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Basics of Synthesis
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Stages of Synthesis:

• Identify the Time based State Machine
• Infer the logic and state elements.
• Perform technology independent optimization(logic simplification and state 

assignment.
• Map elements to the target technology 
• Perform technology dependent optimizations (multi level logic optimization , 

choose gate

Simulation v/s Synthesis

In HDL like Verilog every thing that can be simulated cannot be synthesized. It is 
not easy to specify synthesizable subset of an HDL. 
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Note before design and synthesis:
Your RTL design

� Functional verification by some high-level language
� Also, the code coverage of your test benches should be verified
� Coding style checking (i.e. n-Lint)
� Good coding style will reduce most hazards while synthesis
� Better optimization process results in better circuit performance
� Easy debugging after synthesis

Constraints
� The area and timing of your circuit are mainly determined by your

circuit/design architecture and coding style.
� There is always a trade-off between the design timing and area.
� In fact, a super tight timing constraint may work while synthesis,

but failed in the Place & Route (P&R) procedure.
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Example 1: Represents how can the logic in RTL can be synthesized.
//data flow

assign z = (a & b) | c ;                                                           assign z = sel ? a : b ;

Logic synthesis
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Logic synthesis

Example 2: Represents how can the logic in  RTL can be synthesized.

wire [3:0] x,y,sum;
wire  cout;
assign {cout,sum} = x + y;
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Example 3: Represents how can the logic in  RTL can be synthesized.

module parity (in,p);
parameter WIDTH = 2;  // default width is 2
input [WIDTH-1 : 0] in;
output p;

//simple approach : assign p = în;
//here is another , more general approach
reg p;
always @(in) begin: loop

integer i; 
reg parity = 0;
for (i = 0; I < WIDTH; i = i + 1)

parity = parity  ^ in[ i ] ;
p <= parity;

end 
endmodule

wire [3:0] word;
wire parity;

parity #(4) ecc (word,parity)  //specify WIDTH = 4

Logic synthesis
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Example 4: Represents how can the sequential logic in  RTL can be synthesized.

reg q;                                                                                 reg q; 
// D-latch // D-register
always @(g or d) always @(posedge clk)

begin if (g) q <= d; begin q <=d;
end end

Logic synthesis



20

• If q were simply a combinational function of d, the synthesizer could just create the appropriate 
combinational logic. 

• But since there are times when the always block executes but q isn’t assigned (e.g., when g=0), the 
synthesizer has to arrange to remember the value of “old” value of q even if d is changing,

• And it will infer the need for a storage element,(latch, register,..).

• Sometimes this inference happens even when you don’t mean it to.  

• You have to be careful to always ensure an assignment happens each time through the block if you don’t 
want storage element to appear in your design.
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Mapping to target technology

Once we have minimized the logic equations, the next step is mapping each equation 
to the gates in our target gate library.

Mapping Example:
Problem statement: find an “optimal” mapping of this circuit.

Into this 
Library
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Primitive library gates
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Possible covers

7 NAND2(3) = 21
5 INV      (2) = 10

Area cost      31

2 INV            =4
2 Nand2       =6
1Nand3        =4
1Nand4        =5

Area cost  19
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Possible covers

The above example seems promising but is there a 
systematic and efficient way to arrive at optimal answer?

1 INV            =2
1 NAND2      =3
2 NAND3      =8
1AOI21         =4

Area Cost  17
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Optimal tree covering example
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Optimal tree covering example

Refinements: timing optimization and 
area optimization.



Basic Memory Types



Memory Mapping Example
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Technology-dependenet optimizations

Additional library components: more complex cells may be slower but will reduce area 
for logic off the critical path.
Load buffering: adding buffers/inverters to improve load-induced delays along the 
critical path.
Resizing: Resize transistors in gates along critical path
Retiming: change placement of latches/registers to minimize overall cycle time
Increase routabilty over/through cells: reduce routing congestion.

Basic flow:
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DC Flow For Synthesis 

<.synopsys_dc.setup> File 

link_library:        the library used for interpreting input description
Any cells instantiated in your HDL code.
Wire load or operating condition modules used during synthesis.

target_library:      the ASIC technology which the design is mapped
symbol_library:   used for schematic generation
search_path:       the path for unsolved reference library
synthetic_path:   designware library
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Settings for Using Memory

We need the db for the memories which are to be used.

