

Basys 3 FPGA Manual
Elizabethtown College

Clay Buxton

v1.0 – Clay Buxton 5/12/19
v0.2 – Clay Buxton 4/26/19
v0.1 – Clay Buxton 3/25/19

This manual is a work in progress. Sections with no prefix are finished and complete. Sections marked with a [WIP] mean they are

currently work in progress, these may not be finished. Segments marked [NS] mean they have not been started and have yet to be

started.

This manual in no way, shape, or form should be taken as straight truth. I’ve been learning as well as writing this manual, it is prone to

mistakes, and many beginner errors. If other resources conflict with what this manual says, take the information told in other sources.

Table of Contents:
 Introduction to FPGA’s
 Creating Your First Project and Basic Vivado UI

 Inputs, Outputs and Configuring Design Constraints

Basic Verilog

 Programming the FPGA

 Test Benches and Timing Diagrams

 PMod Interfacing

 Appendix

Resources:
 Digilents Basys 3 Github Repository https://github.com/Digilent/Basys3

 This repository holds the constraints file for the Basys 3 as well as a few helpful example projects.

 It is an excellent resource for looking at some examples in Verilog for the board.

Clays EGR333 Github Repository https://github.com/clbx/EGR333

 This repository holds all the code shown in this manual and some simple projects to help learn Verilog

MIT Intro to Verilog http://web.mit.edu/6.111/www/f2016/handouts/L03_4.pdf

These slides are a good, brief, and complete look into the basics of Verilog. Very Useful

https://github.com/Digilent/Basys3
https://github.com/clbx/EGR333
http://web.mit.edu/6.111/www/f2016/handouts/L03_4.pdf

1 Introduction to FPGA’s

This section does not hold any information on how to program or operate the boards. Operable information starts in section 2

FPGA’s or Field Programmable Gate Arrays are development boards that house a chip that can be programmed

to perform as a set of logic blocks functionally.

This manual is strictly for the Basys 3 housing the Artix 7 chip. Vivado is used to program this chip, and any

reference to programming should be assumed to be done through Vivado unless otherwise specified.

FPGA vs. Breadboarding vs. Logisim

 FPGA’s allow for a wide range of features that designing a circuit manually on a breadboard and

simulating one like in Logisim do not provide.

 Using Vivado, we can streamline the design, testing, and implementation of a circuit. Unlike with

breadboarding it must all be done manually and Logisim where it is challenging to implement.

 FPGA’s allow for quick re-use. An FPGA has the ability to be reprogrammed in a matter of minutes.

Logisim also provides this, however when hand-building circuits this becomes time-consuming

 Designing a circuit in Vivado allows for the use of HDL and other programming languages. This gives

the ability to rapidly develop designs

 Voltage, current, and power are irrelevant when planning for an FPGA; all this is taken care of behind

the scenes.

Designing for an FPGA allows for much higher density designs. An FPGA is able to support more circuitry

than 100 breadboards and models in Logisim face the technical limitations of the software along with a lack of

an efficient way to manage many designs.

FPGAs are made from a single component, a logic cell. These logic cells can be reconfigured and re-assigned as

needed by the program being written to them. Logic cells contain three main parts, a look-up table or LUT, a D

flip-flop, and a multiplexer. A LUT can function any logic function based on the number of pins they are

allocated. They can be assigned to any logic input and output and are not limited to gates or simple components.

This design allows LUTs to be used together to implement any logic and are used to implement logic on an

FPGA.

The Basys 3 boards are programming using the Vivado Software Suite. Vivado is the replacement for the old

Xilinx ISE design suite from 2014 onwards. Vivado does not support any older chips, and Xilinx ISE does not

support any newer chips. Unlike ISE which relied primarily on gate design, Vivado utilizes mostly the use of

HDL and supports designs built with high-level languages like C and C++.

2 Setting Up Your First Project

and Basic Vivado UI

Vivado is the design suite used to write programs onto the FPGAs. At first, it can be a very intimidating

program. In the first few sections of this manual, the FPGAs are programmed using a Hardware Descriptive

Language (HDL). Hardware Descriptive languages are different from most high-level languages like C and

Java. Instead of writing code traditionally, HDL’s describe hardware components. This manual uses Verilog for

all examples and tutorials in the first few sections. However, this manual only covers simple Verilog (enough to

get a simple circuit up and running on the FPGAs) in depth topics are not included as there are many better

resources to use for that.

