

Basics of Simulink

TUM Graduate School Training

Dipl.-Ing. Markus Hornauer

Outline Simulink and Stateflow

Basics:

- 1) Simulink
 - Basics
 - Continuous Models
 - Discrete Models
 - Subsystems
 - Signals
- 2) Stateflow
 - Flow Charts
 - State Charts
 - Events

Advanced:

- 1) Libraries and Model Reference
- 2) Style Guidelines
- 3) Model Advisor
- 4) Report Generator and Model Comparison
- 5) Integrating C Code using the Legacy Code Tool
- 6) MATLAB Coder, Simulink Coder, Embedded Coder

Your Expectations?

Introduction to Simulink, Stateflow and Code Generation

References to the book MATLAB – Simulink – Stateflow (Angermann, Beuschel, Rau, Wohlfarth, Oldenburg Verlag) - Supported by MathWorks -

4

Outline Simulink and Stateflow

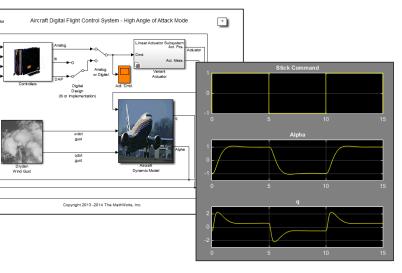
Basics:

1) Simulink

- Basics
- Continuous Models
- Discrete Models
- Subsystems
- Signals
- 2) Stateflow
 - Flow Charts
 - State Charts
 - Events

Advanced:

- 1) Libraries and Model Reference
- 2) Style Guidelines
- 3) Model Advisor
- 4) Report Generator and Model Comparison
- 5) Integrating C Code using the Legacy Code Tool
- 6) MATLAB Coder, Simulink Coder, Embedded Coder

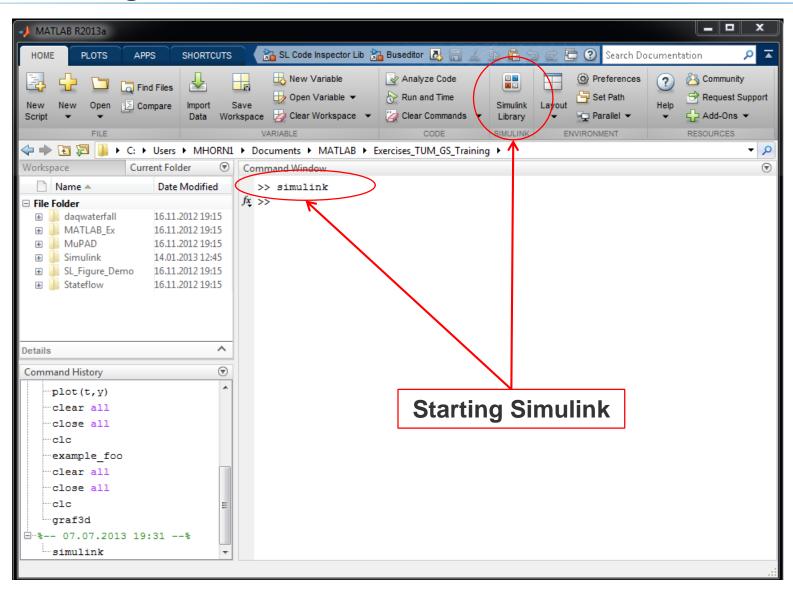

Introduction Simulink

Key Features

- Graphical editor for building and managing hierarchical block diagrams
- Libraries of predefined blocks for modeling continuous-time and discrete-time systems
- Simulation engine with fixed-step and variable-step ODE solvers for discrete and continuous time modelling
- Scopes and data displays for viewing simulation results
- Project and data management tools for managing model files and data
- Model analysis tools for refining model architecture and increasing simulation speed
- MATLAB Function block for importing MATLAB algorithms into models
- Legacy Code Tool for importing C and C++ code into models
- Automatic code generation capabilities for C, C++, Structured Text and HDL
- Multi domain modelling using signal flow diagrams, state machines and physical modelling
- Capabilities to directly interact with hardware and real time systems

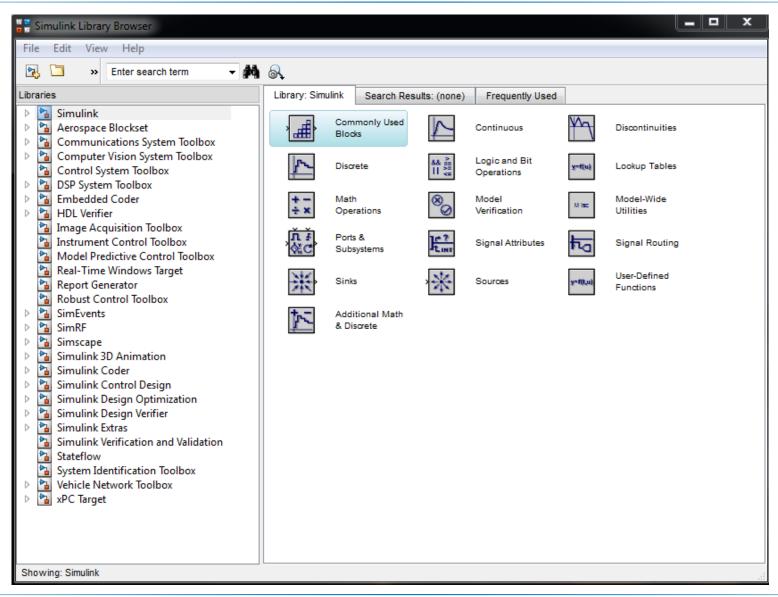
- Plant modelling
 - Modelling of nonlinear dynamic systems (continuous-time, discrete-time, hybrid)
 - Analyses of dynamic systems (pre-development)
 - Optimization of dynamic systems (system design)
- Design of embedded systems
 - Model-based software development
 - Automatic code generation (software and programmable hardware)
- Model-based testing
 - Open- and closed-loop testing of plant model and control software
 - Formal methods for software verification
 - Hardware in the loop testing

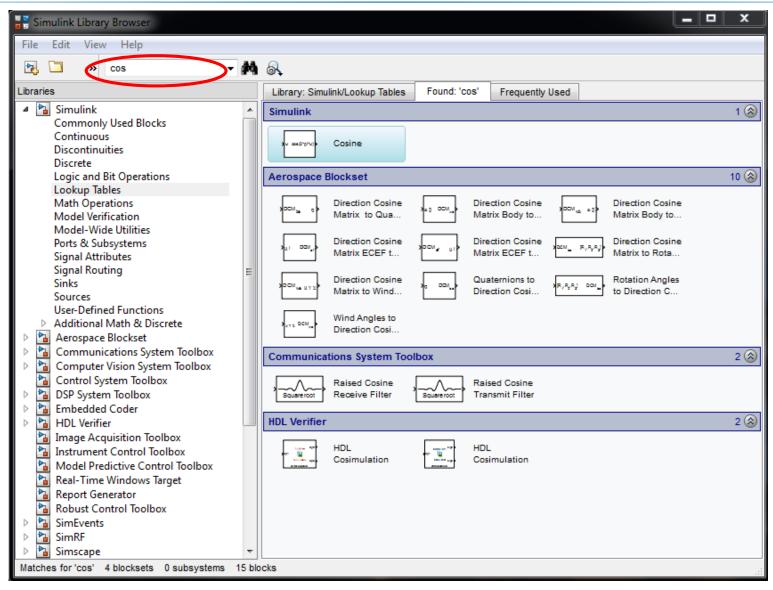
The HB-SIA aircraft on a test flight over San Francisco Bay. Photo © Solar Impulse | Revillard | Rezo.ch



A Bosch eBike Systems drive unit.

www.mathworks.com/company/user_stories/




Simulink – Basics Simulink Library Browser

Simulink – Basics Finding Blocks

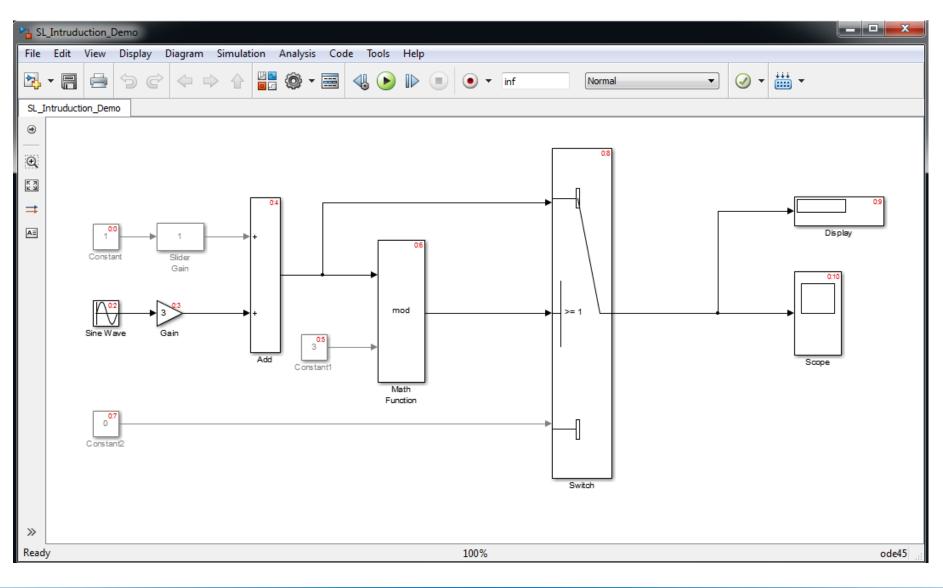
Simulink – Basics Getting Help

	(
s Help			
Using	Simulink		
Blocks	s		
Blocks	sets 🔸		
Block	Support Table	(2)	
Shorto		🙀 Function Block Parameters: Gain	
a S-Fun	octions	Gain	
Demo	26	Element-wise gain (y = K.*u) or matrix gain (y = K*u or y = u*K).	
	s of Use	Main Signal Attributes Parameter Attributes	
Patent	ts	Gain:	
About	t Simulink	1/10	
	moa		
		Multiplication: Element-wise(K.*u)	
		Sample time (-1 for inherited):	
		-1 (3)	
		📣 Туре	
		Select the type of solver you want to use to simulat	
		OK Cancel Help Apply model.	e your
		Settings Default: Variable-step	
_			
🖏 Configu	ration Parameters: untitle	d/Configuration (Active) Variable-step Step size varies from step to step, depending	a on
		Step size valies informately to step, depending	9.00

Select:	Simulation time						
Solver	Start time: 0.0 Stop time: 10.0						
…Data Import/Export	Star unic, 0.0						
Optimization	-Solver options-						
Diagnostics	-Solver options-			14/h-	t's This?		
Sample Time	Type:	Variable-step	~	Solver:		Prince)	
···Data Validity					discrete (no cont	tinuous states)	
Type Conversion	Max step size:	auto		Relative tolerance:	ode45 (Dormand	l-Prince)	
Connectivity	Min step size:	auto		Absolute tolerance:	ode23 (Bogacki-		
····Compatibility					ode 113 (Adams) ode 15s (stiff/NDF) ode 23s (stiff/Mod, Rosenbrock)		
···Model Referencing	ferencing Initial step size:	auto		Shape preservation:			
"Saving Hardware Implementation Model Referencing	Number of conse	cutive min steps:			ode23s (stiff/Mo ode23t (mod. sti ode23tb (stiff/TF	iff/Trapezoidal)	
Simulation Target	Tasking and samp	le time options					

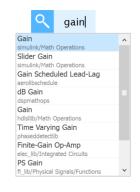
model dynamics. A variable-step solver: Reduces step size when model states change rapidly, to maintain accuracy.