Modify <.synopsys_dc.setup> File

Set link_library: “the .db of the memory” 
Set target_library: “the db of the memory”
Add a “search path” to this file

Before the synthesis, the memory HDL model should be blocked in your netlist.
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Read File

Read netlist or other description into Design Compiler
File read

Supported formats

Verilog :. v
VHDL: .vhd
System Verilog: .sv
EDIF
Synopsys internal formats:
DB (binary): .db
Enhance db file : .ddc

Command: 
read_file -format verilog file_name; read_file -format ddc file_name
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Read File

Running the read file Command
The read_file command analyzes the design and translate it into a technology-independent 
(GTECH) design in a single step.

Running the analyse and elaborate Commands
The analyse command checks the design and reports error. The elaborate command translate the 
design into a technology-independent design (GTECH) from the intermediate files produced 
during analysis.

Running the read_verilog or read_vhdl Command
The command checks the code for correct syntax and build a generic technology (GTECH) 
netlist that Design Compiler uses to optimize the design. You can use the read_verilog or 
read_vhdl commands to both functions automatically.
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Constraint types

When Design Compiler optimizes your design, it uses two types of constraint:

Design Rule Constraints
The logic library defines these implicit constraints. These constraints are required for a design to 
function correctly. They apply to any design that uses the library. By default, the design rule 
constraints have a higher priority than optimization constraints 

Optimization Constraints
You define this explicit constraints .Optimization constraints apply to the design on which you 
are working for the duration of the dc_shell session and represent the design’s goals. During 
optimization , Design compiler attempts to meet these goals, but no design rules are violated by 
the process. To optimize a design correctly, you must set realistic constraints.
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Constraint types

.
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Using Floorplan Physical Constraints

• Design Compliler in topographical mode supports high level physical constraints such as die 
area, core area and shape, port locations, cell locations and orientations, keepout margins, 
placement blockages, preroutes, bounds, vias, tracks, voltage areas and wiring keepouts.

• Using floorplan physical constraint in topographical mode improves timing correlation mode 
using one of the following methods:

• Export the floorplan information in DEF file or a TCL script from IC Compiler and import this 
information into Design Compiler.
Create the constraints manually.

Magnet Placement
• Magnet placement improves timing and congestion correlation between Design Compiler

and IC Compiler. 
• Magnet placement moves standard cells closer to objects specified as

magnets. 
• You can use magnet placement with any netlist that is fully mapped. Use the

magnet_placement command to enable magnet placement if magnet_placement was used
in IC Compiler.
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Magnet Placement

• The tool will only perform magnet placement if the standard cells are placed. If you use the
magnet_placement command before the standard cells are placed, the tool will not pull any
objects to the specified magnet. The tool will issue a warning for this condition.

• To perform magnet placement, use the magnet_placement command with a specification of
the magnets and options for any special functions you need to perform:
dc_shell-topo> magnet_placement [options] magnet_objects

• To specify the fanout limit, use the magnet_placement_fanout_limit variable. If the
fanout of a net exceeds the specified limit, the command does not pull
cells of the net toward the magnet objects. The default magnet_placement lt setting is 1000.

• Magnet placement allows cells to overlap by default. To prevent overlapping of cells, set the
magnet_placement_disable_overlap variable to true.

• To return a collection of cells that can be moved with magnet placement, use the
get_magnet_cells command with the options you need:
dc_shell-topo > get_magnet_cells [options] magnet_list
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Compiling the Design

• When you compile a design, Design Compiler reads the HDL source code and optimizes the
design created from that description. 

• The tool uses heuristics to implement a combination of library cells that meets the functional, 
speed, and area requirements of the design according to the attributes and constraints 
placed on it. 

• The optimization process trades off timing and area constraints to provide the smallest 
possible circuit that meets the specified timing requirements.

The compile_ultracompile_ultracompile_ultracompile_ultra Command
• Use the compile_ultra command for designs that have significantly tight timing

constraints. 
• The command is the best solution for timing-critical, high performance designs,

and it allows you to apply the best possible set of timing-centric variables or commands
during compile for critical delay optimization as well as QoR improvements.
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Optimizing the design

• Optimization is the Design Compiler synthesis step that maps the design to an optimal
combination of specific target logic library cells, based on the design’s functional, speed,
and area requirements. 

• You use the compile_ultra command or the compile command to start the compile process, 
which synthesizes and optimizes the design. 