To start Vivado find the shortcut on the desktop or find it in the start menu. Make sure you are

launching Vivado and not Vivado HLS. The shortcut should be something along the lines of

Vivado 20XX.Y where XX is the year and Y the version number

Once Vivado has loaded you should see a Project Screen with three sections Quick Start,

Tasks, and Learning Center, along with the recent projects window. Click Create Project to start with a new

project.

[1] The first window presents you with the name

and location of the project. Where you save this

doesn’t matter, put it wherever is most

convenient for you. I did not notice any reduced

performance by having it in my public/private

folders.

[2] The second window asks you to specify the

Project Type. Select RTL Project and be sure

that “Do not specify sources at this time” is

checked. The box should be because you do not

currently have any sources to add and want to

open a blank project. RTL project is the standard

project in Vivado that targets the FPGAs.

[3] The third window asks you to specify the

board that we are using. The part number for the

Basys 3 FPGAs is XC7A35TCPG236-1. Select

it and click next, then finish.

You should now see the main screen for the Vivado Development Environment. There are three main sections

here. You can see Flow Navigator to the left, Project Manager in the middle, and the Console and other

outputs on the bottom of the Project Manager.

In the Project manager, there are three smaller boxes. The Sources, Project Summary, and Properties. You

can ignore the properties and summary boxes for now

In the Sources box, you’ll see three folders,

Design Sources, Constraints, and Simulation

Sources. Our first focus is going to be on the

Constraints. A Constraint is a file that tells

Vivado what hardware to use and where on the

board it is. The constraint files have a .xdc file

extension. This file is provided to you, though you

may write your own. It is called “Basys-3-

Master.xdc” or something along those lines.

Click the “plus” icon at the top of the sources

window. The next section describes how to

configure the design constraints for the FPGA.

The Design Sources folder is where you put the

source code for the project. That process is covered

in a later step.

Now connect the MicroUSB cable to the FPGA

and your Computer and turn the “on” switch on the

FPGA. The FPGA should power on with the

example program running.

Summary

To set up a project, follow the steps:

1. Set the location of the project and give it a name

2. Select RTL Project, make check Do not specify design sources

3. Select the XC7A35TCPG236-1

4. Import the Basys-3-Master.xdc design constraint

3 Inputs, Outputs and configuring

Design Constraints

The Basys 3 Constraints file can be found in the Digilent Basys 3

Github Repository

To configure what inputs and outputs you are using in your project,

and assign the hardware to a variable in software, you need to edit the

constraints file. When you open the file Constraints/constrs_1/

Basys-3-Master.xdc it will open long file with many lines starting

with set_property. Every two lines of this file describes one input

or output on the FPGA. Below is a diagram which describes what each of the parts of the lines do.

set_property Is a reserved word that tells Vivado that we are setting the property of a hardware device.

PACKAGE_PIN Describes which device on the FPGA we are accessing. Here it is referencing V17 which is the

first switch. Sometimes the pin on the board can be hard to identify it is generally the number in parentheses

printed on the board near the device you want to use.

get_ports Assigns the hardware device to a specific variable. Here it is putting the switch to the first position

of the “in” array.

For example, if we wanted to set the first LED on the board to the variable led in code. We would put the

following lines in the design constraints file

The IOSTANDARD portion of the line tells Vivado what protocol is used to talk to the hardware though you

don’t need to worry about this, it won’t change.

To correctly setup which devices you are using, comment and uncomment the lines of the things you need to

use. Make sure to keep unused items commented and uncomment all used items. If you don’t use a device

described in the constraints, your project will not build. Similarly, if you try and use commented device, it will

not work, and you’ll get similar results.

There are 12 sections in this file each correlates to a different type of input or output on the board.

IMPORTANT
Before you’re done editing your constraints

file make sure these things are done:

[1] All the variables that are assigned in the

constraints are used in your code

[2] You don’t use a variable in the code that

is undefined in the constraints

Otherwise your program will not compile!

set_property PACKAGE_PIN V16 [get_ports {led}]
set_property IOSTANDARD LVCMOS33 [get_ports {led}]

The main ones that are covered in the early sections are the switches, LEDs, clock, and buttons.

