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Abstract— This paper introduces the basis-adaptive sparse 

polynomial chaos (BASPC) expansion to perform the probabilistic 

power flow (PPF) analysis in power systems. The proposed 

method takes advantage of three state-of-the-art uncertainty 

quantification methodologies reasonably: the hyperbolic scheme 

to truncate the infinite polynomial chaos (PC) series; the least 

angle regression (LARS) technique to select the optimal degree of 

each univariate PC series; and the Copula to deal with nonlinear 

correlations among random input variables. Consequently, the 

proposed method brings appealing features to PPF, including the 

ability to handle the large-scale uncertainty sources; to tackle the 

nonlinear correlation among the random inputs; to analytically 

calculate representative statistics of the desired outputs; and to 

dramatically alleviate the computational burden as of traditional 

methods. The accuracy and efficiency of the proposed method are 

verified through either quantitative indicators or graphical results 

of PPF on both the IEEE European Low Voltage Test Feeder and 

the IEEE 123 Node Test Feeder, in presence of more than one 

hundred correlated uncertain input variables. 

Index Terms— Probabilistic power flow, polynomial chaos, 

Copula theory, distribution system, photovoltaic generator. 

NOTATION 

    The primary notation used in this paper is given here, while 

other definitions are given in the paper as needed. 

Constants and Indices: 

Ω      Sample space 

F      The σ-algebra on Ω 

P      Probability measure on (Ω, F) 

δij      Kronecker delta function 

M      Number of random variables 

p      Truncation criteria 

q      Truncation norm 

ij      The j-th degree of the i-th univariate polynomial 

λ      The positive penalty factor 

K+1     The total number of gPC expansion terms 

Ned     Number of experimental design 

Nsam     Number of samplers for the LHS-based PPF 

Ttotal     The total computational time of PPF 

tpre     Time for the pre-process of PPF 

tpost     Time for the post-process of PPF 

t0      Time for a single round of DPF simulation 

tref      Time required by the reference method 

 
     F. Ni, P. H. Nguyen, J. F. G. Cobben are with the Electrical Energy Systems 
Group, Eindhoven University of Technology, Eindhoven, 5612 AZ, The 

Netherlands (e-mail: [f.ni, p.nguyen.hong, j.f.g.cobben]@tue.nl). 

J. F. G. Cobben is also with the Alliander, Arnhem 6812 AH, The 
Netherlands. 

tcp   Time assumed by the method to be  compared 

PLi     Original active power demand of the i-th load 

PVi     Original active power production of the i-th PV 

rref     Result obtained from the reference method 

rcp   Result obtained from the method to be    

  compared 

ci
       Location of the i-th bin center on x-axis 

di      Height of the i-th rectangular bin on y-axis 

NM     The complete M-dimensional sphere of natural 

      numbers 

q
i     Rank of the multi-index i 

PC     Polynomial chaos 

gPC     Generalized polynomial chaos 

BASPC   Basis-adaptive sparse polynomial chaos 

LHS     Latin hypercube sampling 

Variables and Sets: 

L2 (Ω, F, P)  A finite dimensional random space 

ξ      Random input variable 

ξ      Random input vector 

f(ξ)      The stochastic response to random variable ξ 

ω(ξ)     PDF of random variable ξ 

ω(ξ)     Joint PDF of random vector ξ 

( )F ξ
    Joint CDF of random vector ξ 

{Φi}     The i-th univariate polynomial basis 

{Ψi}     The i-th multivariate polynomial basis 

{ai}     Coefficient of the i-th polynomial basis 

a      The vector of coefficients{aj} 

â       The calculated coefficient vector via regression 

X      A set of experimental design of random vector 

Y      The stochastic response vector corresponding to 

      inputs X 

X\xl     A set of experimental design of random vector  

      without xl 

( \ )gPC

l lf X x   The gPC expansion of f(ξ) with X\xl 

eLOO     Relative leave-one-out cross-validation error 

I. INTRODUCTION 

ODELLING, operating and planning of power systems 

are inevitably subject to various sources of uncertainties, 

mostly as fluctuations of load demands, changes of the 

grid topology, outages of the generator and other network 

components. Over the last few years, the high penetration of 

renewable energy sources (RES) such as wind power and 

photovoltaic (PV), and new forms of energy consumptions such 

as the heat pump (HP) and electric vehicle (EV), bring extra 

uncertainties to the power system due to variations in both 
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weather conditions and stochastic behaviors of the end users. 

Therefore, the uncertainty quantification (UQ) which is of great 

importance for both grid operators and energy consumers, has 

attracted ever-increasing attentions [1]-[2]. 

As one basic tools of operation and planning of the power 

system, power flow analysis identifies the steady operation 

state with node voltages and branch power flow in the power 

system, based on a specified generating state and network 

structure [3]. In order to perform the power flow calculation, it 

is necessary to know conditions of the power system, such as 

loads and generators in terms of active power, reactive power or 

voltage. Traditionally, the deterministic power flow (DPF) 

carries out power flow calculation under specific conditions, 

resulting in an incomplete understanding of operational states 

of the power system. Moreover, DPF becomes infeasible when 

the system conditions are subject to inaccurate evaluations or 

randomness of natural phenomena [4]. 

In order to take a deep and overall insight into the power 

system status affected by various types of uncertain factors, 

probabilistic power flow (PPF) [5] was found as a new path to 

evaluate states and desired outputs of the system in terms of 

probability distribution function (PDF), cumulative distribution 

function (CDF), probability mass function (PMF) or statistical 

moments. PPF analysis combines the principle of DPF and the 

procedure of UQ, yet advances in accounting uncertainties in 

power systems. During the last two decades, there has been a 

growing interest in PPF [6]-[8], since the uncertainty sources in 

power systems grows rapidly in the aspect of dimensionality, 

especially in distribution systems. 

