
Technische Universität München

Basics of Simulink

TUM Graduate School Training

Dipl.-Ing. Markus Hornauer

Basics of Simulink

Outline

Simulink and Stateflow

Basics:

1) Simulink

• Basics

• Continuous Models

• Discrete Models

• Subsystems

• Signals

2) Stateflow

• Flow Charts

• State Charts

• Events

Advanced:

1) Libraries and Model Reference

2) Style Guidelines

3) Model Advisor

4) Report Generator and Model Comparison

5) Integrating C Code using the Legacy Code Tool

6) MATLAB Coder, Simulink Coder, Embedded Coder

2

Basics of Simulink

3

Your Expectations?

Basics of Simulink

4

Introduction to Simulink, Stateflow and

Code Generation

References to the book MATLAB – Simulink – Stateflow

(Angermann, Beuschel, Rau, Wohlfarth, Oldenburg Verlag)

- Supported by MathWorks -

Basics of Simulink

Outline

Simulink and Stateflow

Basics:

1) Simulink

• Basics

• Continuous Models

• Discrete Models

• Subsystems

• Signals

2) Stateflow

• Flow Charts

• State Charts

• Events

Advanced:

1) Libraries and Model Reference

2) Style Guidelines

3) Model Advisor

4) Report Generator and Model Comparison

5) Integrating C Code using the Legacy Code Tool

6) MATLAB Coder, Simulink Coder, Embedded Coder

5

Basics of Simulink

Introduction

Simulink

Key Features

• Graphical editor for building and managing

hierarchical block diagrams

• Libraries of predefined blocks for modeling

continuous-time and discrete-time systems

• Simulation engine with fixed-step and variable-step ODE solvers for discrete and

continuous time modelling

• Scopes and data displays for viewing simulation results

• Project and data management tools for managing model files and data

• Model analysis tools for refining model architecture and increasing simulation speed

• MATLAB Function block for importing MATLAB algorithms into models

• Legacy Code Tool for importing C and C++ code into models

• Automatic code generation capabilities for C, C++, Structured Text and HDL

• Multi domain modelling using signal flow diagrams, state machines and physical modelling

• Capabilities to directly interact with hardware and real time systems

6

Basics of Simulink

Introduction

Application Examples
7

• Plant modelling

– Modelling of nonlinear dynamic systems

(continuous-time, discrete-time, hybrid)

– Analyses of dynamic systems (pre-development)

– Optimization of dynamic systems (system design)

• Design of embedded systems

– Model-based software development

– Automatic code generation (software and

programmable hardware)

• Model-based testing

– Open- and closed-loop testing of plant model and

control software

– Formal methods for software verification

– Hardware in the loop testing

www.mathworks.com/company/user_stories/

Basics of Simulink

Simulink – Basics

Launching Simulink
8

Starting Simulink

Basics of Simulink

Simulink – Basics

Simulink Library Browser
9

Basics of Simulink

Simulink – Basics

Finding Blocks
10

Basics of Simulink

Simulink – Basics

Getting Help
11

1

2

3

Basics of Simulink

Simulink – Basics

Demonstration of Model Elements
12

Basics of Simulink

Simulink – Basics

Summary – Using Blocks and Signals
13

Adding Blocks:

• Drag and drop a block from the Simulink library into the

block diagram

• Copy a block inside the block diagram by dragging it

while holding the right mouse key

• Click into the block diagram and start to enter the name

of the block (R14b)

Connecting Blocks:

• Draw a line from the outport of one block to the inport of

a second block using the left mouse key

• To connect a block to a line, draw a line from the inport of

the block backwards to the line to connect to.

• To quick connect two blocks, click on the outport of the

first block and the inport of the second block while

keeping the CRTL-key pressed

• Click the suggested connection lines (R14b)

Basics of Simulink

Simulink – Basics

Simulation Data Inspector
14

Basics of Simulink

Outline

Simulink and Stateflow

Basics:

1) Simulink

• Basics

• Continuous Models

• Discrete Models

• Subsystems

• Signals

2) Stateflow

• Flow Charts

• State Charts

• Events

Advanced:

1) Libraries and Model Reference

2) Style Guidelines

3) Model Advisor

4) Report Generator and Model Comparison

5) Integrating C Code using the Legacy Code Tool

6) MATLAB Coder, Simulink Coder, Embedded Coder

15

Basics of Simulink

Simulink – Continuous Systems

Modeling Continuous Systems
16

• Engine provides variable-step and fixed-step ODE solvers

• Block Diagram representation of dynamic systems

• Blocks define governing equations

• Signals are propagated between blocks over time

• Remeber MuPad: 𝑚 𝑥 + b 𝑥 + 𝑘𝑥 = 0,

x 0 = 0, 𝑥 0 = 1,𝑚 = 10, 𝑏 = 1, 𝑘 = 10

• Exercise: Create a mass-spring-damper system

in Simulink

Basics of Simulink

Simulink – Continuous Systems

Algebraic Loops
17

• Error because of Direct Feedthrough
– Block input depends directly on its own output

– E.g.: Gain, Product, Sum/Subtract, Transfer Fcn

• Recommended solution: use Delay, Integrator or

other history related block

• Alternative, but bad solution:

reduce diagnostics settings and

leave solving up to Simulink

engine (not recommended!!)

Basics of Simulink

Simulink – Continuous Systems

Solver
18

• Solver?
– Determines solution at current time step

– Determines the next simulation time step

• Solver options: Fixed-Step

Ode1

Ode2

Ode3

Ode4

Ode5

Ode8

Variable-Step

Ode45

Ode23

Ode113

Ode15s

Ode23s

Ode23t

Ode23tb

Basics of Simulink

Simulink – Continuous Systems

Fixed-step Solver
19

Basics of Simulink

Simulink – Continuous Systems

Variable-step Solver
20

Basics of Simulink

Simulink – Continuous Systems

Variable-step Size
21

Max step size is the largest

time step that the solver can

take (‘auto’ means 50 steps)

Basics of Simulink

Simulink – Continuous Systems

Demo: Importing and Exporting Data
22

Basics of Simulink

Simulink – Continuous Systems

Importing Data into Simulink
23

IN

• Requires vector of time along with input values

input(t, u1…un) defined configuration parameters

CONSTANT

• Changeable on the highest hierarchy level

• Tunable with parameter objects

FROM WORKSPACE

• Requires vector of time along with input values

input(t, u1…un) defined a workspace variable

FROM FILE

• Requires vector of time along with input values

input(t, u1…un) defined in a given mat file

Basics of Simulink

OUT

• Saves all outputs together in one variable, defined in the

configuration parameters

TO WORKSPACE

• Saves the output data in a variable to the workspace,

defined in the block parameters

TO FILE

• Saves the output data in a .mat file

Simulink – Continuous Systems

Exporting Data to MATLAB Workspace
24

Basics of Simulink

Simulink – Continuous Systems

Exchanging Data with MATLAB Workspace
25

For IN and OUT blocks variables must be

defined in Configuration Parameters

Basics of Simulink

Simulink – Continuous Systems

MATLAB Embedded
26

• Subset of MATLAB for code generation

• Can be used for direct generation of

source code out of MATLAB as well as in

Simulink MATLAB Function blocks

• Enables user to reuse his MATLAB code

in Simulink

• To call unsupported functions use
eml.extrinsic or coder.extrinsic

(leads to significantly reduced

performance!!!)

Basics of Simulink

Simulink – Continuous Systems

Model and Block Callbacks
27

Basics of Simulink

Simulink – Continuous Systems

Callback Functions
28

Common tasks you can achieve by using callback functions include:

• Loading variables into the MATLAB workspace automatically when you

open your Simulink model

• Executing a MATLAB script by double-clicking on a block

• Executing a series of commands before starting a simulation

• Executing commands when a block diagram is closed

Load

Initialize

Start

Continue

Stop

Close
Help => Callback

Functions

Block CallbackModel Callback

Basics of Simulink

Outline

Simulink and Stateflow

Basics:

1) Simulink

• Basics

• Continuous Models

• Discrete Models

• Subsystems

• Signals

2) Stateflow

• Flow Charts

• State Charts

• Events

Advanced:

1) Libraries and Model Reference

2) Style Guidelines

3) Model Advisor

4) Report Generator and Model Comparison

5) Integrating C Code using the Legacy Code Tool

6) MATLAB Coder, Simulink Coder, Embedded Coder

29

Basics of Simulink

Simulink – Discrete Systems

Demo: Creating a counter
30

Exercise: Create a Stop Watch

• Combine counters to a stop watch

• Show tenth seconds, seconds, minutes and hours

• Reduce simulation speed to soft realtime

Basics of Simulink

Simulink – Discrete Systems

Multirate Systems
31

• Systems with signals that are sampled at

different rates

• Use for discrete or hybrid systems

• To connect system use rate transition blocks

• Specify specific sampling rate by variable at

each in and out port

• Different sample times need to be an

integer multiple of the highest (global)

sampling rate

• Sample Time Colors

-> fastest discrete sampling time is displayed

in red

Basics of Simulink

Outline

Simulink and Stateflow

Basics:

1) Simulink

• Basics

• Continuous Models

• Discrete Models

• Subsystems

• Signals

2) Stateflow

• Flow Charts

• State Charts

• Events

Advanced:

1) Libraries and Model Reference

2) Style Guidelines

3) Model Advisor

4) Report Generator and Model Comparison

5) Integrating C Code using the Legacy Code Tool

6) MATLAB Coder, Simulink Coder, Embedded Coder

32

Basics of Simulink

Simulink – Subsystems

Subsystems
33

• Why?
– Reduce blocks displayed in a model window

– Keep functionally related block together

– Establish hierarchical block diagram

Basics of Simulink

34

• Context menu -> Create Subsystem

• Subsystem ports

• Inside a subsystem

Simulink – Subsystems

Creating Subsystems

Basics of Simulink

Simulink – Subsystems

Atomic Subsystems
35

• Represent non-virtual systems within another system

• Have their own sampling rate

• Have their own code generating characteristics

• Have their own execution order number

Basics of Simulink

Simulink – Subsystems

Masking Subsystems
36

• Mask - Encapsulation with a UI

• Provides

– Mask icon display

– Block description

– Parameter dialog prompt

– Custom block help text

masking

mask

Basics of Simulink

Outline

Simulink and Stateflow

Basics:

1) Simulink

2) Stateflow

Advanced:

1) Libraries and Model Reference

2) Style Guidelines

3) Model Advisor

4) Report Generator and Model Comparison

5) Integrating C Code using the Legacy Code Tool

6) MATLAB Coder, Simulink Coder, Embedded Coder

37

Basics of Simulink

Simulink – Libraries and Model Reference

User Libraries
38

• Collection of reusable blocks

• Prototype block vs Reference block

• Propagation of changes to Library

– Discard

– Push

• Library Links

– Disable link

– Restore link

– Break link

• Other features

– Display in Simulink Library Browser

– Add documentation

Basics of Simulink

Simulink – Libraries and Model Reference

Model Referencing
39

• One model in another- parent and referenced model

• Advantages:

– Componentization/Modularization

– IP protection

– Multiple referencing

– Acceleration

Basics of Simulink

Outline

Simulink and Stateflow

Basics:

1) Simulink

• Basics

• Continuous Models

• Discrete Models

• Subsystems

• Signals

2) Stateflow

• Flow Charts

• State Charts

• Events

Advanced:

1) Libraries and Model Reference

2) Style Guidelines

3) Model Advisor

4) Report Generator and Model Comparison

5) Integrating C Code using the Legacy Code Tool

6) MATLAB Coder, Simulink Coder, Embedded Coder

40

Basics of Simulink

Simulink – Signals

Vectors
41

• Matrix and Vector operations possible

• Mux block to compose vector

• Demux block to extract from signal

• Increase simulation performance

Basics of Simulink

Simulink – Signals

Busses
42

• Graphical grouping of signals to a hierarchical bus signal

• Bus creators to create a bus from signal and busses

• Bus selector to select single signals or whole sub-busses

• Bus Objects can be specified

Basics of Simulink

Simulink – Signals

Simulink Model Explorer
43

Basics of Simulink

Simulink – Signals

Simulink Data Objects
44

• Simulink Parameter Object

>> Var = Simulink.Parameter

• Simulink Signal Object

>> Var = Simulink.Signal

• Simulink Bus Object

– Use Bus editor

Basics of Simulink

Simulink – Signals

Signal Logging
45

Signal Context

Menu

Configuration

Parameters

Basics of Simulink

Outline

Simulink and Stateflow

Basics:

1) Simulink

• Basics

• Continuous Models

• Discrete Models

• Subsystems

• Signals

2) Stateflow

• Flow Charts

• State Charts

• Events

Advanced:

1) Libraries and Model Reference

2) Style Guidelines

3) Model Advisor

4) Report Generator and Model Comparison

5) Integrating C Code using the Legacy Code Tool

6) MATLAB Coder, Simulink Coder, Embedded Coder

46

Basics of Simulink

Stateflow

What is Stateflow?
47

• Stateflow is a blockset for Simulink

• Stateflow extends the signal flow paradigm of Simulink with state machines

• Stateflow supports flow charts and state charts

• Charts can be implemented using C or MATLAB as action language

• Stateflow supports Mealy and Moore charts

• Events are available for asynchronous communication

• Stateflow is fully integrated with Simulink

• Stateflow supports embedded code generation

Basics of Simulink

Stateflow

When to use Stateflow?
48

na_0006: Guidelines for mixed use of Simulink and Stateflow

• If the function primarily involves complicated logical operations, use Stateflow diagrams.Use Stateflow diagrams to

implement modal logic, where the control function to be performed at the current time depends on a combination of past

and present logical conditions.