Some of the inputs are assigned directly; others require different ways of communicating with the hardware.

Things like the switches and LEDs are directly referenced, but some of the more complicated devices cannot.

(ex: led[1] = true will turn on a light) however most of the other devices have specific ways to

communicate with the board; these are covered in their respective sections.

List of Inputs/Outputs:

Clock: The first section is for the internal clock that Verilog projects can use. It has an extra line that allows for

setting clock parameters.

Switches: This section is for the 16 flip switches along the bottom of the board. You should use these in an

array. These switches are referenced directly.

LEDs: The 16 Small LEDs above the switches along the bottom of the board. It is recommended to use these in

an array. There are other referenceable LEDs on the board, but they are used for other functions, and you should

stick to the 16 along the bottom. These can be referenced directly.

7 Segment Display: A 4 digit seven segment display.

Buttons: There are five referencable buttons in the middle of the board. The buttons are not debounced and can

be referenced directly

PMod Headers: These are the 4, 12 pin connectors off the sides of the board. They can be used to

communicate with external things. These are covered extensively in another section

VGA Connector: VGA Connector to allow to display graphics. This is not covered in the current version of the

manual

USB Connections: Way to communicate over USB. This is not covered in the current version of the manual

Quad SPI Flash: Flash memory. This is not covered in the current version of the manual

Summary

The constraints file holds the information of what is being used and what isn’t being used for the project. In

each set of lines, you can set what hardware is being used and assign it to certain variables by referencing this

chart.

4 Basic Verilog (4 Bit Adder)

As previously mentioned Verilog is different than a high-level language like C or Java. Verilog describes

hardware like wires, gates and other hardware components. Things like wire, xor, and reg are reserved

words instead of int, double, and char. They describe physical components that make up a circuit. Verilog

still has things like logic and loops, which are used in the circuits.

The absolute best thing to do when starting to program in Verilog is to remember you’re not writing a program,

you’re writing about a circuit.

By the end of this section, you’ll have a full 4-bit adder in Verilog and program it to the FPGA in the next.

The first thing we want to do is create our source files. Since we are going to create a 4-bit full adder, we are

going to make 3 circuits; a half-adder, a full-adder, and then our assembled 4-bit full adder. Each file is a

module, and a module is essentially a sub-circuit from Logisim. A circuit that is defined in one place and can be

used elsewhere. To assemble our full adder, we need 3 files.

To create source files click the “plus” icon in the

Sources panel. Select Add or Create Design Sources

and next.

In the next panel, it shows all of the files that are

being added to the project. Since we don’t have any

files to import, we want to create the files. Click

Create File, and call the first file top. The top is

similar to main for an HLL.

Make sure the file type is Verilog, and the file

location is <Local to Project>. Then create fulladder

and halfadder with the same settings.

Once you click finish, a new window will appear that allows you to declare what the inputs and outputs are of

each of the modules. All this does is autogenerate the code inputs and outputs, you usually can fill this out, but

for this manual, we’re going to do it manually. Leave it blank and hit OK and Yes on the next window.

You should now see the 3 files in the Sources folder in the sources pane.

You’ll notice that one of them is bolded, this is what Vivado has currently

selected as the top if “top,v” is not currently selected, right click on it and

select set as top

Now that we have our source files laid out, we can begin to write our code.

Half Adder
At this point, you should know how to design a half adder in

something like Logisim. It takes in 2 inputs, “adds” them

using an XOR and AND gate and the outputs them on an

output and carry outputs.

When opening the file, you’ll see some code already generated.

Sets the timescale for the project, leave this as it is, it’s not important right now

The large commented block is to put in information about the file into it. It is important to always fill this out

this for every file, no matter how mundane it might feel. There is an example given in the appendix.

Shown to the left is the base of the module. As you can see it looks very similar to

a class in an HLL. It works similarly. Inside the parentheses, we’ll define what the

inputs and outputs of the circuit are

Let’s write some code!

Inside the parentheses, we put a, b, sum, and cout. You

also assign inputs and outputs here as shown.