Generally, three main approaches are categorized to perform 

PPF: simulation method, analytical method, and approximate 

method [9]. The most straightforward one is the simulation 

method, which firstly replaces probabilistic inputs with a set of 

random samples and repeatedly executes a batch of DPF 

calculations on the designated models. Despite of its popularity, 

the simulation method propagates uncertainty in the inputs to 

the outputs of interest without reformulations on the DPF code 

[10]. To guarantee the convergence of random samplings, such 

as the brute Monte Carlo (MC) or the MC-like approaches, a 

large amount of trials are required to represent random inputs, 

which leads to enormous rounds of the DPF calculation 

accordingly. Meanwhile, several advanced random sampling 

methods such as Latin supercube sampling (LSS) Latin 

hypercube sampling (LHS), and importance sampling have 

been applied to PPF over the last decade. With the aid of 

efficient variance reduction techniques, advanced sampling 

methods are able to achieve the same convergence with a 

smaller number of trials, hence alleviating the computational 

effort of the simulation method. In order to avoid cumbersome 

simulations and to simplify the calculation procedure of PPF, 

several approaches have been proposed within the scope of the 

analytical method, among which the multi-linear model based 

method, the direct convolution method, the Fourier transform 

method, cumulant method and its extended versions are the 

most commonly used ones [11]-[12]. Owing to the effective 

pre-digestion, the analytical method does not need a huge 

number of repeated simulations; those assumptions conversely 

limit usages and brings in sources of inaccuracy though. 

Comparing with the two methods aforementioned, the 

approximate method is able to reach an ingenious compromise 

between accuracy and efficiency. This kind of method only 

needs a small amount of DPF calculations while requiring extra 

mathematical treatments of random inputs and outputs. In 

particular, the first-order second-moment method, the point 

estimate method, and their various alternatives are capable of 

propagating uncertainty from the inputs to the outputs in the 

form of statistical moments [13]-[14]. Moreover, several 

methods that represent and evaluate uncertainties via PDFs, 

PMFs or CDFs have been employed to address PPF analysis, 

among which the stochastic collocation interpolation [15] and 

the polynomial chaos (PC) expansion [16] are impressive ones. 

The PC expansion was first introduced by Wiener, which 

exclusively addressed standard Gaussian random variables and 

the corresponding Hermite polynomial. Later on, Xiu et al. 

extended the method to the gPC expansion, where several 

non-Gaussian distributions were handled with a specific family 

of orthogonal polynomials [17]. If a certain distribution type 

that is out of the list occurs, the gPC expansion is still 

applicable with the aid of employing an iso-probabilistic 

transform [18]-[19]. Moving up with a greater number of 

random input variables, the gPC expansion encounters a critical 

barrier in practical usage, i.e. the curse of dimensionality. 

However, the sparse-adaptive scheme firstly presented by 

Blatman and Sudret is capable of effectively overcoming this 

difficulty to a great extent [20]. The previous works of the gPC 

expansion in this field have investigated effects of uncertain 

factors on power systems [21]- [22], but with a limited numbers 

of independent uncertainties (no more than twenty). Therefore, 

it is important to investigate the applicability and performance 

of the sparse-adaptive scheme in power system analysis with a 

greater number of correlated random inputs due to massive 

integration of RESs, HPs, and EVs recently. 

In order to perform PPF analysis of power systems regardless 

of choices of methods, it is necessary to properly address two 

critical issues: the large number of random inputs, which leads 

to a high-dimension UQ problem; and the correlation among 

random input variables. Hence, methods that are able to handle 

these two challenges are of great interest. With regard to the 

first issue, it is difficult for either the analytical method or the 

approximate method to maintain their advantages. In the 

presence of massive random inputs, the traditional analytical 

method needs a large amount of data storage and computational 

effort to obtain the solution of PPF, while the conventional 

approximate method may require an even greater number of 

simulation rounds than the simulation method. When it comes 

to the correlation issue, a common practice for the approximate 

methods recently is to firstly de-correlate those dependent input 

variables, and then adopt existing UQ methods that are suitable 

for the independent case. In the previous work, the linear 

dependence was adopted at large, and recently the nonlinear 

dependence based on the Copula theory has been introduced 

into the electrical engineering [23]-[24]. 

Motivated by the two challenges mentioned previously, this 

paper proposes a novel methodology for PPF, which is able to 

perform an economical and reliable analysis in the presence of 

random inputs with both high dimensionality and nonlinear 

correlation. Specifically, the proposed method belongs to the 

category of the approximate method, cooperating both the 

basis-adaptive sparse PC (BASPC) expansion and the Copula 

theory. The remaining part of this paper is organized as follows: 
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in Section II, theoretical background related to the BASPC 

expansion and the Copula theory is briefly introduced; Section 

III presents detailed computation procedure of the PPF based 

on BASPC, compared with the PPF that is based on the 

simulation method; a variety of scenarios are elaborated to 

verify behaviours of the proposed method and to investigate 

performance-impact factors in Section IV; the concluding 

remarks and outlooks come in Section V. 

II. THEORETICAL BACKGROUND 

    In this section, we first introduce the BASPC expansion, 

including the generalized polynomial chaos (gPC) theory and 

the sparse-adaptive scheme in part A. After that, the Copula 

theory is presented in part B, which is used to remove the 

nonlinear dependence between random input variables. 

A. Basis-Adaptive Sparse Polynomial Chaos Expansion 

1) Generalized polynomial chaos expansion 

Given a finite dimensional random space L2 (Ω, F, P) where 

Ω is a sample space, F is the σ-algebra on Ω, and P stands for 

the probability measure on (Ω, F), any stochastic response with 

finite second moment can be expanded in a convergent series of 

orthogonal polynomials of the random inputs, according to the 

Cameron-Martin theorem. By taking the gPC expansion, the 

relationship between random input variables and the resulting 

second-order stochastic response can be specified. 

Let ξ be a random input variable, then the target stochastic 

response f(ξ) can be represented as, 

0
( ) ( )i ii

f a 



   (1) 

where {ai} is the coefficient of the i-th polynomial, {Φi}is the 

i-th univariate polynomial basis. The orthogonality of basis 

{Φi} with respect to a probability measure can be expressed as, 
2[ ] ( ) ( ) ( ) [ ]i j i j ij iE d E            (2) 

in which E[.] is the expectation operator, δij is the Kronecker 

delta function, and ω(ξ) is the PDF of ξ. 

