beta coefficient in volts/decade. 
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The general relation between the potential and the 
current (which is directly related with the amount of 
electrons and so the charge transfer via Faradays law) is: 

 

i i
C

C

nF

RT

C

C

nF

RT

O R

O R

= −
− −

0

1
( exp( ) ( exp(

( )
)

* *

α η α η
)  

(17) 

with, 

i0 = exchange current density 

CO = concentration of oxidant at the electrode 
surface 

CO* = concentration of oxidant in the bulk 

CR = concentration of reductant at the electrode 
surface 

η = overpotential (Eapp – Eoc) 

F = Faradays constant 

T = temperature 

R = gas constant 

α = reaction order 

n = number of electrons involved 

 
When the concentration in the bulk is the same as at the 
electrode surface, CO=CO* and CR=CR*.  This 

simplifies equation 17 into: 

i =  i  (exp( ) -  exp(-(1- ) )0 α η α η
nF

RT

nF

RT
(18) 

This equation is called the Butler-Volmer equation.  It is 
applicable when the polarization depends only on the 
charge-transfer kinetics. Stirring the solution to minimize 
the diffusion layer thickness can help minimize 
concentration polarization. 

When the overpotential, η, is very small and the 
electrochemical system is at equilibrium,  the expression 
for the charge transfer resistance changes to: 

 R
RT

nFi
ct =

0

    (19) 

From this equation the exchange current density can be 
calculated when Rct is known. 

 

Diffusion 
 

Diffusion also can create an impedance called a 
Warburg impedance. The impedance depends on the 
frequency of the potential perturbation. At high 
frequencies, the Warburg impedance is small since 
diffusing reactants don't have to move very far.  At low 
frequencies, the reactants have to diffuse farther, 
increasing the Warburg-impedance.    

The equation for the "infinite" Warburg impedance is: 

 Z  =   ( )  (1- j)W

-½σ ω   (20) 

On a Nyquist Plot the Warburg impedance appears as a 
diagonal line with an slope of 45°.  On a Bode Plot, the 
Warburg impedance exhibits a phase shift of 45°. 

In equation 20, σ is the Warburg coefficient defined as: 

σ =
√ √

+
√

RT

n F A C D C DO R

O R
2 2 2

1 1
( )

* *
  (21) 

 
In which, 

ω = radial frequency 

DO = diffusion coefficient of the oxidant 

DR = diffusion coefficient of the reductant 

A = surface area of the electrode 

n = number of electrons involved 

 
This form of the Warburg impedance is only valid if the 
diffusion layer has an infinite thickness.  Quite often, 
however, this is not the case.  If the diffusion layer is 
bounded, the impedance at lower frequencies no longer 
obeys the equation above.  Instead, we get the form: 

Z =   (1- j) O

-½σ ω δ
ω

tanh( ( ) )½j

D
  (22) 

with, 

δ = Nernst diffusion layer thickness 

D = some average value of the diffusion 
coefficients of the diffusing species 

 

This more general equation is called the "finite" 
Warburg.  For high frequencies where ω→∞, or for an 
infinite thickness of the diffusion layer where δ→∞, 
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tanh(δ (
jω
D)½) → 1 and equation 22 simplifies to the 

infinite Warburg impedance.  Sometimes these 
equations are written in terms of an admittance 

parameter, )2/(10 σ=Y  . See Table 3. 

 

Coating Capacitance 
 

A capacitor is formed when two conducting plates are 
separated by a non-conducting media, called the 
dielectric. The value of the capacitance depends on the 
size of the plates, the distance between the plates and 
the properties of the dielectric. The relationship is, 

 C
A

d

o r=
ε ε

    (23) 

With, 

εo = permittivity of free space (NIST calls it simply 
the “electric constant”) 

εr = dielectric constant (relative electrical 
permittivity) 

A = surface of one plate 

d = distances between two plates 

 

Whereas the permittivity of free space is a physical 
constant, the dielectric constant depends on the 
material.  Table 2 gives you some useful εr values. 

 

Material εεεεr 

vacuum 1 

water 80.1 (20°C) 

organic coating 4 - 8 

Table 2. Typical Dielectric Constants 

 
Notice the large difference between the dielectric 
constant of water and that of an organic coating.  The 
capacitance of a coated substrate changes as it absorbs 
water.  EIS can be used to measure that change. 
 