• If the function primarily involves numerical operations, use Simulink features.

na_0007: Guidelines for use of Flow Charts, Truth Tables and State Machines

• If the primary nature of the function segment is to calculate modes of operation or discrete-valued states, use state

charts. Some examples are:- Diagnostic models with pass, fail, abort, and conflict states- Model that calculates different

modes of operation for a control algorithm

• If the primary nature of the function segment involves if-then-else statements, use flowcharts or truth tables.

Basics of Simulink

Outline

Simulink and Stateflow

Basics:

1) Simulink

• Basics

• Continuous Models

• Discrete Models

• Subsystems

• Signals

2) Stateflow

• Flow Charts

• State Charts

• Events

Advanced:

1) Libraries and Model Reference

2) Style Guidelines

3) Model Advisor

4) Report Generator and Model Comparison

5) Integrating C Code using the Legacy Code Tool

6) MATLAB Coder, Simulink Coder, Embedded Coder

49

Basics of Simulink

Stateflow – Flow Charts

Demo: Flow Graph Soda Machine
50

• Flow Graphs have no action or information in state. Everything is done on

transitions.

• First condition [a>b], then action {c= 0;}

• Demo: A soda machine provides coke, orange juice and water. The user enters

the corresponding number. The machine puts out a can with the drink.

Basics of Simulink

Stateflow – Flow Charts

Basic Elements
51

Default

Transition
Transitions

Junction

Condition
Action

Terminating

Junction

Basics of Simulink

Stateflow – Flow Charts

Hints
52

• First Condition, then Action!

• Double Click keeps buttons

pressed

Basics of Simulink

Stateflow – Flow Charts

Defining Chart Data
53

Basics of Simulink

Stateflow – Flow Charts

Guidelines for Creating Flow Charts
54

• The execution has only one entry point!

• The execution has only one termination point!

• The execution can always reach the termination point!

• The flow never backtracks!

Basics of Simulink

Outline

Simulink and Stateflow

Basics:

1) Simulink

• Basics

• Continuous Models

• Discrete Models

• Subsystems

• Signals

2) Stateflow

• Flow Charts

• State Charts

• Events

Advanced:

1) Libraries and Model Reference

2) Style Guidelines

3) Model Advisor

4) Report Generator and Model Comparison

5) Integrating C Code using the Legacy Code Tool

6) MATLAB Coder, Simulink Coder, Embedded Coder

55

Basics of Simulink

Stateflow – State Charts

State Charts
56

• State charts have a internal behavior and

internal data

• Actions can be performed on entry, during

residence in the state and on exit

• A state can perform a self transition

• A state can be either active or passive

Basics of Simulink

Stateflow – State Charts

Mealy Charts, Moore Charts and Stateflow
57

• Mealy charts perform actions on transition

• Moore charts perform actions in states

• Using the Model Explorer, state charts can

be configured to Mealy, Moore or Classic

• See sf_seqrec for example

• Choosing Mealy, Moore or Classic as chart

type effects compatibility of other

MathWorks tools (e.g. Simulink Code

Inspector)

MATLAB help -> Stateflow -> Chart Programming ->

Supported State Machines -> Concepts

Basics of Simulink

Stateflow – State Charts

Action Language MATLAB vs. C
58

• Stateflow supports MATLAB and C as action

language (selected via Model Explorer)

• MATLAB as action language supports auto

correction

• For embedded code generation, C as action

language is easier to review

MATLAB Help -> Stateflow -> Chart Programming ->

Chart Programming Basics -> Concepts ->

Differences Between MATLAB and C as Action

Language Syntax

MATLAB Help -> Stateflow -> Chart Programming ->

Chart Programming Basics -> Concepts -> Action

Language Auto Correction

Basics of Simulink

Stateflow – State Charts

Demo: Autopilot Mode Control
59

Basics of Simulink

Stateflow – State Charts

Execution Order
60

true falseexecutes

does not execute

Basics of Simulink

Stateflow – State Charts

Parallel Charts and Hierarchical Charts
61

Basics of Simulink

Stateflow – State Charts

Exercise: Elevator
62

• States: InitialState, Stopped, Up, Down

• Doors may only open when elevator is stopped

• Inputs: Height, Request

• Outputs: Command, Doors

• Doors: close = false, open = true

• Command: up = 1, down = 2, stop = 3

• Height of each floor = 3

Basics of Simulink

Outline

Simulink and Stateflow

Basics:

1) Simulink

• Basics

• Continuous Models

• Discrete Models

• Subsystems

• Signals

2) Stateflow

• Flow Charts

• State Charts

• Events

Advanced:

1) Libraries and Model Reference

2) Style Guidelines

3) Model Advisor

4) Report Generator and Model Comparison

5) Integrating C Code using the Legacy Code Tool

6) MATLAB Coder, Simulink Coder, Embedded Coder

63

Basics of Simulink

Stateflow – Events

Definition
64

• Events are used for asynchronous

communication

• Events can be directed or broadcast

• Events in Stateflow can be defined as input,

local or output using the Model Explorer

• Events interact with state charts (trigger

actions in parallel states), Simulink Triggered

Subsystems and Simulink Function-Call

Subsystems

• Events can be used on transitions and within

states

MATLAB Help -> Stateflow -> Chart Programming ->

Chart Simulation Semantics -> Concepts -> How

Events Drive Chart Execution

Basics of Simulink

Stateflow – Events

Example: sf_car
65

MATLAB Help -> Stateflow->Getting Started with Stateflow -> About Event-Driven

System Modeling -> Anatomy of a Stateflow Chart

Basics of Simulink

Stateflow – Events

Direct and qualified event broadcast
66

Direct Broadcast Qualified Broadcast

Basics of Simulink

Stateflow – Events

Temporal Logic
67

Enables time-dependent logic based on event counts

Temporal logic operators:

• at(n,event): true at the nth trigger of event

• every(n,event): true at every nth trigger of event

• after(n,event): true after the nth trigger of event

• before(n,event): true before the nth trigger of event

Can be applied as an event

or condition

• after(5,tick)

• [after(5,tick)]

MATLAB Help -> Stateflow -> Chart Programming ->

Syntax for States and Transitions -> Control Chart

Execution Using Temporal Logic

Basics of Simulink

Stateflow

Functions and Keywords – Summary
68

State action keywords

• entry / en – Perform actions upon state entry

• during / du – Perform actions when staying in state

• exit / ex – Perform actions upon state exit

• on – Perform actions upon specified event

• bind – Bind events to a state

• *Note, you can combine entry, during, and exit actions with the

syntax

• en, du:

Temporal logic operators

• at(n,event) – true at the nth trigger of event

• every(n,event) – true at every nth trigger of event

• after(n,event) – true after the nth trigger of event

• before(n,event) – true before the nth trigger of event

• temporalCount(event) – returns n at the nth trigger of event,

otherwise returns 0

In these operators, you can also use the keyword sec in place of an

event. This keyword makes these operators count elapsed simulation

time instead of the number of events.

State detection

• enter(state) – Event occurs when the specified state is entered.

• exit(state) – Event occurs when the specified state is exited.

• in(state) – Returns true when state is active

Data change detection

• change(data) – Event occurs when the specified data is written.

• hasChanged(data) – True when changes have been made to

data since the last time step

• hasChangedFrom(data,x) – True when changes have been

made to data since the last time step, and last time step value was

x

• hasChangedTo(data,x) – True when changes have been made

to data since the last time step, and current time step value is x

Built-in temporal events

• tick – Event occurs whenever the Stateflow chart is updated.

• wakeup – Same as tick

Local state data

• StateA.a – Accesses local data a defined in state StateA from

outside of StateA

• StateA.e – Broadcasts local event e defined in state StateA

from outside of StateA

Event broadcast

• StateA.e – Qualified event broadcast

• send(e,StateA) – Directed event broadcast

• e – Unqualified event broadcast

Basics of Simulink

Outline

Simulink and Stateflow

Basics:

1) Simulink

• Basics

• Continuous Models

• Discrete Models

• Subsystems

• Signals

2) StateflowFlow

• Charts

• State Charts

• Events

Advanced:

1) Libraries and Model Reference

2) Style Guidelines

3) Model Advisor

4) Report Generator and Model Comparison

5) Integrating C Code using the Legacy Code Tool

6) MATLAB Coder, Simulink Coder, Embedded Coder

69

Basics of Simulink

Modeling Guidelines

Increasing Model Quality
70

Help => Simulink => Modeling Guidelines

Basics of Simulink

Outline

Simulink and Stateflow

Basics:

1) Simulink

• Basics

• Continuous Models

• Discrete Models

• Subsystems

• Signals

2) Stateflow

• Flow Charts

• State Charts

• Events

Advanced:

1) Libraries and Model Reference

2) Style Guidelines

3) Model Advisor

4) Report Generator and Model Comparison

5) Integrating C Code using the Legacy Code Tool

6) MATLAB Coder, Simulink Coder, Embedded Coder

71

Basics of Simulink

Model Advisor

Simulink Model Advisor
72

Basics of Simulink

Outline

Simulink and Stateflow

Basics:

1) Simulink

• Basics

• Continuous Models

• Discrete Models

• Subsystems

• Signals

2) Stateflow

• Flow Charts

• State Charts

• Events

Advanced:

1) Libraries and Model Reference

2) Style Guidelines

3) Model Advisor

4) Report Generator and Model Comparison

5) Integrating C Code using the Legacy Code Tool

6) MATLAB Coder, Simulink Coder, Embedded Coder

73

Basics of Simulink

Report Generator and Model Comparison

Automatic Report Generation
74

Basics of Simulink

Report Generator and Model Comparison

Compare XML Files
75

Basics of Simulink

Outline

Simulink and Stateflow

Basics:

1) Simulink

• Basics

• Continuous Models

• Discrete Models

• Subsystems

• Signals

2) Stateflow

• Flow Charts

• State Charts

• Events

Advanced:

1) Libraries and Model Reference

2) Style Guidelines

3) Model Advisor

4) Report Generator and Model Comparison

5) Integrating C Code using the Legacy Code Tool

6) MATLAB Coder, Simulink Coder, Embedded Coder

76

Basics of Simulink

Integrating C Code using the Legacy Code Tool

Introducing S-Functions
77

• S-Functions are used for:

– Hiding information about a models content (IPR)

– Speeding up simulation

– Integrating external functions written in C

• S-Functions can be created by Block Context Menu, by Legacy Code Tool, by S-

Function Builder or they can be written by hand (template available)

• S-Functions always consist of two elements:

• A .mexw32 file containing the compiled model

• A S-Function Block calling the .mexw32 file

• In most cases S-Function blocks are masked to increase usability

Basics of Simulink

Integrating C Code using the Legacy Code Tool

Demo: Legacy Code Tool
78

• LCT only creates a wrapper, which will be

removed at code generation

• Simple way to integrate C code in Simulink

• In MATLAB use ceval to integrate code

Help => „Integrating Existing C

Functions into Simulink Models with

the Legacy Code Tool”

Basics of Simulink

Outline

Simulink and Stateflow

Basics:

1) Simulink

• Basics

• Continuous Models

• Discrete Models

• Subsystems

• Signals

2) Stateflow

• Flow Charts

• State Charts

• Events

Advanced:

1) Libraries and Model Reference

2) Style Guidelines

3) Model Advisor

4) Report Generator and Model Comparison

5) Integrating C Code using the Legacy Code Tool

6) MATLAB Coder, Simulink Coder, Embedded Coder

79

Basics of Simulink

MATLAB Coder, Simulink Coder, Embedded Coder

MATLAB Coder
80

Basics of Simulink

MATLAB Coder, Simulink Coder, Embedded Coder

Simulink Coder and Embedded Coder
81

Basics of Simulink

Summary

• Simulink is a graphical modeling environment based on MATLAB

• Simulink is fully integrated in MATLAB environment

• Simulink can be used to model continuous, discrete and hybrid sytsems

• In addition, Simulink is a graphical programming language for embedded

systems

• Simulink interacts with real hardware for Hardware In The Loop or

Procesoor in the Loop setups, as well as for test beds and laboratory setups

82

Basics of Simulink

Contact

Contact for further information or feedback about this course:

Dipl.-Ing. Markus Hornauer

Institute of Flight Systems Dynamics

Boltzmannstr. 15

85748 Garching, Germany

Tel: +49 (0)89 289 16047

Fax: +49 (0)89 289 16058

Email: markus.hornauer@tum.de

83

samoconsult GmbH
safety I modeling I consulting

Markus Hornauer
High Integrity Systems Engineer

www.samoconsult.de markus.hornauer@samoconsult.de

Französische Str. 13-14

D – 10117 Berlin

+49 151 23506683