 Increases step size when model states change slowly, to avoid unnecessary steps.

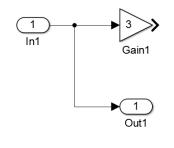

Variable-step is recommended for models in which states change rapidly or that contain discontinuities. In these cases, a variable-step solver requires fewer time steps than a fixed-step solver to achieve a comparable level of accuracy. This can significantly shorten simulation time.

Simulink – Basics

Demonstration of Model Elements



Adding Blocks:


- Drag and drop a block from the Simulink library into the block diagram
- Copy a block inside the block diagram by dragging it while holding the right mouse key
- Click into the block diagram and start to enter the name of the block (R14b)

Connecting Blocks:

- Draw a line from the outport of one block to the inport of a second block using the left mouse key
- To connect a block to a line, draw a line from the inport of the block backwards to the line to connect to.
- To quick connect two blocks, click on the outport of the first block and the inport of the second block while keeping the CRTL-key pressed
- Click the suggested connection lines (R14b)

Simulink – Basics Simulation Data Inspector

ram Simulation Analysis Code Tools Help	
⊷ 4 ⊙ № 💽 🔽 🔻 900 × 2	
Simulation Data Inspector	
Stream Selected Signals to Data Inspector	
F Log Selected Signals to Workspace	
Send Logged Workspace Data to Data Inspector	
Configure Logging and Streaming	
Image: Solution of the sector of the sect	untitled* - Simulation Data Inspector – – – – – – – – – – – – – – – – – – –
	VISUALIZE COMPARE FORMAT
	🖓 New 🛃 Import 📜 Clear Plot 👻 🦉 Group Signals 🤤 🖓 û 23 🛁 📾 📾 Create Report 🕜
	□ Open
	FILE EDIT RUNS ZOOM & PAN MEASURE & TRACE SHARE RESOURCES
	Runs Comparisons
	NAME COLOR • Run 2: Input_Mass_Spring_Damper 0.9
	PROPERTIES VALUES
	Name y1
	Color
	Units .12
	Model Input_Mass_Spring
	41.4

Outline Simulink and Stateflow

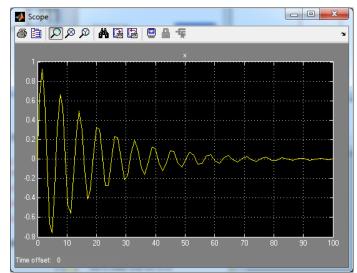
Basics:

1) Simulink

- Basics
- Continuous Models
- Discrete Models
- Subsystems
- Signals
- 2) Stateflow
 - Flow Charts
 - State Charts
 - Events

Advanced:

- 1) Libraries and Model Reference
- 2) Style Guidelines
- 3) Model Advisor
- 4) Report Generator and Model Comparison
- 5) Integrating C Code using the Legacy Code Tool
- 6) MATLAB Coder, Simulink Coder, Embedded Coder

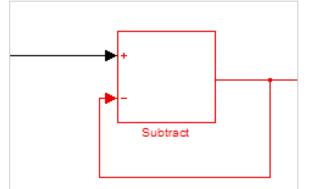

Simulink – Continuous Systems Modeling Continuous Systems

- Engine provides variable-step and fixed-step ODE solvers
- Block Diagram representation of dynamic systems
- Blocks define governing equations
- Signals are propagated between blocks over time

• Remeber MuPad:

 $m\ddot{x} + b\dot{x} + kx = 0,$ $x(0) = 0, \dot{x}(0) = 1, m = 10, b = 1, k = 10$

• Exercise: Create a mass-spring-damper system in Simulink



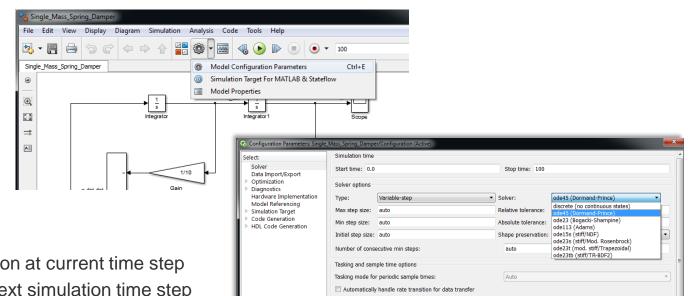
Simulink – Continuous Systems Algebraic Loops

- Error because of *Direct Feedthrough*
 - Block input depends directly on its own output
 - E.g.: Gain, Product, Sum/Subtract, Transfer Fcn
- Recommended solution: use Delay, Integrator or other history related block

Block diagram <u>'untitled'</u> contains an algebraic loop. The algebraic loop solver is disabled because of the current setting for Algebraic loop option in the Diagnostics page of the Configuration Parameters Dialog

 Alternative, but bad solution: reduce diagnostics settings and leave solving up to Simulink engine (not recommended!!)

Configuration Parameters: Sto	pWatch_Subsystems/Configuration (Active)		<u> </u>
Select:	Solver		-
Solver Data Import/Export	Algebraic loop:	warning 🔹	>
Optimization	Minimize algebraic loop.	warning 🗸 🗸	
Diagnostics Sample Time	Block priority violation:	warning •	
- Data Validity	Min step size violation:	warning •	=
	Sample hit time adjusting:	none 🔹	
Compatibility Model Referencing	Consecutive zero crossings violation:	error 🔹	
Saving	Unspecified inheritability of sample time:	warning 🔹	
Stateflow Hardware Implementat	Solver data inconsistency:	none 🔹	
Model Referencing	Automatic solver parameter selection:	warning 🔹	
Simulation Target Code Generation	Extraneous discrete derivative signals:	error 🔹	
HDL Code Generation	State name clash:	warning 🔹	
	SimState interface checksum mismatch:	warning •	
	SimState object from earlier release:	error	
		OK Cancel Help A	pply
v			199



Simulink – Continuous Systems

18

- Solver?
 - Determines solution at current time step
 - Determines the next simulation time step
- Solver options:

Fixed-Step	Variable-Step
✓Ode1	✓Ode45
✓Ode2	✓Ode23
✓Ode3	✓Ode113
✓Ode4	✓Ode15s
✓Ode5	✓Ode23s
✓Ode8	✓Ode23t
	✓Ode23tb

Higher priority value indicates higher task priority

Fixed-step Solvers.

Default: ode3 (Bogacki-Shampine)

ode3 (Bogacki-Shampine)

Computes the model's state at the next time step as an explicit function of the current value of the state and the state derivatives, using the Bogacki-Shampine Formula integration technique to compute the state derivatives. In the following example, x is the state, Dx is the state derivative, and h is the step size:

X(n+1) = X(n) + h * DX(n)

Discrete (no continuous states)

Computes the time of the next time step by adding a fixed step size to the current time.

Use this solver for models with no states or discrete states only, using a fixed step size. Relies on the model's blocks to update discrete states.

The accuracy and length of time of the resulting simulation depends on the size of the steps taken by the simulation: the smaller the step size, the more accurate the results but the longer the simulation takes.

Note The fixed-step discrete solver cannot be used to simulate models that have continuous states.

ode8 (Dormand-Prince RK8(7))

Uses the eighth-order Dormand-Prince formula to compute the model state at the next time step as an explicit function of the current value of the state and the state derivatives approximated at intermediate points.

ode5 (Dormand-Prince)

Uses the fifth-order Dormand-Prince formula to compute the model state at the next time step as an explicit function of the current value of the state and the state derivatives approximated at intermediate points.

ode4 (Runge-Kutta)

Uses the fourth-order Runge-Kutta (RK4) formula to compute the model state at the next time step as an explicit function of the current value of the state and the state derivatives.

ode2 (Heun)

Uses the Heun integration method to compute the model state at the next time step as an explicit function of the current value of the state and the state derivatives.

ode1 (Euler)

Uses the Euler integration method to compute the model state at the next time step as an explicit function of the current value of the state and the state derivatives.

ode14x (extrapolation)

Uses a combination of Newton's method and extrapolation from the current value to compute the model's state at the next time step, as an *implicit* function of the state and the state derivative at the next time step. In the following example, x is the state, Dx is the state derivative, and h is the step size:

X(n+1) - X(n) - h * DX(n+1) = 0

This solver requires more computation per step than an explicit solver, but is more accurate for a given step size.

Variable-step Solver

Variable-step Solvers.

Default: ode45 (Dormand-Prince)

ode45 (Dormand-Prince)

Computes the model's state at the next time step using an explicit Runge-Kutta (4,5) formula (the Dormand-Prince pair) for numerical integration.

ode45 is a one-step solver, and therefore only needs the solution at the preceding time point.

Use ode45 as a first try for most problems.

Discrete (no continuous states)

Computes the time of the next step by adding a step size that varies depending on the rate of change of the model's states.

Use this solver for models with no states or discrete states only, using a variable step size.

ode23 (Bogacki-Shampine)

Computes the model's state at the next time step using an explicit Runge-Kutta (2,3) formula (the Bogacki-Shampine pair) for numerical integration.

ode23 is a one-step solver, and therefore only needs the solution at the preceding time point.

ode23 is more efficient than ode45 at crude tolerances and in the presence of mild stiffness.

ode113 (Adams)

Computes the model's state at the next time step using a variable-order Adams-Bashforth-Moulton PECE numerical integration technique.

ode113 is a multistep solver, and thus generally needs the solutions at several preceding time points to compute the current solution.

ode113 can be more efficient than ode45 at stringent tolerances.

ode15s (stiff/NDF)

Computes the model's state at the next time step using variable-order numerical differentiation formulas (NDFs). These are related to, but more efficient than the backward differentiation formulas (BDFs), also known as Gear's method.

ode15s is a multistep solver, and thus generally needs the solutions at several preceding time points to compute the current solution.

ode15s is efficient for stiff problems. Try this solver if ode45 fails or is inefficient.

ode23s (stiff/Mod. Rosenbrock)

Computes the model's state at the next time step using a modified Rosenbrock formula of order 2.

ode23s is a one-step solver, and therefore only needs the solution at the preceding time point.

ode23s is more efficient than ode15s at crude tolerances, and can solve stiff problems for which ode15s is ineffective.

ode23t (Mod. stiff/Trapezoidal)

Computes the model's state at the next time step using an implementation of the trapezoidal rule with a "free" interpolant.