Constant Phase Element  
 

Capacitors in EIS experiments often do not behave 
ideally.  Instead, they act like a constant phase element 
as defined below.   

The impedance of a capacitor can be expressed as: 

 
0)(

1

Yj
ZCPE αω

=    (24) 

where, 

Y0 =  C =  The capacitance 

α = generally 0.9-1.0 (α=1 for an ideal 
capacitor) 

 
For a constant phase element, the exponent α is less 
than one.  The "double layer capacitor" on real cells 
often behaves like a CPE, not a capacitor.  While several 
theories (surface roughness, “leaky” capacitor, non-
uniform current distribution, etc.) have been proposed 
to account for the non-ideal behavior of the double 
layer, it is probably best to treat α as an empirical 
constant with no real physical basis. 
 

Virtual Inductor 
 

The impedance of an electrochemical cell sometimes 
also appears to be inductive.  Some workers have 
ascribed inductive behavior to the formation of a surface 
layer, like a passive layer or fouling.  Others have 
claimed that inductive behavior results from errors in 
the measurement, including potentiostat non-idealities. 

 
 

Common Equivalent Circuit Models 
 

In the following section we show some common 
equivalent circuits models.  These models can be used 
to interpret simple EIS data.  Many of these models have 
been included as standard models in the Gamry EIS300 
Electrochemical Impedance Spectroscopy Software.   

The elements used in the following equivalent circuits 
are presented in Table 3.  Equations for both the 
admittance and impedance are given for each element. 
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Table 3. Circuit Elements Used in the Models 

 

The dependent variables used in these equations are R, 
C, L, Yo, B, and α. The EIS300 uses these as fit 

parameters.  

 

Purely Capacitive Coating 
 

A metal covered with an undamaged coating generally 
has a very high impedance. The equivalent circuit for 
such a situation is in Figure 11. 

R C

 

Figure 11. Purely Capacitive Coating 
 

The model includes a resistor (due primarily to the 
electrolyte) and the coating capacitance in series.   

A Nyquist Plot for this model is shown in figure 12.  In 
making this plot, the following values were assigned: 

R = 500 Ω  (a bit high but realistic for a poorly 
conductive solution) 

C = 200 pF (realistic for a 1 cm2 sample, a 25 µm 
coating, and εr = 6) 

F
i
 = 0.1 Hz (lowest frequency is a bit higher than 

typical) 

F
f
 = 1 MHz (highest frequency at the EIS300 limit) 

0
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Figure 12. Typical Nyquist Plot for an Excellent 
Coating 
 

The value of the capacitance cannot be determined 
from the Nyquist Plot.  It can be determined by a curve 
fit or from an examination of the data points.  Notice 
that the intercept of the curve with the real axis gives an 
estimate of the solution resistance. 

The highest impedance on this graph is close to 1010 Ω.  
This is close to or above the limit of measurement 
capability of most EIS instruments. 

The same data are shown in a Bode Plot in Figure 13.  
Notice that the capacitance can be estimated from the 
graph but the solution resistance value does not appear 
on the chart.  Even at 100 kHz, the impedance of the 
coating is higher than the solution resistance. 
 

Equivalent Element Admittance Impedance 

R 1 R  R  
C j Cω  1 j Cω  

L 1 j Lω  j Lω  

W (infinite Warburg) Y j0 ( )ω  1 0Y j( )ω  

O (finite Warburg) ))(()(0 ωω jBCothjY

 

)())(( 0 ωω jYjBTanh

 Q (CPE) Y ( j )0 ω α
 1 Y ( j )0 ω α
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Figure 13. Typical Bode Plot for an Excellent Coating 
 

Water uptake into the film is usually a fairly slow 
process.  It can be measured by taking EIS spectra at set 
time intervals.  An increase in the film capacitance can 
be attributed to water uptake. 
 

Simplified Randles Cell 
 

The Simplified Randles cell is one of most common cell 
models.  It includes a solution resistance, a double layer 
capacitor and a charge transfer (or polarization 
resistance).  The double layer capacitance is in parallel 
with the charge transfer resistance.  In addition to being 
a useful model in its own right, the Simplified Randles 
Cell is the starting point for other more complex models. 

The equivalent circuit for a Simplified Randles Cell is 
shown in Figure 14.   
 