• Design Compiler provides options that enable you to customize and control optimization

Design Compiler performs the following levels of optimization in the following order:
1 . Architectural Optimization
2 . Logic-Level Optimization
3 . Gate-Level Optimization
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Architectural Optimization

Architectural Optimization
Architectural optimization works on the HDL description. It includes such high-level
synthesis tasks as
•    Sharing common subexpressions
•    Sharing resources
•    Selecting DesignWare implementations (not available in DC Expert)
•    Reordering operators
•    Identifying arithmetic expressions for datapath synthesis (not available in DC Expert)

Except for DesignWare implementations, these high-level synthesis tasks occur only during
the optimization of an unmapped design. DesignWare selection can recur after gate-level
mapping.
High-level synthesis tasks are based on your constraints and your HDL coding style. After
high-level optimization, circuit function is represented by GTECH library parts, that is, by a
generic, technology-independent netlist
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Logic level optimizations 

Logic-Level Optimization
Logic-level optimization works on the GTECH netlist. It consists of the following two
processes:
• Structuring
This process adds intermediate variables and logic structure to a design, which can
result in reduced design area. Structuring is constraint based. It is best applied to
noncritical timing paths. During structuring, Design Compiler searches for subfunctions that    

can be factored outand evaluates these factors, based on the size of the factor and the number 
of times the factor appears in the design. Design Compiler turns the subfunctions that most 
reduce the logic into intermediate variables and factors them out of the design equations.
• Flattening
The goal of this process is to convert combinational logic paths of the design to a
two-level, sum-of-products representation. Flattening is carried out independently of
constraints. It is useful for speed optimization because it leads to just two levels of
combinational logic.
During flattening, Design Compiler removes all intermediate variables, and therefore all
its associated logic structure, from a design.
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Gate level Optimization

Gate-Level Optimization
Gate-level optimization works on the generic netlist created by logic synthesis to produce a
technology-specific netlist. It includes the following processes:
• Mapping
This process uses gates (combinational and sequential) from the target libraries to
generate a gate-level implementation of the design whose goal is to meet timing and
area goals. You can use the various options of the compile_ultra or compile
command to control the mapping algorithms used by Design Compiler
• Delay optimization
The process goal is to fix delay violations introduced in the mapping phase. Delay
optimization does not fix design rule violations or meet area constraints..
• Design rule fixing
The process goal is to correct design rule violations by inserting buffers or resizing
existing cells. Design Compiler tries to fix these violations without affecting timing and
area results, but if necessary, it does violate the optimization constraints. 
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Gate level Optimization

Area optimization
• The process goal is to meet area constraints after the mapping, delay optimization, and
design rule fixing phases are completed. However, Design Compiler does not allow area
recovery to introduce design rule or delay constraint violations as a means of meeting
the area constraints.
• You can change the priority of the constraints by using the set_cost_priority command.
Also, you can disable design rule fixing by specifying the -no_design_rule option when
you run the compile_ultra command or compile command. 
• However, if you use this option, your synthesized design might violate design rules.
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Data Path Optimization

• Datapath design is commonly used in applications that contain extensive data manipulation,
such as 3-D, multimedia, and digital signal processing (DSP).

• DC Ultra enables datapath optimization by default when you use the compile_ultra command.

• Datapath optimizationis comprised of two steps: 
� Datapath extraction, which transforms arithmetic operators (for example, addition,          

subtraction, and multiplication) into datapath blocks.
� Datapath implementation, which uses a datapath generator to generate the best 

implementations for these extracted components.

Note:

Datapath optimization requires a DC Ultra license and a DesignWare license. The

DesignWare license is pulled when you run the compile_ultra command
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Data Path Optimization

analyze_datapath

Provides a datapath analysis report that lists the resources and datapath blocks used in the 

current design.

SYNTAX

analyze_datapath

[-file file_name]

ARGUMENTS

-file file_name

Specifies the file name of a log file that contains the report _resources -hierarchy and report 

_area -designware reports from a previously compiled design. This option enables you start the 

tool and use the analyze_datapath command to generate a datapath analysis report for a 

design without having to read in and compile the design a second time.
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Data Path Optimization

DESCRIPTION

• The analyze_datapath command provides a datapath analysis report that lists a 

summary of the resources and
datapath blocks used in the current design. 

• The report includes information reported by the report_resources -hierarchy 
command and the report_area -designware command.

• The report displays the area of singleton DesignWare designs and extracted 
datapath designs. 