As a merit of the gPC expansion compared to the simulation 

method, statistical moments of the stochastic response can be 

obtained in closed-form. For instance, the expected value and 

the variance are expressed by the following, 
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In principle, the random inputs can also be a vector ξ with M 

independent random variables {ξ1, ξ2,…,ξM}, the corresponding 

stochastic response thus is approximated similarly, 

0
( ) ( )i ii

f a



 ξ ξ  (4) 

where {Ψi} is the multivariate orthogonal polynomial basis that 

can be constructed as a tensor product of univariate orthogonal 

polynomials as follows: 

1 21 2( ) ( ) ( ) ( )
Mi i i i M      ξ  (5) 

where the subscript ij, j=0,…,M refers to the j-th degree of the 

i-th univariate polynomial basis. Further, the orthogonality of 

{Ψi} still hold with regard to the joint PDF ω(ξ) of the random 

vector. For practical reasons, the infinite expression either in (1) 

or (4) has to be truncated to a finite number of terms with a 

given criteria p. Most often, the gPC expansion of a stochastic 

response is truncated in such a way that only those polynomial 

basis in (5) with total degree not higher than p are maintained, 

namely, ∑ 𝑖𝑗
𝑀
𝑗=1 ≤ 𝑝. With this truncation strategy, the number 

of remained terms of the gPC expansion is equal to 

( )! ! !K M p M p   (6) 

With known polynomial basis and truncation criteria, the 

polynomial coefficients {ai} need to be determined in order to 

complete the gPC expansion. Generally speaking, approaches 

to evaluate gPC coefficients are classified as the intrusive 

Galerkin projection and non-intrusive methods. Regarding the 

intrusive approach, it requires the formulation of a new 

mathematical problem whose solution is the set of polynomial 

coefficients. The scale of reformulated problem is remarkably 

larger than the original one in terms of the number of system 

states, and is solved by adopting additional solver. Therefore, 

this approach is not suitable for a system with large-scale 

random inputs or with a complex mathematical model. On the 

contrary, non-intrusive approaches treat the original model and 

solver as a black box, polynomial coefficients can be calculated 

only by a set of realizations of the original system. 

Among non-intrusive approaches, sampling, quadrature and 

linear regression are widely used. In the first two methods, the 

polynomial coefficients are calculated by taking advantage of 

the orthogonality of polynomial bases as follows: 

2 2

[ ( ) ( )] 1
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The linear regression method, also known as the stochastic 

response surface [19], evaluates the polynomial coefficients by 

directly solving an optimization problem. Let X={x1,…,xN}be a 

set of representatives of the random input vector, also called as 

the experimental design (ED), and Y={f(x1),…,f(xN)}T be the 

corresponding stochastic response vector, the set of coefficients 

can be computed then by minimizing a norm of residuals as, 
2

0 1 0

T 2
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(8) 

where a is the vector of coefficients{ai} (i=0,…,K), and the 

so-called experimental matrix H has the following form: 

0 1 1

0

( ) ( )
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( ) ( )

K

N K N

  
 
 
   

x x

H

x x

 
(9) 

The method to calculate the coefficient vector a in (8) could 

be the ordinary least-squares (OLS), then the solution vector 

reads, 
T 1 Tˆ ( )a H H H Y  (10) 

Note that the employed design of experiments X should 

contain a sufficient number of points, preferably 2-3 times the 

number of expansion terms. In addition, the above results are 

still valid when the stochastic response is a vector. 

2) The sparse-adaptive scheme 

As expressed in (6), the total number of the gPC expansion 

terms K+1 grows rapidly along with increase of both M and p, 

which directly increases the number of ED. For example, by 

taking p=4, K grows from 1001 to 10626 when M increases 

from 10 to 20, thus blowing up efforts on both calculation and 

simulation, significantly. To work out the high dimensionality 

difficulty, the sparse-adaptive scheme was proposed. In what 

follows, the sparse-adaptive scheme is introduced through three 

different steps. 
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Revised truncation strategy 

In principal, any truncation strategy aims at specifying a 

non-empty nested subset of the complete M-dimensional sphere 

of natural numbers. The truncation strategy mentioned above is 

a special case, which evenly treats the degree of each univariate 

polynomial in the tensor product as shown in (5). Nevertheless, 

according to the sparsity-of-effects principle, a model response 

is always dominated by the main effects. In other words, the 

interactions among low-degree univariate polynomial basis will 

be of more statistical significance, relative to the interactions 

among high-degree terms. Thus, one of the straightforward 

ways to reduce the value of K+1 comes out by favoring 

interactions among low-degree terms, through the revised 

truncation strategy [20]: 

1
( ) , & (0,1)

q
M q M

jq j
i p q


   i i  (11) 

where i is the multi-index. Note that the conventional strategy 

corresponds to the 1-norm condition by setting q=1. If q<1, the 

total number K can be dramatically reduced as the high-degree 

interactions are penalized. 

Advanced regression algorithm 

The revised truncation strategy presents a novel way to build 

the gPC expansion in a sparse form. Besides, the high-degree 

interactions can be further reduced by adding a penalty term on 

the least-square minimization problem in (8) as, 

T 2

0 1 1
( , , ) [ ( ) ( )]

N N

K l l ll l
S a a f a

 
   x a Η x  (12) 

where λ is the positive penalty factor. In (12), the penalized 

optimization problem enables a selection of the most important 

polynomials among an initially defined set. In order to solve the 

problem in the format of (12), several algorithms are available, 

such as the least absolute shrinkage and selection operator, the 

forward stage-wise regression and the least angle regression 

(LARS). In fact, these algorithms are similar to each other in 

the sense of optimization mechanism, but differences mainly lie 

in the greedy level, the precision target and the search speed. 

In statistics, LARS is a regression tool for fitting the linear 

model to high-dimensional data, thus is effective even when the 

number of regressors is much bigger than the available data. In 

the context of gPC expansion, LARS has been applied to build 

the sparse PC expansion, with main steps explained in [20]. In 

short, by selecting the most relevant polynomials with respect 

to the given model evaluations Y, LARS forms a regression 

problem with a reduced size, which consequently decreases the 

number of terms of the gPC expansion K+1. 