Rs

Rct

Cdl

or  Rp

 

Figure 14. Simplified Randles Cell Schematic Diagram 
 

Figure 15 is the Nyquist Plot for a typical Simplified 
Randles cell.  The parameters in this plot were 

calculated assuming a 1 cm2 electrode undergoing 
uniform corrosion at a rate of 1 mm/year.  Reasonable 
assumptions were made for the Tafel coefficients, metal 
density and equivalent weight.  The polarization 
resistance under these conditions was calculated to be 

250 Ω. A capacitance of 40 µF/cm2 and a solution 
resistance of 20 Ω were also assumed.   
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Figure 15. Nyquist Plot for 1 mm/year Corrosion Rate 

 

The Nyquist Plot for a Simplified Randles cell is always a 
semicircle.  The solution resistance can found by reading 
the real axis value at the high frequency intercept.  This 
is the intercept near the origin of the plot.  Remember 
this plot was generated assuming that Rs = 20 Ω and 

Rp.= 250 Ω 

The real axis value at the other (low frequency) intercept 
is the sum of the polarization resistance and the solution 
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resistance.  The diameter of the semicircle is therefore 
equal to the polarization resistance (in this case 250 Ω). 

Figure 16 is the Bode Plot for the same cell.   
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Figure 16. Bode Plot for 1 mm/year Corrosion Rate 

 

Mixed Kinetic and Diffusion Control 
 

First consider a cell where semi-infinite diffusion is the 
rate determining step, with a series solution resistance as 
the only other cell impedance.  (See page 13 to refresh 
your memory.) 

A Nyquist Plot for this cell is shown in Figure 17.  Rs was 

assumed to be 20 Ω.  The Warburg coefficient, σ, is 
calculated to be about 150 for the diffusion of a species 
with a bulk concentration of 100 µM and a typical 

diffusion coefficient of 1.6 x10-5 cm2/s.  Notice that the 
Warburg impedance appears as a straight line with a 
slope of 45°.     
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Figure 17. Nyquist Plot for a Warburg Impedance 

 

The same data is plotted in the Bode format in Figure 
18.  The phase angle of a Warburg impedance is 45˚. 
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Figure 18. Bode Plot for a Warburg Impedance 

Adding a double layer capacitance and a charge transfer 
impedance, we get the equivalent circuit in Figure 19.  
This is the Randles Cell; the name is taken from an 
article by J.E.B. Randles in the Discussions of the 
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Faraday Society in 1947.  Since there is no simple 
element to model a Warburg impedance, it isn’t 
possible to construct a dummy cell that models the 
Randles Cell.  
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Figure 19. Randles Cell: Equivalent Circuit with Mixed 
Kinetic and Charge Transfer Control 
 

This circuit models a cell where polarization is due to a 
combination of kinetic and diffusion processes.  The 
Nyquist Plot for this circuit is shown in Figure 20.  As in 
the above example, the Warburg coefficient , σ, is 
assumed to be about 150.  Other assumptions:  Rs = 20 

Ω  Rct = 250 Ω and Cdl = 40 µF. 
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Figure 20. Nyquist Diagram for Mixed Control Circuit 

 

The Bode Plot for the same data is shown in Figure 21.  
The lower frequency limit was moved down to 1mHz to 
better illustrate the differences in the slope of the 
magnitude and in the phase between the capacitor and 
the Warburg impedance. 
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Figure 21. Bode Plot for the Mixed Control Circuit 
 

EIS of Coated Metals 
 

The impedance behavior of a purely capacitive coating 
was discussed above.  Most paint coatings degrade with 
time, resulting in more complex behavior. 

After a certain amount of time, water penetrates into the 
coating and forms a new liquid/metal interface under 
the coating. Corrosion phenomena can occur at this 
new interface.   

The impedance of coated metals has been very heavily 
studied.  The interpretation of impedance data from 
failed coatings can be very complicated.  Only the 
simple equivalent circuit shown in Figure 22 will be 
discussed here.  Even this simple model has been the 
cause of some controversy in the literature.  Researchers 
do not agree on the assignment of impedances to 
physical processes that can occur in the cell.  The 
discussion below is therefore only one of several 
interpretations of this model. 

Gamry scientists published three articles on the 
evaluation of organic coatings with EIS in JCT 
CoatingsTech (www.coatingstech.org).  The articles are: 

• Fundamentals of Electrochemical Impedance 
Spectroscopy, August 2004. 

• Application of EIS to Coatings, October 2004. 
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• Protocols for Testing Coatings with EIS, 
February 2005. 