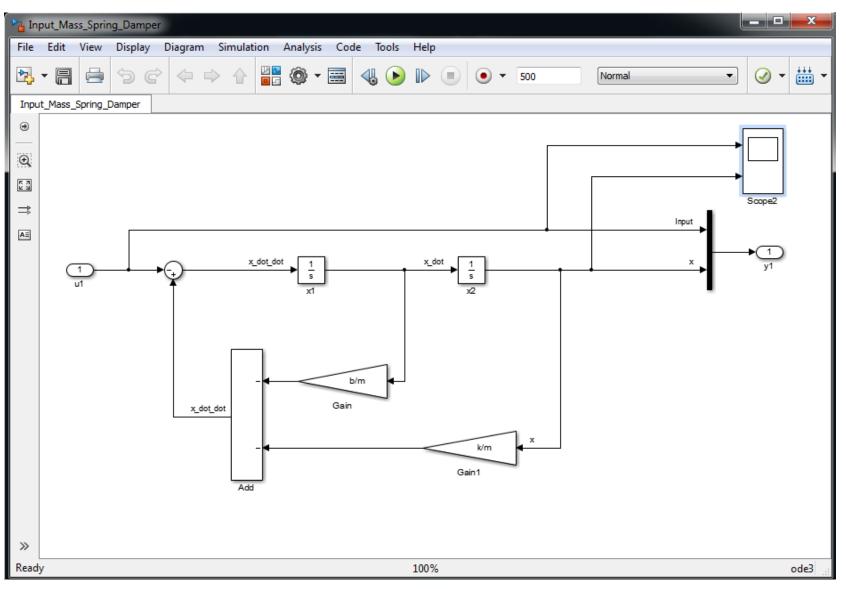
ode23t is a one-step solver, and therefore only needs the solution at the preceding time point.

Use ode23t if the problem is only moderately stiff and you need a solution with no numerical damping.

ode23tb (stiff/TR-BDF2)

Computes the model's state at the next time step using a multistep implementation of TR-BDF2, an implicit Runge-Kutta formula with a trapezoidal rule first stage, and a second stage consisting of a backward differentiation formula of order two. By construction, the same iteration matrix is used in evaluating both stages.

ode23tb is more efficient than ode15s at crude tolerances, and can solve stiff problems for which ode15s is ineffective.


$h_{\rm max} = \frac{t_{stop} - t_{sto}}{50}$	art				
	©	Configuration Parameters: untit	led/Configuration (Active)	_ 0	×
	Select: Solver	Simulation time Start time: 0.0	Stop time: 10.0		
	Data Import/Export		Stop time: 10.0		
	 Optimization Diagnostics 	Solver options Type: Variable-step	- Solver:	ode45 (Dormand-Prince)	
	Hardware Implementati Model Referencing	Max step size: auto	Relative tolerance:	1e-3	
	Simulation Target	Min step size: auto	Absolute tolerance:		
	Code Generation	Initial step size: auto	Shape preservation:	Disable All	•
		Number of consecutive min steps:	1		
		Tasking and sample time options			
		Tasking mode for periodic sample times:	Auto		~
		Automatically handle rate transition for da	ata transfer		
		Higher priority value indicates higher task	priority		
		Zero-crossing options			
		Zero-crossing control: Use local settings	Algorithm:	Nonadaptive	-
		Time tolerance: 10*128*eps Number of consecutive zero crossings:	Signal threshol	1000	
		Number of consecutive zero crossings.		1000	
Max step size is the largest					
time step that the solver can					
take ('auto' means 50 steps)					
take (auto means so steps)	0		OK	Cancel Help	Apply
	-		ÖK		1191

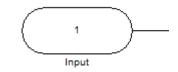
Simulink – Continuous Systems

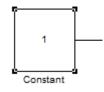
Demo: Importing and Exporting Data

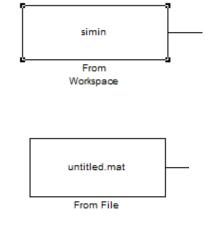
IN

 Requires vector of time along with input values input(t, u₁...u_n) defined configuration parameters

CONSTANT


- Changeable on the highest hierarchy level
- Tunable with parameter objects


FROM WORKSPACE


 Requires vector of time along with input values input(t, u₁...u_n) defined a workspace variable

FROM FILE

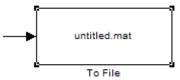
 Requires vector of time along with input values input(t, u₁...u_n) defined in a given mat file

Exporting Data to MATLAB Workspace

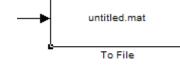
Simulink – Continuous Systems


TO WORKSPACE

Saves the output data in a variable to the workspace, ٠ defined in the block parameters

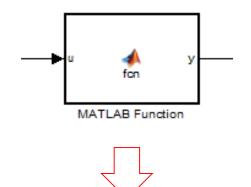

TO FILE

OUT

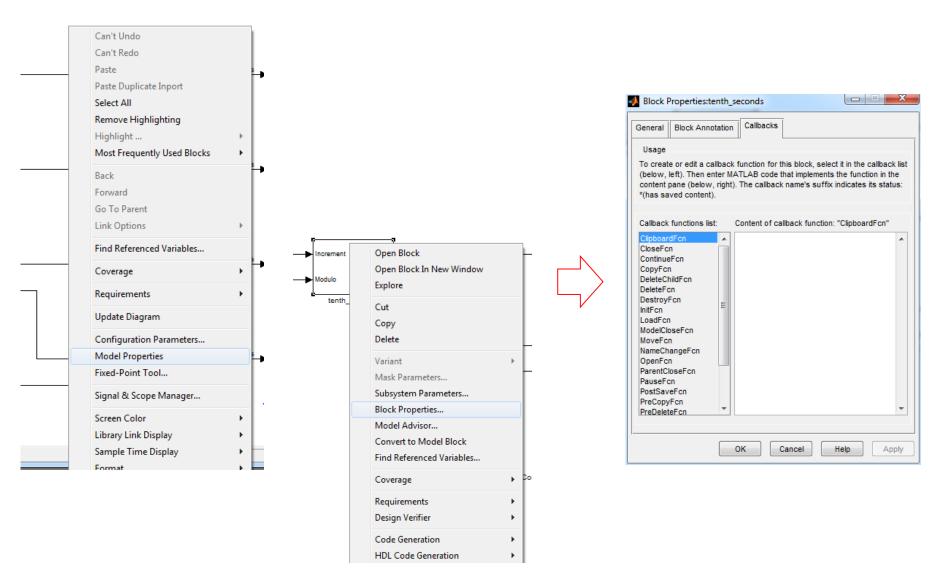

Saves the output data in a .mat file

Out

For IN and OUT blocks variables must be defined in Configuration Parameters

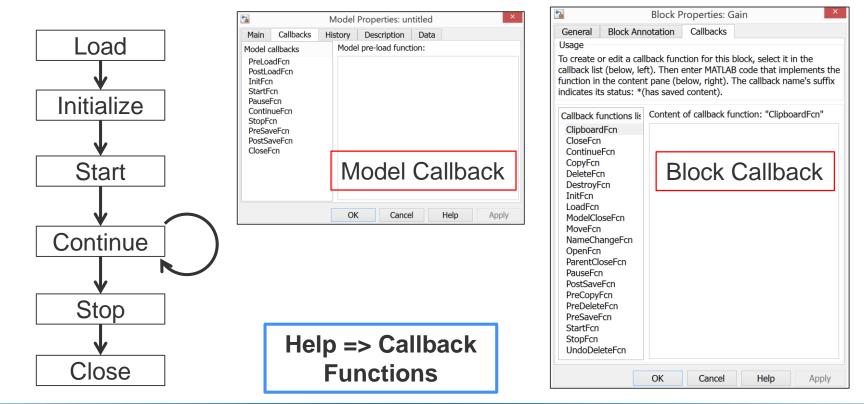

 \sim

							1	
Configuration Parameters: Single_							L	x
Select:	Load from vorksp	ace						٦Â
Solver Data Import/Export	✓ Input:	t, Command]					EditInput	
 Optimization Diagnostics 	Initial state:	Initial						
Hardware Implementation	Save to workspac	3						51
Model Referencing Simulation Target 	–Time, State, Ou	put						h
 Code Generation HDL Code Generation 	🗹 Time:	tout		Format:	Arr	ау	•	
P HDL Code Generation	States:	xout		Limit data points to	last: 100	0		
\langle	Output:	yout	>	Decimation:	1			
	Final states:	xFinal		Save complete Sim	nState in fin	al state		Ξ
	Signals							
	Signal logging	: logsout S	ignal logging fo	rmat: ModelDataLogs	•			
	Configure Sigr	als to Log						
	Data Store Mem	pry						511
	☑ Data stores:	dsmout						
								21
	Save options	_	_					
	Output options:		fine output	▼ F	Refine facto	r: 1		
		output as single object	it					
	Record and ins	pect simulation output						
								-
					ОК	Cancel	Help App	ply



- Subset of MATLAB for code generation
- Can be used for direct generation of source code out of MATLAB as well as in Simulink MATLAB Function blocks
- Enables user to reuse his MATLAB code in Simulink
- To call unsupported functions use eml.extrinsic or coder.extrinsic (leads to significantly reduced performance!!!)

Block: untitled/MATLAB Function									X
EDITOR VIEW			SL	Code Insp	ector Lib	Busedito	r 🖪 🔚 🔏 🗈	1968) » 🔺
Image: New Open Save Image: Compare → FILE FILE	Insert 🔜 fx 🗐 🕶 Comment % ‰ % Indert 🛐 💀 ঝ	Go To V Go To V Go Find V	Breakpoints	Run Model	Stop Model	Build Model	☆ Go To Diagram 丞 Edit Data	 Simulation Target View Report SIMULINK 	? Help
1 ☐ function y = fcn (u) 2 \$\$codegen 3 4 - y = u;	2011	(WY 104/12			fcn			Ln 4 Col	7
					ten			Ln 4 Col	1 .:



Callback Functions

Common tasks you can achieve by using callback functions include:

- Loading variables into the MATLAB workspace automatically when you open your Simulink model
- Executing a MATLAB script by double-clicking on a block
- Executing a series of commands before starting a simulation
- Executing commands when a block diagram is closed

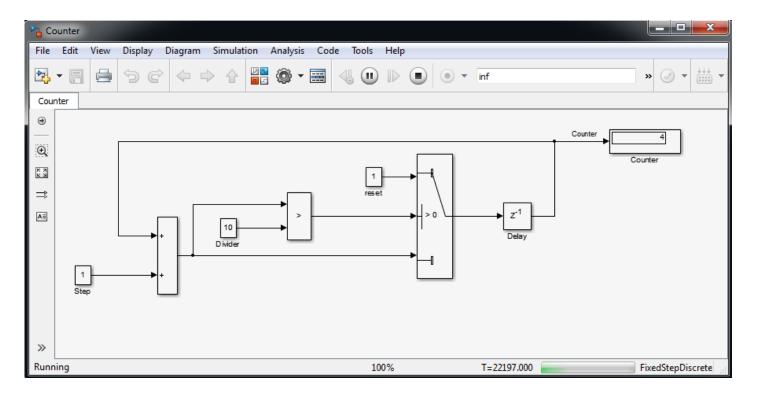
Outline Simulink and Stateflow

Basics:

1) Simulink

- Basics
- Continuous Models
- Discrete Models
- Subsystems
- Signals
- 2) Stateflow
 - Flow Charts
 - State Charts
 - Events

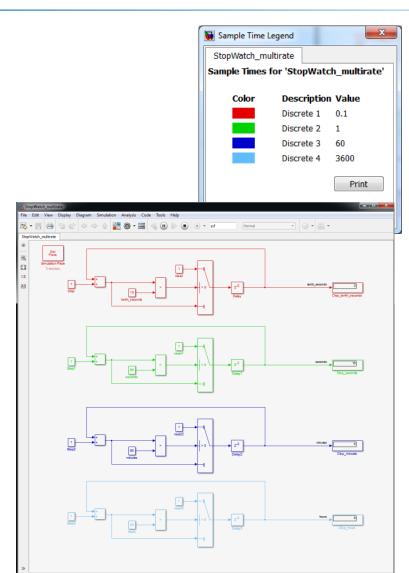
Advanced:


- 1) Libraries and Model Reference
- 2) Style Guidelines
- 3) Model Advisor
- 4) Report Generator and Model Comparison
- 5) Integrating C Code using the Legacy Code Tool
- 6) MATLAB Coder, Simulink Coder, Embedded Coder

Simulink – Discrete Systems

Demo: Creating a counter

Exercise: Create a Stop Watch


- Combine counters to a stop watch
- Show tenth seconds, seconds, minutes and hours
- Reduce simulation speed to soft realtime

Simulink – Discrete Systems **Multirate Systems**

- Systems with signals that are sampled at different rates
- Use for discrete or hybrid systems
- To connect system use rate transition blocks
- Specify specific sampling rate by variable at each in and out port
- Different sample times need to be an integer multiple of the highest (global) sampling rate
- Sample Time Colors -> fastest discrete sampling time is displayed in red

Outline Simulink and Stateflow

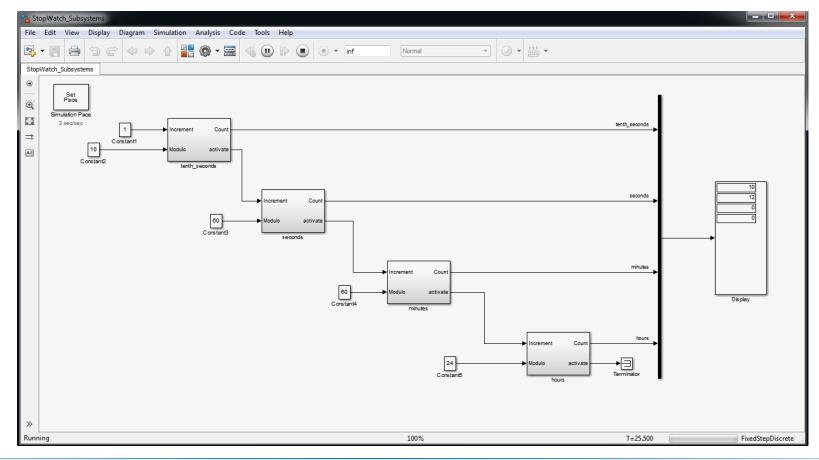
Basics:

1) Simulink

- Basics
- Continuous Models
- Discrete Models
- Subsystems
- Signals
- 2) Stateflow
 - Flow Charts
 - State Charts
 - Events

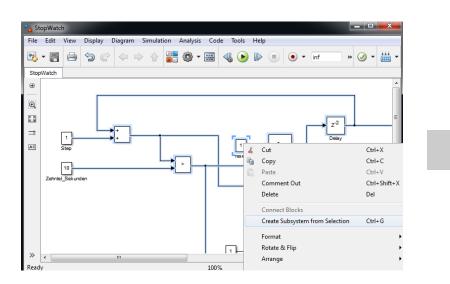
Advanced:

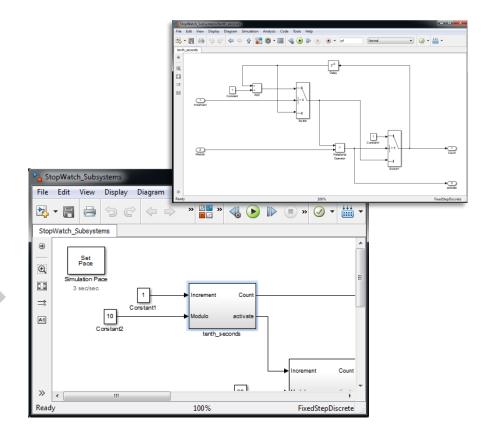
- 1) Libraries and Model Reference
- 2) Style Guidelines
- 3) Model Advisor
- 4) Report Generator and Model Comparison
- 5) Integrating C Code using the Legacy Code Tool
- 6) MATLAB Coder, Simulink Coder, Embedded Coder



Simulink – Subsystems

Subsystems


- Why?
 - Reduce blocks displayed in a model window
 - Keep functionally related block together
 - Establish hierarchical block diagram

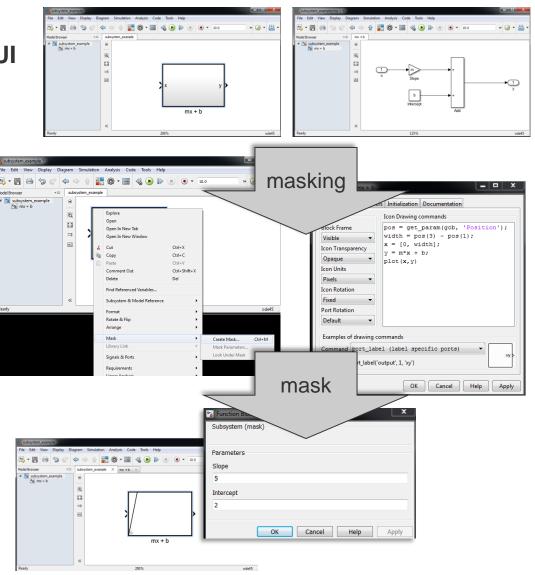


- Context menu -> Create Subsystem
- Subsystem ports
- Inside a subsystem

Simulink – Subsystems

Atomic Subsystems

- Represent non-virtual systems within another system
- Have their own sampling rate
- Have their own code generating characteristics
- Have their own execution order number


	🙀 Function Block Parameters: Atomic Subsystem 📃 💽
	Subsystem
	Select the settings for the subsystem block. To enable parameters on the Code Generation tab, on the Main tab, select 'Treat as atomic unit'.
	Main Code Generation
acteristics	Show port labels FromPortIcon
	Read/Write permissions: ReadWrite
	Name of error callback function:
er	
•	Permit hierarchical resolution: All
	Treat as atomic unit
	Minimize algebraic loop occurrences
	Sample time (-1 for inherited):
	-1
	OK Cancel Help Apply
crement Count -	_
odulo activate -	-
seconds	

Simulink – Subsystems Masking Subsystems

- Mask Encapsulation with a UI
- Provides
 - Mask icon display
 - Block description
 - Parameter dialog prompt
 - Custom block help text

Basics:

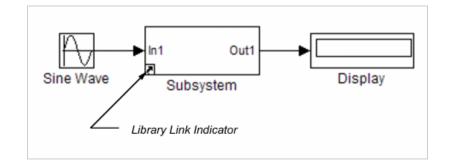
1) Simulink

2) Stateflow

Advanced:

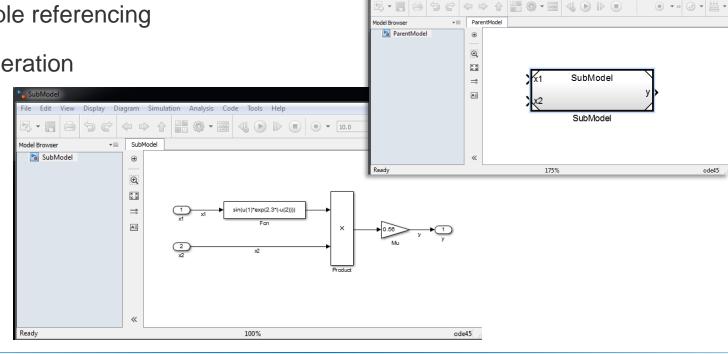
1) Libraries and Model Reference

- 2) Style Guidelines
- 3) Model Advisor
- 4) Report Generator and Model Comparison
- 5) Integrating C Code using the Legacy Code Tool
- 6) MATLAB Coder, Simulink Coder, Embedded Coder



Simulink – Libraries and Model Reference User Libraries

- Collection of reusable blocks
- Prototype block vs Reference block
- Propagation of changes to Library
 - Discard
 - Push
- Library Links
 - Disable link
 - Restore link
 - Break link
- Other features
 - Display in Simulink Library Browser
 - Add documentation



Simulink – Libraries and Model Reference **Model Referencing**

- One model in another- parent and referenced model ۲
- Advantages: ۲
 - Componentization/Modularization _
 - **IP** protection —
 - Multiple referencing —
 - Acceleration

View Display Diagram Simulation Analysis Code Tools Help

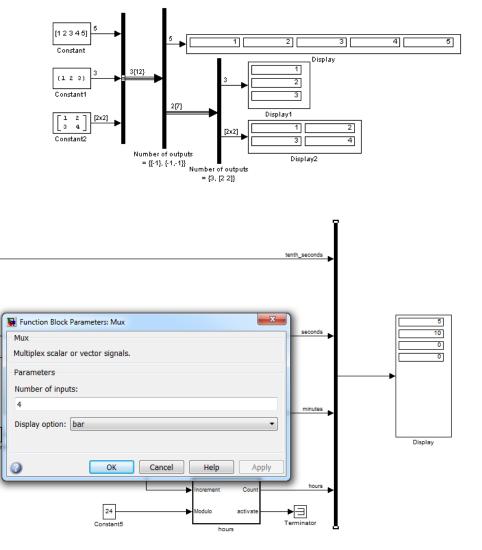
Basics of Simulink

_ •

Basics:

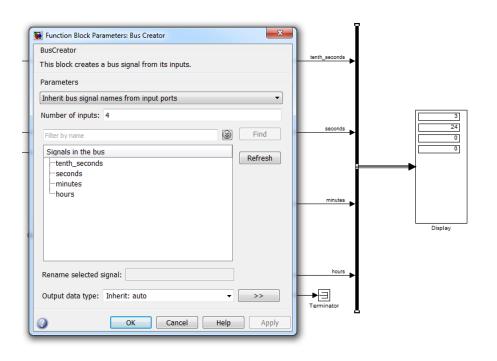
1) Simulink

- Basics
- Continuous Models
- Discrete Models
- Subsystems
- Signals
- 2) Stateflow
 - Flow Charts
 - State Charts
 - Events