Order here matters, when you call the circuit in another

design, you’ll give the variables in the order described

here

Using gates in Verilog is very similar to calling a function in another language. There are functions for XOR,

AND, OR, XOR, etc. To use these you give them arguments just like you would a function in Java or C. The

first parameter is the output of the gate, and then the following are the input. You can give it as many inputs as

you please.

Here we describe an AND gate and an XOR gate. The AND

gate takes in a and b and outputs to cout. The XOR gate also

takes in a and b but outputs to sum, just like in the Logisim

circuit above

To the left is a completed half adder. Now we can move on

to the next part, the full adder.

module halfadder(

 input a, b,

 output sum, cout

);

 xor(sum,a,b);

 and(cout,a,b);

endmodule

`timescale 1ns / 1ps

module halfadder(

);

endmodule

module halfadder(

 input a, b,

 output sum, cout

);

endmodule

halfadder.v

halfadder.v

halfadder.v

Full Adder
As you know a full adder uses two half

adders to add 3, 1-bit numbers and output

the sum

Go to your fulladder.v to start work on the full

adder module.

Like we did for the half adder, assign your inputs

and outputs.

Using another module is very similar to calling a gate. Make sure to give the module the inputs and outputs in

the same order you defined them in code

Here we had to add 3 wires as well; wires connect

different parts of your circuit. We didn’t need them

before because inputs and outputs are typed as a

wire, but now since we have wires in the internals

of our circuits, we need to define them to connect

the half-adders.

The 4 Bit Adder
Now that we have all of the components for

our 4-bit adder it’s time to assemble it. We

just put 4 full adders in a row and connect

them. In the logisim design, I had to shrink

down the output and input names. n10 refers

to num1[0] in the code, n20 refers to

num2[0], n11 refers to num1[1], and so on.

module fulladder(

 input a,b,cin,

 output sum,cout

);

endmodule

module fulladder(

 input a,b,cin,

 output sum,cout

);

 wire sum2sum, cout0, cout1;

 halfadder(a,b,sum2sum,cout0);

 halfadder(sum2sum,cin,sum,cout1);

 or(cout,cout0,cout1);

endmodule

fulladder.v

fulladder.v

You can see here that some of the inputs look a little bit

different than before. The [3:0] in front of the variables

mean they are busses. Busses are wires that can handle

more than one bit at a time and are similar to arrays from

an HLL. A 3:0 bus holds 4 bits, from bit 0 to bit 3. Busses

do not have a width limit (within reason).

We’ll need to create some wires so we can connect our full

adders.

Now we can add in our four full adders

to the circuit. There’s two new things

in this snippet too num1[0] a bus

reference and 1'b0 a literal.

Busses are referenced like arrays in an

HLL. Just give the name and index as

you would regularly

Constants are defined in either binary,

octal, decimal or hexadecimal. The

very first number defines how many

bits the number is. In this case, we just

wanted a one bit zero to fill our first

full adders carry in. The 'b tells it that

the number we’re giving it is in binary,

you can give it 'o, ‘d, or 'h for

octal, decimal, and hexadecimal

respectively

module top(

 input [3:0] num1,

 input [3:0] num2,

 output [4:0] out,

);

endmodule

module top(

 input [3:0] num1,

 input [3:0] num2,

 output [4:0] out,

);

 wire cout0,cout1,cout2;

endmodule

module top(

 input [3:0] num1,

 input [3:0] num2,

 output [4:0] out

);

 wire cout0,cout1,cout2;

 fulladder(1'b0,num1[0],num2[0],out[0],cout0);

 fulladder(cout0,num1[1],num2[1],out[1],cout1);

 fulladder(cout1,num1[2],num2[2],out[2],cout2);

 fulladder(cout2,num1[3],num2[3],out[3],out[4]);

endmodule

top.v

top.v

top.v

Our full adder is now complete! In the next section, we’ll program the board.

5 Programming the FPGA

Armed with a 4-bit adder and a general idea of how constraints work, we can now edit our constraints file to fir

the needs of our program. In the constraints, we need to set inputs and outputs for the top file.

We have a 2, 4-bit inputs and then a 5-bit output. Using switches for the inputs seems to make the most sense so

we’ll set our first four switches to num1[] and the next four switches to num2[]

Open your Basys-3-

Master.xdc and assign the first

four switches to num1[0]

through num1[3]

Then do the same for the next

four switches.