• The report summarizes the number of singleton DesignWare components, 
summarizes the number of datapath designs, and lists the designs output width 
ranges.
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Uniquify

Select the most top design of the hierarchy:

There might be some instances which are called multiple times in the module but they have the 
same name so during compilation the tool cannot identify which instance to compile or optimize.
Uniquify assign a unique name to those instance which are called multiple times.
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Save Design

Five Design Files:

*.sdc timing constraint file for P&R
*.vg gate-level netlist for P&R
*.sdf timing file for Verilog simulation

*.db binary file ( all the constraints and synthesis results are recorded.
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Synthesis Report

� Report Design Hierarchy
� Report Area
� Design View
� Report Timing
� Critical Path Highlighting 
� Timing Slack Histogram
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What is Pipelining?

� A pipeline is a set of data processing elements connected in series, so that the output 
of one element is the input of the next one. 

� In most of the cases we create a pipeline by dividing a complex operation into simpler operations.
� We can also say that instead of taking a bulk thing and processing it at once, we break it into 

smaller pieces and process it one after another
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Design Methodologies

� Design Reuse 

� System-on-a-Chip (SoC) Design

� System Design Rules and Guidelines

� RTL Coding Guidelines

� Macro Synthesis Guidelines

� Development of Hard Macros

� Macro Deployment

� System Integration



Design Reuse - 1

• Motivation

• High cost of design and verification

• Shorter design cycles

• Higher quality demands

• Emerging System-on-a-Chip (SoC) designs

• Very short design cycles

• Large numbers of distinct designs

• Analogous to board design today
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Design Reuse - 2
• Requirements

• Correct and robust 

• Well-written, well-documented, thoroughly-commented code

• Well-designed verification suites and robust scripts

• Solves a general problem

• Easily configurable; parameterized

• Supports multiple technologies

• Soft macros: synthesis scripts span a variety of libraries

• Hard macros: porting strategies to new technologies
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Design Reuse - 3
• Requirements (continued)

• Simulates with multiple simulators

• Both VHDL and Verilog version of models and test-benches

• Work with all major commercial simulators

• Accompanied by full verification environment 

• Test benches and verification suites that provide high levels of 
verification coverage

• Verified rigorously before release

• Includes construction of actual prototype tested in actual system with 
real software
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Design Reuse - 4

• Requirements (continued)

• Documented in terms of applications and restrictions

• Valid configurations and parameter values

• Interfacing requirements and restrictions
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System-on-a-Chip (SoC) Design

• Overview 

• Example 

• Design Paradigms

• The Role of Reuse 

• Macros, Cores, and Blocks
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Example SoC
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Processor

A/D and D/A

Interface

Digital Signal 

Processor

RAM I/O Interface

System Bus



Design Paradigms - 1

• Design Flow - Spiral model instead of 
Waterfall model

• Top-down/Bottom-up Mixture instead of 
Top-down

• Construct by correction instead of Correct 
by construction
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Design Paradigms - 2

• Waterfall model
• Design flows from one phase to another

• Phases such as algorithm development, RTL coding and 
functional verification, and synthesis and timing verification,  
and physical design all performed by different teams

• Limited reverse flow in design
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Design Paradigms - 3
• Spiral model

• Teams work on multiple aspects simultaneously, performing 
incremental improvement

• Concurrent development of HW and SW

• Parallel verification and synthesis

• Floorplanning and place and route at synthesis

• Modules developed only if predesigned hard or soft macro 
unavailable

• Planned iteration throughout
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Design Paradigms - 4

• Top-down Design
• Assumes that lowest level blocks can be designed and built

• If not, start over

• Not compatible with maximum reuse of macros

• Top-down/Bottom-up Mixed Design

• Design downward, but target macros or combination of macros 
build upward
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Design Paradigms - 5

• Correct by construction 

• Focus on one pass design with goal of completely correct during 
this pass

• Construction by correction

• Begin with the realization that multiple complete iterations will 
be required

• First pass is quick to see the problems at various levels caused 
by the decisions at prior levels

• Performed design refinement several times
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The Role of Reuse

• Redesign of cores such as processors, bus interfaces, DSP 
processors, DRAM controllers, RAMS, etc. is not cost-
effective

• Redesign of common blocks such as ALUs, barrel shifters, 
adders, and multipliers, likewise, not cost effective

• Availability of well-designed macros particularly 
parameterizable versions can greatly reduce cost 
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Macros, Cores and Blocks  - 1

• Terms in header used synonymously

• Other terms:

• Subblock - subcomponent of a macro, core, or block - too small 
or specific to be a stand-alone component

• Hard macro - A hard macro is delivered to integrator as a GDSII 
file (tape-out file for fabrication) - fully designed, placed and 
routed by the supplier -
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Macros, Cores and Blocks - 2

• Soft macro - Delivered to integrator as 
synthesizable RTL code - may also include test 
benches, synthesis scripts, etc.