Basis-adaptive procedure 

So far, truncation strategies for the gPC expansion require a 

predestined criteria p, but no general conclusions have been 

stated on how to properly assign a value to the strongly 

problem-dependent value p, although it was claimed by some 

authors that the gPC expansion with p=2 is usually accurate for 

estimating the first two statistical moments of a stochastic 

response [25]. Instead of setting a fixed value beforehand, the 

basis-adaptive procedure intends to start from a range of 

candidates, and then automatically choose the best one via an 

accuracy assessment of the current gPC expansion. As one of 

the merits of regression methods, the posterior error can be 

readily evaluated without extra model evaluations, which is a 

sound option to assess the approximation accuracy of the gPC 

expansion. 

Among those regression methods, it is possible to find a 

polynomial function that exactly satisfies the relationship 

between distinct ED X={x1,…,xN} and the resulting model 

evaluations Y={f(x1),…,f(xN)}T. However, the function which 

tries to maximize its efficacy on a specific ED, is likely to have 

a poor performance on a new set of data. To make a regression 

model having an acceptable accuracy of capturing the structure 

of available data on one hand, and being smart enough to avoid 

over-fitting on the other hand, the relative leave-one-out (LOO) 

cross-validation error eLOO has been adopted in the machine 

learning widely. In the context of the gPC expansion, the eLOO is 

given by 

2

1

2

1 1

( ( ) ( \ ))
 

1
( ( ) ( ))

N gPC

l l ll
LOO

N N

l ll l

f f
e

f f
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(13) 

in which ( \ )gPC

l lf X x stands for the gPC expansion of f(ξ) with 

specific ED X\xl ={xk, k=1,…,N, k≠l}. Given a target threshold 

and a range of possible values of criteria p, the basis-adaptive 

procedure selects the best candidate in terms of the lowest eLOO. 

B. The Copula Theory 

In principle, the gPC expansion can be used to approximate 

the stochastic response of independent random input variables 

only. To apply the gPC expansion in case of correlated inputs, 

several methods have been proposed in the literature, such as 

linear transformations, proper orthogonal decomposition or 

K-L expansion [26]-[27]. However, all of these methods tackle 

the correlation problem by using transformations to remove the 

linear correlations. 

Linear correlation is able to describe the linear or monotonic 

dependence structure well, but not a satisfactory measure of the 

nonlinear or non-monotonic dependence. However, the Copula 

theory enables a more general and flexible modelling of the 

dependence structure [28]. According to the Sklar’s theorem, 

any joint CDF can be presented by univariate functions and an 

extra function that characterizes their dependences, 

1 1( ) ( ( ), , ( ))
M MF C F F  ξ ξ ξ

 (14) 

where ξ={ξ1,…,ξM}is the M-dimensional random input vector, 

left-hand side of the above equation is the marginal distribution 

of the i-th random variable, and C(.) is called the parametric 

copula function. Various copula functions have been proposed 

in literature, and the Gaussian copula is used in this work. 

III. THE PROPOSED APPROACH FOR PROBABILISTIC 

THREE-PHASE POWER FLOW 

In this section, we intend to explain the whole procedure of 

the proposed method for PPF analysis. In addition to the PPF 

based on the BASPC expansion, basic formulations of the DPF 

and the procedure of PPF based on LHS are presented as well. 

A. DPF Calculation in Power Systems 

    The power flow analysis is one of the most commonly used 

tools in power systems to diagnose whether the state variables 

within the normal operational scope, and strategically planning 

for the grid. Concerning the case of single phase, the DPF 

problem can be introduced by the following equations as [29], 

https://en.wikipedia.org/wiki/Cumulative_distribution_function#Multivariate_case
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(15) 

where Pi and Qi are the active and reactive power injections at 

Bus i; Vi and θi are the magnitude and angle of the voltage at 

Bus i; Gij and Bij denote the conductance and susceptance of the 

branch connecting Bus i and Bus j, respectively, while the angle 

difference between the two involved buses is represented in the 

form of θij = θi - θj. In addition, n represents the number of buses 

in the analyzed power system. 

B. The Procedure of PPF based on BASPC-LHS 

The DPF captures steady-state operating characteristics of 

the power system consisting of state variables, inputs and 

outputs. In our case, state variable include the voltage at each 

bus; operating parameters of the system are regarded as the 

inputs, such as network parameters, power demand of the loads, 

and power injection of generators. Further, the outputs could be 

a vector of interest, e.g. power flows and currents through the 

lines. In most real cases, inputs of power flow are random, thus 

motivating the PPF analysis. 

In this work, a novel method of PPF combining the BASPC 

expansion and LHS sampling, i.e., the BASPC-LHS based PPF 

is introduced. The detailed procedure is shown below: 

Procedure 1. PPF with BASPC-LHS 

Pre-Process 
1. Read the parameter of random inputs, including the number, 

distribution types and parameters; 

2. Generate a M×Nsam sampling matrix H1 for the random 

inputs by LHS; 

3. De-correlate the random inputs by Copula if correlated; 

4. Generate a M×Ned matrix H2 of inputs as the ED; 

5. Execute a batch of DPFs, with deterministic values of the 

experimental matrix H2 substituting for the random inputs 

column by column; 

6. Build the sparse gPC representation, i.e., surrogate model 

of each output via the BASPC expansion; 

7. Execute sampling matrix H1 through each surrogate model; 

Post-Process 
8. Get post-process results of each output. 

C. Comparison of PPFs based on BASPC-LHS and LHS 

Regarding comparison between two different PPF methods, 

it is common to involve simulation methods (such as MC) in 

evaluating the other PPF methods. In recent years, an attempt 

has been made on the usage of new random sampling methods 

that provide more efficient approaches to generate random 

trials. As a more straightforward sampling technique, LHS has 

been found to perform more efficiently than MC with 

applications to power system analysis [30]. In this paper, PPF 

based on LHS is regarded as the reference method, and then 

comparisons are made between BASPC-LHS and LHS in terms 

of accuracy and efficiency. Instead of eight steps in the 

BASPC-LHS based method, the procedure of applying LHS to 

PPF requires less steps as given below: 

Procedure 2. PPF with LHS 

Pre-Process 
1. Read the parameters of random inputs, including the 

number, distribution types and parameters; 

2. Generate a M×Nsam sampling matrix H1 for the random 

inputs by LHS; 

3. Execute a batch of DPFs, with deterministic values of the 

sampling matrix H1 substituting for the random inputs 

column by column; 

Post-Process 
4. Get post-process results of each output. 