And then set the outputs

Make sure unused lines are commented out; otherwise your project will not build!

Switches

set_property PACKAGE_PIN V17 [get_ports {num1[0]}]

 set_property IOSTANDARD LVCMOS33 [get_ports {num1[0]}]

set_property PACKAGE_PIN V16 [get_ports {num1[1]}]

 set_property IOSTANDARD LVCMOS33 [get_ports {num1[1]}]

set_property PACKAGE_PIN W16 [get_ports {num1[2]}]

 set_property IOSTANDARD LVCMOS33 [get_ports {num1[2]}]

set_property PACKAGE_PIN W17 [get_ports {num1[3]}]

 set_property IOSTANDARD LVCMOS33 [get_ports {num1[3]}]

Basys-3-Master.xdc

set_property PACKAGE_PIN W15 [get_ports {num2[0]}]

 set_property IOSTANDARD LVCMOS33 [get_ports {num2[0]}]

set_property PACKAGE_PIN V15 [get_ports {num2[1]}]

 set_property IOSTANDARD LVCMOS33 [get_ports {num2[1]}]

set_property PACKAGE_PIN W14 [get_ports {num2[2]}]

 set_property IOSTANDARD LVCMOS33 [get_ports {num2[2]}]

set_property PACKAGE_PIN W13 [get_ports {num2[3]}]

 set_property IOSTANDARD LVCMOS33 [get_ports {num2[3]}]

Basys-3-Master.xdc

LEDs

set_property PACKAGE_PIN U16 [get_ports {out[0]}]

 set_property IOSTANDARD LVCMOS33 [get_ports {out[0]}]

set_property PACKAGE_PIN E19 [get_ports {out[1]}]

 set_property IOSTANDARD LVCMOS33 [get_ports {out[1]}]

set_property PACKAGE_PIN U19 [get_ports {out[2]}]

 set_property IOSTANDARD LVCMOS33 [get_ports {out[2]}]

set_property PACKAGE_PIN V19 [get_ports {out[3]}]

 set_property IOSTANDARD LVCMOS33 [get_ports {out[3]}]

set_property PACKAGE_PIN W18 [get_ports {out[4]}]

 set_property IOSTANDARD LVCMOS33 [get_ports {out[4]}]

Basys-3-Master.xdc

Now it’s time to put the project onto the board. Make sure your FPGA it plugged in and powered on, you

should see the demo program running. In the Project Manager window towards the bottom you’ll see a button

called Generate Bitstream this runs all the necessary steps to compile your project.

There are three steps from Verilog to board.

The first is Synthesis. The Synthesis synthesizes all of your code into a gate level design. Your Verilog code

turns into gates as it would on a physical circuit

The second is Implementation. During implementation, Vivado optimizes the gate design to run faster and use

less power. If you were to take a look at the circuit after optimization, it would look unrecognizable since the

circuit has been re-arranged to make it run better on the board.

The last step is to Generate Bitstream; this puts your gate design into a compiled binary file that the FPGA

knows how to read. At this point, the design is no longer readable by anything except the board itself.

You can run all of these steps individually but starting any of the later ones will start the earlier ones if changes

were made.

At this point run Generate Bitstream, be patient as this can take a few minutes. You can see what step it is

currently on in the top right of the window

Once this is finished Click Open Hardware Manager to open the hardware manager.

In the green ribbon at the top of the window, you’ll see a message saying No hardware target is open. Click

Open Target and select Auto Connect, make sure the FPGA is on.

How the FPGA is connected and in the same ribbon you should see a Program Device button, click this. Press

Program on the next window

The FPGA is now running your 4 Bit Adder!

6Verilog Snippets

This section isn’t a tutorial as much as snippets and facts about Verilog I’ve learned going along. These are my

observations and could be incorrect.

Using always(): In many tutorials, you’ll see always(*) begin end from my experience Vivado/the FPGA’s

do not like this. The item inside the parentheses in an always statement is when the loop is triggered. If you did

always(button) begin end It would enter that whenever a button was high. However, Vivado will give you

an error if you use anything besides a clock. So to my knowledge clk is the only thing that is valid in there

without Vivado getting upset.