• Firm macro - (defined by Virtual Socket Interface 
Alliance) - RTL code with supplemental physical 
design information
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System Design Rules and Guidelines - 1

68

� Timing and Synthesis Issues

� Rule - synchronous and register-based

� Rule - document clock domains and 
frequencies

• Guideline - use the smallest possible number 
of clock domains

• If phase-locked loop (PLL) used, have 
disable or by-pass.

� Rule - document reset strategy



System Design Rules and Guidelines - 2
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� Rule - document reset strategy

• Guideline - if asynchronous, must be de-
asserted synchronously

• Guideline - Synchronous preferred

� Rule - overall design goals for timing, 
area, and power should be documented 
before macros designed or selected -
overall synth methodology planned early



System Design Rules and Guidelines - 3

• Functional Design Issues

• Rule - Design of on-chip buses that interconnect the 
various blocks must be an integral part of macro selection 
and the design process

• Rule - Develop strategy for bring-up and debug early in 
the design process

• Guideline - provide controllability and observability, the keys to 
easy debug
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System Design Rules and Guidelines - 4

• Physical Design Issues

• Rule - Floor-planning, placing and routing of 
a combination of hard and soft macros 
must be developed before hard macros are 
selected or designed

• Comment - Hard macros can be very 
detrimental to place and route

71



System Design Rules and Guidelines - 5

• Rule - Floorplanning must begin early in the 
design process

• Decide on the basic clock distribution 
structure early in the design process

• Guideline - Low speed synchronous bus 
between modules - High speed local clocks  
synchronous to the bus clock by PLLs or 
buffering - multiple of bus clock
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System Design Rules and Guidelines - 6

• Verification

• Rule - strategy must be developed and 
documented before macro selection or 
design begins

• Guideline - selection of verification tools can 
affect the coding style of macros and the 
design - testbench design must be started 
early in the design process
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System Design Rules and Guidelines - 7

• Manufacturing Test Strategies

• Rule - system-level chip manufacturing test 
strategy must be documented

• Guideline - On-chip test structures are 
recommended for all blocks - different test 
strategies for different blocks - master test 
controller
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System Design Rules and Guidelines - 8

• Guideline - Built-In Self-Test (BIST) 
recommended for RAMs - also non-BIST data 
retention tests

• Guideline - microprocessor tests usually 
involve parallel vectors and serial scan - test 
controller must provide for both

• Guideline - for other blocks, full scan is good 
choice - sometimes with logic BIST
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RTL Coding Guidelines - 1

• Fundamental Principles

• Basic Coding Practices

• Coding for Portability

• Guidelines for Clocks and Resets

• Coding for Synthesis

• Partitioning for Synthesis

• Designing with Memories
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RTL Coding Guidelines - 2

• Fundamental Principles

• Use simple constructs, basic types (for VHDL), and simple 
clocking schemes

• Be consistent in coding style, naming, and style for 
processes and state machines

• Use a regular partitioning method with module outputs 
registered and modules of about the same size

• Use comments, meaningful names and constants and 
parameters instead of numbers 
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RTL Coding Guidelines - 3

• Basic Coding Practices

• Rule - Develop a naming convention for the design

• Use lowercase letters for signal names, variable names, and port 
names

• Use uppercase letters for constants and user-defined types

• Use meaningful names

• Keep parameter names short, but descriptive
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RTL Coding Guidelines – 4
• Basic Coding Practices (continued)

• Use clk for the clock signal. If multiple clocks, use clk as the prefix 
for all clock signals.

• Use the same name for all clk signals driven by same source

• For active low signal, end with underscore _n for standardization

• Use rst for reset signals - if active low, use rst_n

• For buses, use consistent bit ordering; recommend (y downto x) 
(VHDL) or (x:0) (Verilog)

• Use same name for connected ports and signals

• Use *_r for register output, *_a for asynchronous signals, *_pn 
for signals in phase n, *_nxt for data in to register *_r, and *_z for 
internal, 3-state signal. 