 
The capacitance of the intact coating is represented by 
Cc.  Its value is much smaller than a typical double layer 

capacitance.  Its units are pF or nF, not µF.  Rpo (pore 

resistance) is the resistance of ion conducting paths the 
develop in the coating.   These paths may not be 
physical pores filled with electrolyte.  On the metal side 
of the pore, we assume that an area of the coating has 
delaminated and a pocket filled with an electrolyte 
solution has formed.  This electrolyte solution can be 
very different than the bulk solution outside of the 
coating.  The interface between this pocket of solution 
and the bare metal is modeled as a double layer 
capacitance in parallel with a kinetically controlled 
charge transfer reaction. 
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Figure 22. Equivalent Circuit for a Failed Coating 
 

When you use EIS to test a coating, you fit a data curve 
to this type of model.  The fit returns estimates for the 
model parameters, such as the pore resistance or the 
double layer capacitance.  You then use these 
parameters to evaluate the degree to which the coating 
has failed. 

In order to show realistic data curves, we need to do 
this operation in reverse.  Assume that we have a 10 

cm2 sample of metal coated with a 12 µm film.  Assume 
that we have 5 delaminated areas making up a total of 
1% of the surface of the metal.  The pores in the film 
that give access into these delaminated areas can be 
represented as being solution filled cylinders, with a 30 
µm diameter.  

 

 

 

 

The parameters used to develop the curves are shown 
below: 

C
c  = 4 nF  (Calculated for 10 cm2 area , εr = 

6 and 12 µm thickness) 

R
po

 = 3400 Ω  (Calculated assuming k 
(conductivity) = 0.01 S/cm) 

R
s   = 20 Ω  (Assumed) 

C
dl  = 4 µF  (Calculated for 1% of 10 cm2 area 

and assuming 40 µF/cm2) 

Rct   = 2500 Ω  (Calculated for 1% of 10 cm2 area 
and using Polarization Resistance 
assumptions from an earlier 
discussion) 

 
With these parameters, the Nyquist Plot for this model is 
shown in Figure 23.  Notice that there are two time 
constants in this plot.  
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Figure 23. Nyquist Plot for a Failed Coating 
 

The Bode Plot of the same data is shown in Figure 24.  
The two time constants are not nearly as pronounced on 
this plot.  The plot does not go sufficiently high in 
frequency to measure the solution resistance.  In 
practice this is not a problem, because the solution 
resistance is a property of the test solution and the test 
cell geometry, not a property of the coating.  It is, 
therefore, not very interesting. 
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Figure 24. Bode Plot for a Failed Coating 
 

 

Extracting Model Parameters from Data 

Modeling Overview 
 

EIS data are generally analyzed in terms of a equivalent 
circuit model.  The analyst tries to find a model whose 
impedance matches the measured data.   

The type of electrical components in the model and 
their interconnections control the shape of the model's 
impedance spectrum.  The model's parameters (e.g., the 
resistance value of a resistor) control the size of each 
feature in the spectrum.  Both these factors affect the 
degree to which the model's impedance spectrum 
matches a measured EIS spectrum.  

In a physical model, each of the model's components is 
postulated to come from a physical process in the 
electrochemical cell.  All of the models discussed earlier 
in this chapter are physical models.  The choice of 
which physical model applies to a given cell is made 
from knowledge of the cell's physical characteristics.  
Experienced EIS analysts can also use the shape of a 
cell's EIS spectrum to help choose a model for that cell. 

Models can also be partially or completely empirical.  
The circuit components in this type of model are not 
assigned to physical processes in the cell.  The model is 
chosen to give the best possible match between the 
model's impedance and the measured impedance.   

An empirical model can be constructed by successively 
subtracting component impedances from a spectrum.  If 
the subtraction of an impedance simplifies the 
spectrum, the component is added to the model, and 
the next component impedance is subtracted from the 
simplified spectrum.  This process ends when the 
spectrum is completely gone. 

As we shall see below, physical models are generally 
preferable to empirical models. 

 

Non-linear Least Squares Fitting 
 

Modern EIS analysis uses a computer to find the model 
parameters that cause the best agreement between a 
model's impedance spectrum and a measured spectrum.  
A non-linear least squares fitting (NLLS) algorithm is 
used.   