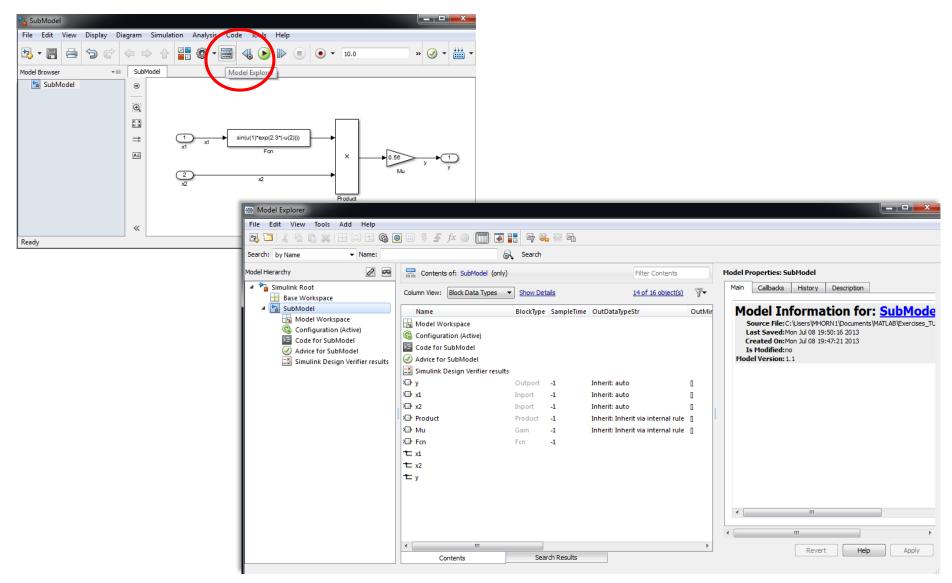

- 1) Libraries and Model Reference
- 2) Style Guidelines
- 3) Model Advisor
- 4) Report Generator and Model Comparison
- 5) Integrating C Code using the Legacy Code Tool
- 6) MATLAB Coder, Simulink Coder, Embedded Coder

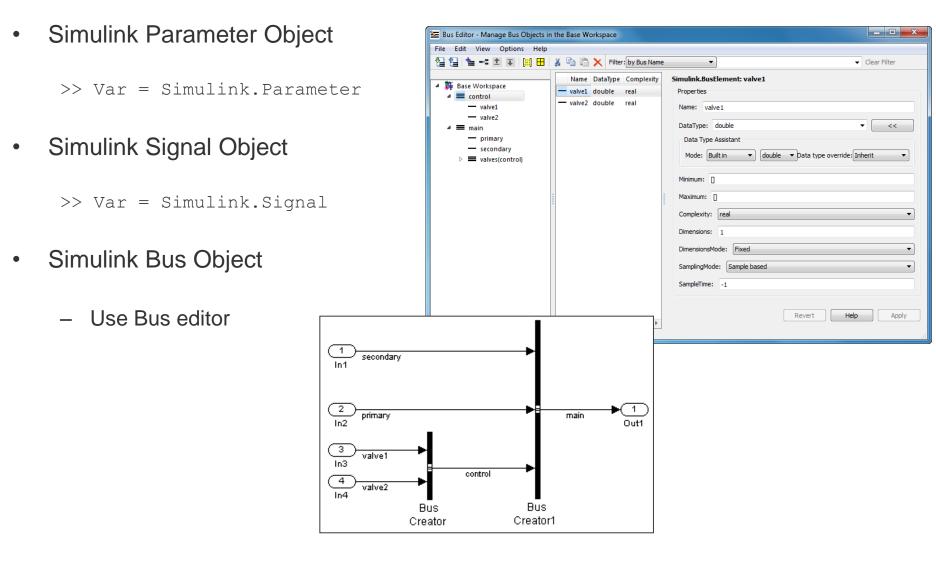
Simulink – Signals Vectors

- Matrix and Vector operations possible
- Mux block to compose vector
- Demux block to extract from signal
- Increase simulation performance



Simulink – Signals Busses


- Graphical grouping of signals to a hierarchical bus signal
- Bus creators to create a bus from signal and busses
- Bus selector to select single signals or whole sub-busses
- Bus Objects can be specified


Simulink – Signals Simulink Model Explorer

Simulink – Signals Simulink Data Objects

Simulink – Signals Signal Logging

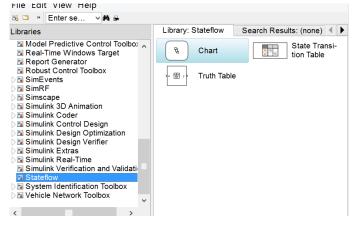
🍓 Configuration Parameters: Inpu	ut_Mass_Spring_Damper/Configuration (Active)		
Select:	Load from workspace		
Solver Data Import/Export	☑ Input: [t', Command']		
Discussion	Initial state: xInitial		
Diagnostics Hardware Implementation	Save to workspace		
	Time, State, Output		
Code Generation	Time: tout	Format:	Array
⊕ HDL Code Generation	States: xout	Limit data points to last:	st: 1000 E
		Decimation:	1
	Final states: xFinal	Save complete SimState	ate in final state
	Signals		
(Signal logging: logsout Sign	nal logging format: ModelDa	elDataLogs 🔻
	Configure Signals to Log		
	Data Store Memory		
	🕼 Data stores: dsmout		🙀 Signal Properties: x
	Save options		Signal name: x
	Save simulation output as single object Out Record and inspect simulation output		Signal name must resolve to Simulink signal object
			Logging and accessibility Code Generation Documentation
0			🛛 🗹 Log signal data 🕼 Test point
			Cogging name
		_	Use signal name
uration	1 <u>5</u> Cut		x
	grator1 Copy		Data
eters	Delete Highlight To Source		
	Highlight To Destination	N	Limit data points to last: 5000
	Remove Highlighting Signal & Scope Manager		Decimation: 2
al Contaxt	kim Open Viewer	,	
al Context	Create & Connect Viewer		
u	Disconnect Viewer	•	
м	100% Signal Properties	·	
	Linearization Points	•	OK Cancel Help Apply

Basics:

1) Simulink

- Basics
- Continuous Models
- Discrete Models
- Subsystems
- Signals

2) Stateflow


- Flow Charts
- State Charts
- Events

- 1) Libraries and Model Reference
- 2) Style Guidelines
- 3) Model Advisor
- 4) Report Generator and Model Comparison
- 5) Integrating C Code using the Legacy Code Tool
- 6) MATLAB Coder, Simulink Coder, Embedded Coder

- Stateflow is a blockset for Simulink
- Stateflow extends the signal flow paradigm of Simulink with state machines
- Stateflow supports flow charts and state charts
- Charts can be implemented using C or MATLAB as action language
- Stateflow supports Mealy and Moore charts
- Events are available for asynchronous communication
- Stateflow is fully integrated with Simulink
- Stateflow supports embedded code generation

na_0006: Guidelines for mixed use of Simulink and Stateflow

- If the function primarily involves complicated logical operations, use Stateflow diagrams. Use Stateflow diagrams to implement modal logic, where the control function to be performed at the current time depends on a combination of past and present logical conditions.
- If the function primarily involves numerical operations, use Simulink features.

na_0007: Guidelines for use of Flow Charts, Truth Tables and State Machines

- If the primary nature of the function segment is to calculate modes of operation or discrete-valued states, use state charts. Some examples are:- Diagnostic models with pass, fail, abort, and conflict states- Model that calculates different modes of operation for a control algorithm
- If the primary nature of the function segment involves if-then-else statements, use flowcharts or truth tables.

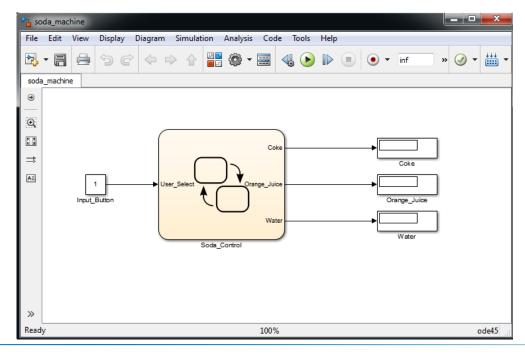
Basics:

1) Simulink

- Basics
- Continuous Models
- Discrete Models
- Subsystems
- Signals

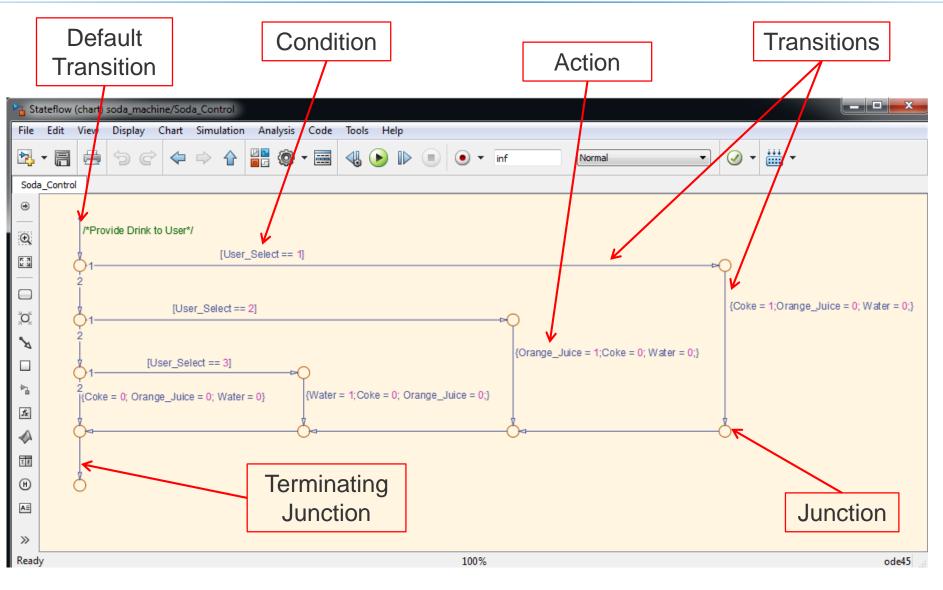
2) Stateflow

- Flow Charts
- State Charts
- Events


- 1) Libraries and Model Reference
- 2) Style Guidelines
- 3) Model Advisor
- 4) Report Generator and Model Comparison
- 5) Integrating C Code using the Legacy Code Tool
- 6) MATLAB Coder, Simulink Coder, Embedded Coder

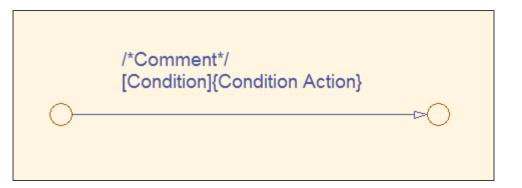
Stateflow – Flow Charts Demo: Flow Graph Soda Machine

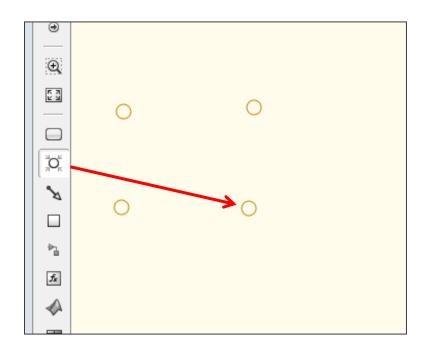
- Flow Graphs have no action or information in state. Everything is done on transitions.
- First condition [a>b], then action {c= 0;}
- Demo: A soda machine provides coke, orange juice and water. The user enters the corresponding number. The machine puts out a can with the drink.