I don’t believe this is right though since many tutorials use inputs other than clocks in their code. I’m not sure

why Vivado doesn’t like this.

Difference between = and <= :

= is a blocking statement. In an always block, the line of code will be executed after the previous line has

executed.

<= is non-blocking in nature. That means that in an always block, every line will be executed in parallel.
From Stack Overflow: [https://stackoverflow.com/questions/35435420/what-is-the-difference-between-and-in-verilog]

7 Test Benches & Timing Diagrams

Simulations show the output of a design without having to implement it to the board. These programs are called

test benches and describe a set of steps that the simulator will execute on the design.

First, you must create a simulation source.

Click the + icon in the Sources menu and

select Simulation Source. Then create a new

file.

Create registers for all the inputs

and wires for all the outputs

Create a new initial block, this sets

the clk to 0 at first and every 5

nanoseconds the clock will flip.

This is then set for the entire

testbench

After that set up your circuit. Here

ctrl is the circuit being tested

Then you describe your test

bench. Here the inputs are set to

different values and then are set to

wait 100 nanoseconds between

changing again. This allows us to

see the changes happening in the

test bench

 reg[5:0] A;

 reg[5:0] B;

 reg[3:0] C;

 wire[6:0] led;

 reg clk;

 initial begin

 clk = 0;

 forever #5 clk=~clk;

 end

ctrl dut (

 .clk(clk),

 .A(A),

 .B(B),

 .C(C),

 .led(led)

);

 initial begin

 A = 6'b000001;

 B = 6'b000001;

 C = 4'b0000;

 #100;

 A = 6'b000000;

 B = 6'b000000;

 C = 4'b0000;

 #100;

 A = 6'b000010;

 B = 6'b000010;

 C = 4'b0001;

 end

Now that the test bench is created, it’s time to run the simulation, under the Simulation tab of the Project

manager, click on Run Simulation and select Run Behavioral Simulation. After its finished click the Zoom to

Fit button to put the test bench in view and you’ll have the test bench

8 Using IP Cores

This section focuses on how to implement a basic design using IP cores in Vivado. IP Cores stand for

Intellectual Property core. These allow for quickly adding already designed designs to a circuit. Note that this

is very different from the previous chapters of the manual. We will no longer be programming in Verilog but

creating a circuit by dragging and dropping components and allowing Vivado to do a lot of the work for us.

Once we have designed our circuit, we’ll write code in the Vivado SDK in which compilation is targeted to run

on our designed device

This first part will walk you through how to create a Microblaze design in Vivado. Microblaze is a

microprocessor core defined in software. It’s a 32bit RISC based processor with many configurable variables.

The Microblaze is a processor which we can design around and then write to the FPGA.

Before starting you need to obtain the Basys 3

board files from the Digilent Github repository

here [https://github.com/Digilent/vivado-boards]. Download or

clone the repository and browse to the board files

of your Vivado install. Generally this is at

C:\Xilinx\Vivado\20XX.X\data\boards\boardfiles.

From the repository in /new/board_files/ copy the

Basys3 folder to your Vivado install directory.

This allows you to use the Basys 3 board in the

Vivado IP Designer. If you had Vivado running

during this process. You need to restart Vivado if

it was running during that process

At this point create a Vivado RTL project like you usually would. Be

sure not to define any sources.

At the stage where you would traditionally choose the part being

used. Select the Boards tab and select the Basys 3

Complete the project creation as usual

This is where the design process deviates from the traditional Verilog design. Instead of creating sources, open

the IP Integrator tab and select Create Block Design. Give the design a name and click OK.

https://github.com/Digilent/vivado-boards
https://github.com/Digilent/vivado-boards

Be sure in the top left window the following tabs are present: Sources, Design, Signals, Board. If Board is

missing, go back, you currently have the part still selected and need to choose the Basys 3 board.

Now to begin the design

Open the board tab and find GPIO in the secions. Right click on 4

Push Buttons and click Connect Board Component… This inserts

the push buttons on the board into our IP Design.

In the dialog window that pops up select GPIO under the AXI GPIO

section. Click OK

You should now see the GPIO block in the Diagram window

with the push buttons connected

Now connect the 16 LEDs and select GPIO2 under the Connect

to existing IP tab. Click OK

The GPIO block should now have a GPIO2 port and the LEDs at the end of it

Now we need to add the clock and the microprocessor itself.