Concerning Procedure 1 and 2, both of them comprise two 

stages: pre-process and post-process. However, the purposes 

and computational effort of these two stages in the two methods 

are quite different. In the BASPC-LHS based PPF, the main 

objective is to build the surrogate model of each output by 

means of the BASPC expansion with results of Ned rounds of 

DPF at the pre-process stage. Then, target outputs of PPF are 

calculated via statistical inference on outcomes obtained by 

executing Nsam samplers on the available surrogate models. 

Unlike the first procedure, LHS based PPF straightly executes 

Nsam rounds of DPFs at the pre-process stage. Note that 

representative statistics of each output can be captured as 

byproducts in Procedure 1 as mentioned in (3). The block 

diagram of these two methods is shown in Fig.1. 

The total computational time Ttotal required for the entire 

procedure of PPF is the summation of times consumed in both 

pre-process and post-process, represented by tpre and tpost. In the 

BASPC-LHS based PPF, tpre equals to tsam + Ned×t0 + tcal, in 

which tsam is the time for generating H2, t0 is the simulation time 

of a single round DPF; tcal stands for the time of generating H1, 

building surrogate models, and executing H1 through surrogate 

models. In the LHS based PPF, tpre=tsam + Nsam×t0. Note that Ned 

is much less than Nsam, thus, the BASPC-LHS based method is 

able to alleviate the computational burden of the LHS-based 

PPF dramatically, considering tcal and tpost are much less than 

the simulation time of repeated DPFs.  

Decorrelate the independent 

inputs by Copula

Build  univariate PC expansion 

for each decorrelated input

Execute Ned  rounds of DPF 

calculation 

Generate a M×Ned 

experimental matrix H2 
Statistical moments of 

each outputs

Build the BASPC of each output  

(surrogate model)

 M 

random 

inputs 

BASPC expansion 

configuration p, q, Ned

 Other post-process 

results

Execute Nsam  rounds of 

evaluation through each 

surrogate model  

Execute Nsam  rounds of DPF calculation 

BASPC Expansion
BASPC-LHS PPF

LHS PPF

Generate a 

M×Nsam sampling 

matrix H1 

 
Fig.1. Block diagram of PPFs based on BASPC-LHS and LHS  
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IV. TEST RESULTS AND DISCUSSIONS 

In this section the proposed method is applied in solving the 

PPF problem on two different power systems, in view of the 

procedure as detailed explained in Section III. The whole work 

is carried out in MATLAB R2014a; the computer used for 

simulation is equipped with Intel Core 4 Quad CPU at 3.40 

GHz with 8 GB RAM. Simulation tool OpenDSS [31] is used to 

calculate the DPF, and toolbox UQLab [32] from ETH Zurich 

is adopted for construction of the BASPC expansion. 

A. Test Setups 

1) Systems under study 

In this work, performance of the proposed method is firstly 

tested on the IEEE European Low Voltage Test Feeder. It is a 

typical three-phase low-voltage (LV) feeder in Europe, which 

is a radial distribution system with a base frequency of 50 Hz. 

Through a transformer at substation, voltage (phase-to-phase) 

level of the main feeder and laterals is stepped down from 11 

kV to 416 V. On this feeder, there are 906 buses and 55 

residential loads in total. Each load is connected to the grid by 

means of single-phase connection as shown in Fig.2.  

    The external medium-voltage (MV) grid is modelled as a 

voltage source with an impedance; and data for the transformer, 

lines and loads are given in [33]. Moreover, in order to analyze 

the influence of RES, 30 roof-top PVs are randomly installed at 

buses with loads on this feeder as one test scenario. All of the 

PVs work in unity power factor with output active power in the 

range of 1-5 kW. Besides, the connection of each PV in terms 

of phase follows the same one as the existing base load.  

For the sake of simplicity, all of the loads are modelled as 

constant power in this LV feeder. As mentioned in Section I 

and II, either load demands or PV generations are subject to 

uncertainties, thus, they are represented by random variables. 

Further, some random variables are likely to be independent, 

since outputs of PV on this LV feeder vary in a correlated 

manner due to quite similar geographical and environmental 

conditions, such as solar irradiation and wind speed. 

 
Fig.2. Single-line diagram of the IEEE European LV Test Feeder 

Aiming at verifying the feasibility of the proposed method in 

other power systems, IEEE 123 Node Test Feeder [33] is 

adopted in this paper as well. This feeder is an unbalanced 4.16 

kV distribution system which contains both overhead and 

underground line segments. In addition, different types of load 

(constant impedance, constant power and constant current) are 

dispersed on all three-phase, two-phase or single-phase laterals.  

For these two distribution systems, five test scenarios have 

been designed to verify the BASPC-LHS based PPF, details of 

uncertain inputs can be found from TABLE I. 

TABLE I 

UNCERTAIN INPUTS OF PPF ON TWO TEST SYSTEMS 

System Number Source Type 

IEEE 
European LV 

Test Feeder 

55 Active power of 55 loads Gaussian 

110 
Active power of 55 loads Gaussian 

Power factor of 55 loads Uniform 

140 

Active power of 55 loads Gaussian 

Power factor of 55 loads Uniform 

Active power of 30 PVs Uniform 

IEEE 
123 Node 

Test Feeder 

140 
Active power of 70 loads Gaussian 

Reactive power of 70 loads Uniform 

182 
Active power of 91 loads Gaussian 

Reactive power of 91 loads Uniform 

2) Evaluation indexes 

To assess the accuracy of the BASPC-LHS based method, 

the results obtained from LHS based PPF with 105 samplers are 

regarded as the reference herein. Different evaluation indexes 

are used to compare two kinds of PPF output. The first type is 

quantitative results, namely, mean value, variance, skewness 

and kurtosis of the desired outcomes. In this case, the precision 

level is evaluated via the relative error (RE) given by, 

( , ) 1
cpref cp

ref
rRE r r

r
    (16) 

in which rref is the result of LHS based PPF while rcp is the 

outcome of BASPC-LHS based method. RE is able to give an 

indication of how good a result (method) is, relative to the 

given reference. 