Stateflow – Flow Charts

Basic Elements





Stateflow – Flow Charts Hints

• First Condition, then Action!

 Double Click keeps buttons pressed

Defining Chart Data

📅 Model Explorer	
File Edit View Tools Add Help	
🔁 🗀 🔏 🖶 🚔 🗮 📖 🗖 🍪 🛛	
Search: by Name 👻 Name:	Search
Model Hierarchy 🖉 🖂	Contents of: soda_machine/Soda_Control (only) Filter Contents Data User_Select
 Simulink Root Base Workspace 	Column View: Stateflow Show Details 4 of 29 object(s) T
4 🎦 soda_machine	Name Scope Port Resolve Signal DataType Size Initia
Model Workspace Code for soda_machine	Imput Imput Imput Imput Port: Imput
Code for soda_machine Advice for soda_machine	Coke Output 1 boolean Size: Constant Variable size
Simulink Design Verifier results	Orange_Juice Output 2 boolean Complexity: Input
🙆 Configuration (Active)	Water Output 3 boolean Output Output Output >>
Soda_Control	
	Lock data type setting against changes by the fixed-point tools
	- Limit range
	Minimum: Maximum:
	Watch in debugger
	Revert Help Apply
	Contents Search Results

- The execution has only one entry point!
- The execution has only one termination point!
- The execution can always reach the termination point!
- The flow never backtracks!

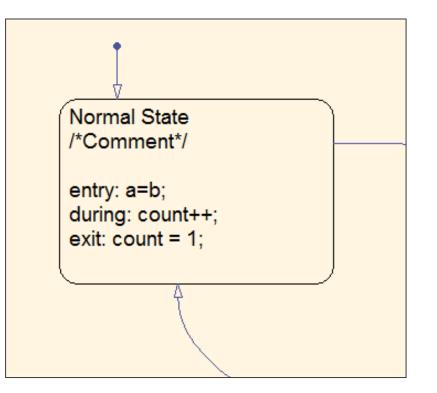
Basics:

1) Simulink

- Basics
- Continuous Models
- Discrete Models
- Subsystems
- Signals

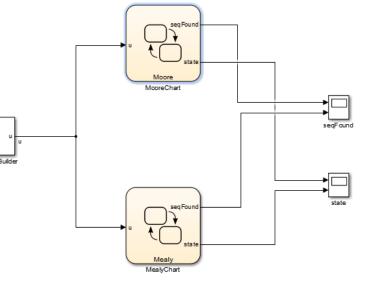
2) Stateflow

- Flow Charts
- State Charts
- Events


- 1) Libraries and Model Reference
- 2) Style Guidelines
- 3) Model Advisor
- 4) Report Generator and Model Comparison
- 5) Integrating C Code using the Legacy Code Tool
- 6) MATLAB Coder, Simulink Coder, Embedded Coder

State Charts

- State charts have a internal behavior and internal data
- Actions can be performed on entry, during residence in the state and on exit
- A state can perform a self transition
- A state can be either active or passive



Stateflow – State Charts Mealy Charts, Moore Charts and Stateflow

- Mealy charts perform actions on transition
- Moore charts perform actions in states
- Using the Model Explorer, state charts can be configured to Mealy, Moore or Classic
- See sf_seqrec for example
- Choosing Mealy, Moore or Classic as chart type effects compatibility of other MathWorks tools (e.g. Simulink Code Inspector)

Copyright 2006-2009 The MathWorks, Inc.

MATLAB help -> Stateflow -> Chart Programming -> Supported State Machines -> Concepts

싄

Stateflow – State Charts Action Language MATLAB vs. C

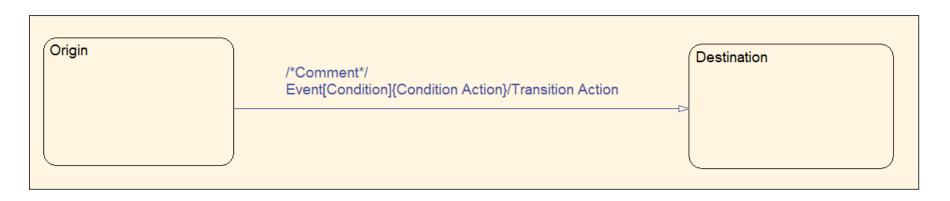
- Stateflow supports MATLAB and C as action language (selected via Model Explorer)
- MATLAB as action language supports auto correction
- For embedded code generation, C as action language is easier to review

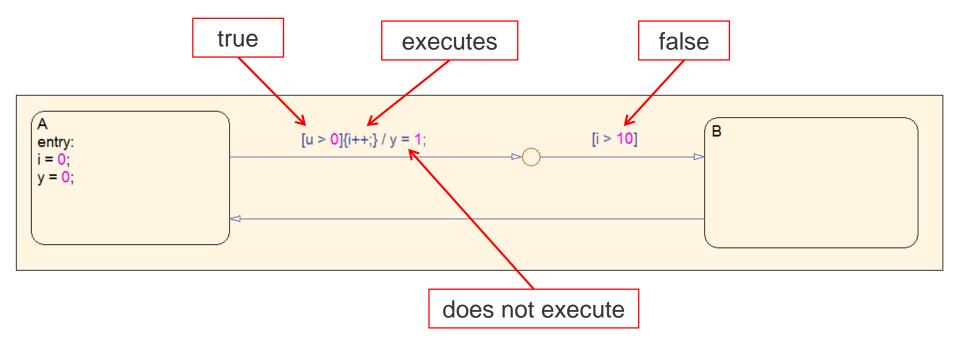
MATLAB Help -> Stateflow -> Chart Programming -> Chart Programming Basics -> Concepts -> Differences Between MATLAB and C as Action Language Syntax

MATLAB Help -> Stateflow -> Chart Programming -> Chart Programming Basics -> Concepts -> Action Language Auto Correction

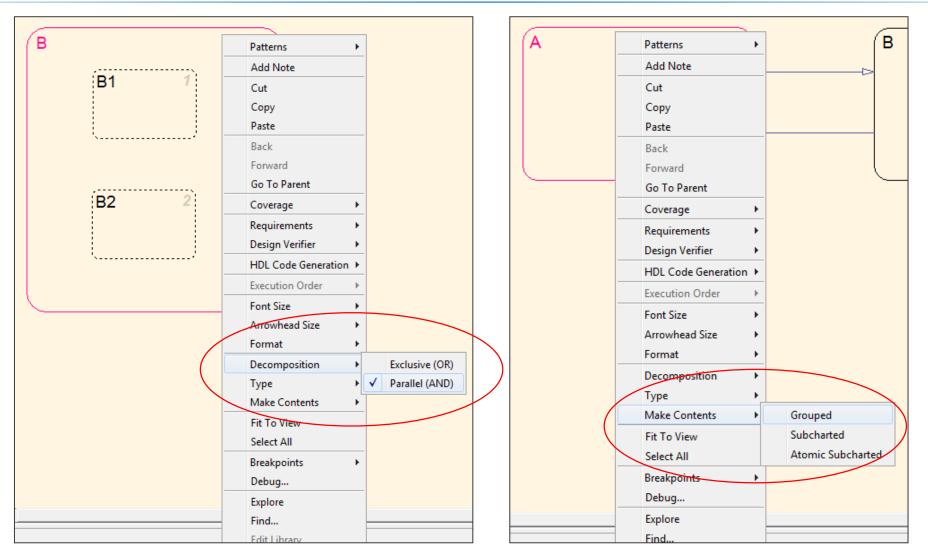
Chart: shift_logic				
General	Fixed-point properties Documentat	ion		
Name: <u>shift_logic</u>				
Machine: (n	machine) sf_car			
Action Lang	guage: MATLAB			
State Machir	ine Type: Classic •			
Update met	thod: Discrete • Sample Time: 0.0	4		
✓ User specified state/transition execution order				
Export Chart Level Functions (Make Global)				
Execute	e (enter) Chart At Initialization			
Initialize Outputs Every Time Chart Wakes Up				
Enable S	Super Step Semantics			
Support variable-size arrays				
Saturate on integer overflow				

Stateflow – State Charts

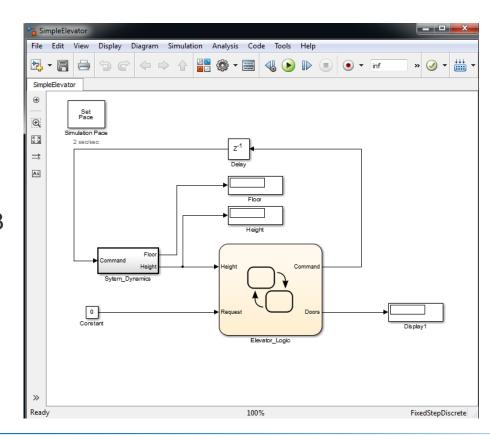

Demo: Autopilot Mode Control


	🗇 🕑 🗇 🔶 🏠 🎬 🎕 👻 🐻 🕷 💿 🕼 🔳 💿 🔹 inf 👘 Normal 🔹 🖉 🖉 🖓 🗸 🛗 🗸
_Modes_LOGIC	
	Î.
	atic_Mode_active SWI_Controller_On = 1;
	av_Modes
	Nav_Mode_1_active [SWI_Controller_Mode == 128] Nav_Mode_2_active entry: Nav_Mode_Switch = 2; [SWI_Controller_Mode == 256] entry: Nav_Mode_Switch = 3;
Ń	errtical_Path_Modes 2
	Gamma_Off [SWI_Controller_Mode == 32] Gamma_On
	entry: Path_Mode_Switch = 0 [SWI_Controller_Mode == 16] entry: Path_Mode_Switch = 1
1	elocity_Control_Modes
	[CMI Controller Made == 542]
	Autothrust_On entry: Controller_Mode_Switch = 1; [SWI_Controller_Mode == 512] Hold_Vel_On entry: Controller_Mode_Switch = 2; [SWI_Controller_Mode == 2048] [SWI_Controller_Mode == 1024] Hold_Gamma_On entry: Controller_Mode == 512] SWI_Controller_Mode == 1024] Hold_Gamma_On entry: Controller_Mode == 512]
	entry: Controller_Mode_Switch = 1;
Mai	entry: Controller_Mode_Switch = 1; 1 [SWI_Controller_Mode == 2048] entry: Controller_Mode_Switch = 2; SWI_Controller_Mode == 1024] [SWI_Controller_Mode == 1024] Image: Switch = 3; Image: Switch = 3; SWI_Controller_Mode == 1024] 1 Hold_Gamma_On_entry: Controller_Mode_Switch = 3; Image: Switch = 3; SWI_Controller_Mode > 2] [SWI_Controller_Mode > 2] [SWI_Controller_Mode > 2]
Mai	entry: Controller_Mode_Switch = 1; 1 [SWI_Controller_Mode == 2048] entry: Controller_Mode_Switch = 2; i [SWI_Controller_Mode == 2048] [SWI_Controller_Mode == 1024] i i Hold_Gamma_On entry: Controller_Mode_Switch = 3; i [SWI_Controller_Mode == 512] i Hold_Gamma_On entry: Controller_Mode_Switch = 3; i [SWI_Controller_Mode == 512] i [SWI_Controller_Mode > 2] [SWI_Controller_Mode == 512] i
Mai	entry: Controller_Mode_Switch = 1; 1 [SWI_Controller_Mode == 2048] entry: Controller_Mode_Switch = 2; SWI_Controller_Mode == 1024] [SWI_Controller_Mode == 1024] Image: Switch = 3; Image: Switch = 3; SWI_Controller_Mode == 1024] 1 Hold_Gamma_On_entry: Controller_Mode_Switch = 3; Image: Switch = 3; SWI_Controller_Mode > 2] [SWI_Controller_Mode > 2] [SWI_Controller_Mode > 2]