In the boards tab add the System Clock.

In the first window make sure only clock_CLK_IN1 is

ticked

A new Clocking Wizard block will appear in your design. Double click on the block to open the customization

window for the clock

In the Board tab, make sure the CLK_IN1 is set to sys clock and EXT_RESET_IN is set to reset

In the Output Clocks tab make sure that clk_out1 both checked and set at 100Mhz and at the bottom of the tab

Reset Type is set to Active High

At the top of the Diagram window there is a green bar click Run Connection Automation this does a bit of

automatic configuring.

Now add the USB UART block from the Board window. This will allow for debugging over USB.

Now add the Microblaze microprocessor. To do this, right click on an empty spot of the diagram and click on

Add IP in the window that pops up search for Microblaze. Another green ribbon will appear, click on Run

Block Automation this will put all the blocks in the right place.

During this configuration make sure the follow values are as follows:

Preset: None

Local Memory: 32KB

Local Memory ECC: None

Cache Configuration: None

Debug Module: Debug Only

Peripheral AXI Port: Enabled

Interrupt Controller: Unchecked

Clock Connection: /clk_wiz_0/clk_out1

Another green ribbon will appear, click Run Connection Automation then click OK

Hit F6 to validate the design. If Validation is not successful, go back and restart the steps with a new design.

The final design should look something like this

The final thing to do before generating a bitstream is to generate an HDL wrapper to run the design on the

board.

Switch to the Sources tab, right click on your design and select Generate HDL Wrapper. Tick Let Vivado

manage wrapper and auto-update then click OK. This will generate your top file. Now click Generate

Bitstream.

Now we need to export the design to the Vivado SDK. In the File menu select Export and then Export

Hardware. Make sure Include Bitstream is ticked and keep the export location as the local project. Click OK

In the File Menu click Launch SDK make sure the locations are set to local project

The Vivado SDK is a software development environment in which you can develop code that is targeted at your

design made in the IP integrator. The SDK can take a few minutes to load, please be patient. Once the SDK is

loaded it will probably look very familiar, this is because the SDK is based in Eclipse. Everything language

independent that you can do in eclipse you can do here.

Create a new Application Project in File -> New -> Application Project

Give your Application a name and make sure C is selected as the target language. Click next and choose Empty

Application as the template. Click Finish.

#include "xgpio.h"

//send data over UART

#include "xil_printf.h"

//information about AXI peripherals

#include "xparameters.h"

int main()

{

 XGpio gpio;

 u32 btn, led;

 XGpio_Initialize(&gpio, 0);

 XGpio_SetDataDirection(&gpio, 2, 0x00000000);

 XGpio_SetDataDirection(&gpio, 1, 0xFFFFFFFF);

 while (1)

 {

 btn = XGpio_DiscreteRead(&gpio, 1);

 if (btn != 0) // turn all LEDs on when any button is pressed

 led = 0xFFFFFFFF;

 else

 led = 0x00000000;

 XGpio_DiscreteWrite(&gpio, 2, led);

 xil_printf("\rbutton state: %08x", btn);

 }

}

Right click on the src folder and create a new source file. Call this file main.c add the

following code to main.c

Now click on Xilinx in the toolbar and select Program FPGA

Keep all the settings the same and click Program

This will then load the program onto the FPGA, but not run it. Right click on your project folder and select Run

As -> Launch on Hardware (System Debugger)

You will now need to obtain a serial console application. Terra Term [https://osdn.net/projects/ttssh2/downloads/70691/teraterm-

4.102.exe/] is recommended

Set TerraTerm to serial and select the COM port the FPGA is connected to. In the serial port setup make sure to

set the following settings

Speed: 9600

Data: 8-Bit

Parity: None

Stop Bits: 1 bit

You should now be able to see the message in the terminal and see the hex representation of the buttons in the

terminal

main.c

https://osdn.net/projects/ttssh2/downloads/70691/teraterm-4.102.exe/
https://osdn.net/projects/ttssh2/downloads/70691/teraterm-4.102.exe/
https://osdn.net/projects/ttssh2/downloads/70691/teraterm-4.102.exe/

9 Using Pmod (Compass Example)

PMod is an open standard developed by Digilent to use with FPGAs or Microcontrollers. As of the writing of

this manual we have the CMPS2 a compass module, the DHB1 a motor controller, and GPS which does

exactly what you think it does. In the coming sections we will cover how to use all of these modules. Each of

these also uses their own connection method, so parts of these may be able to be used with other Pmod devices.