• Many more!
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RTL Coding Guidelines - 5

• Coding for Portability

• Rule (VHDL) - Use only IEEE standard types

• Use std_logic instead of std_ulogic

• Be conservative re number of created types

• Do not use bit or bit_vector (no built in arithmetic)

• Do not use hard-coded values

• (VHDL) Collect all parameter values and function definitions 
into a package DesignName_package.vhd

• (Verilog) Keep ‘define statements in a separate file 
DesignName_params.v
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RTL Coding Guidelines - 6

• Avoid embedding dc_shell scripts to avoid unintended 
execution with negative impact and obsolescence

• Use technology-independent libraries to maintain technology 
independence (e.g., DW in Synopsys)

• Avoid instantiating gates in designs

• If technology-specific gates must be instantiated, isolate in 
separate module

• If gate instantiated, use technology-independent library (e.g., 
GTECH in Synopsys)
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RTL Coding Guidelines - 7

• Code for translation between VHDL and 
Verilog

• Do not use reserved keywords from Verilog as 
identifiers in a description in VHDL and vice-versa.

• In VHDL, do not use:
• generate

• block

• Code to modify constant declarations 
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RTL Coding Guidelines - 8

• Guidelines for Clocks and Resets

• Avoid mixed clock edges

• Duty cycle of clock becomes critical in timing analysis

• Separate serial scan handling required

• If required, worst case duty cycle(s) must be accurately modeled, 
duty cycle documented, and + and - edge flip-flops in separate 
modules

• Avoid clock buffers (done in physical design)

• Avoid gated clocks (technology specific, timing dependent, 
and non-scannable)
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RTL Coding Guidelines – 9

• Avoid internally-generated clocks (logic they clock cannot 
be scanned; synthesis constraints difficult to write)

• Avoid internally generated resets 

• If gated clocks, or internally-generated clocks or resets 
required, do in separate module at the top level of the 
design and partition into modules using single clock and 
reset. 

• Model gated clocks as if registers enabled.

• Model complex reset by generating reset signal in 
separate module
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RTL Coding Guidelines - 10

• Coding for Synthesis

• Infer registers

• Avoid latches

• Avoid combinational feedback

• Specify complete sensitivity lists

• In Verilog, always use non-blocking assignments in 
always@(*edge clk) 

• In VHDL, signals preferred to variables, but variables can 
be used with caution

85



RTL Coding Guidelines - 11

• Coding for Synthesis (continued)

• Use case over if-then-else whenever priority structure not 
required.

• Use separate processes for sequential state register and 
combinational logic

• In VHDL, create an enumerated type for state vector. In 
Verilog, use ‘define. Why ‘define rather than parameters? 

• Keep FSM logic separate

86



RTL Coding Guidelines - 12

• Partitioning for Synthesis

• Register all outputs

• Keep related logic together

• Separate logic with different design goals

• Avoid asynchronous logic

• Keep mergeable logic within a given module

• Avoid point-to-point exceptions and false paths such as 
multicycle paths and false paths

• Avoid top-level glue logic
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RTL Coding Guidelines - 13

• Designing with Memories

• Partition address and data registers and write enable logic 
in a separate module (allows use with both synchronous 
and asynchronous memories)

• Add interface module for asynchronous memory
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Macro Synthesis Guidelines - 1

• Basic timing budget for macro must be specified 

• Timing budgets must be developed for each subblock in the macro

• Initially synthesized to single tech library

• In productization, synthesized to multiple tech libraries
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Macro Synthesis Guidelines - 2

• Subblock Synthesis

• Typically compile-characterize-write script- reoptimize 
approach

• Macro Synthesis

• Compile individual subblocks

• Characterize-compile overall

• Perform incremental compile

• Use of RAM Compiler and Module Compiler
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Developing Hard Macros

• Hard Macro Design Process 

• Models and Documentation

• Behavioral

• Functional

• Timing

• Floorplan
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Macro Deployment - 1

• Deliverables

• Soft Macros

• RTL code

• Support files

• Documentation

• Hard Macros

• Broad set of integration models

• Documentation for integration into final chip

• Design archive of files
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Macro Deployment - 2

• Deliverables

• Soft Macros

• RTL code

• Support files

• Documentation

• Hard Macros

• Broad set of integration models

• Documentation for integration into final chip

• Design archive of files
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System Integration

• The integration process

• Selection of macros

• Design of macros

• Verification of macros

• The design flow

• Verification of design

• Overall: Verification important throughout the macro design and system 
design
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Thank You
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