The second type is the graphical results, such as frequency 

histograms after the post-processing. In this case, the similarity 

index (SI) is proposed by modifying the city block distance, 

2 2

1

1
( , ) 1 [( ) ( ) ]

2

nref cp ref cp ref cp

i i i ii
SI r r c c d d


       (17) 

in which n is the number of bins, ci corresponds to the location 

of the i-th bin center on the x-axis, and di  is the height of the i-th 

rectangular bin on the y-axis that indicates percentage of the 

number of elements in the i-th bin. Note that this index makes 

sense only if the number of samples and bins in the two 

frequency histograms are identical to each other. Obviously, a 

greater value of the index indicates a better fit between the two 

frequency histograms. For the sake of conciseness, similarity 

index in (17) can be further simplified by locating bin centers at 

the same position. Therefore, ci
ref= ci

ref and SI(rref, rcp) ranges 

between 0 and 1. By means of this metric, the similarity degree 

of two frequency histograms can be qualitatively detected. 

    Apart from the accuracy, the efficiency is another concern of 

this work. With the percentage reduction in computation time 

PD as defined in (18), merits of BASPC-LHS based PPF with 

respect to the efficiency become visible, 

( , ) ( ) /ref cp ref cp refPD t t t t t    (18) 

where tref, tcp refer to the time required to execute PPF by means 

of LHS and BASPC-LHS, respectively. 

B. Evaluation on Surrogate Model 

Concerning the IEEE European LV Test Feeder, load shapes 

with one-minute resolution over one day are provided in [33]. 

In the subsection B and C of Section IV, PPFs at the on-peak 

moment, i.e., t=09:26:00 are implemented. In this subsection, 
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accuracy of the surrogate model in BASPC-LHS based method 

is evaluated. 

As the base scenario, there are 55 independent uncertainty 

sources, and all loads maintain a constant power factor 0.95. 

For simulating the stochastic behavior of all the 55 loads, their 

active powers are assumed to follow Gaussian distribution 

N(PLi, 0.12), where PLi is the original active power demand of 

the i-th (i=1,…,50) load at t=09:26:00. As introduced in Section 

II, configuration of the BASPC expansion depends on several 

parameters, mainly on truncation norm q, range of truncation 

criteria p, and number of ED Ned. In order to investigate impacts 

of the configuration on performances of the surrogate model 

which influences the result of BASPC-LHS based PPF, these 

three parameters are set to different values. Moreover, results of 

the LHS based PPF with 105 trials are set as the reference; and 

the BASPC expansion is regarded as the base configuration, 

with truncation norm 0.8, range of truncation criteria 1-6 and 

number of ED 800. 

Taking the voltage magnitude of phase A at Bus 899 for 

illustration, TABLE II summarizes the role of each parameter 

plays on the proposed method’s behavior in terms of relative 

eLOO and tpre. From TABLE II, it can be concluded that behavior 

of the surrogate model in terms of both two indicators changes 

if there is any variation of q, p or Ned. The value of eLOO will be 

increased in the wake of reduction of the truncation norm, or 

shrinkage of the range of truncation criteria, or abatement of the 

number of ED. The reason is that the surrogate model obtained 

from the BASPC expansion is weakened to approximate the 

real behavior of voltage magnitude, due to changes in the 

configuration. On the contrary, tpre will decrease since less 

computational efforts are required to get the surrogate model. 

In view of both accuracy and efficiency, the BASPC expansion 

with truncation norm 0.8, range of truncation criteria 1-6, 

number of ED 250 is named as the efficient configuration 

which will be adopted to implement the majority of subsequent 

tests. The surrogate model obtained by expansion with the 

efficient configuration is noted as efficient surrogate model. 

TABLE II 
INFLUENCE OF BASPC CONFIGURATION ON SURROGATE MODEL 

BSAPC Configuration eLOO 

(p.u.) 

tpre 

(s) q p Ned 

0.8 1-6 800 8.81×10-7 58.76 

0.4 1-6 800 1.45×10-6 29.16 

0.8 1-2 800 1.45×10-6 28.17 

0.8 1-6 250 2.36×10-6 9.13 

Except for internal configuration of the BASPC expansion, 

there are several external factors also exert influences on the 

performance, which will be discussed in the next subsection, by 

taking the phase-A voltage magnitude at Bus 899 for instance 

as well. The first external factor is the probability distribution 

type of uncertain inputs. Apart from the Gaussian distribution, 

demand of active power may follow some other distributions 

such as Uniform and Triangle distribution, depending on the 

amount of available information. Therefore, Uniform random 

variables U(0.9×PLi, 1.1×PLi) (i=1,…,50) is analyzed as the 

second type while the mixture of 30 Gaussian random inputs 

N(PLi, 0.12) (i=1,…,30) and 25 Uniform random inputs 

U(0.9×PLi, 1.1×PLi) (i=31,…,55) as the third type. With the 

efficient configuration of the BASPC expansion, TABLE III 

shows that evaluations on surrogate models in the presence of 

three types of uncertain inputs. It indicates that the accuracy of 

three surrogate models vary on the same order of magnitude; 

and differences in calculation time are less than 5 seconds. 

TABLE III 

INFLUENCE OF INPUTS’ TYPE ON SURROGATE MODEL 

Uncertain Inputs  eLOO 

(p.u.) 

tpre 

(s) Type Number Correlation 

Gaussian 

55 No 

2.36×10-6 9.13 

Uniform 4.11×10-6 13.55 

Mixed 3.72×10-6 10.25 

Besides the distribution type of random inputs, the second 

external factor is the dimension, i.e., the number of uncertain 

sources. The ability of dealing with the high dimensionality of 

random input variables is a considerable merit of the BASPC 

expansion compared to the traditional PC expansion, thus it is 

important to discuss the effect of dimensionality. By taking into 

account 55 Gaussian distributed active power demands and 55 

Uniform distributed power factors U(0.85, 0.95), there are 110 

random inputs. Moreover, the total number of uncertainties 

comes up to 140 if there are 30 PV generations penetrated into 

this feeder, and all of the active power outputs follow the 

Uniform distribution U(0.9×PVi, 1.1×PVi), where PVi stands 

for the original active power production of the i-th (i=1,…,30) 

PV at t=09:26:00, reffering to [34]. In these two new scenarios, 

the first four rows of TABLE IV lists the comparative results, 

which shows the accuracy of the surrogate model decreases 

briefly, and the calculation time increases slightly, along with 

the increase of dimensionality. But even so, there is room to 

improve the behavior of the surrogate model by adjusting the 

configuration of BASPC expansion if the number of uncertain 

inputs grows to a great extent. 