Execution Order



Stateflow – State Charts


Parallel Charts and Hierarchical Charts

- States: InitialState, Stopped, Up, Down
- Doors may only open when elevator is stopped
- Inputs: Height, Request
- Outputs: Command, Doors
- Doors: close = false, open = true
- Command: up = 1, down = 2, stop = 3
- Height of each floor = 3

Basics:

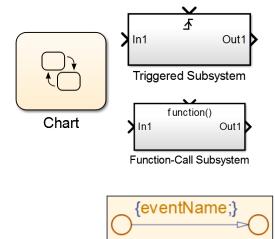
1) Simulink

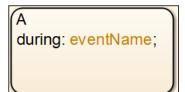
- Basics
- Continuous Models
- Discrete Models
- Subsystems
- Signals

2) Stateflow

- Flow Charts
- State Charts
- Events

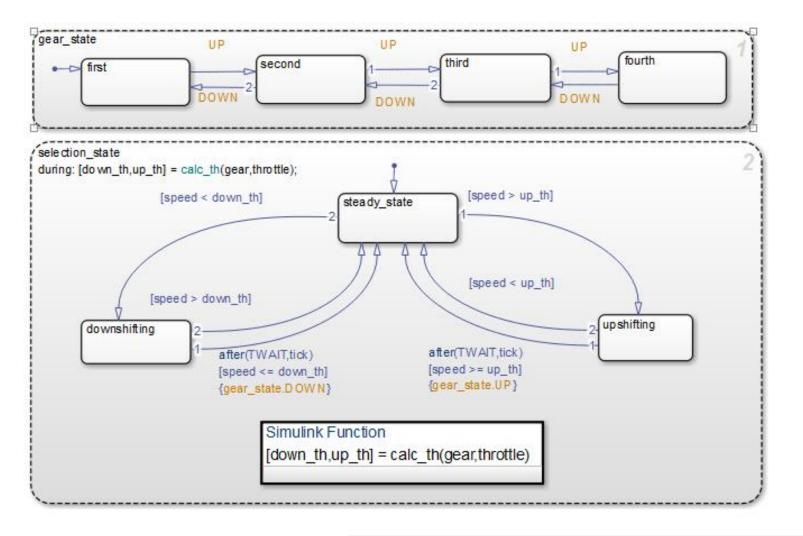
- 1) Libraries and Model Reference
- 2) Style Guidelines
- 3) Model Advisor
- 4) Report Generator and Model Comparison
- 5) Integrating C Code using the Legacy Code Tool
- 6) MATLAB Coder, Simulink Coder, Embedded Coder




Stateflow – Events Definition

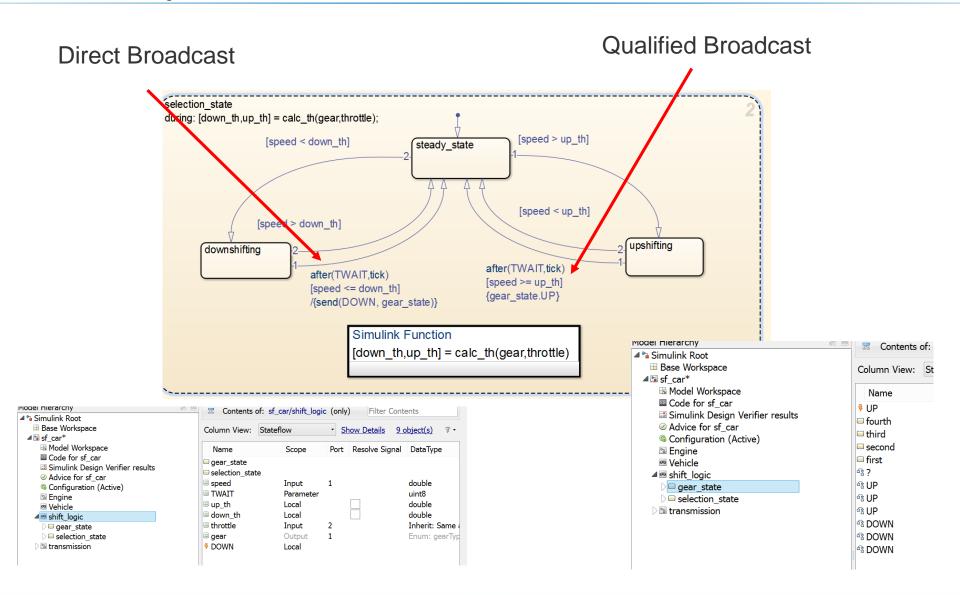
- Events are used for asynchronous communication
- Events can be directed or broadcast
- Events in Stateflow can be defined as input, local or output using the Model Explorer
- Events interact with state charts (trigger actions in parallel states), Simulink Triggered Subsystems and Simulink Function-Call Subsystems
- Events can be used on transitions and within states

MATLAB Help -> Stateflow -> Chart Programming -> Chart Simulation Semantics -> Concepts -> How Events Drive Chart Execution



Stateflow – Events

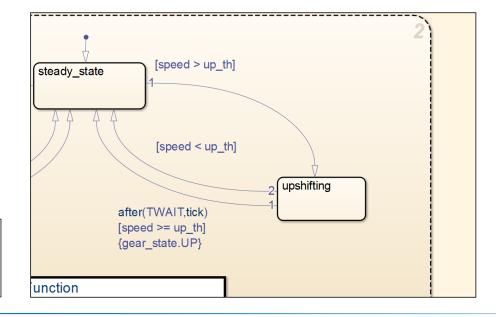
Example: sf_car



MATLAB Help -> Stateflow->Getting Started with Stateflow -> About Event-Driven System Modeling -> Anatomy of a Stateflow Chart

Stateflow – Events Direct and qualified event broadcast

Enables time-dependent logic based on event counts


Temporal logic operators:

- *at(n,event)*: true at the nth trigger of event
- *every(n,event)*: true at every nth trigger of event
- *after(n,event)*: true after the nth trigger of event
- *before(n,event)*: true before the nth trigger of event

Can be applied as an event or condition

- after(5,tick)
- [after(5,tick)]

MATLAB Help -> Stateflow -> Chart Programming -> Syntax for States and Transitions -> Control Chart Execution Using Temporal Logic

Stateflow Functions and Keywords – Summary

State action keywords

- entry / en Perform actions upon state entry
- during / du Perform actions when staying in state
- exit / ex Perform actions upon state exit
- on Perform actions upon specified event
- bind Bind events to a state
- *Note, you can combine entry, during, and exit actions with the syntax
- en, du:

Temporal logic operators

- at(n, event) true at the n^{th} trigger of event
- every(n, event) true at every $n^{\rm th} \ {\rm trigger} \ {\rm of} \ event$
- after(n, event) true after the $n^{\rm th}$ trigger of event
- before(n, event) true before the $n^{\rm th}$ trigger of event
- temporalCount(event) returns n at the $n^{\rm th}$ trigger of event, otherwise returns 0

In these operators, you can also use the keyword **Sec** in place of an event. This keyword makes these operators count elapsed simulation time instead of the number of events.

State detection

- enter(state) Event occurs when the specified state is entered.
- exit(state) Event occurs when the specified state is exited.
- in(state) Returns true when state is active

Data change detection

- change(data) Event occurs when the specified data is written.
- hasChanged(data) True when changes have been made to data since the last time step
- hasChangedFrom(data,x) True when changes have been made to data since the last time step, and last time step value was x
- hasChangedTo(data,x) True when changes have been made to data since the last time step, and current time step value is X

Built-in temporal events

- $\bullet\,$ tick Event occurs whenever the Stateflow chart is updated.
- wakeup Same as tick

Local state data

- StateA.a Accesses local data a defined in state StateA from outside of StateA
- StateA.e Broadcasts local event e defined in state StateA from outside of StateA

Event broadcast

- $\bullet \ StateA.e- {\it Qualified event broadcast}$
- send(e,StateA) Directed event broadcast
- • ${\bf e}$ – Unqualified event broadcast

Basics:

1) Simulink

- Basics
- Continuous Models
- Discrete Models
- Subsystems
- Signals
- 2) StateflowFlow
 - Charts
 - State Charts
 - Events

- 1) Libraries and Model Reference
- 2) Style Guidelines
- 3) Model Advisor
- 4) Report Generator and Model Comparison
- 5) Integrating C Code using the Legacy Code Tool
- 6) MATLAB Coder, Simulink Coder, Embedded Coder

Modeling Guidelines Increasing Model Quality

🚱 Help		
📥 🍓 🛧 - 🕲 🛛 Simulink 🔺 🕂		₩ II 🛛 🔲 🎽
	Search Documentation Simulation Getting Started Examples Release Notes > Modeling Design models of time-varying systems > Simulation Run systems, review results, validate system behavior > Simulation Run systems, review results, validate system behavior > Performance Optimize performance for specific goals, accelerate simulation speed > Component-Based Modeling Model architecture for large-scale modeling, component reuse, and team-based projects > Modeling Guidelines Application-specific guidelines for model architecture, design, and configuration > Block Creation Create new types of blocks to extend modeling functionality using MATLAB ⁶ , C/C++, and Fortran code > Target Hardware	
	 Target Hardware Run Simulink[®] models on single-board computers and educational hardware 	
	Simulink Blocks MATLAB Functions Classes Model Checks	
	© 1994-2013 The MathWorks, Inc. Terms of Use Patents Trademarks	Acknowledgments
file:///C:/Program Files/MATLAB/R2013a/help/simul	Help => Simulink => Modelin	a Guidelines

Basics:

1) Simulink

- Basics
- Continuous Models
- Discrete Models
- Subsystems
- Signals
- 2) Stateflow
 - Flow Charts
 - State Charts
 - Events

- 1) Libraries and Model Reference
- 2) Style Guidelines
- 3) Model Advisor
- 4) Report Generator and Model Comparison
- 5) Integrating C Code using the Legacy Code Tool
- 6) MATLAB Coder, Simulink Coder, Embedded Coder