To use these, insert them into the PMod ports on the sides of the FPGA

Before programming anything we need to get the Digilent IP Library from their repository here

[https://github.com/Digilent/vivado-library/releases?_ga=2.10682993.418939316.1557554693-1032257056.1556697100]

Download the latest release even if you are using a new version of Vivado than what is shown. For example

while writing this manual I am using 2018.3 while the newest version of their library is 2018.2. Extract it

somewhere where you can find it later

Open the project you made in the last section.

We need to add the Digilent Library you just downloaded, under Project Manager open Settings

Click the arrow next to IP and select Repository

Click the + and add the extracted repository. A window should come up telling you that IP cores have been

added. Click Apply and OK

In the Board tab scroll down to the Pmod Connectors. Connect it to your design and select the Pmod

component you want to use. In this first part we’ll be using the compass module CMPS2. In this example I have

CMPS2 connected to Pmod port JA.

Run Connection Automation make sure your Pmod device is checked.

At this point 2 blocks may need to be added another clock or a Microblaze interrupt. The CMPS2 does not

need a clock, but it does need the interrupt. The clock will not be covered in this manual since none of our

components require a separate clock.

We now need to add an AXI Interrupt

Controller. Add the AXI Interrupt Controller

to your design and manually connect the

interrupt port on that block to the one of the

Microblaze processor.

Now click Run Connection Automation to have Vivado configure

everything else.

https://github.com/Digilent/vivado-library/releases?_ga=2.10682993.418939316.1557554693-1032257056.1556697100
https://github.com/Digilent/vivado-library/releases?_ga=2.10682993.418939316.1557554693-1032257056.1556697100

Now add a Concat IP Core. Reconfigure it to only have the number of Pmod devices you are using (right now

we are only using 1). Now connect the Interrupt port on your Pmod Device to the In port of the concat block.

Now connect the concat output port

to the intr port of the AXI Interrupt

Controller.

Click the Regenerate Layout Button this organizes the layout of the design a bit

And then validate the design. If validation is not successful restart these steps, you missed a step or didn’t

configure a component correctly.

Return to the sources window and re-generate the HDL wrapper and generate a bitstream. Export and open the

SDK like you did in the previous section.

Create a new Empty Project, make sure C is the target language

Under the platform folder at the top, expand the folder and the driver folder. In here you can find the Pmod

interface and an example

Move the example source file you want into the src folder of your project.

Write the program to the FPGA and run as you did in the previous step.

To show information over the Serial Terminal, change any instances of printf to xil_printf this tells the FPGA

to write to the serial terminal.

If all works you should receive compass info (or info from your FPGA perfectly)

You can either continue working off the same design as in previous sections or create a new one. I will be

building off the ones in previous design so that the finished design will have motor control, GPS and compass in

it.

To implement the other devices to your design, add new Pmod blocks to the design. Be sure to increase the

concat if it needs an Interrupt and connect that and make a new clock if your Pmod requires it. Run the

connection wizard after you are done

The GPS, Motor, and Compass should look something like this

 Be sure to generate the HDL Wrapper and then export the hardware to the SDK. Using the examples given you

can then implement the other 2 Pmod devices.

Appendix

This appendix holds information useful to the manual that doesn’t belong in the middle of a section

Example Verilog Header Comment

//

// Company: Elizabethtown College

// Engineer: Clay Buxton

//

// Create Date: 02/09/2019 08:02:42 PM

// Design Name: 4 Bit Adder

// Module Name: top

// Project Name: 4 Bit Adder

// Target Devices: Basys 3

// Tool Versions: Vivado 2018.3

// Description: Adds 4-bit numbers

//

// Dependencies: fulladder.v

//

// Revision: 0.02 - Project Finished

// Revision 0.01 - File Created

// Additional Comments: None

//

//