As mentioned in Section II, statistical correlation among 

random inputs can be tackled via the Copula, thus impacts of 

the correlation condition on the surrogate model will also be 

considered. Assuming correlations among outputs of 30 PVs 

are 0.8, the bottom row of TABLE IV lists the two evaluation 

indicators. It is noticed that the correlation condition does not 

decrease the accuracy of the surrogate model but extends the 

computation time. 

TABLE IV 
INFLUENCE OF INPUTS’ NUMBER AND CORRELATION ON SURROGATE MODEL 

Uncertain Inputs eLOO 

(p.u.) 

tpre 

(s) Type Number Correlation 

Mixed 

55 No 3.72×10-6 10.25 

110 No 3.67×10-3 10.38 

140 
No 3.90×10-3 11.77 

Yes 3.90×10-3 13.09 

Until now, only the voltage magnitude has been discussed; 

there are other desired quantities in practice though. Take the 

voltage angle and power loss for illustration, BASPC expansion 

with the efficient configuration is obtained to investigate the 

impact of output’s type in the base scenario. TABLE V shows 

values of indicators with regard to phase-A voltage magnitude 

at Bus 899, current of line 78 and active power loss of the whole 

feeder. It illustrates that both accuracy and efficiency of the 

surrogate model changes when different outputs are considered. 

The BASPC expansion performs better on the bus voltage than 

the line current and the active power loss, which reveals that the 

performance of the surrogate model will be influenced by the 

computational complexity of the output of interest. In this case, 
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extra computation effort is required to get the value of power 

loss after the PPF calculation while the voltage and current are 

the direct output of running PPF. 

TABLE V 

INFLUENCE OF OUTPUTS’ TYPE ON SURROGATE MODEL 

 Voltage  Current Power Loss 

eLOO (p.u.) 2.36×10-6 2.08×10-6 3.97×10-4 

Tpre (s) 9.13 9.70 10.03 

C. Evaluations on Post-process Results 

As explained in Section III, several post-process results can 

be obtained either through the LHS based PPF or the 

BASPC-LHS based method by means of LHS samplers. In this 

subsection, post-process results of the voltage magnitude at Bus 

899 are used to demonstrate the comparative tests. In the base 

scenario mentioned before, the LHS based PPF adopts 105 

trials to execute a batch of DPFs on the original feeder, thus the 

BASPC-LHS based method is going to use the same trials for 

post-processing on the efficient surrogate model. Fig.3 shows 

frequency histograms of three-phase voltage magnitudes at Bus 

899. On one hand, it demonstrates that voltage magnitudes are 

different among phase A, B and C, due to unbalanced power 

demands among three phases. On the other hand, the two 

groups of results from two different approaches coincide with 

each other well from visual point of view. In view of these three 

pairs of frequency histogram, TABLE VI shows that SI values 

for all of the three phases are above 99%. 

 
Fig.3. Frequency histogram of three-phase voltage magnitudes at Bus 899 

TABLE VI 

SI EVALUATION OF THREE-PHASE VOLTAGE MAGNITUDES AT BUS 899  

 Phase A Phase B Phase C 

SI (%) 99.84 99.83 99.87 

    Indeed, factors that influence performance of the surrogate 

model in the BASPC-LHS based PPF will bring impacts on the 

post-process results as well. Consider different numbers of ED, 

comparative results of the PDFs, CDFs and statistical moments 

will come to the same conclusions. For illustration, phase-A 

voltage magnitude at Bus 899 is selected as the target variable. 

Fig. 4 illustrates four frequency histograms obtained by LHS 

based PPF and BASPC-LHS based method with truncation 

norm 0.8, range of truncation criteria 1-6 and different numbers 

of ED. It is noticed that the frequency histogram obtained by 

the BASPC-LHS based PPF with 50 Ned does not follow the 

reference. However, the results of BASPC-LHS based method 

coincide with the reference result well when Ned comes up to 

250. Further, TABLE VII presents five quantitative indicators 

to reveal the influence of Ned on the post-process results of the 

BASPC-LHS based PPF. 

 
Fig. 4. Frequency histogram of phase-A voltage magnitude at Bus 899 

TABLE VII 

INFLUENCE OF THE NUMBER OF ED ON SI AND RES 

Ned SI (%) 
RE 

Mean Variance Skewness Kurtosis 

50 73.76 3.69×10-7 6.73×10-1 9.91×10-1 5.00×10-2 

250 99.84 3.67×10-8 1.85×10-4 7.50×10-1 8.59×10-6 

800 99.85 3.31×10-8 3.00×10-4 4.56×10-1 7.59×10-6 

    In statistics, the cumulative distribution gives the probability 

that a random variable is less than or equal to a predefined 

threshold, or lies in a semi-closed interval. Fig. 5 plots the 

cumulative distribution curves of phase-A voltage magnitude at 

Bus 899 which are obtained by different methods. Besides, the 

values of P(UA ≤ 250), P(250.4 < UA ≤ 250.8) and P(UA > 250.8) 

are compared in TABLE VIII. It is obvious that BASPC-LHS 

based method with the efficient configuration performs great 

while the results are the same as the reference with the base 

configuration. 

 
Fig. 5. Cumulative Distribution of phase-A voltage magnitude at Bus 899 

TABLE VIII 

INFLUENCE OF THE NUMBER OF ED ON CUMULATIVE DENSITY 

Ned 
Cumulative Density (%) 

UA ≤ 250 250.4 < UA ≤ 250.8 UA > 250.8 

50 0.12 38.41 0.01 

250 4.07 41.60 1.92 

800 4.07 41.58 1.93 

LHS 4.06 41.57 1.94 

* UA is the random variable, referring to phase-A voltage magnitude. 

Up to now, scalar-valued target outputs have been discussed. 