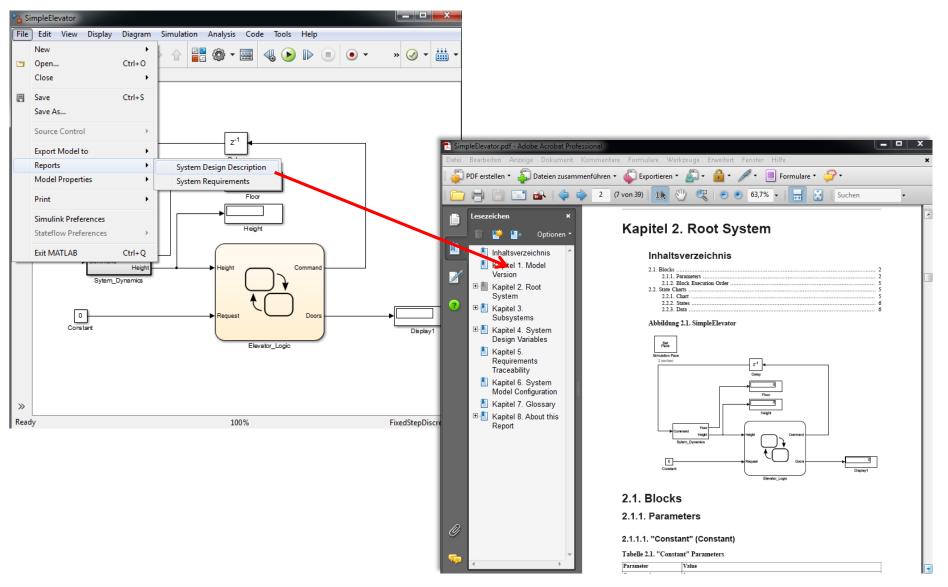
Model Advisor Simulink Model Advisor

Image: Construction of the second	r N	Model Advisor Verify model complies with modeling guidelines. Tpr To enable or datable a dreck, select or dear the check tox next to the check name. To enable or datable al dreck within a folder, nph-tdck the folder and then dck "Select All". To enable or datable al dreck, select of the pane. For a list of all possible actions, right-dck the pane. To show or hide By Traduct folder, select or dear "Show By Product Folder" in the Settings > Preferences dataga box. To show or hide By Traduct folder, select or dear "Show By Product Folder" in the Settings > Preferences dataga box. To show or hide By Traduct folder, select or dear "Show By Product Folder" in the Settings > Preferences dataga box. To show or hide By Traduct folder, select or dear "Show By Traduct Folder" in the Settings > Preferences dataga box. To show or hide By Traduct folder, select or dear "Show By Traduct Folder" in the Settings > Preferences dataga box. To show or hide By Traduct folder, select or dear "Show By Traduct Folder" in the Settings > Preferences dataga box. To show or hide By Task folder, select or dear "Show By Task Folder" in the Settings > Preferences dataga box. To show or hide By Task folder, select or dear "Show By Task Folder" in the Settings > Preferences dataga box. To show or hide By Task folder, select or dear "Show By Task Folder" in the Settings > Preferences dataga box. To show or hide By Task folder, select or dear "Show By Task Folder" in the Settings	
	Code Generation Advisor	Нер	+

Basics:

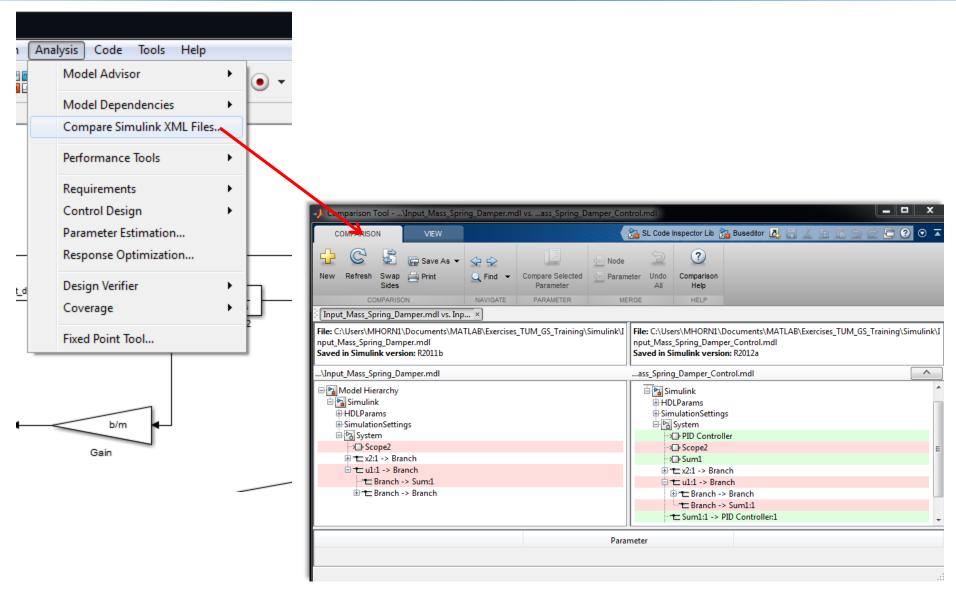
1) Simulink

- Basics
- Continuous Models
- Discrete Models
- Subsystems
- Signals
- 2) Stateflow
 - Flow Charts
 - State Charts
 - Events


- 1) Libraries and Model Reference
- 2) Style Guidelines
- 3) Model Advisor
- 4) Report Generator and Model Comparison
- 5) Integrating C Code using the Legacy Code Tool
- 6) MATLAB Coder, Simulink Coder, Embedded Coder

Report Generator and Model Comparison

Automatic Report Generation



Report Generator and Model Comparison

Compare XML Files

Basics:

1) Simulink

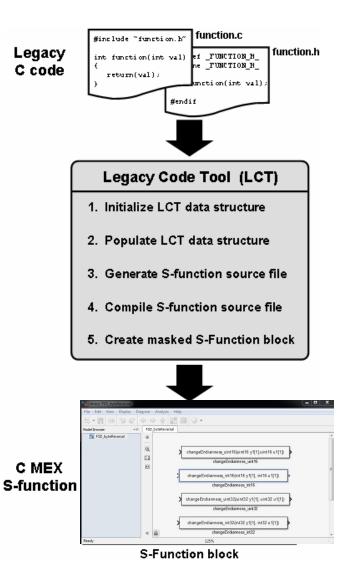
- Basics
- Continuous Models
- Discrete Models
- Subsystems
- Signals
- 2) Stateflow
 - Flow Charts
 - State Charts
 - Events

- 1) Libraries and Model Reference
- 2) Style Guidelines
- 3) Model Advisor
- 4) Report Generator and Model Comparison
- 5) Integrating C Code using the Legacy Code Tool
- 6) MATLAB Coder, Simulink Coder, Embedded Coder

Integrating C Code using the Legacy Code Tool Introducing S-Functions

- S-Functions are used for:
 - Hiding information about a models content (IPR)
 - Speeding up simulation
 - Integrating external functions written in C
- S-Functions can be created by Block Context Menu, by Legacy Code Tool, by S-Function Builder or they can be written by hand (template available)
- S-Functions always consist of two elements:
- A .mexw32 file containing the compiled model
- A S-Function Block calling the .mexw32 file
- In most cases S-Function blocks are masked to increase usability

Integrating C Code using the Legacy Code Tool


Demo: Legacy Code Tool

- LCT only creates a wrapper, which will be removed at code generation
- Simple way to integrate C code in Simulink
- In MATLAB use ceval to integrate code

Help => "Integrating Existing C

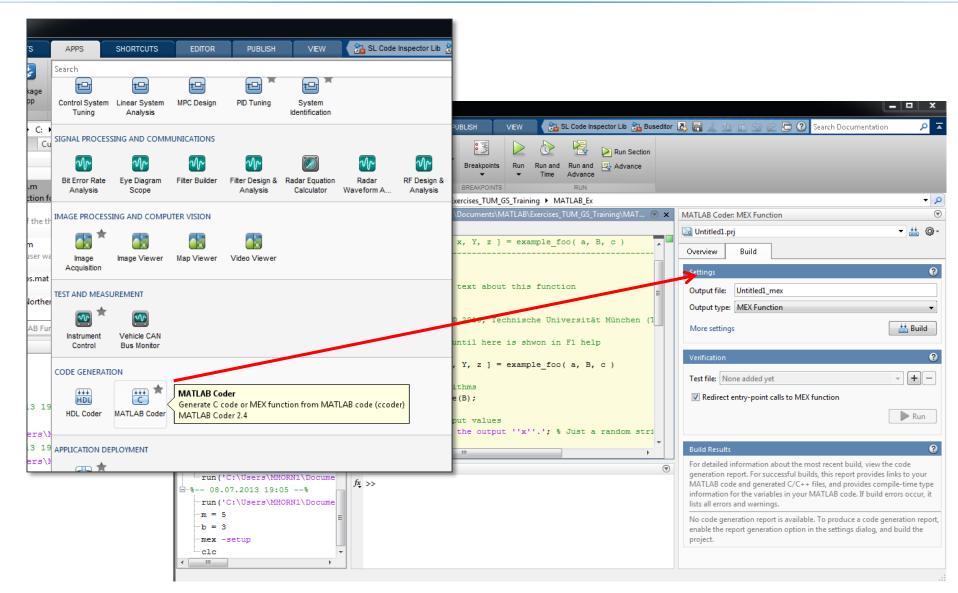
Functions into Simulink Models with

the Legacy Code Tool"

Basics:

1) Simulink

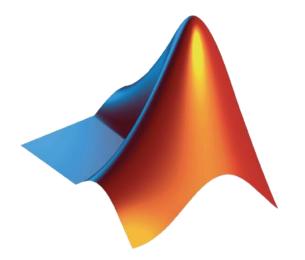
- Basics
- Continuous Models
- Discrete Models
- Subsystems
- Signals
- 2) Stateflow
 - Flow Charts
 - State Charts
 - Events


- 1) Libraries and Model Reference
- 2) Style Guidelines
- 3) Model Advisor
- 4) Report Generator and Model Comparison
- 5) Integrating C Code using the Legacy Code Tool
- 6) MATLAB Coder, Simulink Coder, Embedded Coder

MATLAB Coder, Simulink Coder, Embedded Coder

MATLAB Coder

MATLAB Coder, Simulink Coder, Embedded Coder


Simulink Coder and Embedded Coder

Summary

- Simulink is a graphical modeling environment based on MATLAB
- Simulink is **fully integrated** in MATLAB environment
- Simulink can be used to model **continuous**, **discrete and hybrid sytsems**
- In addition, Simulink is a graphical programming language for embedded systems
- Simulink interacts with real hardware for Hardware In The Loop or Processor in the Loop setups, as well as for test beds and laboratory setups

Contact for further information or feedback about this course:

Dipl.-Ing. Markus Hornauer Institute of Flight Systems Dynamics Boltzmannstr. 15 85748 Garching, Germany Tel: +49 (0)89 289 16047 Fax: +49 (0)89 289 16058 Email: markus.hornauer@tum.de