NLLS starts with initial estimates for all the model's 
parameters.  Starting from this initial point, the algorithm 
makes a change in one of the parameter values and 
evaluates the resulting fit.  If the change improves the fit, 
the new parameter value is accepted.  If the change 
worsens the fit, the old parameter value is retained.  
Next a different parameter value is changed and the test 
is repeated.  Each trial with new values is called an 
iteration.  Iterations continue until the goodness of fit 
exceeds an acceptance criterion, or until the number of 
iterations reaches a limit. 

NLLS algorithms are not perfect.  In some cases they do 
not converge on a useful fit.  This can be the result of 
several factors including: 

• An incorrect model for the data set being fitted. 

• Poor estimates for the initial values. 

• Noise 

In addition, the fit from an NLLS algorithm can look 
poor when the fit's spectrum is superimposed on the 
data spectrum.  It appears as though the fit ignores a 
region in the data.  To a certain extent this is what 
happens.  The NLLS algorithm optimizes the fit over the 
entire spectrum.  It does not care that the fit looks poor 
over a small section of the spectrum. 
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Multiple Models 
 

The impedance spectrum in Figure 25 shows two clearly 
defined time constants.   
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Figure 25. Two Time Constant Spectrum 

 

This spectrum can be modeled by any of the equivalent 
circuits shown in Figure 26.   
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 Figure 26. Equivalent Circuit Models with Two Time 
Constants 
 

As you can see, there is not a unique equivalent circuit 
that describes the spectrum.  Therefore, you can not 
assume that an equivalent circuit that produces a good 
fit to a data set represents an accurate physical model of 
the cell.   

Even physical models are suspect in this regard.  
Whenever possible, the physical model should be 
verified before it is used.  One way to verify the model 
is to alter a single cell component (for example increase 
a paint layer thickness) and see if you get the expected 
changes in the impedance spectrum.   

Empirical models should be treated with even more 
caution.  You can always get a good looking fit by 
adding additional circuit elements to a model.  
Unfortunately, these elements may have little relevance 
to the cell processes that you are trying to study.  
Empirical models should therefore use the fewest 
elements possible. 

 

Kramers-Kronig Analysis 
 

The Kramers-Kronig (K-K) relations can be used to 
evaluate data quality.  The K-K relations demand that 
causal, complex plane spectral data shows dependence 
between magnitude and phase.   The real part of a 
spectrum can be obtained by an integration of the 
imaginary part and vice versa.    

The K-K relations will always be true for EIS data that is 
linear, causal, and stable.  If measured real and 
imaginary spectral data do not comply with the K-K 
relations, the data must violate one of these conditions.   

Unfortunately, the K-K transform requires integration 
over a range of frequency from zero to infinity.  Since 
no one can measure spectral data over that range, 
evaluating the K-K relations via integration always 
involves assumptions about the behavior of a spectrum 
outside the frequency over which it was measured.   

In practice, K-K analysis is performed by fitting a 
generalized model to spectral data.  Agarwal et al1 
proposed use of a model consisting of m series 
connected Voigt elements:  -R-(RC)m-.  A Voigt element 
is a resistor and capacitor connected in parallel.  The 
parameter m is generally equal to the number of 
complex plane data points in the spectrum.  This model 
is by definition K-K compliant.  If you can obtain a good 
fit of this model to measured data, the data must also be 
K-K compliant.  Boukamp2, proposed a means for doing 
the fit via linear equations, eliminating possible non-
convergence issues.   This is the approach taken in 
Gamry’s K-K fit within the Echem Analyst.  

In the Gamry Echem Analyst, when you select Kramers-
Kronig on an impedance menu a model of the type 
described above is fit to the selected region of the 
spectrum.   If the fit is poor, you can assume that the 
data is not K-K transformable and is therefore of poor 
quality.   There is little point fitting non-K-K compliant 
data to an equivalent circuit model.   

A tab in the Echem Analyst allows you to look at the 
goodness-of-fit and a plot of the residuals (difference 
between the fit and the data) versus frequency.   A pre-
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fit parameter allows you to select the number of Voigt 
elements in each decade of frequency.  Selection of a 
value smaller than the data density in the measured 
spectrum may improve the fit if the spectrum is noisy.   

1. P. Agarwal, M.E. Orazem and L.H. Garcia-
Rubio, J. Electrochem. Soc, 139, 1917 (1992). 

2. B.A. Boukamp, J. Electrochem. Soc, 142, 1885 
(1995). 
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