In case that multi-component outputs are needed, BASPC-LHS 

based PPF will build a specific surrogate model for each output 

via independent BASPC expansions on the shared ED. 

D. Discussion on Computational Effort 

By comparative tests on both quantitative indicators and 

graphic results, it is proved that the BASPC-LHS based method 

is very accurate relative to the LHS based PPF. Moreover, it 

should be emphasized that the proposed approach is much more 

efficient than the LHS based one, which relieves computational 
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effort and saves the total simulation time. Considering 

BASPC-LHS based method with the efficient configuration 

and LHS based PPF with 105 trials, only 250 rounds of DPF are 

required to get the quantitative results in the former method, 

while 105 rounds of DPF are needed in the latter one. Regarding 

post-process results, although the same amount of trials are 

adopted in the former method, but those samplers are only used 

to make statistical inference of the PPF output via its surrogate 

model, which is constructed by the BASPC expansion with 250 

ED. Compared to the computational effort for executing 105 

rounds of DPF calculation, the effort paid to calculate statistical 

values of the surrogate model of target output with 105 samplers 

is much less and close to negligible. 

As mentioned in Section III, the total time Ttotal consumed by 

BASPC-LHS based method includes the time for pre-process 

and post-process. TABLE IX lists the total computational time 

of PPF in the base scenario for both two approaches. It is found 

that BASPC-LHS method with the efficient configuration only 

consumed 9.84 s while the LHS based PPF required 3562.03 s. 

That is, at the on-peak moment, BASPC-LHS based PPF is able 

to save 3552.19 s while remaining high accuracy. Nevertheless, 

the advantage of the proposed method in term of efficiency 

becomes more significant if time-series PPFs are carried out. 

By implementing BASPC-LHS based method with the efficient 

configuration and LHS based PPF with 105 trials, Fig. 6 shows 

the time-series simulation results of phase-A voltage magnitude 

at Bus 899 with one-hour resolution over one day. It can be 

found that the results obtained from these two methods are 

quite close over the whole horizon. However, the total time 

(without parallel computing) required in LHS based PPF is 

82617 s while 202.692 s in the proposed method.  

TABLE IX  
COMPUTATIONAL BURDEN OF PPFS ON THE IEEE EUROPEAN LV TEST FEEDER  

 BASPC-LHS LHS 

Ned 250 800 0 0 

Nsam 104 105 104 105 104 105 

tpre (s) 9.13 9.13 58.76 58.76 0.04 0.17 

tpost (s) 0.36 0.71 0.47 0.87 342.23 3561.86 

Ttotal (s) 9.49 9.84 59.23 59.63 342.27 3562.03 

 
Fig. 6. Time-series phase-A voltage magnitudes at Bus 899 

In addition to the IEEE European LV Test Feeder, IEEE 123 

Node Test Feeder is also adopted to test the proposed method. 

TABLE X shows performance of the BASPC-LHS based PPF 

on the IEEE 123 Node Test Feeder in presence of 140 and 182 

independent random inputs, with the efficient surrogate model. 

In case of 140 uncertainties, it is noticed that the BASPC-LHS 

based method requires more computational effort in the IEEE 

European LV Test Feeder than the IEEE 123 Node Test Feeder. 

The reason lies in that complexity of the target power system 

significantly influences t0. Moreover, it is found that the size 

and topology of target power system makes a bigger difference 

to Ttotal, relative to the number of uncertainties. 

TABLE X  

COMPUTATIONAL BURDEN OF PPFS ON THE IEEE EUROPEAN LV TEST FEEDER 

AND THE IEEE 123 NODE TEST FEEDER 

System M Method Ned Nsam Ttotal (s) 

IEEE 123 Node 

Test Feeder 

140 
BASPC-LHS 250 

105 

6.25 

LHS -- 1206.31 

182 
BASPC-LHS 250 7.26 

LHS -- 1235.78 

IEEE European 

LV Test Feeder 

55 
BASPC-LHS 250 9.84 

LHS -- 3562.03 

140 
BASPC-LHS 250 13.81 

LHS -- 3597.36 

    TABLE XI gives the overall comparison of performances 

between the two methods on both test systems. It can also be 

concluded that the more complex power system is, the more 

computational effort can be saved by the proposed method. In 

subsection B, it has been found that correlation condition 

decreases accuracy of the surrogate model. With respect to the 

overall performance, the correlation condition will also reduce 

values of PD and SI, as listed in the last row of TABLE XI. 

TABLE XI 
OVERALL COMPARISON OF PPFS BASED ON BASPC-LHS AND LHS  

System M Correlation PD (%) SI (%) 

IEEE 123 Node 

Test Feeder 

140 No 99.48 99.52 

182 No 99.41 99.43 

IEEE European 

LV Test Feeder 

55 No 99.72 99.84 

140 
No 99.62 99.25 

Yes 99.56 98.95 

In practice, the computational effort of PPF relies on several 

other aspects beyond the scope of this work, such as the 

concision of DPF algorithm, the efficiency of programming 

language and the level of integration among each participated 

session. Nevertheless, comparisons between two different PPF 

methods presented in this work are implemented in the same 

environment. 

V. CONCLUSIONS 

This paper presents a novel method of PPF based on the 

BASPC expansion to tackle a large number of either dependent 

or correlated random input variables. The main objective of this 

work is to verify accuracy and efficiency of the BASPC-LHS 

based PPF, compared to the LHS based PPF. 

Different BASPC configurations are tested to solve the PPF 

problem, with respect to truncation norm q, range of truncation 

degree p, number of ED Ned. Besides, number of random inputs 

M, form of inputs’ PDF, type of outputs, and number of 

samplers for post-processing Nsam were discussed as well. In the 

presence of nonlinear correlation among random inputs, the 

Copula is applied to remove the correlation. Performances of 

the proposed method were tested on IEEE European LV Test 

Feeder and IEEE 123 Node Test Feeder. Either quantitative 

indicators or graphical results prove that, the BASPC-LHS 

based PPF improves the computational efficiency dramatically 

whilst maintaining high accuracy, relative to traditional PPFs. 

Merits of the proposed method will be of benefit to studies of 

complex power systems in presence of uncertainties, especially 

for online usages. Future work will broaden applications of this 

method, such as network planning, load management and so on. 
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